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Preface

DISC, the International Symposium on Distributed Computing, is an interna-
tional forum on the theory, design, analysis, implementation, and application of
distributed systems and networks. DISC is organized in cooperation with the
European Association for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2014, the 28th Interna-
tional Symposium on Distributed Computing held during October 12–15, 2014,
in Austin, TX. The volume also includes the citation for the 2014 Edsger W. Di-
jkstra Prize in Distributed Computing, and the 2014 Principles of Distributed
Computing Doctoral Dissertation Award, both jointly sponsored by the EATCS
Symposium on Distributed Computing (DISC) and the ACM Symposium on
Principles of Distributed Computing (PODC). The Dijkstra Prize was awarded
to K. Mani Chandy and to Leslie Lamport and it was presented at PODC 2014.
The Principles of Distributed Computing Doctoral Dissertation Award was pre-
sented at DISC 2014 and it was given to Bernhard Haeupler.

In total, 151 regular papers and nine brief announcements were submitted to
the symposium. Each submission was reviewed by at least three Program Com-
mittee members. For this task, the committee was assisted by about 180 external
researchers. After reviewing the papers, the Program Committee made the fi-
nal decisions in discussions carried out mostly over the Web, using EasyChair,
from June 19 to July 10. The Program Committee accepted 34 submissions for
regular presentations at DISC 2014. In addition, two closely related submissions
were accepted as one merged paper, resulting in 35 regular papers presented
at the symposium. Each presentation was accompanied by a paper of up to 15
pages in this volume. Revised and expanded versions of several selected papers
will be considered for publication in a special issue of the journal Distributed
Computing. Some of the regular submissions that were rejected, but generated
substantial interest among the members of the Program Committee, were in-
vited to be published as brief announcements. In total, 18 brief announcements
appeared at DISC 2014. Each of the two-page brief announcements summarizes
ongoing work or recent results, and it can be expected that these results will
appear as full papers in later conferences or journals.

The best paper award of DISC 2014 was given to Ho-Lin Chen, Rachel Cum-
mings, David Doty, and David Soloveichik for their paper “Speed Faults in Com-
putation by Chemical Reaction Networks.” The best student paper award of
DISC 2014 was awarded to Merav Parter for her paper “Vertex Fault Tolerant
Additive Spanners.”

The program also consisted of two invited keynote lectures, presented by
K. Mani Chandy from the California Institute of Technology and by Phil Bern-
stein from Microsoft Research. Abstracts of the invited lectures are included in
these proceedings.



VI Preface

DISC 2014 was accompanied by two workshops: the Second Workshop on
Biological Distributed Algorithms (BDA), organized by Yuval Emek and Nancy
Lynch, and the Third Workshop on Advances on Distributed Graph Algorithms
(ADGA), organized by Christoph Lenzen. BDA took place on October 11 and
12, ADGA on October 12. Additionally, on October 12, a sequence of tutorials
was organized by Alessia Milani and Corentin Travers.

August 2014 Fabian Kuhn
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The 2014 Edsger W. Dijkstra Prize in

Distributed Computing

The Dijkstra Prize Committee has selected Kanianthra Mani Chandy and
Leslie Lamport as the recipients of this year’s Edsger W. Dijkstra Prize in
Distributed Computing. The prize is given to them for their outstanding pa-
per “Distributed Snapshots: Determining Global States of Distributed Systems”,
published in ACM Transactions on Computer Systems, Vol. 3, No. 1, 1985, pages
63–75.

The ACM-EATCS Edsger W. Dijkstra Prize in Distributed Computing is
awarded for an outstanding paper on the principles of distributed computing,
whose significance and impact on the theory and/or practice of distributed com-
puting has been evident for at least a decade. The prize is sponsored jointly by
the ACM Symposium on Principles of Distributed Computing (PODC) and the
EATCS Symposium on Distributed Computing (DISC).

In their paper, Chandy and Lamport describe a distributed algorithm to
record a consistent global state of an asynchronous distributed computation.
Determining such a distributed snapshot is essential for several fundamental
tasks and it is for example at the basis of solutions for termination or deadlock
detection or to verify whether some other stable global property holds. Note that
the inherent lack of a common clock or a global observer means that global states
that are asynchronously recorded can be potentially inconsistent. The solution
provided by Chandy and Lamport is extremely elegant and also remarkably
simple, a fact that certainly also contributed to its success. The correctness
proof is based on swapping of prerecording and postrecording events without
affecting the correctness of the observed state. It is very significant that the
recorded global state may not have been any of the global states that the system
passed through in a real-time view of its execution.

The paper provides the first clear understanding of the definition of con-
sistent global states in distributed systems. Consistent global states form the
cornerstone of asynchronous distributed execution observation, and subsequent
concepts such as those of the hugely popular vector clocks and concurrent com-
mon knowledge are based on consistent global states. Further, the paper demon-
strates that the recorded state in the global snapshot is a valid equivalent state
in the sense that an equivalent execution may very well pass through that state,
even though the actual execution may not have. In fact, the possibility of the
occurrence of the recorded state is indistinguishable from the possibility of the
occurrence of the actual states that occurred in the distributed execution. This
property led to the definition of global predicates on entire executions, as opposed
to the definition of global predicates on individual observations of executions.
Similarly, this spawned the important concept of isomorphism of executions.



XIV The 2014 Edsger W. Dijkstra Prize in Distributed Computing

In conclusion, the paper by Chandy and Lamport has had a profound and
lasting impact on the theory and implementation of distributed algorithms and
systems. It has led to concepts such as vector time, isomorphism of executions,
global predicate detection, and concurrent common knowledge. Applications of
the results of observing the system in consistent states include the development
of vector clocks, checkpointing and message logging protocols, correct protocols
for detecting stable properties such as distributed deadlocks and termination,
mutual exclusion algorithms, garbage collection protocols, cache coherency and
file coherency protocols in distributed replicated file systems, distributed debug-
ging protocols, protocols for total message order and causal message order in
group communication systems, global virtual time algorithms used particularly
in parallel and distributed simulations of discrete event systems, and collabora-
tive sessions and editing protocols in wide area systems and on the grid.

Dijkstra Prize Committee 2014

Lorenzo Alvisi UT Austin, Texas, USA
Shlomi Dolev Ben Gurion Univ., Israel
Rachid Guerraoui EPFL, Switzerland
Idit Keidar Technion, Israel
Fabian Kuhn (chair) U. of Freiburg, Germany
Shay Kutten Technion, Israel



The 2014 Principles of Distributed Computing

Doctoral Dissertation Award

The Doctoral Dissertation Award Committee has awarded the Principles of
Distributed Computing Doctoral Dissertation Award in Distributed Comput-
ing 2014 to Dr. Bernhard Haeupler. Dr. Bernhard Haeupler completed his
thesis

“Probabilistic Methods for Distributed Information Dissemination”

on June 2013 under the co-supervision of Professors Jonathan Kelner, Muriel Mé-
dard, and David Karger at MIT. Bernhard Haeupler’s thesis provides a sweeping
multidisciplinary study of information dissemination in a network, making funda-
mental contributions to distributed computing and its connections to theoretical
computer science and information theory. The thesis addresses an impressive
list of topics to which Dr. Bernhard Haeupler contributed significantly. These
topics include the design and analysis of gossip protocols overcoming the de-
pendency to connectivity parameters such as conductance, the introduction of a
completely new technique for analyzing the performance of network coding gossip
algorithms, and new randomized protocols for multi-hop radio networks. These
are just a few samples of the very many important contributions of Dr. Bern-
hard Haeupler’s thesis, and the work in this dissertation is distinguished by an
impressive combination of creativity, breadth, and technical skill.

The award is sponsored jointly by the ACM Symposium on Principles of
Distributed Computing (PODC) and the EATCS Symposium on Distributed
Computing (DISC). This award is presented annually, with the presentation
taking place alternately at PODC and DISC. This year 2014 it will be presented
at DISC, to be held in Austin, Texas, October 12–15, 2014.

Principles of Distributed Computing
Doctoral Dissertation Award Committee 2014

Yehuda Afek Tel-Aviv Univ., Israel
James Aspnes Yale University, USA
Pierre Fraigniaud (chair) CNRS & U. Paris Diderot, France
Dariusz Kowalski Univ. of Liverpool, UK
Gadi Taubenfeld IDC Herzliya, Israel



DISC 2014 Invited Lecture:

Concurrent Computing over the Last 40 Years:
What’s Changed and What Hasn’t

K. Mani Chandy

California Institute of Technology, USA

This talk looks at what has changed in concurrent computing over the last
forty years, and what has not. The talk is from my personal, subjective point
of view. The fundamental concepts developed by the giants of the field haven’t
changed. Many of these giants worked at, or spent parts of their sabbaticals at
the University of Texas at Austin. The Dijkstra prize is named after one of these
giants, Edsger Wybe Dijkstra. I’ll show how the remarkable prescience of these
pioneers has withstood the test of time. What has changed is the ease with which
large concurrent systems can be set up and deployed. I’ll share my experience
in programming concurrent systems side-by-side with recent graduates who are
almost 50 years younger than I am. Concurrency is the norm for them and they
routinely deploy large systems with the Google App and Compute Engines or
Amazon EC2 or other platforms. The research that is being reported at this
conference will live on for decades because of the current and future crops of CS
graduates.



DISC 2014 Invited Lecture:

Project Orleans, Distributed Virtual Actors for
Programmability and Scalability

Phil Bernstein

Microsoft Research, USA

High-scale interactive services demand high throughput with low latency and
high availability, difficult goals to meet with the traditional stateless three-tier
architecture. The actor model makes it natural to build a stateful middle tier
and achieve the required performance. However, popular actor implementations
still pass many distributed systems problems to developers, such as reliabil-
ity, location transparency, and distributed resource management. The Orleans
programming model introduces the novel abstraction of virtual actors that ad-
dresses these problems, liberating developers from dealing with them. At the
same time, it enables applications to attain high performance and scalability.
This talk presents the Orleans programming model, distributed system mech-
anisms that support it, and several production applications that use Orleans
and their performance. Information about Project Orleans can be found at
http://research.microsoft.com/en-us/projects/orleans/
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Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses

Reliable Broadcast with Respect to Topology Knowledge . . . . . . . . . . . . . . 107
Aris Pagourtzis, Giorgos Panagiotakos, and Dimitris Sakavalas

Robot Coordination, Scheduling

Evacuating Robots via Unknown Exit in a Disk . . . . . . . . . . . . . . . . . . . . . . 122
Jurek Czyzowicz, Leszek G ↪asieniec, Thomas Gorry,
Evangelos Kranakis, Russell Martin, and Dominik Pajak

Randomized Pattern Formation Algorithm for Asynchronous Oblivious
Mobile Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Yukiko Yamauchi and Masafumi Yamashita



XX Table of Contents

A Theoretical Foundation for Scheduling and Designing Heterogeneous
Processors for Interactive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Shaolei Ren, Yuxiong He, and Kathryn S. McKinley

Graph Distances and Routing

Vertex Fault Tolerant Additive Spanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Merav Parter

Close to Linear Space Routing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Liam Roditty and Roei Tov

Near-Optimal Distributed Tree Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Mohsen Ghaffari and Christoph Lenzen

Radio Networks

Deterministic Leader Election in Multi-hop Beeping Networks
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Klaus-Tycho Förster, Jochen Seidel, and Roger Wattenhofer

Who Are You? Secure Identities in Ad Hoc Networks . . . . . . . . . . . . . . . . . 227
Seth Gilbert, Calvin Newport, and Chaodong Zheng

Approximate Local Sums and Their Applications in Radio Networks . . . . 243
Zhiyu Liu and Maurice Herlihy

Radio Network Lower Bounds Made Easy . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Calvin Newport

Shared Memory

On Correctness of Data Structures under Reads-Write Concurrency . . . . 273
Kfir Lev-Ari, Gregory Chockler, and Idit Keidar

Solo-Fast Universal Constructions for Deterministic Abortable
Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Claire Capdevielle, Colette Johnen, and Alessia Milani

Space Bounds for Adaptive Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Maryam Helmi, Lisa Higham, and Philipp Woelfel

Dynamic and Social Networks

Lower Bounds for Structuring Unreliable Radio Networks . . . . . . . . . . . . . 318
Calvin Newport



Table of Contents XXI

Random Walks on Evolving Graphs with Recurring Topologies . . . . . . . . 333
Oksana Denysyuk and Lúıs Rodrigues
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Abstract. The state machine approach is a well-known technique for
building distributed services requiring high performance and high avail-
ability, by replicating servers, and by coordinating client interactions
with server replicas using consensus. Indulgent consensus algorithms ex-
ist for realistic eventually partially synchronous models, that never vio-
late safety and guarantee liveness once the system becomes synchronous.
Unavoidably, these algorithms may never terminate, even when no pro-
cessor crashes, if the system never becomes synchronous.

This paper proposes a mechanism similar to state machine replication,
called RC-simulation, that can always make progress, even if the system
is never synchronous. Using RC-simulation, the quality of the service will
adjust to the current level of asynchrony of the network — degrading
when the system is very asynchronous, and improving when the system
becomes more synchronous. RC-simulation generalizes the state machine
approach in the following sense: when the system is asynchronous, the
system behaves as if k+1 threads were running concurrently, where k is
a function of the asynchrony.

In order to illustrate how the RC-simulation can be used, we describe a
long-lived renaming implementation. By reducing the concurrency down
to the asynchrony of the system, RC-simulation enables to obtain re-
naming quality that adapts linearly to the asynchrony.

1 Introduction

Problem Statement. The state machine approach (also called active replica-
tion) [33,37] is a well-known technique for building a reliable distributed system
requiring high performance and high availability. In the state machine approach,
a consensus algorithm is used by the replicas to simulate a single centralized
state machine. The role of consensus is to ensure that replicas apply opera-
tions to the state machine in the same order. Paxos [34] is the most widely-used
consensus protocol in this context. It maintains replica consistency even during
highly asynchronous periods of the system, while rapidly making progress as
soon as the system becomes stable.

The state machine approach is limited by the impossibility of solving con-
sensus in an asynchronous system even if only one process can crash [22]. In-
dulgent [26] consensus algorithms such as Paxos, never violate safety (replicas
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never decide different values), and they guarantee liveness (all correct replicas
decide) once the system becomes synchronous [32]. However, while the system
is in an asynchronous period, the state’s machine progress is delayed. Moreover,
any indulgent consensus algorithm has executions that never terminate, even
when no processor crashes, due to the impossibility of [22], in case the system
never becomes synchronous.

One may think that to achieve reliability in distributed systems, and to en-
force cooperation among the replicas enabling the system to function as a whole
despite the failure of some of its components, consensus is essential [23]. This is
true in general, but not always. E.g., consensus is not essential for implementing
replicated storage [7] (the dynamic case is discussed in [3]). Hence, the ques-
tion of whether one can build a reliable distributed system that always makes
progress, for some specific services at least, remains open. This is precisely the
question we are interested in.

Summary of Results. In this paper, we provide a mechanism similar to state
machine replication, but that can always make progress, even if the system is
never synchronous. Using our mechanism, the quality of the service adjusts to
the current level of asynchrony of the system – degrading when the system is
very asynchronous, and improving when the system becomes more synchronous.
The main contribution of this paper is the proof that such a mechanism exists.
We call it the reduced-concurrency simulation (RC-simulation for short).

To be able to design such a mechanism, we had to come up with appropriate
definitions of “quality” of a service, and of the “level of asynchrony” of the
system. In the state machine approach, the service behaves as one single thread
once the system becomes synchronous. This behavior is generalized through
the RC-simulation, so that, when the level of asynchrony is k, then the system
behaves as if k + 1 threads were running concurrently.

In order to illustrate, with a concrete example, how the RC-simulation is used
to obtain a fault-tolerant service that always makes progress, we describe a long-
lived renaming service. In this case, the quality of the service is manifested in
terms of the output name space provided by the long-lived renaming service, the
smaller the better. Thanks to the RC-simulation mechanism, a higher quality of
service is obtained by reducing the concurrency down to the level of asynchrony
of the system. In particular, if the system is synchronous, then the service be-
haves as if names were produced by a single server, giving to the clients names
from a very small (optimal) space. If the system becomes more asynchronous,
then the service behaves as if more servers were running concurrently, and hence
it gives names from a larger space to the clients. Whatever the asynchrony of
the system is, safety is never violated, in the sense that the names concurrently
given to the clients are always pairwise distinct.

The formal setting we consider for deriving our results is the one of an asyn-
chronous read/write shared memory system where any number of processes may
fail by crashing. We are interested in wait-free algorithms [27]. For simplicity, we
assume that snapshot operations are available, since they can be implemented
wait-free [1], and we define level of asynchrony at this granularity. However, the
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definition can be easily adapted to the granularity of read/write operations. We
also stress the fact that we picked this shared memory model, and we picked the
specific renaming textbook algorithm in [9], as a proof of concept. Definitely,
further work is needed to study other, more realistic shared memory and/or
message passing models, as well as other services. Moreover, we have not tried
to optimize the efficiency of our simulation, which is beyond the objective of
this paper. The main outcome of the paper is a proof that it is possible to adapt
the concurrency to the level of asynchrony in a generic way.

Related Work. Various partially synchronous models have been proposed to
model real systems better. For instance, in [19,21], the relative processors speeds
are bounded, and there are bounds on processing times and communication de-
lays. In addition, some of these models allow the system to have an initial period
where the bounds are not respected. However, it is assumed that, eventually, the
system enters a stable period where the bounds do hold. More recently, partially
synchronous systems enabling to study problems that are strictly weaker than
consensus were considered in [2]. Also, there is work on progress conditions that
adapt to the degree of synchrony in each run, e.g. [4] and references herein.

Although RC-simulation tackles different objectives, it is inspired by the BG-
simulation algorithm [12]. The latter is used for deriving reductions between tasks
defined in different models of distributed computing. Indeed, the BG-simulation
allows a set of t+1 processes, with at most t crash failures, to “simulate” a larger
number n of processes, also with at most t failures. The first application of the
BG-simulation algorithmwas that there are no k-fault-tolerant algorithms for the
n-process k-set-agreement problem [17], for any n. Borowsky and Gafni extended
the BG-simulation algorithm to systems including set agreement variables [11].
Chaudhuri and Reiners later formalized this extension in [18], following the tech-
niques of [36]. While the original BG-simulation works only for colorless tasks [12]
(renaming and many other tasks are not colorless [14,29]), it can be extended to
any task [24]. Other variants and extensions of the BG-simulation, together with
additional applications, have appeared in [16,28,30,31,35].

At the core of the BG-simulation, and of our RC-simulation as well, is the
safe-agreement abstraction, a weaker form of consensus that can be solved wait-
free (as opposed to consensus). The safe-agreement abstraction was introduced
in [10] as “non-blocking busy wait.” Several variants are possible, including the
wait-free version we use here (processes are allowed to output a special value
⊥ that has not been proposed), and the variant that was used in the jour-
nal version [12]. Safe-agreement is reminiscent of the crusader problem [20]. A
safe-agreement extension that supports adaptive and long-lived properties is dis-
cussed in [6]. Notice that we can apply our RC-simulation to renaming, which is
not a colorless task (and hence cannot be used with the BG-simulation), because
we use safe-agreement only to simulate threads consistently, as opposed to the
BG-simulation, which uses safe-agreement for reductions between tasks.

A generalization of the state machine approach was presented in [25], where,
instead of using consensus, it uses set agreement. In k-set agreement, instead
of agreeing on a unique decision, the processes may agree on up to k different
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decisions. The paper [25] presents a state machine version with k-set agreement,
where any number of processes can emulate k state machines of which at least
one remains “highly available”. This state machine version is not based on the
BG-simulation, and is not dynamic, as opposed to our RC-simulation mechanism.

Renaming is awidely-studiedproblem that hasmany applications in distributed
computing (see, e.g., the survey [15]). In long-lived renaming, the number of pro-
cesses participating in getting or releasing a name can vary during the execution.
When the number is small, the number of names in use should be small. An f(k)-
renaming algorithm [8] is a renaming algorithm in which a process always gets a
name in the range {1, . . . , f(k)}, where k is the number of processes that partici-
pate in getting names. Notice that f(k)-renaming is impossible unless f(k) ≥ k.
Burns and Peterson [13] proved that long-lived f(k)-renaming is impossible in an
asynchronous shared memory system using only reads and writes unless f(k) ≥
2k−1. They also gave the first long-lived (2k−1)-renaming algorithm in thismodel.
for our example is from [9]. Finally, recall that indulgent algorithms progress only
when synchrony is achieved. We refer to [5] for sensing fast that synchrony is on,
and for solving renaming with an indulgent algorithm.

2 Reducing Concurrency

In this section, we describe the reduced-concurrency simulation, abbreviated in
RC-simulation hereafter. At the core of the RC-simulation is the safe-agreement
mediated simulation, or SA-simulation for short. The SA-simulation is the essen-
tial mechanism on top of which is implicitly built the well known BG-simulation
[12]. We describe the SA-simulation explicitly in Section 2.2, and then explain in
Section 2.3 how the RC-simulation is built on top of the SA-simulation in order
to reduce concurrency. Hence, the contribution of this section is the complete
description of the plain arrow on the left-hand side of Fig. 1, involving the notion
of partial asynchrony, that we define next, in Section 2.1.

2.1 Partial Asynchrony

We are considering a distributed system composed of n crash-prone asynchronous
processes. Each process p has a unique identity Id(p) ∈ {1, . . . , n}. Processes
communicate via a reliable shared memory composed of n multiple-reader single-
writer registers, each process having the exclusive write-access to one of these
n registers. For simplicity, by “read”, we will actually mean an atomic snap-
shot of the entire content of the shared memory (recall that snapshots can be
implemented wait-free using read/write registers [1]).

In the wait-free setting, the efficiency of the system can be altered by the
asynchrony between the processes. To measure the amount of asynchrony expe-
rienced by the system, we introduce the novel notion of partial asynchrony. (See
Fig. 1 for an illustration of the concepts defined hereafter). Let us consider a
potentially infinite execution E of the system, and let p be a process.

A blind interval for p is a maximal time-interval during which p performs no
snapshots. More precisely, let t1 and t2 with t2 > t1 be the times at which two
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Fig. 1. RC- vs. BG-simulations (left), illustration of partial asynchrony (right)

consecutive snapshots performed by p occur in E . The time-interval I = (t1, t2)
is called a blind time-interval for process p. If in addition we assume, w.l.o.g.,
that the first instruction of every process is a write, then the interval [0, t) where
t denotes the time at which process p performs its first snapshot, is also a blind
interval for p. Thus, E can be decomposed into the sequence of consecutive blind
intervals for a process p, where a snapshot by p is performed in between each of
these intervals. In Fig. 1, each process performs four snapshots and five writes.
Hence, there are five blind intervals for every process.

Definition 1. The partial asynchrony experienced by process p in E during a
blind interval for p is the number of processes that do not perform any write
during this time-interval. The partial asynchrony of p in E is the maximum,
taken over all blind intervals I for p, of the partial asynchrony experienced by
process p during I. Finally, the partial asynchrony of the system in E is the
maximum, taken over all processes p, of the partial asynchrony of p in E.

On the right-hand side of Fig. 1, p1 experiences a partial asynchrony of 1
because, p4 is missing in the interval between its first two snapshots. The partial
asynchrony of the whole execution is 2 because p4 experiences a partial asyn-
chrony of 2 in its blind interval (t1, t2) as both p1 and p3 are missing, but no
processes experience a partial asynchrony of 3. For any non-negative integer k,
an execution in which the partial asynchrony of the system is at most k is called
k-partially asynchronous. In particular, an execution is 0-partially asynchronous
if and only if all processes perform in lock steps. As another example, if the
process p is much slower than all the other processes, then p experiences zero
partial asynchrony. However, each of the n − 1 other processes experiences a
partial asynchrony of 1 caused by the slow process p. The general case is when
the processes are subject to arbitrary delays, as illustrated in the example of
Fig. 1. Then the larger the partial asynchrony experienced by a process p, the
more asynchronous the system looks to p, and the more p may suffer from this
asynchrony. Our objective is to limit the penalty incurred by the system because
of asynchrony, by reducing the amount of concurrency.

2.2 The Safe-Agreement Mediated Simulation

The safe-agreement mediated simulation, or SA-simulation for short, is a generic
form of execution of a collection T of threads by a system of n processes. Hence,
let us first define the notion of thread.
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Threads. A thread τ is a triple (Id, A, value) where Id = Id(τ) is the identity
of the thread τ , uniquely defining that thread, A = A(τ) is a set of instructions
to be performed by the thread (typically, this set is the one corresponding to the
code of some process executing a distributed wait-free algorithm), and value =
value(τ) is an input value to this instruction set. The generic form of a thread
code is described in the left-hand side of Fig. 2, where ϕ is a boolean predicate,
and f is a function, both depending on A. In this generic form, a thread is
thus a write, followed by a finite sequence of snapshot-write instructions. In the
sequel, when we refer to an instruction of a thread, we precisely refer to such a
snapshot-write instruction. The SA-simulation is an execution by n processes of
the threads in a collection T of threads.

Thread τ = (Id, A, value)
1: view← (Id, value)
2: write(view)
3: while ϕ(view) do
4: view← snapshot()
5: write(view)
6: decide f(view)

SA-simulation of a collection T of threads.
1: while true do
2: view← snapshot()
3: if there exists an extendable thread τ ∈ T
4: then perform next instruction of τ

Fig. 2. Generic code for threads (left), and code for SA-simulation (right)

For the sake of simplicity of the presentation, we assume that the threads are
resident in memory when the simulation begins. Moreover, we also assume that
each thread is either available or non available. Our simulation is concerned with
simulating available threads. However a thread can be moved from non-available
to available (not vice-versa), but such a move is not under the control of the
system, and can be viewed as under the control of an adversary. This models
the situation in which the system receives requests for executing threads, or for
performing tasks, by abstracting away the input/output interface of the system
with the outside world. Taking once again the example of long-lived renaming, a
thread corresponding to the release of a name by a process can be made available
only if a name has been acquired previously by this process, and two requests
of names by a same process must be separated by a release name by the same
process. Other than that, the adversary is entirely free to decide when processes
request and release names.

SA-Simulation in a Nutshell. In essence, the SA-simulation relies on two
notions: extendability and agreement. Roughly, a thread is extendable if it is not
blocked, that is, if no processes are preventing others from performing the next
instruction of the thread. Indeed, again roughly, performing an instruction of a
thread requires some form of coordination among the processes, in order to decide
which value to write, that is, to decide which view of the memory is consistent
with a view that may have acquired a thread by snapshotting the memory. Since
consensus is not possible to achieve in a wait-free environment [22], we will use
weaker forms of agreement.
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Let us present the general form of SA-simulation. The code of a process p per-
forming SA-simulation of T is presented in Fig. 2. We assume a long-lived sim-
ulation, i.e., an infinite number of threads. Handling a finite number of threads
just requires to change the condition in the while-loop of the SA-simulation, in
order to complete the simulation when all (available) threads have been simu-
lated. In what follows, we precisely explain how a process figures out whether
there exists an extendable thread, and how it performs the next instruction of a
thread. For this purpose, we first recall a core mechanism for performing a weak
form of consensus: safe-agreement.

Safe-Agreement. Consider the following specification of safe-agreement (simi-
lar to [12]). Each process proposes a value, and must decide some output accord-
ing to the following three rules: (1) Termination: every process that does not
crash must decide a proposed value or ⊥; (2) Validity: if not all processes crash,
then at least one process must decide a value different from ⊥; (3) Agreement:
all processes that decide a value different from ⊥ must decide the same value.
The algorithm in Fig. 3 is a wait-free algorithm solving safe agreement, directly
inspired from [6].

Safe-agreement performed by process p proposing v = value(p)
1: write (Id(p), v)
2: snapshot memory, to get view = {(i1, vi1), . . . , (ik, vik)}
3: write (Id(p),view)
4: snapshot memory, to get setofview = {(j1, viewj1), . . . , (j�, viewj�)}
5: minview←

⋂�
r=1 viewjr

6: if for every i such that (i, vi) ∈ minview we have viewi ∈ setofview
7: then decide minimum value w in minview
8: else decide ⊥

Fig. 3. Safe agreement

Priority Array

Instruction Matrix 

new

open

decided

closed

321 94 5 6 87 10 11

1 2 3 4 5 6 7 8 9 10 11 12

The Instruction Matrix. We
explain now how processes decide
whether there exist extendable threads.
This is achieved thanks to the vir-
tual shared data-structure displayed
beside. Whenever a process p performs
a snapshot of the memory, it gets a
view of the current states of execution
of all the threads. This view can be vir-
tually represented by the instruction
matrix M as displayed in the figure
beside. The cell Mi,j of the instruction
matrix represents the status of the ith
instruction of the jth thread (i.e., the
thread τ such that Id(τ) = j). This status can be one of the following three
states: (1) new: no processes have tried to perform this instruction yet, (2) open:
at least one process is trying to perform this instruction, but the outcome of this
instruction has not yet been decided, or (3) decided: the instruction has been
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performed, that is, an outcome has been decided for this instruction. A thread
for which all cells are decided is said to be fully executed in the sense that all its
instructions have been performed by the system. Of course, the SA-simulation
executes the instructions of every thread in sequential order. That is, the col-
umn j of the instruction matrix corresponding to a thread that is available but
not fully executed, consists in a (possibly empty) sequence of decided cells, im-
mediately followed by a cell that is either open or new, immediately followed by
a (possibly empty) sequence of cells in state new. The cell immediately following
the (possibly empty) sequence of decided cells is called the current instruction
cell of the thread. The instruction matrix enables to define formally the notion
of extendability:

Definition 2. A thread τ is extendable if it is available, not fully executed, and
its current instruction cell is in state new.

Note that the instruction matrix is an abstraction describing the execution
status of the threads. It is not a data structure that is manipulated by the
processes. Indeed, when a process performs the snapshot in SA-simulation, its
view is the content of the whole memory, which contains the way the threads are
progressing, including the number of snapshot-write instructions that have been
already performed by each thread. In the SA-simulation, every process identifies
some extendable thread τ , and aims at performing the next instruction of τ .
Roughly, when a process tests whether there exists an extendable thread in SA-
simulation, it tests all open cells in the instruction matrix using safe-agreement,
and the answer is negative if and only if this process has decided ⊥ for each of
them. This mechanism is detailed next.

Performing Instruction. Recall that what we defined as an “instruction” of
a thread is a snapshot followed by a write. Such a combination of snapshot-write
appears explicitly in the generic form of a thread (cf. Fig. 2). The value written in
memory by a thread is simply the view it gets during the last snapshot preceding
the write. Hence, to simulate an instruction of a thread, the potentially many
processes performing that instruction must agree on this view. This coordination
is performed via safe-agreement.

There is one safe-agreement task associated to each cell (i, j) of the instruc-
tion matrix, i, j ≥ 1. A process p aiming at simulating Instruction i of Thread
j proposes its view to the safe-agreement of cell (i, j). By the specification of
safe-agreement, it is guaranteed that, among all views proposed to this safe-
agreement, only one of them with be outputted. (Not all processes may decide
this view, but those ones decide ⊥). If p outputs ⊥, then p aborts this attempt
to perform the instruction, and completes the while-loop of SA-simulation. Oth-
erwise, i.e., if p outputs some view, then p writes this view for Thread j, to
complete the write of that thread.

Safety and Liveness. We now establish the following lemma, which may have
its interest on its own, but will also be later used to prove the correctness of
our more refined RC-simulation. Let us define two crucial properties that are
expected to be satisfied by a simulation of threads by a system of processes.
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Safety: For every collection T of threads solving task T using a same algorithm
A, the simulation of T by SA-simulation leads T to solve Task T .

Liveness: In any infinite execution of the SA-simulation on a finite collection
T of threads in which t processes crash, with 0 ≤ t < n, all but at most t
threads are fully executed.

Note that, in the definition of safety, the specification of a thread may depend
on other threads: the consistency of the simulation is global. Also, the definition
of liveness states that if t processes crash then at most t threads may be “blocked”
by these t failures. Note however that the SA-simulation does not necessarily guar-
antee that all but t threads will eventually be executed if the collection of threads
is infinite. Indeed, the SA-simulation does not avoid starvation. Starvation is a
property addressed at a higher level of the simulation, depending on the policy for
choosing which threads to execute among all extendable threads on top of the SA-
simulation. For instance, BG-simulation selects the threads in an arbitrary man-
ner, but executes these threads in a specific round-robin manner. Instead, RC-
simulation, described later in this section, executes the threads in an arbitrary
manner, but selects these threads in a specific manner to minimize concurrency.
The following result states the basic properties of the SA-simulation.

Lemma 1. The SA-simulation satisfies both the safety and liveness properties.

2.3 The Reduced-Concurrency Simulation

In the SA-simulation, all available threads are potentially executed concurrently.
We now show how to refine the simulation in order to execute concurrently
as few threads as possible, while still remaining wait-free. For this purpose,
we first refine the notion of available threads, by distinguishing two kinds of
available threads. An available thread is active if it is not fully executed, and
at least one cell of the column corresponding to that thread in the instruction
matrix is either open or decided. An available thread that is not fully executed
and not active is pending. In the SA-simulation, every process tries to make
progress in any available extendable thread, including pending threads. Instead,
in the RC-simulation described below, every process tries to make progress only
for active extendable threads. It is only in the case where there are no more
active extendable threads that the RC-simulation turns a pending thread into
active. In this way, the number of active threads is not blowing up. Reducing
the concurrency as much as possible however requires more work, and will be
explained in detail in this section. One key ingredient in the RC-simulation is
the Priority Array, described below.

The Priority Array. Similarly to the Instruction Matrix, the Priority Array
is a virtual shared data-structure that enables to summarize the status of the
different threads, as well as an instrument used to decide which thread to execute,
and when (see the figure in Section 2.2). It is a linear array, in which the role
of each cell is to point to a thread. As in the instruction matrix, there is a safe-
agreement task associated to each cell of the priority array. This safe-agreement
can be in one of the four following states: new, open, decided, and closed. For
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i ≥ 1, Cell i of the priority array is new if no processes have yet entered the safe-
agreement program i (i.e., no processes have yet performed the first instruction
of the ith Safe-Agreement). A cell is open if at least one process has entered Safe-
Agreement i, but no value has yet been decided (all processes that exited the
safe-agreement decided ⊥). A cell is decided if at least one process has decided
a value (different from ⊥). Such a value is the identity of an available thread.
Hence, a decided cell in the priority array is a pointer to an available thread. By
construction, an active thread is an available thread pointed by a decided cell
of the priority array. Finally, Cell i is closed if it is pointing to a fully executed
thread. Initially, all cells of the priority array are in state new. The head of the
priority array is defined as the cell with smallest index that is still in state new.
We now have all the ingredients to describe the RC-simulation.

The RC-Simulation. The code of the RC-simulation is described in Fig. 4.
The first instructions of RC-simulation are essentially the same as in the SA-
simulation, with the unique modification that thread-instructions are only per-
formed in active threads, while the SA-simulation is willing to advance any
extendable thread.

RC-simulation by processes p of an infinite collection T of threads.
1: while true do
2: view← snapshot()
3: (M,P)← extract instruction matrix and priority array from view
4: if there exists an active extendable thread τ ∈ T
5: then perform next instruction of τ
6: else view← snapshot()
7: (M′,P ′)← extract instruction matrix and priority array from view
8: if (M′,P ′) = (M,P), and there exists a pending thread
9: then propose a pending thread to the head of the priority-array

Fig. 4. RC-simulation

Significant differences between the SA-simulation and the RC-simulation be-
gin from the “else” Instruction. In particular, Instruction 8 compares the content
of the memory at two different points in time. In the RC-simulation, a process
p is willing to open a new thread, i.e., to move one available thread from the
pending status to the active status, only if the memory has not changed between
two consecutive snapshots of p (i.e., during a blind interval for p). More precisely,
process p may open a new thread only if, in between two consecutive snapshots,
the set of active threads has remained the same, and the instruction counters of
these threads have remained the same. If that is the case, then p selects a thread
τ among the pending threads (e.g., the one with smallest identity), and proposes
τ for being opened. The role of the test in Instruction 8 will appear clearer later
when we will analyze the number of threads that are simulated concurrently.

For opening a new thread τ , process p is proposing Id(τ) to the safe-agreement
task at the head of the priority array. If p decides ⊥ in this safe-agreement, then
p initiates a new loop of RC-simulation. If p decides a value j �= ⊥ in this
safe-agreement, then p tries to perform the first instruction of Thread j, which
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becomes active. Note that we may not have j = Id(τ) as other processes may
have proposed different threads to this safe-agreement of the priority array. This
holds even if the rule for selecting which thread to propose is deterministic (e.g.,
selecting the pending thread with smallest identity) because of the asynchrony
between the processes, and because of the way threads become available. As for
the general case, performing the first instruction of Thread j is mediated by
Safe-Agreement (1, j) of the Instruction Matrix. After this attempt to perform
the first instruction of Thread j, process p starts a new loop of RC-simulation,
independently from whether this attempt succeeded or not.

2.4 The Reduced-Concurrency Theorem

We first note that the RC-simulation satisfies the same safety and liveness con-
ditions as the SA-simulation.

Lemma 2. The RC-simulation satisfies both the safety and liveness properties.

Assume now that all the threads in the collection T simulated by RC-
simulation are performing the same wait-free algorithm A solving some task
T = (I,O, Δ), such as renaming. Hence, the threads differ only in their identi-
ties, and, possibly, in their input data. The performances of Algorithm A, e.g.,
the number of names for renaming, may be affected by point-contention, i.e., by
the maximum number of threads that are executed concurrently. For instance,
a point-contention of 1 (that is, threads go one after the other) ensures perfect-
renaming, while a point-contention of k = |T | may yield up to 2k − 1 names.
In this framework, RC-simulation helps, for it reduces the concurrency of the
threads, down to partial asynchrony.

More specifically, let us consider an n-process system performing RC-
simulation of a collection T of threads, all with same algorithm A solving task
T = (I,O, Δ) wait-free. For every k, 0 ≤ k < n, if the partial asynchrony of the
execution of the RC-simulation is at most k, then the performances of solving Task
T mediated by the RC-simulation are the same as if the threadswere executedwith
point-contention at most k + 1. This result can be summarized as follows.

RC-simulation: k-partial-asynchrony =⇒ (k + 1)-concurrency.

In particular, if the partial asynchrony is 0 then threads are executed sequen-
tially, one after the other. The following theorem formalizes these statements.

Theorem 1. Let k, 0 ≤ k < n. For any execution of the RC-simulation:

– Bounded concurrency: Concurrency is at most partial-asynchrony plus 1.
Specifically, if k+1 threads are executed concurrently by the system at time t,
then at least one process p experienced a partial asynchrony at least k at some
time ≤ t.

– Adaptivity: Concurrency ultimately scales down with partial asynchrony.
Specifically, if the partial asynchrony of the system is at most k after time t,
then, eventually, the system will not execute more than k + 1 threads con-
currently.
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Proof. To establish the theorem, we first observe a crucial property of the al-
gorithm solving safe-agreement. This algorithm includes two write-instructions,
and two snapshot-instructions. These instructions interleave in arbitrary man-
ner among the different processes, but one can still say something interesting
about this interleaving, in certain cases. The following behaviour is a common
argument is the BG-simulation (see, e.g., [6,12]).
Claim. During the execution of the safe-agreement algorithm, if some process p
decides ⊥, then there exists a process q �= p such that q performed its first write
before the first snapshot of p, and pperformed its second snapshot before the second
write of q.

In the situation of the statement of Claim 2.4, we say that q blocked p. Let us first
prove the bounded concurrency property. Assume that k+1 threads are executed
concurrently by the system at time t. At this time t, let i ≥ 1 be the largest index
such that the ith cell of the priority array is not new (that is, the cell just before
the head of the priority array at time t). Let p be the first process that performed
a write instruction in the safe-agreement corresponding to that cell, turning the
status of that cell fromnew to open. Processp did so because the instructionmatrix
as well as the priority array remained in identical states between its two previous
snapshots in the RC-simulation. Let t′ ≤ t be the time at which process p wrote
in the ith cell of the priority array, turning it from new to open. Let t1 and t2,
t1 < t2 < t′ ≤ t, be the respective times at which p performed its two snapshots
in Instructions 2 and 6 of the RC-simulation leading p to access Cell i.

Let us examine the instruction matrix and the priority array between time
t1 and t2 (both did not change in this time interval). Let k′ be the number
of threads concurrently executed at time t2. Between time t2 and t, some new
threads, say x threads, x ≥ 0, may have appeared (i.e., moved from pending
to active), while some of the k′ threads, say y, y ≥ 0, may have disappeared
(i.e., moved from active to fully executed). The former x corresponds to cells
in the priority array that move from open to decided. The latter y corresponds
to cells in the priority array that move from decided to closed. By definition,
we have k′ + x − y = k + 1, and thus k′ + x ≥ k + 1. Among the x threads,
one thread may have been opened by p, when p initiates the safe-agreement of
Cell i in the priority array. Now, since there were no extendable threads at time
t1, each of the k′ threads has the cell of the instruction matrix corresponding
to its current instruction in state open. Therefore, during time interval [t1, t2],
the total number of open cells equals at least k′ + x − 1, where k′ are open in
the instruction matrix, and at least x − 1 are open in the priority array. Thus,
during time interval [t1, t2], the total number of open cells is at least k since
k′ + x ≥ k+ 1. Each of these cells corresponds to a safe-agreement for which no
values are decided. In particular, p decided ⊥ from each of these safe-agreements.

Let us fix one of these at least k safe-agreements. By Claim 2.4, process p
was blocked by some process q which has not yet performed its second write
at time t2. Thus, to each of the at least k open cells in interval [t1, t2] corre-
sponds a distinct process which performed its first write (in the safe agreement
of the cell) before time t1, and had not yet performed its second write at time t2.
Hence, at least k processes performed no writes in the time interval [t1, t2], which
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is the interval between two consecutive snapshots of process p. Therefore, the
asynchrony experienced by process p at time t2 ≤ t is at least k. This completed
the proof of the bounded concurrency property.

Now remains to prove the adaptivity property. LetN be the number of threads
that are concurrently executed at time t. By the same arguments as those ex-
posed above, no threads are opened after time t until their number goes below
k + 1. By the liveness property of Lemma 2, the number of thread concurrently
executed after time t will thus decrease from N down to k+1, which completes
the proof of Theorem 1. �	

3 Application to Long-Lived Renaming

In this section, we use the RC-simulation for improving the performances of
a classical long-lived renaming algorithm. Recall that the performances of an
algorithm achieving renaming are typically measured in terms of the range of
name-space, the tighter the better. In the context of this paper, the specification
of long-lived renaming are rephrased as follows. Users perpetually request names
to an n-process system such as described in Section 2.1, where a name is a non-
negative integer value in the range [1, N ] for some N ≥ n that is aimed to be as
small as possible. Each user’s request is performed by any one of the n processes,
and all processes are eligible to receiving requests from users. Once a user has
acquired a name, the user must eventually release it, and, as soon as a name has
been released, it can be given to another user. At any point in time, all names that
are currently acquired by users, and not yet released, must be pairwise distinct.
We assume that a process p serving the request for a name by a user x does not
serve any other request for names until the requested name has been acquired
by x, and eventually released. The textbook renaming algorithm described in [9]
is an adaptation to shared-memory system of the classical algorithm of [8] for
renaming in message passing systems. It implements renaming with new names
in the range [1, 2n− 1]. We show that, using RC-simulation, this range of names
can be significantly reduced when the partial asynchrony is small, while the
algorithm is shown not to adapt to partial asynchrony by itself.

Long-Lived Renaming in Presence of Bounded Partial-Asynchrony. In
long-lived renaming, each process p requests a newname by invokingReqName(x),
where x denotes the identifier of the user which queried p to get a name. Once p
got a name for x, it can call releaseName for releasing that name. According to
the specification of long-lived renaming stated above, for any process p, a sequence
of such calls is correct if and only if ReqName and releaseName alternate in the
sequence. As mentioned before, the renaming algorithm we use provides names in
the range [1, 2n−1].Wefirst note that this range does not reducemuchas a function
of the asynchrony. For example, Observation 1 below shows that, even in case of
partial asynchrony zero, i.e., evenwhen the systemperforms in lock-steps, the range
of names used by this renaming algorithm is still much larger than the ideal range
[1, n]. We shall show in the next section that, instead, whenever mediated through
the RC-simulation, this renaming algorithm uses a range of names that shrinks as
the partial asynchrony decreases, up to [1, n] for partial asynchrony zero.
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Observation 1. Even if the system is 0-partially asynchronous, there is an ex-
ecution of the renaming algorithm in [9] for which the range of names is [1, 3n2 ].

RC-Simulation Mediated Long-Lived Renaming. In the following, we
show that, through RC-simulation, the renaming algorithm of [9] adapts grace-
fully to partial asynchrony, while Observation 1 shows that the performances
of this algorithm alone do not adapt to partial asynchrony. The result below
is a corollary of Theorem 1. In particular, it shows that when the system is
synchronous, or runs in lock-steps, the renaming algorithm mediated by the
RC-simulation provides perfect renaming, using names in the range [1, n]. More
generally, the mediation through RC-simulation of the renaming algorithm in [9]
produces names in a range that grows linearly with partial asynchrony k.

Theorem 2. If the system is k-partially asynchronous, for 0 ≤ k < n, then
the range of names provided by the renaming algorithm in [9] mediated by the
RC-simulation is [1, n+ k].
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Abstract. Chemical reaction networks (CRNs) formally model chem-
istry in a well-mixed solution. Assuming a fixed molecular population size
and bimolecular reactions, CRNs are formally equivalent to population
protocols, a model of distributed computing introduced by Angluin, Asp-
nes, Diamadi, Fischer, and Peralta (PODC 2004). The challenge of fast
computation by CRNs (or population protocols) is to ensure that there
is never a bottleneck “slow” reaction that requires two molecules (agent
states) to react (communicate), both of which are present in low (O(1))
counts. It is known that CRNs can be fast in expectation by avoiding slow
reactions with high probability. However, states may be reachable (with
low probability) from which the correct answer may only be computed by
executing a slow reaction. We deem such an event a speed fault. We show
that the problems decidable by CRNs guaranteed to avoid speed faults
are precisely the detection problems: Boolean combinations of questions
of the form “is a certain species present or not?”. This implies, for in-
stance, that no speed fault free CRN could decide whether there are at
least two molecules of a certain species, although a CRN could decide
this in “fast” expected time — i.e. speed fault free CRNs “can’t count.”

1 Introduction

Understanding the principles of molecular computation is essential to making
sense of information processing in biological cellular regulatory networks. Fur-
ther, in engineering of life-like devices (e.g. “wet robots” that can patrol the
blood for cancer cells) we are rapidly approaching the point where we are lim-
ited by conceptual understanding: How molecular networks can be programmed
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to process information and carry out computation subject to the natural con-
straints of aqueous chemistry is still not well-understood.

A foundational model of chemistry commonly used in natural sciences is that
of chemical reaction networks (CRNs), i.e., (finite) sets of chemical reactions
such as A + B → A + C. Subject to discrete semantics (integer number of
molecules) the model corresponds to a continuous time, discrete state, Markov
process [12]. A state of the system is a vector of non-negative integers specifying
the molecular counts of the species (e.g., A, B, C), a reaction can occur only
when all its reactants are present, and transitions between states correspond to
reactions (i.e., when the above reaction occurs the count of B is decreased by
1 and the count of C increased by 1). The transition rate is proportional to
the product of the counts of the reactants. CRNs are widely used to describe
natural biochemical systems such as the intricate cellular regulatory networks
responsible for the information processing within cells. With recent advances
in synthetic biology, CRNs are a promising language for the design of artificial
biochemical networks. For example, the physical primitive of nucleic-acid strand
displacement cascades provides concrete chemical implementations of arbitrary
CRNs [4, 8, 16]. Thus, since in principle any CRN can be built, hypothetical
CRNs with interesting behaviors are becoming of more than theoretical interest.

The importance of the CRN model is underscored by the observation that
intimately related models repeatedly arise in theoretical computer science under
different guises: e.g. vector addition systems [13], Petri nets [14], population
protocols [1]. The connection to distributed computing models, in turn, resulted
in novel insights regarding natural cellular regulatory networks [5].

Parallelism is a basic attribute of chemistry, and one that is of central im-
portance in understanding molecular information processing. This kind of par-
allelism is both a blessing and a curse: it can be used to speed up computation,
but we must be careful to avoid “race conditions” (reactions happening in an
unintended order) which may lead to error.

Consider a very basic task: a chemical system (e.g. cell) responding to molec-
ular signals present in very small quantities. More specifically, say the compu-
tation is to produce at least one molecule of Y if and only if there is at least
one molecule of species A1 and at least one molecule of species A2. Consider the
strategy shown in Fig 1(b). Intuitively, this corresponds to having receptors F
that in order to activate need to bind both A1 and A2. By having n receptors
F we can increase the rate of the first reaction, but if there is only one molecule
of A1, there will be at most one molecule of F ′ and thus the second reaction
occurs at a rate independent of the amount of receptor. Thus this scheme is “not
parallelizeable”.1

1 Bimolecular reaction rates scale inversely with the total volume, and it is impossible
to fit arbitrarily many molecules in a fixed volume. While for large enough molecular
counts we will run into this finite density constraint, we study the scaling of speed
with molecular count before that point is reached. An alternate perspective is that
our task is to compute as quickly as possible in volume sufficient to allow molecules
of F to fill the volume with constant density [15].
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a)
e)

b)
f)

c)

g)d)

parallelizable
determ

inistic parallelizable
determ

inistic
Y iff [at least 1 molecule of A1 
and at least 1 molecule of A2]

Y iff [at least 2 molecules of A]

Fig. 1. Two molecular computation tasks: predicates
“Is there at least 1 molecule of A1 and at least one
molecule of A2?” (left), and “Are there at least 2
molecules of A?” (right). CRNs (a)-(d) compute the
first predicate (left), and CRNs (e)-(g) compute the
second (right). Parameter n is the initial amount of
F , or F1 and F2 species which help in the compu-
tation. Informally the parallelizeable CRNs are those
that produce the output faster with increasing n. De-
terministic CRNs are those that compute correctly no
matter what order the reactions happen to occur in.
Other strategies (not shown) involve producing Y but
consuming it if the predicate is not satisfied.

A better strategy is to
amplify the signal before
taking the conjunction: e.g.
Fig 1(c). Here the recep-
tors release A1 back upon
interacting with it, and a
single A1 can interact with
many receptors (converting
them from F to F ′). Intu-
itively, the more receptors
F we have, the faster we’ll
get a large number of F ′’s,
and the faster the Y will
get produced via the sec-
ond reaction. More specif-
ically, observe that start-
ing with n > 0 molecules
of F , and a molecule of
A1 and A2 each, the reach-
able states without Y are:
for 0 ≤ m ≤ n, ((n −
m) F, m F ′, 1 A1, 1 A2).
From any reachable state
without Y , we can reach Y
through a sequence of reac-
tion executions where one of
the reactants is present in at least �n1/2� count,2 and under stochastic chemical
kinetics, the expected time to traverse this path is O(1/n1/2) — decreasing with
n.3 Scheme Fig 1(d) is even faster: it can be shown that from any reachable
state, the expected time to produce Y scales as O(log n/n).

Now consider a slightly different computational task: produce at least one
molecule of Y if and only if there are at least 2 molecules of species A. The
natural analog of Fig 1(b) fails to be deterministic: the reactions A + F →F ′,
A + F ′→Y suffer from a “race condition” where Y is never produced if both

2 If m < �n1/2�, execute the first reaction �n1/2� − m times (resulting in �n1/2�
molecules of F ′), and then execute the second reaction. If m ≥ �n1/2�, execute the
second reaction.

3 The rate of a bimolecular reaction is proportional to the product of the counts of the
reactants. Thus the expected time from the state with m < �n1/2� molecules of F ′

to reach the state with �n1/2� molecules of F ′ is proportional to
∑�n1/2�

i=m 1/(n− i) ≤
n1/2 · 1/(n− n1/2) = O(1/n1/2). Finally the rate of the second reaction when there
are �n1/2� molecules of F ′ is proportional to n1/2 and thus the expected time for it
to fire is O(1/n1/2) for a total expected time of O(1/n1/2). Note that power n1/2 was
chosen in the analysis to ensure the optimal tradeoff between the rates of individual
reaction executions and the total number of reaction executions.
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molecules of A happen to react with F . This can be fixed by having the receptor
F bind A reversibly4 as in Fig. 1(f). However, this scheme is not parallelizeable
for the same reason as (b).

The natural analog of the parallelizeable reaction scheme Fig 1(c) will not
solve this task correctly at all: With reactions A+F →F ′+A, A+F ′→Y , even
a single molecule of A will always lead to a Y .

Also problematic is the scheme shown in Fig 1(g) based on (d). While it is
parallelizeable, it also suffers from a race condition that can result in an error.
If the two molecules of A happen to react with different receptor types (F1 and
F2) then Y will be produced. However, if both A’s react with the same receptor
type, Y will never be produced.

Informally, our main result is that no CRN is deterministic and parallelize-
able at the same time for the “2 A problem” (or any computation that involves
counting, rather than simply detecting the presence or absence of input species).
Thus deterministic and parallelizeable must be disjoint in Fig. 1(right). Unlike
the examples above, we allow a broader range of schemes that could produce
and consume Y repeatedly but eventually converge on the presence or absence
of Y as the output. In order to define “parallelizeable” formally, we introduce
the notion of a “speed fault”. A speed fault occurs if a state is reached such that
to stabilize to the correct output from that state requires using a bimolecular
reaction with both reactants bounded independently of n. Thus “deterministi-
cally parallelizeable” corresponds to speed fault free. Our main result is that the
problems decidable by speed fault free CRNs are precisely the detection prob-
lems : Boolean combinations of questions of the form “is a certain species present
or not?”. Thus speed fault free CRNs “can’t count.”

The current work stems from the desire to understand fast deterministic com-
putation in CRNs and population protocols. While sophisticated chemical algo-
rithms and protocols have been developed to compute a large class of functions
quickly and without error (see next section), most constructions are not de-
terministically fast in the same strong sense as they are deterministic. Indeed,
deterministic computation is a worst case notion that intuitively ensures cor-
rectness no matter what unlucky sequence of reactions occurs. However, fast
computation is defined with respect to large probability reaction sequences. Our
definition captures the natural worst case notion of speed.5

Our positive result shows how any detection problem can be decided by a
speed fault free CRN, and further shows that this computation is fast in the
standard stochastic chemical kinetics model [12]. The largest part of this paper
concerns the negative result that only detection problems can be computed by

4 A reversible reaction A+ F �F ′ is simply syntactic sugar for two irreversible reac-
tions A+ F →F ′ and F ′→A+ F .

5 We observe that in the literature on computation in CRNs and population protocols
it is almost never the case that computation is slow because the necessary sequence
of reactions is too long – rather, slowdown is dominated by reaction bottlenecks
where two low count species must react. Thus in this work we focus on this essential
type of delay, captured in our notion of speed faults.



20 H.-L. Chen et al.

speed fault free CRNs (Section 4.2). The proof of the negative result consists of
finding a worst-case reaction sequence that leads to a speed fault, assuming a
non-detection problem is computed.

Absent speed-faults, the O(1)-count species must initiate cascades through
intermediary large count species in order to “communicate.” Consider the above
“2A problem.” We can imagine isolating the two copies of A in “separate test
tubes” and then use the symmetry between the two A molecules to make the
system think that it’s communicating with just one A (and thereby fail to detect
the second A). To make this argument precise we develop a pumping technique
which formally distinguishes species that can get arbitrarily large with increasing
n from species whose counts are bounded by a constant6. We show that all large
count species that can be encountered along a trajectory can be pumped to
be simultaneously large. We then show that in the context of large counts of
all pumpable species, reaction sequences can be decomposed into separate test
tubes (parallel decomposition). A key part of the argument involves showing that
the speed fault free CRN cannot detect small changes to pumpable species; for
this we develop a new technique for performing surgery on reaction sequences.

2 Previous Work and Future Directions

Much related work in the distributed computing community is phrased in the
language of population protocols rather than CRNs (e.g. [2]). While population
protocols are equivalent to CRNs with exactly two reactants and two products,
and thus a fixed population size, CRNs can naturally describe reactions that
consume or produce net molecules. As a result CRNs can potentially explore an
unbounded state space, and certain questions that are not natural for population
protocols become germane for CRNs (for example: Turing universality). Because
our negative result naturally applies to a changing population size, we phrase
this paper in the language of CRNs.

CRNs have a surprisingly rich computational structure. If we allow the number
of species and reactions to scale with the size of the input (i.e. we view CRNs as
a non-uniform model of computation), then log s species can deterministically
simulate space s-bounded Turing machines [6]. (These results are presented in a
model called vector addition systems [13], but easily carry over.) Thus CRNs are
a very powerful model of non-uniform computation. On the other hand, we ask
what functions can be computed by a fixed CRN (i.e. fixed number of species and
reactions, with input encoded in the initial molecular counts, which corresponds
to a uniform model). In this setting, CRNs are not Turing universal, unless
we allow for some probability of error [3, 15]. In attempting Turing universal
computation, there will provably always be “race conditions” that lead to error
if certain reactions occur in a (maybe unlikely but possible) malicious order. The
fact that even such Turing universal computation is possible, and indeed can be

6 Note that our pumping lemma is very different from a similarly called “pumping
lemma” of ref. [2], which shows that how input can be increased without changing
the output (thus pumping “input”).
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made “fast” is surprising since finite CRNs necessarily must represent binary
data strings in a unary encoding, since they lack positional information to tell
the difference between two molecules of the same species.

Deterministic computation of both predicates and functions has been exactly
characterized, and corresponds to semilinear sets and functions [2, 7]. Angluin,
Aspnes, and Eisenstat [2] showed that all semilinear predicates can be deter-
ministically computed in expected O(n polylog n) “interactions” (molecules
bumping into each other). In a volume of fixed size, with n molecules, there are
an expected Θ(n2) such interactions per unit time, which yields expected time
O((1/n)polylog n) — decreasing with n. Our results imply that when computing
semilinear predicates other then the detection problems, it is always possible to
reach a state (speed fault) from which the expected time to finish the computa-
tion is Ω(1) — independent of n. It is easy to reconcile the two results: in the
construction of ref. [2], the probability that a speed fault is reached decreases
with n, and thus the total expected time decreases with n as well. Our result im-
plies that this is a necessary feature of any such construction, and is not simply
due to insufficient cleverness of the researchers to avoid speed faults.

Other work showing the challenges in parallelizing CRNs include the investi-
gation of running multiple copies of networks in parallel [9], and the inability of
networks starting with only large count species to delay the production of any
species [11].

While in this work we focused on parallelizable predicates, it remains to ex-
plore the class of parallelizable functions. For example, if the initial amount of
A is the input and the final amount of B is the output, then we can think of the
reaction F + A→ 2B as deterministically computing f(x) = 2x. Clearly as the
amount of F increases, the computation converges faster. On the other hand,
we believe that computing division by 2 should not be possible without speed
faults, although that remains to be shown.

Since the occurrence of a speed fault leads to a slow computational bottleneck,
speed faults affect the tail bounds on the distribution of the computation time.
Indeed, two CRNs may compute with the same fast expected time, but the
one susceptible to speed faults will likely have a larger probability of taking
significantly longer. It remains to rigorously draw out the connection between
tail bounds and speed faults.

3 Preliminaries

3.1 Chemical Reaction Networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote the
set of functions f : Λ→ N. Equivalently, we view an element c ∈ NΛ as a vector
of |Λ| nonnegative integers, with each coordinate “labeled” by an element of Λ.
Given S ∈ Λ and c ∈ NΛ, we refer to c(S) as the count of S in c. Let |c| =
‖c‖∞ = maxS∈Λ c(S). We write c ≤ c′ to denote that c(S) ≤ c′(S) for all S ∈ Λ,
and c < c′ if c ≤ c′ and c �= c′. Since we view vectors c ∈ NΛ equivalently as
multisets of elements from Λ, if c ≤ c′ we say c is a subset of c′. Given c, c′ ∈ NΛ,
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we define the vector component-wise operations of addition c + c′, subtraction
c−c′, and scalar multiplication nc for n ∈ N. For a set Δ ⊂ Λ, we view a vector
c ∈ NΔ equivalently as a vector c ∈ NΛ by assuming c(S) = 0 for all S ∈ Λ \Δ.
Write c � Δ to denote the vector d ∈ NΔ such that c(S) = d(S) for all S ∈ Δ.
Given S1, . . . , Sk ∈ Λ, c ∈ NΛ, and n1, . . . , nk ∈ Z,we write c+{n1S1, . . . , nkSk}
to denote vector addition of c with the vector v ∈ Z{S1,...,Sk} with v(Si) = ni.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α =
〈r,p, k〉 ∈ NΛ × NΛ × R+, specifying the stoichiometry (amount consumed/
produced) of the reactants and products, respectively, and the rate constant k.
A reaction is unimolecular if it has one reactant and bimolecular if it has two
reactants. For simplicity, in this paper we use k = 1 and the rate constant is
omitted. For instance, given Λ = {A,B,C}, the reaction A + 2B → A + 3C is
the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN) is a pair
N = (Λ,R), where Λ is a finite set of chemical species, and R is a finite set of
reactions over Λ. A state of a CRN N = (Λ,R) is a vector c ∈ NΛ.

Given a state c and reaction α = 〈r,p〉, we say that α is applicable to c if
r ≤ c (i.e., c contains enough of each of the reactants for the reaction to occur).
If α is applicable to c, then write α(c) to denote the state c + p − r (i.e., the
state that results from applying reaction α to c). A finite or infinite sequence of
reactions (αi), where each αi ∈ R, is a reaction sequence. Given an initial state
c0 and a reaction sequence (αi), the induced execution sequence (or path) q is
a finite or infinite sequence of states q = (c0, c1, c2, . . .) such that, for all ci ∈ q
(i ≥ 1), ci = αi(ci−1). If a finite execution sequence q starts with c and ends
with c′, we write c=⇒q c

′. We write c=⇒ c′ if such an execution sequence exists
and we say that c′ is reachable from c. We often abuse terminology and refer
to reaction sequences and execution sequences (paths) interchangeably.

We will find ourselves frequently dealing with infinite sequences of states. The
following technical lemma elucidates certain convenient properties of any such
sequence and will be used repeatedly.

Lemma 3.1 (Dickson’s Lemma [10]). The set of states Nk is well-quasi-
ordered. In particular, every infinite sequence x0,x1, . . . of states has an infinite
nondecreasing subsequence xi0 ≤ xi1 ≤ . . ., where i0 < i1 < ... ∈ N, and every
set U ⊆ Nk has a finite number of minimal elements.

3.2 Stable Decidability of Predicates

We now review the definition of stable decidability of predicates introduced
by Angluin, Aspnes, and Eisenstat [2]. Intuitively, some species “vote” for a
YES/NO answer, and a CRN N is a stable decider if N is guaranteed to reach
a consensus vote.

A chemical reaction decider (CRD) is a tuple D = (Λ,R,Σ, Υ, φ, s), where
(Λ,R) is a CRN, Σ ⊆ Λ is the set of input species, Υ ⊆ Λ is the set of voters,
φ : Υ → {NO,YES} is the (Boolean) output function, and s ∈ NΛ\Σ is the initial
context. For the input vector (n1, . . . , nk) ∈ Nk, where k = |Σ|, we write the
initial state as i(n1, . . . , nk) ∈ NΛ defined by: i(n1, . . . , nk) � Σ = (n1, . . . , nk)
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and i(n1, . . . , nk) � (Λ \ Σ) = s. We extend φ to a partial function on states
Ψ : NΛ ��� {NO,YES} as follows. Ψ(c) is undefined if either c(X) = 0 for
all X ∈ Υ , or if there exist X0, X1 ∈ Υ such that c(X0) > 0, c(X1) > 0,
φ(X0) = NO and φ(X1) = Y ES. Otherwise, there exists b ∈ {NO, Y ES} such
that (∀X ∈ Υ )(c(X) > 0 implies φ(X) = b); in this case, the output Ψ(c) of
state c is b.

A state o is output stable if Ψ(o) is defined and, for all c such that o=⇒ c,
Ψ(c) = Ψ(o). We call a whole CRD D stable if, for any initial state i, there exists
b ∈ {NO, Y ES} such that, for every state x reachable from i, there is an output
stable state o reachable from x such that Ψ(o) = b. If D is stable, then for some
unique subset S0 ⊆ Nk of inputs it always converges to output 0 and stays with
that output, and for the remainder S1 = Nk \ S0 it always converges to output
1 and stays with that output. We say that D stably decides the set S1, or that
D stably decides the predicate ψ : Nk → {0, 1} defined by ψ(x) = 1 iff x ∈ S1.

A set A ⊆ Nk is linear if A = { b+
∑p

i=1 niui | n1, . . . , np ∈ N } for some
constant vectors b,u1, . . . ,up ∈ Nk. A is semilinear if it is a finite union of linear
sets. The following theorem is due to Angluin, Aspnes, and Eisenstat [2]:

Theorem 3.2 ( [2]). A set A ⊆ Nk is stably decidable by a CRD if and only if
it is semilinear.

If a YES voter (or any other species, for that matter) cannot be produced by
any sequence of reactions from a state y, then it cannot be produced from any
subset y′ ≤ y. The following lemma is useful when we want to argue the other
way: that for certain species, beyond a certain value, increasing their counts
cannot affect the ability or inability of the state to produce a YES voter. We say
that a state c is committed if, for all states z such that c=⇒ z, z(S) = 0 for all
YES-voting species S. In particular, all output-stable NO states are committed,
and for stable CRDs, committed states are reachable only from inputs on which
the predicate is false.7

Lemma 3.3. For each CRD, there is a constant c such that, for all committed
states c, if c(S) > c for some S ∈ Λ, then for all n ∈ Z, c + {nS} is also
committed.

4 Speed Fault Free CRDs

In this section we show our main result that speed fault free CRDs decide only
“detection problems,” i.e., detecting the presence or absence of a species, but
not distinguishing between two different positive counts of it. To allow for “par-
allelization” of the computation, we introduce a “fuel” species F , whose count

7 A committed state is not be output-stable NO if a state without any voters is
reachable from it. The distinct notion of “committed” is useful because (unlike for
output NO stability) the negation of committed is closed under superset (see the
proof of Lemma 3.3), yet (like for output NO stability) reaching a committed state
implies that the predicate value must be false.
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is allowed to start arbitrarily large.8 Increasing the amount of fuel species is
analogous to increasing the amount of “receptor” in the introduction. We then
formalize the concept of “speed fault free” discussed informally in the introduc-
tion. Briefly, a CRN experiences a speed fault if it reaches a state from which all
paths to a correct state execute some reaction when the counts of all of its reac-
tants are bounded by a constant (a “slow” reaction). Note that in the stochastic
model, the expected time for such a reaction to occur is bounded below by a
constant (independent of the amount of fuel).

Let D = (Λ,R,Σ, Υ, φ, s) be a stable CRD, where Σ = {A1, . . . , Ak} are the
input species and Λ \Σ contains a special “fuel” species F , with variable initial
count n. The initial count of every other species in Λ\(Σ∪{F}) is s (unchanging
with respect to n). Write the initial state of D with some number ni of each input
Ai and n molecules of F as in(n1, . . . , nk).

Let f ∈ N, let α ∈ R be a reaction and x ∈ NΛ be a state. We say that α
occuring in state x is f -fast if at least one reactant has count at least f in x.
An execution sequence is called f -fast if all reactions in it are f -fast. 9

Definition 4.1. A stable CRD D is speed fault free if for all n1, . . . , nk and all
f ∈ N, for all sufficiently large n, for any state x such that in(n1, . . . , nk)=⇒x,
there is an output stable state y (which has the correct answer with respect to
n1, . . . , nk by the stability of D) such that x=⇒y by an f -fast execution se-
quence.

Definition 4.2. A set S ⊆ Nk is a simple detection set if there is a 1 ≤ i ≤ k
such that S =

{
(x1, . . . , xk) ∈ Nk

∣∣ xi > 0
}
. A set is a detection set if it is

expressible as a combination of finite unions, intersections, and complements of
simple detection sets.

In other words, the predicate corresponding to a simple detection set S is a fi-
nite Boolean combination of questions of the form “is a certain species present?”.
The following theorem is the main result of this paper. We show each direction
in two separate lemmas, Lemma 4.4 and Lemma 4.10.

Theorem 4.3. The sets decidable by speed fault free CRDs are precisely the
detection sets.

4.1 Detection Problems Are Decidable by Speed Fault Free CRDs

This is the easier direction of Theorem 4.3. We give the intuition behind the proof
here, and we do not formally define the model of stochastic chemical kinetics

8 Allowing multiple fuel species F1, F2, . . . does affect our results since one of our
reactions can be F →F1 + F2 . . . .

9 It is worth noting that fast reaction sequences are not necessarily fast in the standard
sense of stochastic kinetics, since although each reaction occurs quickly, it could be
that there are a huge number of reactions in the sequence. Since our main result is
a lower bound, this does not hurt the argument (and our upper bound result also
shows that it is possible to decide detection problems quickly under the standard
stochastic model).
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used to prove the expected running time. See the full version of this paper for
detailed definitions and the proof.

Lemma 4.4. Every detection set is decidable by a speed fault free CRD. This
CRD takes expected time O(log n/n) expected time to stabilize under the standard
model of stochastic chemical kinetics with constant volume.

Proof ( sketch). To detect whether a species A is present or not, we may use
“epidemic” reactions A + F → Fa and Fa + F → 2Fa, where F votes NO and
Fa votes YES. That is, if A encounters an F , then F changes state to Fa, and
this information is “broadcast” throughout the population of F ’s. Since the sum
c(Fa) + c(F ) = n is constant in any reachable state c, the second bimolecular
reaction always has a reactant with count ≥ n/2 (hence that reaction is always
n
2 -fast), and the output-stable YES state is reached when all F ’s are converted
to Fa. The extension to k input species just means that each F must store k
bits, one for each input species. �	

4.2 Speed Fault Free CRDs Decide Only Detection Problems

Before proceeding to the main argument, we need to develop some technical ma-
chinery. We first show that if a fast execution sequence is used to decrease the
count of some species, then we can identify certain reactions that must necessar-
ily occur (reaction extraction). We then develop a notion of pumping, which is
used to identify species that can get arbitrarily large with increasing fuel. Finally,
we show that reaction sequences in which one reactant is always pumpable can
be decomposed into separate “test-tubes” (parallel decomposition). Finally we
stitch these notions together to show that speed fault free CRDs cannot compute
more than detection problems.

Reaction Extraction Lemma. Intuitively, the lemma below states that a fast
reaction sequence that decreases certain species from high counts to low counts
must contain reactions of a certain restricted form. These reactions will later
be used to do “surgery” on fast reaction sequences, because they give a way to
alter the count of certain species, by inserting or removing those reactions, while
carefully controlling the effect these insertions and removals have on counts of
other species.

Lemma 4.5. Let c1, c2 ∈ N such that c2 > |Λ| · c1, let x,y ∈ NΛ such that
x=⇒y via c2-fast reaction sequence q. Let Δ = {D ∈ Λ|x(D) ≥ c2,y(D) ≤ c1}.
Then there is an order on Δ, so that we may write Δ = {D1, D2, . . . , Dl}, such
that, for all i ∈ {1, . . . , l}, there is a reaction αi of the form Di → P1 + . . .+ Pk

or Di+S → P1+ . . .+Pk, such that S, P1, . . . , Pk �∈ {D1, . . . , Di}, and αi occurs

at least c2−|Λ|·c1
|R| times in q in states c in which c(S) ≥ c2.

Lemma 4.5 is formally proved in the full version of this paper. Intuitively,
to see such an ordering exists, it helps to think in reverse, first defining the last
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element Dl of the ordering. Consider the potential function Φ(c) =
∑

D∈Δ c(D);
then Φ(x) is large (at least |Δ| · c2) and Φ(y) is small (at most |Δ| · c1). On the
path from x to y, when Φ is between c2 and |Δ| · c1, it cannot get smaller by
reactions of the formDi+Dj → . . ., sinceDi, Dj ∈ Δ, or that reaction would not
be c2-fast. Therefore to get Φ down requires reactions with at most one reactant
in Δ. Furthermore, if any product were in Δ, this would not decrease the value
of Φ, hence some reaction must be of the desired form: consuming exactly one
element of Δ. This element is Dl, the last in the ordering. Inductively defining
an ordering on Δ \ {Dl} gives the entire ordering.

Pumpable Sets of Species. This section defines pumpable sets of species:
species whose counts can be made arbitrarily large by increasing the amount
of fuel (species F , see Definition 4.1) and proves some basic properties about
them. For example, the fuel species F is trivially pumpable. If there is a reaction
F + A→F ′ + A, then F ′ is pumpable (if there is an A), because F can be
arbitrarily large. To get a handle on the notion of speed fault free, we define
pumping to enforce a certain kind of self-consistency (Π-friendly): you can pump
without requiring any reactions where all reactants are not pumpable.

Let Π ⊆ Λ. If a reaction has at least one reactant in Π , say the reaction is Π-
friendly. If x=⇒y via a reaction sequence in which all reactions are Π-friendly,
then we write x=⇒Π y. Let Z = (z1 ≤ z2 ≤ z3 . . .), where each zn ∈ NΛ,
be an infinite nondecreasing sequence of states. A set of species Π ⊆ Λ is Z-
pumpable if there exists a sequence of states X = (x1,x2, . . . ) such that: (1) for
all P ∈ Π and m ∈ N, xm(P ) ≥ m, and (2) for all m ∈ N, there exists n ∈ N
such that zn =⇒Π xm.10 Call such a sequence (xm) a pumping sequence for Π .
Π is maximal Z-pumpable if it is Z-pumpable and no strict superset of Π is
Z-pumpable.

The next proposition shows that after pumping a maximalΠ , all other species
have bounded counts in all states reachable by Π-friendly paths. It is proven in
the full version of this paper. Intuitively, it holds because if any other species
S �∈ Π could get large via some reaction sequence r, then we could make the
species in Π so large that we are able to hold some in reserve, then execute r,
and then we would have S and all of Π large at the same time, contradicting the
maximality of Π . We will use Proposition 4.6 repeatedly, but its most important
consequence, intuitively, is that that the only way to get something outside of
Π “large” is by executing a “slow” reaction (between two reactants not in Π).

Proposition 4.6. Let Z = (z1 ≤ z2 ≤ . . .) be a infinite nondecreasing sequence
of states, and let Π ⊆ Λ be maximal Z-pumpable, with pumping sequence (xm).
Then there is a constant c such that, for all states y and m,n ∈ N such that
xm =⇒Π y, then for all S ∈ Λ \Π, y(S) < c.

10 We can assume that n → ∞ as m → ∞. This is because (zn) is a nondecreasing
sequence, and so if zn =⇒Π xm for some n,m ∈ N, then for all n′ > n, there is a
superset x′

m ≥ xm such that zn′ =⇒Π x′
m, and x′

m(S) ≥ m for all S ∈ Π .
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Parallel Decomposition. Intuitively, the following lemma shows that systems
reacting byΠ-friendly reactions can be effectively decomposed into separate non-
interacting “test tubes” (in the context of a large excess of Π).11 The following
lemma is proved in the full version of this paper.

Lemma 4.7. Suppose x+y=⇒Π z. Then there are p,p′,p′′ ∈ NΠ , and z′, z′′ ∈
NΛ such that p+x=⇒Π p′ + z′ and p+y=⇒Π p′′ + z′′, where z′ + z′′ = z and
p′ + p′′ = 2p.

Main Proof. Throughout this section, let D = (Λ,R,Σ, Υ, φ, s) be an arbi-
trary speed fault free CRD with Σ = {A1, . . . , Ak} and fuel species F as in
Definition 4.1. Supposing for the sake of contradiction that D decides some non-
detection set, then there must exist some species Ai (assume without loss of
generality that i = 1), and an input value (n1, n2, . . . , nk) ∈ Nk, where n1 ≥ 1,
with answer NO (without loss of generality) but input value (n1 +1, n2, . . . , nk)
with answer YES. Let in be the above initial state with n1 molecules of A1,
having n fuel molecules. We will show that for sufficiently large n, in + {A1} is
able to reach a state without YES-voting species, from which the only way to
produce a YES voter is to execute a slow bimolecular reaction.

We now define two infinite sequences of states (xm) and (ym) used in the rest
of the argument. Intuitively (xm) makes “large” all species than can get large
from (in), while (ym) is a sequence of committed states reachable from (xm) (but
they have to be defined in a rather exacting way.) Let sequence I = (in) and let
Π ⊆ Λ be maximal I-pumpable with pumping sequence (xm). In the full version
of the paper we show that there is a d ∈ NΠ such that xm = xm−1 + d. Define
the sequence of output-stable NO states (ym) inductively as follows. For the base
case, let y1 be any output-stable NO state such that x1 =⇒r1 y1; such a path
r1 must exist because D is stable. Inductively assume that xm−1 =⇒rm−1 ym−1.
Then xm = xm−1+d=⇒rm−1 ym−1+d. Let fm ∈ N be the largest number such
that there is a fm-fast path pm from ym−1+d to an output-stable NO state ym.
Then let rm be rm−1 followed by pm.12 By Proposition 4.6, once f is sufficiently
large, any f -fast reaction sequence from xm to ym must be Π-friendly. Thus by
reindexing (xm) to start with a sufficiently large member of the sequence, we
have that for all m, xm =⇒Π ym.

By Dickson’s Lemma there is an infinite nondecreasing subsequence Y =
(ys1 ,ys2 , . . .). Let Γ = { S ∈ Λ | limn→∞ ysn(S) =∞ }. By Proposition 4.6,
Γ ⊆ Π since xsn =⇒Π ysn . Let Δ = Π\Γ . These are the species that are “large”
in (xm) but are bounded in Y . By further taking appropriate subsequences, we
can ensure that each ysn(S) = ysn+1(S) if S ∈ Λ \ Γ and ysn(S) < ysn+1(S) if
S ∈ Γ .

11 Note that in this way Π-friendly bimolecular reactions act somewhat analogously to
unimolecular reactions: if x+ y=⇒ z by a sequence of unimolecular reactions, then
x=⇒ z′ and y=⇒ z′′ such that z′ + z′′ = z.

12 By the definition of speed fault free, limm→∞ fm =∞, since xm and ym for increas-
ing m are reachable from input states in with increasing amounts of fuel.
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Recall that a state is committed if it cannot produce a YES voter. The next
lemma, formally proved in the full version of the paper, shows that changing
counts of pumpable species (Π) by a “small” amount in xm, so long as m is
sufficiently large, cannot change the ability of xm to reach a committed state.
Intuitively, later on e will represent a change in counts due to “processing” the
extra copy of A1 (the one that changes the correct answer in state in(n1, . . . , nk)
from NO to YES), and the following lemma will help us to derive a contradiction
because the extra copy of A1 should enable the production of a YES voter.

Lemma 4.8. Let sequences (xm) and (ym) be as defined above. For all ε ∈ N,
there exists ε′ ∈ N such that the following holds. For all e ∈ ZΠ with |e| ≤ ε, for
infinitely many m, there exists em ∈ ZΓ with |em| ≤ ε′, and m2 < m such that
xm + e=⇒Π ym2 + em and ym2 + em is committed.

Proof ( sketch). We know that xm =⇒rm ym. Consider applying rm to xm+e to
get ym+e. This may not work because it could drive some species negative, and
the final state may not be committed. We use Lemma 4.5 to obtain an ordering
Δ = {D1, . . . , Dl} such that we can add or remove from rm reactions of the form
αi : Di + S → P1 + . . .+ Pk where S, P1 . . . , Pk are in Γ ∪ {Di+1, . . . , Dl}. This
gives a way to “fix” the count of Di to make its count equal to its count in ym

by either removing αi (to increase) or adding extra instances of αi (to decrease),
while affecting only species in Γ or “after” Di (hence their counts will be fixed
later). The counts of D1, . . . , Di−1, which have already been fixed, are unaffected
by the surgery to fix Di, because they do not appear in αi. When we are done,
we have increased the “error” in species in Γ (corresponding to em ∈ ZΓ in the
lemma statement), but by Lemma 3.3, ym+em is still committed. Unfortunately,
we may be taking some species negative in the middle of the fixed path. To handle
this, the full argument essentially relies on the definition of ym iteratively defined
by adding d to ym−1, and ends by reaching committed state ym2 + em, for a
smaller m2 < m (see full paper). �	

The next lemma uses Lemma 4.8 to show that, from state xm + e, with
e ∈ ZΛ “small,” we can reach a committed state in which every species that can
be “large”, is actually large.

Lemma 4.9. Let sequence (xm) be as defined above. For all ε ∈ N, there exists
c ∈ N and Ω ⊆ Λ such that the following holds. For all e ∈ ZΠ such that |e| ≤ ε,
there exists an infinite sequence We = (wn) of states such that, for all n ∈ N,
there exists mn ∈ N, such that the following is true: (1) xmn + e=⇒Π wn, (2)
wn is committed, (3) for all S ∈ Ω, wn(S) ≥ n, (4) for all S ∈ Λ \Ω and all u
such that wn =⇒Ω u, u(S) ≤ c, and (5) wn are nondecreasing.

Lemma 4.9 is proven in the full version of this paper. Intuitively (albeit im-
precisely), it follows by letting Ω be a maximal Y -pumpable set of species, where
Y is the infinite sequence of committed states of the form ym2 + em shown to
exist in Lemma 4.8. That is, while Π contains species that can simultaneously
get large in state xm starting from the initial state, and Γ contains species that
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happen to be large in the committed states ym2 + em reachable from xm + e, Ω
contains possibly more species than Γ : those that can get large, starting from
states ym2 + em.

The next lemma shows that speed fault free CRDs decide only detection
problems. Lemma 4.10 is formally proved in the full version of this paper.

Lemma 4.10. D is not speed fault free.

Proof ( sketch). Recall initial states in encode an input value making the pred-
icate false, and in + {A1} encode an input value making the predicate true.
Let e = 0 and consider the corresponding W0 = (wn). By Lemma 4.9 we have
in′ =⇒Π xm =⇒Π wn. We can rewrite this path as (in′ \ {A1})+ {A1}=⇒Π wn,
and applying Lemma 4.7 obtain that there are p,p′ ∈ NΠ such that: p +
{A1}=⇒Π p′ + b, where b ≤ wn. Call this path r. Since b ≤ wn, it must
be that b is committed even if any amount of Ω is added to it.

Let e = p′−p ∈ ZΠ and consider the (different) sequenceWe = (wn) obtained
using this e from Lemma 4.9. For all n, there is m such that xm + e=⇒Π wn

by some path pn. Now, choose n large enough (so xm ≥ p) and add the extra
molecule of A1: xm + {A1}=⇒Π

r xm + (p′ −p) +b = xm + e+b=⇒Π
pn

wn +b.
Because this state is reachable from a valid initial state with one extra molecule
of A1, we must be able to produce a YES voter from it. By assumption of a
speed fault free CRD, this must be a fast path: for all f , there is an n such
that wn + b=⇒ zn by an f -fast path qn, and zn contains a YES voter. Is qn
Ω-friendly? If qn is Ω-friendly then by Lemma 4.7 we can reach a YES voter
solely from wn or b given enough extra of species in Ω. This is a contradiction
since both wn and b are committed, even if any amount of Ω is added (by
Lemma 3.3).

Thus qn cannot be entirely Ω-friendly. Let αn be the first reaction that is not
Ω-friendly, and let un be the state immediately before this reaction occurs. If
for all f , there is a qn that is f -fast, it must be that un contains count f of
some species Xn that is not in Ω (otherwise, αn would be Ω-friendly). Consider
f > 2c where c is the constant from Lemma 4.9. Since the initial portion of qn
that leads to un is Ω-friendly, we have wn +b=⇒Ω un and Lemma 4.7 applies.
Consequently, ∃o,o′,o′′ ∈ NΩ and u′,u′′ ∈ NΛ such that o +wn =⇒Ω o′ + u′

n

and o+ b=⇒Ω o′′ + u′′
n and u′

n + u′′
n = un. Thus either u

′
n or u′′

n must contain
at least f/2 of Xn. Since wn′ are nondecreasing and are larger than n′ on Ω, for
large enough n′, wn′ from We exceeds o+wn and wn′ from W0 exceeds o+ b.
But then we obtain a contradiction of condition (4) in Lemma 4.9. �	
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Fault-Tolerant ANTS
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Abstract. In this paper, we study a variant of the Ants Nearby Treasure
Search problem, where n mobile agents, controlled by finite automata,
search collaboratively for a treasure hidden by an adversary. In our ver-
sion of the model, the agents may fail at any time during the execution.
We provide a distributed protocol that enables the agents to detect fail-
ures and recover from them, thereby providing robustness to the proto-
col. More precisely, we provide a protocol that allows the agents to locate
the treasure in time O(D + D2/n + Df) where D is the distance to the
treasure and f ∈ O(n) is the maximum number of failures.

1 Introduction

Ant colonies are a prime example of biological systems that are fault-tolerant.
Removing some or even a large fraction of ants should not prevent the colony
from functioning properly. In this paper we study the so-called Ants Nearby
Treasure Search (ANTS) problem, a natural benchmark for ant-based distributed
algorithms where n mobile agents try to efficiently find a food source at distance
D from the nest. We present a novel distributed algorithm that can tolerate (up
to) a constant fraction of ants being killed in the process.

In distributed computing, most algorithms can survive f crash faults by repli-
cation. Following this path, each ant can be made fault-tolerant by using f + 1
ants with identical behavior, making sure that at least one ant survives an or-
chestrated attack. However, since we allow f ∈ O(n) crash failures, we would
be left with merely a constant number of fault-tolerant “super-ants”, and a con-
stant number of ants cannot find the food efficiently. As such we have to explore
a smarter replication technique, where faulty ants have to be discovered and
replaced in a coordinated manner.

In more detail, we study a variation of the ANTS problem, where the n
agents are controlled by randomized finite state machines and are allowed to
communicate by constant-sized messages with agents that share the same cell.
The goal is to locate an adversarially hidden treasure. There is a simple lower
bound of Ω(D + D2/n) to locate the treasure [10]. This bound is based on the
observation that at least one agent has to move to distance D, which takes time
Ω(D), and that there are Ω(D2) cells with distance at most D while a single
agent can visit at most one new cell per round, which yields the Ω(D2/n) term.
In previous work, it was shown that the treasure can be located with randomized
finite-state machines in optimal time in an asynchronous environment [8]. That
approach, however, is rather fragile and requires the agents to be absolutely
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reliable. The failure of just a single agent can already result in not finding the
treasure.

In the model of this paper, f ∈ O(n) of the agents can fail at any point in
time. However, despite the presence of failures, we show that the treasure can
be located efficiently, i.e., we find the treasure in time O(D + D2/n + Df). In
essence, we implement an error checking mechanism that detects if an agent
died. As we keep track of the progress of the search by “remembering” which
cells have been searched so far, we can then restart the search while avoiding to
search cells that have already been searched.

1.1 Related Work

Searching the plane with n agents was introduced by Feinerman et al. In the
original ANTS problem, the agents only communicate in the origin and thus
search independently for a treasure [9, 10]. Moreover, the agents are controlled
by randomized Turing machines and assuming knowledge of a constant approx-
imation of n, the agents are able to locate the treasure in time O(D + D2/n).
This model was studied further by Lenzen et al., who investigated the effects
of bounding the memory as well as the range of available probabilities of the
agents [13]. Protocols in their models are robust by definition as the agents do
not communicate outside of origin and thus the failure of an agent cannot affect
any other agent.

The main differences between our model and theirs lie in the communication
and computation capabilities of the agents. First, we use a significantly weaker
computation model: our agents only use a constant amount of memory and are
governed by finite automata. Second, our agents are allowed to communicate
with each other during the execution. However, the communication is limited to
constant sized-messages and only allowed between agents that share the same
cell at the same time. The communication and computation model was originally
introduced in a graph setting by Emek et al. [8].

Searching the plane is a special case of graph exploration. In the general
version of the problem, the task is to visit all the nodes/edges by moving along
the edges [1, 6, 7, 12, 16, 17]. In the finite case, it is known that a random walk
visits all nodes in expected polynomial time [2]. In the infinite case, a random
walk can take infinite time in expectation to reach a designated node.

Another closely related problem is the classic cow-path problem, where the
task is to find food on a line. It is known that there is a deterministic algorithm
with a constant competitive ratio. Furthermore, the spiral search is an optimal
algorithm in the 2-dimensional variant [5]. The problem has also been studied
in a multi-agent setting [14].

Searching graphs with finite state machines was studied earlier by Fraigniaud
et al. [11]. Other work considering distributed computing by finite automata
includes for example population protocols [3, 4].
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1.2 Model

We investigate a variation of the Ants Nearby Treasure Search (ANTS) problem,
where a set of mobile agents explore the infinite integer grid in order to locate
a treasure positioned by an adversary. All agents are operated by randomized
finite automata with a constant number of states and can communicate with each
other through constant-size messages when they are located in the same cell. In
contrast to [8] where the agents do not have to deal with robustness issues, our
agents can fail at any time during the execution, thus making it much harder
to develop correct algorithms for the ANTS problem. In all other aspects, our
model is identical to the one of [8].

Consider a set A of n mobile agents that explore Z2. All agents start the
execution in a dedicated grid cell – the origin (say, the cell with coordinates
(0, 0) ∈ Z2). The agents are able to determine whether they are located at the
origin or not. The grid cells with either x or y-coordinate being 0 are denoted
as north/east/south/west-axis, depending on the respective location.

We measure the distance dist(c, c′) between two grid cells c = (x, y) and
c′ = (x′, y′) in Z2 with respect to the �1 norm (a.k.a. Manhattan distance),
i.e., |x − x′| + |y − y′|. Two cells are called neighbors or adjacent if the distance
between them is 1. In each execution step, an agent located in cell (x, y) ∈ Z2

can move to one of the four neighboring cells (x, y + 1), (x, y − 1), (x + 1, y), (x −
1, y), or stay still. The four position transitions are denoted by the respective
cardinal directions N, E, S, W , and the latter (stationary) position transition is
denoted by P (“stay put”). We point out that the agents have a common sense
of orientation, i.e., the cardinal directions are aligned with the corresponding
grid axes for every agent in every cell.

The agents operate in a synchronous environment, meaning that the execution
of all agents progresses in discrete rounds indexed by the non-negative integers.
The runtime of a protocol is measured in the number of rounds that it takes the
protocol to achieve its goal/terminate. We fix the duration of one round to be
one time unit and thus can take the liberty to use the terms round and time
interchangeably.

In comparison to the original ANTS problem, the communication and com-
putational capabilities of our agents are more limited. An agent can only com-
municate with agents that are positioned in the same cell at the same time. This
communication is restricted though: agent a positioned in cell c only senses for
each state q whether there exists at least one agent a′ �= a in cell c whose current
state is q.

All agents are controlled by the same finite automaton. Formally, the agent’s
protocol P is specified by the 3-tuple P = 〈Q, s0, δ〉, where Q is the finite set
of states, s0 ∈ Q is the initial state, and δ : Q × 2Q → 2Q×{N,S,E,W,P } is the
transition function. At the beginning of the execution, each agent starts at the
origin in the initial state s0. Suppose that in round i, agent a is in state q ∈ Q
and positioned in cell c ∈ Z2. Then, the state q′ ∈ Q of agent a in round i + 1
and the corresponding movement τ ∈ {N, S, E, W, P } are dictated based on
the transition function δ by picking the tuple (q′, τ) uniformly at random from
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δ(q, Qa), where Qa ⊆ Q contains state p ∈ Q if and only if there exists at least
one agent a′ �= a such that a′ is in state p and positioned in cell c in round i.
We assume that the application of the transition function and the corresponding
movement occur instantaneously and simultaneously for all agents at the end of
the round i.

Adversarial Failures. In contrast to previous work, the agents in our model are
not immune to foreign influences and thus can fail at any time during the exe-
cution of their protocol. We consider an adaptive off-line adversary (sometimes
also called omniscient adversary) that has access to all the parameters of the
agents’ protocol as well as to their random bits. Formally, the adversary speci-
fies for each agent a the failure time tf (a) as the round at the end of which agent
a fails. If the adversary does not fail a certain agent a at all, we set tf (a) = ∞.
If an agent a fails in round r = tf (a), then it is removed from the grid as well as
the set A; the agent cannot be observed anymore by other agents in any round
r′ > r (failed agents do not leave a corpse behind).

Problem Statement. The goal of ANTS problem is to locate an adversarially
hidden treasure, i.e., to bring at least one agent to the cell in which the treasure
is positioned. The distance of the treasure from the origin is denoted by D while
the maximum number of failures that the adversary may cause is denoted by f .
We say that a protocol is g(n)-robust if it locates the treasure w.h.p. for some
f ∈ Θ(g(n)). A protocol that finds the treasure if (up to) a constant fraction
of the agents fail is hence n-robust. The goal of this paper is to show that such
an n-robust protocol indeed does exist. Therefore, we consider a scenario where
f = α · n for a constant α that will be determined later. The performance of
a protocol is measured in terms of its runtime, which corresponds to the index
of the round in which the treasure is found. Although we express the runtime
complexity in terms of the parameters D, n, and f , we point out that neither of
these parameters are known to the agents (who in general could not even store
them in their constant memory).

2 An n-Robust Protocol

The goal of this section is to develop an n-robust protocol that solves the ANTS
problem. In other words, we want to find a protocol that finds the treasure even if
a constant fraction of the agents fails. During the remainder of the paper, we use
a set of definitions which we shall introduce here. We refer to all cells in distance
� from the origin as level �. We say that a cell c is explored in round r if it is
visited by any agent in round r for the first time. Furthermore, a configuration
of the agents is a function C : A → Z2 that maps each agent a ∈ A to a certain
cell c ∈ Z2.

Giants. A key concept that will be used throughout this paper is the giant. A
giant is a cluster of k agents that all perform exactly the same operations and
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always stay together during the execution of a protocol. If k > f , where we
recall that f is the maximum number of agents that can fail, we can consider
the cluster as a single (giant) agent that cannot be failed by the adversary.

As we design an n-robust protocol, all our giants will consist of α · n agents
for a constant 0 < α < 1. Observe that there can only be a constant number of
giants. Since our protocol only requires a constant amount of giants, we proceed
to explain how a protocol can create constantly many giants. Consider a proto-
col that requires g giants, each of size Θ(n), plus Θ(n) normal agents. At the
beginning of the execution, each agent uniformly at random transitions to one of
g + 2 distinct states, one state for each of the g giants and two additional states
for the normal agents. By a simple Chernoff bound argument, it follows that the
number of agents per giant is at least n/(g +3) and the number of normal agents
is at least 2n/(g + 3) w.h.p.1 Hence, a protocol that relies on the survival of its
g giants can tolerate n/(g + 3) − 1 failures and still operate correctly.

2.1 Overview

We describe a protocol that uses 10 giants, which can therefore tolerate up to
f = n/13 − 1 failures by the above argument. The remaining agents (w.h.p. at
least 2n/13) will be called Explorers as their job is to explore cells in bulk. At
any time during the execution, we are guaranteed to have at least n/13 surviving
Explorers and we will denote this number by ne.

O

Fig. 1. This figures shows the ring of cells that is supposed to be explored by the
ExpoSweep protocol in iteration 1 (crossed boxes), 2 (filled boxes) and 3 (empty
boxes). The width of the ring increases by factor of (roughly) two in each iteration and
the agents move further outwards.

Our protocol works iteratively and in each iteration, the Explorers explore all
cells in a ring around the origin: The Explorers line up along the north axis on a
1 We say that an event occurs with high probability, abbreviated by w.h.p., if the event

occurs with probability at least 1 − n−β, where β is an arbitrarily large constant.
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segment with a length that depends on the iteration. Then, all Explorers, together
with the giants, perform a sweep around the origin by moving along the sides of
a rectangle. If the exploration of a ring was not successful, meaning that at least
one cell in the ring was not explored, the agents regroup and re-explore the ring.
If the exploration was successful, the agents move further outwards to prepare
for the exploration of the next ring. Then they approximately double the length
of the segment (as long as possible) and start a new iteration. Figure 1 gives an
illustration of the execution.

2.2 Basis Configuration

All four procedures presented in the following require that at their beginning, the
agents form a special configuration, called a basis. All procedures also ensure that
at their end, the agents are again in a basis. A basis consists of ten giants while all
other (non-giant) agents serve as Explorers. An InnerGiant and a CollectGiant are
positioned on the east, south, and west axis in the cell with distance d1 from the
origin. On the north axis, an InnerGiant, a StartGiant and a TriggerGiant reside
in cell (0, d1) while an OuterGiant is in cell (0, d2) with d2 > d1. All Explorers
are located somewhere along the cells between d1 and d2 on the north axis. If
the parameters are relevant in the context, we write (d1, d2)-basis or (d1)-basis
if the second parameter is not relevant (or not known explicitly). See Figure 2
for an illustration.

2.3 Compacting a Segment

The goal of the Compact procedure is to ensure that the Explorers occupy a
contiguous segment of cells on the north-axis between InnerGiant and OuterGiant
(unless failures occur). If this is not the case, they are compacted towards the
origin to form a contiguous, yet shorter, segment.

Let the agents be in a (d1, d2)-basis. The procedure Compact is started by
the StartGiant, which moves with speed 1/2 (it stays put every second round)
towards the OuterGiant and instructs each group of Explorers that it meets to
start repeated compacting steps. A compacting step consists of two rounds. First,
the Explorer moves one cell closer to the origin. If that cell is empty, it stays there
and does nothing in the second round, otherwise it moves back to its previous
cell in the second round. When an Explorer moves onto the cell containing the
InnerGiant, it moves back and stops compacting. The same happens if an Explorer
moves onto a cell with at least one stopped Explorer.

When the StartGiant has reached the OuterGiant, it instructs the OuterGiant
to perform compacting steps as well. Then, the StartGiant waits two rounds and
then moves back towards the InnerGiant with speed 1/2 until it arrives there
(without further instructing Explorers on the way).

Analysis. The duration of a Compact execution is defined as the time between
the StartGiant moving away from the InnerGiant and returning to the InnerGiant
again. Observe that if the agents start Compact from a (d1, d2)-basis, they
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form a (d1, d′
2)-basis at the end for some d′

2 ≤ d2. Let Eb = (nd)d1<d<d2 and
Ee = (nd)d1<d<d′

2
be the sequences of the counts of Explorers on the cells (0, d) at

the beginning and the end of the execution of Compact, respectively. Further,
we denote by S|0 the sub-sequence of the sequence S where each 0-element is
removed. Then the following lemma establishes the correctness of Compact.

Lemma 1. If no failures occur during a Compact execution, then Ee = Eb|0.

Proof. Let us call the set of Explorers that occupy the same cell at the beginning
of a Compact execution a team and let us index the teams by 1, 2, . . . , k ac-
cording to increasing distances from the origin. Observe that during Compact,
the Explorers of a fixed team behave (and move) identically and thus it suffices
to examine the individual teams.

By design, team i never overtakes team i − 1 and moreover only meets team
i − 1 if the latter has already stopped. Team i only stops in a cell that does not
contain another stopped team and therefore no two teams will end up at the
same cell at the end of the execution. As a team only stops in the cell directly
next to the cell that contains either a stopped team or the InnerGiant, the teams
will occupy a contiguous segment of cells outwards from the InnerGiant. As the
OuterGiant also performs compacting steps, it will end up directly adjacent to
the outermost team. Thus, all cells between cell (0, d1) and (0, d′

2) are occupied
by the teams 1 to k in that order and the claim follows. 
�
As an agent moves one step towards the origin every two rounds unless it has
reached the cell in which it will stop, all agents have stopped in their target
position when the StartGiant arrives back at the InnerGiant.

2.4 Searching a Ring

In this section we introduce the procedure SegSweep (segment sweep) which
aims to search all cells in a ring, i.e., a set of consecutive levels. As all our
procedures, SegSweep requires the agents to be in a basis. Let the agents be
in a (d1, d2)-basis.

A SegSweep consists of four QSweeps (quarter sweep), one for each quarter-
plane, that are executed subsequently. Figure 2 gives an illustration of the dif-
ferent steps of a single QSweep. The first QSweep (of the north-east quarter-
plane) is initiated by the StartGiant which starts moving north towards the
OuterGiant along the north axis and while passing the Explorers tells them to
diagonally move towards the east-axis by alternatingly moving east and south.
As soon as the StartGiant starts moving north, the TriggerGiant moves diagonally
towards the east-axis and will meet the east-InnerGiant and east-CollectGiant in
cell (d1, 0). When the TriggerGiant arrives at cell (d1, 0) in round r, it stops there
and instructs the CollectGiant to move outwards (east).

The CollectGiant moves to cell (d1 + 1, 0) to receive the Explorers that are
exploring distance d1 + 1 and thus should arrive in cell (d1 + 1, 0) soon. Now
we have to distinguish two cases. Either at least one Explorer arrives in round
r + 3 (the Explorer in distance d + 1 starts moving towards the east-axis one
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Fig. 2. This figure illustrates different stages of a QSweep. The two (perpendicular)
axes between which the QSweep is performed are aligned parallel to each other for the
sake of clarity. (1) shows the (d1, d2)-basis while in (2) the StartGiant (S) has already
sent on their way several Explorers (�) and the TriggerGiant (T). In (3), the TriggerGiant
has reached the CollectGiant (C) on the second axis which is now on the way to collect
the incoming Explorers and in (4) the StartGiant has reached the OuterGiant (O) on the
first axis and is now en route towards meeting the CollectGiant on the second axis.

round later than the Explorer in distance d and has to visit two more cells before
arriving there) which means that the search of the north-east quarter-plane in
distance d1 + 1 was successful or no Explorer arrives in round r + 3, which means
that the search was not successful because the team of Explorers was failed. In
both cases, the CollectGiant moves one cell outwards in round r + 4 to receive
the Explorers of level d1 + 2 which are bound to arrive there in round r + 6. The
CollectGiant continues to move a cell outwards every three rounds and whenever
a group of Explorers meet the CollectGiant, they stop in the respective cell.

When the StartGiant arrives at the OuterGiant on the north-axis, the Outer-
Giant moves inwards (south) and when it arrives at the InnerGiant, it becomes
a CollectGiant and stays put. The StartGiant then moves diagonally towards the
east-axis and will meet the (moving) CollectGiant in cell (d2, 0) to notify it that
the QSweep is complete upon which the CollectGiant becomes an OuterGiant
and stays put. Now the StartGiant moves inwards (west) until it meets the east-
InnerGiant and the TriggerGiant. The configuration of the agents is now identical
(apart from a 90◦-rotation) to the configuration before the first QSweep and
thus QSweeps of the south-east, south-west, and north-west quarter-plane can
be performed in an analogous fashion.

When the StartGiant arrives at the north-axis for the second time, the last
of the four QSweeps is finished. On its way back towards the InnerGiant, the
StartGiant now observes whether each cell between the OuterGiant and the In-
nerGiant contains at least one Explorer. If this is the case, the StartGiant enters
a special complete state, which, as we will later show, implies that all levels �
with d1 ≤ � ≤ d2 have been explored. Otherwise, the StartGiant enters a special
incomplete state, meaning that at least one level might not have been explored
completely.

Analysis. We say that a SegSweep begins in the round in which the StartGiant
starts moving towards the OuterGiant from the cell containing the InnerGiant
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and TriggerGiant. The SegSweep ends when the StartGiant arrives back at the
InnerGiant on the north-axis after the fourth QSweep.

Our agents operate in an adversarial environment and thus we need to show
that the SegSweep procedure works correctly independent of failures of the
agents. Here, that means that all (surviving) agents end up in a (d1)-basis after
a SegSweep and that if the StartGiant enters the complete state, a ring was
completely explored. To see the former, note that the design of the procedure
ensures that, regardless of potential failures, each Explorer is stopped by a Col-
lectGiant when crossing an axis and the StartGiant and CollectGiant will meet
in the cell in distance d′

2 on every axis. All other giants are in their original
position and thus, after four QSweeps, the agents are again in a (d1)-basis. The
following two lemmas are essential for the correctness of the procedure.

Consider a single execution of SegSweep that starts from a (d1, d2)-basis.
We call the execution successful if at the end, all levels � with d1 ≤ � ≤ d2 have
been explored.

Lemma 2. If the StartGiant is in the complete state at the end of a SegSweep,
then the SegSweep was successful.

Proof. Observe that the StartGiant can only enter the complete state if, at the
end of a SegSweep, each cell between InnerGiant and OuterGiant contains at
least one Explorer. The design of the procedure ensures that an Explorer can only
end up in cell (0, d) for d1 < d < d′

2 at the end of a SegSweep if it has started
the SegSweep in cell (0, d) and in between explored all cells of level d (and
in passing almost all cells of level d + 1). As level d1 and d′

2 are explored by
TriggerGiant and StartGiant, the claim follows. 
�
Lemma 3. If no agent failed during a Compact execution and the subsequent
SegSweep, then the SegSweep was successful.

Proof. The Compact execution ensures that before the first QSweep all cells
between InnerGiant and OuterGiant contain at least one Explorer. If no agent
fails, all these Explorers will end up in the same cell at the end of the fourth
QSweep by design of the procedure. Hence, the StartGiant will observe at least
one Explorer in each cell between InnerGiant and OuterGiant and thus enter the
complete state. The claim then follows from Lemma 2. 
�

2.5 Shifting the Segment

In this section, we introduce the procedure Shift, an additional building block
that allows the agents to move further outwards from the origin. Its concept
is similar to the giant movement during a SegSweep. Shift assumes that all
agents form a (d1, d2)-basis for some d1 < d2 and transforms it into a (d2+1, d3)-
basis for some d3 > d2 + 1.

The StartGiant moves north towards the OuterGiant and sends the Trigger-
Giant away to move diagonally to the cell (d1, 0) on the east-axis, where an
InnerGiant/CollectGiant reside. When the TriggerGiant arrives at there, it stays
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put and sends the two other giants to move outwards (east) with speed 1/3.
When the StartGiant arrives at the OuterGiant, it moves one cell further out-
wards (to cell (0, d2 + 1)) and then also moves diagonally towards the east-axis.
As the speed of the two giants moving outwards on the east-axis is 1/3, they
will meet the diagonally moving StartGiant in cell (0, d2 +1) and stop there. The
StartGiant moves inwards (west) until meeting the TriggerGiant in cell (0, d1).
This process is repeated three times to move the InnerGiant/CollectGiant on the
other axis outwards to the cell in distance d2 + 1 from the origin.

When the StartGiant has returned to the north-axis and meets the TriggerGiant
in cell (0, d1), it first sends the TriggerGiant and InnerGiant north in order to stop
in cell (0, d2 + 1), which is one cell outwards of the cell currently occupied by
the OuterGiant. Then it moves north with speed 1/2 and whenever it meets a
group of Explorers, it instructs them to move north until they find an empty cell.
Whenever the OuterGiant observes an Explorer in its cell, it moves one cell north
to make sure that it always marks the outermost cell. When the StartGiant arrives
at the cell containing the TriggerGiant/InnerGiant, it stops. Now the agents form
a (d2 + 1, d3)-basis for some d3 > d2 + 1.

2.6 Uniform Splitting

In this section, we introduce the procedure UniSplit (uniform splitting) to line
up the agents properly for the SegSweep procedure. Before we go into the
implementation details of UniSplit, we briefly explain a few important aspects
we have to take into account with the design. First, we do not want the size of
any segment, i.e., the distance between d1 and d2 in a (d1, d2)-basis to be much
larger than the distance to the treasure D. Since it takes at least time linear in
the size of the segment to line the agents up, we might end up using a lot of
time lining up unnecessarily many Explorers.

Second, we want to explore the grid as fast as possible. Therefore, we want
to line up the Explorers as quickly as possible while maintaining the first prop-
erty mentioned above. Since we are interested in the asymptotic runtime and
the memory bounds are constant, we choose an exponential approach. In other
words, we double the segment size after every sweep, as long as there are enough
agents available.

Third, we observe that if some level in the SegSweep is explored with a single
Explorer, it only takes the adversary one failure to force our protocol to repeat
the whole segment. Therefore, as long as we are using segment sizes that are
sub-linear to the number of agents, it makes sense to use many agents per level.
Thus, the aim of UniSplit is to split the agents along the segment uniformly.

Doubling the Segment Size. Assume that the agents form a (d1, d2)-basis. As
before, we call all Explorers residing in the same cell a team. To double the
segment size, the agents perform the following. The TriggerGiant moves north
with speed 1/2 instructing all the cells containing Explorers to perform a split.
Each Explorer a tosses a fair coin and if the coin shows head, a moves north with
speed 1 until it finds the first cell without an Explorer (if the coin shows tail,
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they stay put). To ensure that the OuterGiant marks the end of the segment, it
always moves north whenever it sees an Explorer. When the TriggerGiant reaches
the OuterGiant, it turns around and moves back to the InnerGiant. Once the
TriggerGiant reaches the InnerGiant, the agents again form a (d1)-basis.

We refer to the process of doubling the segment size to as a pass of UniSplit.
Notice that the segment size k does not necessarily double, i.e., it might be that
the new size is k′ ≤ 2k, if some cells contained less than two Explorers. In
addition, there might be empty cells along the segment due to unfortunate coin
tosses or failures. As the next step, we show that the size of the segment grows
by a constant factor in every pass with high probability as long as the team
size distribution is “good enough”. The key to prove this property is to treat the
splitting process as a balls-into-bins experiment.

Consider the situation after the jth pass of UniSplit. The coin tosses per-
formed by the agents so far assign to each agent a bit-sequence of length j. As
there are 2j different possible bit-sequences, one can model our setting as fol-
lows: Each of the n agents throws a single ball into the bin corresponding to its
bit-sequence while there are 2j bins altogether. The following lemma establishes
that only a constant fraction of the bins is empty w.h.p.

Lemma 4. Consider a balls-into-bins experiment where m ≥ 4 balls are thrown
uniformly at random into 2j bins for an integer j with 0 < j < log m. Let Zj be
the number of empty bins at the end of the experiment. We have Zj < 2/e · 2j

w.h.p.

Proof. Let us first consider the case where j ≤ κ log log m for some κ ≥ 2 to
be determined later. Then the number of bins is O(logκ m) and the expected
number of balls per bin is Ω(m/ logκ m). Observe that the probability that a
fixed bin is empty is (1 − 1/2j)m ≤ e−m/2j . By the union bound, the probability
that there exists an empty bin is at most

∑2j

i=1 e−m/2j ∈ e−Ω(m/ logκ m). Thus
we get Pr[Zj ≥ 2/e · 2j] ≤ Pr[Zj ≥ 0] ∈ e−Ω(m/ logκ m) ⊂ o(m−β) for any β > 0.

Now consider the case where j > κ log log m. Let Zj
i be the indicator random

variable for the event that bin i of 2j is empty and we have Zj =
∑2j

i=1 Zj
i . A well-

known result from balls-into-bins is that instead of dissecting the dependencies
between the loads of different bins, one can approximate the scenario well by
modeling the load of each bin by an independent Poisson random variable [15].
We will denote all random variables derived from this approximation with a tilde
and the ones corresponding to the exact scenario without.

Let B̃j
i be the random variable indicating the number of balls in bin i and

observe that Pr[B̃j
i = r] = e−μμr/(r!) for μ = m/2j as B̃j

i has a Poisson
distribution with parameter μ where we observe that μ > 1. Let Z̃j

i be the
indicator random variable for the event that B̃j

i = 0 and observe that E[Z̃j
i ] =

Pr[B̃j
i = 0] = e−μ < 1/e. Let Z̃j =

∑2j

i=1 Z̃j
i be the random variable for the

total number of empty bins and by linearity of expectation we get E[Z̃j ] < 2j/e.
As the Z̃j

i are independent by assumption, we can use a Chernoff bound to get
Pr[Z̃j ≥ 2/e · 2j] ≤ Pr[Z̃j ≥ 2E[Z̃j ]] ≤ e−2j/(3e). Observe that since m ≥ 4,
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κ ≥ 2, and j > κ log log m, it holds that κ log m ≤ logκ m and we get

Pr[Z̃j ≥ 2/e · 2j ] = e− logκ m/(3e) ≤ e−κ log m/(3e) < m−κ/(3e) .

We can now use a result from [15] stating that any event that takes place with
probability p in the Poisson approximation takes place with probability at most
pe

√
m in the exact case where m is the number of balls thrown. Hence, we get

for the exact case Pr[Zj ≥ 2/e · 2j ] <
√

me · m−κ/(3e) ≤ m−β for any β > 0 and
a large enough value of κ. 
�
Lemma 5. Let E be any subset of (surviving) Explorers of size ne. After the jth

iteration of UniSplit for 0 < j < log(ne), the Explorers in E are members of
Ω(2j) different teams w.h.p.

Proof. Lemma 4 states that after the jth iteration there are at most 2/e · 2j

empty bins w.h.p. Thus there are at least (e−2)/e ·2j ∈ Ω(2j) many non-empty
bins w.h.p., which the Explorers in E must occupy. The claim follows. 
�
Recall that ne, the minimum number of surviving Explorers, is guaranteed to
be Θ(n). Thus, Lemma 5 implies that no matter which subset of Explorers the
adversary lets survive, these Explorers will be members of Ω(2j) different teams
after the jth pass of UniSplit for 0 < j < log(ne) w.h.p.

Corollary 6. The number of teams after the jth pass of UniSplit is Ω(2j) for
0 < j < log(ne) w.h.p.

2.7 Putting Everything Together

In this section we explain how we can connect the procedures presented in the
previous section in order to obtain the n-robust protocol ExpoSweep (expo-
nential sweep) for the ANTS-problem.

The protocol starts with all agents located at the origin. Then the agents
create the 10 giants required by SegSweep as described earlier. Now, the agents
ensure that the StartGiant, InnerGiant, and TriggerGiant, are located in cell (0, 1),
the OuterGiant in cell (0, 3), and an InnerGiant/CollectGiant-pair on the east-,
south-, west-axis in the cell with distance 1 to the origin. Observe that this
configuration is a (1,3)-basis. Then the agents iteratively perform the protocol
described in Algorithm 1.

It is easy to verify that all the aforementioned subroutines of our protocol
only require a constant amount of states and therefore, the total number of
states required by our protocol is also a constant.

3 Runtime

We begin the runtime analysis by bounding the time needed for any SegSweep
in terms of distance to the treasure.
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Algorithm 1. ExpoSweep
1. The StartGiant triggers the execution of Compact as described in Section 2.3.
2. The StartGiant triggers the execution of SegSweep as described in Section 2.4.

When the SegSweep is finished, there are two cases: If the StartGiant enters the
incomplete state, go to step 2. Otherwise, proceed to step 3.

3. The StartGiant triggers the execution of Shift as described in Section 2.5.
4. The StartGiant triggers the execution of UniSplit as described in Section 2.6.

Lemma 7. If the treasure has not been found at the start of iteration i of Seg-
Sweep and the agents form a (d1, d2)-basis, then d1 < D and d2 ≤ 2D.

Proof. Observe that the agents only move to a (d1)-basis after SegSweep has
explored all levels � < d1, and hence, d1 < D. Assume for contradiction that
d2 > 2D. Since d2 can at most double in UniSplit, there must have been
a pass of UniSplit that started from a (d′

1, d′
2) basis, where d′

1 ≤ D ≤ d′
2.

Since UniSplit is only performed after a successful execution of SegSweep,
the treasure must have already been found. 
�
Lemma 8. Any iteration i of ExpoSweep before the treasure was found lasts
at most O(D) rounds.

Proof. By Lemma 7, d2 ≤ 2D for any (d1, d2)-basis at the start of iteration i.
By looking at the details of the ExpoSweep protocol, we first observe that the
time complexity of Compact is clearly O(D) since the time needed is bounded
simply by the time it takes the StartGiant to move from InnerGiant to OuterGiant
and back. Second, it is easy to see that each QSweep takes at most O(D) rounds
to finish. Since searching a ring consists of four QSweeps, the second step of our
protocol takes O(D) rounds. A similar argument holds for the Shift procedure.
The time complexity of step 4 is again bounded by the time that it takes the
TriggerGiant to move back and forth a distance of at most d2 ≤ 2D and thus,
the claim follows. 
�
Now we can combine the previous results to establish the total runtime of the
ExpoSweep protocol.

Theorem 9. The runtime of the ExpoSweep protocol is O(D + D2/n + Df)
for f = n/13 w.h.p.

Proof. By Lemma 8 we know that the furthest level that is searched by the
ExpoSweep protocol is O(D). As the failure of a single agent can cause at
most one repetition of a ExpoSweep iteration, the maximum time that it takes
the ExpoSweep protocol to recover from the failure of an agent is O(D). Thus,
we can account for all failure-induced runtime costs by an additional term of
O(Df). In the remainder of the proof, we will therefore only bound the runtime
of ExpoSweep iterations without any failures.

Let us first examine the case when D ∈ o(n), which means that the Explorers
are still performing splits when the treasure is in range. Consider the ith itera-
tion of ExpoSweep. Using Corollary 6, we can bound the maximum distance
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explored by the preceding iterations from below by d(i) =
∑i−1

j=0 Ω(2j) = Ω(2i).
The treasure will be explored in the smallest iteration i′ such that d(i′) ≥ D.
Observe that i′ ∈ c log D for some constant c > 0. As iteration i explores at most
level d(i) + 2i ∈ O(2i), we can bound the time required to complete iterations 1
to i′ by

c log D∑

i=0
O(2i) ∈ O(D) .

Now let us consider the case when D ∈ Ω(n). By Corollary 6, we know that after
O(log n) iterations of ExpoSweep, there are Ω(n) teams of Explorers. Hence,
the treasure will be discovered after O(D/n) additional iterations. By Lemma 8,
any iteration takes at most O(D) rounds. The total runtime is therefore

c log D∑

i=0
O(2i) +

O(D/n)∑

i=c log D+1
O(D) = O(D2/n) .

Including the O(Df) term for the runtime costs caused by agent failures yields
the theorem. 
�

4 Conclusion

In this work we presented an algorithm that solves the ANTS problem in time
O(D+D2/n+Df) while tolerating f ∈ O(n) failures during the execution w.h.p.
Our algorithm uses a combination of a constant number of fault-tolerant giants
and Θ(n) Explorer agents, working together. The few “expensive” giants are used
to manage the algorithm such that it is fault-tolerant, and the many “cheap”
Explorers are responsible for solving the problem efficiently. It is an interesting
open question whether one can solve the ANTS problem in a fault-tolerant way
without making use of classic replication, and we conjecture that this is not the
case, i.e., that some structure like giants is necessary to solve the ANTS problem
in the presence of failures.
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Abstract. In this paper we propose a mathematical model for studying
the phenomenon of division of labor in ant colonies. Inside this model
we investigate how simple task allocation mechanisms can be used to
achieve an optimal division of labor.

We believe the proposed model captures the essential biological fea-
tures of division of labor in ant colonies and is general enough to study
a variety of different task allocation mechanisms. Within this model we
propose a distributed randomized algorithm for task allocation that im-
poses only minimal requirements on the ants; it uses a constant amount
of memory and relies solely on a primitive binary feedback function to
sense the current labor allocation. We show that with high probability
the proposed algorithm converges to a near-optimal division of labor in
time which is proportional to the logarithm of the colony size.

1 Introduction

Task allocation in ant colonies is the process used by individual ant workers in
a colony to select which task to perform in order to ensure the survival of the
colony. Depending on the species the tasks typically include things like collecting
food, feeding and caring for the offspring and defending the nest against intruders
or parasites. The number of individuals allocated to each task varies over time
in response to changes in the demand for different tasks.

From a biology perspective, there is an extensive body of empirical work
studying the phenomenon of division of labor in ant colonies across different ant
species [1–5]. Biologists have also proposed a number of individual behaviors
that could produce the collective division of labor [1, 6–9]. It has been suggested
that ant workers might select tasks based on different features, including their
age [10, 11], body size [12, 13], genetic background [14], position in the nest
[13, 15, 16], nutrition [17], in response to signals from other ants [10, 18], or
by comparing internal response thresholds to the need to perform a particular
task [19–21].

Most of these works were born out of a desire to understand what are the
algorithms that may be used by ants, and not to compare the performance of
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different algorithms. In addition, although in biology there is much work on op-
timization, there is not a tradition of explicitly separating the system model, the
problem statement, and the algorithm being considered. This has made it diffi-
cult to generalize the results across different insect species. Most of the modeling
studies do not attempt to compare how well different strategies perform, and ob-
taining any empirical observations for this purpose would be extremely hard (if
not impossible). As a result, despite the wealth of empirical results, the trade-offs
between different division of labor strategies remain poorly understood.

Our contributions are twofold. First, we describe a very general mathematical
formulation for the problem of task allocation in ant colonies. Second, we propose
a distributed algorithm that solves the task allocation problem efficiently and
imposing only minimal assumptions on the capabilities of the individual ants.
The algorithm we propose is modeled after a common strategy thought to be
used by ants.

The model for task allocation proposed in this paper is meant to provide
a rigorous theoretical framework under which new and existing mechanisms for
division of labor can be formulated, studied and compared. In particular it allows
modeling ant colonies consisting of workers that have different characteristics and
formulate strategies that have different notions about of what is an optimal task
allocation.

The randomized distributed algorithm for task allocation we propose requires
constant memory with respect to the colony size, and assumes that ants can only
sense the need for a particular task through a primitive binary feedback function.
In more detail, we assume that each ant can use the information available in the
environment (including sensing pheromones or other signaling methods between
ants) to determine whether a particular task requires more workers or not. We
show that using only this information and a constant amount of memory, ants
can converge to a near-optimal task allocation with high probability, in a number
of steps which is logarithmic in the size of the colony.

1.1 Related Work

As we argued before, from a biology standpoint there is a large body of work
studying division of labor in ant colonies [1–5]. However existing models do not
address the question of how well task allocation performs, and it is difficult to
quantitatively compare the different proposed strategies.

We are not the first to leverage the tools of distributed computation to un-
derstand social insects and model biological processes. In particular the prob-
lem of ants foraging for food was recently studied in the distributed computing
community [22–25]. In more detail, by modeling the environment as an infinite
two-dimensional grid, upper [22] and lower [23] bounds were provided for the
problem of ants collaboratively foraging for food on the environment without
using communication. These bounds were recently generalized and improved
in [25]

In a different vein, the parallels between the process of sensory organ pre-cursor
selection in the fruit fly and the problem of finding amaximal independent set have
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been used to design novel bio-inspired algorithms for fundamental problems in dis-
tributed computation [26].

The problem of task allocation is an important and well-studied topic in
computer science, particularly in the distributed computing community. One of
the oldest incarnations, is that of multiprocessor scheduling [27, 28], a recent
survey is available in [29]. Another related problem is that of the centralized k-
server problem in which a collection of requests must be assigned to servers [30],
distributed versions of this problem have also been considered [31].

The general formulation of task allocation considers some number p of pro-
cessors that must cooperatively perform n tasks. The existing literature covers
a great number of variants of this problem, processors and tasks might be iden-
tical or different; tasks might arrive online or may be known to the processors in
advance; all processors may not be able to perform all tasks, or tasks may have
to be performed in a certain order; processors may be susceptible to fail-stop (or
other) failures; processors may communicate through shared memory, message
passing, or may not rely on communication; etc. A recent and thorough review
on the problem of distributed task allocation is available in [32].

There are several subtle differences between existing distributed task alloca-
tion algorithms and the task allocation algorithm for ant colonies that we con-
sider. Namely the algorithm we consider only uses constant memory, does not
require that ants to be capable of sensing the demand of each task or to estimate
global parameters (like the size of the colony). A more fundamental difference
between the problem statements is that the number of tasks we consider is a
small constant with respect to the number of ants, and we are concerned with
the allocation of proportions of workers to different tasks and not the allocation
of individual workers to specific tasks.

2 System Model

We start by describing a mathematical model for the task allocation problem
in ant colonies. For the sake of simplicity, throughout our discussion we use the
term energy loosely without specifying the unit; however, any energy unit can
be used (e.g., Joule) as long as it is used consistently throughout the definitions.

Task Allocation Problem

The task allocation problem concerns a set A of ants, and a set T of tasks. The
size of an ant colony |A| depends on the species and varies slowly through the
lifetime of the colony, but can be considered fixed during short time intervals.
Depending on the ant species typical colony sizes range from 10 to millions; in
some species, each colony goes through this entire range through its lifetime. The
number of tasks |T | and their typical energy requirements also depend on the
ant species considered. However the number of tasks performed by a particular
species is constant and is not a function of the size of the colony.

For a task τ ∈ T , a time t ∈ R≥0 and an ant a ∈ A we define the following
quantities.
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– d(τ, t) is the energy demand for task τ at time t. This ”demand” reflects how
much work is currently needed in this task, and can be determined by envi-
ronmental conditions, the colony size, the fraction of brood (ant offspring)
vs workers, etc; although we do not attempt to uncover the relationship
between the demand and these parameters.

– e(τ, a, t) is the energy that ant a can supply to task τ at time t when it is
engaged in this task. This captures the effectiveness of an ant at a specific
task, and may be determined by its morphological characteristics, as well its
previous experience.

Task Assignment

A task assignment is a function y that assigns at each time t and for each ant
a ∈ A either one task τ ∈ T or no task. Formally y(a, t) ∈ T ∪ {⊥}.

Given an assignment y we define Y (τ, t) as the set of ants assigned to task
τ ∈ T , and I(t) is the set of ants that are not assigned to any task at time t.
Formally that is:

Y (τ, t) = {a ∈ A : y(a, t) = τ}
I(t) = {a ∈ A : y(a, t) =⊥}

Thus by definition at any time t we have that A = I(t) ∪
⋃

τ∈T Y (τ, t). We
will say an ant is idle at time t if it belongs to the set I(t)1.

For succinctness we define the energy supply and the energy need at each task
(both are defined in terms of a task assignment).

– w(τ, t) =
∑

a∈Y (τ,t) e(τ, a, t) is the energy supplied to task τ at time t, and
it is the sum of the energy supplied by the individual ants assigned to task
τ at time t.

– q(τ, t) = d(τ, t)−w(τ, t), if negative represents a surplus of energy at task τ ,
if positive represents a deficit of energy at task τ , and if zero then the task
τ is in equilibrium.

A satisfying task assignment is one where no task has an energy deficit, for-
mally at time t a satisfying task assignment is one where q(τ, t) ≤ 0 for all τ ∈ T .
We say a task allocation problem is satisfiable if it has at least one satisfying
task assignment.

We are mostly interested in satisfiable task allocation problems where the
energy available at the colony far exceeds the energy demands of the tasks.
This is likely consistent with what has been observed in real ant colonies [4],
where even during periods where tasks have a very high demand (such as nest

1 We believe this formulation is superior to the alternative of considering an addi-
tional “idle task”, since task allocation algorithms will need to deal with this task
differently, and it would unnecessarily complicate the definition of the demand and
effectiveness functions to account for the “idle task”.
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migration) an important fraction of the ants remain idle where the rest perform
the tasks necessary for the survival of the colony.

Ideally, we would like to find task assignments that achieve equilibrium for
every task (i.e., where the energy demand equals the energy supply). However
due to rounding issues this is not always possible, even when restricted to satis-
fiable task allocation problems. For instance, consider the case where the energy
demand for each task is an odd number and the energy that can be exerted by
each ant on any task is an even number. In this case, regardless of the number
of ants assigned to each task, no task can be at equilibrium.

For this reason, we instead seek task assignments that minimize the squared
difference between the energy demands and the energy supplied. Formally, an
optimal task assignment is one that minimizes

∑
τ∈T q(τ, t)2. Clearly a task

assignment where all tasks are at equilibrium is optimal, but the opposite need
not be true.

3 Restricted System Model

The model described in Section 2 was intentionally defined to be as broad as
possible. This decision was made with the purpose of allowing others to study
different kinds of task allocation algorithms and ant behaviors.

The following sections refine this broad model by imposing some additional
restrictions. The algorithm we describe in Section 4 considers this restricted
version.

Complexity of individual variation. Variation of the individual ant workers in the
colony is captured by the parameter e(τ, a, t). This parameter can model complex
effects such as a particular ant being worst at a task because of its physical
characteristics, or an ant getting better at a particular task through experience.
Unfortunately capturing even the simplest forms of individual variations in the
colony using this parameter quickly results in an intractable task allocation
formulation.

For instance, consider the case where, for each ant a ∈ A, the parameter
e(τ, a, t) is the same for every task τ ∈ T and for every time t ∈ R≥0. In
other words, the effectiveness of an ant does not depend on the task it performs
and does not vary through time, but different ants may have different levels
of effectiveness. This is the simplest form for the parameter e(τ, a, t) that still
allows each individual in the colony to have a different level effectiveness.

In this case, even if we assume a centralized full-information setting, the prob-
lem of finding an optimal assignment of ants to tasks can be shown to be NP-
complete. This remains true even if there are only wo tasks with equal demand
since the set partition problem, known to be NP-complete [33], can be reduced to
the task allocation problem. In general this problem is also hard to approximate
and thus finding near-optimal solutions remains NP-hard [34]

The problem can be made tractable by placing additional restrictions, for
instance by limiting the possible values of the demand for each task or the
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restricting different levels of effectiveness of ants. Regardless, real ant colonies
may not converge on optimal or even near-optimal solutions, as long as the
solutions they have arrived at through the evolutionary process allow colonies
to survive and do better than their competitors.

For the above reasons, and in an effort to consider algorithms that more closely
resemble those used by real ant colonies, in this paper we restrict our attention
to task allocation problems without individual variation. There is empirical bi-
ological evidence that supports this decision: at least in some ant species [3],
variation in task-specific efficiency among workers is not utilized by colonies. In
other words, worker allocation to tasks in some cases is unrelated to their ability
to perform them particularly well.

Concretely in the rest of the paper we assume that e(τ, a, t) is known and
constant for all τ ∈ T, a ∈ A and t ∈ R+. Therefore for simplicity throughout
the rest of the paper we will assume that both the energy demand d(τ, t) and
energy supply w(τ, t) are measured in ant units.

Synchronous task allocation. For the purposes of this paper we will assume that
time proceeds in synchronous lock-step rounds i = 1, 2, . . .. A task allocation al-
gorithm is a program that runs locally at each ant to produce a task assignment.
During each round i ∈ R, every ant a ∈ A works at task y(a, i). Before tran-
sitioning to the next round each ant may communicate with other ants, sense
different parameters of the environment and perform some local computation to
decide on what task to work on at the next round. The next section describes
in detail exactly which environmental parameters are capable of sensing and/or
communicating.

4 Allocation through Binary Feedback

In this section we propose and analyze a randomized distributed algorithm for
task allocation that requires only a very primitive binary feedback function. In
particular the algorithm we describe does not require that ants know the size of
the colony |A|, the energy demand d(τ, i) of a task τ ∈ T , or the energy supplied
w(τ, i) to a task τ ∈ T .

Instead, we assume that through local communication and by sensing their
environment and their own state, each ant can determine for each round i and
for each task τ ∈ T whether τ has too few or too many ants assigned to it. In
other words, ants can determine only whether a task has a deficit or surplus of
energy, but they are not able to quantify it. Specifically we assume that at each
round i and for each task τ ∈ T ants can sense only a binary feedback function
f(τ, i) where:

f(τ, i) =

{
+1 q(τ, i) ≥ 0,

−1 q(τ, i) < 0.
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Recall that q(τ, i) = d(τ, i) − w(τ, i) is the difference between the energy
demand for task τ at round i and the energy supplied for task τ at round i.
Therefore the feedback function f is positive when the demand is greater than
or equal to the energy supply, and is negative otherwise. Alternative feedback
functions that do not distinguish sharply between having a surplus or deficit of
energy are discussed in Section 5.

This restricted binary feedback model prevents the colony from trying to
reach a perfect allocation in expectation in a single step, and thus the colony
must rely on a progressive refinement strategy. Moreover, this binary feedback
function does not provide enough information for the colony to determine if the
demand is matched exactly by the energy supplied to that task, and having
oscillations of the energy supply around the demand is inevitable.

4.1 Algorithm Description

This subsection describes a randomized distributed algorithm that relies only on
the aforementioned binary feedback function to converge to a near-optimal task
allocation.

Ants executing the algorithm can be in one of the five states Resting,
FirstReserve, SecondReserve, TempWorker and CoreWorker, they
maintain a task currentTask ∈ T ∪ {⊥} and a table � of potentials for each
task τ ∈ T . Initially ants start in the Resting state with currentTask =⊥
and a potential of zero for every task ∀τ ∈ T, �[τ ] = 0. The paragraphs below
describe each state in detail as well as the role of the potential table � and the
task currentTask.

Ants in the Resting state are idle and use the potential table � to choose
a currentTask and to determine when to start working (i.e., transition to a
working state). The potential for every task is a two bit value {0, 1, 2, 3} which
is updated based on the output of the binary feedback function; specifically
tasks with a deficit get their potential increased, and tasks with a surplus get
a potential of zero. The candidateList is defined as those tasks potential of 3,
and with constant probability ants in the Resting state will choose a task from
the candidateList uniformly at random and transition to the TempWorker

state. This is in the same spirit of the response-threshold strategies proposed by
biologists [20].

Ants in the TempWorker state and CoreWorker state work on the task
specified by currentTask (ants in all other states are idle). Specifically, ants in
the TempWorker state transition to the FirstReserve state if there is a sur-
plus of energy in currentTask, and otherwise transition to the CoreWorker

state. Ants in the CoreWorker state transition to the TempWorker state if
there is a surplus of energy in currentTask, and otherwise remain in the Core-

Worker state. The result is that when there is a surplus of energy all ants in
the TempWorker state will become idle before any ants in the CoreWorker

state.
Ants in the FirstReserve state and SecondReserve are state idle, but

unlike ants in the Resting state (which are also idle) if they start working they
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Algorithm 1. Binary-Threshold Algorithm

state ← Resting, currentTask←⊥, �[τ ] = 0,∀τ ∈ T � Initialize
case state = Resting

∀τ ∈ T, �[τ ]←
{
0 if f(τ, i) < 0

max(�[τ ] + 1, 3) if f(τ, i) > 0

candidateList ← {τ ∈ T | �[τ ] = 3}
if candidateList = ∅ then

with probability 1
2
do

∀τ ∈ T, �[τ ]← 0
currentTask← random task from candidateList
state ← TempWorker

end with
end if

case state = FirstReserve

if f(currentTask, i) < 0 then
state ← Resting

else
with probability 1

2
do

state ← TempWorker

otherwise
state ← SecondReserve

end with
end if

case state = SecondReserve

if f(currentTask, i) < 0 then
state ← Resting

else
state ← TempWorker

end if
case state = TempWorker

if f(currentTask, i) < 0 then
state ← FirstReserve

else
state ← CoreWorker

end if
case state = CoreWorker

if f(currentTask, i) < 0 then
state ← TempWorker

end if
end case
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will do so at the task they were last working on. Ants in the FirstReserve state
transition to the Resting state if there is a surplus of energy in currentTask,
and otherwise they transition to the TempWorker state with constant prob-
ability or join the SecondReserve state. Ants in the SecondReserve state
transition to the Resting state if there is a surplus of energy currentTask,
and otherwise transition to the TempWorker state. Having two reserve states,
one with a deterministic transition and the other with a probabilistic transition,
allow us to recruit ants only from the reserved states instead of the entire idle
population, which prevents big oscillations. Indeed, biologists [35–39] have pro-
vided compelling evidence that ants prefer to work on tasks they have become
experienced in.

We remark that two reserve states is the minimum required for our recruit-
ment process to work. The requirement that the potential of a task to reaches
three before a resting ant starts working guarantees that resting ants do not start
working on a task until ants in the reserved states for that task have already
started working.

The number of bits of memory required by the algorithm to store the state,
the currentTask and the potential table � is 3+ log2 |T |+2|T | ∈ Θ(|T |), which
is linear on the number of tasks and independent of the colony size |A|.

For simplicity whenever ants make a decision with constant probability, we
will assume they make the decision with probability 1

2 (i.e., as if each ant was
flipping an independent unbiased coin). However by changing only the constants
in the different lemmas and propositions, the same analysis works if ants are
using any other constant probability.

4.2 Algorithm Analysis

Before describing the properties satisfied by the proposed algorithm we intro-
duce some additional notation. For a round i we denote with Resti, Firsti,
Secondi, Tempi and Corei the set of ants that at the beginning of round i
are in the state Resting, FirstReserve, SecondReserve, TempWorker

and CoreWorker respectively. Additionally for a round i and a task τ we de-
note with Firsti(τ), Secondi(τ), Tempi(τ) and Corei(τ) the set of ants that
at the beginning of round i have τ as their currentTask and are in the state
FirstReserve, SecondReserve, TempWorker andCoreWorker state re-
spectively.

For the energy supplied by the colony to converge to the energy demanded
by a task we must require that the demand remains “constant” for a sufficiently
long period of time. Specifically, the demand of task τ is constant at a round i iff
d(τ, i − 1) = d(τ, i) = d(τ, i + 1). Similarly, the demand for a task τ is constant
during an interval [i, i+k] iff for all j ∈ [i, i+k] the demand for task τ is constant
at round j.

Proof roadmap. In the following paragraphs we outline the steps used to prove
that the proposed algorithms converges quickly to a near-optimal allocation.
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First, we show (Lemma 1) that given an interval of constant demand where
the number of ants in the colony is sufficient to satisfy the demand, then as
long as no task has too big a surplus during the interval, then the probability
that none of the tasks with a deficit becomes satisfied during the interval is
exponentially small in the interval length.

Next (Lemma 4) we show that in an interval of constant demand, once a
task transitions from having a deficit of ants to having a surplus of ants, this
transition will keep happening every two or three rounds during that interval.
We refer to these transitions as oscillations. We also show that each time an
oscillation happens, with constant probability it is a constant fraction smaller
than the previous oscillation in the interval.

We leverage the previous result to show (Lemma 5) that in an interval of
constant demand with oscillations, the probability that by the end of the interval
the size of the oscillations is greater than one ant is exponentially small on the
interval length.

Finally we show (Theorem 6) that during an interval of constant demand of
logarithmic length, with high probability by the end of the interval the number
of workers assigned to each task only differs from the demand by at most one
ant. Due to space constraints we only outline the proofs.

Informally, the following lemma shows that during an interval of constant
demand and given sufficiently many ants, then if a set of tasks is satisfied without
surplus and a set of tasks is unsatisfied, then it is likely that an additional task
will become satisfied.

Lemma 1. Fix a constant ε ∈ (0, 1) and let k ∈ Θ(log 1
ε ).

If the demands for all tasks are constant during the interval [i, i + k], and
|A| ≥

∑
τ∈T (d(τ, i) + 1), and there is a set of tasks C ⊆ T such that ∀τ ∈ T \C

d(τ, i) > w(τ, i) and ∀τ ∈ C, ∀j ∈ [i, i+ k] d(τ, j) ≤ w(τ, j) ≤ d(τ, j) + 1, then
Pr [∀τ ∈ T \ C, ∀j ∈ [i, i+ k]w(τ, j) < d(τ, j)] ≤ ε.

The proof of this lemma argues that given the conditions assumed, then in
order for all task to remain unsatisfied during the entire interval, at least one
ant must repeatedly decide not to work at any task, despite the fact that there
are tasks that need work; and the probability of this happening is exponentially
small on the interval length.

For the remaining part of the analysis we will make use of Hoeffding’s in-
equality. In addition we will also leverage the following proposition, which can
be shown easily as a consequence of Hoeffding’s inequality.

Proposition 2. Let X1, . . . , Xk be independent random variables where
Pr [Xi = 1] = Pr [Xi = 0] = 1

2 and let X =
∑k

i=1 Xi. If k ≥ 2 then
Pr

[
1
8k ≤ X ≤ 7

8k
]
≥ 1

2 .

To simplify the analysis we introduce the following definition.

Definition 1. An oscillation happens for task τ at round i if f(τ, i) < 0 and
f(τ, i+ 1) > 0.
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Observe that if the demand for task τ is constant at round i and an oscillation
occurs for task τ at round i, then the fact that f(τ, i) < 0 implies that d(τ, i) <
|Corei(τ) ∪ Tempi(τ)| and the algorithm guarantees that by round i + 1 any
temporary worker becomes idle and only core workers remain. This together
with f(τ, i+1) > 0 implies that |Corei(τ)| < d(τ, i). This is summarized in the
next proposition.

Proposition 3. If there is an oscillation for task τ at round i and the demand for
τ was constant at round i then |Corei(τ)| < d(τ, i) ≤ |Corei(τ) ∪Tempi(τ)|.

Observe that during an oscillation of task τ at round i the ants in Tempi(τ)
transition between working and being idle, while the ants in Corei(τ) keep
working through the oscillation, and there are never more than Corei(τ) ∪
Tempi(τ) ants working during the oscillation. Therefore given an oscillation
for task τ at round i we say |Tempi(τ)| is the magnitude of the oscillation,
|Corei(τ)| is the low-value of the oscillation, and |Corei(τ)∪Tempi(τ)| is the
high-value of the oscillation.

The next lemma shows that if an oscillation happens during an interval of
constant demand, it will happen again in two or three rounds. Moreover with
constant probability the magnitude of the oscillation will become a constant
fraction smaller than the previous oscillation by either increasing the low-value
or decreasing the high-value.

Lemma 4. If there is an oscillation for task τ at round i and the demand for τ
is constant during the interval [i, i+ 4] then:
1. Secondi+2(τ) ⊆ Tempi(τ) and if |Tempi(τ)| ≥ 2 then with probability at

least 1
2 we have 1

8 |Tempi(τ)| ≤ |Secondi+2(τ)| ≤ 7
8 |Tempi(τ)|.

2. There is an oscillation for task τ either at
a) round i+2 where Tempi+2 = Tempi(τ)\Secondi+2(τ) and Corei+2(τ)

= Corei(τ), or
b) round i + 3 where Tempi+3 = Secondi+2(τ) and Corei+3(τ)

= Tempi(τ) ∪Corei(τ) \ Secondi+2(τ).

The proof follows through a straightforward but detailed analysis of the state
transitions made by the ants on the different states of the algorithm during the
interval, relying on Proposition 2 to show that the magnitude of oscillations
decreases by a constant fraction with constant probability.

The next lemma shows that given an interval with a constant demand and
where the number of resting ants is greater than the number of ants required
by a particular task, then the probability that the magnitude of the oscillations
does not converge to one is exponentially small in the interval length.

Lemma 5. Fix ε ∈ (0, 1) and let k ∈ Θ(log |A|+ log 1
ε ). If the demand for task

τ is constant in the interval [i, i+ k] with oscillations for task τ at round i and
i+ k then Pr [|Tempi+k(τ)| > 1] ≤ ε.

This lemma can be shown as a consequence of the results of Lemma 4 and
following a standard concentration of measure argument.
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We are finally ready to prove the main theorem of this paper. Namely, we
show that if the colony has enough ants to satisfy the demand, then during an
interval with a length which is logarithmic on the colony size and linear on the
number of tasks, the probability that the difference between the energy supplied
to each task, and the energy required by each task, is greater than one for any
task, is exponentially small on the size of the colony.

Theorem 6. Fix ε ∈ (0, 1) and let k ∈ Θ(|T |(log 1
ε + log |A|+ log |T |)).

If demand is constant for all tasks in the interval [i, i+k] and |A| ≥
∑

τ∈T (1+
d(τ, i)), then Pr [∀τ ∈ T d(τ, i + k)− w(τ, i + k)| ≤ 1] ≥ 1− ε.

To prove this theorem we go through a case analysis, showing that unless the
work supplied by the colony has converged to be within one ant of the demand
for every task, an additional task will converge after at most Θ(log |A|+ log 1

ε );
the additive log |T | term is a result of a union bound over the probability of not
converging for each task.

Given that in real ant colonies we expect |T | to be a constant, then by letting
ε = 1/|A| we get the following corollary.

Corollary 1. Let k ∈ Θ(log |A|). If the demand is constant for all tasks in the
interval [i, i+k] and the number of ants is enough to satisfy the demand, then with
high probability ants converge to an allocation where |d(τ, i+k)−w(τ, i+k)| ≤ 1.

5 Conclusions and Future Work

We’ve shown that given certain assumptions, a fairly simple task allocation al-
gorithm can achieve near-optimal performance in time which is logarithmic on
the colony size. The assumptions we had to make were that individual workers
did not differ in their ability to perform tasks, that workers could sense whether
each task required more workers or not, and that workers use a small amount
of memory about recently performed tasks and task demand. No sophisticated
communication or sensing, nor long-term memory were required. Interestingly,
we also argued that once variation among workers (in ability to perform tasks) is
introduced, the task allocation problem becomes NP-hard. This may be the rea-
son that such variation, when it is not correlated with clear categorizing factors
such as body size, is not always optimally utilized by ants [3].

It is inherent in our algorithm, and probably any algorithm that does not
allow ants to measure precisely how many workers are needed to fulfill a task,
that the number of workers engaged in a task fluctuates around the optimum.
In other words, the algorithm does not reach an optimal allocation immediately,
but approaches it over time. Our model assumes that workers go through three
stages between being fully uncommitted and idle (Resting) and fully committed
and working on a task (CoreWorker). These stages introduces some resistance
in workers to being too frequently reallocated among different tasks, and thus
reduces oscillations.
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As future work, we would like to explore different, weaker binary feedback
functions. For instance, one could consider a binary function which is only cor-
rect with probability 1 − γ for some γ < 1

2 . An alternative binary feedback
function could return accurate values when the difference between the demand
and the supply is different by a significant mount, but returns random values
when the energy supply and demand are close to being in equilibrium. We con-
jecture that with little modifications the same algorithm would perform well
in these circumstances, but it would provide slightly weaker guarantees (bigger
oscillations) and require a more technical analysis.

In this paper the role of communication has been abstracted and is captured
by the binary feedback function. We would also like to explore possible mech-
anisms by which said function could be implemented using explicit means of
communication, such as pheromone or other signaling mechanisms.

What are the effects of varying the number of tasks on the properties of the
algorithm. Specifically, the memory requirements of the proposed algorithm are
linear in the number of tasks, and so is its convergence time. Can either of these
be decreased to be logarithmic on the number of tasks?
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Abstract. We consider the problem of consensus in the challenging classic
model. In this model, the adversary is adaptive; it can choose which processors
crash at any point during the course of the algorithm. Further, communication is
via asynchronous message passing: there is no known upper bound on the time
to send a message from one processor to another, and all messages and coin flips
are seen by the adversary.

We describe a new randomized consensus protocol with expected message
complexity O(n2 log2 n) when fewer than n/2 processes may fail by crashing.
This is an almost-linear improvement over the best previously known protocol,
and within logarithmic factors of a known Ω(n2) message lower bound. The
protocol further ensures that no process sends more than O(n log3 n) messages in
expectation, which is again within logarithmic factors of optimal. We also present
a generalization of the algorithm to an arbitrary number of failures t, which uses
expected O(nt + t2 log2 t) total messages. Our protocol uses messages of size
O(log n), and can therefore scale to large networks.

Our approach is to build a message-efficient, resilient mechanism for aggre-
gating individual processor votes, implementing the message-passing equivalent
of a weak shared coin. Roughly, in our protocol, a processor first announces its
votes to small groups, then propagates them to increasingly larger groups as it
generates more and more votes. To bound the number of messages that an indi-
vidual process might have to send or receive, the protocol progressively increases
the weight of generated votes. The main technical challenge is bounding the im-
pact of votes that are still “in flight” (generated, but not fully propagated) on the
final outcome of the shared coin, especially since such votes might have different
weights. We achieve this by leveraging the structure of the algorithm, and a tech-
nical argument based on martingale concentration bounds. Overall, we show that
it is possible to build an efficient message-passing implementation of a shared
coin, and in the process (almost-optimally) solve the classic consensus problem
in the asynchronous message-passing model.

1 Introduction

Consensus [28, 29] is arguably the most well-studied problem in distributed comput-
ing. The FLP impossibility result [21], showing that consensus could not be achieved

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 61–75, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



62 D. Alistarh et al.

deterministically in an asynchronous message-passing system with even one crash fail-
ure, sparked a flurry of research on overcoming this fundamental limitation, either by
adding timing assumptions, e.g. [19], employing failure detectors, e.g. [17], or by re-
laxing progress conditions to allow for randomization, e.g. [13]. A significant amount
of research went into isolating time and space complexity bounds for randomized con-
sensus in the shared-memory model, e.g. [4, 5, 9, 10, 12, 15, 20], developing elegant and
technically complex tools in the process. As a result, the time complexity of consen-
sus in asynchronous shared memory is now well characterized: the tight bound on total
number of steps is Θ(n2) [12], while the individual step bound is Θ̃(n) [5].1

Somewhat surprisingly, the complexity of randomized consensus in the other core
model of distributed computing, the asynchronous message-passing model, is much less
well understood. In this model, communication is via full-information, asynchronous
message passing: there is no known upper bound on the time to send a message from
one processor to another, and all messages are seen by the adversary. Further, as in the
shared memory model, the adversary is adaptive; it can choose which processors crash
at any point during the course of the algorithm. We refer to this as the classic model.

While simulations exist [11] allowing shared-memory algorithms to be translated to
message-passing, their overhead is at least linear in the number of nodes. It is therefore
natural to ask if message-efficient solutions for randomized consensus can be achieved,
and in particular if quadratic shared-memory communication cost for consensus can be
also achieved in message-passing systems against a strong, adaptive adversary.

In this paper, we propose a new randomized consensus protocol with expected mes-
sage complexityO(n2 log2 n) against a strong (adaptive) adversary, in an asynchronous
message-passing model in which less than n/2 processes may fail by crashing. This
is an almost-linear improvement over the best previously known protocol. Our proto-
col is also locally-efficient, ensuring that no process sends or receives more than ex-
pected O(n log3 n) messages, which is within logarithmic factors of the linear lower
bound [12]. We also provide a generalization to an arbitrary number of failures t < n/2,
which uses O(nt+ t2 log2 t) messages.

Our general strategy is to construct a message-efficient weak shared coin. A weak
shared coin with parameter δ > 0 is a protocol in which for each possible return value
±1, there is a probability of at least δ that all processes return that value. We then show
that this shared coin can be used in a message-efficient consensus protocol modeled on
a classic shared-memory protocol of Chandra [16].

Since early work by Bracha and Rachman [15], implementations of weak shared
coins for shared-memory systems with an adaptive adversary have generally been based
on voting. If the processes between them generate n2 votes of ±1, then the absolute
value of the sum of these votes will be at least n with constant probability. If this event
occurs, then even if the adversary hides Θ(n) votes by crashing processes, the total vote
seen by the survivors will still have the same sign as the actual total vote.

Such algorithms can be translated to a message-passing setting directly using the
classic Attiya-Bar-Noy-Dolev (ABD) simulation [11]. The main idea of the simulation
is that a write operation to a register is simulated by distributing a value to a majority of
the processes (this is possible because of the assumption that a majority of the processes
do not fail). Any subsequent read operation contacts a majority of the processes, and

1 We consider a model with n processes, t < n/2 of which may fail by crashing. The Θ̃ notation
hides logarithmic factors.
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because the majorities overlap, this guarantees that any read sees the value of previous
writes.

The obvious problem with this approach is that its message complexity is high: be-
cause ABD uses Θ(n) messages to implement a write operation, and because each vote
must be written before the next vote is generated if we are to guarantee that only O(n)
votes are lost, the cost of this direct translation is Θ(n3) messages. Therefore, the ques-
tion is whether this overhead can be eliminated.

Our Approach. To reduce both total and local message complexity, we employ two
new ingredients.

The first is an algorithmic technique to reduce the message complexity of distributed
vote counting by using a binary tree of process groups called cohorts, where each leaf
corresponds to a process, and each internal node represents a cohort consisting of all
processes in the subtree. Instead of announcing each new vote to all participants, new
±1 votes are initially only announced to small cohorts at the bottom of the tree, but are
propagated to increasingly large cohorts as more votes are generated. As the number
of votes grows larger, the adversary must crash more and more processes to hide them.
This generalizes the one-crash-one-vote guarantee used in shared-memory algorithms
to a many-crashes-many-votes approach.

At the same time, this technique renders the algorithm message-efficient. Given a set
of generated votes, the delayed propagation scheme ensures that each vote accounts for
exactly one update at the leaf, 1/2 updates (amortized) at the 2-neighborhood, and in
general, 1/2i (amortized) updates at the ith level of the tree. Practically, since the ith
level cohort has 2i members, the propagation cost of a vote is exactly one message per
tree level. In total, that is logn messages per vote, amortized.

A limitation of the above scheme is that a fast process might have to generate all
the Θ(n2) votes itself in order to decide, which would lead to high individual message
complexity. The second technical ingredient of our paper is a procedure for assigning
increasing weight to a processes’ votes, which reduces individual complexity. This gen-
eral idea has previously been used to reduce individual work for shared-memory ran-
domized consensus [5,7,10]; however, we design and analyze a new weighting scheme
that is customized for our vote-propagation mechanism.

In our scheme, each process doubles the weight of its votes every 4n logn votes,
and we run the protocol until the total reported variance—the sum of the squares of
the weights of all reported votes—exceeds n2 logn. Intuitively, this allows a process
running alone to reach the threshold quickly, reducing per-process message complex-
ity. This significantly complicates the termination argument, since a large number of
generated votes, of various weights, could be still making their way to the root at the
time when a process first notices the termination condition. We show that, with con-
stant probability, this drift is not enough to influence the sign of the sum, by carefully
bounding the weight of the extra votes via the structure of the algorithm and martingale
concentration bounds. We thus obtain a constant-bias weak shared coin. The bounds
on message complexity follow from bounds on the number of votes generated by any
single process or by all the processes together before the variance threshold is reached.

We convert the shared coin construction into a consensus algorithm via a simple
framework inspired by Chandra’s shared-memory consensus protocol [16], which in
turn uses ideas from earlier consensus protocols of Chor, Israeli, and Li [18] and Aspnes
and Herlihy [9]. Roughly, we associate each of the two possible decision values with a



64 D. Alistarh et al.

message-passing implementation of a max register [6, 8], whose value is incremented
by the “team” of processes obtaining that value from the shared coin. If a process sees
that its own team has fallen behind, it switches to the other team, and once one of the
max register’s values surpasses the other by two, the corresponding team wins. Ties
are broken (eventually) by having processes that do not observe a clear leader execute
a weak shared coin. This simple protocol maintains the asymptotic complexity of the
shared coin in expectation.

Finally, we present a more efficient variant of the protocol for the case where t =
o(n), based on the observation that we can “deputize” a subset of 2t+1 of the processes
to run the consensus protocol, and broadcast their result to all n processes. The resulting
protocol has total message complexity O(nt+ t2 log2 t), and O(n+ t log3 t) individual
message complexity.

Overall, we show that it is possible to build message-efficient weak shared coins
and consensus in asynchronous message-passing systems. Our vote counting construc-
tion implements a message-efficient, asynchronous approximate trigger counter [25],
which may be of independent interest. An interesting aspect of our constructions is that
message sizes are small: since processes only communicate vote counts, messages only
require O(log n) bits of communication.

2 System Model and Problem Statement

We consider the standard asynchronous message-passing model, in which n processes
communicate with each other by sending messages through channels. We assume that
there are two uni-directional channels between any pair of processes. Communication
is asynchronous, in that messages can be arbitrarily delayed by a channel, and in par-
ticular may be delivered in arbitrary order. However, we assume that messages are not
corrupted by the channel.

Computation proceeds in a sequence of steps. At each step, a process checks in-
coming channels for new messages, then performs local computation, and sends new
messages. A process may become faulty, in which case it ceases to perform local com-
putation and to send new messages. A process is correct if it takes steps infinitely often
during the execution. We assume that at most t < n/2 processes may be faulty during
the execution.

Message delivery and process faults are assumed to be controlled by a strong (adap-
tive) adversary. At any time during the computation, the adversary can examine the
entire state of the system (in particular, the results of process coinflips), and decide on
process faults and messages to be delivered.

The (worst-case) message complexity of an algorithm is simply the maximum, over
all adversarial strategies, of the total number of messages sent by processes running
the algorithm. Without loss of generality, we assume that the adversary’s goal is to
maximize the message complexity of our algorithm.

In the (binary) randomized consensus problem, each process starts with an input
in {0, 1}, and returns a decision in {0, 1}. A correct protocol satisfies agreement: all
processes that return from the protocol choose the same decision, validity: the deci-
sion must equal some process’s input, and probabilistic termination: every non-faulty
process returns after a finite number of steps, with probability 1.
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3 Related Work

The first shared-memory protocol for consensus was given by Chor, Israeli, and Li [18]
for a weak adversary model, and is based on a race between processors to impose their
proposals. Abrahamson [1] gave the first wait-free consensus protocol for a strong ad-
versary, taking exponential time. Aspnes and Herlihy [9] gave the first polynomial-time
protocol, which terminates in O(n4) expected total steps. Subsequent work, e.g. [4, 10,
15, 30], continued to improve upper and lower bounds for this problem, until Attiya
and Censor [12] showed a tight Θ(n2) bound on the total number of steps for asyn-
chronous randomized consensus. In particular, their lower bound technique implies an
Ω(t(n−t)) total message complexity lower bound and a Ω(t) individual message com-
plexity lower bound for consensus in the asynchronous message-passing model. Our
(n/2 − 1)-resilient algorithms match both lower bounds within logarithmic factors,
while the t-resilient variant matches the first lower bound within logarithmic factors.

To our knowledge, the best previously known upper bound for consensus in asyn-
chronous message-passing requires Θ(n3) messages. This is obtained by simulating
the elegant shared-memory protocol of Attiya and Censor-Hillel [12], using the simu-
lation from [11]. A similar bound can be obtained by applying the same simulation to
an O(n)-individual-work algorithm of Aspnes and Censor [7].

In the message passing model, significant work has focused on the problem of Byzan-
tine agreement, which is identical to consensus except that the adversary controls up to t
processes, and can cause them to deviate arbitrarily from the protocol. In 1983, Fischer,
Lynch and Patterson [21] showed that no deterministic algorithm could solve consen-
sus, and hence Byzantine agreement, in the classic model. In the same year, Ben-Or
gave a randomized algorithm for Byzantine agreement which required an expected ex-
ponential communication rounds and number of messages [13]. His algorithm tolerated
t < n/5. Subsequent work extended this idea in two directions: to solve message-
passing Byzantine agreement faster and with higher resilience, and to solve agreement
wait-free, in asynchronous shared-memory tolerating crash failures.

Resilience against Byzantine faults was improved to t < n/3 in 1984 by Bracha [14].
However, the communication rounds and number of messages remained exponential
in expectation. This resilience is the best possible for randomized Byzantine agree-
ment [24]. In 2013, King and Saia gave the first algorithm for Byzantine agreement
in the classic model with expected polynomial communication rounds and number of
messages [26]. Their algorithm required in expectationO(n2.5) communication rounds,
O(n6.5) messages, and O(n7.5) bits sent. It tolerated t < n/500. Unfortunately, lo-
cal computation time was exponential. In 2014, the same authors achieved polynomial
computation time. However, the new algorithm required expected O(n3) communica-
tion rounds, O(n7) messages, and O(n8) bits sent. Further, the resilience decreased to
t < 0.000028n [27].

4 A Message-Passing Max Register

To coordinate the recording of votes within a group, we use a message-passing max
register [6]. The algorithm is adapted from [8], and is in turn based on the classic ABD
implementation of a message-passing register [11]. The main change from [8] is that we
allow for groups consisting of g < n processes. Recall that a max register maintains a
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value v, which is read using the MaxRead operation, and updated using the MaxUpdate
operation. A MaxUpdate(u) operation changes the value only if u is higher than the
current value v.

Description. We consider a group G of g processes, which implement the max regis-
ter R collectively. Each process pi in the group maintains a current value estimate vi
locally. The communicate procedure [11] broadcasts a request to all processes in the
group G, and waits for at least �g/2� replies.2

To perform a MaxRead, the process communicates a MaxRead(R) request to all
other processes, setting its value vi to be the maximum value received. Before returning
this value, the process communicates a MaxReadACK (R, vi) message. All processes
receiving such a message will update their current estimate of R, if this value was less
than vi. If it receives at least �g/2� replies, the caller returns vi as the value read. This
ensures that, if a process pi returns vi, no other process may later return a smaller value
for R.

A MaxUpdate with input u is similar to a MaxRead: the process first communicates
a MaxUpdate(R, u) message to the group, and waits for at least �g/2� replies. Process
pi sets its estimate vi to the maximum between u and the maximum value received in
the first round, before communicating this value once more in a second broadcast round.
Again, all processes receiving this message will update their current estimate of R, if
necessary. The algorithm ensures the following properties.

Lemma 1. The max register algorithm above implements a linearizable max register.
If the communicate procedure broadcasts to a group G of processes of size g, then the
message complexity of each operation is O(g), and the operation succeeds if at most
�g/2� processes in the group are faulty.

5 The Weak Shared Coin Algorithm

We now build a message-efficient asynchronous weak shared coin. Processes generate
random votes, whose weight increases over time, and progressively communicate them
to groups of nodes of increasing size. This implements a shared coin with constant bias,
which in turn can be used to implement consensus.

Vote Propagation. The key ingredient is a message-efficient construction of an ap-
proximate asynchronous vote counter, which allows processes to maintain an estimate
of the total number of votes generated, and of their sum and variance. The distributed
vote counter is structured as a binary tree, where each process is associated with a leaf.
Each subtree of height h is associated with a cohort of 2h processes, corresponding
to its leaves. To each such subtree s, we associate a max register Rs, implemented as
described above, whose value is maintained by all the processes in the corresponding
cohort. For example, the value at each leaf is only maintained by the associated process,
while the root value is tracked by all processes.

The max register Rs corresponding to the subtree rooted at s maintains three values:
the count, an estimate of the number of votes generated in the subtree, total, an estimate

2 Since t < n/2 processes may crash, and g may be small, a process may block while waiting
for replies. This only affects the progress of the protocol, but not its safety. Our shared coin
implementation will partition the n processes into max register groups, with the guarantee that
some groups always make progress.
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1 Let K = n2 log2 n
2 Let T = 4n log2 n
3 count← 0
4 var← 0
5 total← 0
6 for k ← 1, 2, . . . ,∞ do
7 Let wk = 2�(k−1)/T�

8 Let vote = ±wk with equal probability
9 count← count + 1

10 var← var +w2
k

11 total← total + vote
12 Write 〈count, var, total〉 to max register for my leaf
13 for j ← 1 . . . log2 n do
14 if 2j does not divide k then
15 break

16 Let s be my level-j ancestor, with children s� and sr
17 in parallel do

/* read left and right counts */
18 〈count�, var�, total�〉 ← ReadMax(s�)
19 〈countr, varr, totalr〉 ← ReadMax(sr)

/* update the parent */
20 WriteMax(s, 〈count� + countr, var� + varr, total� + totalr〉)
21 if n divides k then
22 〈countroot, varroot, totalroot〉 ← ReadMax(root)

/* if the root variance exceeds the threshold */
23 if varroot ≥ K then
24 return sgn(totalroot) /* return sign of root total */

Algorithm 1: Shared coin using increasing votes

of the sum of generated votes, and var, an estimate of the variance of the generated
votes. Values are ordered only by the first component. Practically, the implementation
is identical to the max register described in the previous section, except that whenever
sending the count, processes also send the associated total and var. Processes always
adopt the tuple of maximum count. If a process receives two tuples with the same count
but different total/var components, they adopt the one with the maximum total.

A process maintains max register estimates for each subtree it is part of. Please see
Algorithm 1 for the pseudocode. In the kth iteration of the shared coin, the process
generates a new vote with weight±wk chosen as described in the next paragraph. After
generating the vote, the process will propagate its current set of votes up to level r,
the highest power of two which divides k (line 15). At each level from 1 (the leaf’s
parent) up to r, the process reads the max registers left and right children, and updates
the 〈count, total, var〉 of the parent to be the sum of the corresponding values at the
child max registers (lines 17–20).

If n divides k, then the process also checks the count at the root. If the root variance
count is greater than the threshold of K votes, the process returns the sign of the root
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total as its output from the shared coin. Otherwise, the process continues to generate
votes.

Vote Generation. Each process generates votes with values±wk in a series of epochs,
each epoch consisting of T = 4n log2 n loop iterations. Within each epoch, all votes
have the same weight, and votes are propagated up the tree of max registers using the
schedule described above. At the start of a new epoch, the weight of the votes doubles.
This ensures that only O(log n) epochs are needed until a single process can generate
enough variance by itself to overcome the offsets between the observed vote and the
generated vote due to delays in propagation up the tree.

Because votes have differing weights, we track the total variance of all votes included
in a max register in addition to their number, and continue generating votes until this
total variance exceeds a threshold K = n2 log2 n, at which point the process returns
the sign of the root total (line 24).

6 Algorithm Analysis

We prove that the algorithm in Section 5 implements a correct weak shared coin. We
first analyze some of the properties of the tree-based vote counting structure. For sim-
plicity, we assume that the number of processes n is a power of two. Due to space
constraints, the complete argument is given in the full version of the paper [3].

Vote Propagation. The algorithm is based on the idea that, as processes take steps,
counter values for the cohorts get increased, until, eventually, the root counter value
surpasses the threshold, and processes start to return. We first provide a way of associ-
ating a set of generated votes to each counter value.

We say that a process pi counts a number xi of (consecutive) locally-generated votes
to node s if, after generating the last such vote, process pi updates the max register at s
in its loop iteration. We prove that this procedure has the following property:

Lemma 2. Consider a subtree rooted at node s with � leaves, corresponding to mem-
ber processes q1, q2, . . . , q
. Let x1, x2, . . . , x
 be the number of votes most recently
counted by processes q1, q2, . . . , q
 at node s, respectively. Then the value of the count
component of the max register at s is at least

∑

m=1 xm.

Proof Strategy. The proof can be divided into three steps. The first shows that the coin
construction offers a good approximation of the generated votes, i.e. the total vote U t

observed in the root max register at any time t is close to the actual total generated
vote V t at the same time. The second step shows that when the threshold K is crossed
at some time t, the common votes total |V t| is likely to be far away from 0. The last
step shows that, for any subsequent time t′, the combination of the approximation slack
U t′ −V t′ and any extra votes V t′ −V t observed by a particular process at time t′ will
not change the sign of the total vote.

The first step involves a detailed analysis of what votes may be omitted from the
visible total combined with an extension of the Azuma-Hoeffding inequality [10]; the
second step requires use of a martingale Central Limit Theorem [23, Theorem 3.2];
the last follows from an application of Kolmogorov’s inequality. (For background on
martingales, we point the reader to [22].) We begin by stating a few technical claims.
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Lemma 3. Fix some execution of Algorithm 1, let ni be the number of votes generated
by process pi during this execution, and let wni be the weight of the ni-th vote. Then

1.
∑n

i=1

∑ni

j=1 w
2
j ≤ K+2n2

1−8n/T = O(n2 logn).

2. wni ≤
√
1 + 4K+8n2

T−8n = O(
√
n).

3. For all j, nj = O(n log2 n).

4.
∑

iw
2
ni
≤ n+ 4K+8n2

T−8n = O(n).

5.
∑

i ni = O(n2 logn).

For any adversary strategy A, let τA be a stopping time corresponding to the first time
t at which U root[t].var ≥ K . We will use a martingale Central Limit Theorem to show
that V root[τA].total converges to a normal distribution as n grows, when suitably scaled.
This will then be used to show that all processes observe a population of common votes
whose total is likely to be far from zero. The notation X

p−→ Y means that X converges

in probability to Y , and Y
d−→ Y means that X converges in distribution to Y . We show

that the following convergence holds.

Lemma 4. Let {An} be a family of adversary strategies, one for each number of pro-
cesses n ∈ N. Let τn = τAn be as above. Then

V root[τn].total√
K

d−→ N(0, 1). (1)

Once this is established, for each subtree s and time ts, let Ds[ts] = V s[ts].total −
Us[ts].total be the difference between the generated votes in s at time ts and the votes
reported to the max register corresponding to s at time ts. Let s
 and sr be the left and
right subtrees of s, and let ts� and tsr be the times at which the values added to produce
Us[ts].total were read from these subtrees. Recursing over all proper subtrees of s, we
obtain that

Ds[ts] = V s[ts].total− Us[ts].total =
∑
s′

(
V s′ [tparent(s′)].total− V s′ [ts′ ].total

)
,

where s′ ranges over all proper subtrees of s.
To bound this sum, we consider each (horizontal) layer of the tree separately, and

observe that the missing interval of votes
(
V s′ [tparent(s′)].total− V s′ [ts′ ].total

)
for

each subtree s in layer h consists of at most 2h votes by each of at most 2h processes.
For each process pi individually, the variance of its 2h heaviest votes, using Lemma 3,

is at most 2h
(
1 + (4/T )

∑ni

j=1 w
2
j

)
. If we sum the total variance of at most 2h votes

from all processes, we get at most

2h

⎛⎝n2 + (4/T )

n∑
i=1

ni∑
j=1

w2
j

⎞⎠ ≤ 2h
(
n2 +

K + 2n2

1− 8n/T

)
,

again using Lemma 3.
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We would like to use this bound on the total variance across all missing intervals
to show that the sum of the total votes across all missing intervals is not too large.
Intuitively, if we can apply a bound to the total variance on a particular interval, we
expect the Azuma-Hoeffding inequality to do this for us. But there is a complication in
that the total variance for an interval may depend in a complicated way on the actions
taken by the adversary during the interval. So instead, we attack the problem indirectly,
by adopting a different characterization of the relevant intervals of votes and letting
the adversary choose between them to obtain the actual intervals that contributed to
Droot[t]. We will use the following extended version of the classic Azuma-Hoeffding
inequality [10]:

Lemma 5 ( [10, Theorem 4.5]). Let {S0,F0}, 0 ≤ i ≤ n be a zero-mean martingale
with difference sequence {Xi}. Let wi be measurable Fi−1, and suppose that for all i,
|Xi| ≤ wi with probability 1; and that there exists a boundW such that

∑n
i=1 w

2
i ≤W

with probability 1. Then for any λ > 0,

Pr [Sn ≥ λ] ≤ e−λ2/2W . (2)

Fix an adversary strategy. For each subtree s, let Xs
1 , X

s
2 , . . . be the sequence of

votes generated in s. For each s, t, and W , let Y tsW
i = Xs

i if (a) at least t votes
have been generated by all processes before Xs

i is generated, and (b)
∑

j<i(Y
tsW
i )2 +

(Xs
i )

2 ≤ W . Otherwise, let Y tsW
i be 0. If we let Fi be generated by all votes pre-

ceding Xs
i , then the events (a) and (b) are measurable Fi, so {Y tsW

i ,Fi} forms a
martingale. Furthermore, since only the sign of Y tsW

i is unpredictable, we can define
wi = (Y tsW

i )2 to fit Lemma 5. From (b), we have that
∑

w2
i ≤ W always. It follows

that, for any c > 0,

Pr

[∑
i

Y tsW
i ≥

√
2cW lnn

]
≤ e−c lnn = n−c.

There are polynomially many choices for the parameters t, s, and W . Union bound-
ing over all such choices shows that, for c sufficiently large, with high probability∑

i Y
tsW
i is bounded by

√
2cW lnn for all such intervals. We now use this to show

the following.

Lemma 6. For any adversary strategy and sufficiently large n, with probability 1 −
o(1), it holds that at all times t,∣∣V root[t].total − U root[t].total

∣∣ ≤ 6n
√
log2 n.

Proof. We are trying to bound Droot[t] =
∑

s(V
s[tparent(s)]− V s[ts]), where s ranges

over all proper subtrees of the tree and for each s of size 2h, the interval (ts, tparent(s)]

includes at most 2h votes for each process.
Suppose that for each t, s, W , it holds that Y tsW ≤

√
9W lnn. By the preceding

argument, each such event fails with probability at most n−9/2. There are O(n2 logn)
choices for t, O(n) choices for s, and O(n2 logn) choices for W , so taking a union
bound over all choices of Y tsW not occurring shows that this event occurs with proba-
bility O(n−1/2 log2 n) = o(1).
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If all Y tsW are bounded, then it holds deterministically that

∑
s

(V s[tparent(s)]− V s[ts]) =

log2 n−1∑
h=0

∑
s,|s|=2h

(V s[tparent(s)]− V s[ts])

=

log2 n−1∑
h=0

∑
s,|s|=2h

Y tssWs ≤
log2 n−1∑

h=0

∑
s,|s|=2h

√
2cWs lnn

=
√
2c lnn

log2 n−1∑
h=0

∑
s,|s|=2h

√
Ws ≤

√
9 lnn

log2 n−1∑
h=0

∑
s,|s|=2h

√
Ws,

where Ws is the total variance of the votes generated by s in the interval (ts, tparent(s)].
Note that this inequality does not depend on analyzing the interaction between voting

and when processes read and write the max registers. For the purposes of computing
the total offset we are effectively allowing the adversary to choose what intervals it
includes retrospectively, after carrying out whatever strategy it likes for maximizing the
probability that any particular values Y tsW are too big.

Because each process i in s generates at most 2h votes, and each such vote has
variance at most w2

ni
, we have

Ws ≤ 2h
∑
i∈s

w2
ni
.

Furthermore, the subtrees at any fixed level h partition the set of processes, so applying
Lemma 3 gives

∑
s,|s|=2h

Ws ≤
∑

s,|s|=2h

2h
∑
i∈s

w2
ni

= 2h
∑
i

w2
ni
≤ 2h

(
n+

4K + 8n2

T − 8n

)
.

By concavity of square root,
∑√

xi is maximized for non-negative xi constrained
by a fixed bound on

∑√
xi by setting all xi equal. Setting all n/2h values Ws equal

gives the following upper bound.

Ws ≤
2h

n
· 2h

(
n+

4K + 8n2

T − 8n

)
= 22h

(
1 +

4K + 8n2

Tn− 8n2

)
, and thus

√
Ws ≤ 2h

√
1 +

4K + 8n2

Tn− 8n2
,
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which gives the bound

√
9 lnn

log2 n−1∑
h=0

∑
s,|s|=2h

√
Ws ≤

√
9 lnn

log2 n−1∑
h=0

2h
√
1 +

4K + 8n2

Tn− 8n2

=

√
9 lnn

(
1 +

4K + 8n2

Tn− 8n2

) log2 n−1∑
h=0

2h = 3(n− 1)
√
lnn

√
1 +

4K + 8n2

Tn− 8n2

= 3(n− 1)
√
lnn

√
1 +

log2 n+ 2

log2 n− 2
≤ 6n

√
log2 n,

when n is sufficiently large. The last step uses the fact that for K = n2 logn and T =
4n logn, the value under the radical converges to 2 in the limit, and 3

√
2/ ln 2 < 6.

For the last step of the proof, we need to show that the extra votes that arrive after K
variance has been accumulated are not enough to push V root[t] close to the origin. For
this, we use Kolmogorov’s inequality, a martingale analogue to Chebyshev’s inequality,
which says that if we are given a zero-mean martingale {Si,Fi}with bounded variance,
then Pr [∃i ≤ n : |Si| ≥ λ] ≤ λ2

Var[Sn]
.

Consider the martingale S1, S2, . . . where Si is the sum of the first i votes after
V root[i].var first passes K . Then from Lemma 3,

Var[Si] ≤
K + 2n2

1− 8n/T
−K =

8K(n/T ) + 2n2

1− 8n/T
=

8n2 + 2n2

1− 2/(log2 n)
= O(n2).

So for any fixed c, the probability that |Si| exceeds cK for any i is O(1/ logn) = o(1).

Final Argument. From Lemma 4, we have that the total common vote V root[τn].total
converges in distribution to N(0, 1) when scaled by

√
K = n

√
log2 n. In particular,

for any fixed constant c, there is a constant probability πc > 0 that for sufficiently large
n, Pr

[
V root[τn] ≥ cn

√
log2 n

]
≥ πc.

Let c be 7. Then with probability π7 − o(1), all of the following events occur:

1. The common vote V root[τn].total exceeds 7n
√
log2 n;

2. For any i, the next i votes have sum o(n
√

log2 n);
3. The vote U root[t].total observed by any process differs from V root[t].total by at

most 6n
√
log2 n.

If this occurs, then every process observes, for some t, U root[t].total ≥ 7n
√
log2 n −

6n
√
log2 n− o(n

√
logn) > 0. In other words, all processes return the same value +1

with constant probability for sufficiently large n. By symmetry, the same is true for−1.
We have therefore constructed a weak shared coin with constant agreement probability.

Theorem 1. Algorithm 1 implements a weak shared coin with constant bias, message
complexity O(n2 log2 n), and with a bound of O(n log3 n) on the number of messages
sent and received by any one process.
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Proof. We have just shown that Algorithm 1 implements a weak shared coin with con-
stant bias, and from Lemma 3 we know that the maximum number of votes generated by
any single process is O(n log2 n). Because each process communicates with a subtree
of 2h other processes every 2−h votes, each level of the tree contributes Θ(1) amortized
outgoing messages and incoming responses per vote, for a total of Θ(log n) messages
per vote, or O(n log3 n) messages altogether.

In addition, we must count messages received and sent by a process p as part of the
max register implementation. Here for each process q in p’s level-h subtree, p may incur
O(1) messages every 2h votes generated by q. Each such process q generates at most
O(n log2 n) votes, and there are 2h such processes q. So p incurs a total of O(n log2 n)
votes from its level-h subtree. Summing over all logn levels gives the same O(n log3 n)
bound on messages as for max-register operations initiated by p.

This gives the final bound of O(n log3 n) messages per process. Applying the same
reasoning to the total vote bound from Lemma 3 yields the bound of O(n2 log2 n) on
total message complexity.

7 Consensus Protocol and Extension for General t

Consensus. We now describe how to convert a message-efficient weak shared coin
into message-efficient consensus. We adapt a shared-memory consensus protocol, due
to Chandra [16], which, like many shared-memory consensus protocols has the early
binding property identified by Aguilera and Toueg [2] as necessary to ensure correct-
ness of a consensus protocol using a weak shared coin.

Chandra’s protocol uses two arrays of bits to track the speed of processes with pref-
erence 0 or 1. The mechanism of the protocol is similar to previous protocols of Chor,
Israeli, and Li [18] and Aspnes and Herlihy [9]: if a process observes that the other team
has advanced beyond it, it adopts that value, and if it observes that all processes with
different preferences are two or more rounds behind, it decides on its current preference
secure in the knowledge that they will switch sides before they catch up. The arrays of
bits effectively function as a max register, so it is natural to replace them with two max
registers m[0] and m[1], initially set to 0, implemented as in Section 4. The complete
description, pseudocode, and proof are given in the full version of the paper [3].

Theorem 2. Let SharedCoinr, for each r, be a shared coin protocol with constant agree-
ment parameter, individual message complexity T1(n), and total message complex-
ity T (n). Then the algorithm described above implements a consensus protocol with
expected individual message complexity O(T1(n) + n) and total message complexity
O(T (n) + n2).

Extension for General t. We can decrease the message complexity of the protocol by
taking advantage of values of t = o(n). The basic idea is to reduce message complexity
by “deputizing” a set of 2t+1 processes to run the protocol described above and produce
an output value, which they broadcast to all other participants. For this, we fix processes
p1, . . . , p2t+1 to be the group of processes running the consensus protocol, which we
call the deputies. When executing an instance of the protocol, each process first sends
a Start message to the deputies. If the process is a deputy, it waits to receive Start
notifications from n− t processes. Upon receiving these notifications, the process runs
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the consensus algorithm described above, where the only participants are processes
p1, . . . , p2t+1. Upon completing this protocol, each deputy broadcasts a 〈Result , value〉
message to all processes, and returns the decided value. If the process is not a deputy,
then it simply waits for a Result message from one of the deputies, and returns the
corresponding value. Correctness follows from the previous arguments.

Theorem 3. Let n, t > 0 be parameters such that t < n. The algorithm described
above implements randomized consensus using O(nt + t2 log2 t) expected total mes-
sages, and O(n + t log3 t) expected messages per process.

8 Conclusions and Future Work

We have described a randomized algorithm for consensus with expected message com-
plexity O(n2 log2 n) that tolerates t < n/2 crash faults; this algorithm also has the
desirable property that each process sends and receives expected O(n log3 n) messages
on average, and message size is logarithmic. We also present a generalization that uses
expected O(nt + t2 log2 t) messages.

Two conspicuous open problems remain. The first is whether we can close the re-
maining poly-logarithmic gap for the message cost of consensus in the classic model.
Second, can we use techniques from this paper to help close the gap for message-cost
of Byzantine agreement in the classic model? To the best of our knowledge, the current
lower bound for message cost of Byzantine agreement is Ω(n2), while the best upper
bound is O(n6.5) — a significant gap.
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Abstract. This paper investigates the problem of Byzantine Agreement
in a synchronous system where malicious agents can move from process
to process, corrupting their host. Earlier works on the problem are based
on biased models which, as we argue in the paper, give an unfair ad-
vantage either to the correct processes or to the adversary controlling
the malicious agents. Indeed, the earlier studies of the problem assume
that, after a malicious agent has left a process, that process, said to
be cured, is able to instantly and accurately detect the fact that it was
corrupted in earlier rounds, and thus can take local actions to recover
a valid state (Garay’s model). We found no justification for that as-
sumption which clearly favors correct processes. Under that model, an
algorithm is known for n > 4t, where n is the number of processes and
t the maximum number of malicious agents. The tightness of the bound
is unknown. In contrast, more recent work on the problem remove the
assumption on detection and assume instead that a malicious agent may
have left corrupted messages in the send queue of a cured process. As
a result, the adversary controlling the malicious agents can corrupt the
messages sent by cured processes, as well as those sent by the newly
corrupted ones, thus doubling the number of effective faults. Under that
model, which favors the malicious agents, the problem can be solved if
and only if n > 6t. In this paper, we refine the latter model to avoid
the above biases. While a cured process may send messages (based on a
state corrupted by the malicious agent), it will behave correctly in the
way it sends those messages: i.e., send messages according to the algo-
rithm. Surprisingly, in this model we could derive a new non-trivial tight
bound for Byzantine Agreement. We prove that at least 5t+1 processors
are needed in order to tolerate t mobile Byzantine agents and provide a
time optimal algorithm that matches this lower bound, altogether with
a formal specification of the problem.

1 Introduction

New emergent distributed systems such as P2P, overlay networks, social networks
or clouds are inherently vulnerable to faults, insider attacks, or viruses. Faults
and attacks cannot be predicted accurately, may affect different parts of a system,
and may occur at any moment of its execution. In this work, we investigate the
case where transient state corruptions, which can be abstracted as malicious
“agents,” can move through the network and corrupt the nodes they occupy.
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This models the situation where, as soon as a faulty node is repaired (e.g., by
software rejuvenation), another one becomes compromised. For more than two
decades, the main case study problem in this context was Byzantine Agreement.
Briefly stated, it requires processors, some of which malicious, that start the
computation with an initial value to decide on the same value. When faults
are mobile the problem is known as Mobile Byzantine Agreement and requires
special attention for preserving agreement once it has been reached.

Related work. Byzantine Agreement, introduced by Lamport et al. [12, 16], has
been studied for decades in static distributed systems under different aspects
(e.g., possibility, complexity, cost) in various models (from synchronous [12,16,17]
to asynchronous [5,13], from authenticated [8] to anonymous [14]) with different
methodologies (deterministic [12, 16], probabilistic [3, 9]). In all these works,
faults are stationary. That is, they do not change their original location during
the computation.

Santoro et al. [19, 20], and later Schmid et al. [22], investigate the agreement
problem in dynamic transmission failure models for both complete and arbitrary
networks. These models assume that different communication links may ran-
domly fail at different times. Santoro and Widmayer [19] study the k-agreement
problem, where the system reaches a k-agreement if, in finite time, k processes
choose the same value, either 0 or 1, with k > �n/2�,1 where n is the total
number of processes.

Based on the bivalent argument of Fischer et al. [10], they state that (�n/2+
1�)-agreement is impossible in a synchronous system if at each time there is
one processor whose messages may be corrupted. Although not explicitly stated,
the impossibility applies to the mobile Byzantine model. Thus, work on Mobile
Byzantine Agreement typically rely on the assumption that at least one process
remains uncorrupted for Ω(n) rounds of communication.

Mobile Byzantine Agreement, introduced by Reischuk [18], has regained much
attention recently. Research on the problem, in synchronous systems, follows two
main directions: constrained or unconstrained mobility.

Constrained mobility. This direction, studied by Buhrman et al. [4], consid-
ers that malicious agents move from one node to another only when protocol
messages are sent (similar to how viruses would propagate). In that model, they
prove a tight bound for Mobile Byzantine Agreement (n > 3t, where t is the
maximal number of simultaneously faulty processes) and propose a time opti-
mal protocol that matches this bound.

Unconstrained mobility. In this direction, which includes the work in this
paper, the mobility of malicious agents is not constrained by message exchanges
[1, 11, 15, 18, 21].

Reischuk [18] proposed a first sub-optimal solution under an additional hy-
pothesis on the stability/stationarity of malicious agents for a given period of
time. Later, Ostrovsky and Yung [15] introduced the notion of an adversary that

1 If k ≤ �n/2� the k-agreement problem is trivial.
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can inject and distribute faults in the system at a constant rate in every round
and proposed solutions (mixing randomization and self-stabilization) for toler-
ating the attacks of mobile viruses. Then, Garay [11] and, more recently, Banu
et al. [1] and Sasaki et al. [21] consider, in their model, that processes execute
synchronous rounds composed of three phases: send, receive, compute. Between
two consecutive rounds, malicious agents can move from one host to another,
hence the set of faulty processes has a bounded size although its membership can
change from one round to the next. Garay’s model is particular in that, a process
has a limited ability to detect its own infection after the fact. More precisely,
during the first round following the leave of the malicious agent, a process enters
a state, called cured, during which it can take preventive actions to avoid sending
messages that are based on a corrupted state. Under this assumption, Garay [11]
proposes an algorithm that solves Mobile Byzantine Agreement provided that
n > 6t.

Notice that Garay’s model advantages the cured processes since they have
the possibility of miraculously detecting the leave of malicious agents. In the
same model, Banu et al. [1] propose a Mobile Byzantine Agreement algorithm
for n > 4t. However, to the best of our knowledge, the tightness of the bound
remains an open question.

Sasaki et al. [21] investigate the problem in a different model where processes
do not have this ability to detect when malicious agents move. This is similar
to our model with the subtle difference that cured processes have no control on
the messages they send. That is, messages are computed in the previous round
(i.e., when the process was still faulty) and the cured process cannot control the
buffer where these messages are stored, even though the process is no longer
faulty. It follows that a cured process may behave as a malicious one for one
additional round. They propose tight bounds for Mobile Byzantine Agreement
in arbitrary networks if n > 6t and the degree of the network is d > 4t. This
work extends the tight bounds (n > 3t and d > 2t) for Byzantine Agreement of
Dolev [7] in arbitrary networks with static faults.

Motivation. Analyzing the results proposed in [1,11,21], it is clear that there is
a gap between how these models capture the power of malicious agents or cured
processes. Garay’s model [11] is biased toward the cured processes, whereas the
model of Sasaki et al. [21] favors the malicious agent, as it can control the send
buffer of a cured process even though it is no longer hosted by the process. Our
research fills the gap by avoiding these biases; similarly to Sasaki’s model [21],
a cured process may send corrupted messages, but only computed based on the
corrupted state left by a malicious agent. In particular, a malicious agent can
corrupt neither the code nor the identity of the process it occupies, and a cured
process always executes a correct code which ensures, for instance, that it will
send the same message to all of its neighbors.

The difference between the three models are subtle (see Fig. 1) but they have
important consequences (Table 1). Figure 1 depicts the effects of a malicious
agent on a process. Red areas correspond to the steps controlled by the malicious
agent. In Sasaki’s model [21] (Fig. 1b), a single malicious agent can corrupt a
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process for two rounds even though it occupies the process only for a single
round. In Garay’s model [11] (Fig. 1a) a cured process is aware of its current
state (cured), which is represented in green. In our model (Fig 1c; defined in
Sect. 2) malicious nodes have the same power as in Garay’s model, but the
cured processes may send messages with corrupted content as in Sasaki’s model.

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(a) Garay’s model [1,11]

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(b) Sasaki et al. model [21]

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(c) Our model

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(d) Buhrman et al. model [4]

Fig. 1. Graphical representation of the various fault models

Table 1. Lower and upper bounds for Byzantine Agreement with mobile faults

Model Impossibility result Possibility result Byzantine vs Cured Game

Garay [11] open question n > 6t Advantaged Cured

Banu et al. [1] open question n > 4t Advantaged Cured

Sasaki et al. [21] n ≤ 6t n > 6t Advantaged Byzantine Agent

This paper n ≤ 5t n > 5t No one advantaged

Buhrman et al. [4] n ≤ 3t n > 3t Virus like propagation

Contribution. In this model we prove a tight bound for the agreement problem.
We prove in Section 3 that the problem has no solution if the size of the network
is n < 5t (where t is an upper bound on the number of faulty agents) and
propose an algorithm that matches this bound in Section 4. We also formalize
the Mobile Byzantine Agreement problem in Section 2.2. Following the results
proved in [11], our solution is also asymptotically time optimal.

2 Model and Definitions

2.1 System Model

Processes. We consider a synchronous message-passing system consisting of n
processes p0, p1, . . . , pn−1 where Π = {0, . . . , n− 1} denotes the set of process
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indices. Each process is an automaton whose state evolves following the execution
of its local algorithm. All processes execute the same algorithm.

The network is fully connected: all pairs of processes are directly linked with
a reliable bidirectional channel; i.e. there is no loss, duplication, or alteration
of messages. The system evolves in synchronous rounds and all processes start
simultaneously at round 0. There is a round counter accessible to the algorithm
executed by each process. Each round consists of three steps; send, receive, and
compute. Based on its current local state, a process (1) computes and sends
a message to all processes (including itself); (2) receives messages sent by all
processes (including itself); and (3) computes its new state based on its current
state and the set of received message.

Mobile malicious agents. Faults are represented by malicious mobile agents that
can move from process to process between rounds. There are at most t malicious
agents, with t < n, and any process can be occupied by an agent. A process is
said to be faulty in a given round if it is occupied by an agent in that round.
A process which is not occupied by a malicious agent, but was occupied in the
previous round is called a cured process. A process which is neither faulty nor
cured is called a correct process. Fr, Cor, and Cur denote respectively the set
of faulty, correct, and cured processes at round r. For ease of writing, we also
consider the combined sets of correct/cured processes as the set of non-faulty
processes Cr = Cor ∪ Cur = Π \ Fr.

Malicious agents are mobile and can move between the compute step of a
round and the send step of the next round (Figure 1c). The behavior of a faulty
process is controlled by the malicious agent. In particular, the agent can corrupt
the local state of its host process, and force it to send arbitrary messages (po-
tentially different messages to different processes). However, a malicious agent
cannot corrupt the identify of that process (i.e., it cannot send messages us-
ing another identity), and is unable to modify the code of the algorithm (i.e.,
the process resumes executing the correct algorithm after the malicious agent
moves away). So, as suggested in [4], we assume a secure, tamper-proof read-only
memory where the identity and the code are stored.

While it is possible for each non-faulty process to rejuvenate its code at the
beginning of each round, local variables may still be corrupted (and of course
cannot be recovered). Therefore, in the case of cured processes the computation
may be performed using a corrupted state.

Comparison with previous models. As explained in Section 1 and graphically
depicted in Figure 1, the above model differs from Garay’s [11] and Sasaki’s [21]
as follows. In Sasaki’s model [21], a single malicious agent can corrupt a process
for more than a round although occupying this process only for a round. In our
model, once the malicious agent leaves a process, that process will execute the
correct code even though the computation will be performed on a corrupted
state. Differently from the Garay’s model [11], where a cured process has the
knowledge of its cured state and exploits it in the algorithm, in our model pro-
cesses can not access and exploit this knowledge.
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Notation. In the formal definitions and proofs, varri denotes the value of variable
var in process pi at the end of round r. We also use the notation #w(W) to refer
to the number of occurrences of w in tuple W .

2.2 Mobile Byzantine Agreement Problem

We now formally define the Mobile Byzantine Agreement problem introduced
first by Garay et al. [11] and refined most recently by Sasaki et al. [21]. The
definition presented here is stronger than the definition proposed by Sasaki [21]
(see discussion below).

Each initially-correct process pi has an initial value wi. All processes must
decide2 a value dec such that the following properties hold:

1. BA-Termination: Eventually, all non-faulty processes during a round termi-
nate the round with a non-bottom decided value.

∃r, ∀r′ > r ∀i ∈ Cr′ decr
′

i �= ⊥
2. BA-Agreement : No two non-faulty processes decide different values:

∀r, r′ ∀i ∈ Cr ∀j ∈ Cr′
(
decri �= ⊥ ∧ decr

′

j �= ⊥
)
⇒

(
decri = decr

′

j

)
3. BA-Validity: If all initially-correct processes propose the same value w, cor-

rect processes can decide only w.

∀w (∀i ∈ Co0 wi = w)⇒ (∀r ∀i ∈ Cr decri ∈ {⊥, w})
Note that specification of Mobile Byzantine Agreement given in this section is

actually stronger than the definition proposed by Sasaki et al. [21]. They differ
in two important aspects. Firstly, where we require that, after some time, all
non-faulty processes decide a value at every round, their definition requires a
decision only from processes that are not faulty infinitely often. Secondly, where
we allow non-faulty processes to decide only on a unique non-bottom value,
Sasaki’s algorithm [21] allows the variable storing the decision to take arbitrary
values for a finite number of rounds. In other words, our specification requires
perpetual consistency whereas Sasaki’s algorithm ensures eventually consistency.

We now state two lemmas, proved in earlier models [11,19], which also apply
to our model. The first lemma states a necessary condition. That condition is
however not sufficient; as explained previously, a bound on the number of faults
is also required.

Lemma 1 (stated in [11]; formal proof derivable from [19]). Mobile
Byzantine Agreement requires that at least one process remains uncorrupted for
Ω(n) rounds of communication.

Lemma 2 (from [11]). Every Mobile Byzantine Agreement protocol requires
Ω(n) rounds in its worst case execution.
2 We use a terminology consistent with the classical definition of Byzantine agreement.
However, the action “decide” does not in itself guarantee a permanent decision.
Indeed, due to the mobility of the malicious agents, non-faulty processes must re-
decide the decision at the end of each round.
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3 Upper Bound on the Number of Faulty Processes

In this section, we prove that, in the presence of t malicious mobile agents,
Mobile Byzantine Agreement cannot be solved with 5t processes or less, even if
some process remains uncorrupted forever.

Sasaki et al. [21] proved a similar result by reduction from a well-known
existing bound. From the classical bound (n ≤ 3t) on synchronous Byzantine
agreement, they could obtain their bound (n ≤ 6t) by considering both faulty
and cured processes as Byzantine.

However, we cannot use the same approach because, in sharp contrast with
Sasaki’s model [21] and as explained in Section 2, in our model, the adversary
cannot entirely control cured processes.

Theorem 1. There is no deterministic algorithm that solves Mobile Byzantine
Agreement in a synchronous five-process system in the presence of a single mobile
Byzantine agent (even with a permanently correct process).

Proof. The proof is by contradiction. Given a system consisting of five processes
{p0, . . . , p4}, where at least one is permanently correct, let us suppose that there
exists an algorithm that can solve the BA problem in the presence of a single
malicious mobile agent. Suppose that, in this algorithm, processes send the same
message to all processes.3 Note that, during an execution, nothing prevents a
faulty processes from sending different messages to other processes.

General idea. We consider three executions of this algorithm. In executions E0

and E1, all correct processes propose the same value; 0 and 1 respectively. The
BA properties imply that, eventually, non-faulty processes respectively decide 0
and 1 in these two executions. The third execution, called E01, brings a contra-
diction: some processes decide 0 while others decide 1.

The three executions are represented on Figure 2. Red (resp. light red) arrows
correspond to corrupt messages sent by faulty (resp. cured) processes. The values
proposed by correct processes appear on the left. Non-correct processes do not
have proposed values since they may have been corrupted by the malicious agent.
Vertical dashed lines separate successive rounds.

For each execution, we choose the process occupied by the single malicious
agent. As required, there is at least one process which is permanently non-faulty
in each execution.

Executions E0 and E1. In execution E0, the malicious agent alternates between
processes p0 and p1. In execution E1, it alternates between processes p2 and p3.
Processes p2, p3, and p4 are initially correct and propose 0 in E0, while processes
p0, p1, and p4 are initially correct and propose 1 in E1.

3 If not the case, we can trivially define an algorithm that satisfies this property by
combining the set of sent messages into a single message.
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(a) Execution E0 where initially-correct processes p2, p3, and p4 propose value 0.
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(b) Execution E1 where initially-correct processes p0, p1, and p4 propose value 1.
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(c) Execution E01 where initially-correct processes p0 and p1 propose value 1 while
initially-correct processes p2 and p3 propose value 0. Process p4 is faulty and sends
different messages to each process.

Fig. 2. Three executions leading to a contradiction of the existence of a BA protocol
in a 5-process system with one mobile malicious agent. (Legend: Arrows correspond
to messages exchanged between processes. Gray boxes contain the new local state
computed by each process at the end of each round, which is then used to send message
in the following round. Red indicates actions taken by the faulty processes while light
red refers to actions taken by cured processes. Vertical dashed line separate successive
rounds.)
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For non-faulty processes, the messages sent during these executions are com-
puted by the algorithm based on the local states of processes. For correct pro-
cesses (i.e., excluding cured ones), let us denote by s0i,r (resp. s

1
i,r) the local state

of process pi at the beginning of the round r in execution E0 (resp. E1). Based
on this local state, let m0

i,r (resp., m1
i,r) denote the message computed and sent

by a correct process pi at round r in execution E0 (resp., E1).
We now define the behavior of the malicious agent. For the faulty process

pi (either p0 or p1) at round r of execution E0, we choose that pi sends the
message m1

i,r (i.e., the message it would have sent at the same round in E1) and

we choose that pi updates its local state to s1i,r+1 at the end of the round (i.e.,

the same state it would have computed in E1). Similarly we choose that the
faulty process pi (either p2 or p3) at round r of execution E1 sends the message
m0

i,r and updates its state to s0i,r+1.

Execution E01. In execution E01, the malicious agent always occupies process p4.
The four other processes are initially (and forever) correct. As in E0, processes
p2 and p3 propose 0. As in E1, processes p0 and p1 propose 1. In this execution,
the faulty process p4 does not send the same message to all processes. At any
round, p4 sends the message m1

4,r to p0 and p1, but sends m
0
4,r to p3 and p4.

Indistinguishability. In the sequel, we prove the following claim: E0 and E01 are
indistinguishable for p2 and p3, and similarly E1 and E01 for p0 and p1. This
can be proven by induction on the round number, using the following predicate
P(r) for r ≥ 0:

P(r) =

⎧⎪⎪⎨⎪⎪⎩
p0 starts round r in E1 and E01 with the same local state
p1 starts round r in E1 and E01 with the same local state
p2 starts round r in E0 and E01 with the same local state
p3 starts round r in E0 and E01 with the same local state

The proof is only for p0. The proofs for p1, p2, and p3 are identical.

– Case r = 0. p0 proposes the same value in E1 and E01 and therefore starts
round 0 with the same initial local state, namely s00,0.

– Case r ≥ 0. Let us suppose that predicate P(r) is true.
• p0 is correct in E1 and E01 and, by induction hypothesis, starts round
r with the same local state. Therefore p0 necessarily sends the same
message, namely m1

0,r, to all processes in round r of both E1 and E01.
Similarly, p1 sends the same message m1

1,r to all processes in round r of
both E1 and E01.

• p2 is correct in E0 and E01 and, by induction hypothesis, starts round
r with the same local state. Therefore p2 necessarily sends the same
message, namely m0

2,r, to all processes in round r of both E0 and E01.
Considering execution E1, there are two cases to consider; (1) p2 is faulty
during round r and then, by construction, the malicious agent forces p2
to send the message m0

2,r; (2) p2 is cured during round r, which means
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that it was faulty in the previous round and the malicious agent forced
p2 to start round r in the local state s02,r which implies that p2 still sends
the message m0

2,r. In all cases, p2 sends the same message in round r of
both E1 and E01.
Similarly, p3 sends the same message m0

3,r to all processes in round r of
both E1 and E01.

• p4 is faulty in E01. By construction, in each round, it sends to p0 the
same message as in E1. It means that p4 sends the same message, namely
m0

4,r, to p0 in round r of both E1 and E01.

Process p0 receives the same messages from all processes in round r of E1 and
E01. Since p0 is correct in both executions, it computes the same new local state
and starts round r + 1, which prove P(r + 1).

Thus by induction, the predicate P(r) is true for all rounds and therefore the
claim holds. Since p0 and p1 eventually decide 1 in E1, they also decide 1 in E01.
Similarly, since p2 and p3 eventually decide 0 in E0, they also decide 0 in E01.
Contradiction.

When n ≤ 5t, the proof of Theorem 1 can be generalized by replacing any
process appearing in the proof by a group of processes of size at most t.

Corollary 1. There is no deterministic algorithm that solves the Mobile Byzan-
tine Agreement problem in a synchronous n-process system in the presence of t
mobile byzantine agent if n ≤ 5t (even with a permanently correct process).

4 Algorithm for Mobile Byzantine Agreement

Given a system with t malicious mobile agents, we introduce an algorithm that
solves Mobile Byzantine Agreement under the following two conditions: (1) there
are at least 5t+1 processes in total, and (2) at least one process remains uncor-
rupted for 3n consecutive rounds (see Lemma 1).
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Algorithm 1. BA algorithm (code for pi with proposed value wi)

1 Function MBA(wi):
2 vi ← wi;

3 for s = 0 to n − 1 do
4 begin round // proposing round r = 3s
5 vi ← propose(vi);
6 deci ← ⊥;

7 end round

8 begin round // collecting round r = 3s + 1
9 SVi ← collect(vi);

10 deci ← ⊥;

11 end round

12 begin round // deciding round r = 3s + 2
13 vi ← decide(s, SVi);
14 deci ← ⊥;

15 end round

16 end for

17 deci ← vi;

18 for r = 3n to ∞ do
19 begin round // maintaining round
20 send deci to all processes;
21 deci ← the value received at least n − 2t times;

22 end round

23 end for

24 Function propose(v):
25 PV [1..n] ← [⊥, . . . ,⊥];
26 send v to all processes;
27 foreach j ∈ Π do
28 if vj received from j then PV [j] ← vj ;
29 if ∃w �= ⊥,#w(PV ) ≥ n − 2t then return w;
30 return ⊥;

31 Function collect(v):
32 SV [1..n] ← [⊥, . . . ,⊥];
33 send v to all processes;
34 foreach j ∈ Π do
35 if vj received from j then SV [j] ← vj ;
36 return SV ;

37 Function decide(s, SV ):
38 EV [1..n][1..n] ← [[⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥]];
39 send SV to all processes;
40 foreach j ∈ Π do
41 if SVj received from j then EV [j] ← SVj ;

42 RV [1..n] ← [⊥, . . . ,⊥];
43 foreach j ∈ Π do
44 if ∃w �= ⊥,#w(EV [·][j]) > 2t then RV [j] ← w;

45 if ∃w �= ⊥,#w(RV ) > 3t then return w;
46 else
47 c ← s mod n;
48 if ∃w �= ⊥,#w(EV [c][·]) > 2t then return w;
49 return 0;



Tight Bound on Mobile Byzantine Agreement 87

4.1 Description of the Algorithm

The algorithm builds upon earlier ones [1, 11, 21] but contains some important
improvements; (i) a clear separation between the deciding and the maintaining
parts, (ii) a simplification of the code of the algorithm, and (iii) additional code
in order to satisfy our stricter BA-Agreement property. The algorithm (lines
1− 23) consists of two main parts:

1. Deciding part: processes execute 3n rounds to agree on a value.

2. Maintaining part: processes execute the same round forever to keep the de-
cided value.

Maintaining part (lines 18 − 23) This part is simple and repeats forever from
round 3n. The goal is to allow cured processes to recover the decided value from
correct ones, since that value may have been corrupted by the malicious agent.
All processes exchange their current decided values dec and update their variable
dec to the value that has been received at least n−2t times. During each of these
rounds, there must be at least n− 2t correct processes according to the model.
If all of them send the same value (which is guaranteed by the algorithm), all
non-faulty processes receive n−2t messages containing this same value and thus
decide accordingly.

Deciding part (lines 3 − 16) This part is complex and consists of n phases of
3 rounds each. The goal is to guarantee that, at the end of round 3n − 1, all
non-faulty processes have the same value v and therefore decide it (line 17).
During the first 3n rounds, v may take different non-bottom values, which is
why processes cannot decide in earlier rounds.4

This part uses the rotating coordinator paradigm. Recall that, in each round,
there are at least n − t non-faulty processes, and at least n − 2t correct ones.
Each of the n phases are divided into 3 rounds:

– Proposing round; all non-faulty processes (at least n− t) end the round with
at most one non-bottom value v. Consequently, it guarantees that the (at
least n − 2t) correct processes of the next round start with at most one
non-bottom value v.

– Collecting round; processes exchange the values computed in the previous
round and store them in array SV (the set of received values).

– Deciding round; processes try to agree on the same value v using the rotating
coordinator paradigm. If the coordinator of the current round is correct
during the entire phase, non-faulty processes are guaranteed to terminate
the phase with the same value. Such a coordinating round exists since, by
assumption, there is one process which is correct for at least 3n rounds.

In the deciding round, processes exchange the array SV computed during the
previous round. Based on the arrays they received, each process computes

4 This is different from previous papers as already mentioned in Section 2.
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a new5 array RV (the vector of reconstructed values). For each non-faulty
process, both SV and RV contain “almost” the same values (SV = RV if
all processes are correct), but, as it appears in the proof, these two arrays
are necessary to guarantee the correctness of our algorithm.

After the phase corresponding to a correct coordinator, all non-faulty pro-
cesses have the same value v. This property will continue during all subsequent
phases even if the corresponding coordinators are faulty (in fact lines 46 − 49
will not be executed anymore as shown in the proof).

Additional code (lines 6, 10, 14) Usually, the variable dec is initialized to ⊥ at
the beginning of an algorithm. However, this value may be corrupted for any
process that becomes faulty during the execution. To satisfy the BA-Agreement
property, it is therefore necessary for each non-faulty process to re-initialize its
variable dec to ⊥ at the end of each of the first 3n round.

4.2 Proof of the Algorithm

Due to page limitations, the proof of the algorithm appears in [2]. We only state
here the final theorem.

Theorem 2. Algorithm 1 solves Mobile Byzantine Agreement in a synchronous
n-process system in the presence of t mobile Byzantine agents provided that n ≥
5t+ 1 and that at least one process remains uncorrupted.

5 Conclusion and Discussion

We proposed a new model for Mobile Byzantine Agreement, that balances the
power of correct and malicious agents. In our model, a process cannot detect
its own infection and cannot instantly recover its state after the malicious agent
moves away. Hence, our model gives less power to correct processes than Garay’s
model [11]. Recall that, in this model, a cured process can magically detect the
leave of the malicious agent. In contrast, in our model, a cured process (a process
that has been infected by a malicious agent) will not behave maliciously after the
agent left it. That is, a cured process may send corrupted messages (computed
based on a corrupted state) but it will send the same corrupted message to all
neighbors. In this respect, our model gives less power to the Byzantine agents
than Sasaki’s model [21] where a Byzantine agent can prepare messages and
control the sending of these messages even after it left that process. In our
model, we prove that there is no protocol for Mobile Byzantine Agreement in
synchronous networks with n ≤ 5t. We propose then a tight algorithm which
can tolerate t mobile Byzantine agents with at least 5t+ 1 processes.

In the following, we list several open questions and non trivial research direc-
tions in this area. The next step in our research is the study on the feasibility

5 Technically, as in [21], it is possible to use the same variable for both SV and RV .
We choose to use two different names for the clarity of the proof.
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of Mobile Byzantine Agreement on arbitrary topologies. Another interesting di-
rection would be to decrease, via randomization, the time complexity of the
algorithm.

Notice that, even though our model has a self-stabilization flavor, our work is
different in several aspects from the self-stabilizing Byzantine agreement of [6].
Note that in the case of self-stabilizing Byzantine agreement the studied model
assumes that the Byzantine set is fixed. That is, it does not change during the
execution. Also it is assumed, as in all self-stabilizing algorithms, that the system
eventually becomes coherent (i.e. the communication network and a sufficient
fraction of nodes is not faulty for sufficient long time period for the pre-conditions
for convergence of the protocol to hold). More specifically, in self-stabilization
it is assumed that during the convergence period the system does not suffer
additional perturbations. In our case the system is permanently stressed due to
the mobility of the Byzantine nodes. Note also that the problem solved in [6] is
different since it allows the output of inconsistent decision values during transient
periods.

In our model, a malicious agent can move anywhere in the network, and likely
most work on the subject, we considered a fully connected topology. Sasaki et
al. [21] have considered the case of different topologies. An interesting line of
work is to generalize to arbitrary topologies, and also to consider when the
mobility of the malicious agents is constrained by a, possibly different, topology.

Finally, to the best of our knowledge, so far no investigation of Mobile Byzan-
tine Agreement has been done in anonymous settings or networks where node
identities are not unique. In these contexts, algorithms based on a coordinator
are not applicable.
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Abstract. The unbeatability of a consensus protocol, introduced by
Halpern, Moses andWaarts in [15], is a stronger notion of optimality than
the accepted notion of early stopping protocols. Using a novel knowledge-
based analysis, this paper derives the first practical unbeatable consensus
protocols in the literature, for the standard synchronous message-passing
modelwith crash failures.Theseprotocols strictly dominate thebest known
protocols for uniform and for non-uniform consensus, in some case beat-
ing them by a large margin. The analysis provides a new understanding of
the logical structure of consensus, and of the distinction between uniform
and nonuniform consensus. Finally, the first (early stopping and) unbeat-
able protocol that treats decision values “fairly” is presented. All of these
protocols have very concise descriptions, and are shown to be efficiently
implementable.

Keywords: Consensus, uniform consensus, optimality, knowledge.

1 Introduction

Following [16], we say that a protocol P is a worst-case optimal solution to a
decision task S in a given model if it solves S, and decisions in P are always taken
no later than the worst-case lower bound for decisions in this problem, in that
model. Here we consider standard synchronous message-passing models with n
processes and at most t < n crash failures per run; it will be convenient to
denote the number of actual failures in a given run by f . Processes proceed in a
sequence of synchronous rounds. The very first consensus protocols were worst-
case optimal, deciding in exactly t + 1 rounds in all runs [6,20]. It was soon
realized, however, that they could be strictly improved upon by early stopping
protocols [5], which are also worst-case optimal, but can often decide much faster
than the original ones. This paper presents a number of consensus protocols that
are not only worst-case optimal and early stopping, but furthermore cannot be
strictly improved upon, and are thus optimal in a much stronger sense.

In benign failure models it is typically possible to define the behaviour of the
environment (i.e., the adversary) in a manner that is independent of the protocol,

� A full version of this paper with complete proofs is available on arXiv.org [2].
Part of the results of this paper were announced in [1].
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in terms of a pair α = (�v,F) consisting of a vector �v of initial values and a failure
pattern F. (A formal definition is given in Section 2.) A failure model F is
identified with a set of (possible) failure patterns. For ease of exposition, we
will think of such a pair α = (�v,F) as a particular adversary. In a synchronous
environment, a deterministic protocol P and an adversary α uniquely define a run
r = P [α]. With this terminology, we can compare the performance of different
decision protocols solving a particular task in a given context γ = (�V,F), where
�V is a set of possible vectors of initial values. A decision protocol Q dominates a
protocol P in γ, denoted by Q� γP if, for all adversaries α and every process i,
if i decides in P [α] at time mi, then i decides in Q[α] at some time m′

i ≤ mi.
Moreover, we say that Q strictly dominates P if Q� γP and P �� γQ. I.e.,
if Q dominates P and for some α ∈ γ there exists a process i that decides in
Q[α] strictly before it does so in P [α]. In the crash failure model, the early-
stopping protocols of [5] strictly dominate the original protocols of [20], in which
decisions are always performed at time t +1. Nevertheless, these early stopping
protocols may not be optimal solutions to consensus. Following [16] a protocol P
is said to be an all-case optimal solution to a decision task S in a context γ if it
solves S and, moreover, it dominates every protocol P ′ that solves S in γ. Dwork
and Moses presented all-case optimal solutions to the simultaneous variant of
consensus [9]. For the standard (eventual) variant of consensus, in which decisions
are not required to occur simultaneously, Moses and Tuttle showed that no all-
case optimal solution exists [18]. Consequently, Halpern, Moses and Waarts in
[15] initiated the study of a natural notion of optimality that is achievable by
eventual consensus protocols:

Definition 1 (Halpern, Moses and Waarts). A protocol P is an unbeatable
solution to a decision task S in a context γ if P solves S in γ and no protocol
Q solving S in γ strictly dominates P .1

Halpern, Moses andWaarts observed that for every consensus protocol P there
exists an unbeatable protocol QP that dominates P . Moreover, they showed a
two-step transformation that defines such a protocol QP based on P . This trans-
formation and the resulting protocols are based on a notion of continual common
knowledge that is computable, but not efficiently: in the resulting protocol, each
process executes exponential time (PSPACE) local computations in every round.
The logical transformation is not applied in [15] to an actual protocol. As an ex-
ample of an unbeatable protocol, they present a particular protocol, called P0opt,
and argue that it is unbeatable in the crash failure model. Unfortunately, as we
will show, P0opt is in fact beatable. This does not refute the general analysis
and transformation defined in [15]; they remain correct. Rather, the fault is in
an unsound step in the proof of optimality of P0opt (Theorem 6.2 of [15]), in
which an inductive step is not explicitly detailed, and does not hold.

1 All-case optimal protocols are called “optimal in all runs” in [9]. They are termed
“optimum” in [15], while unbeatable protocols are simply called “optimal” there. We
prefer the term unbeatable because “optimal” is used very broadly, and inconsistently,
in the literature.
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The main contributions of this paper are:

1. A knowledge-based analysis is applied to the classical consensus protocol,
and is shown to yield solutions that are optimal in a much stronger sense than
all previous solutions. Much simpler and more intuitive than the framework
used in [15], it illustrates how the knowledge-based approach can yield a
structured approach to the derivation of efficient protocols.

2. Opt0, the first explicit unbeatable protocol for nonuniform consensus is
presented. It is computationally efficient, and its unbeatability is established
by way of a succinct proof. Moreover, Opt0 is shown to strictly dominate
the P0opt protocol from [15], proving that the latter is in fact beatable.

3. An analysis of uniform consensus gives rise to u-Opt0, the first explicit
unbeatable protocol for uniform consensus. The analysis used in the design
of u-Opt0 sheds light on the inherent difference and similarities between the
uniform and nonuniform variants of consensus in this model.

4. Early stopping protocols for consensus are traditionally one-sided, preferring
to decide on 0 (or on 1) if possible. deciding on a predetermined value (say,
0) if possible, we present an An unbeatable (and early stopping) majority
consensus protocol OptMaj is presented, that prefers the majority value.

5. We identify the notion of a hidden path as being crucial to decision in the
consensus task. If a process identifies that no hidden path exists, then it can
decide. In the fastest early-stopping protocols, a process decides after the
first round in which it does not detect a new failure. By deciding based on
the nonexistence of a hidden path, our unbeatable protocols can stop up to
t − 3 rounds faster than the best early stopping protocols in the literature.

We now sketch the intuition behind, our unbeatable consensus protocols.
In the standard version of consensus, every process i starts with an initial

value vi ∈ {0, 1}, and the following properties must hold in every run r:
(Nonuniform) Consensus:

Decision: Every correct process must decide on some value,
Validity: If all initial values are v then the correct processes decide v, and
Agreement: All correct processes decide on the same value.

The connection between knowledge and distributed computing was proposed
in [14] and has been used in the analysis of a variety of problems, including
consensus (see [10] for more details and references). In this paper, we employ
simpler techniques to perform a more direct knowledge-based analysis. Our ap-
proach is based on a simple principle recently formulated by Moses in [19], called
the knowledge of preconditions principle (KoP), which captures an essen-
tial connection between knowledge and action in distributed and multi-agent
systems. Roughly speaking, the KoP principle says that if C is a necessary con-
dition for an action α to be performed by process i, then Ki(C) — i knowing C
— is a necessary condition for i performing α. E.g., it is not enough for a client
to have positive credit in order to receive cash from an ATM; the ATM must
know that the client has positive credit.
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Problem specifications typically state or imply a variety of necessary condi-
tions. In the crash failure model studied in this paper, we will say that a process
is active at time m in a given run, if it does not crash before time m. For
v ∈ {0, 1}, we denote by decidei(v) the action of i deciding v, and use v̄ as
shorthand for 1− v.

Lemma 1. Consensus implies the following necessary conditions for decidei(v)
in the crash failure model:

(a) “at least one processes had initial value v” (we denote this by ∃v), and
(b) “no currently active process has decided, or is currently deciding, v̄” (we

denote this by no-decided(v̄)).

Both parts follow from observing that if i decides v at a point where either
(a) or (b) does not hold, then the execution can be extended to a run in which i
(as well as j, for (b)) is correct (does not crash), and this run violates Validity
for (a) or Agreement for (b).

Given Lemma 1, KoP implies that Ki∃v and Kino-decided(v̄) are also nec-
essary conditions for decidei(v). In this paper, we will explore how this insight
can be exploited in order to design efficient consensus protocols. Indeed, our
first unbeatable protocol will be one in which, roughly speaking, the rule for
decidei(0) will be Ki∃0, and the rule for decidei(1) will be Kino-decided(0). As
we will show, if the rule for decidei(0) is Ki∃0, then no-decided(0) reduces to the
fact not-known(∃0), which is true at a given time if Kj∃0 holds for no currently-
active process j. Thus, Kino-decided(0) — our candidate rule for deciding 1 —
then becomes Kinot-known(∃0). While Ki∃0 involves the knowledge a process
has about initial values, Kinot-known(∃0) is concerned with i’s knowledge about
the knowledge of others. We will review the formal definition of knowledge in
the next section, in order to turn this into a rigorous condition.

Converting the above description into an actual protocol essentially amounts
to providing concrete tests for when these knowledge conditions hold. It is
straightforward to show (and quite intuitive) that in a full-information protocol
Ki∃0 holds exactly if there is a message chain from some process j whose initial
value is 0, to process i. To determine that not-known(∃0), a process must have
proof that no such chain can exist. Our technical analysis identifies a notion of
a hidden path with respect to i at a time m, which implies that a message chain
could potentially be communicating a value unbeknownst to i. It is shown that
hidden paths are key to evaluating whether Kinot-known(∃0) holds. In fact, it
turns out that hidden paths are key to obtaining additional unbeatable protocols
in the crash failure model. We present two such protocols; one is a consensus
protocol in which a process that sees a majority value can decide on this value,
and the other is an unbeatable protocol for the uniform variant of consensus.
In uniform consensus, any two processes that decide must decide on the same
value, even if one (or both) of them crash soon after deciding.

This paper is structured as follows: The next section reviews the definitions of
the synchronous crash-failure model and of knowledge in this model. Section 3
presents Opt0, our unbeatable consensus protocol, proves its unbeatability, and
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shows that it beats the protocol P0opt of [15]. It then derives an unbeatable con-
sensus protocol, OptMaj, that treats 0 and 1 in a balanced way. Both unbeatable
protocols decide in no more than f + 1 rounds in runs in which f processes ac-
tually fail but they can decide much earlier than that. Section 4 studies uniform
consensus, and derives u-Opt0, an unbeatable protocol for uniform consensus.
Finally, Section 5 concludes with a discussion. Due to lack of space, proofs are
not presented here. For a full version of this paper see [2]

2 Preliminary Definitions

Our model of computation is the standard synchronous message-passing model
with benign crash failures. A system has n≥2 processes denoted by Procs =
{1, 2, . . . , n}. Each pair of processes is connected by a two-way communication
link, and each message is tagged with the identity of the sender. They share
a discrete global clock that starts out at time 0 and advances by increments
of one. Communication in the system proceeds in a sequence of rounds, with
round m+ 1 taking place between time m and time m+ 1. Each process starts
in some initial state at time 0, usually with an input value of some kind. In
every round, each process first performs a local computation, and performs local
actions, then it sends a set of messages to other processes, and finally receives
messages sent to it by other processes during the same round. We consider the
local computations and sending actions of round m + 1 as being performed at
time m, and the messages are received at time m+ 1.

A faulty process fails by crashing in some round m ≥ 1. It behaves correctly
in the first m−1 rounds and sends no messages from round m+1 on. During its
crashing round m, the process may succeed in sending messages on an arbitrary
subset of its links. At most t ≤ n− 1 processes fail in any given execution.

It is convenient to consider the state and behaviour of processes at different
(process-time) nodes, where a node is a pair 〈i,m〉 referring to process i at
time m. A failure pattern describes how processes fail in an execution. It is a
layered graph F whose vertices are nodes 〈i,m〉 for i ∈ Procs and m ≥ 0. Such a
vertex denotes process i and time m. An edge has the form (〈i,m−1〉, 〈j,m〉) and
it denotes the fact that a message sent by i to j in round m would be delivered
successfully. Let Crash( t) denote the set of failure patterns in which all failures
are crash failures, and no more than t crash failures occur. An input vector
describes the initial values that the processes receive in an execution. The only
inputs we consider are initial values that processes obtain at time 0. An input
vector is thus a tuple �v = (v1, . . . , vn) where vj is the input to process j. We
think of the input vector and the failure pattern as being determined by an
external scheduler, and thus a pair α = (�v,F) is called an adversary.

A protocol describes what messages a process sends and what decisions it
takes, as a deterministic function of its local state at the start of a round and
the messages received during a round. We assume that a protocol P has access
to the values of n and t , typically passed to P as parameters.

A run is a description of an infinite behaviour of the system. Given a run r
and a timem, we denote by ri(m) the local state of process i at timem in r, and
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the global state at time m is defined to be r(m) = 〈r1(m), r2(m), . . . , rn(m)〉. A
protocol P and an adversary α uniquely determine a run, and we write r = P [α].

Since we restrict attention to benign failure models and focus on decision
times and solvability in this paper, it is sufficient to consider full-information
protocols (fip’s for short), defined below [4]. There is a convenient way to consider
such protocols in our setting. With an adversary α = (�v,F) we associate a
communication graph Gα, consisting of the graph F extended by labelling the
initial nodes 〈j, 0〉 with the initial states vj according to α. Every node 〈i,m〉 is
associated with a subgraph Gα(i,m) of Gα, which we think of as i’s view at 〈i,m〉.
Intuitively, this graph will represent all nodes 〈j, �〉 from which 〈i,m〉 has heard,
and the initial values it has seen. Formally, Gα(i,m) is defined by induction
on m. Gα(i, 0) consists of the node 〈i, 0〉, labelled by the initial value vi. Assume
that Gα(1,m), . . . ,Gα(n,m) have been defined, and let J ⊆ Procs be the set of
processes j such that j = i or ej = (〈j,m〉, 〈i,m + 1〉) is an edge of F. Then
Gα(i,m+1) consists of the node 〈i,m+1〉, the union of all graphs Gα(j,m) with
j ∈ J , and the edges ej = (〈j,m〉, 〈i,m + 1〉) for all j ∈ J . We say that (j, �) is
seen by 〈i,m〉 if (j, �) is a node of Gα(i,m). Note that this occurs exactly if the
failure pattern F allows a (Lamport) message chain from 〈j, �〉 to 〈i,m〉.

A full-information protocol P is one in which at every node 〈i,m〉 of a run
r = P [α] the process i constructs Gα(i,m) after receiving its round m nodes, and
sends Gα(i,m) to all other processes in roundm+1. In addition, P specifies what
decisions i should take at 〈i,m〉 based on Gα(i,m). Full-information protocols
thus differ only in the decisions taken at the nodes. Let d(i,m) be status of i’s
decision at time m (either ‘⊥’ if it is undecided, or a concrete value ‘v’). Thus, in
a run r = P [α], we define the local state ri(m) = 〈d(i,m),Gα(i,m)〉 if i does not
crash before time m according to α, and ri(m) = �, an uninformative “crashed”
state, if i crashes before time m.

For ease of exposition and analysis, all of our protocols are full-information.
However, in fact, they can all be implemented in such a way that any process
sends any other process a total of O(f logn) bits throughout any execution (as
shown in [2]).

2.1 Knowledge

Our construction of unbeatable protocols will be assisted and guided by a knowl-
edge-based analysis, in the spirit of [10,14]. Runs are dynamic objects, changing
from one time point to the next. E.g., at one point process i may be undecided,
while at the next it may decide on a value. Similarly, the set of initial values that i
knows about, or has seen, may change over time. In general, whether a process
“knows” something at a given point can depend on what is true in other runs in
which the process has the same information. We will therefore consider the truth
of facts at points (r,m)—timem in run r, with respect to a set of runsR (which we
call a system). We will be interested in systems of the form RP = R(P, γ) where
P is a protocol and γ = γ(Vn,F) is the set of all adversaries that assign initial
values from V and failures according to F . We will write (R, r,m) |= A to state
that fact A holds, or is satisfied, at (r,m) in the system R.
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The truth of some facts can be defined directly. For example, the fact ∃v will
hold at (r,m) in R if some process has initial value v in (r, 0). We say that
(satisfaction of) a fact A is well-defined in R if for every point (r,m) with
r ∈ R we can determine whether or not (R, r,m) |= A. Satisfaction of ∃v is thus
well defined. Moreover, any boolean combination of well-defined facts is also well
defined. We will write KiA to denote that process i knows A, and define:

Definition 2 (Knowledge). Suppose that A is well defined in R. Define that
(R, r,m) |= KiA iff (R, r′,m) |= A holds for all r′ ∈ R with ri(m) = r′i(m).

Thus, if A is well defined in R then Definition 2 makes KiA well defined in R.
Note that what a process knows or does not know depends on its local state.
The definition can then be applied recursively, to define the truth of KjKiA etc.
Knowledge has been used to study a variety of problems in distributed comput-
ing. In particular, we now formally define (R, r,m) |= not-known(∃0) to hold iff
(R, r,m) �|= Kj∃0 holds for every process j that does not crash by time m in r.
We will make use of the following fundamental connection between knowledge
and actions in distributed systems. A fact A is a necessary condition for pro-
cess i performing action σ (e.g. deciding on an output value) in R if (R, r,m) |= A
whenever i performs σ at a point (r,m) of R.

Theorem 1 (Knowledge of Preconditions, [19]). Let RP = R(P, γ) be the
set of runs of a deterministic protocol P . If A is a necessary condition for i
performing σ in RP , then so is KiA.

3 Unbeatable Consensus

We start with the standard version of consensus defined in the Introduction,
and consider the crash failure context γ t

cr = 〈Vn,Crash( t)〉, where V = {0, 1}
— initial values are binary bits. Every protocol P in this setting determines a
system RP = R(P, γ t

cr). Recall that Lemma 1 establishes necessary conditions
for decision in consensus. Based on this, Theorem 1 yields:

Lemma 2. Let P be a consensus protocol for γ t
cr and let RP = R(P, γ t

cr). Then
both Ki∃v and Kino-decided(v̄) are necessary conditions for decidei(v) in RP .

An analysis of knowledge for fips in the crash failure model was first performed
by Dwork and Moses in [9]. The following result is an immediate consequence of
that analysis. Under the full-information protocol, we have:

Lemma 3 (Dwork and Moses [9]). Let P be a fip in γ t
cr and let r ∈ RP =

R(P, γ t
cr). For all processes i, j, (RP , r, t+1) |= Ki∃v iff (RP , r, t+ 1) |= Kj∃v.

Of course, a process that does not know ∃0 must itself have an initial value
of 1. Hence, based on Lemma 3, it is natural to design a fip-based consensus
protocol that performs decidei(0) at time t +1 if Ki∃0, and otherwise performs
decidei(1). (In the very first consensus protocols, all decisions are performed
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at time t + 1 [20].) Indeed, one can use Lemma 3 to obtain a strictly better
protocol, in which decisions on 0 are performed sooner:

Protocol P0 (for an undecided process i at time m):

if Ki∃0 then decidei(0)
elseifm = t + 1 then decidei(1)

Notice that in a fip consensus protocol, it is only necessary to describe the
rules for decidei(0) and decidei(1), since in every round a process sends all it
knows to all processes. Since Ki∃0 is a necessary condition for decidei(0), the
protocol P0 decides on 0 as soon as any consensus protocol can. In the early
80’s Dolev suggested a closely related protocol B (standing for “Beep”) for γ t

cr,
in which processes decide 0 and broadcast the existence of a 0 when they see
a 0, and decide 1 at t +1 otherwise [7]; for all adversaries, it performs the same
decisions at the same times as P0. Halpern, Moses and Waarts show in [15] that
for every consensus protocol P in γ t

cr there is an unbeatable consensus protocolQ
dominating P . Our immediate goal is to obtain an unbeatable consensus protocol
dominating P0. To this end, we make use of the following.

Lemma 4. If Q�P0 is a consensus protocol, then decidei(0) is performed in Q
exactly when Ki∃0 first holds.

We can now formalize the discussion in the Introduction, showing that if
decisions on 0 are performed precisely when Ki∃0 first holds, then no-decided(0)
reduces to not-known(∃0).

Lemma 5. Let P be a fip, in which decidei(0) is performed in P exactly when
Ki∃0 first holds, and let RP = R(P, γ t

cr). Then (RP , r,m) |= Kino-decided(0)
iff (RP , r,m) |= Kinot-known(∃0) for all r ∈ RP and m ≥ 0.

The proof of Lemma 5 is fairly immediate: If (RP , r,m) �|= Kinot-known(∃0)
then there is a run r′ of RP such that both ri(m) = r′i(m) and (RP , r

′,m) |=
Kj∃0 for some correct process j; therefore, process j decides 0 in r′. The other
direction follows directly from the decision rule for 0. We can now define a fip
consensus protocol in which 0 is defined as soon as its necessary condition Ki∃0
holds, and 1 is decided as soon as possible, given the rule for deciding 0:
Protocol Opt0 (for an undecided process i at time m):

if Ki∃0 then decidei(0)
elseifKinot-known(∃0) then decidei(1)

We can show that Opt0 is, indeed, an unbeatable protocol:

Theorem 2. Opt0 is an unbeatable consensus protocol in γ t
cr.

3.1 Testing for Knowing that Nobody Knows

Opt0 is not a standard protocol, because its actions depend on tests for pro-
cess i’s knowledge. (It is a knowledge-based program in the sense of [10].) In order
to turn it into a standard protocol, we need to replace these by explicit tests
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on the processes’ local states. The rule for decidei(0) is easy to implement. By
Lemma 3(a), Ki∃0 holds exactly if i’s local state contains a time 0 node that is
labelled with value 0. The rule Kinot-known(∃0) for performing decidei(1) holds
when i knows that no active process knows ∃0, and we now characterize when
this is true. A central role in our analysis will be played by process i’s knowledge
about the contents of various nodes in the communication graph. Recall that
local states ri(m) in fip’s are communication graphs of the form Gα(i,m); we
abuse notation and write θ ∈ ri(m)

(
respectively, (θ, θ′) ∈ ri(m)

)
if θ is a node

of Gα(i,m) = ri(m)
(
respectively, if (θ, θ′) is an edge of Gα(i,m) = ri(m)

)
; in

this case, we say that θ is seen by 〈i,m〉. We now make the following definition:

Definition 3 (Revealed). Let r ∈ RP = R(P, γ t
cr) for a fip protocol P . We

say that node 〈j′,m′〉 is revealed to 〈i,m〉 in r if either (1) 〈j′,m′〉 ∈
ri(m), or (2) for some process i′ such that 〈i′,m′〉 ∈ ri(m) it is the case that(
〈j′,m′ − 1〉, 〈i′,m′〉

)
/∈ ri(m). We say that time m′ is revealed to 〈i,m〉 in r

if 〈j′,m′〉 is revealed to 〈i,m〉 for all processes j′.

Intuitively, if node 〈j′,m′〉 is revealed to 〈i,m〉 then i has proof at time m
that 〈j′,m′〉 can not carry information that is not known at 〈i,m〉 but may be
known at another node 〈j,m〉 at the same time. This because either i sees 〈j′,m′〉
at that point—this is part (1)—or i has proof that j′ crashed before time m′,
and so its state there was �, and j′ did not send any messages at or after
time m′. It is very simple and straightforward from the definition to determine
which nodes are revealed to 〈i,m〉, based on ri(m) = Gα(i,m). Observe that if a
node 〈j′,m′〉 is revealed to 〈i,m〉, then i knows at m what message could have
been sent at 〈j′,m′〉: If 〈j′,m′〉 ∈ ri(m) then rj′ (m

′) is a subgraph of ri(m),
while if

(
〈j′,m′ − 1〉, 〈i′,m′〉

)
/∈ ri(m) for some node 〈i′,m′〉 ∈ ri(m), then j′

crashed before timem′ in r, and so it sends no messages at time m′. Whether and
when a node 〈j′,m′〉 is revealed to i depends crucially on the failure pattern. If i
receives a message from j′ in round m′+1, then 〈j′,m′〉 is immediately revealed
to 〈i,m′ + 1〉. If this message is not received by 〈i,m′ + 1〉, then 〈j′,m′ + 1〉 —
the successor of 〈j′,m′〉 — becomes revealed (as being crashed, i.e. in state �)
to 〈i,m′ + 1〉. But in general 〈j′,m′〉 can be revealed to i at a much later time
than m′+1, (A simple instance of this is when Ki∃0 first becomes true at a time
m > 1; this happens when 〈j, 0〉 with vj = 0 is first revealed to i.)

Suppose that some time k ≤ m is revealed to 〈i,m〉. Then, in a precise sense,
process i at time m has all of the information that existed in the system at time k
(in the hands of processes that had not crashed by then). In particular, if this
information does not contain an initial value of 0, then nobody can know ∃0 at
or after time m. We now formalize this intuition and show that revealed nodes
can be used to determine when a process can know not-known(∃0).
Lemma 6. Let P be a fip and let r ∈ RP = R(P, γ t

cr). For every node 〈i,m〉, it
is the case that (RP , r,m) |= Kinot-known(∃0) exactly if both (1) (RP , r,m) �|=
Ki∃0 and (2) some time k ≤ m is revealed to 〈i,m〉 in r.

Based on Lemma 6, we now obtain a standard unbeatable consensus protocol
for γ t

cr that implements Opt0:



100 A. Castañeda, Y.A. Gonczarowski, and Y. Moses

Protocol Opt
std
0 (for an undecided process i at time m):

if i has seen a time-0 node with initial value 0 then decidei(0)
elseif some time k ≤ m is revealed to 〈i,m〉 then decidei(1)

We emphasize that Opt
std
0 (and thus also Opt0), and all the following proto-

cols, can be implemented efficiently. The protocol only uses information about
the existence of 0 and about the rounds at which processes crash. It can therefore
be implemented in such a way that any process sends a total of O(f logn) bits
(see [2]) in every run, and executes O(n) local steps in every round.

The formulation of Opt
std
0 , in addition to facilitating an efficient implemen-

tation, also makes the worst-case stopping time of Opt
std
0 and Opt0 apparent.

Lemma 7. In Opt
std
0 (and thus also Opt0), all decisions are made by time

f + 1 at the latest.2

It is interesting to compare Opt0 with efficient early-stopping consensus pro-
tocols [3,5,12,15]. Let’s say that the sender set repeats at 〈i,m〉 in run r if i
hears from the same set of processes in rounds m−1 and m. If this happens then,
for every 〈j,m−1〉 /∈ ri(m), we are guaranteed that (〈j,m−2〉, 〈i,m−1〉) /∈ ri(m).
Thus, all nodes at time (m−1) are revealed to 〈i,m〉. Indeed, in a run in which f
failures actually occur, the sender set will repeat for every correct process by
time f +1 at the latest. Efficient early stopping protocols typically decide when
the sender set repeats. Indeed, the protocol P0opt that was claimed by [15] to
be unbeatable does so as well, with a slight optimization. Writing ∀1 to stand
for “all initial values are 1”, P0opt is described as follows:

Protocol P0opt (for an undecided process i at time m) [15] :

if Ki∃0 then decidei(0)
elseifKi∀1 or m ≥ 2 and the sender set repeats at 〈i,m〉 then decidei(1)

Opt0 and P0opt differ only in the rule for deciding 1. But Opt0 strictly
beats P0opt, and sometimes by a wide margin. If t = Ω(n) then it can decide
faster by a ratio of Ω(n). Indeed, we can show:

Lemma 8. If 3 ≤ t ≤ n − 2, then Opt0 strictly dominates P0opt. Moreover,
there exists an adversary for which decidei(1) is performed after 3 rounds in
Opt0, and after t+ 1 rounds in P0opt.

3.2 Hidden Paths and Agreement

It is instructive to examine the proof of Lemma 6 (see [2]) and consider when an
active process i is undecided at 〈i,m〉 in Opt0. This occurs if both ¬Ki∃0 and,
in addition, for every k = 0, . . . ,m there is at least one node 〈jk, k〉 that is not
revealed to 〈i,m〉. We call the sequence of nodes 〈j0, 0〉, . . . , 〈jm,m〉 a hidden
path w.r.t. 〈i,m〉. Such a hidden path implies that all processes j0, . . . , jm

2 In all our protocols, a process can stop at the earlier of one round after deciding and
time t + 1.
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have crashed. Roughly speaking, ∃0 could be relayed along such a hidden path
without i knowing it (see Fig. 1). More formally, its existence means that there is

i

j0

j1

j2

j3

m :

〈i, 3〉
1

1

1

1

0 1 2 3

(a) All nodes seen (directly or

indirectly) by 〈i, 3〉. The ini-

tial value is shown for all seen

time-0 nodes. Notably, both

¬Ki∃0 and ¬Ki¬∃0 hold at

time m = 3.

i

j0

j1

j2

j3

m :

〈i, 3〉

0 1 2

?

3

(b) The state of each node, ac-

cording to the information held

by 〈i, 3〉:
=seen by all; =seen, may

have crashed; =revealed, seen

by none; =hidden: may have

been seen by others.3

i

j0

j1

j2

j3

m :

〈i, 3〉
1

0

1

1

1

0 1 2 3

(c) A run that is possible ac-

cording to the information held

by 〈i, 3〉;4 in this run, Kj3∃0
holds at time m = 3. There-

fore, ¬Kinot-known(∃0) at time

m = 3. 〈i, 3〉 is therefore unde-

cided in Opt0.

Fig. 1. A hidden path 〈j0, 0〉, . . . , 〈j3, 3〉 w.r.t. 〈i, 3〉 implies ¬Kinot-known(∃0) at 3

a run, indistinguishable at 〈i,m〉 from the current one, in which vj0 = 0 and this
fact is sent from each jk to jk+1 in every round k+1 ≤ m. In that run process jm
is active at time m and Kjm∃0, and that is why Kinot-known(∃0) does not hold.
Hidden paths are implicit in many lower bound proofs for consensus in the crash
failure model [5,9], but they have never before been captured formally. Clearly,
hidden paths can relay more than just the existence of a value of 0. In a protocol
in which some view can prove that the state is univalent in the sense of Fischer,
Lynch and Paterson [11], a hidden path from a potentially pivotal state can keep
processes from deciding on the complement value. Our analysis in the remainder
of the paper provides additional cases in which unbeatable consensus is obtained
when hidden paths can be ruled out.

3.3 Majority Consensus

Can we obtain other unbeatable consensus protocols? Clearly, the symmetric
protocol Opt1, obtained from Opt0 by reversing the roles of 0 and 1, is un-
beatable and neither dominates, nor is dominated by, Opt0. Of course, Opt0

and Opt1 are extremely biased, each deciding on its favourite value if at all
possible, even if it appears as the initial value of a single process. One may argue

3 For simplicity, in this example every node seen by 〈i, 3〉 is also seen by all other
nodes in the view of 〈i, 3〉. In other words, there exists no node 〈j,m′〉 that is in
state according to the information held by 〈i, 3〉, i.e. both 〈j,m′〉 is seen by 〈i, 3〉,
and i has indirectly learnt by time 3 that j has in fact crashed at m′.

4 In this run, the state of both 〈j0, 0〉 and 〈j1, 1〉, according to the information held
by 〈j3, 3〉, is , as defined in Footnote 3.
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that it is natural, and may be preferable in many applications, to seek a more
balanced solution, in which minority values are not favoured. Fix n > 0 and
define the fact “Maj = 0” to be true if at least n/2 initial values are 0, while
“Maj = 1” is true if strictly more than n/2 values are 1. Finally, relative to a
node 〈i,m〉, we define Maj 〈i,m〉 � 0 if at least half of the processes whose ini-
tial value is known to i at time m have initial value 0; Maj 〈i,m〉 � 1 otherwise.
Consider the following protocol:

Protocol OptMaj (for an undecided process i at time m):

if Ki(Maj = 0) then decidei(0)
elseifKi(Maj = 1) then decidei(1)
elseif some time k ≤ m is revealed to 〈i,m〉 then decidei(Maj 〈i,m〉).

We note that whether Ki(Maj = 0) (resp. Ki(Maj = 1)) holds can be checked
efficiently: it holds exactly if i has seen at least (resp. strictly more than) n/2
time-0 nodes with initial value 0 (resp. 1).

Theorem 3. If t > 0, then OptMaj is an unbeatable consensus protocol. In
particular, in a run in which f ≤ t failures actually occur, all decisions are
performed by time f + 1, at the latest.

The proof of Theorem 3 formalizes the following idea. Suppose that i sees
fewer than a full majority of either value at 〈i,m〉 and has a hidden path. Then i
considers it possible that the node 〈j1, 1〉 in the hidden path may have seen either
a full majority of 0’s or a full majority of 1’s, and this information may reach
an active node 〈jm,m〉. Decision is thus impossible in this case, and decisions
are made when no hidden path w.r.t. 〈i,m〉 is possible. Thus, OptMaj is an
unbeatable consensus protocol that satisfies an additional “fairness” property:

Majority Validity: For v ∈ {0, 1}, if more than half of the processes are
both correct and have initial value v, then no process decides v̄ in r.

4 Unbeatable Uniform Consensus

It is often of interest to consider uniform consensus [3,8,13,17,21,22] in which we
replace the Agreement condition of consensus by:

Uniform Agreement: The processes that decide in a given run must all
decide on the same value.

This forces correct processes and faulty ones to act in a consistent manner.
Requiring uniformity makes sense only in a setting where failures are benign, and
all processes that decide do so according to the protocol. Uniformity may be de-
sirable when elements outside the system can observe decisions, as in distributed
databases when decisions correspond to commitments to values.

Under crash failures, a process generally does not know whether or not it is
correct. Indeed, so long as it has not seen t failures, the process may (for all it
knows) crash in the future. As a result, while Ki∃0 is a necessary condition for



Unbeatable Consensus 103

decidei(0) as before, it cannot be a sufficient condition for decision in any uni-
form consensus protocol. This is because a process starting with 0 immediately
decides 0 with this rule, and may immediately crash. If all other processes have
initial value 1, all other decisions can only be on 1. Of course, Ki∃0 is still a
necessary condition for deciding 0, but it is not sufficient. Denote by ∃correct(v)
the fact “some correct process knows ∃v”. We show the following:

Lemma 9. Ki∃correct(v) is a necessary condition for i deciding v in any pro-
tocol solving Uniform Consensus.

There is a direct way to test whether Ki∃correct(v) holds, based on ri(m):

Lemma 10. Let r ∈ RP = R(P, γ t
cr) and assume that i knows of d failures at

(r,m). Then (RP , r,m) |= Ki∃correct(v) iff at least one of (a) m> 0 and
(RP , r,m−1) |= Ki∃v, or (b) (RP , r,m) |= Ki(Kj∃v held at time m−1) holds
for at least ( t−d) distinct processes j.

By Lemma 3, at time t + 1 the conditions Ki∃v and Ki∃correct(v) are
equivalent. As in the case of consensus, we note that if Ki∃0 (equivalently,
Ki∃correct(0)) does not hold at time t + 1, then it never will. We thus phrase
the following beatable algorithm, analogous to P0, for Uniform Consensus; in
this protocol, Ki∃correct(0) (the necessary condition for deciding 0 in uniform
consensus) replaces Ki∃0 (the necessary condition in consensus) as the decision
rule for 0. The decision rule for 1 remains the same. Note that Ki∃correct(0) can
be efficiently checked, by applying the test of Lemma 10.

Protocol u-P0 (for an undecided process i at time m):

if Ki∃correct(0) then decidei(0)
elseifm = t + 1 then decidei(1).

Following a similar line of reasoning to that leading to Opt0, we obtain an
unbeatable uniform consensus protocol:

Protocol u-Opt0 (for an undecided process i at time m):

if Ki∃correct(0) then decidei(0)
elseif ¬Ki∃0 and some time k ≤ m is revealed to 〈i,m〉 then decidei(1).

Recall that whether Ki∃correct(0) holds can be checked efficiently via the
characterization in Lemma 10.

Theorem 4. u-Opt0 is an unbeatable uniform consensus protocol in which all
decisions are made by time f+2 at the latest, and if f ≥ t−1, then all decisions
are made by time f + 1 at the latest.

Hidden paths again play a central role. Indeed, as in the construction of
Opt0 from P0, the construction of u-Opt0 from u-P0 involves some decisions
on 1 being moved earlier in time, by means of the last condition, checking the
absence of a hidden path. (Decisions on 0 cannot be moved any earlier, as they are
taken as soon as the necessary condition for deciding 0 holds.) Observe that the
need to obtain Ki∃correct(v) rather than Ki∃v concisely captures the essential
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distinction between uniform consensus and nonuniform consensus. The fact that
the same condition — the existence of a hidden path — keeps a process i from
knowing that no active j can know Kj∃correct(v), as well as keeping i from
knowing that no j knows Kj∃v, explains why the bounds for both problems,
and their typical solutions, are similar.

Proving the unbeatability of u-Opt0 is more challenging than proving it for
Opt0. Intuitively, this is because gaining that an initial value of 0 that is known
by a nonfaulty process does not imply that some process has already decided
on 0. As a result, the possibility of dominating u-Opt0 by switching 0 decisions
to 1 decisions needs to be explicitly rejected. This is done by employing reacha-
bility arguments essentially establishing the existence of the continual common
knowledge conditions of [15].

The fastest early-stopping protocol for uniform consensus in the literature,
opt-EDAUC of [3] (a similar algorithm is in [8]), also stops in min(f + 2, t + 1)
rounds at the latest. Similarly to Lemma 8, not only does u-Opt0 strictly domi-
nate opt-EDAUC, but furthermore, there are adversaries against which u-Opt0

decides in 1 round, while opt-EDAUC decides in t + 1 rounds:

Lemma 11. If 2 ≤ t ≤ n− 2, then u-Opt0 strictly dominates the opt-EDAUC
protocol of [3]. Moreover, there exists an adversary for which decidei(1) is per-
formed after 1 round in u-Opt0, and after t+ 1 rounds in opt-EDAUC.

5 Discussion

It is possible to consider variations on the notion of unbeatability. One could,
for example, compare runs in terms of the time at which the last correct process
decides. We call the corresponding notion last-decider unbeatability .5 This
neither implies, nor is implied by, the notion of unbeatability studied so far
in this paper. None of the consensus protocols in the literature is last-decider
unbeatable. In fact, all of our protocols are also last-decider unbeatable:

Theorem 5. The protocols Opt0 and OptMaj are also last-decider unbeatable
for consensus, while u-Opt0 is last-decider unbeatable for uniform consensus.

We note that Lemmas 8 and 11 show that our protocols beat the previously-
known best ones by a large margin w.r.t. last-decider unbeatability as well.

Unbeatability is a natural optimality criterion for distributed protocols. It
formalizes the intuition that a given protocol cannot be strictly improved upon,
which is significantly stronger than saying that it is worst-case optimal, or even
early stopping. All of the protocols that we have presented have a very concise
and intuitive description, and are efficiently implementable; thus, unbeatability
is attainable at a modest price. Crucially, our unbeatable protocols can decide
much faster than previously known solutions to the same problems.

5 This notion was suggested to us by Michael Schapira; we thank him for the insight.
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Abstract. We study the Reliable Broadcast problem in incomplete net-
works against a Byzantine adversary. We examine the problem under the
locally bounded adversary model of Koo (2004) and the general adversary
model of Hirt and Maurer (1997) and explore the tradeoff between the
level of topology knowledge and the solvability of the problem.

We refine the local pair-cut technique of Pelc and Peleg (2005) in
order to obtain impossibility results for every level of topology knowledge
and any type of corruption distribution. On the positive side we devise
protocols that match the obtained bounds and thus, exactly characterize
the classes of graphs in which Reliable Broadcast is possible.

Among others, we show that Koo’s Certified Propagation Algorithm
(CPA) is unique against locally bounded adversaries in ad hoc networks,
that is, it can tolerate as many local corruptions as any other non-faulty
algorithm; this settles an open question posed by Pelc and Peleg. We
also provide an adaptation of CPA against general adversaries and show
its uniqueness. To the best of our knowledge this is the first optimal
algorithm for Reliable Broadcast in generic topology ad hoc networks
against general adversaries.

1 Introduction

A fundamental problem in distributed networks is Reliable Broadcast (Byzantine
Generals), in which the goal is to distribute a message correctly despite the
presence of Byzantine faults. That is, an adversary may control several nodes
and be able to make them deviate from the protocol arbitrarily by blocking,
rerouting, or even altering a message that they should normally relay intact
to specific nodes. In general, agreement problems have been primarily studied
under the threshold adversary model, where a fixed upper bound t is set for
the number of corrupted players and broadcast can be achieved if and only if
t < n/3, where n is the total number of players. The Broadcast problem has
been extensively studied in complete networks under the threshold adversary
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model mainly in the period from 1982, when it was introduced by Lamport,
Shostak and Pease [11], to 1998, when Garay and Moses [5] presented the first
fully polynomial Broadcast protocol optimal in resilience and round complexity.

The case of Reliable Broadcast under a threshold adversary in incomplete net-
works has been studied to a much lesser extent, in a study initiated in [1,2,10],
mostly through protocols for Secure Message Transmission which, combined with
a Broadcast protocol for complete networks, yield Broadcast protocols for in-
complete networks. Naturally, connectivity constraints are required to hold in
addition to the n/3 bound. Namely, at most t < c/2 corruptions can be tolerated,
where c is network connectivity, and this bound is tight[1].

In the case of an honest dealer, particularly meaningful in wireless networks,
the impossibility threshold of n/3 does not hold; for example, in complete net-
works with an honest dealer the problem becomes trivial regardless of the number
of corrupted players. However, in incomplete networks the situation is different.
A small number of traitors (corrupted players) may manage to block the entire
protocol if they control a critical part of the network, e.g. if they form a separator
of the graph. It therefore makes sense to define criteria (or parameters) depend-
ing on the structure of the graph, in order to bound the number or restrict the
distribution of traitors that can be tolerated.

An approach in this direction is to consider topological restrictions on the
adversary’s corruption capacity. We will first focus on local restrictions, the
importance of which comes, among others, from the fact that they may be used
to derive criteria which can be employed in ad hoc networks. Such a paradigm
is the t-locally bounded adversary model, introduced in [9], in which at most a
certain number t of corruptions are allowed in the neighborhood of every node.

The locally bounded adversarial model is particularly meaningful in real-life
applications and systems. For example, in social networks it is more likely for an
agent to have a quite accurate estimation of the maximum number of malicious
agents that may appear in its neighborhood, than having such information, as
well as knowledge of connectivity, for the whole network. In fact, this scenario
applies to all kinds of networks, where each node is assumed to be able to estimate
the number of traitors in its close neighborhood. It is also natural for these
traitor bounds to vary among different parts of the network. Motivated by such
considerations, in this work we will introduce a generalization of the t-locally
bounded model.

1.1 Related Work

Considering t-locally bounded adversaries, Koo [9] proposed a simple, yet power-
ful protocol, namely the Certified Propagation Algorithm (CPA) (a name coined
by Pelc and Peleg in [14]), and applied it to networks of specific topology. CPA
is based on the idea that a set of t+1 neighbors of a node always contain an hon-
est one. Pelc and Peleg [14] considered the t-locally bounded model in generic
graphs and gave a sufficient topological condition for CPA to achieve Broad-
cast. They also provided an upper bound on the number of corrupted players
t that can be locally tolerated in order to achieve Broadcast by any protocol,



Reliable Broadcast with Respect to Topology Knowledge 109

in terms of an appropriate graph parameter; they left the deduction of tighter
bounds as an open problem. To this end, Ichimura and Shigeno [8] proposed
an efficiently computable graph parameter which implies a more tight, but not
exact, characterization of the class of graphs on which CPA achieves Broadcast.
It had remained open until very recently to derive a tight parameter revealing
the maximum number of traitors that can be locally tolerated by CPA in a
graph G with dealer D. Such a parameter is implicit in the work of Tseng et al.
[16], who gave a necessary and sufficient condition for CPA Broadcast. Finally,
in [12] such a graph parameter was presented explicitly, together with an efficient
2-approximation algorithm for computing its value.

A more general approach regarding the adversary structure was initiated by
Hirt and Maurer in [7] where they studied the security of multiparty computation
protocols with respect to an adversary structure, i.e. a family of sets of players,
such that the adversary may entirely corrupt any set in the family. This line of
work has yielded results on Broadcast against a general adversary in complete
networks [4] but, to the best of our knowledge, the case of Broadcast against
general adversaries in incomplete networks has not been studied as such.1 A
study on the related problem of Iterative Approximate Byzantine Consensus
against general adversaries can be seen in [15] where a similar model for the ad
hoc case is considered.

1.2 Our Results

In this work we study the tradeoff between the level of topology knowledge and
the solvability of the problem, under various adversary models.

We first consider a natural generalization of the t-locally bounded model,
namely the non-uniform t-locally bounded model which subsumes the (uniform)
model studied so far. The new model allows for a varying bound on the number
of corruptions in each player’s neighborhood. We address the issue of locally
resilient Broadcast in the non-uniform model. We present a new necessary and
sufficient condition for CPA to be t-locally resilient by extending the notion of
local pair cut of Pelc and Peleg [14] to the notion of partial local pair cut. Note
that although equivalent conditions exist [16,12], the simplicity of the new condi-
tion allows to settle the open question of CPA Uniqueness [14] in the affirmative:
we show that if any safe (non-faulty) algorithm achieves Broadcast in an ad hoc
network then so does CPA. We next prove that computing the validity of the
condition is NP-hard and observe that the latter negative result also has a pos-
itive aspect, namely that a polynomially bounded adversary is unable to design
an optimal attack unless P = NP.

We next shift focus on networks of known topology and devise an optimal
resilience protocol, which we call Path Propagation Algorithm (PPA). Using PPA
we prove that a topological condition which was shown in [14] to be necessary

1 Some related results are implicit in [10], but in the problem studied there, namely
Secure Message Transmission, additional secrecy requirements are set which are out
of the scope of our study.
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for the existence of a Broadcast algorithm is also sufficient. Thus, we manage to
exactly characterize the class of networks for which there exists a solution to the
Broadcast problem. On the downside, we prove that it is NP-hard to compute an
essential decision rule of PPA, rendering the algorithm inefficient. However, we
are able to provide an indication that probably no efficient protocol of optimal
resilience exists, by showing that efficient algorithms which behave exactly as
PPA w.r.t. decision do not exist if P �= NP.

We then take one step further, by considering a hybrid between ad hoc and
known topology networks: each node knows a part of the network, namely a
connected subgraph containing itself. We propose a protocol for this setting
as well, namely the Generalized Path Propagation Algorithm (GPPA). We use
GPPA to show that this partial knowledge model allows for Broadcast algorithms
of increased resilience.

Finally, we study the general adversary model and show that an appropriate
adaptation of CPA is unique against general adversaries in ad hoc networks.
To the best of our knowledge this is the first algorithm for Reliable Broadcast
in generic topology ad hoc networks against a general adversary. We show an
analogous result for known topology networks, which however can be obtained
implicitly from [10] as mentioned above.

We conclude by discussing how to extend our results to the case of a corrupted
dealer by simulating Broadcast protocols for complete networks.

A central tool in our work is a refinement of the local pair-cut technique of
Pelc and Peleg [14] which proves to be adequate for the exact (in most cases)
characterization of the class of graphs for which Broadcast is possible for any
level of topology knowledge and type of corruption distribution. A useful by-
product of practical interest is that the refined cuts can be used to determine
the exact subgraph in which Broadcast is possible.

For clarity we have chosen to present our results for the t-local model first
(Sections 3,4,5), for which proofs and protocols are somewhat simpler and more
intuitive, and then for the more involved general adversary model (Section 6).

2 Problem and Model Definition

In this paper we address the problem of Reliable Broadcast with an honest dealer
in generic (incomplete) networks. As we will see in Section 6, this case essentially
captures the difficulty of the general problem, where even the dealer may be
corrupted. The problem definition follows.

Reliable Broadcast with Honest Dealer. The network is represented by a graph
G = (V,E), where V is the set of players, and E represents authenticated chan-
nels between players. We assume the existence of a designated honest player,
called the dealer, who wants to broadcast a certain value xD ∈ X , where X is
the initial input space, to all players. We say that a distributed protocol achieves
Reliable Broadcast if by the end of the protocol every honest player has decided
on xD, i.e. if it has been able to deduce that xD is the value originally sent by
the dealer and output it as its own decision.
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The problem is trivial in complete networks; we will consider the case of in-
complete networks here. For brevity we will refer to the problem as the Broadcast
problem.

We will now formally define the adversary model by generalizing the notions
originally developed in [9,14]. We will also define basic notions and terminology
that we will use throughout the paper. We refer to the participants of the protocol
by using the terms node and player interchangeably.

Corruption function. Taking into account that each player might be able to es-
timate her own upper bound on the corruptions of its neighborhood, as discussed
earlier, we introduce a model in which the maximum number of corruptions in
each player’s neighborhood may vary from player to player. We thus generalize
the standard t-locally bounded model [9] in which a uniform upper bound on
the number of local corruptions was assumed. Here we consider t : V → N to be
a corruption function over the set of players V .

Non-Uniform t-Locally Bounded Adversary Model. The network is represented
by a graph G = (V,E). One player D ∈ V is the dealer (sender). A corruption
function t : V → N is also given, implying that an adversary may corrupt at
most t(u) nodes in the neighborhood N (u) of each node u ∈ V . The family of
t-local sets plays an important role in our study since it coincides with the family
of admissible corruption sets.

Definition 1 (t-local set). Given a graph G = (V,E) and a function t : V → N
a t-local set is a set C ⊆ V for which ∀u ∈ V, |N (u)∩C| ≤ t(u). For V ′ ⊆ V a
t-local w.r.t. V ′ set is a set C ⊆ V for which ∀u ∈ V ′, |N (u) ∩ C| ≤ t(u).

Uniform vs Non-Uniform Model. Obviously the original t-locally bounded model
corresponds to the special case of t being a constant function. Hereafter we will
refer to the original t-locally bounded model as the Uniform Model as opposed
to the Non-Uniform Model which we introduce here.

In our study we will often make use of node-cuts which separate some players
from the dealer, hence, node-cuts that do not include the dealer. From here on
we will simply use the term cut to denote such a node-cut. The notion of t-local
pair cut was introduced in [14] and is crucial in defining the bounds for which
correct dissemination of information in a network is possible.

Definition 2 (t-local pair cut). Given a graph G = (V,E) and a function
t : V → N, a pair of t-local sets C1, C2 s.t. C1 ∪ C2 is a cut of G is called a
t-local pair cut.

The next definition extends the notion of t-local pair cut and is particularly
useful in describing capability of achieving Broadcast in networks of unknown
topology (ad hoc networks) where each player’s knowledge of the topology is
limited in its own neighborhood.

Definition 3 (t-partial local pair cut). Let C be a cut of G, partitioning
V \C into sets A,B �= ∅ s.t. D ∈ A. C is a t-partial local pair cut (t-plp cut) if
there exists a partition C = C1 ∪ C2 where C1 is t-local and C2 is t-local w.r.t.
B.
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In the uniform model the Local Pair Connectivity (LPC(G,D)) [14] parameter
of a graph G with dealer D, was defined to be the minimum integer t s.t. G has
a t-local pair cut. To define the corresponding notion in the non-uniform model
we need to define a (partial) order among corruption functions. Nevertheless, for
reasoning about our results it suffices to consider the following decision problem:

Definition 4 (pLPC). Given a graph G, a dealer D and a corruption function
t determine whether there exists a t-plp cut in G.

Definition 5 (t-locally resilient algorithm). An algorithm which achieves
Broadcast for any t-local corruption set in graph G with dealer D is called t-
locally resilient for (G,D).

Definition 6 (safe / t-locally safe algorithm). A Broadcast algorithm which
never causes an honest node to decide on an incorrect value, is called safe.
A Broadcast algorithm which never causes an honest node to decide on an in-
correct value under any t-local corruption set, is called t-locally safe.

3 Ad Hoc Networks

3.1 Certified Propagation Algorithm (CPA)

The Certified Propagation algorithm [9] uses only local information and thus is
particularly suitable for ad hoc networks. CPA is probably the only Broadcast
algorithm known up to now for the t-locally bounded model, which does not
require knowledge of the network topology. We use a modification of the original
CPA that can be employed under the non-uniform t-locally bounded adversary
model. Namely a node v, upon reception of t(v) + 1 messages with the same
value x from t(v) + 1 distinct neighbors, decides on x, sends it to all neighbors
and terminates. It can easily be proven by induction that CPA is a t-locally safe
Broadcast algorithm.

3.2 CPA Uniqueness in Ad Hoc Networks

Based on the above definitions we can now prove the CPA uniqueness conjecture
for ad hoc networks, which was posed as an open problem in [14]. The conjecture
states that no algorithm can locally tolerate more corrupted nodes than CPA in
networks of unknown topology.

We consider only the class of t-locally safe Broadcast algorithms. We assume
the ad hoc network model, as described e.g. in [14]. In particular we assume that
nodes know only their own labels, the labels of their neighbors and the label of
the dealer. We call a distributed Broadcast algorithm that operates under these
assumptions an ad hoc Broadcast algorithm.

Theorem 1 (Sufficient Condition). Given a graph G, a corruption function
t and a dealer D, if no t-plp cut exists, then CPA is t-locally resilient for (G,D).
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Proof. Suppose that no t-plp cut exists in G. Let T be the corruption set; clearly
T ∪N(D) is a cut on G as defined before (i.e. not including node D). Since T is
t-local and T ∪N(D) is not a t-plp cut there must exist u1 ∈ V \ (T ∪N (D)∪D)
s.t. |N(u1) ∩ (N(D) \ T )| ≥ t(u1) + 1. Since u1 is honest it will decide on
the dealer’s value xD. Let us now use the same argument inductively to show
that every honest node will eventually decide on the correct value xD through
CPA. Let Ck = (N(D) \ T ) ∪ {u1, u2, ..., uk−1} be the set of the honest nodes
that have decided until a certain round of the protocol. Then Ck ∪ T is a cut.
Since T is t-local, by the same argument as before there exists a node uk s.t.
|Ck ∩N(uk)| ≥ t(uk)+1 and uk will decide on xD. Eventually all honest players
will decide on xD. Thus CPA is t-locally resilient in G.

Theorem 2 (Necessary Condition). Let A be a t-locally safe ad hoc Broad-
cast algorithm. Given a graph G, a corruption function t and a dealer D, if a
t-plp cut exists, then A is not t-locally resilient in (G,D).
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Fig. 1. Graphs G and G′

Proof. Assume that there exists a t-plp cut C = T ∪H in graph G with dealer
D with T being the t-local set of the partition and H the t-local w.r.t. to B set
(Figure 1). Let G′ be a graph that results from G if we remove some edges that
connect nodes in A ∪ T ∪H with nodes in H so that the set H becomes t-local
in G′ (e.g. we can remove all edges that connect nodes in A∪ T ∪H with nodes
in H). Note that the existence of a set of edges that guarantees such a property
is implied by the fact that H is t-local w.r.t. B.

The proof is by contradiction. Suppose that there exists a t-locally safe Broad-
cast algorithm A which is t-locally resilient in graph G with dealer D. We con-
sider the following executions σ and σ′ of A :

Execution σ is on the graph G with dealer D, with dealer’s value xD = 0, and
corruption set T ; in each round, all players in T perform the actions that perform
in the respective round of execution σ′ (where T is a set of honest players).

Execution σ′ is on the graph G′ with dealer D, with dealer’s value xD = 1,
and corruption set H ; in each round, all players in H perform the actions that
perform in the respective round of execution σ (where H is a set of honest
players).

Note that T,H are admissible corruption sets in G,G′ respectively due to their
t-locality. It is easy to see that H∪T is a cut which separatesD from B in both G
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and G′ and that actions of every node of this cut are identical in both executions
σ, σ′. Consequently, the actions of any honest node w ∈ B must be identical in
both executions. Since, by assumption, algorithm A is t-locally resilient on G
with dealer D, w must decide on the dealer’s message 0 in execution σ on G with
dealer D, and must do the same in execution σ′ on G′ with dealer D. However,
in execution σ′ the dealer’s message is 1. Therefore A makes w decide on an
incorrect message in (G′, D). This contradicts the assumption that A is locally
safe.

We can show that if we drop the requirement for t-local safety, then the
theorem does not hold. Intuitively, the reason is that an ad hoc protocol that
assumes certain topological properties for the network may be t-locally resilient
in a family of graphs that have the assumed topological properties. Indeed,
Pelc and Peleg [14] introduced another algorithm for the uniform model, the
Relaxed Propagation Algorithm (RPA) which uses knowledge of the topology of
the network and they proved that there exists a graph G′′ with dealer D for
which RPA is 1-locally resilient and CPA is not. So if we use RPA in an ad hoc
setting assuming that the network is G′′ then this algorithm will be t-locally
resilient for (G′′, D) while CPA will not. Non-t-local safety of RPA can easily
be shown. This shows that there exists non-safe algorithms of higher resilience
than CPA. The next corollary is immediate from Theorems 1,2.

Corollary 1 (CPA Uniqueness). Given a graph G and dealer D, if there
exists an ad hoc Broadcast algorithm which is t-locally resilient in (G,D) and
t-locally safe, then CPA is t-locally resilient in (G,D).

3.3 Hardness of pLPC

Ichimura and Shigeno in [8] prove that the set splitting problem, known as NP-
hard [6], can be reduced to the problem of computing the minimum integer t
such that a t-local pair cut exists in a graph G. By generalizing the notion of the
t-local pair cut to that of t-plp cut and defining the pLPC problem analogously
one can use a nearly identical proof to that of [8] and show that the pLPC
problem is NP-hard. For completeness the proof is given in the full version2.

Theorem 3. pLPC is NP-hard.

Therefore, computing the necessary and sufficient condition for CPA to work
is NP-hard. Observe that this negative result also has a positive aspect, namely
that a polynomially bounded adversary is unable to always compute an optimal
attack unless P = NP.

4 Known Topology Networks

4.1 The Path Propagation Algorithm

Considering only safe Broadcast algorithms, the uniqueness of CPA in the ad
hoc model implies that an algorithm that achieves Broadcast in cases where

2 All omitted proofs are deferred to the full version.
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CPA does not, must operate under a weaker model e.g., assuming additional
information on the topology of the network. It thus makes sense to consider the
setting where players have full knowledge of the topology of the network. In this
section we propose the Path Propagation Algorithm (PPA) and show that is of
optimal resilience in the full-knowledge model. For convenience we will use the
following notions: a set S ⊆ V \D is called a cover of a set of paths P if and
only if ∀p ∈ P , ∃s ∈ S s.t. s ∈ p (s is a node of p). With tail(p) we will denote
the last node of path p. The description of PPA follows.

Protocol 1: Path Propagation Algorithm (PPA)

Input (for each node v): graph G, dealer D, t(v) = max #corruptions in N(v).
Message format : pair (x, p), where x ∈ X (message space), and p is a path of G
(message’s propagation trail).

Code for D: send message (xD, D) to all neighbors, decide on xD and terminate.

Code for v �= D: upon reception of (x, p) from node u do:

if (v ∈ p) ∨ (tail(p) �= u) then discard the message
else send (x, p||v) 3 to all neighbors.

if decision(v) �= ⊥ then send message (decision(v), v) to all neighbors.

function decision(v)

(* dealer propagation rule *)

if v ∈ N (D) and v receives (xD, D) then return xD.

(* honest path propagation rule *)

if v receives (x, p1), . . . , (x, pn) ∧ � t-local cover of {p1, . . . , pn}
then return x else return ⊥.

The correctness of the honest path propagation rule is trivial: if a path is
entirely corruption free, then value x, which is relayed through that path, is
correct. Checking whether tail(p) �= u we ensure that at least one corrupted
node will be included in a faulty path. Observe that each player can check the
validity of the honest path propagation rule only if it has knowledge of the
corruption function t and the network’s topology.

4.2 A Necessary and Sufficient Condition

We will now show that the non-existence of a t-local pair cut is a sufficient con-
dition for PPA to achieve Broadcast in the t-locally bounded model in networks
of known topology (proof omitted).

3 By p||v we denote the path consisting of path p and node v, with the last node of p
connected to v.



116 A. Pagourtzis, G. Panagiotakos, and D. Sakavalas

Theorem 4 (Sufficiency). Given a graph G with dealer D and corruption
function t, if no t-local pair cut exists in (G,D) then all honest players will
decide through PPA on xD.

Using the same arguments as in the proof of the necessity of condition t <
LPC(G,D) [14] it can be seen that the non-existence of a t-local pair cut is
a necessary condition for any algorithm to achieve Broadcast under the non-
uniform model.

Theorem 5 (Necessity). Given a graph G with dealer D and corruption func-
tion t, if there exists a t-local pair cut in (G,D) then there is no t-locally resilient
algorithm for (G,D).

Thus the non-existence of a t-local pair cut proves to be a necessary and
sufficient condition for the existence of a t-locally resilient algorithm in both the
uniform and the non-uniform model. Therefore PPA is of optimal resilience.

4.3 On the Hardness of Broadcast in Known Networks

In order to run PPA we have to be able to deduce whether a corruption-free path
exists among a set of paths broadcasting the same value. Formally, given a graph
G(V,E), a set of paths P and a node u (the one that executes decision(u))
we need to determine whether there exists a t-local cover T of P . We call this
problem the Local Path Cover Problem, LPCP (G,D, u, t,P) and show that is
NP-hard (proof omitted).

Theorem 6. It is NP-hard to compute LPCP (G,D, u, t,P).

The above theorem implies that PPA may not be practical in some cases, since
its decision rule cannot be always checked efficiently. It remains to show whether
any other algorithm which has the same resilience as PPA can be efficient. The
following theorem provides an indication that the answer is negative, by showing
that algorithms which behave exactly as PPA w.r.t. decision are unlikely to be
efficient (proof omitted).

Theorem 7. Assuming P �= NP, no safe fully polynomial protocol Π can satisfy
the following: for any graph G, dealer D, corruption function t, and admissible
corruption set C executing protocol ΠC , a node u decides through PPA on a
value x iff u will decide on x by running Π on (G,D, t, C,ΠC).

5 Partial Knowledge

Until now we have presented optimal resilience algorithms for Broadcast in two
extreme cases, with respect to the knowledge over the network topology: the ad
hoc model and the full-knowledge model. A natural question arises: is there any
algorithm that works well in settings where nodes have partial knowledge of the
topology?
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To address this question we devise a new, generalized version of PPA that
can run with partial knowledge of the topology of the network. More specifically
we assume that each player v only has knowledge of the topology of a certain
connected subgraph Gv of G which includes v. Namely if we consider the family
G of connected subgraphs of G we use the topology view function γ : V → G,
where γ(v) represents the subgraph over which player v has knowledge of the
topology. We also define the joint view of a set S as the subgraph γ(S) of G with
node-set V (γ(S)) =

⋃
u∈S V (γ(u)) and edge-set E(γ(S)) =

⋃
u∈S E(γ(u)). We

will call an algorithm which achieves Broadcast for any t-local corruption set in
graph G with dealer D and view function γ, (γ, t)-locally resilient for (G,D).

Now given a corruption function t and a view function γ we define the Gener-
alized Path Propagation Algorithm (GPPA) to work exactly as PPA apart from
a natural modification of the path propagation rule.

Generalized path propagation rule: Player v receives the same value x from a
set P of paths that are completely inside γ(v) and is able to deduce (from the
topology) that no t-local cover of P exists.

Remark. Note that GPPA generalizes both CPA and PPA. Indeed, if ∀v ∈
V, γ(v) = N (v), then GPPA(G,D, t, γ) coincides with CPA(G,D, t). If, on the
other hand, ∀v ∈ V, γ(v) = G then GPPA(G,D, t, γ) coincides with PPA(G,D, t).
We also notice that, quite naturally, as γ provides more information for the topol-
ogy of the graph, resilience increases, with CPA being of minimal resilience in
this family of algorithms, and PPA achieving maximal resilience.

To prove necessary and sufficient conditions for GPPA being t-locally resilient
we need to generalize the notion of t-plp cut as follows:

Definition 7 (type 1 (γ, t)-partial local pair cut). Let C be a cut of G,
partitioning V \ C into sets A,B �= ∅ s.t. D ∈ A. C will be called a type 1
(γ, t)-partial local pair cut (plp1 cut) if there exists a partition C = C1 ∪C2 s.t.
C1 is t-local and C2 is t-local in the graph γ(B).

Definition 8 (type 2 (γ, t)-partial local pair cut). Let C be a cut of G,
partitioning V \ C into sets A,B �= ∅ s.t. D ∈ A. C will be called a type 2
(γ, t)-partial local pair cut (plp2 cut) if there exists a partition C = C1 ∪C2 s.t.
C1 is t-local and ∀u ∈ B, C2 ∩N(u) is t-local in the graph γ(u).

We can now show the following two theorems. The proofs build on the tech-
niques presented for CPA and PPA and are omitted.

Theorem 8 (sufficient condition). Let t be corruption function and γ be a view
function, if no (γ, t)-plp2 cut exists in G with dealer D then GPPA(G,D, t, γ) is
(γ, t)-locally resilient for G,D.

Theorem 9 (necessary condition). Let t be a corruption function, γ be a
view function and A be a t-locally safe ad hoc Broadcast algorithm. If a (γ, t)-
plp1 cut exists in graph G with dealer D, then A is not (γ, t)-locally resilient for
G,D.
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One can argue that increased topology knowledge implies increased resilience
for GPPA compared to CPA; for example, the sufficient condition of GPPA holds
in settings where the sufficient condition of CPA does not hold. An overview of
our results concerning the t-local model with respect to the level of topology
knowledge appears in Figure 2.

Notice that the reason for which GPPA is not optimal is that nodes in γ(v)
do not share their knowledge of topology. An optimal resilience protocol would
probably include exchange of topological knowledge among players.

G

∃ safe, t-locally resilient
Ad-Hoc algorithm (CPA)

⇔
� a t-plp cut

� a t-local pair cut

∃ t-locally resilient algorithm (PPA)
⇔

� a type 1 (γ, t)-plp cut

� a type 2 (γ, t)-plp cut
⇒

∃ a safe, (γ, t)-locally
resilient algorithm (GPPA)

Fig. 2. Overview of conditions concerning the existence of t-locally resilient algorithms
with respect to the level of topology knowledge. Note that G refers to the family of
pairs (G,D).

6 General Adversary

Hirt and Maurer in [7] study the security of multiparty computation protocols
with respect to an adversary structure, that is, a family of subsets of the players;
the adversary is able to corrupt one of these subsets. More formally, a structure
Z for the set of players V is a monotone family of subsets of V , i.e. Z ⊆ 2V ,
where all subsets of Z are in Z if Z ∈ Z. Let us now redefine some notions that
we have introduced in this paper in order to extend our results to the case of
a general adversary. We will call an algorithm that achieves Broadcast for any
corruption set T ∈ Z in graph G with dealer D, Z-resilient. We next generalize
the notion of a t-local pair cut.

Definition 9 (Z-pair cut). A cut C of G for which there exists a partition
C = C1 ∪ C2 and C1, C2 ∈ Z is called a Z-pair cut of G.

Known Topology Networks. We adapt PPA in order to address the Broad-
cast problem under a general adversary. The Generalized Z-PPA algorithm can
be obtained by a modification of the path propagation rule of PPA (Protocol 1).
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Z-PPA Honest Path Propagation Rule: player v receives value x from a set P of
paths and is able to deduce that for any T ∈ Z, T is not a cover of P .

Moreover, the following theorems can be easily shown using essentially the
same proofs as for Theorems 4, and 5 and replacing the notion of t-local pair
cut with that of Z-pair cut.
Theorem 10 (Sufficiency). Given a graph G, dealer D, and an adversary
structure Z, if no Z-pair cut exists, then all honest players will decide on xD

through Z-PPA.

Theorem 11 (Necessity). Given a graph G, dealer D, and an adversary struc-
ture Z, if there exists a Z-pair cut then there is no Z-resilient Broadcast algo-
rithm for (G,D).

Ad Hoc Networks. Since in the ad hoc model the players know only their own
labels, the labels of their neighbors and the label of the dealer it is reasonable to
assume that a player has only local knowledge on the actual adversary structure
Z. Specifically, given the actual adversary structure Z we assume that each
player v knows only the local adversary structure Zv = {A ∩N (v) : A ∈ Z}.

As in known topology networks, we can describe a generalized version Z-CPA
of CPA, which is an ad hoc Broadcast algorithm for the general adversary model.
In particular, we modify the propagation rule of CPAin the following way.

Z-CPA Propagation Rule: if a node v is not a neighbor of the dealer, then upon
receiving the same value x from all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv,
it decides on value x.

In order to argue about the topological conditions which determine the effec-
tiveness of Z-CPA we generalize the notion of partial t-local pair cut.

Definition 10 (Z-partial pair cut). Let C be a cut of G partitioning V \ C
into sets A,B �= ∅ s.t. D ∈ A. C is a Z-partial pair cut (Z-pp cut) if there
exists a partition C = C1 ∪ C2 with C1 ∈ Z and ∀u ∈ B, N (u) ∩ C2 ∈ Zu.

Analogously to CPA Uniqueness, we can now prove Z-CPA Uniqueness in the
general adversary model (proofs omitted).

Theorem 12 (Sufficient Condition). Given a graph G, dealer D, and an
adversary structure Z, if no Z-pp cut exists, then Z-CPA is Z-resilient.

Theorem 13 (Necessary Condition). Let A be a safe ad hoc Broadcast al-
gorithm. Given a graph G, dealer D, and an adversary structure Z, if a Z-pp
cut exists then A is not Z-resilient for G,D.

Complexity of Z-CPA. Regarding the computational complexity of Z-CPA one
can observe that it is polynomial if and only if for every player v there exists
a polynomial (w.r.t. the size of G) algorithm B which given a set S ⊆ N (v)
decides whether S ∈ Zv. Since Z-CPA is clearly polynomial in round complexity
and communication complexity, if such an algorithm B exists, Z-CPA is fully
polynomial.
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Dealer Corruption. We have studied the problem of Broadcast in the case where
the dealer is honest. In order to address the general case in which the dealer
may also be corrupted one may observe that for a given adversary structure Z
and graph G, Z-resilient Broadcast in ad hoc networks can be achieved if the
following conditions both hold:

1. �Z1, Z2, Z3 ∈ Z s.t. Z1 ∪ Z2 ∪ Z3 = V .
2. ∀v ∈ V there does not exist a Z-pp cut for G with dealer v.

Condition 1 was proved by Hirt and Maurer [7] sufficient and necessary for
the existence of secure multiparty protocols in complete networks. Z-resilient
Broadcast in the general case where the network is incomplete can be achieved by
simulating any protocol for complete graphs (e.g. the protocol presented in [4]) as
follows: each one-to-many transmission is replaced by an execution of Z-CPA. It
is not hard to see that the conjunction of the above two conditions is necessary
and sufficient for Broadcast in incomplete networks in the case of corrupted
dealer. Analogously, the same result holds in networks of known topology, if we
replace Condition 2 with the corresponding Z-pair cut condition. Naturally, the
above observations hold also in the special case of a locally bounded adversary.

7 Open Questions

Necessary and sufficient criteria for Broadcast on known topology and ad-hoc
networks are NP-hard to compute. It remains open to define and study mean-
ingful approximation objectives.

We conjecture that in the known topology locally bounded setting no safe,
fully polynomial algorithm can achieve optimal resilience. We have provided an
indication towards proving this in Subsection 4.3.

Regarding the partial knowledge model discussed in Section 5, GPPA is not
of optimal resilience. Devising such an algorithm would be of great interest. One
direction towards this, is to consider discovering the network topology under a
Byzantine adversary, as studied in [13,3].

In the ad hoc general adversary setting, we proved that Z-CPA is unique, thus
having optimal resilience. We conjecture that it is also unique w.r.t. polynomial
time complexity, i.e., if a safe protocol achieves Broadcast in polynomial time
then so does Z-CPA.
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Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 269–280. Springer,
Heidelberg (2013)

13. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzan-
tine faults. IEEE Trans. Parallel Distrib. Syst. 20(12), 1777–1789 (2009)

14. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Pro-
cess. Lett. 93(3), 109–115 (2005)

15. Tseng, L., Vaidya, N.: Iterative approximate byzantine consensus under a general-
ized fault model. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha,
P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 72–86. Springer, Heidelberg (2013)

16. Tseng, L., Vaidya, N.H., Bhandari, V.: Broadcast using certified propagation algo-
rithm in presence of byzantine faults. CoRR abs/1209.4620 (2012)

http://doi.acm.org/10.1145/571825.571858


Evacuating Robots via Unknown Exit in a Disk

Jurek Czyzowicz1,5, Leszek Gąsieniec2, Thomas Gorry2,
Evangelos Kranakis3,�, Russell Martin2, and Dominik Pajak4,��

1 Département d’informatique, Université du Québec en Outaouais, Canada
2 Department of Computer Science, University of Liverpool, Liverpool, UK

3 School of Computer Science, Carleton University, Ottawa, Canada
4 INRIA Bordeaux Sud-Ouest, 33405 Talence, France

Abstract. Consider k mobile robots inside a circular disk of unit radius.
The robots are required to evacuate the disk through an unknown exit
point situated on its boundary. We assume all robots having the same
(unit) maximal speed and starting at the centre of the disk. The robots
may communicate in order to inform themselves about the presence (and
its position) or the absence of an exit. The goal is for all the robots to
evacuate through the exit in minimum time.

We consider two models of communication between the robots: in
non-wireless (or local) communication model robots exchange informa-
tion only when simultaneously located at the same point, and wireless
communication in which robots can communicate one another at any
time.

We study the following question for different values of k: what is
the optimal evacuation time for k robots? We provide algorithms and
show lower bounds in both communication models for k = 2 and k = 3
thus indicating a difference in evacuation time between the two models.
We also obtain almost-tight bounds on the asymptotic relation between
evacuation time and team size, for large k. We show that in the local
communication model, a team of k robots can always evacuate in time
3+ 2π

k
, whereas at least 3+ 2π

k
−O(k−2) time is sometimes required. In the

wireless communication model, time 3+ π
k
+O(k−4/3) always suffices to

complete evacuation, and at least 3+ π
k

is sometimes required. This shows
a clear separation between the local and the wireless communication
models.

1 Introduction

Consider a team of mobile robots inside an environment represented by a circular
disk of unit radius. The robots need to find an exit being a point at an unknown
position on the boundary of the disk in order to evacuate through this point.
The exit is recognized when visited by a robot. The robots may communicate in
order to exchange the knowledge about the presence (or the absence) of the exit
� Research Supported in Part by NSERC Discovery Grant.
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acquired through their previous movements. We consider two communication
models. In the non-wireless (or local) model, communication is possible between
robots which arrive at the same point (in the environment) at the same moment,
while the wireless model allows broadcasting a message by a robot, which is
instantly acquired by other robots, independently of their current positions in
the environment. The robots start at the centre of the disk and they can move
with a speed not exceeding their maximum velocity (which is the same for all
robots). The objective is to plan the movements of all robots, which result in
the shortest worst-case time needed for all robots to evacuate.

1.1 Related Work

Mobile agents are autonomous entities traveling within geometric or graph-
modeled environments. Besides mobility, agents possess the ability to perceive the
environment, compute, and communicate among themselves. They collaborate in
order to perform tasks assigned to them. When agents operate in geometric en-
vironments (then they are usually called robots) their performance is measured
by the geometric distance travelled, most often disregarding their computing,
communicating and environment-perceiving activities.

When the geometric environment is not known in advance by the mobile robots,
in many papers their task consisted in exploring the environment[1,2,13,17]. The
coordination of exploration between multiple robots has been mainly studied by
the robotics community [10,25,26]. However even if the main objective assigned to
the robots is different from exploration, often part of their activity is devoted to
the recognition or mapping of the terrain and/or the position of the robots within
it [20,22,24]. When the map of the environment is known to the robots, a lot of
research was devoted to search games, when the searchers usually try to minimize
the time to find an immobile or a moving hider [3,4,21]. The literature of the case
of mobile fugitives, often known as cops and robbers or pursuit-evasion games is
particularly rich [12,15], with numerous variations related to the type of environ-
ment, speed of evasion and pursuit, robots visibility and many others [23]. The
searching for a motionless point target in the simple environment presented in
our paper has some similarities with the lost at sea problem, [16,18], the cow-path
problem [8,9], and with the plane searching problem [5,6].

The problem of evacuation has been studied for grid polygons from the per-
spective of constructing centralized evacuation plans, resulting in the fastest
possible evacuation from the rectilinear environment [14]. Previously, [7] consid-
ered evacuation planning as earliest-arrival flows with multiple sources giving
the first algorithm strongly polynomial in input/output size.

Evacuation in a distributed setting, when the mobile robots (know the simple
environment but not the exit positions) has been recently asked in [11] for the case
of a line. They proved that evacuation of multiple uniform agents is as hard as the
cow-path problem. Evacuation of two robots without wireless communication was
discussed with the research group of M. Yamashita during the visit of the second
co-author at Kyushu University [19]. The discussion focused on laying the founda-
tions for the lower bound presented in this paper and seeking ways to improve the
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respective upper bound. However, the main objective of our problem is to find a
compromise between, on one hand, spreading sufficiently the robots so that they
can find the exit point fast in parallel, and, on the other hand, not to spread them
too far so that, when one robot finds the exit, the escape route to it of the other
robots is not too long.

1.2 Preliminaries

The environment is a disk of unit radius. The robots start their movement at the
centre of the disk. We assume that the perception device of the robot permits
to recognize a boundary point of the environment when the robot arrives there.
Similarly, we assume that a robot recognizes the presence of other robots at
the same position as well the fact that the robot is currently at the exit point.
We also assume that the robots are labeled, i.e. they may execute different
algorithms. Each such algorithm instructs the robot to make the moves with a
speed not exceeding its maximal speed. In particular, the algorithm may ask the
robot to move towards the centre of the disk or a chosen point on its boundary
or to follow the boundary clockwise or counterclockwise. The movement may
be changed when the perception mechanism allows the robot to acquire some
knowledge about the environment (e.g. the exit point, boundary point, a meeting
point with another robot). The robots are allowed to stay motionless at the same
point. If A and B are points on the perimeter of the disk, by �AB we will denote
arc from A to B in the clockwise direction and by AB we will denote the cord
connecting A and B. The length of �AB will be denoted by |�AB| and the length
of AB will be denoted by |AB|.

1.3 Outline and Results of the Paper

In Section 2 we consider the evacuation problem for two robots, while Section 3
analyzes the case of three robots. Section 4 proves tight asymptotic bounds
for k robots. Each section is divided into two parts consisting of the analysis
for the non-wireless and wireless models, respectively. The complexity details
corresponding to the three sections are in Table 1.

Table 1. Upper and Lower bounds for k ≥ 2 robots

Model Bound k = 2 k = 3 k ≥ 4

Non-
wireless

Upper

Lower

∼5.74 (Th 1)

∼5.199 (Th 2)

∼5.09 (Th 8)

∼4.519 (Th 5)

3 + 2π
k

< 4.58 (Th 8)

3 + 2π
k
−O(k−2) (Th 9)

Wireless
Upper

Lower

∼4.83 (Th 3)

∼4.83 (Th 4)

∼4.22 (Th 6)

∼4.159 (Th 7)

3 + π
k
+O(k−4/3) (Th 10)

3 + π
k
> 3.785 (Th 11)



Evacuating Robots via Unknown Exit in a Disk 125

These results establish a clear separation between the non-wireless and the
wireless communication models. Due to lack of space the detail of missing proofs
of some theorems and lemmas are deferred to the full version of the paper.

2 Two Robots

Consider a disk centered at K. Two robots, say r1, r2, start at K moving with
constant speed, say 1, searching for an exit located at an unknown point on the
perimeter of the disk. In the sequel we prove upper and lower bounds for the
two robot case in the non-wireless and wireless cases.

2.1 Non-wireless Communication

Algorithm A1 indicates the robot trajectory for evacuation without wireless
communication.

Algorithm A1 [for two robots without wireless communication]

1. Both robots move to an arbitrary point A on the perimeter.
2. At A the robots move along the perimeter of the disk in opposite directions; robot

r1 moves counter-clockwise and robot r2 moves clockwise until one of the two
robots, say r1, finds the exit at B.

3. Now robot r1 is at point B and r2 is at point C (symmetric to B). Robot r1 chooses
a point D such that the length of the chord BD is equal to the length of the arc�CD and moves towards D.

4. Since the length of the chord BD is equal to the length of the arc �CD, both robots
arrive at D at the same time. Robot r1 has knowledge about the location of the
exit thus both robots can now follow the straight line DB and exit.

In the following theorem we give a bound on the worst-case evacuation time
of algorithm A1.

Theorem 1. There is an algorithm for evacuating the robots from an unknown
exit located on the perimeter of the disk which takes time 1 + α/2 + 3 sin(α/2),
where the angle α satisfies the equation cos(α/2) = −1/3. It follows that the
evacuation algorithm takes time ∼ 5.74.

Proof. (Theorem 1) We calculate the time required until both robots from al-
gorithm A1 reach the exit. Denote x = |�BA| = |�AC|, y = |BD| = |�CD| and
α = |�BD|. According to the definition of the above algorithm A1 the total time
required is f(α) = 1 + x + 2y. Observe that α = 2x + y, and y = 2 sin(α/2),
because y is a chord of the angle α. By substituting x and y in the definition of
the function f we can express the evacuation time as a function of the angle α
as follows. f(α) = 1 + α−y

2 + 2y = 1 + α
2 + 3y

2 = 1 + α
2 + 3 sin(α/2). Now we
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Fig. 1. Evacuation of two robots without wireless communication

differentiate with respect to α and we obtain: df(α)
dα = 1

2 + 3
2 cos(α/2). It is easy

to see that this derivative equals 0 for the maximum of function f(α), which
yields as value for α the solution of cos(α/2) = −1/3. This proves Theorem 1.

We remark however that algorithmA1 is not optimal. Suppose that we modify
algorithm A1 by making the robot arriving at point D on Fig. 1 walk along a
small segment z from D towards K and back, before continuing the circular arc
following D (similarly for the other robot arriving at the point symmetric to D).
Our experiments show that, for sufficiently small length of such segment z, the
maximum cost of 5.74 may be slightly reduced.

In the sequel we state and prove a lower bound.

Theorem 2. It takes at least 3+ π
4 +

√
2 (∼ 5.199) time units for two robots to

evacuate from an unknown exit located in the perimeter of the disk.

Proof. (Theorem 2) At the beginning, both robots are located at the center K of
the disk. It takes at least 1 time unit for both of them to move to the perimeter
of the disk.

In less than an additional π/4 time units the two robots cover at most a length
of π/2 of the perimeter. The main idea is to observe, that until that time of the
movement we can always construct a square ABCD with sides equal to

√
2

whose all vertices are not yet visited by neither of the two robots. The vertices
represent positions where an adversary can place an exit. Using an adversary
argument it can be shown that an additional 2+

√
2 time units are required for

robot evacuation. We give details of this argument in the following two lemmas.

Lemma 1. For any ε > 0, at time 1 + π
4 − ε there exists a square inscribed in

the disk none of whose vertices has been explored by a robot.

Proof. (Lemma 1) The proof is easily derived by rotating a square inscribed
in the disk continuously for an angle of π/2. More precisely assume on the
contrary that such an inscribed square does not exist. Consider a partition of
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Fig. 2. Forming a square ABCD of positions not yet explored by the robots

perimeter of the disk into four arcs of length π/2, E1, E2, E3, E4. Any point
e1 ∈ E1 uniquely defines an inscribed square with vertices e1 ∈ E1, e2 ∈ E2, e3 ∈
E3, e4 ∈ E4. Moreover for a different e′1 ∈ E1, e′1 �= e1 vertices of the inscribed
square {e′1, e′2, e′3, e′4} are different e′i �= ei for all i ∈ 1, 2, 3, 4. By the assumption,
for any e1 ∈ E1 at least one of the vertices {e1, e2, e3, e4} of the inscribed square
has to be explored (denote it by e∗). Thus for any e1 we can identify an explored
vertex e∗(e1). Since for different e1, the inscribed square is different then the
function e∗(e1) is an injection. Thus the image of the function e∗(e1) is a set
of length π/2 of explored points. But such set does not exist because at time
1+π/4− ε the total length of the set of explored points less than π/2. Therefore
we obtain a contradiction at time 1 + π

4 − ε that an inscribed square, none of
whose vertices has been explored by a robot, does exist.

Lemma 2. For any square inscribed in the disk none of whose vertices has been
explored by a robot it takes more than 2 +

√
2 time to evacuate both robots from

a vertex of the square.

Proof. (Lemma 2) Take the square ABCD with unexplored vertices. Consider
any evacuation algorithm A. We allow the algorithm to place the robots on
arbitrary positions of the disk (possibly also on vertices of the square). The
adversary can run the algorithm with undefined position of the exit and place
the exit depending on the behaviour of the robots. The adversary will run the
algorithm from perspective of a fixed robot r and will place the exit at a some
point P . The placement of the exit at point P in time t is possible if robot r has
no information whether the exit is located in P . Formally we say that a point
P is unknown to robot r at time t if for any time moment t′ ∈ [0, t] robot r is
at distance more than t′ from P . This means that even if other robot started at
P it could not meet r at any time in the interval [0, t]. Take a robot r and the
first time moment t when the third vertex of the square is visited by a robot.
Consider two cases

Case 1.
√
2 ≤ t < 2.

Denote the vertex visited by r in time t by A. The adversary places the exit
in the antipodal point C. Observe that point C is unknown to r at time t. This
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is because if r was at distance at most t′ from C at some time t′ ∈ [0, t] then it
would be at distance 2− t′ from A and would reach A no sooner than at time 2,
which is a contradiction as t < 2. Thus placement of the exit in C cannot affect
movement of r until time t. Therefore, the adversary can place the exit in C and
the evacuation time in this case will be at least t+ 2 ≥ 2 +

√
2.

Case 2. 2 ≤ t.
Time moment t is the first time when three vertices of the square are explored

(it is possible that in t both robots explore a new vertex). Therefore, at time t,
some robot r has knowledge about at most three vertices. The adversary simply
places the exit in the vertex unknown to r and the evacuation time of r will be
at least t+

√
2 ≥ 2 +

√
2.

Observe that t cannot be smaller than
√
2 because within time t at least one

robot has to traverse at least one side of the square. This proves Lemma 2.

Clearly, the proof of Theorem 2 is an immediate consequence of Lemmas
1 and 2.

2.2 Wireless Communication

Algorithm A2 indicates the robot trajectory for evacuation with wireless com-
munication.

Algorithm A2 [for two robots with wireless communication]
1. Both robots move to an arbitrary point A on the perimeter.
2. At A the robots start moving along the perimeter of the disk in opposite directions:

robot r1 moves counter-clockwise and robot r2 moves clockwise until one of the
robots, say r1, finds the exit at B.

3. Robot r1 notifies r2 using wireless communication about the location of the exit
and robot r2 takes the shortest chord to B.

Theorem 3. There is an algorithm for evacuating two robots from an unknown
exit located on the perimeter of the disk which takes time at most 1 + 2π

3 +
√
3.

Proof. (Theorem 3) Consider the maximum evacuation time of algorithm A2. If
the angular distance between A and B equals x, then the length of the chord
taken by the robot r2 equals to c(x) = 2 sin(π − x) (see Figure 3). Thus the
evacuation time T satisfies T ≤ max0≤x≤π{1+x+2 sin(π−x)} = max0≤x≤π{1+
x+2 sinx}. The function f(x) = 1+x+2 sinx in the interval [0, π] is maximized
at the point x∗ = 2π/3 and f(x∗) = 1 + 2π/3 +

√
3. This proves Theorem 3.

We now state the main lower bound.

Theorem 4. For any algorithm it takes at least 1 + 2π
3 +

√
3 time in the worst

case for two robots to evacuate from an unknown exit located in the perimeter of
the disk.
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Fig. 3. Evacuation of two robots with wireless communication

3 Three Robots

In this section we analyze evacuation time for three robots in both non-wireless
and wireless models.

3.1 Non-wireless Communication

The first lemma provides a lower bound which is applicable for any k robots in
the non-wireless model.

Lemma 3. For any k ≥ 3 and 1 < α < 2, it takes in the worst case at least
min

{
3 + απ

k , 3 + 2 sin
(
π − απ

2

)}
time to evacuate from an unknown exit located

on the perimeter of the disk in the model without wireless communication.

Proof. (Lemma 3) Take any evacuation algorithm A. Denote by Ap
r(t) the posi-

tion of robot r in time t if the exit is located at point p. Since we are considering
the worst case, we need to show that there exists a point p∗ on the perimeter
such that if the exit is located at p∗ then the evacuation time of the algo-
rithm A is at least 3+ 2π

k −O(k−2). Consider the following three time intervals:
I1 = [0, 1) , I2 =

[
1, 1 + απ

k

)
, I3 =

[
1 + απ

k , 3
)
. Since algorithm A is determinis-

tic, the robots will follow a fixed trajectory, independent of the location of the
exit until finding the exit or being notified about it by some other robot. Denote
these trajectories by p1(t), p2(t), . . . pk(t). Consider two cases:

Case 1. There exists a robot r and time t∗ ∈ I3 such that point p = pr(t
∗) of

the trajectory of the robot r is on the perimeter of the disk.
We will argue that the adversary can place the exit at point p∗ being antipodal of
p. We need to prove that if the exit is at point p∗ then until time t∗ robot r will be
unaware of the location of the exit and will follow the trajectory pr(t). Consider
the trajectory followed by robot r in algorithm A if the exit is at point p∗. Robot
r is following the trajectory pr(t) until finding the exit or being notified about
it. We want to show that robot r cannot be notified about the exit until time
t∗. Assume on the contrary that 1 ≤ t′ < t∗ is the first moment in time when r



130 J. Czyzowicz et al.

either discovered the exit or met a robot carrying information about the location
of the exit. Thus we have that Ap∗

r (t) = pr(t), for all t ∈ [0, t′]. First note that
since p = pr(t

∗) we have that dist(Ap∗

r (t′), p∗) = dist(pr(t
′), p∗) > t′ − 1. The

last inequality is true because if the distance between pr(t
′) and p∗ would be

at most t′ − 1 then the distance to p would be at least 3 − t′ (because p and
p∗ are antipodal) and robot r following trajectory pr(t) would not be able to
reach p until time t∗ (recall t∗ < 3), which is a contradiction since pr(t

∗) = p.
Now observe that in algorithm A if the exit is located at p∗ then for any time
moment t′ ≤ 3, any robot carrying information about the location of the exit is
at distance at most t′−1 from p∗ (it is because robots can exchange informations
only when they meet and the maximum speed of a robot is 1). Thus it is not
possible that robot r in time t′ obtain the information about the exit by meeting
another robot. It is also not possible that pr(t

′) = p∗, because robot r following
trajectory pr(t) would not be able to reach p until time t∗. Thus such t′ does not
exist and we have: Ap∗

r (t) = pr(t), for all t ∈ [0, t∗]. In time moment t∗ robot
r following algorithm A is at distance 2 from the exit located at p∗. Thus the
total evacuation time is at least t∗+2 ≥ 3+απ/k, since t∗ ≥ 1+απ/k (because
t∗ ∈ I3).

Case 2. None of the trajectories p1(t), p2(t), . . . pk(t) in the interval I3 is equal
to a point on the perimeter.

In this case we consider robots following the trajectories p1(t), p2(t), . . . , pk(t)
in the time interval [0, 3). We need the following lemma.

Lemma 4. If a perimeter of a disk whose subset of total length u + ε > 0 has
not been explored for some ε > 0 and π ≥ u > 0, there exist two unexplored
boundary points between which the distance along the perimeter is at least u.

The set of points U on the perimeter of the disk that were not visited by
any robot following such trajectories satisfies |U | ≥ 2π − απ because in this
case robots can explore the perimeter only in time interval I2 of length απ/k.
Thus by Lemma 4 there exists a pair of unexplored points at distance at least
2π − απ − ε for any ε > 0. The chord connecting these two points has length at
least 2 sin(π−απ/2−ε/2). Take this chord and denote its endpoints by u1 and u2.
The adversary can run the algorithm A until moment t′ when one of the points
u1, u2 is visited and the adversary can place the exit in the other one. Note that
until moment t′ robots are following trajectories pr(t) because none of the robots
has any information about the exit, thus t′ ≥ 3. Now the first robot that visited
one of the points u1, u2 still needs to travel at least 2 sin(π−απ/2−ε/2) because
the exit is on the other end of the chord. Thus exploration time is in this case at
least 3+2 sin(π−απ/2−ε/2). We showed that the worst case time of evacuation
T for any correct algorithm satisfies T ≥ min

{
3 + απ

k , 3 + 2 sin
(
π − απ

2 −
ε
2

)}
,

for any ε > 0. The claim of the lemma follows by passing to the limit as ε→ 0.

Theorem 5. It takes at least 4.519 time in the worst case to evacuate three
robots from an unknown exit located in the perimeter of the disk in the model
without wireless communication.
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Proof. (Theorem 5) We have by Lemma 3 that the evacuation time T of any
evacuation algorithmA satisfies T ≥ min{3+ απ

k , 3+2 sin(π−απ/2)} for any k ≥
3. To prove the statement we numerically find such α that απ

3 = 2 sin
(
π − απ

2

)
.

If we set α = 1.408, we obtain T ≥ min
{
3 + απ

3 , 3 + 2 sin
(
π − απ

2

)}
> 4.519.

This proves Theorem 5.

3.2 Wireless Communication

We have three robots r1, r2, r3 and consider the following algorithm.

Algorithm A3 [for three robots with wireless communication]

1. Robot r1 moves to an arbitrary point A of the perimeter, robots r2 and r3 move
together to the point B at angle y = 4π/9 + 2

√
3/3 − 401/300 in the clockwise

direction to the radius taken by robot r1.
2. Robot r1 moves in the counter-clockwise direction. Robot r2 moves in the clockwise

direction. Robot r3 moves in the counter-clockwise direction for time y. Then r3
moves towards the center. Then r3 moves towards the perimeter at angle π − y/2
in the clockwise direction to radius RB.

3. A robot that discovers the exit sends notification to other robots.
4. Upon receiving notification a robot walks to the exit using the shortest path.

B

y

K π − y
2

A

Fig. 4. Evacuation of three robots with
wireless communication

x

x

α
C

D

Fig. 5. |CD| =
√

1− 2x cos(α− x) + x2

The upper bound is proved in the following theorem.

Theorem 6. It is possible to evacuate three robots from an unknown exit located
on the perimeter of the disk in time at most 4π

9 + 2
√
3+5
3 + 1

600 < 4.22 in the
model with wireless communication.

The lower bound is proved in the following theorem.

Theorem 7. Any algorithm takes at least 1+ 2
3 arccos

(
− 1

3

)
+ 4

√
2

3 ∼ 4.159 time
in the worst case for three robots to evacuate from an unknown exit located in
the perimeter of the disk.
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4 k Robots

We prove asymptotically tight bounds for k robots in both the non-wireless and
wireless models.

4.1 Non-wireless Communication

The trajectory of the robots is given in algorithm A4.

Algorithm A4 [for k robots with wireless communication]

1. The k robots “spread” at equal angles 2π/k and they all reach the perimeter of the
disk in time 1.

2. Upon reaching the perimeter, they all move clockwise along the perimeter for 2π/k
time units.

3. In one time unit, all robots move to the center of the disk. Since at least one robot
has found the exit it can inform the remaining robots.

4. In one additional time unit all robots move to the exit.

Theorem 8. It is possible to evacuate k robots from an unknown exit located on
the perimeter of the disk in time 3 + 2π

k in the model with local communication.

Proof. (Theorem 8) Clearly the algorithm A4 is correct and attains the desired
upper bound.

The following technical lemma provides bounds on the sin and cos functions
based on their corresponding Taylor series expansions.

Lemma 5. For any x ≥ 0 the following bound on values of sinx and cosx hold:

(1) sinx ≥ x− x3/3!
(2) cosx ≤ 1− x2/2! + x4/4!

Theorem 9. It takes time at least 3+ 2π
k +O(k−2) in the worst case to evacuate

k robots from an unknown exit located on the perimeter of the disk in the model
without wireless communication.

Proof. (Theorem 9) We have by Lemma 3 that the evacuation time T of any
evacuation algorithm A satisfies T ≥ min{3+ απ

k , 3+ 2 sin(π−απ/2)}. If we set
α = 2k/(k + 1) then taking into account Lemma 5 we obtain:

T ≥ min

�
3 +

π

k + 1
, 3 + 2 sin

�
π

k + 1

��
≥ 3 +

π

k + 1
− π3

3!(k + 1)3

= 3 +
π

k
− π

k(k + 1)
− π3

3!(k + 1)3
= 3+

π

k
−O(k−2),

This proves the theorem.

For k ≥ 3 robots we conjecture that the time T required to find a exit on the
perimeter of a disk is exactly 3 + 2π

k .
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4.2 Wireless Communication

The trajectory of the robots is given in algorithm A5.

Algorithm A5 [for k robots with wireless communication]

1. Divide the team of robots into two groups: Group Gα of size kα = �k2/3�, and
Group Gβ of size kβ = k − kα.

2. Assign a continuous arc �AB of length π − 2
√
πk−1/3 to group Gα and remaining

part of the perimeter denoted by �BA (of length π + 2
√
πk−1/3) to group Gβ .

3. Divide arcs �AB and �BA equally between members of groups. Each robot belonging
to Gα is assigned an arc of length aα = |�AB|/kα. Each robot from group Gβ

receives an arc of length aβ = |�BA|/kβ .
4. Each robot goes from the center to the perimeter and explores an assigned arc.

Extremal robots from group Gα when exploring the assigned arcs go towards each
other (see Figure 6). All other robots explore assigned arcs is any direction. A
robot that discovers the exit sends notification to all other robots using wireless
communication.

5. Upon receiving a notification about the position of the discovered exit, a robot
takes the shortest chord to the exit.

6. Robots from group Gβ after finishing exploration of their arcs start moving towards
the center.

Gα

Gβ

π − 2
√

πk−1/3

π + 2
√

πk−1/3

A B

Fig. 6. Extremal (leftmost and rightmost)
robots from group Gα are moving towards
the interior of the arc �AB

C

F

E

D

Fig. 7. |DE|+|EF | < |DC|+|CF |

Theorem 10. If k ≥ 100 then it is possible to evacuate k robots from an un-
known exit located in the perimeter of the disk in time 3 + π

k +O(k−4/3), in the
model with wireless communication.

Proof. (Theorem 10) Consider the evacuation time of the algorithm A5. Note
that since k ≥ 100 then k−�k2/3� ≥ �k2/3� implying that aα > aβ. Thus robots
from Gβ finish exploration first and start going towards the center while robots
from Gα are still exploring (point 6. in the pseudocode). We will show an upper
bound on evacuation time T of the algorithm. Consider two cases:
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Case 1. The exit is located within the arc �AB.

Consider the evacuation time Tβ of robots from group Gβ . Observe that since
ε > 1, then aα < 1 thus the exit is discovered while robots from Gβ are walking
towards the center (before they reach the center). Robots from Gβ start moving
towards the center at time 1+aβ. At some time t′ satisfying 2+aβ > t′ > 1+aβ
the exit is discovered by a robot from group Gα. Consider a trajectory taken by
a robot r from group Gβ starting from time 1 + aβ. If r would simply walk to
the center and then from the center to the exit (location of the exit would be
known by the time when r reaches the center). The time would be not more than
3+ aβ . By the triangle inequality the path taken by robot r acting according to
the algorithm is shorter (see Figure 7). Thus the evacuation time Tβ for robots
belonging to team Gβ is at most

Tβ ≤ 3 + aβ ≤ 3 +
π + 2

√
πk−1/3

k − kα

= 3 +
π + 2

√
πk−1/3

k
+

(π + 2
√
πk−1/3)�k2/3�

k(k − �k2/3�) = 3 +
π

k
+O(k−4/3).

Consider now the evacuation time of robots from group Gα. Assume that the
exit is discovered at time 1 + x for some 0 ≤ x ≤ aα. Since the extremal robots
from group Gα are walking towards each other at the time moment 1 + x two
arcs of length x has been explored starting from each endpoint of arc �AB. Thus
the distance on the perimeter between extremal unexplored points of arc �AB
is π − 2

√
πk−1/3 − 2x. Hence the maximum length of a chord connecting two

unexplored points of arc �AB in this moment is 2 sin((π − 2
√
πk−1/3 − 2x)/2).

Therefore the time Tα until evacuation of all robots from group Gα is at most

Tα ≤ max
0≤x≤aα

�
1 + x+ 2 sin

�
π − 2

√
πk−1/3 − 2x

2

	

= max

0≤x≤aα

�
1 + x+ 2 cos

�√
πk−1/3 + x

�
.

The function f(x) = 1 + x + 2 cos(
√
πk−1/3 + x) has derivative f ′(x) = 1 −

2 cos(
√
πk−1/3 + x). For k ≥ 100 we have that 2

√
πk−1/3 + aα ≤ π/6. Thus

cos(
√
πk−1/3 + x) ≤ 1/2 for all x ∈ [0, aα], which implies that the function

f(x) is non-decreasing in the considered set. In order to find the maximum it is
sufficient to consider its value at the extremal point aα.

Tα ≤ 1 + aα + 2 sin(π/2− (
√
πk−1/3 + aα))

= 1 +
π − 2

√
πk−1/3

�k2/3� + 2 cos

�
√
πk−1/3 +

π − 2
√
πk−1/3

�k2/3�
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≤ 1 +
π − 2

√
πk−1/3

�k2/3� + 2−
�
√
πk−1/3 +

π − 2
√
πk−1/3

�k2/3�

	2

+

�
√
πk−1/3 +

π − 2
√
πk−1/3

�k2/3�

	4

/12

≤ 3 +O(k−4/3)

Thus in this case the evacuation time T ≤ max{Tα, Tβ} ≤ 3 + π
k + O(k−4/3).

Case 2. The exit is located within arc �BA.
Each robot from group Gβ explores an arc of length (π+2

√
πk−1/3)/(k−kα).

Thus time until the exit is discovered is at most 1 + (π + 2
√
πk−1/3)/(k −

�k2/3�). Since we are in the wireless communication model, each robot is notified
immediately and needs additional time at most 2 to go to the exit. Thus the total
evacuation time in this case is at most

T ≤ 3 +
π + 2

√
πk−1/3

k − k2/3 − 1

= 3 +
π + 2

√
πk−1/3

k
+

(π + 2
√
πk−1/3)(k2/3 + 1)

k(k − k2/3 − 1)

= 3 +
π

k
+O(k−4/3)

This completes the proof of Theorem 10.

Lemma 6. For any k ≥ 2 and x satisfying π/k ≤ x < 2π/k and any evacuation
algorithm it takes time at least 1+x+2 sin(xk/2) to evacuate from an unknown
exit located in the perimeter of the disk.

Theorem 11. It takes at least 3 + π
k time in the worst case to evacuate k ≥ 2

robots from an unknown exit located on the perimeter of the disk in the model
with wireless communication.

Proof. (Theorem 11) This is a direct consequence of Lemma 6 where x = π/k.

5 Conclusion

We studied the evacuation problem for k robots in a disk of unit radius and
provided several algorithms in both non-wireless and wireless communication
models for k = 2 and k = 3 robots. For the case of k robots we were able to
give asymptotically tight bounds thus indicating a clear separation between the
non-wireless and the wireless communication models. There are many interesting
open questions. An interesting challenge would be to tighten our bounds or even
determine optimal algorithms for k = 2, 3 robots. Another interesting class of
problems is concerned with evacuation from more than one exit, or with robots
having distinct maximal speeds. Finally, the geometric domain being considered,
the starting positions of the robots, as well as the communication model provide
challenging variants of the questions considered in this paper.
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Abstract. We present a randomized pattern formation algorithm for
asynchronous oblivious (i.e., memory-less) mobile robots that enables
formation of any target pattern. As for deterministic pattern formation
algorithms, the class of patterns formable from an initial configuration
I is characterized by the symmetricity (i.e., the order of rotational sym-
metry) of I , and in particular, every pattern is formable from I if its
symmetricity is 1. The randomized pattern formation algorithm ψPF

we present in this paper consists of two phases: The first phase trans-
forms a given initial configuration I into a configuration I ′ such that its
symmetricity is 1, and the second phase invokes a deterministic pattern
formation algorithm ψCWM by Fujinaga et al. (DISC 2012) for asyn-
chronous oblivious mobile robots to finally form the target pattern.

There are two hurdles to overcome to realize ψPF . First, all robots
must simultaneously stop and agree on the end of the first phase, to safely
start the second phase, since the correctness of ψCWM is guaranteed only
for an initial configuration in which all robots are stationary. Second, the
sets of configurations in the two phases must be disjoint, so that even
oblivious robots can recognize which phase they are working on. We
provide a set of tricks to overcome these hurdles.

Keywords: Mobile robot, pattern formation, randomized algorithm.

1 Introduction

Consider a distributed system consisting of anonymous, asynchronous, oblivious
(i.e., memory-less) mobile robots that do not have access to a global coordinate
system and are not equipped with communication devices. We investigate the
problem of forming a given pattern F from any initial configuration I, whose goal
is to design a distributed algorithm that works on each robot to navigate it so
that the robots as a whole eventually form F from any I. Besides the theoretical
interest how the robots with extremely weak capability can collaborate, the
fact that self-organization is a key property desired for autonomous distributed
systems motivates our work. However, a stream of papers [2–7] have showed that
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the problem is not solvable by a deterministic algorithm, intuitively because
the symmetry among robots cannot be broken by a deterministic algorithm.
Specifically, let ρ(P ) be the (geometric) symmetricity of a set P of points, where
ρ(P ) is defined as the number of angles θ (in [0, 2π)) such that rotating P by θ
around the center of the smallest enclosing circle of P produces P itself.1 Then
F is formable from I by a deterministic algorithm, if and only if ρ(I) divides
ρ(F ), which suggests us to explore a randomized solution.

This paper presents a randomized pattern formation algorithm ψPF . Algo-
rithm ψPF is universal in the sense that for any given target pattern F , it forms
F from any initial configuration I (not only from I such that ρ(I) divides ρ(F )).
We however need the following assumptions; the number of robots n ≥ 5, and
both I and F do not contain multiplicities. The idea behind ψPF is simple and
natural; first the symmetry breaking phase realized by randomized algorithm
ψSB translates I into another configuration I ′ such that ρ(I ′) = 1 with prob-
ability 1 if ρ(I) > 1, and then the second phase invokes the (deterministic)
pattern formation algorithm ψCWM in [5], which forms F from any initial con-
figuration I ′ such that ρ(I ′) = 1.2 Since randomization is a traditional tool to
break symmetry, one might claim that ψPF is trivial. It is not the case at all,
mainly because our robots are asynchronous. We return to this issue later in this
section, after a brief introduction of our robot model.

In the literature [2–7], the robots are modeled by points on a two dimen-
sional Euclidean plane. Each robot repeats a Look-Compute-Move cycle, where
it obtains the positions of other robots (in Look phase), computes the curve to
a next position with a pattern formation algorithm (in Compute phase), and
moves along the curve (in Move phase). We assume that the execution of each
cycle ends in finite time. Each robot has no access to the global x-y coordinate
system; it has its own x-y local coordinate system, and the robots’ positions in
Look phase and the curve to its next position in Compute and Move phases are
given in its x-y local coordinate system. The x-y local coordinate systems are
all right-handed. The robots are oblivious in the sense that the algorithm is a
function of the robots’ positions (in its x-y local coordinate system) observed in
the preceding Look phase. We assume discrete time 0, 1, . . ., and introduce three
types of asynchrony. In the fully-synchronous (FSYNC) model, robots execute
Look-Compute-Move cycles synchronously at each time instance. In the semi-
synchronous (SSYNC) model, once activated, robots execute Look-Compute-
Move cycles synchronously. We do not make any assumption on synchrony for
the asynchronous (ASYNC) model.

A crucial assumption here is that a robot can sense the position of another
robot, but cannot sense its velocity. In the SSYNC (and hence FSYNC) model,
a robot never observe moving robots by definition, while in the ASYNC model,
a robot does but cannot tell which of them are moving. This is an essential
difficulty in designing a randomized algorithm for the ASYNC model. In this

1 That is, P is rotational symmetry of order ρ(P ).
2 Of course we can also use the pattern formation algorithm in [2] since it keeps the
terminal agreement of ψSB (i.e., the leader), during the formation.
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paper, we devise a trick to overcome this problem. Specifically, in order for
ψCWM to start working in safe, in the terminal configuration of ψSB all robots
must simultaneously stop and agree on the end of the symmetry breaking phase.
We solve the symmetricity breaking problem in two phases: The randomized
leader election phase and the termination agreement phase. In the randomized
leader election phase, robots randomly select the leader on the largest empty
circle, which is the largest circle centered at the center of the smallest enclosing
circle of robots and contains no robot in its interior. The robots on the largest
empty circle move by randomly selected small distance along the circumference of
the largest empty circle, and when they break the symmetry, some of the robots
enter the interior of the largest empty circle to form a new largest empty circle.
They repeat this random selection phase until the system reaches a configuration
where exactly one robot is on the current largest empty circle. We call this
robot the leader. At this point, some robots may be still circulating on the
previous largest empty circles. Now, the problem is to check the termination of
these random movements when we have the leader. The leader defines a static
destination point for each of these robots, such that they cannot reach by their
small randommovement. The randomly moving robots should start deterministic
new movement. Eventually, all these robots stop and the leader moves closer
to the the center of the smallest enclosing circle so that the robots agree the
termination. Finally, robots start a pattern formation phase.

Related Works. The pattern formation problem in FSYNC model and SSYNC
model was first investigated by Suzuki and Yamashita [6, 7]. First, they showed
that any target pattern formable by non-oblivious robots in the FSYNC model
is formable by oblivious robots in the SSYNC model, except point formation of
two robots. They also showed that point formation of two robots is unsolvable in
the SSYNC model, while there is a trivial solution in the FSYNC model. Second,
they characterized the formable patterns by non-oblivious robots in the FSYNC
model. A necessary and sufficient condition to from a target pattern F from a
given initial configuration I is ρ(I)|ρ(F ). Later, ASYNC model was introduced
by Flocchini et al. [3]. Since we cannot apply pattern formation algorithms for
the FSYNC or SSYNC model to the ASYNC model, the pattern formation prob-
lem in the ASYNC model has been an open problem. Dieudonné et al. proposed
a universal pattern formation algorithm with a unique leader for more than three
oblivious robots in the ASYNC model [2]. Fujinaga et al. presented an embedded
pattern formation algorithm for oblivious robots in the ASYNC model, where
each robot obtains an embedded target pattern in its local coordinate system [4].
Their algorithm is based on a minimum weight perfect matching between the
target points and the positions of robots, which is called clockwise matching.
Finally, Fujinaga et al. presented a pattern formation algorithm for oblivious
robots in the ASYNC model that uses the embedded pattern formation algo-
rithm [5]. Cieliebak et al. presented a gathering algorithm for more than two
oblivious robots in the ASYNC model [1].
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All these papers investigate robots with deterministic algorithms. To the best
of our knowledge, randomized symmetricity breaking is a new notion which
works as a fundamental preprocessing for many tasks of robots.

2 System Model

Let R = {r1, r2, . . . , rn} be a set of anonymous robots in a two-dimensional
Euclidean plane. Each robot ri is a point and does not have any identifier, but
we use ri just for description.

A configuration is a set of positions of all robots at a given time. In the ASYNC
model, when no robot observes a configuration, the configuration does not affect
the behavior of any robots. Hence, we consider the sequence of configurations, in
each of which at least one robot executes a Look phase. In other words, without
loss of generality, we consider discrete time 1, 2, . . .. A robot starting a Look-
Compute-Move cycle at time t obtains the positions of other robots at time
t′ ≥ t (Look phase), computes a curve to the next location (Compute phase),
and starts moving along the curve at time t′′ ≥ t′ (Move phase). The Move phase
finishes at some time t′′′ ≥ t′′. Let pi(t) (in the global coordinate system Z0) be
the position of ri (ri ∈ R) at time t (t ≥ 0). P (t) = {p1(t), p2(t), . . . , pn(t)} is a
configuration of robots at time t. The robots initially occupy distinct locations,
i.e., |P (0)| = n.

The robots do not agree on the coordinate system, and each robot ri has its
own x-y local coordinate system denoted by Zi(t) such that the origin of Zi(t) is
its current position.3 We assume each local coordinate system is right-handed,
and it has an arbitrary unit distance. For a set of points P (in Z0), we denote
by Zi(t)[P ] the positions of p ∈ P observed in Zi(t).

An algorithm is a function, say ψ, that returns a curve to the next location in
the two-dimensional Euclidean plane when given a set of positions. Each robot
has an independent private source of randomness and an algorithm can use it
to generate a random rational number. A robot is oblivious in the sense that it
does not remember past cycles. Hence, ψ uses only the observation in the Look
phase of the current cycle.

In each Move phase, each robot moves at least δ > 0 (in the global coordinate
system) along the computed curve, or if the length of the curve is smaller than δ,
the robot stops at the destination. However, after δ, a robot stops at an arbitrary
point of the curve. All robots do not know this minimum moving distance δ.
During movement, a robot always proceeds along the computed curve without
stopping temporarily. We call this assumption strict progress property.

An execution is a sequence of configurations, P (0), P (1), P (2), . . .. The execu-
tion is not uniquely determined even when it starts from a fixed initial configu-
ration. Rather, there are many possible executions depending on the activation
schedule of robots, execution of phases, and movement of robots. The adversary

3 During a Move phase, we assume that the origin of the local coordinate system of
robot ri is fixed to the position where the movement starts, and when the Move
phase finishes, the origin is the current position of ri.
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can choose the activation schedule, execution of phases, and how the robots move
and stop on the curve. We assume that the adversary knows the algorithm, but
does not know any random number generated at each robot before it is gen-
erated. Once a robot generates a random number, the adversary can use it to
control all robots.

Pattern Formation. A target pattern F is given to every robot ri as a set
of points Z0[F ] = {Z0[p]|p ∈ F}. We assume that |Z0[F ]| = n. In the following,
as long as it is clear from the context, we identify p ∈ F with Z0[p] and write,
for example, “F is given to ri” instead of “Z0[F ] is given to ri.” It is enough
emphasizing that F is not given to a robot in terms of its local coordinate system.

Let T be a set of all coordinate systems, which can be identified with the set
of all transformations, rotations, uniform scalings, and their combinations. Let
Pn be the set of all patterns of n points. For any P, P ′ ∈ Pn, P is similar to P ′,
if there exists Z ∈ T such that Z[P ] = P ′, denoted by P ! P ′.

We say that algorithm ψ forms pattern F ∈ Pn from an initial configuration
I, if for any execution P (0)(= I), P (1), P (2), . . ., there exists a time instance t
such that P (t′) ! F for all t′ ≥ t.

For any P ∈ Pn, let C(P ) be the smallest enclosing circle of P , and c(P ) be
the center of C(P ). Formally, the symmetricity ρ(P ) of P is defined by

ρ(P ) =

{
1 if c(P ) ∈ P,
|{Z ∈ T : P = Z[P ]}| otherwise.

We can also define ρ(P ) in the following way [6]: P can be divided into regular
k-gons centered at c(P ), and ρ(P ) is the maximum of such k. Here, any point
is a regular 1-gon with an arbitrary center, and any pair of points {p, q} is a
regular 2-gon with its center (p+ q)/2.

For any configuration P (c(P ) �∈ P ), let P1, P2, . . . , Pn/ρ(P ) be a decomposition
of P into the above mentioned regular ρ(P )-gons centered at c(P ). Yamashita
and Suzuki [7] showed that even when each robot observes P in its local coor-
dinate system, all robots can agree on the order of Pi’s such that the distance
of the points in Pi from c(P ) is no greater than the distance of the points in
Pi+1 from c(P ), and each robot is conscious of the group Pi it belongs to. We
call the decomposition P1, P2, . . . , Pn/ρ(P ) ordered by this condition the regular
ρ(P )-decomposition of P .

A point on the circumference of C(P ) is said to be “on circle C(P )” and “the
interior of C(P )” (“the exterior”, respectively) does not include the circum-
ference. We denote the interior (exterior, respectively) of C(P ) by Int(C(P ))
(Ext(C(P ))). We denote the radius of C(P ) by r(P ). Given two points p and p′

on C(P ), we denote the arc from p to p′ in the clockwise direction by arc(p, p′).
When it is clear from the context, we also denote the length of arc(p, p′) by
arc(p, p′). The largest empty circle L(P ) of P is the largest circle centered at
c(P ) such that there is no robot in its interior, hence there is at least one robot
on its circumference.

Algorithm with Termination Agreement. A robot is static when it is not
in a Move phase, i.e., in a Look phase or a Compute phase, or not executing
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a cycle. A configuration is static if all robots are static. Because robots in the
ASYNC model cannot recognize static configurations, we further define station-
ary configurations. A configuration P is stationary for an algorithm ψ, if in any
execution starting from P , configuration does not change.

We say algorithm ψ guarantees termination agreement if in any execution
P (0), P (1), . . . of ψ, there exists a time instance t such that P (t) is a stationary
configuration, in P (t′) (t′ ≥ t), ψ outputs ∅ at any robot, and all robots know
the fact. Specifically, ψ(Z ′[P (t′)]) = ∅ in any local coordinate system Z ′. This
property is useful when we compose multiple algorithms to complete a task.

3 Randomized Pattern Formation Algorithm

The idea of the proposed universal pattern formation algorithm is to translate a
given initial configuration I with ρ(I) > 1 into a configuration I ′ with ρ(I ′) = 1
with probability 1, and after that the robots start the execution of a pattern
formation algorithm. We formally define the problem.

Definition 1. The symmetricity breaking problem is to change a given initial
configuration I into a stationary configuration I ′ with ρ(I ′) = 1.

In Section 3.1, we present a randomized symmetricity breaking algorithm ψSB

with termination agreement. In the following, we assume n ≥ 5 and I and F do
not contain any multiplicities. Additionally, we assume that for a given initial
configuration I, no robot occupies c(I), i.e., c(I) ∩ I = ∅.4 Due to the page
limitation, we omit the pseudo code of ψSB.

In Section 3.2, we present a randomized universal pattern formation algorithm
ψPF , that uses ψSB and a pattern formation algorithm ψCWM [5] with slight
modification.

3.1 Randomized Symmetricity Breaking Algorithm ψSB

In the proposed algorithm ψSB, robots elect a single leader that occupies a point
nearest to the center of the smallest enclosing circle. Clearly, the symmetricity
of such configuration is one.

We use a sequence of circles to show the progress of ψSB. In configura-
tion P , let Ci(P ) be the circle centered at c(P ) with radius r(P )/2i. Hence,
C0(P ) = C(P ). We denote the radius of Ci(P ) by γi. We call the infinite set of
circles C0(P ), C1(P ), . . . the set of binary circles. Because ψSB keeps the small-
est enclosing circle of robots unchanged during any execution, we use Ci instead
of Ci(P ). We call Ci the front circle if Ci is the largest binary circle in L(P )
including the circumference of L(P ), and we call Ci−1 the backward circle (Fig.
1). We denote the number of robots in Ci and on Ci by ni. Hence, if the current
front circle Ci is the largest empty circle, ni is the number of robots on Ci,
otherwise it is smaller than the number of robots on Ci.

4 If there is a robot on c(I), we move the robot by some small distance from c(I) to
satisfy the conditions of the terminal configuration of ψSB.
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C1

C2

C3

C0

r

c(P )

Fig. 1. The set of binary circles and radial track of r, where C0 is the smallest enclosing
circle, C1 is the backward circle, and C2 is the front circle

Recall that all local coordinate systems are right handed. Hence, all robots
agree on the clockwise direction on each binary circle. For Ci (i ≥ 0) and a robot r
on Ci, we call the next robot on Ci in its clockwise direction predecessor, denoted
by pre(r), and the one in the counter-clockwise direction successor, denoted by
suc(r). When there are only two robots r and r′ on Ci, pre(r) = suc(r) = r′. We
say r is neighboring to r′ if r′ = pre(r) or r′ = suc(r). For example, in Fig. 2(a),
pre(r0) is r1, suc(r0) is r7, and r1 and r7 are neighbors of r0.

During an execution of the proposed algorithm, robot r moves to an inner
binary circle along a half-line starting from the center of the smallest enclosing
circle and passing r’s current position. We call this half-line the radial track of
r (Fig. 1). When r moves from a point on Ci to Ci+1 along its radial track, we
say r proceeds to Ci+1.

Algorithm ψSB first sends each robot to its inner nearest binary circle along
its radial track if the robot is not on any binary circle. Hence, the current front
circle is also the largest empty circle.

Then, ψSB probabilistically selects at least one robot on the current front
circle Ci, and make them proceed to Ci+1. These selected robots repeat the
selection on Ci+1. By repeating this, the number of robots on a current front
circle reaches 1 with probability 1. The single robot on the front circle is called
the leader.

We will show the detailed selection procedure on each front circle. We have
two cases depending on the positions of robots when the selection of a front circle
Ci starts. One is the regular polygon case where robots on Ci form a regular ni-
gon, and the other is the non-regular polygon case where ni robots on Ci form a
non-regular polygon.

Selection in the Regular Polygon Case. When robots on the current front
circle Ci form a regular ni-gon (i.e., for all robot r on Ci, arc(suc(r), r) =
2πγi/ni), it is difficult to select some of the robots. Especially, when the sym-
metricity of the current configuration is ni, it is impossible to deterministically
select some of the robots. In a regular ni-gon case, ψSB makes these robots ran-
domly circulate on Ci. Then, a robot that do not catch up with its predecessor
and caught by its successor is selected and proceeds to Ci+1.
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(d) Single leader is selected

Fig. 2. Random selection

First, if robot r on Ci finds that the robots on Ci form a regular ni-gon, r
randomly selects “stop” or “move.” If it selects “move,” it generates a random
number v in (0..1], and moves v(1/4)(2πγi/ni) along Ci in the clockwise direc-
tion (Fig. 2(a)). This procedure ensures that the regular ni-gon is broken with
probability 1. When r finds that the regular ni-gon is broken, r stops.

Uniform moving direction ensures the following invariants:

1. Once r finds that it is caught by suc(r), i.e., the following inequality holds,
r never leave from suc(r).

Caught(r) = arc(suc(r), r) ≤ 2πγi/ni

2. Once r finds that it missed pre(r), i.e., the following inequality holds, r never
catch up with pre(r).

Missing(r) = 2πγi/ni < arc(r, pre(r)) ≤ (5/4)(2πγi/ni)

We say robot r is selected if it finds that the following predicate holds.

Selected(r) = Caught(r) ∧Missing(r)

Then, a selected robot proceeds to Ci+1 (Fig. 2(b)). Since no two neighboring
robots satisfy Selected at a same time, while Selected(r) holds at r, suc(r) and
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pre(r) wait for r to proceed to C1. Even when ni = 2, when they are not in
the symmetric position, just one of the two robots becomes selected. Note that
other robots cannot check whether r is selected or not in the ASYNC model
because they do not know whether r has observed the configuration and found
that Selected(r) holds.

Observation 1. During the above random movement on the current front circle
Ci, (3/4)(2πγi/ni) ≤ arc(r, pre(r)) ≤ (5/4)(2πγi/ni) holds at each robot r on
Ci. Let r′ = pre(r) and r′′ = suc(r) for r on Ci. If r becomes selected and
proceeds to Ci+1, then arc(suc(r′), r′) > (5/4)(2πγi/ni) and arc(r′′, pre(r′′)) >
(5/4)(2πγi/ni) hold thereafter even when robots move.

After some selected robots proceed to Ci+1, other robots might be still moving
on Ci and may become selected later. However, in the ASYNC model, no robot
can determine which robot is moving on Ci. For the robots on Ci+1 to ensure
that no more robot will join Ci+1, ψSB makes some of the non-selected robots
on Ci proceed to Ci+1. The robots on Ci are classified into three types, rejected,
following, and undefined.

The predecessor and the successor of a selected robot are classified into re-
jected, and each rejected robot stays on Ci. All robots can check whether robot
r is rejected or not with the following condition:

Rejected(r) =

(arc(r, pre(r)) > (5/4)(2πγi/ni)) ∨ (arc(suc(r), r) > (5/4)(2πγi/ni)).

Non-rejected robot r becomes following if r finds that at least one of the
following three conditions hold:

FollowPre(r) = ¬Rejected(r) ∧Rejected(pre(r)) ∧Caught(r)

FollowSuc(r) = ¬Rejected(r) ∧Rejected(suc(r)) ∧Missing(r)

FollowBoth(r) = ¬Rejected(r) ∧Rejected(pre(r)) ∧Rejected(suc(r)).

Hence, we have

Following(r) = FollowPre(r) ∨ FollowSuc(r) ∨ FollowBoth(r).

Intuitively, the predecessor and the successor of a following robot never become
selected nor following. Algorithm ψSB makes each following robot proceed to
Ci+1 (Fig. 2(c)).

Finally, robots on Ci that are neither selected, rejected nor following are
classified into undefined.

Note that Rejected(r) implies ¬Selected(r) and ¬Following(r). Additionally,
Selected(r) and Following(r) may hold at a same time.

Eventually, all robots on Ci recognize their classification from selected, follow-
ing, and rejected. We can show that once a robot finds its classification, it never
changes. Then, selected robots and following robots leave Ci and only rejected
robots remain on C0. During the random selection phase, ni does not change
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Fig. 3. Non-regular case. All robots are rejected, and no robot proceeds to C1 with the
two conditions Rejected and Following.

since robots moves in Int(Ci)∪Ci. Hence, all robots can check whether a robot
r on Ci is rejected or not with Rejected(r), and the robots on Ci+1 agree that
no more robot proceeds to Ci+1. These robots start a new (random) selection
on Ci+1.

Consider the case where i = 0. When n = 5, the length of the random
movement is largest, and each robot circulates at most π/10. Hence, no two
robots form a diameter. Additionally, ψSB guarantees that no two neighboring
robots leave C0. Hence, ψSB keeps C0 during the random selection. In the same
way, when n ≥ 5, the random selection does not change C0.
Selection for non-regular polygon case. When robots on the current front
circle Ci does not form a regular ni-gon, ψSB basically follows the random selec-
tion. Thus, robots do not circulate on Ci randomly, but check their classification
with the three conditions.

Because robots do not form a regular ni-gon on Ci, there exists a robot r on
Ci that satisfies arc(suc(r), r) < 2πγi/ni. However, there exists many positions
of ni robots on Ci where all such robot r are also rejected, i.e., arc(r, pre(r)) >
(5/4)(2πγi/ni), from which no robot becomes selected nor following (Fig. 3).

In this case, we add one more condition NRSelected(r). We say r satisfies
NRSelected(r) when r is on the front circle Ci, all robots on Ci do not satisfy
Selected nor Following, and arc(r, pre(r)) > (5/4)(2πγi/ni) and arc(suc(r), r) ≤
2πγi/ni hold. We note that no two neighboring robots satisfies NRSelected.
Robot r proceeds half way to Ci+1, and waits for all robots satisfyingNRSelected
to proceed.5 Robots in between Ci and Ci+1 can reconstruct the non-regular
polygon on Ci with their radial tracks and after all robots satisfied NRSelected
leaves Ci, the robots in Ext(Ci+1)∩ Int(Ci) proceeds to Ci+1. Note that during
a random selection, no robot on Ci satisfies NRSelected.

We consider one more exception case for initial configurations where robots
form a non-regular polygon on C0. In this case, each robot r first examines
NRSelected(r). If proceeding all robots satisfying NRSelected changes C0, the
successor of such robot proceeds to C1 instead of them. Assume that r is one

5 Otherwise, r cannot distinguish how many robots satisfied NRSelected.
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Fig. 4. Stopping rejected robots when the leader is first generated on C2. (a) The
leader embeds a regular octagon on C0 by its position on C4. (b) After all robots C0

have reached the corners of embedded polygons, rL proceeds to C5.

of such robots satisfying NRSelected(r). Because C0 is broken after all robots
satisfyingNRSelected proceeds, in the initial configuration arc(r, pre(r)) = πγ0.
Otherwise, there exists a rejected robot that does not satisfy NRSelected in the
initial configuration. Hence, proceeding suc(r) does not change C0.

After that, robots on Ci determine their classification by using Rejected,
Following, and following robots proceed to Ci+1. Eventually all following robots
leave Ci, and only rejected robots remain on Ci.

Termination Agreement. By repeating the above procedure on each binary
circle, with probability 1, only one robot reaches the inner most binary circle,
with all other robots rejected (Fig. 2(d)). We say this robot is selected as a
single leader. However, rejected robots may be still moving on the binary circles.
Thus, the leader robot starts a new phase to stop all rejected robots, so that the
terminal configuration is stationary.

Let rL be the single leader and Ci be the front circle for R \ {rL} (this
implies the leader is selected during the random selection on Ci). Intuitively, rL
checks the termination of Ci−j (i−j ≥ 0) when rL is on Ci+j+2. Given a current
observation, all robots on Ci−j are expected to move at most (1/4)(2πγi−j/ni−j)
from corners of some regular ni−j-gon. Hence, there exists an embedding of
regular ni−j -gon onto Ci−j so that its corners does not overlap these expected
tracks. If there is no such embedding, then randomized selection has not been
executed on Ci−j , and rL embeds an arbitrary regular ni−j-gon on Ci−j . Robot
rL shows the embedding by its position on Ci+j+2, i.e., rL’s radial track is the
perpendicular bisector of an edge of the regular ni−j-gon (Fig. 4(a)).

Then, ψSB makes robots on Ci−j occupy distinct corners of the regular ni−j-
gon. The target points of these robots are determined by the clockwise matching
algorithm [4]. We restrict the matching edges before we compute the clockwise
matching. Specifically, we use arcs on Ci−j instead of direct edges, and direction
of each matching edge (from a robot to its destination position) is always in
the clockwise direction. Note that under this restriction, the clockwise matching
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algorithm works correctly on Ci−j .
6 The robots on Ci−j has to start a new

movement with fixed target positions. Because robots can agree the clockwise
matching irrespective of their local coordinate systems, rL can check whether
robots on Ci−j finish the random movement.

Then, rL calculates its next position on Ci+j+3 in the same way for robots on
Ci−j−1, and moves to that point.

The leader finishes checking all binary circles on C2i+2, then it proceeds to
C2i+3 to show the termination of ψSB (See Fig. 4(b)). However, ψSB carefully
moves robots on C0 to keep the smallest enclosing circle. When there are just two
robots on C0, then the random selection has not been executed on C0, and rL
does not check the embedding. When there are more than three robots, there is
at least one robot that can move toward its destination with keeping the smallest
enclosing circle, and ψSB first moves such a robot.

For any configuration P satisfying the following two conditions, ψSB outputs ∅
at any robot irrespective of its local coordinate system. Hence, such configuration
P is a stationary configuration of ψSB.

1. P contains a single leader on the front circle, denoted by Cb.
2. All other robots are in Ext(Ck) ∪ Ck, satisfying b ≥ 2k + 3.

Clearly, ψSB guarantees terminal agreement among all robots.
Algorithm ψSB guarantees the reachability to a terminal configuration with

probability 1, and the terminal configuration is deterministically checkable by
any robots in its local coordinate system.

3.2 Randomized Pattern Formation Algorithm ψPF

We present a randomized pattern formation algorithm ψPF . Algorithm ψPF

executes ψSB when the configuration does not satisfy the two conditions of the
terminal configuration of ψSB. When the current configuration satisfies the two
terminal conditions of ψSB, ψPF starts a pattern formation phase.

Fujinaga et al. proposed a pattern formation algorithm ψCWM in the ASYNC
model, which uses the clockwise minimum weight perfect matching between the
robots and an embedded target pattern [5]. The embedding of the target pattern
is determined by the robots on the largest empty circle. Additionally, when there
is a single robot on the largest empty circle, ψCWM keeps this robot the nearest
robot to the center of the smallest enclosing circle during any execution. We use
this property to separate the configurations that appears executions of ψSB and
those of ψCWM .

6 Algorithm ψCWM [4] reconstructs a clockwise matching from all minimum weight
perfect matchings between robots and target points, i.e., for a set of overlapping
edges, ψCWM selects some of them in a “clockwise” manner. The critical assumption
is that the number of robots is equal to the number of target points. When ψSB uses
ψCWM , it restricts the direction of edges when considering the set of all minimum
weight matchings. Because the number of target points is larger than the number
of robots, without this restriction, a robot in the middle point of two target points
may increase the number of target points.
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Algorithm ψPF uses ψCWM after ψSB terminates, however, to compose ψSB

and ψCWM , we modify the terminal configuration of ψSB to keep the leader
showing the termination of ψSB. Let P be a given terminal configuration of
ψSB, and the single leader be rL on the front circle CL. Given a target pattern
F , let F1, F2, . . . , Fn/ρ(F ) be the regular ρ(F )-decomposition of F . Then, ψCWM

embeds F so that f ∈ F1 lies on the radial track of rL, and r(F ) = r(P ). When
c(F ) ∈ F , ψCWM also perturbs this target point. Let F ′ be this embedding.

Then, ψPF first moves rL as follows: Let L(F ′) be the largest empty circle of
F ′ and �(F ′) be its radius. Let k (k > 0) be an integer such that Ck be the largest
binary circle in L(F ′). If C2k+3 is in CL, rL proceeds to C2k+3. When C2k+3 is
in Ext(CL), rL does not move. Then, ψPF starts the execution of ψCWM . After
R \ {rL} reach their destination positions, rL moves to its target point along its
radial track.

4 Correctness

Let I be an initial configuration where robots form a regular n-gon. We first
show that ψSB randomly selects at least one and at most n/2 robots and C0

does not change by robots’ random movement on C0.

Lemma 1. Starting from an initial configuration I where the robots form a
regular n-gon, with probability 1, any execution of ψSB in the ASYNC model
reaches a configuration where at least one robot is selected, and until then ψSB

does not change the smallest enclosing circle of robots.

Proof. Let P (0), P (1), . . . be an arbitrary execution of ψSB in the ASYNC model
where the robots form a regular n-gon in P (0)(= I).

Because n ≥ 5 and each robot moves at most (1/4)(2πγ0/n) when it observes
a regular n-gon configuration, the random movement does not produce a neigh-
boring robots that satisfies arc(r, suc(r)) > πγ0 until some robot proceeds to
C1. Hence, the random circulation of robots does not change C0.

We consider the worst behavior of the adversary against ψSB, that is, the
adversary always tries to keep the regular n-gon of robots.

As adversary activates some robots, eventually ψSB outputs a moving distance
larger than 0 at some robot. This robot starts its Move phase in finite time. The
adversary has no choice other than to activate other robots so that all robots
move with keeping a regular n-gon.

We first consider the case where (1/4)(2πγ0/n) ≥ δ. With probability nδ/πγ0,
a robot, say r, outputs a moving distance smaller than the (unknown) minimum
moving distance δ. Even when all robots start their move phases with keeping
regular n-gon, r stops while the adversary cannot stop other robots, and the
adversary have no choice to activate r again to keep the regular n-gon. Let P (t)
be a configuration where r stops while other robots are moving. With probability
1/2, ψSB outputs “stop” at r. Then, because of the strict progress property, in
P (t + 1), the robots do not keep a regular n-gon. When r is activated after
P (t+ 1), r becomes selected.
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Assume that a robot r is in a Compute phase, while all other robots are
moving. The adversary has no choice to stop all robots, because in the same
way as the above discussion, ψSB outputs “stop” with probability 1/2 and the
regular n-gon is probabilistically broken. Hence, all robots stop at least once in
every (1/4)(2πγ0/n) distance, and at least with probability nδ/πγ0, the regular
n-gon is broken. Consequently, ψSB defeats the adversary and breaks the initial
regular n-gon with probability 1.

When (1/4)(2πγ0/n) < δ, ψSB always outputs moving distance smaller than
δ, and the above discussion also holds. �	

A selected robot r proceeds to C1 and while Selected(r) holds, Selected and
Following do not hold at its neighbors, and the neighbors become rejected after
r proceeds. We have the same property for any following robot. Eventually, all
robots recognize their classification and selected and following robots reach C1.

Lemma 2. No two neighboring robots in P (0) enters the interior of C0 in the
randomized selection on C0.

From Lemma 2, the smallest enclosing circle does not change during any execu-
tion of ψSB when n ≥ 5.

Then, We obtain the following theorem.

Theorem 2. Starting from an initial configuration I, where robots form a reg-
ular n-gon, with probability 1, the system reaches a configuration where C0 con-
tains only rejected robots.

The rejected robots on C0 do not become selected nor following even when
robots on C1 moves, because n0 does not change and all robots can check their
states with the predicate Rejected. Hence, robots on C1 start a new random
selection phase. We obtained the base case. Clearly, Theorem 2 holds for the
robots on any front circle.

Corollary 1. Starting from a configuration where the robots on the front circle
Ci form a regular polygon, with probability 1, the system reaches a configuration
where at least one and at most half of these robots reach Ci+1, and Ci contains
only rejected robots.

In the same way as randomized selection, we have the following corollary for
deterministic selection.

Corollary 2. Starting from a configuration where the robots on the front circle
Ci form a non-regular polygon, the system eventually reaches a configuration
where at least one and at most (ni − 3) of these robots reach Ci+1, and Ci

contains only rejected robots.

From Corollary 1 and Corollary 2, we have the following theorem.

Theorem 3. With probability 1, the system reaches a configuration where only
one robot is on the front circle, and all robots in the backward circle are rejected.
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Then, ψSB makes the leader check whether the robots on each binary circle Ci

have stopped by embedding a regular ni-gon so that robots on Ci starts a new
deterministic movement to reach the corners of the regular ni-gon. The system
eventually reaches a terminal configuration of ψSB with probability 1.

Theorem 4. Starting from any arbitrary configuration with n ≥ 5 robots, the
system reaches a terminal configuration of ψSB with probability 1.

From a static terminal configuration of ψSB, robots execute ψCWM , and we
have the following theorem.

Theorem 5. Algorithm ψPF forms any target pattern from any initial configu-
ration with probability 1.

5 Conclusion

We present a randomized pattern formation algorithm for oblivious robots in the
ASYNC model. The proposed algorithm consists of a randomized symmetricity
breaking algorithm and a pattern formation algorithm proposed by Fujinaga et
al. [5]. One of our future directions is to extend our results to the robots with
limited visibility, where oblivious robots easily increase the symmetricity [8].
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Abstract. To improve performance and meet power constraints, vendors
are introducing heterogeneous multicores that combine high performance
and low power cores. However, choosing which cores and scheduling ap-
plications on them remain open problems. This paper presents a schedul-
ing algorithm that provablyminimizes energy on heterogeneousmulticores
and meets latency constraints for interactive applications, such as search,
recommendations, advertisements, and games. Because interactive appli-
cations must respond quickly to satisfy users, they impose multiple con-
straints, including average, tail, and maximum latency.We introduce SEM
(Slow-to-fast, Energy optimization for Multiple constraints), which mini-
mizes energy by choosing core speeds and how long to execute jobs on each
core. We prove SEM minimizes energy without a priori knowledge of job
service demand, satisfies multiple latency constraints simultaneously, and
only migrates jobs from slower to faster cores. We address practical con-
cerns of migration overhead and congestion. We prove optimizing energy
foraverage latency requireshomogeneous cores,whereas optimizing energy
for tail and deadline constraints requires heterogeneous cores. For interac-
tive applications,we create a formal foundation for schedulingand selecting
cores in heterogeneous systems.

1 Introduction

Power constraints are forcing computer architects to turn to heterogeneous mul-
ticore hardware to improve performance. For instance, smartphones are shipping
with Qualcomm’s Snapdragon and ARM’s Cortex-A15 [15], which include high
performance and low power cores with the same instruction set, called big/little
and Asymmetric Multicore Processors (AMP). Design principles for selecting
cores in heterogeneous system and scheduling algorithms that optimize their
energy consumption, however, remain open problems. This paper presents a
scheduling algorithm that provably minimizes energy on heterogeneous proces-
sors serving interactive applications. We prove and establish scheduling insights
and design principles with practical implications for heterogeneous core selection.

Interactive applications are latency-sensitive. Examples include serving web
pages, games, search, advertising, recommendations, and mobile applications.
Since interactive applications must be responsive to attract and please users, they
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must meet latency requirements. Furthermore, they must be energy efficient. In
data centers, energy is an increasingly higher fraction of total costs [19], and 1%
energy saving may translate to millions of dollars. On mobile, energy efficiency
translates directly into longer battery life and happier users.

Prior schedulers that optimize for energy efficiency and heterogeneity have
major limitations. (1) They often predict demand for each request, scheduling
high demand jobs to high performance fast cores and other jobs to low power slow
cores [1,9,11,36,38,40]. Unfortunately, the service demand of individual requests
in interactive applications is usually unknown and difficult to predict [23]. (2)
For unknown service demand, prior work only optimizes for a single simple
latency constraint [23,35,37], such as average latency or maximum latency, and
is inadequate for two reasons. First, many applications strive for consistency by
reducing tail latency (e.g., 95th- and 99th-percentile) or variance [13,17], which
average and maximum latency do not model. Second, some applications require
a combination of low average, tail, and worst-case latencies [12,16]. For example,
search, finance applications, ads, and commerce have customer requirements and
expectations for average and tail latency [12, 13, 17].

This paper shows how to optimize energy efficiency of interactive workloads
subject to multiple latency constraints by exploiting heterogeneous multicores,
addressing the aforementioned challenges as follows.

Unknown service demand. Instead of predicting individual job demand, we
exploit the service demand distribution measured online or offline, which changes
slowly over time [23,26]. We schedule incoming jobs to appropriate cores without
knowing their individual service demands.

Multiple latency constraints. The scheduling literature typically optimizes for
average or maximum latency only. To generalize and combine latency constraints,
we use Lp norms [2–5,18,25,31,39]. The Lp norms encapsulate maximum latency
(p→∞) and average latency (p = 1) as special cases. Optimizing for larger values
of p places more emphasis on the latency of longer jobs. Appropriate values of p
effectively mitigate unfairness and extreme outliers for long jobs [2,5]. Optimizing
the L1 and L2 norms together reduce latency variance, which makes latency more
predictable and improves user experience [32].

This paper presents an optimal algorithm that minimizes energy on heteroge-
neous processors given a demand distribution and latency constraints. We quan-
titatively characterize the optimal schedule and the ratio of fast to slow core
speeds in a heterogeneous system. We present an optimal scheduling algorithm,
called SEM (Slow-to-fast, Energy optimization for Multiple constraints). Given
a service demand distribution, SEM schedules interactive jobs on heterogeneous
multicore processors to minimize energy consumption while simultaneously sat-
isfying multiple Lp norm latency constraints.

We show an optimal schedule migrates jobs from slower to faster cores. Ide-
ally, we want to schedule high demand (long) jobs on fast cores to meet latency
requirements and short jobs on slow cores to save energy without a prior knowl-
edge of service demand. SEM exploits this observation by scheduling short jobs
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on energy efficient slow cores where they complete with high probability and
then migrating long jobs to fast cores to meet the latency constraints.

We show more heterogeneity is desirable for higher p, where p is the Lp norm
moment and the heterogeneity degree is the ratio of the fastest to slowest core
speed. Given a single average latency constraint (p = 1), the energy optimal
schedule requires a homogeneous processor. For all other latency constraints
(p > 1) and multiple constraints, the optimal schedule requires heterogeneous
processors.

We show bounds on the ratio of the fastest and slowest core speeds for an
optimal heterogeneous processor. The result indicates that the more heteroge-
neous workload is and/or the less power additional core performance consumes,
the more heterogeneous the hardware needs to be. Our result provides a formal
and quantitative guide for selecting core speeds while designing heterogeneous
processors. For practical choices of p and measured service load distributions,
the ratio ranges from two to eight. Systems with this degree of heterogeneity are
thus quite practical to assemble from current server, client, and mobile cores.

Due to space constraints, we state the theorems and intuitions here and refer
readers elsewhere for the proofs [27]. We leave to future work experimental eval-
uation of energy. Our own prior work exploits the slow-to-fast insight to optimize
performance (not energy) of interactive applications [26]. We achieved substan-
tial performance improvements in simulation and on real systems by configuring
Simultaneous Multi-Threading (SMT) hardware as a dynamic heterogeneous
multicore [26]. No prior work presents an optimal algorithm or theory for energy
efficiency under multiple latency constraints, nor provides guidelines for select-
ing core speeds. This work is the first formal analysis to deliver these properties
for scheduling interactive workloads on heterogeneous multicore processors for
energy minimization subject to multiple latency constraints.

2 Job, Processor, and Scheduling Models

This section and Table 1 describe our job, processor, and scheduling model.

Job model. We focus on CPU intensive interactive services such as search, ads,
finance option pricing, games, and serving dynamic web page content [6,19,40].
Each interactive service request is a job. Each job has work w (service demand),
which represents the number of CPU cycles the job takes to complete. Since it
is often impossible to accurately predict a job’s service demand [23], we model
w as a discrete random variable whose value is unknown until the job completes.
We divide the service demand into N units (also called “bins” in this paper)
and the size of the i-th bin is denoted by wi, which we obtain by measuring the
distribution of work for the application. The choice of “bin” sizes is determined
by the measurement accuracy, and our model is not restricted to any particular
choices. The job service demand w follows a distribution that only takes values
out of the set W = {w̃1, w̃2, · · · , w̃N}, where we define w̃i =

∑i
j=1 wj , for i =

1, 2, · · · , N . This assumption is not restrictive. In practice, a job’s service demand
cannot be continuous and is typically grouped into a finite number of bins [35].
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Table 1. Symbols and definitions

Definition Definition

w CPU service demand xi Speed of core i
wi Size of the i-th demand bin z(x) Power consumption

fi Probability of demand w̃i =
∑i

j=1 wj e(x) Energy function

Fi Cumulative distribution Lp Lp norm with moment p

F c
i Complementary cumulative distribution D̃(p) Lp norm latency constraint

Let {f1, f2, · · · , fN} and {F0, F1, · · · , FN} be the probability distribution and
cumulative distribution of the job’s service demand, respectively: fi = Pr(w = w̃i)

and Fi =
∑i

j=1 fj , for i = 1, 2, · · · , N . While the service demand of any single job
is unknown a priori, we assume the aggregate service demand distribution of
jobs is measured with online or offline profiling as in previous work [23].

Processor model. We adopt a standard processor model. With speed x > 0, a
core will consume a power of z(x). Correspondingly, the energy consumption
per unit work is e(x) = z(x)/x. The processing time for a unit work increases
linearly with respect to the inverse of core speed. Given a particular application,
the effective speed x and power z(x) can be obtained by system measurements.
Consequently, the effective speed x may differ from the clock rate of CPU and
both clock speed an power may vary depending on the application [14, 20].

We assume the energy function e(x) is continuously differentiable, increasing,
and strictly convex in x ≥ 0. This assumption is validated extensively by both
analytical models and measurement studies [14, 23, 35]. In practice, if a slower
core consumes more power and thus energy than a fast one, it wont be built.
Because of CMOS circuit characteristics, energy is well approximated as e(x) =

b · xα−1 + c for core speed x, where the power exponent α ≥ 2 and static energy
c ≥ 0 [8, 23]. We concentrate on heterogeneous multicores which consists of
multiple diverse cores, but our approach applies to cores with multiple speeds
realized with DVFS.

We refer to the core executing the i-th bin of a job’s demand as core i, for
i = 1, 2, · · · , N . We denote the core speed and power consumption of core i by xi

and zi = z(xi), respectively. The energy consumption per unit work of core i is
given by ei = e(xi) = z(xi)/xi. Two cores i and j may be equivalent in some cases,
i.e., xi = xj, for i, j = 1, 2, · · · , N . For example, one core will execute multiple
bins when demand for this core differs between two or more jobs.

2.1 Scheduling Objective —Energy

Our scheduling objective is minimize average energy on a heterogeneous proces-
sor when scheduling interactive jobs that are subject to multiple latency con-
straints. The scheduler determines the core speeds xi for each bin i = 1, 2, · · · , N .
We express the average energy consumption of a job as
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ē(x) =
N∑
i=1

[
i∑

j=1

zj ·
wj

xj

]
· fi =

N∑
i=1

[1− Fi−1] · e(xi) · wi, (1)

where ei = e(xi) = z(xi)/xi is the energy per unit work consumed by core i and
x = (x1, x2, · · · , xN) is a vector expression. The term “

∑i
j=1 zj ·

wj

xj
” represents the

energy consumption of a job with a service demand of
∑i

j=1 wj (which occurs
with a probability of fi), and hence we have the average energy consumption

as
∑N

i=1

[∑i
j=1 zj ·

wj

xj

]
· fi. Equivalently, we can rewrite the average energy con-

sumption as
∑N

i=1 [1− Fi−1] · e(xi) · wi, where (1 − Fi−1) is the probability that
the i-th bin of the service demand is processed (i.e., the probability that a job
has at least a service demand of

∑i
j=1 wj).

2.2 Scheduling Constraints —Latency

Many prior studies mainly focused on single and simple latency constraints, such
as maximum latency (deadline) or average latency [23, 35]. Motivated by recent
work that addresses latency requirements in contexts such as load balancing [2,
25], we introduce the Lp norm to generalize latency constraints. For concision,
we sometimes abbreviate the Lp norm with Lp. Specifically, given the core speeds
x = (x1, x2, · · · , xN), we mathematically express the Lp norm for latency as follows

D(p) =

[
N∑
i=1

(ti)
p · fi

] 1
p

=

{
N∑
i=1

[
i∑

j=1

wj

xj

]p

· fi

} 1
p

, (2)

where p ≥ 1 and ti =
∑i

j=1

wj

xj
is the latency of a job with a service demand of

w̃i =
∑i

j=1 wj. The Lp norm for latency generalizes over maximum and average
latency. Given p = ∞, L∞ is maximum latency and given p = 1, L1 is average
latency. Intuitively, larger values of p emphasize optimizing the latency of longer
jobs, effectively mitigating unfairness and extreme outliers for long jobs [2, 5].

Latency variance determines the predictability of a scheduling algorithm [32]
and depends on the L2 and L1 through the simple expression L2−L1. For average
latency and latency variance, we can apply various techniques, such as Chebyshev
inequality, to bound tail distributions and estimate high-percentile latency. Thus,
simultaneously considering multiple Lp latency constraints, such as the L1 and
L2 norms, well characterizes requirements on interactive applications [2–4, 25].

This paper focuses on interactive applications where the actual demand of
individual jobs is unknown and hence all jobs have the same latency constraints,
e.g., all web pages have similar latency constraints, since users will abandon the
browser if responses are too slow. Differentiated services for different jobs are
beyond the scope of this paper and could be interesting future work.

3 Problem Formulation and Algorithm

This section formalizes the energy minimization problem and presents the SEM
scheduling algorithm, which minimizes energy subject to latency constraints.
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The inputs to SEM are the probability distribution of service demand fi, the
size of each service demand bin wi, and energy consumption per unit work e(x) in
terms of the processing speed x. SEM outputs the optimal job schedule, which
prescribes a sequence of core speeds x1, x2, · · · , xN , where xi is the core speed
to process the i-th service demand bin. An incoming job with unknown service
demand will execute on the prescribed sequence of core speeds until completion.
For example, given an application that has jobs with service demands of 1, 2, 5,
or 10 (units of work) and some probability distribution, then there are 4 service
demand bins with the following sizes: w1 = 1, w2 = 2− 1 = 1, w3 = 5− 2 = 3, w4 =

10 − 5 = 5. Given a set of Lp latency constraints, SEM determines the optimal
core speed xi for executing each service demand bin wi. For example, x1 = 1 GHz,
x2 = x3 = 1.5 Ghz, and x4 = 3 GHz. This scheduling plan is determined offline
and then used in deployment. In deployment, when a job arrives, it’s service
demand is unknown. SEM first processes the job on a 1 GHz core. If the job
does not completed after 1 unit of work, SEM migrates the job to a 1.5 GHz
core. If the job does not completed after processing another w2 +w3 = 4 units of
work, SEM migrate it to a 3GHz core, and continue processing the job until it
completes. Formally, this problem is stated as follows.

P1 : min
x

N∑
i=1

{[1− Fi−1] · e(xi) · wi} (3)

s.t.,

{
N∑
i=1

[
i∑

j=1

wj

xj

]pk

fi

} 1
pk

≤ D̃(pk), (4)

for k = 1, 2, · · · , K,

x � 0, (5)

where � is an element-wise operator, constraining all the core speeds to be non-
negative. This formulation assumes that the core speeds x1, x2, · · · , xN can be
continuously chosen from any non-negative values. In other words, here core
speeds are unconstrained. (Section 6 shows how to handle the limited numbers
of core speeds available in practice.) The objective function in (3) minimizes the
average energy of all jobs. The latency constraints in (4) are imposed with K

different norms where 1 ≤ p1 < p2 < · · · < pK ≤ ∞. Note that imposing a tail
latency constraint of L∞ excludes outlier jobs, e.g., for 95-percentile latency, the
5% longest jobs are excluded by the L∞ norm.

This P1 formulation is a convex optimization problem. The latency con-
straints in Inequality (4) are convex because Lp norms are convex when p ≥ 1.
The speed constraints in Inequality (5) are linear. A linear combination of the
energy consumption per unit work e(x) is strictly convex in terms of the pro-
cessing speed x due to CMOS characteristics [23]. The objective function in (3)
is also convex. Since P1 is convex, there exist efficient algorithms that find the
globally optimal solution, which we denote as x∗.

We derive the solution to P1 using a primal-dual iterative approach. A com-
panion technical report presents the algorithm and its proof [27]. We set a thresh-
old ε as a stopping criterion such that the iteration stops once the difference of



158 S. Ren, Y. He, and K.S. McKinley

the L2 norm between two consecutively iterated values is below the threshold.
The iterative approach has a iteration-complexity bounded by O(1\ε2) [22].

Note that we analytically derive the solution to P1 instead of using a convex
solver. The analytical form exposes important properties of the optimal solution
and has implications for hardware core choices that we discuss in Section 4 and
Section 5. These properties cannot be derived using a convex solver.

Further note that we only compute an optimal schedule once offline for any
given job service demand distribution and heterogeneous system. Our online
scheduler simply applies the precomputed optimal schedule, executing a job
on each core speed for the precomputed specified optimal time, until the job
completes. Therefore, the computational overhead in deployment is negligible.

4 An Optimal Schedule Migrates from Slow to Fast Cores

Under the optimal schedule, core speeds monotonically increase as hardware
processes more of the job’s work. In other words, an optimal scheduler need only
migrate a job from slower to faster cores. Theorem 1 formalizes this property.
While prior studies [23,26,35,37] show to use the “slow to fast” property under
the maximum latency constraint in different contexts such as DVFS, in contrast,
Theorem 1 is the first formal result that applies it to the more general case of
any latency norm constraint and with multiple latency norm constraints.

Theorem 1. The optimal core speeds that solve P1 satisfy 0 < x∗
1 ≤ x∗

2 ≤ · · · ≤
x∗
N . If only the L1 latency constraint is imposed, then x∗

1 = x∗
2 = · · · = x∗

N .

Proof. The technical report contains the proof [27]. �

Theorem 1 tells us, without a priori knowledge of each job’s service demand, an
optimal schedule first processes a job on a slow core. If the job does not complete
within some time interval (because it is long), SEM migrates it to faster cores.
Thus, a short job completes on slower cores to save energy while a long job uses
faster cores to meet the latency constraints. Consequently, the average energy
consumption is minimized while satisfying latency constraints.

The intuition behind Theorem 1 is that long jobs have a greater impact on
latency constraints. In particular, the latency norm constraint specified by Equa-
tion (2) is mostly dominated by long jobs (the larger pk, the more dominated by
long jobs, which can be seen by taking the partial derivative of (2) with respect
to the latency experienced by jobs with various demands). In the extreme case,
when pk →∞, only the maximum latency incurred by the longest jobs is impor-
tant. Thus, we want to process the long jobs fast enough to meet the latency
constraints. On the other hand, processing short jobs using slower cores saves
energy without penalizing the latency constraints.

If only the average latency constraint (p = 1) is considered, Theorem 1 re-
duces to a special case where x∗

1 = x∗
2 = · · · = x∗

N , i.e., the optimal schedule
uses a homogeneous processor. Intuitively, this reduction holds because delaying
short and long jobs have the same impact on the L1 norm. More formally, the
technical report [27] derives that e(xi)x

2
i is the same for all i = 1, 2, · · · , N and
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hence, homogeneous speeds are optimal when only satisfying the L1 norm latency
constraint. For all other latency constraints (p > 1) and multiple constraints, the
optimal energy-efficient schedule requires heterogeneous processors.

5 Implications for Cores in a Heterogeneous System

This section analyzes how latency constraints, workload characteristics, and core
power/performance characteristics effect core choices in a heterogeneous system.

5.1 Effect of Latency Constraints on Heterogeneity

Given Theorem 1, a key question is what core speeds to include in a hetero-
geneous system. In practice, the fastest cores are limited by physics and the
software will be tuned such that the fastest core speed can satisfy the most de-
manding jobs. We therefore exploit this theorem to select the remaining lower
power cores by investigating the ratio of the fastest x∗

N to the slowest x∗
1 speed.

We define this ratio as the degree of heterogeneity , giving a formal quantitative
guideline for selecting core speeds in a heterogeneous processor. Our analysis
shows that more heterogeneity is desired for larger p in the Lp norm constraint.

We derive this result using a widely-used class of energy functions [23] ex-
pressed in the form e(x) = b · xα−1, where b > 0 and α ≥ 2 (corresponding to a
power function of z(x) = b · xα [23]). The lack of a closed-form expression of the
optimal core speeds x∗ makes it prohibitive to derive the exact value of the de-
gree of heterogeneity. We instead exploit monotonicity to derive upper and lower
bounds, using Theorem 2 to show that degree of heterogeneity is monotonically
increasing in p ≥ 1.

Theorem 2. Given e(x) = b·xα−1 and one Lp latency constraint, then the degree
of heterogeneity x∗

N
x∗
1

increases with increasing p for p ≥ 1.

Proof. The technical report contains the proof [27]. �

Theorem 2 proves that as p ≥ 1 increases, the optimal degree of heterogeneity also
increases; the latency constraint thus imposes the optimal choice of core speeds.
More precisely, given two different values of p, we can select two different latency
constraints, under which the corresponding minimum core speeds are the same
using the optimal job schedule. Under a latency constraint with a larger p value,
long jobs require faster cores, because larger values of p place a more stringent
requirement on the latency of longer jobs. Thus, if p increases, so does x∗

N/x∗
1.

Furthermore, we prove a lemma in the technical report [27] that the degree of
heterogeneity is a constant for a given p regardless of latency constraints, which
establishes hardware requires more heterogeneity for larger p.

5.2 How Much Heterogeneity Is Desirable?

This section explores how much heterogeneity is desirable. We use Theorem 2 to
derive both upper and lower bounds on degree of heterogeneity in Theorem 3.
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Fig. 1. (a) (b) Service demand distributions of Bing and Financial derivative work-
loads. Most jobs are short, but long jobs are not negligible. (c) (d) Degree of hetero-
geneity as a function of p given one Lp constraint and power model: z(x) = 21 · xα.

This result delivers quantitative guidance for selecting the cores in heterogeneous
multicore processors for interactive applications.

Theorem 3. Given e(x) = b · xα−1 and K Lp latency constraints specified by
1 ≤ p1 ≤ p2 ≤ · · · ≤ pK ≤ ∞, then the degree of heterogeneity x∗

N
x∗
1

satisfies:

1 ≤ x∗
N

x∗
1

≤
(

1

fN

) 1
α

(6)

where fN is the probability that a job has the maximum service demand of w̃N .
We call a latency constraint dominant if and only if satisfying it ensures

that all the other latency constraints, if any, are also satisfied under the optimal
schedule. Thus, the dominant latency constraint is the most stringent require-
ment. When average latency is dominant, the first inequality above becomes an
equality: x∗

N/x∗
1 = 1. When maximum latency is dominant, the second inequality

becomes equality: x∗
N

x∗
1

=
(

1
fN

) 1
α
.

Proof. The technical report contains the proof [27]. �

Theorem 3 has two interesting implications.
1. Workload heterogeneity prefers hardware heterogeneity. The upper bound

on the degree of heterogeneity increases as fN decreases (i.e., with fewer long
jobs). When the workload is homogeneous, all jobs have the same service demand
and fN = 1. In this case, Theorem 3 indicates that x∗

N/x∗
1 = 1 and homogeneous

hardware is optimal. For a heterogeneous workload where fN is small, the value
of x∗

N/x∗
1 may become very large. When slow cores complete short jobs, they

save energy, whereas with the optimal schedule, the fastest processors process
long jobs to satisfy the maximum latency constraint without incurring too much
average energy, since fN is small.

2. Core power and performance influences on hardware heterogeneity. When
the speed of a core increases, so does its power consumption. We observe from (6)
that the upper bound on the degree of heterogeneity decreases with α. A larger
α indicates power consumption grows faster than core speed and hence using
fast cores will significantly increases average energy consumption and degree of
heterogeneity will be smaller.
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Example We consider two example interactive workloads, Bing web search and
Monte Carlo financial pricing (see elsewhere for details [26]). They illustrate how
latency constraints, workload, and core performance and power characteristics
affect the desired heterogeneity. Figure 1(a) and Figure 1(b) show the distribu-
tions of service demand for the two applications, measured in terms of the job
processing time on an Intel i7-2600 Sandy Bridge core. The demand spike in Fig-
ure 1(a) occurs because the search engine caps job processing time at 120 ms and
returns the top results found so far. Search engines often cap query processing
time and return partial results to tradeoff quality and response time [17].

Figure 1(c) and 1(d) show how the degree of heterogeneity (Y -axis x∗
n/x

∗
1)

changes as a function of p in Lp with Bing and financial applications, respectively,
when we can choose any core speed. We normalize speed to an i7-2600 Sandy
Bridge core and use the power model: z(x) = 21 · xα, because z(1) = 21W is
the power consumption of the i7-2600 Sandy Bridge core. Blue and red lines
represent the cases of α = 2.08 (a lower energy cost for performance) and α = 2.5

(a higher energy cost for performance) respectively.
Figure 1(c) and 1(d) confirm Theorems 2 and 3. (1) When p increases, the

degree of heterogeneity increases and has an upper bound, as predicted. In par-
ticular, a homogeneous processor is optimal in terms of energy consumption
when p = 1 (average latency), whereas the maximum degree of heterogeneity is
desirable when p = ∞ (a deadline). (2) The degree of heterogeneity decreases
with larger α because faster cores consume proportionally more energy. (3) Com-
paring Figure 1(c) and 1(d) shows financial derivative pricing requires a higher
degree of heterogeneity than Bing web search given the same p because the
longest jobs are rarer in derivatives (fN is smaller). The rarer the long jobs,
the faster the fastest core we can choose without compromising average energy
because the prolific short jobs execute on the slowest low power cores.

6 Discrete Core Speeds, Migration, and Congestion

This section extends SEM to address the following practical considerations: (1)
a limited selection of core speeds, (2) job migration overhead, and (3) congestion
due to multiple jobs competing for the same core(s).

Discrete core speeds Given a set of core speeds, 0 < s1 ≤ s2 ≤ · · · ≤ sM , we
formulate our problem as follows:

P2 : min
x

N∑
i=1

{[1− Fi−1] · e(xi) · wi} (7)

s.t., Constraint (4) (8)

xi ∈ {s1, s2, · · · , sM}, i = 1, 2, · · · , N. (9)

P2 is a combinatorial optimization problem, which is notoriously difficult to
solve [37]. We use an efficient branch-and-bound algorithm to produce solutions
arbitrarily close-to-optimal. A greedy solution finds a schedule that will consume



162 S. Ren, Y. He, and K.S. McKinley

more energy than the optimal schedule (i.e., the upper bound), whereas the job
schedule obtained by replacing “xi ∈ {s1, s2, · · · , sM}” with xi ∈ [s1, sM ] and then
using convex optimization will produce an average energy consumption that is
less than the optimal schedule (i.e., the lower bound). By iteratively finding and
refining the upper and lower bounds until the gap becomes sufficiently small, we
identify a schedule arbitrarily close to the optimal schedule [7]. The technical
report contains the details of the solution and the derivation [27].

P2 is an NP-hard problem, even if only the maximum latency constraint
is considered [37]. Without specifying the maximum number of iterations, the
proposed algorithm may iterate up to MN times, enumerating all the possible
solutions in the worst case. Nevertheless, the beauty of branch-and-bound algo-
rithm is that it typically converges much faster, which we also observe. In fact,
with an appropriately-set stopping criterion, the number of iterations required
for convergence is upper bounded, and in practice, the actual number of itera-
tions is typically even much smaller than the upper bound. The complete analysis
of convergence rate is beyond our scope, and interested readers are referred to
the literature [7].

Moreover, as we discussed in Section 3, we only compute an optimal schedule
once offline for any given job service demand distribution and heterogeneous pro-
cessor. Our online scheduler simply applies the precomputed optimal schedule.
Therefore, the computational overhead in deployment is negligible.

Migration overhead. Migrating a job from one core to another incurs overhead
from copying job state and warming up caches. Our experiments show that job
migration overheads are fairly small on both web search [17] and interactive
finance applications. One migration is less than 50 microseconds, less than 0.1%
of the maximum latency requirement in the order of 100 milliseconds. Moreover,
a job can only migrate up to Q − 1 times, where Q is the number of different
core speeds. Because Q is very small (2 ∼ 4) in practice and many short jobs
completed on slow cores, SEM often does not incur much migration overhead.

To extend our solution when migration costs are high, e.g., migrating a job
between two servers, we describe a heuristic approach to incorporate migration
overhead in the analytical model. This approach is conservative and assumes
worst-case migration overhead. More specifically, let τ o represent the migration
overhead, quantified by the time during which a core cannot process any work.
In the worst case, a job with a demand of w̃i =

∑i
j=1 wj may migrate up to (i−1)

times, for i = 1, 2, · · · , N . Thus, the new worst-case latency constraint becomes

{
N∑
i=1

[
i∑

j=1

wj

xj
+ (i− 1) · τ o

]pk

fi

} 1
pk

≤ D̃(pk). (10)

By neglecting the constant energy consumption incurred by the migration pro-
cess in the worst case, we reformulate the energy minimization problem P2
by replacing the latency constraint (8) with (10) to account for the migration
overhead. The solution can be found in a similar way following our preceding
analysis.
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Congestion. We briefly discuss how to apply SEM as a building block when
congestion or queuing delay results in multiple jobs demanding the same core
at the same time. A key observation is that the presence of congestion may
cause a violation in the latency constraints if we directly apply SEM. To sat-
isfy the desired latency that includes both processing delay and queueing delay,
we can impose a more stringent constraints for the processing delay which, if
appropriately chosen and after adding the queueing delay, will satisfy the to-
tal latency constraints. To choose the appropriate Lp norm constraint to handle
this delay, we propose integral control to dynamically adjust the processing delay
constraint based on the difference between the observed latency and the target
latency (latency constraint). The control function is expressed as

D̃i(pk) = D̃i−1(pk) + V · di(pk), for k = 1, 2, · · · ,K,

where i = 1, 2, · · · represents time steps, D̃i(pk) is the output of the integral
controller at time i representing the augmented Lp norm constraint on the pro-
cessing delay. V > 0 defines the ratio of the control adjustment to the control
error and di(pk) is the difference between the target and observed latency. Thus,
if the observed latency is greater than the constraint, di(pk) < 0, a more stringent
processing delay constraint, D̃i(pk), will be imposed for the next time step, and
vice versa.

Finally, note that using the above method to address congestion will not alter
the value of p. Thus, our slow to fast scheduling insight and the quantitative
upper and lower bounds on the ratio of fast to slow core speeds still hold.

7 Related Work

Heterogeneous multicore processors. As computer architects face the end of
Dennard scaling, they are turning to heterogeneous multicore processors, which
combine high performance but high power cores with lower power and lower
performance cores to meet a variety of performance objectives, i.e., throughput,
energy, power, etc. To effectively utilize these systems, a scheduler must match
jobs to an appropriate core. Four types of schedulers have been proposed to allo-
cate jobs or parts of jobs to different cores. (1) With known or predicted resource
demand, incoming jobs are scheduled to the most appropriate core [9,11,38]. (2)
With known performance requirements, latency-sensitive applications such as
games or videos are processed by fast cores, whereas latency-tolerant applica-
tions such as background services are processed by slow cores [15,24,28]. (3) With
known job characteristics, complementary job allocation is applied to maximize
the server utilization while avoiding resource bottlenecks (e.g., memory-intensive
jobs and CPU-intensive jobs are allocated to the same server [34]). (4) If a single
job has different phases [21,29,30], such as parallel phases and sequential phases,
schedulers map the sequential phase on a high-performance core and the parallel
phase on a number of energy-efficient cores.
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Lp norms and multiple latencies Because the Lp norms are a general class of con-
straints, researchers have applied them in various contexts, such as minimizing
the total latency via online load balancing [5, 31] and multi-user scheduling of
wireless networks [39]. Our study considers multiple Lp norm latency constraints
simultaneously for individual interactive services. Prior work mainly considers
multiple latency constraints to provide differentiated performance guarantees to
different traffic classes [10,33], whereas we exploit the diversity of demand within
the requests, without requiring knowledge about the demand of any individual
request, to meet constraints for a variety of interactive applications.

Latency sensitive and real-time scheduling. Related work also considers exploit-
ing heterogeneous processors and DVFS to improve energy-efficiency for latency-
sensitive and real-time jobs [1,23,35–37]. Some of them [1,36,38,40] assume that
the service demand of each job is either known or accurately predicted, which
is not available for many applications. Other studies on DVFS and real-time
systems assume unknown service demand [23, 35, 37], but they consider a hard
deadline as the only latency constraint. Our prior work [26] studies schedul-
ing interactive workloads on a heterogeneous processor for quality/throughput
maximization (not energy minimization) subject to a single deadline constraint.
While it also leverages the “slow to fast” insight, it always uses fast cores first
whenever they are available for performance optimization. In contrast, SEM
starts jobs on slow cores and migrates them to fast cores along the execution
to minimize energy. Moreover, this prior work [26] does not address multiple
latency constraints and it does not deliver quantitative insights for selecting
cores in heterogeneous processors. To the best of our knowledge, we offer the
first formal analysis to characterize the optimal schedule and hardware design
for scheduling latency-sensitive jobs on heterogeneous processors with multiple
latency constraints without requiring a priori knowledge of the service demand
of each individual job.

8 Conclusion

This paper presents an efficient scheduling algorithm for interactive jobs on
heterogeneous processors subject to multiple latency constraints expressed in
the form of Lp norms and optimizes energy. We introduce the SEM scheduling
which advances the existing research in two key ways. (1) The SEM algorithm
does not rely on the service demand of each individual job, which is difficult and
even impossible to obtain in many interactive applications such as web search.
(2) The SEM algorithm explicitly incorporates multiple Lp norm latency con-
straints which, compared to prior work, more accurately characterize the explicit
and implicit multiple service level agreements on the latency of interactive ap-
plications. We prove that an optimal schedule only migrates jobs from slower to
faster cores. Moreover, we quantify how to select cores in heterogeneous hard-
ware for interactive applications. The more the system needs to limit outliers,
the more heterogeneous the hardware needs to be. The more heterogeneous the
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workload service demand is, the less power additional performance costs and the
more heterogeneous the hardware needs to be.
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Abstract. A fault-tolerant structure for a network is required to con-
tinue functioning following the failure of some of the network’s edges
or vertices. In this paper, we address the problem of designing a fault-
tolerant additive spanner, namely, a subgraph H of the network G such
that subsequent to the failure of a single vertex, the surviving part of
H still contains an additive spanner for (the surviving part of) G, sat-
isfying dist(s, t,H \ {v}) ≤ dist(s, t,G \ {v}) + β for every s, t, v ∈ V .
Recently, the problem of constructing fault-tolerant additive spanners
resilient to the failure of up to f -edges has been considered [8]. The
problem of handling vertex failures was left open therein. In this paper
we develop new techniques for constructing additive FT-spanners over-
coming the failure of a single vertex in the graph. Our first result is an
FT-spanner with additive stretch 2 and O(n5/3) edges. Our second result
is an FT-spanner with additive stretch 6 and O(n3/2) edges. The con-
struction algorithm consists of two main components: (a) constructing
an FT-clustering graph and (b) applying a modified path-buying proce-
dure suitably adopted to failure prone settings. Finally, we also describe
two constructions for fault-tolerant multi-source additive spanners, aim-
ing to guarantee a bounded additive stretch following a vertex failure,
for every pair of vertices in S × V for a given subset of sources S ⊆ V .
The additive stretch bounds of our constructions are 4 and 8 (using a
different number of edges).

1 Introduction

An (α, β)-spanner H of an unweighted undirected graph G is a spanning sub-
graph satisfying for every pair of vertices s, t ∈ V that dist(s, t,H) ≤ α ·
dist(s, t, G) + β. When β = 0, the spanner is termed a multiplicative spanner
and when α = 1 the spanner is additive. Clearly, additive spanners provide a
much stronger guarantee than multiplicative ones, especially for long distances.
Constructions of additive spanners with small number of edges are currently
known for β = 2, 4, 6 with O(n3/2), Õ(n7/5) and O(n4/3) edges respectively
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[1,2,5,11,14,15]. This paper considers a network G that may suffer single ver-
tex failure events, and looks for fault tolerant additive spanners that maintain
their additive stretch guarantee under failures. Formally, a subgraph H ⊆ G is
a β-additive FT-spanner iff for every (s, t) ∈ V × V and for every failing vertex
v ∈ V , dist(s, t,H \ {v}) ≤ dist(s, t, G\ {v})+β. As a motivation for such struc-
tures, consider a situation where it is required to lease a subnetwork of a given
network, which will provide short routes from every source s and every target
t with additive stretch 2. In a failure-free environment one can simply lease a
2-additive spanner H0 of the graph with Θ(n3/2) edges. However, if one of the
vertices in the graph fails, some s − t routes in H0 \ {v} might be significantly
longer than the corresponding route in the surviving graph G \ {v}. Moreover, s
and t are not even guaranteed to be connected in H0\{v}. One natural approach
towards preparing for such eventuality is to lease a larger set of links, i.e., an
additive FT-spanner.

The notion of fault-tolerant spanners for general graphs was initiated by
Chechik at el. [10] for the case of multiplicative stretch. Specifically, [10] pre-
sented algorithms for constructing an f -vertex fault tolerant spanner with multi-
plicative stretch (2k−1) and O(f2kf+1 ·n1+1/k log1−1/k n) edges. A randomized
construction attaining an improved tradeoff for vertex fault-tolerant spanners
was then presented in [13]. Constructions of fault-tolerant spanners with addi-
tive stretch resilient to edge failures were recently given by Braunschvig at el.
[8]. They establish the following general result. For a given n-vertex graph G,
let H1 be an ordinary additive (1, β) spanner for G and H2 be a fault tolerant
(α, 0) spanner for G resilient against up to f edge faults. Then H = H1 ∪ H2

is a (1, β(f)) additive fault tolerant spanner for G (for up to f edge faults) for
β(f) = O(f(α + β)). In particular, fixing the number of H edges to be O(n3/2)
and the number of faults to f = 1 yields an additive stretch of 14. Hence, in
particular, there is no construction for additive stretch < 14 and o(n2) edges.
In addition, note that these structures are resilient only to edge failures as the
techniques of [8] cannot be utilized to protect even against a single vertex failure
event. Indeed, the problem of handling vertex failures was left open therein.

In this paper, we make a first step in this direction and provide additive
FT-structures resilient to the failure of a single vertex (and hence also edge)
event. Our constructions provide additive stretch 2 and 6 and hence provide an
improved alternative also for the case of a single edge failure event, compared to
the constructions of [8].

The presented algorithms are based upon two important notions, namely,
replacement paths and the path-buying procedure, which have been studied ex-
tensively in the literature. For a source s, a target vertex t and a failing vertex
v ∈ V , a replacement path is the shortest s − t path Ps,t,v that does not go
through v. The vast literature on replacement paths (cf. [7,16,19,21]) focuses on
time-efficient computation of the these paths as well as their efficient mainte-
nance in data structures (a.k.a distance oracles).

Fault-resilient structures that preserve exact distances for a given subset of
sources S ⊆ V have been studied in [17], which defines the notion of an FT-MBFS
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structure H ⊆ G containing the collection of all replacement paths Ps,t,v for
every pair (s, t) ∈ S × V for a given subset of sources S and a failing vertex
v ∈ V . Hence, FT-MBFS structures preserve the exact s − t distances in G \ {v}
for every failing vertex v, for every source s ∈ S.

It is shown in [17] that for every graph G and a subset S of sources, there
exists a (poly-time constructible) 1-edge (or vertex) FT-MBFS structure H with
O(

√
|S| · n3/2) edges. This result is complemented by a matching lower bound

showing that for sufficiently large n, there exist an n-vertex graph G and a
source-set S ⊆ V , for which every FT-MBFS structure is of size Ω(

√
|S| · n3/2).

Hence exact FT-MBFS structures may be rather expensive. This last observation
motivates the approach of resorting to approximate distances, in order to allow
the design of a sparse subgraph with properties resembling those of an FT-MBFS

structure.
The problem of constructing multiplicative approximation replacement paths

P̃s,t,v (i.e., such that |P̃s,t,v| ≤ α·|Ps,t,v|) has been studied in [3,9,6]. In particular
its single source variant has been studied in [4,18]. In this paper, we further
explore this approach. For a given subset of sources S, we focus on constructions
of subgraphs that contain an approximate BFS structure with additive stretch
β for every source s ∈ S that are resistant to a single vertex failure.

Indeed, the construction of additive sourcewise FT-spanners provides a key
building block of additive FT-spanner constructions (in which bounded stretch
is guaranteed for all pairs). We present two constructions of sourcewise spanners
with different stretch-size tradeoffs. The first construction ensures an additive
stretch 4 with Õ(max{n · |S|, (n/|S|)3}) edges and the second construction guar-

antees additive stretch 8 with Õ(max{n · |S|, (n/|S|)2}). As a direct consequence

of these constructions, we get an additive FT-spanner with stretch 6 and Õ(n3/2)

edges and an additive sourcewise FT-spanner with additive stretch 8 and Õ(n4/3)
for at most O(n1/3) sources.

Our constructions employ a modification of the path-buying strategy, which
was originally devised in [5] to provide 6-additive spanners with O(n4/3) edges.
Recently, the path-buying strategy was employed in the context of pairwise span-
ners, where the objective is to construct a subgraph H ⊆ G that satisfies the
bounded additive stretch requirement only for a subset of pairs [12]. The high-
level idea of this procedure as follows. In an initial clustering phase, a suitable
clustering of the vertices is computed, and an associated subset of edges is added
to the spanner. Then comes a path-buying phase, where they consider an ap-
propriate sequence of paths, and decide whether or not to add each path into
the spanner. Each path P has a cost, given by the number of edges of p not
already contained in the spanner, and a value, measuring P ’s help in satisfying
the considered set of constraints on pairwise distances. The considered path P
is added to the spanner iff its value is sufficiently larger than its cost. In our
adaptation to the FT-setting, an FT-clustering graph is computed first, pro-
viding every vertex with a sufficiently high degree (termed hereafter a heavy
vertex) two clusters to which it belongs. Every cluster consists of a center vertex
v connected via a star to a subset of its heavy neighbors. In our design not all
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replacement paths are candidates to be bought in the path-buying procedure.
Let π(s, t) be an s − t shortest-path between a source s and a heavy vertex
t (in our constructions, all heavy vertices are clustered). We divide the failing
events on π(s, t) into two classes depending on the position of the failing vertex
on π(s, t) with respect to the least common ancestor (LCA) �(s, t) of t’s cluster
members in the BFS tree rooted at s. Specifically, a vertex fault π(s, t) that
occurs on �(s, t) is handled directly by adding the last edge of the corresponding
replacement path to the spanner. Vertex failures that occur strictly below the
LCA, use the shortest-path π(s, x) between s and some member x in the cluster
of t whose failing vertex v does not appear on its π(s, x) path. The approximate
replacement path will follow π(s, x) and then use the intercluster path between
x and t. The main technicality is when concerning the complementary case when
that failing events occur strictly above �(s, t). These events are further divided
into two classes depending on the structure of their replacement path. Some of
these replacement paths would again be handled directly by collecting their last
edges into the structure and only the second type paths would be candidate to be
bought by the path-buying procedure. Essentially, the structure of these paths
and the cost and value functions assigned to them would guarantee that the
resulting structure is sparse, and in addition, that paths that were not bought
have an alternative safe path in the surviving part of the structure.

Contributions. This paper provides the first constructions for additive spanners
resilient upon single vertex failure. In addition, it provides the first additive
FT-structures with stretch guarantee as low as 2 or 6 and with o(n2) edges.

The main technical contribution of our algorithms is in adapting the path-
buying strategy to the vertex failure setting. Such an adaptation has been initi-
ated in [18] for the case of a single-source s and a single edge failure event. In
this paper, we extend this technique in two senses: (1) dealing with many sources
and (2) dealing with vertex failures. In particular, [18] achieves a construction
of single source additive spanner with O(n4/3) edges resilient to a single edge
failure. In this paper, we extend this construction to provide a multiple source
additive spanners resilient to a single vertex failure, for O(n1/3) sources, additive

stretch 8 and Õ(n4/3) edges. In summary, we show the following.

Theorem 1 (2-additive FT-spanner). For every n-vertex graph G = (V,E),

there exists a (polynomially constructible) subgraph H ⊆ G of size Õ(n5/3) such
that dist(s, t,H \ {v}) ≤ dist(s, t, G \ {v}) + 2 for every s, t, v ∈ V .

Theorem 2 (6-additive FT-spanner). For every n-vertex graph G = (V,E),

there exists a (polynomially constructible) subgraph H ⊆ G of size Õ(n3/2) such
that dist(s, t,H \ {v}) ≤ dist(s, t, G \ {v}) + 6 for every s, t, v ∈ V .

Theorem 3 (8-additive sourcewise FT-spanner). For every n-vertex graph

G = (V,E) and a subset of sources S ⊂ V where |S| = Õ(n1/3), there ex-

ists a (polynomially constructible) subgraph H ⊆ G of size Õ(n4/3) such that
dist(s, t,H \ {v}) ≤ dist(s, t, G \ {v}) + 8 for every s ∈ S and t, v ∈ V .
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2 Preliminaries

Notation. Given a graph G = (V,E), a vertex pair s, t and an edge weight
function W : E(G) → R+, let SP (s, t, G,W ) be the set of s − t shortest-paths
in G according to the edge weights of W . Throughout, we make use of (an
arbitrarily specified) weight assignment W that guarantees the uniqueness of the
shortest paths1. Hence, SP (s, t, G′,W ) contains a single path for every s, t ∈ V
and for every subgraph G′ ⊆ G, we override notation and let SP (s, t, G,W ) be
the unique s−t path in G according to W . When the shortest-path are computed
in G, let π(s, t) = SP (s, t, G,W ). To avoid cumbersome notation, we may omit
W and simply refer to π(s, t) = SP (s, t, G,W ). For a subgraph G′ ⊆ G, let
V (G′) (resp., E(G′)) denote the vertex set (resp. edge set) in G′.

For a given source node s, let T0(s) =
⋃

t∈V π(s, t) be a shortest paths (or
BFS) tree rooted at s. For a set S ⊆ V of source nodes, let T0(S) =

⋃
s∈S T0(s) be

a union of the single source BFS trees. For a vertex t ∈ V and a subset of vertices
V ′ ∈ V , let T (t, V ′) =

⋃
u∈V ′ π(u, t) be the union of all {t} × V ′ shortest-paths

(by the uniqueness of W , T (t, V ′) is a subtree of T0(t)). Let Γ (v,G) be the set
of v’s neighbors in G. Let E(v,G) = {(u, v) ∈ E(G)} be the set of edges incident
to v in the graph G and let deg(v,G) = |E(v,G)| denote the degree of node v
in G. For a given graph G = (V,E) and an integer Δ ≤ n, a vertex v is Δ-heavy
if deg(v,G) ≥ Δ, otherwise it is Δ-light. When Δ is clear from the context, we
may omit it and simply refer to v as heavy or light. For a graph G = (V,E)
and a positive integer Δ ≤ n, let VΔ = {v | deg(v,G) ≥ Δ} be the set of Δ-
heavy vertices in G. (Throughout, we sometimes simplify notation by omitting
parameters which are clear from the context.) For a subgraph G′ = (V ′, E′) ⊆ G
(where V ′ ⊆ V and E′ ⊆ E) and a pair of vertices u, v ∈ V , let dist(u, v,G′)
denote the shortest-path distance in edges between u and v in G′. For a path
P = [v1, . . . , vk], let LastE(P ) be the last edge of P , let |P | denote its length
and let P [vi, vj ] be the subpath of P from vi to vj . For paths P1 and P2, denote
by P1 ◦ P2 the path obtained by concatenating P2 to P1. For “visual” clarity,
the edges of these paths are considered throughout, to be directed away from
the source node s. Given an s − t path P and an edge e = (x, y) ∈ P , let
dist(s, e, P ) be the distance (in edges) between s and y on P . In addition, for
an edge e = (x, y) ∈ T0(s), define dist(s, e) = i if dist(s, x,G) = i − 1 and
dist(s, y,G) = i. A vertex w is a divergence point of the s − v paths P1 and P2

if w ∈ P1 ∩ P2 but the next vertex u after w (i.e., such that u is closer to v) in
the path P1 is not in P2.

Basic Tools. We consider the following graph structures.

Definition 1 ((α, β, S)-AMBFS FT-spanners). A subgraph H ⊆ G is an
(α, β, S) FT-AMBFS (approximate multi-BFS) structure with respect to S if for
every (s, t) ∈ S×V and every v ∈ V , dist(s, t,H\{v}) ≤ α·dist(s, t, G\{v})+β .

1 The role of the weights W is to perturb the edge weights by letting W (e) = 1 + ε
for a random infinitesimal ε > 0.
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Definition 2 ((α, β) FT-spanners). A subgraph H ⊆ G is an (α, β) FT-
spanner if it is an (α, β, V ) FT-AMBFS structure for G with respect to V .

Throughout, we restrict attention to the case of a single vertex fault. When
α = 1, H is termed (β, S) additive FT-spanner. In addition, in case where
S = V , H is an β-additive FT-spanner.

FT-Clustering Graph. A subset Z ⊆ V is an FT-center set for V if every Δ-
heavy vertex v has at least two neighbors in Z, i.e., |Γ (v,G)∩Z| ≥ 2. For every
heavy vertex v ∈ VΔ, let Z(v) = {z1(v), z2(v)} be two arbitrary neighbors of v in
Z. The clustering graph GΔ ⊆ G consists of the edges connecting the Δ-heavy
vertices v to their two representatives in Z as well as all edges incident to the
Δ-light vertices. Formally,

GΔ =
⋃

v∈VΔ

{(v, z1(v)), (v, z2(v))} ∪
⋃

v/∈VΔ

E(v,G).

The Δ-heavy vertices are referred hereafter as clustered, hence every missing
edge in G \GΔ is incident to a clustered vertex.

For every center vertex z ∈ Z, let Cz be the cluster consisting of z and all
the Δ-heavy vertices it represents, i.e., Cz = {z} ∪ {v ∈ VΔ | z ∈ Z(v)}. Note
that every center z is connected via a star to each of the vertices in its cluster
Cz, hence the diameter of each cluster Cz in GΔ is 2.

For a failing vertex v and a heavy vertex t, let zv(t) ∈ Z(t) \ {v} be a cluster
center of t in G \ {v}. In particular, if z1(t) �= v, then zv(t) = z1(t), else zv(t) =
z2(t). Let Cv(t) be the cluster centered at zv(t). Note that since every heavy
vertex has two cluster centers z1(t) and z2(t), we have the guarantee that at
least one of them survives the single vertex fault event. The next observation
summarizes some important properties of the clustering graph.

Observation 4. (1) |E(GΔ)| = O(Δ · n).
(2) Every missing edge is incident to a clustered vertex in VΔ.
(3) The diameter of every cluster Cz is 2.

(4) There exists an FT-center set Z ⊆ V of size |Z| = Õ(n/Δ).

Obs. 4(4) follows by a standard hitting set argument.

Replacement Paths. For a source s, a target vertex t and a vertex v ∈ G, a
replacement path is the shortest s − t path Ps,t,v ∈ SP (s, t, G \ {v}) that does
not go through v.

Observation 5. Every path Ps,t,v contains at most 3n/Δ Δ-heavy vertices.

New-Ending Replacement Paths. A replacement path Ps,t,v is called new-
ending if its last edge is different from the last edge of the shortest path π(s, t).
Put another way, a new-ending replacement path Ps,t,v has the property that
once it diverges from the shortest-path π(s, t) at the vertex b, it joins π(s, t)
again only at the final vertex t. It is shown in [17] that for a given graph G and a
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set S of source vertices, a structure H ⊆ G containing a BFS tree rooted at each
s ∈ S plus the last edge of each new-ending replacement path Ps,t,v for every
(s, t) ∈ S × V and every v ∈ V , is an FT-MBFS structure with respect to S. Our
algorithms exploit the structure of new-ending replacement paths to construct
(β, S)-additive FT-structure. Essentially, a key section in our analysis concerns
with collecting the last edges from a subset of new-ending replacement paths as
well as bounding the number of new-ending paths Ps,t,v whose detour segments
intersect with π(s′, t) \ {t} for some other source s′ ∈ S.

The basic building block. Our constructions of β-additive FT-spanners, for β ≥ 2,
consist of the following two building blocks: (1) an FT-clustering graph GΔ for
some parameter Δ, and (2) an (β − 2, Z)-additive FT-spanner where Z is an
FT-center set (i.e., cluster centers) for the vertices.

Lemma 1. Let β ≥ 2 and H = GΔ ∪Hβ−2(Z) where Z is an FT-center set for
VΔ. Then H is an β-additive FT-spanner.

Proof: Consider vertices u1, u2, u3 ∈ V . Let P ∈ SP (u1, u2, G \ {u3}) be the
u1 − u2 replacement path in G \ {u3} and let (x, y) be the last missing edge
on P \ H (i.e., closest to u2). Since GΔ ⊆ H , by Obs. 4(2), y is a clustered
vertex. Let z = zu3(y) be the cluster center of y in G \ {u3}, and consider
the following u1 − u2 path P3 = P1 ◦ P2 where P1 ∈ SP (u1, z,H \ {u3}) and
P2 = (z, y) ◦ P [y, u2]. Clearly, P3 ⊆ H \ {u3}, so it remains to bound its length.
Since Hβ−2(Z) ⊆ H , it holds that |P1| ≤ dist(u1, z, G \ {u3}) + β − 2. Hence,

dist(u1, u2, H \ {u3}) ≤ |P3| = |P1|+ |P2|
≤ dist(u1, z, G \ {u3}) + β − 2 + dist(y, u2, G \ {u3})
≤ dist(u1, y, G \ {u3}) + dist(y, u2, G \ {u3}) + β + 1

≤ |P |+ β = dist(u1, u2, G \ {u3}) + β ,

where the second inequality follows by the triangle inequality using the fact that
the edge (z, y) exists in H \ {u3}. The lemma follows.

3 Additive Stretch 2

We begin by considering the case of additive stretch 2. We make use of the
construction of FT-MBFS structures presented in [17].

Fact 6 ([17]). There exists a polynomial time algorithm that for every n-vertex
graph G = (V,E) and source set S ⊆ V constructs an FT-MBFS structure H0(S)
from each source si ∈ S, tolerant to one edge or vertex failure, with a total
number of O(

√
|S| · n3/2) edges.

Set Δ = �n2/3� and let Z be an FT-center set for VΔ as given by Obs. 4(4).
Let H0(Z) be an FT-MBFS structure with respect to the source set Z as given
by Fact 6. Then, let H = GΔ ∪H0(Z). Thm. 1 follows by Lemma 1, Obs. 4 and
Fact 6.
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4 Sourcewise Additive FT-Spanners

In this section, we present two constructions of (4, S) and (8, S) additive FT-
spanners with respect to a given source set S ⊆ V . The single source case (where
|S| = 1) is considered in [18], which provides a construction of a single source FT-
spanner2 with O(n4/3) edges and additive stretch 4. The current construction

increases the stretch to 8 to provide a bounded stretch for Õ(n1/3) sources with

the same order of edges, Õ(n4/3).

4.1 Sourcewise Spanner with Additive Stretch 4

Lemma 2. There exists a subgraph H4(S) ⊆ G with Õ(max{|S| · n, (n/|S|)3})
edges satisfying dist(s, t,H4(S) \ {v}) ≤ dist(s, t, G \ {v}) + 4 for every (s, t) ∈
S × V and v ∈ V .

The following notation is useful in our context. Let C = {Cz | z ∈ Z} be the
collection of clusters corresponding to the FT-centers Z. For a source s ∈ S and
a cluster Cz ∈ C rooted at FT-center z ∈ Z, let LCA(s, Cz) be the least common
ancestor (LCA) of the cluster vertices of Cz in the BFS tree T0(s) rooted at s.
Let π(s, Cz) be the path connecting s and LCA(s, Cz) in T0(s).

Algorithm Cons4SWSpanner for Constructing H4(S) Spanner

Step (0): Replacement-path definition. For every (s, t) ∈ S×V and every v ∈ V ,
let Ps,t,v = SP (s, t, G \ {v},W ).

Step (1): Clustering. Set Δ = |S| and let Z ⊆ V be an FT-center set of size

Õ(n/Δ) (by Obs. 4(4) such set exists). Let C = {Cz | z ∈ Z} be the collection
of |Z| clusters. For a heavy vertex t, let C1(t), C2(t) be its two clusters in C
corresponding to the centers z1(t) and z2(t) respectively.

Step (2): Shortest-path segmentation. For every (s, t) ∈ S × VΔ, the algorithm
uses the first cluster of t, C1(t), to segment the path π(s, t). Define

πfar(s, t) = π(s, �(s, t)) \ {�(s, t)} and πnear(s, t) = π(�(s, t), t) \ {�(s, t)},

where �(s, t) = LCA(s, C1(t)) is the LCA of the cluster C1(t) in the tree T0(s).
Hence, π(s, t) = πfar(s, t)◦ �(s, t)◦πnear(s, t). The algorithm handles separately
vertex faults in the near and far segments. Let V near(s, t) = V (πnear(s, t)) and
V far(s, t) = V (πfar(s, t)).

Step (3): Handling faults in the cluster center and the LCA. Let Elocal(t) =
{LastE(Ps,t,v) | s ∈ S, v ∈ {z1(t), LCA(s, C1(t))}} and Elocal =

⋃
t∈VΔ

Elocal(t),
be the last edges of replacement-paths protecting against the failure of the pri-
mary cluster center z1(t) and the least common ancestor LCA(s, C1(t)).

2 The construction of [18] supports a single edge failure, yet, it can be modified to
overcome a single vertex failure as well.
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Step (4): Handling far vertex faults V far(s, t). A replacement path Ps,t,v is
new-ending if its last edge is not in (T0(S)∪GΔ). For a new-ending path Ps,t,v,
let bs,t,v be the unique divergence point of Ps,t,v from π(s, t) (in the analysis
we show that such point exists). Let Ds,t,v = Ps,t,v[bs,t,v, t] denote the detour
segment and let D+

s,t,v = Ds,t,v \ {bs,t,v} denote the detour segment excluding

the divergence point. For every clustered vertex t, let Pfar(t) be the collection
of new-ending s − t paths protecting against vertex faults in the far segments,
i.e., Pfar(t) = {Ps,t,v | s ∈ S, LastE(Ps,t,v) /∈ T0(S) and v ∈ V far(s, t)}.

The algorithm divides this set into two subsets Pfar
dep (t) and P

far
indep(t) depend-

ing on the structure of the partial detour segment D+
s,t,v. A new-ending path

Ps,t,v is dependent if D+
s,t,v intersects π(s′, t) \ {t} for some s′ ∈ S, i.e., for a

dependent path Ps,t,v, it holds that

V (D+
s,t,v) ∩ V (T (t, S)) �= {t} . (1)

Otherwise, it is independent. Let

Pfar
dep (t) = {Ps,t,v ∈ Pfar(t) | s ∈ S, v ∈ V far(s, t) and V (D+

s,t,v) ∩ V (T (t, S)) = {t}}

be the set of all S × {t} dependent paths and let Pfar
indep(t) = Pfar \ Pfar

dep (t) be
the set of independent paths.

Step (4.1): Handling dependent new-ending paths. The algorithm simply takes

the last edges Efar
dep (t) of all dependent replacement paths where Efar

dep (t) =

{LastE(P ) | P ∈ Pfar
dep (t)}. (In the analysis section, we show that the Efar

dep (t)

sets are sparse.) Let Efar
dep =

⋃
t∈VΔ

Efar
dep (t).

Step (4.2): Handling independent new-ending paths. The algorithm employs

a modified path-buying procedure on the collection Pfar
indep =

⋃
t∈VΔ

Pfar
indep(t)

of new-ending independent paths. The paths of Pfar
indep are considered in some

arbitrary order. A path P ∈ Pfar
indep is bought, if it improves the pairwise cluster

distances in some sense. Starting with

G0 = T0(S) ∪GΔ ∪ Elocal ∪ Efar
dep , (2)

at step τ ≥ 0, the algorithm is given Gτ ⊆ G and considers the path Pτ = Ps,t,v.
Let e = (x, y) be the first missing edge on Pτ \ E(Gτ ) (where x is closer to
s). Note that since GΔ ⊆ G0, both x and t are clustered. Recall that for a
clustered vertex u and a failing vertex v, Cv(u) is the cluster of u centered at
zv(u) = Z(u) \ {v}. For every cluster C, let Vf (C) be the collection of vertices
appearing on the paths π(s, C) = π(s, LCA(s, C)) for every s ∈ S excluding the
vertices of the clusters. That is,

Vf (C) =
⋃
s∈S

V (π(s, C)) \ C. (3)
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The path Pτ is added to Gτ resulting in Gτ+1 = Gτ ∪ Pτ , only if

dist(x, t, Pτ ) < dist(Cv(x), Cv(t), Gτ \ Vf (Cv(t))). (4)

Let τ ′ = |Pfar
indep| be the total number of independent paths considered to be

bought by the algorithm. Then, the algorithm outputs H4(S) = Gτ ′ . This com-
pletes the description of the algorithm.

Analysis. Throughout the discussion, we consider a Ps,t,v paths of clustered
vertices t ∈ VΔ. A path Ps,t,v is a new-ending path, if LastE(Ps,t,v) /∈ G0 (see
Eq. (2)). Let bs,t,v be the first divergence point of Ps,t,v and π(s, t).

Lemma 3. For every vertex u ∈ Ps,t,v such that LastE(Ps,t,v[s, u]) /∈ T0(S), it
holds that: (a) v ∈ π(s, u). (b) V (Ps,t,v[bs,t,v, u]) ∩ V (π(s, u)) = {bs,t,v, u}.
The next claim shows that a new-ending Ps,t,v path whose last edge is not in
G0 (see Eq. (2)), protecting against faults in the near segment, has a good

approximate replacement P̃s,t,v in T0 ∪GΔ.

Lemma 4. If LastE(Ps,t,v) /∈ G0 and v ∈ πnear(s, t), then dist(s, t, (G0 ∪GΔ) \
{v}) ≤ dist(s, t, G \ {v}) + 4.

For every new-ending path Ps,t,v, recall that D
+
s,t,v = Ds,t,v \ {bs,t,v}. Let (x, y)

be the first missing in Ps,t,v \ E(T0(S)) (where x is closer to y). The following
auxiliary claims are useful.

Lemma 5. For every vertex u ∈ Ps,t,v such that LastE(Ps,t,v[s, u]) /∈ (T0(S) ∪
GΔ ∪ Elocal), it holds that: (a) Cv(u) = C1(u). (b) Ps,t,v[x, t] ⊆ D+

s,t,v.

Corollary 1. Let t ∈ VΔ. For every Ps,t,v ∈ Pfar
indep(t), Ps,t,v[x, t]∩ Vf (Cv(t)) =

∅ where x is the first vertex of D+
s,t,v.

In the full version, we show that H4(S) is a (4, S) FT-spanner. We proceed with
the size analysis.

Lemma 6. For every t ∈ VΔ, |Elocal(t)| = O(|S|), hence |Elocal| = O(|S| · n).

Bounding the number of last edges in Efar
dep (t). We now turn to bound the num-

ber of edges added due to step (4.1), i.e., the last edges of new-ending depen-
dent paths Ps,t,v protecting against the faults in the far segment πfar(s, t). To

bound the number of edges in Efar
dep (t), consider the partial BFS tree rooted

at t, T (t, S) ⊆ T0(T ), whose leaf set is contained in the vertex set S where
T (t, S) =

⋃
s∈S π(s, t). It is convenient to view this tree as going from the leafs

towards the root, where the root t is at the bottom and the leafs are on the
top of the tree. Let V + = S ∪ {u ∈ T (t, S) | deg(u, T (t, S)) ≥ 3}, be the
union of S and the vertices with degree at least 3 in the tree T (t, S). We have
that |V +| < 2|S|. A pair of vertices x, y ∈ V + is adjacent if their shortest-path
π(x, y) is contained in the tree T (t, S) and it is free from any other V + vertex,
i.e, π(x, y) ⊆ T (t, S) and π(x, y) ∩ V + = {x, y}. Let Π(V +) = {π(x, y) | x, y ∈
V + and x, y are adjacent } be the collection of paths between adjacent pairs.
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Observation 7. (1) T (t, S) = Π(V +). (2) Π(V +) consists of at most 2|S|+ 1
paths π(x, y) (i.e., there are at most 2|S| adjacent pairs).

We now show the following.

Lemma 7. For every t ∈ VΔ, |Efar
dep (t)| = O(|S|).

We first claim that every two dependent replacement paths with the same di-
vergence point have the same last edge.

Lemma 8. For every two dependent paths Ps1,t,v1 , Ps2,t,v2 ∈ P
far
dep (t), if bs1,t,v1 =

bs2,t,v2 then LastE(Ps1,t,v1) = LastE(Ps2,t,v2).

Since our goal is to bound the number of last edges of the new ending dependent
paths Pfar

dep (t), to avoid double counting, we now restrict attention to Qfar(t), a

collection of representative paths in Pfar
dep (t) each ending with a distinct new edge

from Efar
dep (t). Formally, for each new edge e ∈ Efar

dep (t), let P (e) be an arbitrary

path in Pfar
dep (t) satisfying that LastE(P (e)) = e. Let Qfar(t) = {P (e), e ∈

Efar
dep (t)} (hence |Qfar(t)| = |Efar

dep (t)|). From now on, we aim towards bounding

the cardinality of Qfar(t). Let DP = {bs,t,v | Ps,t,v ∈ Qfar(t)} be the set of
divergence points of the new ending paths in Qfar(t). By Lemma 8, it holds that

in order to bound the cardinality of Pfar
dep (t), it is sufficient to bound the number

of distinct divergence points. To do that, we show that every path π(x, y) of two
adjacent vertices x, y ∈ V +, contains at most one divergence point in DP \ V +.

Lemma 9. |π(x, y) ∩ (DP \ V +)| ≤ 1 for every π(x, y) ∈ Π(V +).

Proof: Assume, towards contradiction, that there are two divergence points
bs1,t,v1 and bs2,t,v2 on some path π(x, y) for two adjacent vertices x, y ∈ V +. For
ease of notation, let Pi = Psi,t,vi , bi = bsi,t,vi , Di = Dsi,t,vi and D+

i = Di \ {bi}
for i ∈ {1, 2}. Without loss of generality, assume the following: (1) y is closer
to t than x and (2) b2 is closer to t than b1. By construction, the vertices s1
and s2 are in the subtree T (x) ⊆ T (t, S). For an illustration see Fig. 1. We
now claim that the failing vertices v1, v2 occur on π(y, t). Since D+

1 and D+
2 are

vertex disjoint with π(y, t) \ {t}, it would imply that both detour segments D1

and D2 are free from the failing vertices and hence at least one of the two new
edges LastE(P1), LastE(P2) could have been avoided. We now focus on v1 and
show that v1 ∈ π(y, t), the exact same argumentation holds for v2. Since P1 is
a new-ending dependent path, by Eq. (1), there exists some source s3 ∈ s \ {s1}
satisfying that

(
D+

1 ∩ π(s3, t)
)
\ {t} �= ∅. Let w ∈

(
D+

1 ∩ π(s3, t)
)
\ {t} be the

first intersection point (closest to s1). See Fig. 1 for schematic illustration. We
first claim that s3 is not in the subtree T (x) ⊆ T (t, S) rooted at x. To see why
this holds, assume, towards contradiction, that s3 ∈ T (x). It then holds that the
replacement path P1 has the following form P1 = π[s1, x] ◦ π(x, b1) ◦ P1[b1, w] ◦
P1[w, t]. Recall, that since b1 ∈ DP \ V +, b1 �= x and also b1 �= w. Since P1[x,w]
goes through b1, by the optimality of P1, it holds that

dist(x,w,G \ {v1}) > dist(b1, w,G \ {v1}) . (5)
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On the other hand, the path π(s3, t) has the following form: π(s3, t) = π(s3, w)◦
π(w, x) ◦ π(x, b1) ◦ π(b1, t). Hence, π(w, b1) goes through x. Since the failing
vertex v1 ∈ π(b1, t) is not in π(w, b1), by the optimality of π(w, b1), we get
that dist(w, b1, G \ {v1}) > dist(x,w,G \ {v1}), leading to contradiction with
Ineq. (5). Hence, we conclude that s3 /∈ T (x) (in particular this implies that
s3 �= s2). Note that π(w, t) is a segment of π(s3, t) and hence it is contained
in the tree T (t, S). Since P1 is a new-ending path (i.e., LastE(P1) /∈ T (t, S)),
we have that P1[w, t] �= π(w, t) are distinct w − t paths. We next claim that
the failing vertex v1 must occur on π(w, t) and hence also on π(s3, t). To see
this, observe that if π(w, t) would have been free from the failing vertex v1,
then it implies that π(w, t) = SP (w, t,G \ {v1}) = P1[w, t], contradiction as
LastE(P1) �= LastE(π(w, t)). Finally, we show that v1 ∈ π(y, t). By the above,
the failing vertex v1 is common to both paths π(s1, t) and π(s3, t), i.e., v1 ∈
π(s1, t)∩ π(s3, t). By the definition of the path π(x, y), all its internal vertices u
have degree 2 and hence (π(x, y)∩π(s3, t))\{y} = ∅, concluding that v1 ∈ π(y, t).
By the same argumentation, it also holds that v2 is in π(y, t). As the detours D1

and D2 are vertex disjoint with π(y, t) \ {t}, it holds that they are free from the
two failing vertices, i.e., v1, v2 /∈ D1 ∪D2. Since P1, P2 ∈ Qfar(t), it holds that
LastE(P1) �= LastE(P2), and hence there are two b1 − t distinct shortest paths
in G\{v1, v2}, given by D1 and π(b1, b2)◦D2. By optimality of these paths, they
are of the same lengths. Again, we end with contradiction to the uniqueness of
the weight assignment W . The claim follows.

By Lemma 8 there are at most |V +| replacement paths with divergence point
in V +. By Lemma 9, there is at most one divergence point on each segment
π(x, y) of an adjacent pair (x, y). Combining with Obs. 7(2), we get |Efar(t)| =
|Qfar(t)| = O(|S|). The lemma follows.

In the full version, we complete the size analysis and proves Lemma 2, by
bounding the number of edges added by the path-buying procedure of Step
(4.2).

4.2 Sourcewise Spanner with Additive Stretch 8

In this section, we present Alg. Cons8SWSpanner for constructing a sourcewise
additive FT-spanner with additive stretch 8. The size of the resulting spanner is
smaller (in order) than the H4(S) spanner of Alg. Cons4SWSpanner, at the ex-
pense of larger stretch. The algorithm is similar in spirit to Alg. Cons4SWSpanner
and the major distinction is in the path-buying procedure of step (4.2).

Lemma 10. There exists a subgraph H8(S) ⊆ G with Õ(max{|S| ·n, (n/|S|)2})
edges s.t. dist(s, t,H8(S) \ {v}) ≤ dist(s, t, G \ {v}) + 8 for every (s, t) ∈ S × V
and every v ∈ V .
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Fig. 1. Schematic illustration of new-ending dependent paths. Shown is the tree T (t, S)
with the root t at the bottom and leaf set is contained in the set of sources S. (a) The
two replacement paths have the same divergence point b, hence one of the new last
edges is redundant. (b) A new-ending s1− t dependant path Ps1,t,v1 with a divergence
point b1 ∈ π(x, y) intersects with π(s3, t) at the vertex w /∈ {b1, t}. Since Ps1,t,v is a
new-ending path (i.e., its last edges is not on T (t, S)), the failing vertex v must occur
on the path π(w, t). Hence v1 ∈ π(s1, t)∩π(s3, t), implying that v1 ∈ π(y, t). Since this
holds for any new-ending path with a divergence point in π(x, y), we get that only one
new edge from all these paths is needed.

Algorithm Cons8SWSpanner for constructing H8(S) spanner

Step (0-4.1): Same as in Alg. Cons4SWSpanner. Let Elocal, Efar
dep be the set of

last edges obtained at the end of step (3) and set (4.1) respectively. Let Pfar
indep

be the set of new-ending independent paths.

Step (4.2): Handling independent new-ending paths. Starting with G0 as in Eq.

(2), the paths of Pfar
indep are considered in an arbitrary order. At step τ , we are

given Gτ ⊆ G and consider the path Pτ = Ps,t,v. Let Dτ = Pτ \ π(s, t) be the
detour segment of Pτ (since π(s, t) ⊆ T0(S) is in G0, all missing edges of Pτ

occur on its detour segment).
To decide whether Pτ should be added to Gτ , the number of pairwise cluster

“distance improvements” is compared to the number of new edges added due to
Pτ . To do that we compute the set ValSet(Pτ ) containing all pairs of clusters
that achieves a better distance if Pτ is bought. The value and cost of Pτ are
computed as follows. Let Val(Pτ ) = |ValSet(Pτ )| as the number of distance
improvements as formally defined later. We next define a key vertex φτ ∈ VΔ on
the path Pτ .

Definition 3. Let φs,t,v (or φτ for short) be the last vertex on Pτ (closest to
t) satisfying that: (N1) LastE(Pτ [s, φτ ]) /∈ Gτ , and (N2) v ∈ πnear(s, φτ ) =
π(�, φτ ) \ {�} where � = LCA(s, Cv(φτ )).
If there is no vertex on Pτ that satisfies both (N1) and (N2), then let φτ be
the first vertex incident to the first missing edge on Pτ \ E(Gτ ) (i.e., such that
Pτ [s, φτ ] is the maximal prefix that is contained in Gτ ).



180 M. Parter

Let Qτ = Pτ [φτ , t] and define Cost(Pτ ) = |E(Qτ ) \ E(Gτ )| be the number
of edges of Qτ that are missing in the current subgraph Gτ . Thus Cost(Pτ )
represents the increase in the size of the spanner Gτ if the procedure adds Qτ .
Our algorithm attempts to buy only the suffix Qτ of Pτ when considering Pτ .
We now define the set ValSet(Pτ ) ⊆ C × C which contains a collection ordered
cluster pairs. Let C1(τ) = Cv(φτ ) and C2(τ) = Cv(t) be the clusters of φτ

and t in GΔ \ {v}. Let κ = Cost(Pτ ). The candidate Pτ is said to be cheap if
κ ≤ 4, otherwise it is costly. The definition of ValSet(Pτ ) depends on whether
or not the path is cheap. In particular, if Pτ is cheap, then let ValSet(Pτ ) =
{(C1(τ), C2(τ))} only if

dist(φτ , t, Pτ ) < dist(C1(τ), C2(τ), Gτ \ Vf (C2(τ))) , (6)

where Vf (C2(τ)) is as given by Eq. (3), and let ValSet(Pτ ) = ∅ otherwise.
Alternatively, if Pτ is costly, we do the following.

Definition 4. Let Us,t,v = {u3
+1 | � ∈ {0, . . . , �(κ − 1)/3�}} ⊆ Qτ be some
representative endpoints of missing edges on Qτ satisfying that

LastE(Qτ [φτ , u
]) /∈ Gτ for every u
 ∈ Us,t,v and dist(u
, u
′, Qτ ) ≥ 3

for every u
, u
′ ∈ Us,t,v.

Define

ValSet1(Pτ ) = {(C1(τ), C
) | C
 = Cv(u
), u
 ∈ Us,t,v (7)

and dist(φτ , u
, Pτ ) < dist(C1(τ), C
, Gτ \ Vf (C
))}

and

ValSet2(Pτ ) = {(C
, C2(τ)) | C
 = Cv(u
), u
 ∈ Us,t,v (8)

and dist(u
, t, Pτ ) < dist(C
, C2(τ), Gτ \ Vf (C2(τ)))}

Let ValSet(Pτ ) = ValSet1(Pτ )∪ ValSet2(Pτ ). The subpath Qτ is added to Gτ

resulting in Gτ+1 only if

Cost(Pτ ) ≤ 4 · Val(Pτ ) , (9)

where Val(Pτ ) = |ValSet(Pτ )|. (Note that when Pτ is cheap, Eq. (9) holds iff
Eq. (6) holds.) The output of Alg. Cons8SWSpanner is the subgraphH8(S) = Gτ ′

where τ ′ = |Pfar
indep|. This completes the description of the algorithm. In the full

version, we analyze the algorithm and prove Lemma 10.

Additive stretch 6 (for all pairs). Thm. 2 follows immediately by Lemma 2. This
should be compared with the single source additive FT-spanner H4({s}) of [18]
and the (all-pairs, non FT) 6-additive spanner, both with O(n4/3) edges.
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Abstract. Let G = (V,E) be an unweighted undirected graph with
n-vertices and m-edges, and let k > 2 be an integer. We present a rout-
ing scheme with a poly-logarithmic header size, that given a source s
and a destination t at distance Δ from s, routes a message from s to
t on a path whose length is O(kΔ + m1/k). The total space used by

our routing scheme is Õ(mnO(1/
√
log n)), which is almost linear in the

number of edges of the graph. We present also a routing scheme with
Õ(nO(1/

√
log n)) header size, and the same stretch (up to constant fac-

tors). In this routing scheme, the routing table of every v ∈ V is at most

Õ(knO(1/
√
log n)deg(v)), where deg(v) is the degree of v in G. Our results

are obtained by combining a general technique of Bernstein [6], that was
presented in the context of dynamic graph algorithms, with several new
ideas and observations.

1 Introduction

In [20] Thorup and Zwick presented the notion of distance oracle. Given a graph
G = (V,E) with n-vertices and m-edges, the goal is to produce, after a prepro-
cessing phase, a compact data structure, named distance oracle, that can answer
quickly distance queries between any pair of vertices in the graph. Thorup and
Zwick showed that for any integer k ≥ 1 it is possible to construct a O(kn1+1/k)
space distance oracle in Õ(mn1/k) time. Queries are answered in O(k) time
and returns an estimated distance with multiplicative stretch of 2k − 1. Wulff-
Nilsen [22] showed that distance oracles of large stretch can be build in linear
time. Recently, Wulff-Nilsen [23] showed, using a clever query algorithm, that
the query time of Thorup and Zwick can be reduced from O(k) to O(log k). Even
more recently, Chechik [8] showed that the query time of Thorup and Zwick can
be reduced to O(1).

Compact routing schemes can be viewed as a distributed implementation of
distance oracle. The graph is a distributed network, and a distributed algorithm
runs on processors (nodes). Each node in the graph has a routing table. A mes-
sage that is sent from a source to a destination has a header that contains the
name of the destination and possibly some additional information. When a node
receives a message, it first checks if it is the message destination, and if not, then
based on the header information and its own routing table it chooses the link on
which it forwards the message. The stretch of a routing scheme is the worst ratio
between the length of a path on which a message is routed and the distance in
the network between the source and the destination.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 182–196, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Close to Linear Space Routing Schemes 183

Thorup and Zwick [19] showed that their distance oracle can be implemented
distributively with a slightly worse stretch. They showed a routing scheme for
any integer k > 1, in which every vertex has a routing table of size at most
Õ(n1/k), and messages are sent over routes with multiplicative stretch of 4k− 5.
Routing schemes for general graphs have a long history that spans from the end
of the 1980’s ([9], [11], [5], [4]) until very recently ([1] and [7]). In [19] Thorup
and Zwick give a detailed description of the previous results. Recently, Abraham
and Gavoille [1] showed a routing scheme with multiplicative stretch of 2 and
additive stretch of 1-stretch. The routing tables in each vertex are of size at most
Õ(n3/4). More recently Chechik [7] improved the 4k − 5 stretch and showed a
routing scheme with routing tables in each vertex of size at most Õ(n1/k logD),
where D is the diameter, and stretch (4− α)k − β, for some absolute constants
α, β > 0.

Common to all the results mentioned so far is that they are only meaningful in
dense graphs. The space bound has no connection to the number of edges of the
graph. In sparse graphs with m = Õ(n) the required space for distance oracles
or routing tables is significantly larger than the size of the input. In many real
world networks m = Õ(n), and thus in order to make the results applicable for
implementation it is important to study also sparse graphs.

Indeed, sparse graphs were the subject of several recent studies on distance
oracles. Sommer, Verbin, and Yu [18] obtained lower bounds, that hold even for
sparse graphs (m = Õ(n)), on the three-way tradeoff between space, stretch and
query time. Pǎtraşcu and Roditty [13] showed that for weighted graphs with
m = n2/α, there exist a stretch 2-distance oracle with size of O(n2/α1/3). This
result was extended by Pǎtraşcu, Thorup and Roditty [14] that obtained for any
fixed positive integers k and �, stretches α = 2k + 1 ± 2


 , using Õ(m1+2/(α+1))
space and O(k+�) query time. Porat and Roditty [17] showed that in unweighted
graphs for any ε > 0 they can construct a data structure of size O(nm1−ε/(4+2ε)),
that returns 1 + ε stretch in O(m1−ε/(4+2ε)) time. Agarwal and Godfrey [3]
extended and improved [17] for weighted undirected graphs. Although there
was quite intensive work on distance oracles and other distance data structures
for sparse graphs, there were no real advances in routing schemes over sparse
graphs. Moreover, in many practical scenarios what we are really interested in
is a routing scheme and not a centralized data structure.

Agarwal, Godfrey and Har-Peled showed in [2] that for any 1 ≤ α ≤ n there
is a distance oracle that returns stretch 2 with O(m+n2/α) space and stretch 3
with O(m+n2/α2) space both with a query of O(αm/n). This is also mentioned
by Pǎtraşcu and Roditty in [13]. It is straightforward to use these ideas to obtain
a distance data structure of size Õ(m), query of O(m1/k +k) and stretch 4k− 5.

In this paper we show that it is possible to obtain a routing scheme with
similar properties. More specifically, we present a routing scheme with a poly-
logarithmic header size, that given a source s and a destination t at distance Δ
from s, routes a message from s to t on a path whose length is O(kΔ+m1/k). The

total space used by our routing scheme is Õ(mnO(1/
√
logn)). We then show that

if we are willing to pay the non-standard price of a header of size Õ(nO(1/
√
logn)),
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then it is possible to obtain a routing scheme with a worst case bound on the
routing table size of every v ∈ V . The bound is Õ(knO(1/

√
log n)deg(v)), where

deg(v) is the degree of v in G. The stretch is same, up to a constant factor.
Routing schemes and centralized distance data structures are closely related,

and the current state-of-the-art for centralized distance data structures is a nat-
ural barrier for routing schemes. Therefore, it is unlikely that one can design
routing scheme with near to linear space and constant stretch, that avoids the
additive term of O(m1/k), without getting a similar result for centralized dis-
tance data structure, which will be an important breakthrough.

We obtain our results using a general technique that was presented by Bern-
stein [6] in the context of dynamic graph algorithms. Roughly speaking, he
showed that using ideas of Thorup and Zwick from [21] it is possible to represent
a (1 + ε)-approximation of almost all distances of every unweighted undirected
graph, using a very sparse weighted graph with small unweighted diameter. We
show that using several new ideas together with a new look on Bernstein’s result
it is possible to obtain a routing scheme with close to linear total space.

We then show that using a greedy partition algorithm it is possible to partition
the graph vertices such that the routing data will be distributed between the
vertices in a way that is proportional to their degree. This allows us together
with more ideas to obtain a bound on the routing table of every vertex.

The rest of this paper is organized as follows. In the next section we present
some preliminaries that are needed throughout the paper. In Section 3 we for-
mally present a distance data structure with O(m1/k+k) query and Õ(m) space,
which we aim in the later sections to implement in a distributed manner. In Sec-
tion 4 we present our poly-logarithmic size header routing scheme with a close to
linear total space. In Section 5 we show that with a header of size Õ(nO(1/

√
logn))

we can get for every v ∈ V a routing table of size Õ(knO(1/
√
logn)deg(v)).

2 Preliminaries

Basic definitions. Let G = (V,E) be an n-vertices m-edges undirected un-
weighted graph. For every u, v ∈ V , let d(u, v) be the length of the shortest
path between u and v. Let deg(u) be the degree of u in G. For every u ∈ V , let
id(u) be a unique identifier from the set {1, . . . , n}. Given a vertex u ∈ V , the
distance of an edge (x, y) from u is min{d(u, x), d(u, y)}. Let e1 = (x1, y1) and
e2 = (x2, y2) be two edges at distance � from u. Ties are broken as follows. For
i ∈ {1, 2} assume, wlog, that d(u, xi) = �, and that id(xi) < id(yi) if d(u, yi) = �.
If x1 �= x2, then e1 is closer than e2, if and only if id(x1) < id(x2). If x1 = x2,
then e1 is closer than e2, if and only if id(y1) < id(y2). Let E(u, �) be the � closest
edges of u. Let V (E(u, �)) be the endpoints of the edges of E(u, �). Let r
u ≥ 0
be the largest distance between u and a vertex w ∈ V (E(u, �)) that satisfies the
following: there is no other vertex w′ /∈ V (E(u, �)) such that d(u,w) = d(u,w′).
We omit the superscript and write ru in cases that the meaning is clear from
the context.
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Lemma 1. For every x ∈ V (E(u, �)) it holds that d(u, x) ≤ ru + 1. Moreover,
if (x, y) ∈ E(u, �) then it cannot be that both d(u, x) and d(u, y) equal ru + 1.

Proof. We start with the first part of the lemma. Assume towards a contradiction
that there exists an edge (x, y) ∈ E(u, �), such that, wlog, d(u, x) > ru + 1. It
follows that the edge (x, y) is at distance of at least ru + 1. Let (x′, y′) be any
edge such that, wlog, d(u, x′) = ru. Since by the definition (x′, y′) is closer to
u than (x, y), we get that (x′, y′) ∈ E(u, �). This implies that all vertices at
distance ru +1 from u must be in V (E(u, �)), a contradiction to the maximality
of ru.

Let (x, y) ∈ E(u, �), such that d(u, x) = ru + 1 and d(u, y) = ru + 1. Again
the edge (x, y) is at distance ru + 1, and the same contradiction as before is
followed. �	

For every set A ⊆ V and every vertex u ∈ V , let pA(u) be the closest vertex to
u from A, where ties are broken in favor of the vertex with the smaller identifier.
Notice that by this definition, if v is on a shortest path between u and pA(u),
then pA(u) = pA(v).

We will also use a restricted variant of the classical Breadth-First-Search
(BFS) algorithm. In particular, if the edges of vertex u are ordered by the indices
of their other endpoints, it is straightforward to have a variant of the BFS
algorithm that gets a source s and an additional integer parameter � and outputs
the � edges that are closest to s as well as the distance of s from each vertex of
V (E(s, �)) in O(�) time.

Distance oracles. A distance oracle is a succinct data structure that supports
efficient distance queries. In their seminal result Thorup and Zwick [20] showed
that there is a data structure of size O(kn1+1/k) that returns a (2k − 1) mul-
tiplicative approximation (stretch) of the distances of an undirected weighted
graph in O(k) time. Their data structure is constructed as follows. Let k ≥ 1
and let A0, A1, . . . , Ak be sets of vertices, such that A0 = V , Ak = ∅ and Ai

is formed by picking each vertex of Ai−1 independently with probability n−1/k

(w.h.p Ak−1 �= ∅). For every u ∈ V , let pi(u) = pAi(u). The bunch of u ∈ V is

B(u) = ∪k−1
i=0 {v ∈ Ai \Ai+1 | d(u, v) < d(u, pi+1(u))},

where d(u, pk(u)) =∞.
They showed that the expected size of every bunch is O(kn1/k) or Õ(kn1/k)

in the worst case (with a deterministic sampling technique). The cluster of w ∈
Ai \Ai+1 is:

C(w) = {u ∈ V | d(u,w) < d(u, pi+1(u))}.

It follows from this definition that if u ∈ C(w) and v is on a shortest path
between u and w then v ∈ C(w). Thus, there is a shortest paths tree TC(w) that
spans the cluster C(w). Thorup and Zwick showed that for every pair of vertices
u, v ∈ V there is a vertex w such that u, v ∈ C(w) and the distance between u
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and v using only the edges of TC(w) is at most (2k− 1)d(u, v). Such a vertex w
can be found in O(k) time.

Throughout the paper, when referring to distance oracle and clusters, we refer
to the work of Thorup and Zwick that we have just described.

Routing schemes. A routing scheme is a distributed algorithm that runs on pro-
cessors (nodes) in a network as the one defined above. Each node in the network
has a routing table. A message that is sent from a source to a destination has a
header that contains the name of the destination and possibly some additional
information. When a node receives a packet, it first checks if it is the packet des-
tination, and if not, then based on the header information and its own routing
table it chooses the link on which it forwards the packet. We assume a node is
allowed to change the header of a message during the routing. The stretch of a
routing scheme is the worst ratio between the length of a path on which a message
is routed and the distance in the network between the source and the destina-
tion. If for every pair s, t ∈ V the message is sent over a path of length at most
αd(s, t)+β then we say that the routing scheme has a multiplicative stretch of α
and an additive stretch of β. In this paper we consider name-dependent routing
schemes. In such schemes during the preprocessing phase, in which the routing
tables are constructed, the nodes get also an additional short label that becomes
part of their name. For a detailed review of routing scheme the reader is referred
to [19] and the references therein.

Our model is the standard model for routing scheme as described by Peleg
and Upfal [16]. We are given a connected undirected graph G = (V,E). The
nodes are given a unique initial ids of O(log n) bits, V = {1, . . . , n}. The nodes
represent the processors of the network and the edges represent bidirectional
links between the vertices. A vertex can communicate directly only with its
neighbours. A vertex v has deg(v) ports numbered from 1 to deg(v). An edge
is a pair ((u, i), (v, j)). When vertex u sends a message to its neighbour v, it
uploads it on port i, and v downloads it from port j. Usually, we ignore the
ports and assume we simply send a message over the edge (u, v). Additionally,
we assume that the processors work in the CONGEST synchronized model [15].
In this model in each round every vertex (processor) can send a message of
poly-log bits to each of its neighbors. This assumption is required since in our
routing schemes the source first checks whether the destination is in its near
neighbourhood.

In our routing schemes, we use the following two results as building blocks.
The first is due to Thorup and Zwick [19] and, independently, Fraigniaud and
Gavoille [12]. They showed that given a tree it is possible to route between every
pair of vertices on a shortest path (in the tree) using only the labels of the
pair and no additional information. The labels are of size O(log2 n/ log logn)
and each link on the path is obtained in constant time. The second result is
a general compact routing scheme for weighted undirected graphs. Thorup and
Zwick [19] showed that based on their distance oracle [20] it is possible to get a
compact routing scheme. In this routing scheme the source chooses a cluster to
route on locally based on its own cluster, bunch and the label of the destination.
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As a result of that, the stretch is 4k− 5 and not 2k− 1 as in the distance oracle.
The label of every vertex is of size o(k log2 n) and the routing table is of size
Õ(n1/k).

3 A Distance Data Structure with Almost Linear Space

In this section we present a distance oracle with Õ(m) space, O(m1/k +k) query
time, and 4k−5 multiplicative stretch, where k is an integer greater than 1. This
generalizes a simple result from [13]. A similar result is also presented in [2].

The data structure is constructed as follows. In the first step a set E′ ⊂ E of
size O(m1−1/k logm) that hits1 the m1/k closest edges of every vertex is formed
deterministically [10]. The set A ⊆ V is the set of all endpoints of edges in E′.
For each vertex v ∈ V we compute pA(u), the closest vertex to u from the set
A. We compute the distance between every pair of vertices in A, and form a
complete graph H whose vertices are the vertices of A and the weights of its
edges are the corresponding distances between the vertices in G. Finally, we
construct the distance oracle of Thorup and Zwick for H with parameter k − 1.
A pseudo-code of this construction is presented in Algorithm 1.

The query algorithm works as follows. Let u, v ∈ V . At the first stage we check
if V (E(u,m1/k)) and V (E(v,m1/k)) intersect. If they do then we can obtain
almost the exact distance. If not, then we query the distance oracle of Thorup
and Zwick for an approximation of d(pA(u), pA(v)) and return d(u, pA(u)) +

d̂(pA(u), pA(v)) + d(pA(v), v) as an estimation. A pseudo-code of the query is
presented in Algorithm 2.

Algorithm 1. Preprocess-Distances((V, E), k)

E′ hits all the sets E(u,m1/k), for every u ∈ V ;

A← V (E′);
foreach u ∈ V do

compute pA(u) and d(u, pA(u));

foreach u, v ∈ A do
compute dG(u, v);

let H = (A,A× A,w),
where w(u, v) = dG(u, v), for every u, v ∈ A×A;

DOH ← ThorupZwickDO(H, k − 1);

Next, we prove the following:

Theorem 1. Let k > 1 be an integer. The data structure described above out-
puts a (4k − 5)-approximation of the distance between every pair of vertices in
O(m1/k + k) time. The size of the data structure is Õ(m).

1 An edge set E′ hits edge sets E1, E2, . . . , Ep, if the intersection between E′ and any
Ei (1 ≤ i ≤ p) is non-empty.
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Algorithm 2. Query(u, v)

if V (E(u,m1/k)) ∩ V (E(v,m1/k)) = ∅ then
return minw∈V (E(u,m1/k))∩V (E(v,m1/k)){d(u,w) + d(w, v)};

else

d̂(pA(u), pA(v))← QueryDOH(pA(u), pA(v));

return d(u, pA(u)) + d̂(pA(u), pA(v)) + d(pA(v), v);

Proof.

Space: Every vertex saves its closest vertex from the set A, at a total cost of
O(n). For the graph H , that has Õ(m1−1/k) vertices, we create a distance oracle
with parameter k − 1. Thus, the cost of this is Õ(m(1−1/k)(1+1/(k−1))) = Õ(m).

Query: The incident edges of every vertex are ordered by the identifiers of
their other endpoint. Therefore, it is straightforward to compute the m1/k closest
edges of a given vertex in O(m1/k) time. In the same time bound we can check,
by using a hash table, if V (E(u,m1/k)) and V (E(v,m1/k)) intersect. If there is
no intersection then we query the distance oracle of Thorup and Zwick at a cost
of O(k).

Approximation: Let P be a shortest path between u and v. Assume first
that V (E(u,m1/k)) ∩ V (E(v,m1/k)) �= ∅.

Let w = argminw∈V (E(u,m1/k))∩V (E(v,m1/k)){d(u,w)+d(w, v)}. If w ∈ P then
the exact distance is returned. Thus, assume that w /∈ P . There is a vertex
u′ ∈ V (E(u,m1/k)) ∩ P such that d(u, u′) = ru. Similarly, there is a vertex
v′ ∈ V (E(v,m1/k)) ∩ P such that d(v, v′) = rv. Since the intersection is not
on a vertex from P it must be that d(u, v) ≥ ru + rv + 1. On the other hand
from Lemma 1 we have that d(u,w) ≤ ru + 1 and d(v, w) ≤ rv + 1. Thus,
d(u,w) + d(v, w) ≤ d(u, v) + 1. Consider now the case that V (E(u,m1/k)) ∩
V (E(u,m1/k)) = ∅. In this case we query the distance oracle of Thorup and
Zwick for a 2(k−1)−1 approximation of the distance between pA(u) and pA(v).
From Lemma 1 we know that d(u, pA(u)) ≤ ru and d(v, pA(v)) ≤ rv. Thus,
d(pA(u), pA(v)) ≤ d(u, v) + ru + rv ≤ 2d(u, v). The total estimated distance is
at most ru + (2k − 3) · 2d(u, v) + rv ≤ (4k − 5)d(u, v). �	

4 A Routing Scheme with an Almost Linear Total Space

Our goal is to implement the distance data structure described above in a dis-
tributed manner. There are two obvious obstacles. The first obstacle is to im-
plement the query phase given a source u and a destination v. In a distributed
implementation the query is done only on the source side, thus it is not possible
to obtain the set V (E(v,m1/k)) of the destination. The second and the more
serious obstacle is that the distance oracle of Thorup and Zwick is constructed
for the graph H and not for the input graph G. The edges of the graph H are
virtual edges that correspond to paths in G and not edges. Thus, edges on a
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path of H cannot be used directly for routing and should be translated into
their corresponding paths in G.

In this section we show that it is possible to overcome these obstacles and

present a routing scheme that requires a total space of Õ(m · nO(1/
√

logn)).
Given a source and a destination after a query phase of O(m1/k) messages the
routing is done on a path of stretch O(k). Our routing scheme uses a header of
poly-logarithmic size.

For the sake of simplicity we present our routing scheme in two stages. In the
first stage we assume that all the virtual edges in the graph H , that correspond
to shortest paths in G, have at most h edges, where h is a parameter to be fixed
later. The total space needed for this routing scheme is Õ(mh). In the second
stage we show that using the ideas of Bernstein [6] it is possible to obtain a new
weighted graph with small hop-diameter. We then use this new graph together
with our routing scheme to deal with the case that the graph H has virtual edges
that correspond to arbitrarily long shortest paths in G.

4.1 A Routing Scheme for Virtual Edges of Bounded Weight

Let G = (V,E) be an unweighted undirected graph. In the preprocessing step we
compute a hitting set E′ ⊂ E of size O(m1−1/k logm) that hits the m1/k closest
edges of every vertex as before. Let A = V (E′). We compute for each v ∈ A, a
shortest path tree T (v) that contains all vertices u ∈ V such that pA(u) = v. For
each such tree, we construct its own tree compact routing scheme using either [19]
or [12], to enable routing between every vertex u and its closest vertex pA(u)
using a shortest path (notice that tree routing scheme is mainly needed for the
harder case of routing from pA(u) to u). At u we store the following information:
pA(u), d(u, pA(u)), the label of u in the routing scheme of T (pA(u)), ru and the
last edge in E(u,m1/k). The label of u is denoted with label(u) and contains the
following information: u, pA(u) and the label of u in the tree routing scheme of
the tree T (pA(u)).

As before we have a weighted graph H = (A,A×A), where the weight of an
edge is the distance between its endpoints in G. In this case we assume all edges
in H has a weight of at most h. We construct for H the compact routing scheme
of [19]. This allows us to route between vertices of A using a path of H . An edge
(x, y) of H is a virtual edge and not a physical edge of G, thus, it cannot be used
directly to transfer a message between x and y. Let P = {x = x1, x2, . . . , x
 = y}
be the shortest path that corresponds to the edge (x, y) in H . In order to route
from x to y using P , we save at node xi in a translation table HTxi for the
entry (x, y), the vertex xi+1, the successor of xi in P . A pseudo-code of this
preprocessing phase is presented in Algorithm 3.

We now turn to describe how to route a message from a source u to a destina-
tion v. First, u checks whether v is in V (E(u,m1/k)), and if it is, then the routing
is done on a shortest path. In the CONGEST model it is relatively straightfor-
ward to obtain, in a distributed manner, the set V (E(u,m1/k)) at u. We can
assume also that u has less than m1/k neighbors, since in our model u knows
all its ports with their other endpoints so in such a case u can check locally if v
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Algorithm 3. Preprocess-Routing(G, k, h)

E′ hits all the sets E(u,m1/k), for every u ∈ V ;

A← V (E′);
foreach u ∈ V do

compute and store pA(u), d(u, pA(u)), ru and the last edge in

E(u,m1/k), at u;
initialize hash table HTu;

foreach u ∈ A do
Compute T (u) and a tree routing scheme for it;

let H = (A,A× A,w), where w(u, v) = dG(u, v) ≤ h, for every

u, v ∈ A× A;

compute routing scheme for H with parameter k − 1;
foreach (u, v) that is in some tree of the routing scheme do

Let P = {u = v1, . . . , v� = v} be a shortest path in G;

foreach vi ∈ P \ {v�} do HTvi(u, v)← vi+1 ;

is in V (E(u,m1/k)). The process of computing V (E(u,m1/k)) is initiated by u
which sends a message to all its neighbors saying its distance from u is 0. The
message contains also ru, the last edge (x, y) in E(u,m1/k) (which is stored at
u) and v. Upon receiving a message from u for the first time, a vertex w sets its
distance from u to be the distance in the message plus 1. If either d(u,w) < ru
or d(u,w) = ru and id(w) < id(x), then w sends the message with its distance
to all its neighbors. If id(w) = id(x), then w sends the message with its distance
only to those neighbors w′ of w that satisfy id(w′) ≤ id(y). If d(u,w) = ru
and id(w) > id(x) or d(u,w) > ru then w does not send any message. During
this process if v is found then a connection between u and v is established on a
shortest path. We pay for this process by adding the additive term O(m1/k) to
the bound on the total length of the routing path. Notice that, in contrast to the
situation in the centralized model, we cannot obtain the set V (E(v,m1/k)), thus
we cannot check for an intersection. As we shall see later in Lemma 2, this only
affects the multiplicative stretch of the routing scheme by a constant factor.

Consider the case that v /∈ V (E(u,m1/k)). Let u′ = pA(u) and v′ = pA(v).
Notice that u′ is stored at u and v′ is part of the label of v. The message is sent
from u to u′ using the tree routing scheme of T (u′). Then, from u′ to v′, the
message is sent using the routing scheme of the graphH . Finally, from v′ to v the
message is sent using the tree routing scheme of T (v′). The routing scheme of H
produces a routing path from u′ to v′ with edges of H . Let (x, y) be an edge of H
and assume that the message should be sent from x to y on the way to v′ by the
routing scheme of H . Thus, there is a shortest path P = {x = x1, x2, . . . , x
 = y}
in G that corresponds to (x, y) with at most h edges (recall that h is a parameter
to be fixed later). Our routing algorithm will send the message over the path P
starting from x and towards y as a temporary target. At xi the next edge on
the shortest path to y is obtained from HTxi(x, y). When the message reaches
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y, we use the routing scheme of H to obtain the next virtual edge to route on,
until v′ is reached.

Lemma 2. Let k > 2 be an integer. The routing scheme described above uses
Õ(mh) space. It routes a message from a source u to a destination v, at distance
Δ from u, over a path of length at most (16k−33)Δ+O(m1/k). The header size
is poly-logarithmic.

Proof. The graph H has Õ(m1−1/k) vertices, thus, the space required for the
routing scheme of H with parameter k − 1 is Õ(m(1−1/k)(1+1/(k−1))) = Õ(m).
This means that the number of edges ofH that participate in the routing scheme
is Õ(m). Each such edge has a corresponding shortest path with at most h edges
in G. Thus, the total cost for storing the information needed for routing between
endpoints of virtual edges is Õ(mh). It is argued above that the query phase
generates O(m1/k) messages which are reflected in the additive stretch, thus it
is only left to show that the multiplicative stretch is 16k − 33. We bound first
the distance between pA(u) = u′ and pA(v) = v′. Since v /∈ V (E(u,m1/k)) it
follows that d(u, u′) ≤ d(u, v). Also, since v′ is the closest vertex to v from A it
follows that d(v, v′) ≤ d(u, v) + d(u, u′) ≤ 2d(u, v) and that d(u′, v′) ≤ 4d(u, v).
Recall that for any k > 1, the routing scheme Thorup and Zwick has stretch of
4k− 5. Thus, the length of the routing path is bounded by d(u, u′)+ (4(k− 1)−
5)d(u′, v′)+d(v, v′), which is at most d(u, v)+(4(k−1)−5)4d(u, v)+2d(u, v) =
(16k − 33)d(u, v), and the stretch is 16k − 33. At any stage the header includes
only the label of v and possibly the current endpoint of a virtual edge that the
message is headed to, all of poly-logarithmic size. �	

4.2 Virtual Edges with Unbounded Weight

We now show how to deal with the case that the edges of H have an unbounded
weight. We use a very nice observation of Bernstein [6], which is based on the
following lemma of Thorup and Zwick:

Lemma 3 ([21]). Let G = (V,E) be an unweighted undirected graph. Let G′ =
∪w∈V TC(w) be the union of the clusters tree of [20] distance oracle with param-
eter k′. For every u, v ∈ V there is a path in G′ of length at most (1+ε)d(u, v)+
O((1/ε)k

′
).

Bernstein [6] extended the above lemma and showed that there is a path
P̂ (x, y) between x and y in G′ with stretch (1 + ε), that can be characterized
using a set N(x, y) of Õ(k′ · s) special vertices from P̂ (x, y), where s = (4/ε)k

′
.

Let x, y ∈ V and let c ≤ d(x, y), where c = Θ((1/ε)k
′
) 2. We consider distance

oracle with parameter k′ 3 as defined in Lemma 3, and show how to construct

2 We require a lower bound on the distance between x and y to neglect the additive
factor of the stretch in Lemma 3, so we have a 1 + ε multiplicative stretch.

3 Note we use here the following standard notations C(·), TC(·) and pi(·), as defined in
the preliminaries, with respect to the distance oracle of Lemma 3.
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P̂ (x, y) and its corresponding set N(x, y). Let P (x, y) = {x = x0, x1, . . . , xt = y}
be a shortest path between x and y inG. Let r = �d(x, y)/s�. The path P̂ (x, y) and
the setN(x, y) are constructed as follows. The path P (x, y) is divided into at most
s+1 intervals each of size at least r. Consider the first interval. Let r(1) be the in-
dex such that xr(1)−1 is the furthest vertex onP (x, y) that is still inC(x). The path

P̂ (x, y) goes from x to xr(1)−1 on TC(x) and then uses the edge (xr(1)−1, xr(1)).
The vertices xr(1)−1 and xr(1) are added to the set N(x, y). Assume r(1) ≤ r
now let xr(2)−1 be the furthest vertex on P (x, y) that is still in C(p1(xr(1))). The

path P̂ (x, y) goes from xr(1) to xr(2)−1 on TC(p1(xr(1))) and then uses the edge
(xr(2)−1, xr(2)). The vertices xr(2)−1 and xr(2) are added to the set N(x, y). The

path P̂ (x, y) goes from xr(2) to xr(3)−1 on TC(p2(xr(2))) and then uses the edge
(xr(3)−1, xr(3)). We stop this process when we reach xr(i) such that r(i) > r and
pass to the vertex xr(i) in the beginning of the next interval.We repeat this process
for each interval until we reach an interval that contains y.

Bernstein [6] showed that for each interval we add Õ(k′) vertices to N(x, y),
so the total size of N(x, y) is Õ(k′ · s). He also showed that the length of P̂ (x, y)
has a multiplicative stretch of 1 + ε in the length of P (x, y). Notice that given
the set N(x, y) and G′ it is possible to construct the path P̂ (x, y).

In the preprocessing we also compute a union of clusters G′ of Thorup and
Zwick distance oracle with parameter k′ =

√
logn/ log(4/ε) = O(

√
logn) on G.

For each of these clusters we compute a tree routing scheme. The size of the union
of these clusters together with the tree routing schemes is O(n1+O(1/

√
logn)).

Consider an edge (x, y) of H that is part of the compact routing scheme of

H . If the weight of (x, y) is at most c = Θ(n(1/
√
logn)) we treat it in the same

manner as before. If the weight is larger than c we construct the set N(x, y).

The size of N(x, y) is Õ(sk′) = O(nO(1/
√
log n)).

Let P̂ (x, y) be the (1 + ε) path that corresponds to the set N(x, y) = {x =
x1, x2, . . . , x
 = y} ⊂ P̂ (x, y). We will use the set N(x, y) to send the message
from x to y on P̂ (x, y). By the way N(x, y) was constructed it follows that for
every two consecutive vertices xi, xi+1 ∈ N(x, y) either (xi, xi+1) ∈ E or there is
a vertex w such that xi, xi+1 ∈ C(w). A vertex xi ∈ N(x, y) saves in HTxi(x, y)
the vertex xi+1, and if (xi, xi+1) /∈ E then also the vertex w and the label of
xi+1 in the tree routing scheme of TC(w). There are Õ(m) virtual edges. Each

virtual edge with weight larger than c has O(nO(1/
√
log n)) vertices in its special

set. We add information to HTxi(x, y) only if xi ∈ N(x, y) and (x, y) is a virtual
edge of weight larger than c, therefore, the total additional space required is
Õ(mnO(1/

√
log n)).

The routing of a message from x to y is relativity straightforward using this
additional information . Let vertex x′ be the vertex that is saved at HTx(x, y).
If there is an edge (x, x′) in G we send the message from x to x′ using this edge.
If there is no such an edge then a vertex w is saved at HTx(x, y) together with
the label of x′ in the tree routing scheme of TC(w). We route to x′ using the tree
routing scheme of TC(w). At x

′ we continue in the same manner until we reach
y. Since the weight of (x, y) is at least c, the message is routed from x to y on a
path of length at most (1 + ε)d(x, y).
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From the above discussion and from Lemma 2 we conclude the following
theorem:

Theorem 2. Let k > 2 be an integer and ε > 0. There is a routing scheme
that uses Õ(mnO(1/

√
logn)) total space and poly-logarithmic headers, that given

a source s and a destination t at distance Δ from s, routes a message from s to
t on a path of length at most (1 + ε)(16k − 33)Δ+O(m1/k).

5 A Routing Scheme with a Worst-Case Bound on the
Routing Tables

In the routing scheme of Section 4 vertices may store an arbitrarily large portion
of the routing information. In this section we present a routing scheme with a
non-standard header size of Õ(nO(1/

√
logn)). However, every vertex v ∈ V stores

routing information of size Õ(knO(1/
√
logn)deg(v)).

The following theorem summarize the properties of our new routing scheme.

Theorem 3. Given an unweighed undirected graph, a source s and a destination
t at distance Δ from s, we route from s to t on a path of length at most O(kΔ+

m1/k) with header size of Õ(nO(1/
√
logn)). Every v ∈ V saves routing information

of size Õ(knO(1/
√
logn)deg(v)).

Proof. In the routing scheme of Section 4 we have the following types of data
stored at every v ∈ V :

Type-1: Every v ∈ V participates in the tree routing scheme of the tree rooted
at pA(v). The cost per vertex is poly-logarithmic.

Type-2: Every v ∈ V participates in tree routing schemes for clusters of a Tho-
rup and Zwick distance oracle forG with parameter

√
logn/ log(4/ε) =

O(
√
logn). The cost per vertex is O(nO(1/

√
logn)).

Type-3: Every v ∈ A participates in tree routing schemes for clusters of Thorup
and Zwick distance oracle for H with parameter k − 1. The cost per
vertex is Õ(km1/k).

Type-4: Every v ∈ V that is part of the shortest path that corresponds to a
small virtual edge or in the special set of a large virtual edge has an
entry in HTv for that edge.

In every v ∈ V the cost for storing data of types 1 and 2 is less than our
desired bounded of Õ(knO(1/

√
logn)deg(v)). The problem is with the cost for

storing data of types 3 and 4. In the new routing scheme we will divide the data
of these types among several vertices.

We route a message from source s to destination t as follows. At s we check
if t ∈ V (E(s,m1/k)), and if it is we send the message on a shortest path to t.
If t /∈ V (E(s,m1/k)) then we route the message from s to pA(s) using the tree
routing scheme of pA(s), and from pA(t) to t using the tree routing scheme of
pA(t). In our new routing scheme the routing from pA(s) to pA(t) is done in a
new way to avoid the cost of storing data of types 3 and 4.
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In the routing scheme presented in Section 4 routing between vertices s, t ∈ A
is done using the scheme of [19] as follows4. At s we have a list of every w ∈ A
such that s ∈ C(w)5 with the label of s in the tree routing scheme of TC(w). The
label of t contains the vertices p0(t), . . . , pk−1(t) and the label of t in the tree
routing schemes of TC(pj(t)), for every 0 ≤ j ≤ k − 1. We look for the minimal
j for which s ∈ C(pj(t)) and route from s to t using the tree routing scheme
of TC(pj(t)). The edges of TC(pj(t)) are virtual edges, hence, to actually route
over G we also have to translate virtual edges as described in Section 4.

The graph H is a clique therefore for every s ∈ C(w) there is a virtual edge
between s and w in H . In s we store the translation information for every edge
(s, w) such that s ∈ C(w). If d(s, w) ≤ c we save the exact shortest path in G
that corresponds to (s, w) and if d(s, w) > c then we save the set N(s, w). The

size of the data saved at s is Õ(km1/knO(1/
√
log n)) since s is in at most Õ(km1/k)

clusters and the shortest path or the special set that corresponds to (s, w) is of

size O(nO(1/
√
logn)). Using this information we can route from s to pj(t), where

j is the minimal index for which s ∈ C(pj(t)). Note that the routing table of s is

of size Õ(km1/knO(1/
√
logn)) which is still too high. We will show how to handle

it later. Now, we still need to show how to route from pj(t) to t.
Next, we prove an important property for the virtual edges between w and t

when t ∈ C(w) and also pj(t) = w, for some j ∈ [0, k − 1].

Lemma 4. Let t, t′ ∈ A and let w,w′ ∈ Aj (recall that Aj is a set in the
sampling sets of the distance oracle) such that w = pj(t), w

′ = pj(t
′) and j ∈

[0, k − 1]. Let P and P ′ be the shortest paths in G that correspond to (w, t) and
(w′, t′), respectively. The paths P and P ′ are vertex disjoint.

Proof. Assume on the contrary that P ∩ P ′ �= ∅ and let z ∈ P ∩ P ′. Assume,
id(w) < id(w′) and d(z, w) ≤ d(z, w′)6. This implies that d(t′, z) + d(z, w) ≤
d(t′, z) + d(z, w′). Since z is on shortest paths between t′ and w′ and between t′

and w it follows that d(t′, w) ≤ d(t′, w′). But then we reach to a contradiction
since w′ = pj(t

′) which means that either d(t′, w′) < d(t′, w) or d(t′, w′) =
d(t′, w) and id(w′) < id(w). �	

Let j ∈ [0, k− 1], and let Aj = {w1, w2, . . . , w
}. For w ∈ Aj , let R(w) = {v ∈
V | ∃t s.t. pj(t) = w, d(w, v) + d(v, t) = d(w, t)}.

From Lemma 4 it follows that R(w) ∩ R(w′) = ∅, for every w,w′ ∈ Aj .
Moreover, if v ∈ V belongs to R(w) then there is a shortest path between v and
w in G such that every vertex on this path is also in R(w). Therefore, for every
w ∈ Aj we can use the set R(w) to define a shortest path tree TR(w) that is
rooted at w and spans R(w). For every TR(w) we compute a tree routing scheme.
The total storage required from a vertex v ∈ V to all these trees is O(k).

4 For simplicity we use their stretch (4k − 3)-routing scheme and not the (4k − 5)-
routing scheme.

5 Since this proof only considers the distance oracle for H and in order to keep a clean
presentation of this proof, we avoid extra notation for the distance oracle for H . e.g.
we use here C(w) and not CH(w), Ai and not AH

i , etc.
6 Notice that case that d(z, w) > d(z, w′) is identical.
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Given a pair s, t ∈ A we route from s to t as follows. We look for the minimal
index j for which s ∈ C(pj(t)) and route from s to pj(t) using the virtual edge
and its translation information that is saved at s. We add this information to
the header of the message. Then, at every intermediate vertex we route to the
next vertex on the routing path using the path information saved at the header.
In case that the message has to be sent between two special vertices we use the
same mechanism as in Section 4. When the message reaches pj(t) we use the
tree routing scheme of TR(pj(t)) to route from pj(t) to t.

By doing so we avoid the cost of storing data of type 4. The cost of storing
data of type 3 at vertices of A is increased to Õ(km1/knO(1/

√
logn)). Next, we

show how to modify the preprocessing such that this data is distributed among
the vertices of G. We then show how to route messages between vertices of A
using the distributed information.

We will have the following greedy process over the vertices of A. Let F =
A. For every v ∈ F , compute E(v,m1/k) and pick the vertex v with minimal
rv. Remove v from F and mark it. Remove from F every vertex u such that
V (E(v,m1/k)) ∩ V (E(u,m1/k)) �= ∅. These vertices are not marked. Store at
every such u the translation information of the virtual edge (u, v). We repeat on
this process by keep on picking a vertex of minimal radius from F , until F gets
empty. We denote by D all the vertices that were marked during this process.

For every u ∈ A \D we do not store any data of type 3. The data of type 3

of every v ∈ D is of size Õ(km1/knO(1/
√
logn)). We distribute this data among

the vertices of V (E(v,m1/k)), such that every vertex of v will get a portion
of the data that is proportional to its degree. From the way D was created
it follows that for every u ∈ V there is at most one vertex v ∈ D such that
u ∈ V (E(v,m1/k)). Thus, every u ∈ V cannot get a data of type 3 from two
different vertices of D.

Now given a pair s, t ∈ A, the routing from s to t works as follows. If s ∈ D,
then at a cost of O(m1/k) messages we query the vertices of V (E(s,m1/k)) for
the minimal index j such that s ∈ C(pj(t)). The data that is needed to route
from s to pj(t) is sent from the vertex of V (E(s,m1/k)) that contains it to s.
This data is added to the header of the message as before, and the message is
routed to pj(t) using it. Routing from pj(t) to t is done using the tree routing
scheme of TR(pj(t)).

Consider now the case that s �∈ D. In this case, s first computes V (E(s,m1/k))
and check if t ∈ V (E(s,m1/k)). If it is, then the routing is done using a short-
est path. If it is not, then since s /∈ D there is a vertex s′ ∈ D such that
V (E(s,m1/k)) ∩ V (E(s′,m1/k)) �= ∅ and rs′ ≤ rs. We stored at s the data
needed to translate the virtual edge (s, s′). We add this data to the header and
route to s′. The length of the shortest path between s and s′ is at most 2rs and
since d(s, t) ≥ rs we get that d(s, s′) ≤ 2d(s, t). The virtual edge is translated
to a path of length at most (1 + ε)d(s, s′). The message is sent from s to s′ on
a path of length at most (1 + ε)2d(s, t) and from s′ to t on a path of length at
most (4(k − 1)− 3)(d(s, t) + d(s, s′)). Thus, the total length of the path from s
to t is O(k)d(s, t).
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Abstract. Tree embeddings are a powerful tool in the area of graph approxi-
mation algorithms. Essentially, they transform problems on general graphs into
much easier ones on trees. Fakcharoenphol, Rao, and Talwar (FRT) [STOC’04]
present a probabilistic tree embedding that transforms n-node metrics into (prob-
ability distributions over) trees, while stretching each pairwise distance by at most
an O(log n) factor in expectation. This O(log n) stretch is optimal.

Khan et al. [PODC’08] present a distributed algorithm that implements FRT in
O(SPD log n) rounds, where SPD is the shortest-path-diameter of the weighted
graph, and they explain how to use this embedding for various distributed approx-
imation problems. Note that SPD can be as large as Θ(n), even in graphs where
the hop-diameter D is a constant. Khan et al. noted that it would be interesting to
improve this complexity. We show that this is indeed possible.

More precisely, we present a distributed algorithm that constructs a tree em-
bedding that is essentially as good as FRT in Õ(min{n0.5+ε,SPD}+D) rounds,
for any constant ε > 0. A lower bound of Ω̃(min{n0.5,SPD} + D) rounds
follows from Das Sarma et al. [STOC’11], rendering our round complexity near-
optimal.

1 Introduction and Related Work

Metric embeddings are a versatile technique in centralized approximation algorithms.
Given an arbitrary metric space on n points—i.e., a weighted graph on n nodes with
distances being the metric—metric embeddings transform it into a “nicer” metric space
while incurring only a small distortion. A basic example is Bourgain’s theorem [5],
which shows that it is possible to embed into �2 with O(log n) distortion. The general
approach for using metric embeddings in approximation algorithms is as follows: (1)
using the embedding, transform the given problem instance to one in a more convenient
metric space (i.e., nicer graph); (2) solve the simpler problem; (3) transform the solution
back to one of the original instance. See [14, 18] for surveys.

Tree embeddings are a particularly useful branch of metric embeddings, which “trans-
form” general graphs into trees. This is especially attractive, because finding solutions
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on trees is often quite easy, if not trivial. Not surprisingly, the approach has a caveat:
one cannot hope for a small distortion when (deterministically) embedding into a tree;
for example, transforming an n-node cycle to any tree will incur an Ω(n) distortion
on at least one edge. But not all the hope is lost, as there is still the option of embed-
ding probabilistically. Indeed, a beautiful line of work [1–3,9] shows this to be feasible,
obtaining successively better distortions, and ending with the algorithm of Fakcharoen-
phol, Rao, and Talwar (FRT) [9], which achieves O(log n) distortion. More precisely,
the FRT algorithm maps any n-point metric into a tree drawn from a certain probability
distribution so that each pairwise distance is stretched by a factor O(log n) in expecta-
tion. The trees in the support of this distribution have some further desirable properties,
which make them even more helpful in many applications, e.g., they are hierarchically
separated trees [9]. This O(log n) distortion is existentially optimal, as demonstrated
by graph families such as expander graphs and diamond graphs [3].

The fact that graph problems are often easier on trees is not particular to centralized
algorithms. Hence, it is natural to expect that tree embeddings should be helpful in
distributed algorithms as well. Actualizing this intuition, Khan et al. [15] showed how
to implement FRT distributedly and use it to get distributed approximation algorithms
for a number of graph problems. The distributed tree embedding of Khan et al. works
in O(SPD logn) rounds of the CONGEST model, where SPD denotes the shortest-
path-diameter. CONGEST is the standard model for distributed computation, in which
each node can send one B-bit size message per round to each of its neighbors; typically,
B = O(log n). The shortest-path-diameter SPD is the minimum integer h ∈ N+ such
that for any pair of nodes v and u, there is a least-weight path between v and u that
has at most h hops. Note that SPD can be much larger than the hop diameter D, up to
factor Θ(n); see, e.g., Figure 1.
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Fig. 1. An example where D =
2 and SPD ≈ n/2. Numbers
on edges show their weights.

Khan et al. noted that it would be interesting to im-
prove the round complexity. This is particularly intrigu-
ing in light of the developments in the general area
of distributed approximation algorithms. On the lower
bound side, an elegant sequence of papers [7, 8, 21]
show Ω̃(D +

√
n) rounds to be necessary for a wide

range of (approximation) problems, including those for
which tree embeddings can be useful. Here, D is the
hop diameter of the network graph. On the upper bound
side, in the last couple of years approximation algo-
rithms with round complexity Õ(D +

√
n), or close to

it, have been developed for a number of different graph
problems [11–13,16,17,19]. Consequently, it is intrigu-
ing to ask

“Is there an Õ(D +
√
n)-round tree embedding algorithm?”

We consider answering this question important as a positive result would add tree em-
beddings to the set of our Õ(D+

√
n)-round tools and extend the range of problems in

the Õ(D +
√
n)-round category to those which can be solved via tree embedding.
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1.1 Our Contribution

We show that there is a distributed algorithm that provides a probabilistic tree embed-
ding that is essentially as good as FRT—i.e., with only a constant factor larger stretch—
in almost Õ(D +

√
n) rounds.

Theorem 1 (INFORMAL). For any ε > 0, a probabilistic tree embedding with
expected stretch of O(log n/ε) can be computed in Õ(min{n0.5+ε, SPD} + D)
rounds of the CONGEST model.

The formal version specifying how the embedding is represented distributedly is pre-
sented in Theorem 22. As mentioned, this result is near-optimal in both stretch and
round complexity: the former must be Ω(log n) [3], and we show in the full version of
this paper that [7] yields that the latter must be Ω̃(min{

√
n, SPD}+D).

1.2 Overview

Here, we explain the key ideas of our construction. For brevity, the description of FRT
is deferred to Section 3.
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Fig. 2. The LE list for node 9. Nodes
are labeled randomly, edges by their
weights.

FRT = Least Elements (LE) Lists: Given a
weighted graph G = (V,E,W ), computing
FRT’s probabilistic tree embedding of G boils
down to the following: (1) choose a permuta-
tion π of V uniformly at random; (2) for each
node v ∈ V and each distance d, find the node
w within distance d of v that appears first in the
permutation π. For each node v, this generates
a list of nodes with one entry for each distance
d. Note that the π-indices of the nodes in the
list are decreasing as a function of d. The list
can be compressed by only keeping the entry
with the minimum distance d for each node w in the list. The compressed lists are
called Least Elements (LE) lists [6]. See Figure 2 for an example.

Distributed LE-list Computation: Khan et al. [15] present a neat method for com-
puting LE lists distributedly. Their algorithm runs in iterations; in each iteration, each
node sends its whole current (compressed) list to its neighbors. Initially, each list con-
tains only the node itself at distance 0. In each round, each node updates its lists using
the received ones and the distances from the sending neighbors. After at most SPD iter-
ations, we get the correct LE lists. A key observation of [15] is that, due to the random
order π, in each iteration, each list will contain at most O(log n) entries, with high prob-
ability (w.h.p.). Thus, each of the at most SPD iterations can be performed in O(log n)
rounds, which translates to a total of O(SPD logn) rounds.

A Strawman Idea: LE lists can be determined easily if we have all-to-all distances.
Since we know how to get a multiplicative approximation of all-to-all distances in time
close to Õ(D +

√
n) [16], a natural idea is to use these approximates to construct an
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FRT-like embedding. However, this idea does not go far, mainly because multiplicative
approximates do not satisfy (any approximation of) the triangle inequality.

Our Approach In a Nutshell: We construct a virtual graph G′ whose distances ap-
proximate those of G and has shortest-path diameter SG′ at most Õ(

√
n). Note that

distances in a graph always satisfy the triangle inequality, which enables us to apply
the FRT construction. However, since G′ is a virtual graph, we cannot readily use the
algorithm by Khan et al. [15] to achieve a time complexity of Õ(SG′) = Õ(

√
n).

We resolve this by entangling the construction of G′ with the computation of LE
lists. More concretely, we pick the first Θ(

√
n) nodes in the random order π of FRT,

call them S, and find factor � = O(1/ε) approximations of distances among nodes of
S. This part uses the spanner construction of Baswana and Sen [4] and its adaptation
in [16]. We set the G′-distances amongS equal to these approximations by adding direct
virtual edges of the corresponding weight, while the original edges of G are added to
G′ with weight raised by factor �. As now the approximated distances between nodes
in S are exact G′-distances, we can directly compute the G′-LE lists of the nodes in S.
Here it is crucial that the nodes in S are prioritized by π, implying that their lists will
only contain nodes in S. Furthermore, for any pair of nodes for which a least-weight
path has at least roughly

√
n logn hops, w.h.p. one such path has a node from S within

its first O(
√
n logn) hops. Thus, it suffices to run the LE list computation, jump-started

with the complete lists on S, only for Õ(
√
n) iterations. The fact that we have entangled

the (random) construction of G′ with the (random) permutation π of FRT creates some
probabilistic dependency issues. However, by opening up the analysis of FRT and the
LE list computation, we show that this does affect neither the stretch nor the running
time by more than factor 2.

2 Preliminaries

Model: The network is represented by a connected, simple, and weighted graph G =
(V,E,W ) of n := |V | nodes, with edge weights W : E → N bounded polynomially in
n. Initially each node knows the weights of its incident edges. We use the CONGEST
model [20]: communication occurs in synchronous rounds, where in each round B =
O(log n) bits can be sent in each direction of each edge.

Each node independently picks an O(log n)-bit identifier (ID in short), uniformly at
random. These are the identifiers that we will use in the remainder of the paper. We use
random IDs because they readily give us a uniformly random ordering π of the nodes.
We use notation v < w to mean that the random ID of node v is smaller than that of
node w. It is easy to see that, with high probability, the random ID picked by each node
is unique, and we assume throughout the paper that this holds true. Here, we use the
phrase “with high probability” (w.h.p.) to indicate that an event occurs with probability
at least 1− 1/nc, for an arbitrary constant c > 0 fixed in advance.

Graph-Theoretic Notations:
– For a node v, denote the set of its neighbors byN (v).
– For a path p = (v0, . . . , vh), define its length �(p) := h and its weight W (p) :=∑h

i=1 W (vi−1, vi).
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– For v, w ∈ V , denote by Pvw the set of all paths starting at v and ending at w.
– The hop distance of v, w ∈ V is defined as hd(v, w) := minp∈Pvw{�(p)}.
– The (hop) diameter of G is D := maxv,w∈V {hd(v, w)}.
– The (weighted) distance of v, w ∈ V is given by wd(v, w) := minp∈Pvw{W (p)}.
– The weighted diameter of G is WD := maxv,w∈V {wd(v, w)}.
– The shortest-path diameter of G is SPD := maxv,w∈V {min{�(p)| p ∈ Pvw ∧
W (p) = wd(v, w)}}.

For brevity, we use the conventions that “diameter” denotes the hop diameter, but “dis-
tance” refers to weighted distances. When talking of graphs other than G, we subscript
the above notations by the respective graph.

3 Recap: FRT, Least Element Lists, and Spanners

3.1 The FRT Probabilistic Tree Embedding

TkT2T1
…

RRR

r

Fig. 3. FRT’s recursion

Given a weighted graph G = (V,E,W ), FRT ran-
domly constructs a tree T = (VT , ET ,WT ) such
that there is a mapping M from V to leaves of T ,
and for each pair of nodes u, v ∈ V , we have

– wd(u, v) ≤ wdT (M(v),M(v)), and
– E[wdT (M(v),M(u))] ∈ O(wd(u, v) logn).

FRT–An Intuitive Description: The construction
can be viewed as a tree of hierarchical decompo-
sitions. The key decomposition step is as follows:
Pick R ∈ [WD /4,WD /2] uniformly at random.
For each node w, define its (exclusive) ball

B(w) := {v ∈ V | wd(v, w) ≤ R ∧ ∀w′ ∈ V : wd(v, w′) ≤ R⇒ w ≤ w′}.

Recall from Section 2 that the notation w ≤ w′ means w has a smaller random ID
compared to w′. We recursively create a tree embedding Ti for each subgraph of G
induced by a nonempty ball B(w). Finally, add a root node r and connect the roots of
trees Ti to r via edges of weight R.

FRT–A Formal Description: The whole structure of the FRT tree can be succinctly de-
scribed as follows. Choose a uniformly random β ∈ [1, 2). Denote byL := �logWD�+
1 the maximum level of the tree. For each v ∈ V and each i ∈ {0, . . . , L}, let node
vi ∈ V minimize the ID among the set {w ∈ V | wd(v, w) ≤ β2i−1}. Note that vi is
a function1 of v. In particular, v0 = v and vL = minV is the first node in the order π.
The node set VT of the tree is {(vi, . . . , vL) | v ∈ V ∧ i ∈ {0, . . . , L}}. Note that each
different sequence (vi, . . . , vL) starting with vi denotes a distinct “copy” of vi ∈ V . For
each tree node (vi, . . . , vL) with i < L, its parent is the tree node (vi+1, . . . , vL), and
the weight of the edge connecting them is β2i. Finally, we have M(v) := (v0, . . . , vL).
Thus, the node set V is mapped to the leaf set of the tree. Figure 4 shows an example.

1 A better notation might be ci(v), indicating that this is the level i center of node v. However,
for brevity we write vi = ci(v).
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Fig. 4. A simple example of an FRT tree

The fact that, for each v, w ∈ V , wd(v, w) ≤ wdT (M(v),M(w)) can be easily
verified. The main result of Fakcharoenphol, Rao, and Talwar [10] is the probabilistic
upper bound.

Theorem 2 ([10], Theorem 2). For the embedding described above, it holds for each
v, w ∈ V that E[dT (M(v),M(w))] ∈ O(log n) · wd(v, w).

3.2 Least Element Lists

The FRT embedding can be implicitly encoded via a data structure called Least Element
lists [6].

Least Element (LE) Lists: For each node v, its LE list is

Lv := {(w,wd(v, w)) ∈ V × N0 | �u ∈ V : (u < w ∧ wd(v, u) ≤ wd(v, w))}.

Given the LE lists, each node v can easily compute the nodes vi, for i ∈ {1, . . . , L},
from its LE list Lv. This is because, for any given distance d, node v can recover the
node of smallest ID within distance d as the node w of smallest ID satisfying that
(w,wd(v, w)) ∈ Lv and wd(v, w) ≤ d. Moreover, these lists allow us to determine the
next hop on a least-weight path from v to vi locally.

Observation 3. If (w,wd(v, w)) ∈ Lv for w �= v, then u ∈ N (v) exists such that
(w,wd(v, w)−W (v, u)) ∈ Lu. Hence, if for each w ∈ V , w �= v, s.t. (w,wd(v, w)) ∈
Lv we choose pv(w) ∈ N (v) with (w,wd(v, w) −W (v, pv(w))) ∈ Lpv(w), then the
edges (v, pv(w)) form a shortest-path tree rooted at w.

3.3 Distributed Computation of Least Element Lists

Next, we explain the distributed algorithm of Khan et al. [15] for computing LE lists:
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1. Each v ∈ V initializes L(0)
v := {(v, 0)}). Set i := 0.

2. All nodes v do the following iteration in parallel:
(a) Send L

(i)
v to all neighbors.

(b) Set L(i+1)
v := L

(i)
v .

(c) For all w ∈ N (v) and (u, d) ∈ L
(i)
w , set L(i+1)

v := L
(i+1)
v ∪ {(u, d +

W (v, w))}.
(d) Scan L

(i+1)
v in ascending order of distances (i.e., second entries) and

delete each entry for which the ID (i.e., the first entry) is not smaller than
all IDs previously encountered in the scan.

(e) Set i := i+ 1.
while ∃v ∈ V so that L(i)

v �= L
(i−1)
v .

3. Each v ∈ V returns L(i)
v = Lv.

From the definition of LE lists, the following observations regarding this algorithm are
straightforward.

Observation 4. If (w,wd(v, w)) ∈ Lv, then (w,wd(v, w)) is not deleted from L
(i)
v

during its scan.

Observation 5. For i ∈ N0, suppose (w,wd(v, w)) ∈ Lv and (w,wd(u,w)) ∈ L
(i)
u

for u ∈ N (v) on a least-weight path from v to w. Then (w,wd(v, w))) ∈ L
(i+1)
v .

Observations 3, 4, and 5 essentially imply the following, which is shown in the full
version.

Lemma 6. The above algorithm computes correct LE lists. It terminates after at most
SPD+1 iterations.

Remark 7. If node v ∈ V also memorizes which neighbor sent the (first) message
causing it to insert an entry into Lv, the least-weight paths indicated by the respective
pointers have minimal hop count, and the trees implied by Observation 3 have minimal
depth (which is bounded by SPD).

The remaining analysis boils down to showing that the lists are always short, i.e.,
have O(log n) entries w.h.p. We remark that our analysis fixes a technical issue with
the one in [15]. However, the key idea is the same; see the full version for details.

Lemma 8 ([15], Lemma 5). For each v ∈ V and each i ∈ N0, |L(i)
v | ∈ O(log n) w.h.p.

Theorem 9. The LE lists can be computed within O(SPD logn) rounds w.h.p.

3.4 Spanners and Skeletons

In our algorithm, we will make use of known techniques for constructing spanners and
skeletons. Here, we briefly review these tools. We note that the description is adapted
to best suit our application.
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For � ≥ 1, a (multiplicative) �-spanner of a graph H = (VH , EH ,WH) is a graph
HS = (VH , ES ,WS) with ES ⊆ EH , WS(e) = WH(e) for all e ∈ ES , and
wdHS (v, w) ≤ �wdH(v, w) for all v, w ∈ VH . Ideally, we want both � and |ES | to
be as small as possible.

We will make use of a spanner construction on a certain virtual graph. For S ⊆ V ,
the h-hop S-skeleton of G is defined as the weighted graph GS,h := (S, ES,h,WS,h)

with ES,h := {{s, t} ∈
(S
2

)
| hd(s, t) ≤ h} and WS,h(s, t) := min{W (p) | p ∈

Pst ∧ �(p) ≤ h} for each {s, t} ∈ ES,h. In words, the graph has node set S and {s, t}
is an edge iff s and t are in hop distance at most h; the weight of this edge then is the
minimum weight of an s-t path of at most h hops.

For the purposes of this paper, we consider the special case that each node is sampled
into S independently with probability 1/

√
n and that h := c

√
n logn for a sufficiently

large constant c. In this case, the skeleton preserves weighted distances.

Lemma 10 ([16], Lemma 4.6). If nodes are sampled into S with independent proba-
bility 1/

√
n and h := c

√
n logn for a sufficiently large constant c, then wdGS,h

(s, t) =
wd(s, t) for all s, t ∈ S w.h.p.

The hop-distance h up to which we need to explore paths in G to “find” the edges in
EGS,h

is in Õ(
√
n). Furthermore, because |S| ∈ Õ(

√
n), GS,h can be encoded using

Õ(n) bits. We can further reduce this to Õ(n0.5+ε) bits by constructing a spanner of
GS,h, sacrificing a factor of O(1/ε) in the accuracy of the distances.

Theorem 11 ([16], Theorem 4.10). Suppose nodes are sampled into S independently
with probability 1/

√
n and h := c

√
n logn for a sufficiently large constant c. Then, for

any k ∈ N, w.h.p. a (2k− 1)-spanner of GS,h can be computed and made known to all
nodes in Õ(n1/2+1/(2k) +D) rounds. Furthermore, for each s, t ∈ S, there is a unique
p ∈ Pst of weight W (p) ≤ (2k− 1)wd(s, t) so that each node on p knows that it is on
p as well as which of its neighbors is the next node on p (as a function of the ID of t).

This is achieved by simulating the Baswana-Sen spanner construction [4] onGS,h using
a truncated version of the multi-source Bellman-Ford algorithm. For details and proofs
we refer to [16].

4 Fast Distributed Tree Embedding

In this section, we explain our algorithm. We first give an intuitive explanation of what
our key ideas are. Then, we present the algorithm and its correctness, running time, and
approximation analysis.

4.1 Key Ideas

When computing LE lists according to the algorithm by Khan et al. [15], information
spreads along least-weight paths. For most of the nodes, however, the induced shortest-
path trees (cp. Observation 3) will be fairly shallow: Let S be the set of nodes which
their ID is in the first 1/

√
n fraction of range of possible IDs. Recall from Section 2

that we assign IDs uniformly and independently at random. Thus, Pr[v ∈ S] = 1/
√
n.
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Graph G Virtual Graph G’

Fig. 5. Virtual graph construction. Red nodes are in S , i.e., their ID is in the top 1/
√
n fraction of

the ID range. Dotted red lines indicate virtual edges in G′, whose weights are the �-approximation
of their endpoints’ distance in G. Green edges show edges from G that are not connecting two
nodes from S . In G′, their weight is by factor � larger than in G. Hence, for each s, t ∈ S , the
virtual edge {s, t} is a least-weight path from s to t in G′.

When following a least-weight path, w.h.p. one will encounter a node in S after at most
O(
√
n logn) hops. Such a node will never have any entries corresponding to nodes of

larger IDs. By the union bound and Observation 3, we get that the trees rooted at nodes
in V \ S have depth O(

√
n logn) w.h.p.

Observation 12. Let S be the set of nodes with ID in the first 1/
√
n fraction of the ID

range. For each v ∈ V \ S, the depth of a shortest-path tree rooted at v whose nodes
are the set {w ∈ V | (v,wd(w, v)) ∈ Lw} is O(

√
n logn) w.h.p.

For nodes in S, there is no such guarantee. In fact, if a graph contains a very light
path of n − 1 hops and otherwise only edges of large weight, it is certain that the tree
rooted at the minimum-ID node has depth Ω(n), even if the hop diameter D is very
small. Nonetheless, the property that on any path a node from S will be encountered
within O(

√
n logn) hops w.h.p. still applies. Hence, once the LE lists of the nodes in

S are determined, the algorithm from the Section 3.3 will complete after O(
√
n logn)

additional iterations w.h.p.

Observation 13. If for some i ∈ N0 and all s ∈ S it holds that L(i)
s = Ls, then

L
(i′)
v = Lv for all v ∈ V and i′ ∈ i+O(

√
n logn) w.h.p.

In summary, the problem boils down to computing the LE lists for the small subset
S ⊂ V quickly. We do not know how to do this exactly in sublinear time, i.e., õ(n)
rounds. Consequently, we will make use of approximation. Recall that, since the IDs
are uniformly random, S is a uniformly random subset of V containing each node with
independent probability 1/

√
n. This is exactly the precondition required in the skeleton

and spanner constructions given by Lemma 10 and Theorem 11. Thus, in Õ(n1/2+ε +
D) rounds, we can make �-approximate distances, for � ∈ O(1/ε), between nodes in
S global knowledge. More precisely, these approximations are induced by the distance
metric of a spanner of the O(

√
n log n)-hop S-skeleton. Hence, we can compute exact

LE lists of this spanner locally. Using these lists instead of those for G approximately
preserves distances.

Next, we want to use these lists and Observation 13 to complete the computation of
LE lists for the remaining set V \S quickly. However, unfortunately we did not compute
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LE lists for G. To address this issue, we consider the virtual graph G′ = (V,E′,W ′),
where E′ := E∪

(S
2

)
, and W ′(e′) is the distance of s and t in the spanner iff e′ = {s, t}

for some s, t ∈ S and W (e′) = �W (e) otherwise. In G′, the spanner distances between
s, t ∈ S are the exact distances, and for any v, w ∈ V , wd(v, w) ≤ wdG′(v, w) ≤
�wd(v, w). Intuitively, without distorting distances by more than factor �, we have
ensured that the LE lists of nodes in S we determined from the spanner are their exact
LE lists in G′, and by Observation 13, we can compute the LE lists of nodes in V \ S
quickly. Finally, we would like to argue that the computed lists are those of an FRT
embedding of G′, and because G′ satisfies that wd(v, w) ≤ wdG′(v, w) ≤ �wd(v, w)
w.h.p., the overall expected distortion is O(� log n) in expectation.

Is it that simple? Almost, but not quite. The issue with the above simplistic reasoning
is that it ignores dependencies. Since G′ depends on S, the permutation of V induced
by the ranks is not independent of the topology of G′, and therefore it is not obvious
that the bound on the expected distortion of the FRT algorithm applies. Similarly, the
statement of Lemma 8 that (intermediate) LE lists are w.h.p. of size O(log n) relies on
the independence of the permutation from the topology of G′. Both of these issues can
be resolved, by arguing about S and V \S separately; the total orders the IDs induce on
S and V \S, respectively, are independent of what nodes are in S and thus the topology
of G′.

4.2 Our Algorithm: Constructing the Virtual Graph G′ and Computing its LE
Lists

Here we describe our algorithm. This algorithm uses a parameter k ∈ N that can be set
arbitrarily. For our main result, one should think of k as k = �1/ε�.

1. Construct any BFS tree, determine its depth D̂ ∈ Θ(D) and n (the latter by
aggregation on the tree), and make these values known to all nodes.

2. Put the nodes whose random ID is in the first 1/
√
n fraction of the ID range in

set S.
3. Set h := c

√
n logn for a sufficiently large constant c and ρ := 2k − 1. Con-

struct a ρ-spanner G̃ of GS,h in Õ(n1/2+1/(2k) +D) rounds, using the algo-
rithm given by Theorem 11.

4. Define the virtual graph G′ := (V,E′,W ′) as follows:
– E′ := E ∪

(S
2

)
.

– For each s, t ∈ S, set W ′(s, t) := WG̃(s, t).
– For each e ∈ E′ \

(S
2

)
, set W (e′) := ρW (e).

5. Each s ∈ S locally computes LS
v , its LE list for the metric on S induced by

distances in G̃.
6. Each node s ∈ S initializes L(0)

s := LS
s . Nodes v ∈ V \ S initialize L

(0)
v :=

{(v, 0)}. The algorithm from Section 3.3 is run on G, however with the lists

L
(0)
v initialized as just specified.

7. Return the computed lists.
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4.3 Correctness Analysis

We first show that the algorithm computes the desired LE lists.

Lemma 14. W.h.p., wdG̃(s, t) = wdG′(s, t) for all s, t ∈ S.

Proof. Theorem 11 guarantees that w.h.p., G̃ is a ρ-spanner of GS,h. By Lemma 10,
w.h.p. wdGS,h

(s, t) = wd(s, t) for all s, t ∈ S. In the following, we condition on both
events occuring. Therefore, for any s, t ∈ S,

wdG′(s, t) ≤ wdG̃(s, t) ≤ ρwdGS,h
(s, t) = ρwd(s, t).

It remains to prove that wdG′(s, t) ≥ wdG̃(s, t). To this end, consider any path p =
(v0 = s, v1, . . . , v
(p) = t) in G′. It decomposes into subpaths p = p1 ◦ p2 ◦ . . . ◦ pm
(for some m ≤ �(p)) so that each pi, i ∈ {1, . . . ,m}, starts and ends at a node in S and
all its internal nodes are in V \S. Therefore, either pi = (si, ti) for some si, ti ∈ S and
W ′(pi) = wdG̃(si, ti), or pi = (si, . . . , ti) consists of edges from E only. The latter
implies that

W ′(pi) = ρW (pi) ≥ ρwd(si, ti) = ρwdGS,h
(si, ti) ≥ wdG̃(si, ti).

Thus, in both cases, W ′(pi) ≥ wdG̃(si, ti). By repeated application of the triangle
inequality (wdG̃ is a metric), we conclude that

wdG̃(s, t) ≤
m∑
i=1

wdG̃(si, ti) ≤
m∑
i=1

W ′(pi) = W ′(p).

As p was an arbitrary s-t path in G′, we conclude that wdG′(s, t) ≥ wdG̃(s, t).

Corollary 15. W.h.p., the LE lists computed locally in Step 5 are the LE lists for G′ of
nodes in S.

Corollary 16. W.h.p., the above algorithm returns LE lists for the graph G′ specified
in Step 4.

4.4 Running Time Analysis

Clearly, the first step of the algorithm requires O(D) rounds. The other steps that do
not solely consist of local computations are Steps 3 and 6. By Theorem 11, the time
complexity of Step 3 is Õ(n1/2+1/(2k) + D) w.h.p. Hence, it remains to analyze the
time complexity of Step 6.

Lemma 17. Step 6 of the above algorithm performs O(
√
n logn) iterations of the LE

list algorithm w.h.p.

The proof appears in the full version; essentially, the lemma follows from the fact that
on each path, a node from S is encountered every O(

√
n logn) hops w.h.p.

Due to this lemma, it is sufficient to show that in each iteration, the lists contain
O(log n) entries w.h.p.
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Lemma 18. For each iteration of the LE list algorithm during Step 6, all lists have
O(log n) entries w.h.p.

Proof. For each node v ∈ V and each index i ∈ N0, we split its list L(i)
v into two parts.

The head of the list H(i)
v consists of entries (s, d) with s ∈ S and its tail T (i)

v consists
of entries (v, d) with v ∈ V \ S. Consider the following virtual graph:

– Take a copy of G′.
– Add a copy of each node in S and connect it to the original by a 0-weight edge.
– Connect each copy of a node s ∈ S to each original node t ∈ S \ {s} by an edge

of weight W ′(s, t).
Now initialize, for each s ∈ S, L(0)

s′ := {(s, 0)}, where s′ is the copy of s. For all

original nodes v ∈ V , set L(0)
v := ∅. Observe that

(i) after one iteration of the LE list algorithm, each original node has the same head
H

(0)
v as according to the initialization in Step 6 of the algorithm;

(ii) no message from a copy of a node ever causes a change in the lists in later rounds;
and

(iii) the permutation of S induced by the IDs is uniform and independent of the topol-
ogy.

The third observation implies that Lemma 8 applies,2 i.e., the list heads have O(log n)
entries w.h.p. The first two observations imply that the list heads are identical to those
of the iterations of the LE list algorithm performed in Step 6 (shifted by one round).
Hence, |H(i)

v | ∈ O(log n) w.h.p. for all nodes v ∈ V and rounds i.
Now consider the list tails. Suppose the list construction algorithm was run on G, but

with L
(0)
s := ∅ for all s ∈ S. Since the ranks induce a uniformly random permutation on

V \S (that is independent of G), Lemma 8 applies and, in each iteration, the respective

lists have O(log n) entries w.h.p. We claim that the tails T
(i)
v , v ∈ V , i ∈ N0, are

always prefixes of these lists. This follows because if an entry of an (intermediate) head
list causes deletion of an entry from a tail list, it can never happen that the deleted entry
would affect neighbors’ lists in future iterations (the head entry causing the deletion
always takes precedence).

To complete the proof, for each iteration i we take the union bound over all nodes
and the events that the head and tail lists are short, implying that, w.h.p., |L(i)

v | =

|H(i)
v |+ |T (i)

v | ∈ O(log n) for all nodes v ∈ V .

We summarize the result on LE list computation for G′:

Theorem 19. W.h.p., the algorithm computes the LE lists of the virtual graph G′ de-
fined in Step 5 and (if suitably implemented) terminates in Õ(n1/2+1/(2k) +D) rounds.

4.5 Approximation Analysis

So far, we have shown that our algorithm computes LE lists for G′ and does so fast.
However, we cannot apply Theorem 2 to show that these LE lists represent a virtual

2 Technically speaking, we use a slightly more general version of the lemma, in which a subset
of the nodes may be anonymous; the reasoning remains identical. Here, all nodes but the copies
of nodes in S are anonymous.
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tree sampled from the (distribution of trees given by) the FRT embedding. Since the
construction of G′ depends on the choice of S, and this choice depends on the random
IDs, G′ and the permutation on V induced by the IDs are not independent. We now
adapt the analysis of [10] to our setting and show how to remedy the probabilistic
dependencies created by our algorithm. In the following, denote by T the FRT tree
specified by the LE lists on G′.

Lemma 20. For each v, u ∈ V , E[wdT (M(v),M(u))] ∈ O(log n) · wdG′(v, u).

Proof (Sketch). For any S ⊂ V , denote by ES the event that S is the set of the nodes
with random IDs in the first 1/

√
n fraction of the ID range. It suffices to show that

E[wdT (M(v),M(u)) | ES ] ∈ O(log n) · wdG′(v, u).

We condition on ES and an arbitrary outcome of the spanner construction (which uses
independent randomness); this fixes G′. Note that the total orders the IDs induce on
each of the sets S and V \ S, respectively, are still uniformly random and independent
of G′.

Fix u, v ∈ V . We say w settles u and v on level i, iff it is the node with the smallest
ID so that

min{wdG′(w, v),wdG′(w, u)} ≤ β2i−1. (1)

We say w cuts u and v on level i, iff it settles them on level i and also

β2i−1 ≤ max{wdG′(w, v),wdG′(w, u)}. (2)

It is not hard to show that if (vi+1, . . . , vL) is the least common ancestor of v and u,
then wdT (M(v),M(u)) < β2i+1 < 2i+2 and either vi or ui cuts v and u. Hence, if
we denote by Ew,i the event that w ∈ V cuts u and v on level i, we have that

E[wdT (M(v),M(u)) | ES ] <
∑
w∈V

L∑
i=1

P [Ew,i] · 2i+2

=
∑
w∈S

L∑
i=1

P [Ew,i] · 2i+2 +
∑

w∈V \S

L∑
i=1

P [Ew,i] · 2i+2.

Both sums are handled analogously; let us consider only the first one here. Sort the
nodes w ∈ S in ascending order w.r.t. min{wdG′(w, v),wdG′(w, u)} and let wk be the
kth node in this order. We rewrite P [Ewk,i] as

P [(1) and (2) for wk and i] · P [wk settles u and v on level i | (1) and (2) for w and i].

As the random order on S is uniform and independent of G′, the second, conditional
probability is 1/k. Concerning the first probability, recall that (1) and (2) hold exactly if
β2i−1 ∈ [wdG′(w, v),wdG′(w, u)]. Here, w.l.o.g. we have assumed that wdG′(w, v) <
wdG′(w, u). Computation shows that

L∑
i=1

P [(1) and (2) for wk and i] · 2i+2 =

∫ wdG′ (w,u)

wdG′ (w,v)

23 dx

= 8(wdG′(w, u)− wdG′(w, v)) ≤ 8wdG′(v, u),



210 M. Ghaffari and C. Lenzen

where in the final step we applied the triangle inequality. We conclude that

∑
w∈W

L∑
i=1

P [Ew,i] · 2i+2 ≤
|W |∑
k=1

8

k
· wdG′(v, u)

< 8Hn · wdG′(v, u) ∈ O(log n) · wdG′(v, u).

Full proofs of the lemma and the statements below are given in the full version. As
distances in G′ are w.h.p. at most by factor O(log n/ε) larger than in G, we conclude
that the embedding given by the LE lists for G′ is also good for G.

Corollary 21. For each v, u ∈ V , we have that E[wdT (M(v),M(u))] ∈ O(k logn) ·
wd(v, u).

We arrive at our main result, which was informally stated in Theorem 1.

Theorem 22. For any 0 < ε ≤ 1, it is possible to sample from a distribution of prob-
abilistic tree embeddings with expected stretch O(log n/ε) in Õ(min{n0.5+ε, SPD}+
D) rounds w.h.p. in the CONGEST model. The computed embedding is given distribut-
edly, in the form of corresponding LE lists. Moreover, if not all least-weight paths in
G induced by the LE lists have Õ(

√
n) hops, the subtree of the virtual tree induced by

the set S of nodes whose (uniformly random) ID is in the first 1/
√
n fraction of the ID

range is known to all nodes, and for each edge {s, t} in this subtree there is a unique
s-t-path in G whose weight does not exceed the weight of the virtual edge and whose
nodes know that they are on this path.

We remark that instead of just constructing the tree embedding in form of the LE lists,
this result also makes sure that the embedding can be used for approximation algorithms
efficiently. For instance, it is essential that we can, e.g., select a root-leaf path in the
virtual tree and map it back to a corresponding path in G in Õ(min{n0.5+ε, SPD}+D)
rounds. Note that this operation is very basic, as it will be required whenever seeking
to connect two leaves in different subtrees. Reconstructing such a path hop by hop
using LE lists may take SPD time, which is too slow if SPD #

√
n. Fortunately, if

SPD is large, for each path all but a prefix of Õ(
√
n) hops corresponds to a route in

the constructed skeleton spanner, and the additional information collected during the
spanner construction stage is sufficient to quickly determine the remaining edges in G
by announcing the (endpoints of) the subpath in the skeleton spanner to all nodes.
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Abstract. We study deterministic leader election in multi-hop radio
networks in the beeping model. More specifically, we address explicit
leader election: One node is elected as the leader, the other nodes know its
identifier, and the algorithm terminates at some point with the network
being quiescent. No initial knowledge of the network is assumed, i.e.,
nodes know neither the size of the network nor their degree, they only
have a unique identifier. Our main contribution is a deterministic explicit
leader election algorithm in the synchronous beeping model with a run
time of O(D log n) rounds. This is achieved by carefully combining a fast
local election algorithm with two new techniques for synchronization and
communication in radio networks.

1 Introduction

Distributed computing and wireless communication are prime application areas
for randomization, as randomized algorithms are often both simpler and more
efficient than their deterministic counterparts. However, in some cases the ran-
domized algorithm is only of Monte Carlo nature, i.e., with some probability the
algorithm fails. This is a problem if the randomized algorithm is used as a start-
ing point for other (deterministic and Las Vegas) algorithms, as the algorithm as
a whole can also not provide any guarantees anymore. A classic example for such
a basic problem is leader election, which is often used to as a first step for other
wireless algorithms. We would argue in this paper that leader election deserves
to be understood deterministically as well, and we present a new algorithm that
solves leader election in the wireless beeping model – our algorithm is slower
than the fastest known randomized algorithm, but the overhead is bearable.

The beeping model has emerged as an alternative to the traditional radio
network model. The beeping model is binary, in a synchronous time step nodes
can only choose to beep or not to beep. If a node is beeping, it does not get any
feedback regarding other nodes. On the other hand, if a node is silent, it will

� The full version of this paper is available at
http://disco.ethz.ch/publications/DISC2014-leader.pdf

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 212–226, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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learn whether all its neighbors are also silent, or whether at least one neighbor
is beeping. The beeping model was introduced to the distributed computing
community by Cornejo and Kuhn [7] shortly after it was implemented [8].

In this model, we deterministically solve leader election: All the nodes in
the multi-hop network have to agree on a single leader. As leader election is
impossible without nodes having unique identifiers [1], we assume that each
node is equipped with a unique ID. We want our algorithm to be uniform, i.e.,
apart from their ID, nodes have no knowledge about any global or local network
properties (e.g., the network size, or their degree).

Our main result is an algorithm that deterministically solves the leader elec-
tion problem in O(D logn) time, where D is the diameter of the network and n
is the number of nodes. Once a leader is elected, all nodes in the network know
the leader’s ID, and the network is quiescent. We achieve this task by carefully
combining several methods.

1.1 Overview

First, we describe a Campaigning algorithm (Section 3) that can be compared
to one iteration of a real word political campaign: Every node is equipped with a
candidate leader and attempts to convince its neighborhood that this candidate
would make a great leader. The idea is that, if enough campaigns are performed,
everyone will be convinced of the same leader, since her influence spreads at
least one hop per iteration. In other words, we would like to perform multiple
campaigns, one after another.

As it turns out, in the beeping model ensuring that the next algorithm starts
synchronized is a non-trivial task. We thus develop a technique that allows us
to sequentially execute algorithms (Section 4) and apply it to the Campaigning

algorithm (Section 4.3).
The third method establishes a “back-channel” (Section 5) that directs mes-

sages towards a specific node, in our case the current candidate leaders. This
allows the last remaining candidate to detect its election and turn the network
quiescent. Our main result is now obtained by executing the Campaigning algo-
rithm multiple times sequentially, while at the same time using the back-channel
to notify the global leader when its successful election is detected. Lastly, we
briefly sketch how our algorithm can be extended to include a simple synchro-
nized wake-up protocol (Section 6).

1.2 Related Work

Leader election is one of the fundamental problems in distributed computing,
often used as the first step for solving a myriad of other problems in networks.
As such, the problem was studied over decades in various communication and
network models [17].

In radio networks, communication takes usually place in synchronous rounds,
and nodes may either transmit or listen in every round. If a node transmits, it
cannot hear incoming messages, but the message is sent to all its neighbors at
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once. If a node listens, it receives messages from all its neighbors, but the message
obtained depends on the model of collision detection. Should collision detection
be available, then a node can separate between no message sent, exactly one
message sent, or a collision of multiple messages. With no collision detection
available nodes can only distinguish between exactly one message sent to it or
just noise.

Leader election in radio networks was first considered in single-hop radio net-
works, followed by the study of multi-hop radio networks. We start with a short
coverage of the single-hop case:

For deterministic algorithms in single-hop radio networks, the run time highly
depends on the availability of collision detection: With collision detection, it is
Θ(log n) [3,12,13,19], while without collision detection, it is Θ(n logn) [6]. A
similar case can be made for randomized algorithms in single-hop radio networks:
With collision detection, the expected run time is Θ(log logn) [20]. The expected
run time goes to O(log n) if w.h.p. is desired. Should no collision detection be
available, then the run time increases to Θ(log n) in the expected case [2,16],
and to Θ(log2 n) w.h.p. [14].

We would argue that the study of leader election in multi-hop radio networks
can be divided into the following fields for related work to our results. One
can consider (1) radio networks with or (2) without collision detection, and
(3) the beeping model. Second, the used algorithms can be either deterministic
or randomized. We refer to [4,10,15] for an extended overview of these areas.

For deterministic algorithms, Kowalski and Pelc [15] displayed the discrep-
ancy between models with and without collision detection. They showed that if
collision detection is available, the runtime is Θ(n), while without collision de-
tection, there is a lower bound of Ω(n logn). Their O(n) algorithm with collision
detection relies on a careful combination of multiple innovative techniques, e.g.,
remote token elimination and distributed fuzzy-degree clustering. In contrast
to the model in this paper, they require messages of logarithmic size, collision
detection, and the knowledge of an upper bound polynomial in the number of
identifiers. Our algorithm can be simulated therein since their model is strictly
stronger. Asymptotically, we achieve a better run time for graphs with a diameter
D ∈ o(n/ logn), cf. [10].

For randomized algorithms in radio networks without collision detection, Chle-
bus, Kowalski, and Pelc [4] broke the Ω(n log n) barrier: They present a ran-
domized algorithm with O(n) expected time and prove a lower bound of Ω(n).
Furthermore, they give a deterministic algorithm for the model without collision
detection with a run time of O(n log3/2 n

√
log logn). They use logarithmic size

messages and also assume that an upper bound on the network size is known.
Finally, Ghaffari and Haeupler [10] considered randomized leader election in

the beeping model. Their algorithm runs in O((D+logn log logn) ·min(log logn,
logn/D)) time. To choose the random starting set of candidates, they rely on
knowledge of n, while we assume our algorithms to be uniform. To cope with
overlapping transmissions, they present a sophisticated technique using super-
imposed codes. We deem our overhead of O(log n) in the worst case bearable.
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To the best of our knowledge, no results are published for deterministic leader
election in the beeping model.

The authors of [10] also consider a variant of the beeping model in which
only a subset S ⊆ V of the nodes wakes up in round 0 [11]. We adapt our
algorithm to this setting in Section 6. The difficulty is to allow nodes that are
being woken up by neighbors to synchronize their execution with that of nodes
that are already awake. The related wake-up problem, where nodes may also
activate spontaneously and no collision detection is available was studied in its
own right, for single-hop [9] as well as multi-hop [5] networks. In [18] the goal is
to activate the whole network if exactly one node is active initially.

2 Preliminaries

Network Model. The network is modeled as a connected undirected graph G =
(V,E) with node set V and edge set E. We denote by D the diameter of G, and
by n the number of nodes in V . All nodes u ∈ V have a unique identifier (ID),
denoted by id(u), from the range {1, 2, . . . , O(nγ)}, with γ ≥ 1 being a constant.
We denote by l(v) the length of u’s identifier in bits, i.e., l(u) = �log2(id(u))�.
The neighborhood N (u) of u is the set {u}∪{v : (u, v) ∈ E}. In a similar fashion,
the d-neighborhood N (u, d) of a node u contains all nodes with a distance of at
most d to u, e.g., N (u, 1) = N (u).

Beeping Model. We consider one of the most basic communication models, the
synchronous beeping model: All nodes start synchronized1 in round 0, and com-
munication between nodes proceeds in synchronous rounds, where messages are
transmitted via the edges of the network. In every round, each node may choose
to either beep or listen to incoming messages. If a node v beeps, the beep will
be transmitted to all nodes in N (v). Otherwise, if v listens, then the message
received by v in a round is defined as follows: (i) if no node in N (v) beeps, then
v receives a 0 (silence), and (ii) if one or more nodes in N (v) beeps, then v
receives a 1 (beep).

Uniform Algorithms. We only consider uniform algorithms. That is, unless men-
tioned otherwise, the input for a node v consists of only id(v) (but not the value
of γ). Note that neither n, nor D, nor any upper bounds on those network pa-
rameters, can be inferred from the value id(v) (or l(v)) of a single node v. Nodes
also do not have any knowledge about the network topology, e.g., the IDs of
their neighbors, or even their own degree. Moreover, we require that in every
network the algorithm reaches a quiescent state, i.e., a state in which no node
transmits beeps anymore.

3 Convincing Your Neighbors

In this section, we give an algorithm called Campaigning that can be compared
to a political campaign at a word of mouth level. Everyone is convinced that

1 In Section 6 we also handle the case in which only a subset of the nodes wakes up.
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either she herself is a good candidate, or that she knows the name of a good
candidate. If you know a better candidate than all of your neighbors and their
neighbors, you will try to convince your direct neighbors. However, if they are
aware that a better candidate is out there — they will ignore your conversion
attempts. Some candidates might reach a good deal of local followers, but only
a globally best candidate can guarantee to spread her sphere of influence all the
time.

The algorithm Campaigning can be seen as one iteration of this process, where
nodes exchange information only with their local neighborhood. The general idea
is that afterD iterations are performed, “There can be only one!”2, and all nodes
will be convinced of the same leader. Hence, the candidates of the different nodes
do not have to be unique, e.g., the algorithm works with just one candidate for
all nodes or n different candidates.

We have to reach a state where nodes can transmit information to their neigh-
bors, without other nodes disturbing them, since beeps do not encode relevant
further information. Particular challenges arise from the facts that the algorithm
has to be uniform, i.e., that n is not known, and that we are confined to the
restricted beeping model. E.g., one cannot just “beep the identifier” and then
proceed with another part of the algorithm, since any receiving node will hear
all its neighbors – and cannot distinguish if all sent a beep or just one.

The main idea is to first reach local consensus on the longest identifier, then
to agree locally on the highest identifier, and finally, to let those with the locally
highest identifier transmit their identifier to their neighbors. To reach a state of
local consensus, we turn some nodes into buffer-nodes that no longer participate.
Therefore, we divide our algorithm into three separate procedures campaign

longest id, campaign highest id, and campaign transmit id.
We first give an overview of the three procedures in Subsection 3.1, followed

by a detailed mode of operations for Campaigning in Subsection 3.2. The full
version also contains a pseudo code description of our algorithm. We conclude
by stating correctness and run time results in Subsection 3.3.

3.1 Overview of the Procedures

Every node v gets as input an id, referred to as campaigning-identifier, that is
stored in v’s variable idin. Also, all nodes start in an active role, but can change
to be passive or inactive during the algorithm. Active nodes might convince their
neighbors at the end and passive nodes might receive a new candidate, but it
can be necessary to turn nodes inactive to let them act as local separators.

After the first procedure, campaign longest id, exactly those nodes v with
the longest idin in their 2-neighborhood are still active. If a node v is not active,
but has an active neighbor w, then v turns passive, since it is interested in the
campaigning-identifier of w. Nodes not fulfilling either of these requirements turn
inactive. Furthermore, to separate clusters of active nodes with campaigning-
identifiers of different length, the procedure creates buffers of inactive nodes

2 Connor MacLeod, 1985. In Highlander.
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between them. Thus, inside a cluster, all active campaigning-identifiers are of
equal length, allowing each cluster to agree on a common starting time for the
following procedure.

The second procedure campaign highest id mimics the first procedure, but
now for the highest instead of the longest identifier. After campaign highest id,
exactly those nodes v with the highest idin in their 2-neighborhood remain active.
The buffer of inactive nodes is extended to separate active nodes with different
campaigning-identifiers. Hence, in the third procedure campaign transmit id,
all still active nodes can convince their passive neighbors unhindered.

3.2 Details of the Algorithm

In this subsection, we describe the algorithm Campaigning and each of its three
procedures for a node v ∈ V . We describe the algorithm from the perspective of
a single node v. The input campaigning-identifier for v is stored in idin, and the
length of idin in bits is stored in the variable lin. Furthermore, v initializes the
variables role← active, lout ← lin, and idout ← idin. Then, the node v executes
campaign longest id, campaign highest id, campaign transmit id, and the
output of node v is idout. Should a node become inactive at any time, i.e.,
if role = inactive, then the algorithm immediately terminates and the value
currently stored in idout is returned as v’s output.

Each procedure consist of phases, which are divided into three rounds each.
For ease of notation, we call the rounds in one phase slots, i.e., slot 0, slot 1,
and slot 2. Conceptually, the first two slots 0 and 1 of each phase are used to
transmit data, while slot 2 will exclusively be used for notification signals from
active nodes. Recall that v hears a beep only if some node u ∈ N (v), u �= v
transmits a beep, i.e., v does not hear beeps of itself.

campaign longest id. The length of campaign longest id may vary; at the
end of the procedure, node v stores the number of elapsed phases in lout if at
the end of the procedure v is active or passive. Node v starts by beeping in slots
0 and 1 for the first lin − 1 phases. Then, v listens in slot 0, and beeps received
in slot 0 are relayed in slot 1. If v relays at least one beep, it turns passive.
Should a beep be heard in the next slot 2, the node v turns inactive. Otherwise,
already in phase lin there was no beep to relay. In that case, if a (relayed) beep
is received in slot 1, then v turns inactive. Else v beeps in slot 2 of that phase
and finishes the procedure as active. Should after phase lin a beep be heard in
slot 1, the passive relaying node v turns inactive as well. Should there be a phase
where the passive node v hears no beeps in slot 0,1, it either i) turns inactive
if no beep is heard in slot 2, or ii) finishes the procedure as passive if a beep is
heard in slot 2.

campaign highest id. This procedure consists of lout phases, and we denote
the current phase of node v by p.

If v is passive at the beginning of phase p, then beeps heard in slot 0 are
relayed in slot 1. Should no beep be heard in slot 0, but a beep is heard in slot
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1, v turns inactive. Also, if no beep is heard in slot 2 of phase lout(v), then v
turns inactive.

We denote by the positions 1, . . . , lin the bits of idin, starting from the most
significant bit. If v is active at the beginning of phase p, then v beeps in slots 0
and 1 if position p in idin is a 1 bit. Else, when a beep is heard in slot 0 or 1,
v turns passive. If the current phase is lout and v is still active, then v beeps in
slot 2.

campaign transmit id. Much like campaign highest id, this procedure con-
sists of lout phases. An active node v uses the lout phases to transmit the lout
bits of idin, whereas passive nodes store the lout received bits in idout.

3.3 Convincing via Campaigning

We can now state some important properties of the algorithm Campaigning,
which will be used in the next sections to prove our main result. For formal
proofs please refer to the full version of this paper; here we restrict ourselves
to presenting the necessary key ideas. We begin with the following correctness
lemma, which essentially states that nodes may only adopt identifiers from their
neighborhood, i.e., identifiers spread only locally and no new identifiers are cre-
ated.

Lemma 1 Let v be a node that just finished algorithm Campaigning(idin(v)).
Then idout(v) ≤ maxw∈N (v,1) idin(w) and ∃x ∈ N (v, 1) s.t. idout(v) = idin(x).

The proof to Theorem 1 consists of a careful case distinction based on the
node’s role in the Campaigning algorithm. In Theorem 2, we show that the
influence of a potential leader will spread one hop per round. This is crucial for
the whole leader election process, since it will be extended later on to show that
D executions of the algorithm suffice to convince all nodes of the leader.

Theorem 2. Execute algorithm Campaigning(idin(v)) for ∀v ∈ V . Let v′ ∈ V
be a node with idin(v

′) = maxw∈N (v′,3) idin(w). Then for all nodes u ∈ N (v′, 1)
holds: idout(u) = idin(v

′).

The above theorem is established by observing that a node v with a locally
highest campaigning-identifier (i.e., the highest idin in N (v, 3)) remains active,
its neighbors do not turn inactive, and thus the campaigning-identifier is prop-
agated one hop. Finally, Theorem 3 states that the run time of Campaigning

depends only on the largest campaigning-identifier length in the 1-neighborhood.

Theorem 3. Execute algorithm Campaigning(idin(v)) for ∀v ∈ V . The run
time for each node v is O(maxw∈N (v,1) lin(w)) rounds.

This is true since the maximum run time of a node is completely determined
after campaign longest id has finished. Recall that all identifiers are at most
in O(nγ), and hence the run time is bounded by O(log n) rounds. Since Lemma
1 ensures that no new identifiers are created in the network, we obtain the
following corollary.
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Corollary 4. Let maxv∈V lin(v) ∈ O(log n). It holds that the run time of algo-
rithm Campaigning(idin(v)) is O(log n) rounds for ∀v ∈ V .

4 Convincing Your Network

We would like to apply the campaigning method presented in the previous sec-
tion to propagate the highest ID further. In other words, we need to execute
Campaigning multiple times in succession. This task would be easy if there was
some kind of global synchronization in order to guarantee that all nodes can start
the next invocation of the campaigning algorithm at the same time. However,
since the node labels have different lengths, so does each campaign. To overcome
this obstacle, we design a generic approach to sequentially execute arbitrarily
many algorithms in the beeping model. The key ingredient in our approach is
the following balanced counter technique.

4.1 Balanced Counters

We present a method that enables the network to manage a balanced counter for
every node u. At every node u, our balanced counter technique stores an integer
value denoted by counter. To manipulate counter the two methods increment
and reset, which instruct the counter to increment its value by one or reset it
to zero, respectively, are provided. Our goal is to satisfy the following balancing
property: For any two neighboring nodes u, v participating, i.e., not currently
resetting their counters, the counter values of u and v shall differ by at most 1.

Note that transmitting the whole counter value in every round is not feasible
due to the limited nature of the communication means the nodes have at their
disposal. However, it turns out that transmitting the counter value modulo 3
suffices to ensure the balancing property. The transmission technique we use
requires three reserved rounds, and allows a node to determine whether their
neighbors have a lower counter value than themselves. The idea is now that
nodes refrain from incrementing the counter as long as there are neighbors that
are still behind.

We describe the balanced counter technique from the perspective of some
node u using a state machine. Each node may be in one of the following states:
Count, Reset-Notify, or Reset-Wait, and we denote u’s current state by
state. If state = Count, then u is considered to be a participating node, and
either increment or reset may be invoked at u. In the other two states those
operations are not available to u. The only allowed state transitions for node u
are
1. Count → Reset-Notify if no node v ∈ N (u) is in Reset-Wait,
2. Reset-Notify → Reset-Wait if no node v ∈ N(u) is in Count, and
3. Reset-Wait → Count if no node v ∈ N(u) is in Reset-Notify.
Communication of the balanced counter technique is subdivided into phases in-
dexed by the positive integers. Each individual phase consists of 6 rounds; to
avoid confusion we use the term slot to refer to the individual rounds within
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a phase. The role of the first three slots (0, 1, 2) is to transmit the counter in-
crements, whereas the last three slots (3, 4, 5) are used to transmit the node’s
current state. We now give a detailed description of the balanced counter tech-
nique; the full version also includes a pseudo-code description.

Initially, the state of u is Count, and counter = 0. In each phase, the oper-
ation at node u is as follows:
1. If state = Count, then u beeps in slot counter (mod 3) and in slot 3;
2. If state = Reset-Notify, then u beeps in slot 4; and
3. If state = Reset-Wait, then u beeps in slot counter (mod 3) and in slot 5.
Node u listens in all slots in which it does not beep.

Increment. The purpose of this operation is to increment counter by one with-
out violating the balancing property. When increment is invoked at node u,
then u waits for the first phase in which no beep is received in slot counter − 1
(mod 3) (note that u never transmits in slot counter − 1 (mod 3)). Node v in-
crements counter by 1 at the end of that phase and returns from the increment
operation.

Reset. The purpose of this operation is to reset node u’s value of counter
to zero in accord with neighboring nodes v ∈ N(u), while allowing nodes v
to proceed participating before invoking reset themselves. Specifically, when
reset is invoked at node u, then u successively transitions (1) from Count

to Reset-Notify, thereby setting counter ← 0, (2) from Reset-Notify to
Reset-Wait, and eventually (3) from Reset-Wait back to Count. In this
process u respects the aforementioned restrictions for state transitions, utilizing
the transmissions in slots 3 to 5. In particular, the aforementioned transition (i),
1 ≤ i ≤ 3, is consummated in the first phase in which no beep is received in slot
2 + i.

An inductive argument can be used to establish the following lemma; a formal
proof is presented in the full version of this paper.

Lemma 5 The balanced counter technique satisfies the balancing property.

4.2 Balanced Executions

Consider two algorithmsA and B that shall be simulated sequentially. To achieve
our goal, we intend to simulate the execution of A and B in the network. In A’s
simulation, the balanced counter is used as a round counter. Since the round
counter satisfies the balancing property, it is ensured that the simulations per-
formed by neighboring nodes progress at the same rate. When at some node u
the simulation of A terminates, the round counter is reset by u. Node u then
waits until its round counter returns to the Count state and thereupon starts
the simulation of B.

One needs to ensure that when round r ofA (or B) is simulated at node u, then
u can determine whether one of its neighbors transmitted a beep in round r− 1
of the simulation. To that end, we extend each phase of the counter technique by



Deterministic Leader Election in Multi-hop Beeping Networks 221

three additional slots and reserve the first 6 slots (0–5) for the balanced counter
technique. Consider a phase p and a node u currently simulating algorithm A,
and denote by r the counter value for node u at the beginning of phase p. The
three new slots (6–8) are used to transmit and receive the beeps emitted during
the simulation as follows.

Assuming that A did not terminate in round r − 1, the goal in phase p is
to simulate A’s round r. Node u simulates round r of algorithm A utilizing
slot r (mod 3) + 6 to replace A’s access to the communication channel, where
beeps received in slot (r− 1 (mod 3)+ 6) replace the beeps received by v in the
simulation if node u listened in round r−1 of A. Moreover, in slot r−1 (mod 3),
node u re-transmits a beep if u beeped in the last simulated round r − 1 under
A. If u incremented the counter to the value r in the current phase, i.e., the
counter progressed from r − 1 to r, then v invokes increment again. Note that
increment may delay incrementing r for several phases; in that case, the same
round r of A is simulated in phase p multiple times, and if the beeps received in
slot r − 1 change, then so does the simulated execution of A’s round r.

Otherwise, if A terminated its execution in the previous round r− 1, the goal
is to safely start the simulation of the next algorithm B at node u. To that end,
node u invokes the reset operation. However, the simulated execution of the
next algorithm B (possibly using u’s output of A as input) only starts once u
continues participating in the balanced counter, i.e., when state = Count.

In the full paper we explain how to exploit the balanced counter property to
obtain the following correctness lemma. It essentially states that the balanced
execution technique behaves as if global synchronization was used to start the
algorithms one after the other.

Lemma 6 Let A = (A1, . . . ,Ak) be a finite sequence of algorithms. Denote, for
every v ∈ V , by ô1(v) the output produced at v by A1 when executed on G. For
i > 1 and for every v ∈ V , denote by ôi(v) the output produced at v by Ai when
executed on G, where the input to every u ∈ V for Ai is specified as ôi−1(u).

It holds that for every node v, the output o(v) produced at v when using the
balanced execution technique for A is o(v) = ôk(v).

4.3 Leader Election through Campaigning

We now have the tools available to design a non-quiescent leader election al-
gorithm. Utilizing the balanced execution technique, every node executes the
Campaigning algorithm sequentially, again and again. For every node u, the
input to the first invocation of Campaigning is id(u), and the input to every
following invocation of Campaigning is the output of the previous one. In the
following we refer to this basic protocol as the Restless-LE (for leader election)
algorithm. It is immediate from the design of Restless-LE, that the network
will never reach a quiescent state — for instance, the balanced counter technique
never ceases to transmit. The following lemma states that Restless-LE obtains
the desired result after at most D invocations of Campaigning.
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Lemma 7 If the network G executes Restless-LE, then for every node u ∈ V ,
the output produced at u by the D-th invocation of Campaigning is maxv∈V id(v).

Utilizing the balanced execution technique, Theorem 7 can be obtained by
inductively applying Theorems 1 and 2 for D times. Simulating D invocations
of Campaigning takes O(D log n) rounds, as is stated in Theorem 8. The proofs
to both Theorems 7 and 8 appear in the full version.

Theorem 8. If the network G executes Restless-LE, then for every node u ∈
V , the D-th invocation of Campaigning terminates after O(D logn) rounds.

Note that the network never reaches quiescence since the balanced counter
technique continues to beep even after the D-th invocation of Campaigning has
terminated. Moreover, without knowledge of D, node u has no means to decide
when sufficiently many campaigns have been run.

5 Terminating and Achieving Quiescence

It seems that in the previous section we robbed Peter to pay Paul: We obtained
Restless-LE which finds a leader in time O(D logn), but now our algorithm
does not achieve quiescence, nor does a node know when to terminate. These
two flaws could be considered a major drawback if one wishes to use the leader
election algorithm as a foundation for another algorithm, since it is unclear when
the latter can be started. To overcome this obstacle we implement an overlay
network protocol that executes concurrently to the Campaigning invocations.
The overlay network we establish on top of the original communication graph
resembles the layers of an onion with the elected leader at its core. Utilizing
the overlay network, we then describe how candidates detect whether the leader
election process has terminated. Causing all non-elected nodes to terminate is
now achieved by sending a broadcast message.

In order to form the overlay network, each node u keeps track of one additional
variable depth taking values from the set {0, 1, 2}, initially set to 0. We say that a
path p = (u1, . . . , uk), (ui−1, ui) ∈ E for 2 ≤ i ≤ k, is a downward overlay path if
for all i ≥ 2 it holds that depth(ui) = depth(ui−1)+1 (mod 3), and we denote the
length k of a path p by length(p). Conversely, we say that p is an upward overlay
path if p reversed is a downward overlay path. One can think of downward overlay
paths as leading away from the network’s core, whereas upward overlay paths
lead towards it. Note that initially, all overlay paths consist of only a single node.
The general idea is to relay beeps along upward and downward overlay paths.
Before extending the Restless-LE algorithm to utilize the overlay network, thus
obtaining the quiescent terminating leader election algorithm Quiescent-LE in
Section 5.1, we describe the operation of our overlay network technique in more
detail. Note that in the full version of this paper we include a pseudo-code
representation of the overlay network technique.

Every round r of the leader election algorithm is replaced by phases consisting
of 10 slots, one single slot and three triplets of slots. The single slot is reserved to
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execute the non-terminating leader election algorithm we obtained in Section 4.3.
For clarity, we refer to the first slot triplet as control slots, to the second triplet
as up channel slots, and to the last triplet as down channel slots. The control
slots, up channel slots, and down channel slots are numbered from 0 to 2 (e.g.,
up channel slot 2 is the last slot in the second triplet of slots in a phase). While
the role of the control slots is to establish the overlay network, the up and down
channel slots are used to transmit beeps to nodes with smaller and higher depth,
respectively.

More specifically, in every phase p, node u listens in the up channel depth− 1
(mod 3) and in the down channel depth+1 (mod 3). If a beep is received in one
of those slots, then in the following phase p+1, u beeps in the up channel depth
or in the down channel depth, correspondingly. The overlay network further
provides the two operations beep depth and join, which are implemented as
follows. When beep depth is invoked by node u, then u transmits a beep in
control slot depth. The corresponding join operation causes u to listen in the
three control slots; node u then sets depth← i+1 (mod 3), where i denotes the
index of the first control slot in which a beep was received, thereby joining the
overlay network of one of its neighbors that invoked beep depth.

5.1 Quiescent Leader Election

In this section, we describe the Quiescent-LE algorithm that utilizes the overlay
network technique in conjunction with the Restless-LE algorithm. Formation
of the overlay network is tightly coupled with Restless-LE and the invocations
of Campaigning therein. Namely, whenever an invocation of Campaigning at
node u returns a new ID x, node u joins the overlay network of a neighbor that
transmitted x to u. Nodes that are currently being convinced of a new leader
emit a signal into the upward channel of neighboring nodes, thus ensuring that
no candidate terminates unless a consensus on the leader’s ID has been reached.

In particular, for a node u in phase p, denote by σ the state in which the
last Campaigning invocation that terminated for node u was upon termination.
Denote further by last role, last in, and last out the values of the corresponding
variables role, idin and idout in σ. In phase p a node u is called a candidate if
last in = id(u), and we say that node c is the candidate of u if last in = id(c).
The idea is now to utilize the overlay network so that nodes may join the overlay
network of their corresponding candidate. This is accomplished by setting the
depth variable accordingly whenever the value of last out changes.

In Quiescent-LE, the operation of node u is as follows (please refer to the
full version for a pseudo-code description). If last role = active, then u invokes
beep depth, thus allowing nodes v ∈ N (u) to set their depth. Correspondingly,
u invokes join if its candidate has changed (i.e., if last role = passive), in order
to assign a new value to its depth variable. In any case, if last role �= active, then
node u beeps in all three up channel slots in contrast to the normal up channel
operation. A candidate that has not received a beep through the up channel for
18 consecutive rounds emits a signal in the down channel, thus instructing nodes
to terminate.
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Theorem 9. The uniform algorithm Quiescent-LE terminates after O(D logn)
rounds at every node. Every node returns the same output maxv∈V id(v).

The proof to our main result, namely, the above Theorem 9, is based on the
concept of coalitions that form around potential leader nodes. All nodes inside a
coalition share the same potential leader and form an onion layer network with
the potential leader at its core. Eventually, the coalition Z corresponding to the
highest identifier z overrules every other. In particular, coalition Z extends its
borders by one step in every Campaigning invocation. This is crucial in order
to ensure proper formation of the onion layer network, which in turn guarantees
that the leader node (with identifier z) can safely issue the terminating signal.
We refer to the full version of this paper for an extensive proof.

6 Synchronized Wake-Up Protocol

Note that one may also study a variant of the beeping model (see, e.g., [11]) in
which only a subset S ⊆ V of the nodes wakes up in round 0. Nodes in V \ S
are initially asleep, and wake up only if they receive a beep from one of their
neighbors. In particular, such a node is no longer considered asleep. We briefly
discuss how our algorithm can be extended to include a wake-up protocol.

Every original slot in a phase of Quiescent-LE is replaced by two slots, where
the first slot takes the role of the corresponding original slot, and in the second
slot a node is always silent. Additionally, the phase is preceded by another two
slots, referred to as wake-up slots. Consider an asleep node u. As soon as u
receives a beep, it enters an intermediate snooze state, and if u receives a beep
in the next round as well, then it turns awake. Otherwise, snoozing nodes turn
awake after receiving two beeps consecutively. A node that just turned awake
enters the protocol after the wake-up slots, thus aligning its execution with awake
neighbors. That is, the first round in which u participates corresponds to the
first original slot of Quiescent-LE. Note that in particular, due to the balanced
execution technique, node u postpones the progress of awake neighboring nodes.
Lastly, a node u that is awake beeps in both wake-up slots whenever u starts a
phase of Quiescent-LE that coincides with the beginning of a balanced execution
phase, and remains silent in the wake-up slots otherwise.

7 Conclusion

We described a deterministic uniform leader election algorithm in the beeping
model that achieves quiescence after O(D logn) rounds. There are three main
ingredients to our algorithm:

1. A Campaigning algorithm that propagates the locally highest identifier one
hop per invocation.

2. A technique to sequentially execute arbitrarily many algorithms in the beep-
ing model, based on a simple balanced counter approach.

3. An overlay network, based on the onion layer principle.
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Our algorithm is obtained by using the sequential execution technique (2.)
to execute the Campaigning method (1.) multiple times, one after the other.
In its first invocation, the algorithm essentially creates a 2-hop independent set
containing at least one node. The independent nodes are potential leaders and
transmit their identifier to their neighbors. In subsequent invocations, potential
leaders correspond to clusters of nodes with the same campaigning-identifier.
When clusters touch, the cluster C having the larger campaigning-identifier wins,
and the neighboring clusters shrink as bordering nodes join C. This yields a non-
quiescent uniform algorithm Restless-LE for leader election, where the leader
is not informed about her successful election.

If the diameter D was known to all nodes, then termination could be achieved
by stopping after the Dth invocation of Campaigning. However, we want our
algorithm to be uniform. We create an onion layer overlay network (3.) in order
to achieve uniformity and quiescence. Potential leaders form the core of an onion,
and nodes in a cluster are layered according to their distance to the core. Since
the cluster of the eventual leader grows in each step, eventually all nodes will be
part of a single cluster. The onion layer principle can now be used to establish a
communication channel from outer layers towards the core and vice versa. When
the cluster stops growing, the leader is informed about her successful election,
in turn allowing her to issue a termination signal to all nodes. Lastly, we explain
how the algorithm can be extended to handle the synchronous wake-up situation
described in [11].
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Abstract. Sybil attacks occur when malicious users create multiple fake
identities to gain an advantage over honest users.Wireless ad hoc networks
are particularly vulnerable to these attacks because the participants are
not known in advance, and they use an open and shared communication
medium. In this paper, we develop algorithms that thwart sybil attacks in
multi-channel wireless ad hoc networks using radio resource testing strate-
gies. In particular, we describe and analyze new anti-sybil algorithms that
guarantee, with high probability, that each honest device accepts a set of
trusted and unforgeable identities that include all other honest devices and
a bounded number of fake (sybil) identities. The proposed algorithms pro-
vide trade-offs between time complexity and sybil bounds. We also note
that these algorithms solve, as subroutines, two problems of independent
interest in this anonymous wireless setting: Byzantine consensus and net-
work size estimation.

1 Introduction

Imagine the following scenario: A group of independent wireless devices is ac-
tivated in a single hop wireless network. Some of them are honest while others
are malicious. The honest devices are provided with no information regarding
the size of the network or the identities of the other devices. The goal is to solve
some standard distributed computing problem; e.g., the honest devices may need
to reach agreement, vote on a proposal, simulate a shared object, or establish a
fair schedule to share a limited resource.

Intuitively, this anonymous wireless network scenario seems hopeless. Honest
devices are provided with no advance information on network size or participants,
and there is no obvious way to distinguish honest from malicious devices. Thus,
malicious devices can commence a sybil attack [8] in which they create many
fake identities (also called sybil identities, or sybils) to bias a given distributed
algorithm. For example, when running a consensus algorithm that depends on

� This research is supported by MOE2011-T2-2-042 “Fault-tolerant Communication
Complexity in Wireless Networks” from the Singapore MOE AcRF-2, by NSF grant
CCF 1320279, and by the Ford Motor Company University Research Program.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 227–242, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



228 S. Gilbert, C. Newport, and C. Zheng

a majority vote, the malicious devices could create enough sybil identities to
ensure they control a majority of voters.

This paper proves–perhaps surprisingly–that this scenario is not hopeless. We
describe and analyze new algorithms that allow honest devices to constrain the
number of sybil identities to an asymptotically optimal limit. Our results an-
swer open questions regarding sybil resistance in ad hoc networks and provide
a general foundation for establishing trusted computing in the increasingly un-
trustworthy world of wireless networking.

Radio Resource Testing. Thwarting a sybil attack typically relies on some com-
bination of additional external information (see, e.g., [22, 23]), computational
resource tests (see, e.g., [2, 9, 15]), and/or radio resource tests (see, e.g., [12, 13,
16–19]). In this paper, we adopt the radio resource testing approach. In partic-
ular, we leverage two assumptions: (a) each malicious device has a single radio
which can only tune into a single channel at a time; and (b) the total number of
real malicious devices, t, is less than c, the total number of available channels.
The first assumption derives from the idea that the adversary has the same hard-
ware available as the honest devices (and, notably, hardware similar to standard
wireless devices today). The second assumption is unavoidable: when dealing
with wireless communication, if the malicious users can send and receive over
all channels of the relevant spectrum band simultaneously, then they can jam
on every channels, preventing all communication; in this case, most non-trivial
problems become impossible to solve.

Given these assumptions, devices can test potential identities by requiring
them to participate on certain channels at certain times. Because malicious de-
vices are limited in the number of channels they can use concurrently, if these
tests are constructed carefully, they can limit the number of identities each ma-
licious device can convincingly maintain.

The networking community recognizes this radio resource testing approach as
practical, as most real world wireless devices have access to many more channels
than they can use simultaneously, and it does not require additional informa-
tion or detailed assumptions on computational capabilities. Typically, however,
existing anti-sybil protocols that use radio resource tests either: (a) rely on a
central trusted base station (e.g., [12]); (b) combine radio resource testing with
other resource constraints or outside information (e.g., [18]); or (c) require time
complexity that grows with the number of sybil identities (e.g., [19]), allowing
the malicious devices to potentially swamp the system with never-ending tests.
In this paper, by contrast, we present fully distributed algorithms that reduce
the number of sybils to an asymptotically optimal limit, without a centralized
base station, using only radio resource tests, and with provable time complexity
guarantees that are expressed with respect to the actual number of devices.

Results. We consider a single hop wireless network consisting of c > 1 chan-
nels. We divide time into synchronous slots and assume that the n devices (or
nodes) are activated simultaneously. At most t ≤ min{n, c}/α of these devices
are malicious, where α ≥ 1 is a sufficiently large constant. Honest devices do not
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know n or t in advance. We assume standard collision rules: if multiple devices
send on the same channel during the same slot, the messages are lost due to
a collision, which can be detected at the receivers’ end. Collisions further com-
plicate our task as: (a) malicious devices can intentionally jam; and (b) honest
devices must deal with contention resolution even without knowledge of the net-
work size. We also assume the availability of standard asymmetric cryptographic
primitives. This allows devices to generate unique public/private key pairs and
use their public keys as identities. Because devices can sign their messages with
their private keys, these identities are unforgeable. The challenge in our setting,
therefore, is to prevent the malicious devices from creating too many sybil iden-
tities. The algorithms described below are randomized and their guarantees hold
with high probability (i.e., with probability at least 1− 1/nβ for any β ≥ 1).

We begin by describing and analyzing a basic algorithm named SimpleSy-

bilSieve. This algorithm terminates in O(n lg2 n·max{1, n/c}) time. It provides
each honest node with a set of unforgeable identities that includes all other hon-
est nodes and no more than O(t ·max{1, n/c}) sybil identities. Notice, when c
is larger than n, the time complexity is O(n lg2 n) and the number of sybil iden-
tities is bounded at an (asymptotically) optimal O(t).1 On the other extreme,
when c is small compared to n, the time complexity grows to O(n2 lg2 n) and
the sybil bound grows to O(n). In settings where c is large or O(n) sybils is
tolerable, this basic algorithm is sufficient. On the other hand, in many settings,
such as large networks, it might be preferable to obtain an optimal O(t) bound
on the number of sybils, even when c < n.

Motivated by this goal, we next present an augmented algorithm that we call
SybilSieve. This algorithm offers the same bound on the number of sybils as
the basic algorithm, but is a factor of n slower. In exchange for this extra time,
however, the algorithm provides two new strong guarantees: (a) all honest nodes
terminate simultaneously (hence providing barrier synchronization); and (b) all
honest nodes agree on the same estimate of n that is within a constant factor of
the actual count.

We conclude by introducing our final (and strongest) algorithm which we call
SybilSieve

2. This algorithm builds on the useful guarantees of SybilSieve

to reduce the number of sybil identities to an optimal O(t), even for c < n.
Similar to SybilSieve, it also runs in O(n2 lg2 n · max{1, n/c}) time. Notice,
these three algorithms provide users with trade-offs between time complexity
and sybil resistance.

Lastly, we note that as a subcomponent of SybilSieve
2, we develop an al-

gorithm for solving Monte Carlo Byzantine consensus2 in a sybil-prone environ-
ment. Both this consensus subroutine, and the synchronization and network size
estimation implemented by SybilSieve, may be of independent interest, as they
simplify the bootstrapping of more advanced protocols in this setting.

1 O(t) sybil identities is clearly asymptotically optimal as the malicious nodes could
behave honestly.

2 The consensus protocol maintains its safety properties with high probability, but not
with probability one.
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2 Related Work

Sybil Attacks. The term “sybil attack” was coined by Douceur [8] in the context
of peer-to-peer systems. As previously mentioned, one classical defense against
sybil attacks is resource testing: each client must prove that it has a sufficient
quantity of some resource; as long as each user, both honest and malicious, has
approximately the same quantity of that resource, we can use resource testing to
thwart sybil attacks. Cryptographic puzzles (e.g., brute force decryption, invert
hash function) [2,9,15] are a standard example of computational resource tests.

In wireless networks, radio resource testing is a natural approach, and several
variants have been explored in [17, 19]. Recently, by combining radio resource
tests with other resource testing techniques, Mónica [18] succeeds in accom-
plishing the seemingly impossible: providing an algorithm that can be used to
construct sybil-free quorums in ad hoc wireless networks. Nevertheless, their
approach relies on multiple resource restrictions (both computational and ra-
dio), and makes several limiting assumptions (e.g., knowledge of network size
and sender-side collision detection). Another recent approach for repelling sybil
attacks is developed by Klonowski et al. [16]. Their approach only requires sim-
ple cryptographic tools (mostly one-way functions and pseudorandom number
generators), and works in single channel environment. However, the proposed
algorithm needs prior knowledge of network size, and requires running time that
is proportional to the number of sybil identities created.

We have previously explored the idea of radio resource testing in the context
of wireless devices downloading data from a centralized base station [12]. The
resulting SybilCast protocol showed how a centralized base station can con-
tinuously test for sybil identities while at the same time servicing data requests.
In this paper, there is no longer any fixed base station, hence we develop a novel
uncoordinated, distributed implementation of radio resource tests which is at the
heart of the SimpleSybilSieve protocol. In [12], we study the on-going process
of nodes downloading data from the base station, and hence, we allow devices
to enter the network at different times. In this paper, by contrast, we focus on
solving one-shot distributed computing problems, and we therefore assume that
devices begin the protocol simultaneously.

Aside from resource testing, other approaches to coping with sybil attacks ex-
ist as well. Pre-distributing credentials or signed certificates is perhaps the sim-
plest approach (e.g., see the survey in [14, 19]). Researchers have also leveraged
radio fingerprinting techniques (e.g., using signal strength patterns to uniquely
identify radios) to detect fake identities (e.g., see [7,20]). Another notable alter-
native relies on relationships among users in social networks (e.g., see [22, 23]).

Consensus. Consensus is a fundamental problem in distributed computing (see
e.g., [3]). Ad hoc and anonymous networks are a particularly challenging en-
vironment in which to achieve consensus, and there exist several papers that
attempt to address it [1, 4, 5, 10]. Unfortunately, these papers do not consider
sybil attacks. Recently, work by Golebiewski et al. [13] shows how to achieve
fair leader election in spite of sybil attacks. Their approach is similar to [16],
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discussed earlier, and can potentially be used to solve consensus. (Note, though,
that they assume knowledge of the network size.) In this paper, we solve (as sub-
routine) Monte Carlo Byzantine consensus in unknown and anonymous wireless
ad hoc networks.

3 Model and Problem

We assume a single hop wireless network (i.e., a complete network) consisting
of n devices (called nodes in the following) and c > 1 communication channels.
To simplify calculations, we assume c is a power of 2. (If not, we can round
down.) We divide time into synchronous slots and assume all nodes start in
the same slot. In each slot, each node can participate on one of the c available
channels. It can then decide to send or receive. We assume a sending node
cannot receive, and vice versa (i.e., the channel is half-duplex). When a single
node u sends on a channel k during a slot r, all nodes receiving on channel k
during slot r receive u’s message. If multiple nodes send on channel k during slot
r, then all nodes receiving on channel k detect a collision. Finally, we assume
nodes have access to standard asymmetric cryptography primitives; i.e., they
can generate public/private key pairs and use them to encrypt/decrypt, and
sign/verify messages. We assume nodes cannot break the cryptographic system.

Adversary model. We allow some nodes to suffer Byzantine failure. In particular,
a faulty node can: (a) try to create sybil identities; (b) cause collisions (i.e.,
jam) on a channel by broadcasting noise; and/or (c) try to spoof messages (i.e.,
pretend to be some other real honest nodes). Notice, honest nodes that detect a
collision cannot tell if it originates from jamming or multiple messages being sent
concurrently. We assume a bound t on the maximum number of faulty nodes.
More specifically, the algorithms we consider require that t ≤ min{n, c}/α, for
a constant α ≥ 1. We assume that honest nodes do not know n or t, but they
know c and α. The faulty nodes, on the other hand, are aware of all parameters.
We also allow the faulty nodes to collude, and adapt to past execution history.
Therefore, we sometimes refer to them collectively as a single adaptive malicious
entity named Eve that can use up to t channels per slot.

Problem statement. The goal of our sybil-thwarting algorithm is for each honest
node to construct a set of trusted and unforgeable identities that includes: (a)
a unique identity for each honest node, and (b) a bounded number of sybil
identities. We assume that each honest node generates a unique public/private
key pair at the beginning of an execution and uses its public key as its identity.
Each node can subsequently sign its messages with its private key, confirming the
identity of their sender (so that malicious nodes cannot spoof messages on behalf
of an honest node). The challenge, therefore, is to minimize the number of sybil
identities accepted by honest nodes, while simultaneously trying to minimize
the time complexity. In this paper, we study randomized algorithms and require
that their guarantees hold with high probability (w.h.p.).
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4 The SimpleSybilSieve Algorithm

We begin by presenting the SimpleSybilSieve algorithm which introduces our
core strategies for defeating sybil attacks. Notice, throughout this section, we
assume α ≥ 6; and throughout the paper, we use δ to denote a small constant.

4.1 Protocol Description

The first issue that needs to be resolved is the unknown number of nodes, and
we estimate it in the usual manner: the protocol proceeds in epochs, where in
epoch i, we assume there are ni = 2i nodes in total. In addition, in epoch i, we
use ni/2 channels; if c < ni/2, then we simulate the ni/2 needed channels using
ni/(2c) slots for each “round” of the protocol.

At a high level, nodes have two tasks during each epoch: (a) check whether the
current estimation of n is accurate; and (b) if the estimation is (roughly) correct,
use the results of uncoordinated radio resource tests to spot honest identities
and eliminate sybils. To achieve these goals, in each round, each honest node
will broadcast or listen–each with probability 1/2–on a random channel that is
chosen from [1, ni/2].

Honest nodes count the number of silent rounds in each epoch to determine
the accuracy of the current estimation. If the estimate is too small, there is
nothing Eve can do to make it look correct, as the honest nodes alone generate
enough contention on each channel to prevent too many silent rounds. Once the
estimate is correct, by contrast, Eve cannot make the good estimate look bad,
because she can only jam a limited number of channels simultaneously.

Once an honest node believes the current estimate is correct, it will re-examine
the messages it has received during the current epoch to determine which iden-
tities to accept. More specifically, an honest node accepts an identity if it has
heard that identity sufficiently many times in the current epoch. Since the num-
ber of radios Eve has is limited, the number of sybils she can successfully create
in one epoch is limited as well.

We now describe each honest node’s behavior in more detail. In epoch i, there
are ani lgni rounds, where a > 0 is some sufficiently large constant. In each
round, every node will go to a random channel that is chosen uniformly from
[1, ni/2]. Then, each node will broadcast or listen, each with probability 1/2. If a
node chooses to broadcast, it will broadcast its identity (i.e., its public key). If a
node chooses to listen, it will record whether it has heard silence (i.e., nothing),
noise, or a packet from another identity.

After each epoch, for every node: if at least γ1 = (1−δ)(1−1/α)e−1/2 = Θ(1)
fraction of rounds were silent, among the rounds that it chose to listen, the
node will terminate (without accepting any new identities). Otherwise, if at least
γ2 = (1−δ)(1−4/α)e−2 = Θ(1) fraction of slots were silent, where γ2 < γ1, then
the node accepts every identity from which it has received at least aγ2(lg ni)/2
messages. This procedure is summarized in Fig. 4.1.
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Pseudocode of SimpleSybilSieve executed at node u:

1: Generate asymmetric key pair. Let ku
p be u’s public key, and ku

o be u’s private key.

2: ids ← ∅. � Set containing identities that u accepts.
3: for (every epoch i ≥ 1) do

4: ni ← 2i, countlisten ← 0, countsilent ← 0.
5: idscount ← ∅. � idscount is a dictionary structure with value being an integer.
6: for (every round 1 ≤ j ≤ ani lgni) do
7: ch ← random(ni/2). � random(x) returns a random value from [1, x].
8: for (every slot 1 ≤ k ≤ max{1, ni/2c}) do � Simulate one round with multiple slots.
9: if (�(ch − 1)/c� = k − 1) then
10: if (random(2) = 1) then � Broadcast with probability 1/2.
11: broadcast(〈ku

p 〉, ((ch − 1) mod c) + 1). � broadcast(m,h) broadcasts m on h.

12: else � Listen with probability 1/2.
13: countlisten ← countlisten + 1.
14: msg ← listen(((ch − 1) mod c) + 1). � listen(h) means listen on channel h.
15: if (msg �= nil and msg �= noise) then � Node has heard a message.
16: Let kv

p be the public key inside msg.

17: if (kv
p /∈ idscount) then idscount[k

v
p ] ← 1.

18: else idscount[k
v
p ] ← idscount[k

v
p ] + 1.

19: else if (msg = nil) then � Node has heard a silent round.
20: countsilent ← countsilent + 1.

21: if (countsilent/countlisten ≥ (1 − δ)(1 − 1/α)e−1/2) then return ids.

22: else if (countsilent/countlisten ≥ (1 − δ)(1 − 4/α)e−2) then
23: for (every identity kv

p in idscount) do

24: if (idscount[k
v
p ] ≥ a(1 − δ)(1 − 4/α) lgni/(2e

2)) then ids ← ids
⋃
{kv

p}.

Fig. 1. Pseudocode of SimpleSybilSieve

4.2 Analysis

In this subsection, we sketch the proof that every honest node will terminate at
epoch �lgn� + O(1) and accept all other honest nodes. We will also show that
there are at most O(t ·max{1, n/c}) sybil identities that are accepted by honest
nodes. Full proofs are provided in the full version of the paper [11].3

Termination and Correctness. To begin with, we argue that no honest nodes
will accept any identities or terminate before (or during) epoch lg (n/(g lgn)),
where g is a positive constant. The claim follows via standard coupon collector
analysis as, in these epochs, the number of broadcasting honest nodes exceeds
the number of used channels, creating contention and preventing silent rounds.

Lemma 1. For any epoch i where 1 ≤ i ≤ lg (n/(g lgn)), for some constant
g > 1: w.h.p. honest nodes will hear only noisy rounds, and hence will not accept
any identities during epoch i or terminate at the end of epoch i.

We continue to consider epochs from lg (n/(g lg n)) to epoch �lg n�. For these
epochs, we claim that all honest nodes will still not terminate, since they will
not hear enough silent rounds.

3 If not otherwise stated, full proofs for lemmas and theorems in other parts the paper
are provided in [11] as well.
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Lemma 2. For any epoch i where lg (n/(g lgn)) ≤ i ≤ �lg n�, w.h.p. no honest
nodes will terminate after epoch i.

We then claim that every honest node will accept all other honest nodes during
epoch �lg n�, i.e., each honest node will hear from all the other honest nodes
sufficiently often in that epoch.

Lemma 3. Every honest node will accept all other honest nodes during epoch
�lgn�, w.h.p.

Lastly, we show all honest nodes will terminate at most two epochs later.

Lemma 4. All honest nodes will terminate no later than the end of epoch
�lgn�+ 2, w.h.p.

Constraining Sybil Identities. We now show SimpleSybilSieve can ensure the
total number of sybil identities that are accepted by any honest nodes is at most
O(t · max{1, n/c}). Firstly, we identify the epochs in which honest nodes can
potentially accept sybil identities.

Lemma 5. Honest nodes will accept sybil identities only between epoch �lg n�−1
and epoch �lgn�+ 1, w.h.p.

Any earlier, there are too few channels (and too much contention); any later,
there are too many channels. At this point, we can also summarize honest nodes’
behavior as follows: (a) for every epoch before and including �lg n�, no honest
nodes will terminate; (b) during epoch �lg n�−1 to epoch �lg n�+1, honest nodes
may accept identities, which include other honest nodes and sybil identities; (c)
by the end of epoch �lg n�, every honest node must have accepted all other honest
nodes; and (d) some (or all) honest nodes may terminate after epoch �lgn�+1,
and all remaining will terminate after epoch �lg n�+ 2.

In the following key technical lemma, we show for every epoch i where �lgn�−
1 ≤ i ≤ �lg n� + 1, at most O(t ·max{1, n/c}) sybil identities will be accepted
by honest nodes. The intuition is as follows: in each round in these epochs, each
honest node will, in expectation, broadcast its identity Θ(1) times. On the other
hand, Eve can broadcast an identity at most O(t · max{1, n/c}) times in ev-
ery round, each of which we call a broadcast round-channel combination. This
implies Eve can advocate an identity at most O(t · max{1, n/c}) times faster
than honest nodes. Since each honest node’s broadcast rate allows itself to be
accepted O(1) times (by other honest nodes) in each of these three epochs, we
know Eve can successfully create at most O(t · max{1, n/c}) sybil identities in
each of these three epochs. One tricky point in the proof is to carefully ana-
lyze the (in)dependence relationship between multiple broadcast round-channel
combinations, and then apply Chernoff bounds accordingly.

Lemma 6. For epoch i where �lgn� − 1 ≤ i ≤ �lgn� + 1, w.h.p. at most
2(1+δ)e2·e−(n−t)/ni

(1−δ)(1−4/α) · t · max{1, ni/2c} = O(t · max{1, n/c}) sybil identities will

be accepted by honest nodes in that epoch.
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Based on the above six lemmas, we can immediately obtain the following
theorem which states the key guarantees provided by SimpleSybilSieve.

Theorem 1. For any t ≤ min{n, c}/α where α ≥ 6, SimpleSybilSieve ter-
minates in O(n lg2 n · max{1, n/c}) slots, and guarantees the following, w.h.p.:
(a) there are at most O(t · max{1, n/c}) sybil identities accepted by the honest
nodes, collectively; and (b) every honest node accepts all other honest nodes.

5 The SybilSieve Algorithm

Our goal is to build on the foundation provided by SimpleSybilSieve to get an
optimal O(t) bound on the number of sybil identities for all values of c (not just
when c > n). An obstacle, however, is that nodes executing SimpleSybilSieve

do not necessarily terminate at the same time. This makes it difficult to use Sim-
pleSybilSieve in a more involved anti-sybil strategy. To address this problem,
we present an improved version of SimpleSybilSieve that we call SybilSieve.
This new algorithm offers the same sybil bounds as SimpleSybilSieve, but is
slower. In exchange for the extra time, it guarantees that all nodes terminate at
the same time and share a common constant-factor estimate of n (both of which
will prove to be useful for our final algorithm).

At the core of SybilSieve is a consensus primitive named SybilSensus.
Nodes execute SybilSensus at the end of each epoch to decide whether or not
to terminate. This ensures nodes stop simultaneously. Nodes then use the epoch
number (when they stop) to derive their common estimate of the network size.

For ease of presentation, we define the following notation: (a) let H denote
the set of honest nodes; (b) for any honest node u, let idsu (or just ids when
there is no ambiguity) denote the set of identities it has already accepted; and
(c) for any protocol, if all honest nodes start executing it simultaneously, then
we say we have a synchronized execution of it. We also note here, in the reminder
of the paper, we assume α ≥ 256.

5.1 SybilSensus: A Consensus Building Block

SybilSensus is a wireless variant of the Byzantine consensus algorithm de-
scribed in [21], with sybil attacks taken into consideration. Before presenting it,
we first briefly discuss a broadcast primitive named ConsistBcst, which is an
implementation of the authenticated broadcast (i.e., Echo Broadcast) algorithm
from [21]. ConsistBcst is used in SybilSensus.

ConsistBcst. Consistent broadcast ensures consistency among the messages
that are accepted by honest nodes. In particular, it enforces: (a) if an honest node
broadcasts a message, then all honest nodes will eventually accept that message;
(b) if Eve sends a message on behalf of an honest node (i.e., Eve is spoofing),
then no honest nodes will accept that message; and (c) if an honest node accepts
a message, then all honest nodes will eventually accept that message. When sybil
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attacks are present, in our context, consistent broadcast should also guarantee:
(d) if Eve sends a message on behalf of a sybil identity that is not accepted by
any honest nodes, then no honest nodes will accept it.

ConsistBcst is a typical implementation of Echo Broadcast [21]: initially, the
sender broadcasts the message to everyone; everyone who receives the message
directly from u, or who receives enough “echo” messages, send an “echo” message
repeating the initial message; finally, everyone who receives enough total copies
of the message accepts it. In our context, the protocol is modified as follows: (a)
a node only processes messages that are properly signed from other identities
that it has already accepted; (b) the protocol is parametrized to operate based
on an estimated network size, and the guarantees will only hold if this estimate is
within a constant (multiplicative) factor of being correct; and (c) the guarantees
hold only if the number of sybil identities that are accepted by the honest nodes
is not too large. Due to space constraint, more detailed description and analysis
of ConsistBcst are provided in the full version of the paper.

SybilSensus. We now describe the SybilSensus protocol, which solves a vari-
ant of consensus in which nodes agree on a set of items (instead of on a single
value). Initially, in SybilSieve, we use SybilSensus only to solve traditional
(binary) consensus, where nodes agree on whether or not to terminate; later, in
SybilSieve

2, we will use the more general version to agree on the set of iden-
tities. It operates under the assumption that we have a reasonable network size
estimation, and that there are only a limited number of sybil identities present.

Each execution of SybilSensus at an honest node u requires three parame-
ters: (a) a set of items, denoted as Iu; (b) an estimation of n, denoted as n̂; and
(c) a set of identities that is currently accepted by u, denoted as idsu.

When the protocol terminates, each node outputs a new set Su. These sets
should agree: every node should output the same set. The validity condition has
two parts. First, if an item x is in the input set Iu for every honest node u, then
x is in the output set. Second, if an item x is not in the input set Iu for any
honest node u, then x is not in the output set.

An execution of SybilSensus consists of f̂ + 1 phases, where f̂ = n̂/3 − 1.
During the execution of SybilSensus, nodes will useConsistBcst to broadcast
messages. In phase i, an honest node u will decide whether to broadcast messages,
and the contents of the messages, based on the following rules: (a) in phase one,
for every item x in Iu, u will broadcast a message which is a concatenation of its
identity and x; and (b) in any phase i ≥ 2, for every item x that has appeared

in at least f̂ + i − 1 different accepted messages before the start of phase i, u
will broadcast a message which is a concatenation of its identity and x. On the
other hand, during each phase, honest nodes will also record items that have
appeared in accepted messages. By the end of these f̂ +1 phases, for every item
x that has appeared in at least 2f̂ +1 different accepted messages, u will add it
to Su. Finally, SybilSensus returns Su as the return value. The pseudocode of
SybilSensus is available in [11].
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In the following lemma, we show SybilSensus leads to consensus.

Lemma 7. If honest nodes perform a synchronized execution of SybilSensus

with the same n̂, then SybilSensus guarantees: all honest nodes finish executing
SybilSensus simultaneously, and each outputs a set S containing zero or more
items. Moreover, if: (a) n/16 ≤ n̂ ≤ n; (b) |(

⋃
u∈H idsu)\H | ≤ f̂ = n̂/3− 1; (c)

∀u ∈ H we have H ⊆ idsu; and (d) there are at most O(n) differently named
items that are initially in some honest nodes’ sets I. Then, SybilSensus further
guarantees:

– (Agreement) Every honest node outputs the same set S, w.h.p.
– (Validity) For any item x that is initially in every honest node’s set I, after

the execution of SybilSensus, ∀u ∈ H we have x ∈ Su, w.h.p. Similarly,
for any item x that is initially not in any honest nodes’ I, after the execution
of SybilSensus, ∀u ∈ H we have x /∈ Su, w.h.p.

In the special cases where network size estimation is not accurate and honest
nodes have not accepted each other yet, SybilSensus can still provide “parial”
validity for binary consensus. This property is stated in the lemma below and
will later be shown to be useful for SybilSieve.

Lemma 8. If: (a) honest nodes perform a synchronized execution of SybilSen-

sus with the same n̂; (b) |(
⋃

u∈H idsu) \H | ≤ f̂ = n̂/3− 1; and (c) each honest
node’s initial I is an empty set. Then, all honest nodes will finish executing
SybilSensus simultaneously, and each outputs an empty set, w.h.p.

We note here, when it is known that there are only a limited number of
accepted sybil identities, SybilSensus can directly be used as a consensus pro-
tocol. Otherwise, in an unknown and anonymous environment, nodes need to run
sybil-resistant node discovery protocol (such as SybilSieve) as a preliminary
step (in order to limit the number of accepted sybil identities).

5.2 Maintaining Synchrony

With SybilSensus in hand, we can now present the SybilSieve protocol.
SybilSieve is similar to SimpleSybilSieve, with the key difference being ter-
mination: at the end of each epoch, nodes run SybilSensus to decide whether
to terminate or not; the input to SybilSensus depends on whether the termi-
nation condition under the SimpleSybilSieve protocol is met. In particular, an
input set contains a singleton item term if and only if the termination condition
is met under the SimpleSybilSieve protocol. A node terminates after current
epoch only if all nodes have agreed to terminate. The pseudocode of SybilSieve
is available in [11].

In the following lemma, we claim that SybilSieve guarantees all honest nodes
will terminate after the same epoch (and hence obtain the same estimate of
network size). The key intuition behind it is: (a) for every epoch before �lgn�,
although trusted identities are not fully established, Lemma 8 ensures honest
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nodes will not incorrectly terminate; and (b) starting from epoch �lgn�, the
conditions which allow SybilSensus to act like a consensus protocol are met,
hence all honest nodes will not terminate after epoch �lg n� due to the validity
property, and will all terminate simultaneously either after epoch �lgn� + 1 or
after epoch �lgn�+ 2 due to the agreement (or validity) property.

Lemma 9. All honest nodes will finish executing SybilSieve simultaneously,
either after epoch �lgn�+ 1 or after epoch �lgn�+ 2, w.h.p.

Combining Lemma 9 and our analysis in Subsection 4.2, we immediately have
the following theorem which states the key guarantees SybilSieve can provide.

Theorem 2. For any t ≤ min{n, c}/α where α ≥ 256, SybilSieve terminates
in O(n2 lg2 n · max{1, n/c}) slots, and guarantees the following after protocol
execution, w.h.p.: (a) there are at most O(t·max{1, n/c}) sybil identities accepted
by the honest nodes, collectively; (b) every honest node accepts all other honest
nodes; and (c) all honest nodes terminate simultaneously and have the same
estimate of network size which is either 2�lgn� or 2�lgn�+1.

6 The SybilSieve2 Algorithm

In this section we describe our final algorithm, SybilSieve2, which provides the
strongest sybil bounds. This algorithm first runs SybilSieve. It takes advantage
of the synchronous termination and network size estimation of SybilSieve to
then run a sybil-reduction phase that guarantees no more than O(t) sybil iden-
tities. The final time complexity is O(n2 lg2 n · max{1, n/c}), which is n times
slower than SimpleSybilSieve.

In more detail, the SybilSieve2 protocol contains three parts. The first part,
as mentioned, executes SybilSieve. The second part executes our consensus al-
gorithm, SybilSensus, so that honest nodes agree on a common set of accepted
identities. The third part uses repeated instances of a variant of our previously
developed centralized anti-sybil algorithm [12], rotating who plays the role of
base station, and reduces the number of sybil identities to the (asymptotically)
optimal O(t). We now describe the second and third part of SybilSieve

2 in
more detail, and then conclude with our final theorem statement.

Second Part of SybilSieve
2. After the execution of SybilSieve, honest nodes

may have accepted different sets of sybil identities. This creates difficulties for
the third part of SybilSieve

2. Hence, honest nodes first run SybilSensus to
reach agreement on which identities to accept.

We will refer to the list of identities that an honest node accepts after the
execution of SybilSieve as a pre-list ; and we refer to the list of identities that
an honest node accepts after the execution of the second part of SybilSieve2

as a common-list.
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For each honest node u, the second part of SybilSieve
2 is an execution of

SybilSensus with an input set containing Θ(n) items: each denotes one identity
that is in u’s pre-list. (In particular, each item’s name is the corresponding
identity’s public key.) On the other hand, SybilSensus’s input for estimation
on network size is n̂u/2, where n̂u–which is either 2�lgn� or 2�lgn�+1 due to
Theorem 2–is the estimation on network size obtained by u during the first part
of SybilSieve2. The return value of SybilSensus is u’s common-list.

The following lemma shows SybilSensus ensures all honest nodes will obtain
same common-list, which contains all honest nodes, and O(n) sybil identities.

Lemma 10. After the execution of the second part of SybilSieve
2, w.h.p. all

honest nodes will obtain same common-list which contains all honest nodes and
at most 0.0667n = O(n) sybil identities.

We note here, Lemma 10 also reveals another important corollary: by append-
ing SybilSensus after SybilSieve, honest nodes can reach consensus anony-
mously with no prior knowledge of other participants, w.h.p. This effectively
solves the Byzantine consensus problem in unknown and anonymous wireless
networks, with sybil attacks and other malicious behavior present.

Third Part of SybilSieve
2. In the last part of the SybilSieve2 protocol, honest

nodes will execute many repetitions of a variant of the SybilCast [12] protocol,
and reduce the total number of sybil identities to O(t).

Due to Lemma 10, after the second part of SybilSieve
2, all honest nodes

will agree on a same common-list, which includes all honest nodes and at most
O(n) sybil identities. At the beginning of the third part of SybilSieve2, hon-
est nodes will sort this common-list according to some pre-defined order (e.g.,
dictionary order). Then, honest nodes will repeatedly execute the SybilCast

variant, with identities in the common-list taking turns (in order) playing the
role of “base station.” (Note that this requires the honest nodes to agree on a
common list of identities.) In each repetition, the “base station” verifies the iden-
tities and broadcasts a list which contains the identities it believes are honest.
When all repetitions are done, honest nodes accept identities that are consid-
ered to be honest in at least a majority of repetitions. The pseudocode of the
general structure of part three of SybilSieve2 is available in the full version of
the paper.

Each execution of the variant of SybilCast consists of three phases: the
dissemination phase, the collection phase, and the verification phase. In the
dissemination phase, the “base station” will disseminate different random binary
strings, called seeds, to every other identity in the common-list, which instructs
them as to which channels to listen on. In the collection phase, the base station
will broadcast many one-time random binary strings, called nonces; other nodes,
on the other hand, will hop among channels according to the sequence defined
by its seed, and collect nonces. Finally, in the verification phase, nodes will send
the nonces they have collected during the preceding collection phase back to
the base station. The base station will add identities that can provide sufficient
nonces to its rep-list, and then broadcast the rep-list.
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During the last part of SybilSieve
2, in each repetition in which an honest

node is playing as the base station, SybilCast ensures there are at most O(t)
sybil identities in the rep-list. On the other hand, Eve is only playing as the
base station (via her sybil identities) in at most a small constant fraction of
all repetitions. Since honest nodes only accept an identity if that identity has
appeared in the rep-list in a large constant fraction of all repetitions, we know
in total at most O(t) sybil identities will be accepted by honest nodes.

We conclude by stating the key guarantees SybilSieve
2 can provide in the

following theorem:

Theorem 3. For any t ≤ min{n, c}/α where α ≥ 256, SybilSieve2 terminates
in O(n2 lg2 n ·max{1, n/c}) slots, and guarantees the following, w.h.p.: (a) there
are at most O(t) sybil identities accepted by the honest nodes, collectively; (b)
every honest node accepts all other honest nodes; and (c) all honest nodes ter-
minate simultaneously and have same estimation on network size which is either
2�lgn� or 2�lgn�+1.

7 Discussion

In this paper, we develop new algorithms that can effectively thwart sybil attacks
in multi-channel ad hoc wireless networks. They allows wireless devices to se-
curely and reliably establish identities in unknown and anonymous environment.
These protocols can also serve as building blocks for other protocols.

Although our algorithm can achieve consensus in unknown and anonymous
networks only with high probability, we suspect it is impossible to solve this
problem with probability one. For deterministic algorithms, in recent work by
Delporte-Gallet et al. [6], the authors show that synchronous Byzantine agree-
ment is unsolvable if the number of distinct identifiers is less than 3t, where t is
the number of Byzantine nodes. Since it is hard for deterministic algorithms to
break symmetry in our setting, this seems to imply consensus is impossible, here,
for deterministic algorithms. As for randomized algorithms, with small proba-
bility, nodes may end up with same coins and hence fail to generate sufficient
identities. In fact, under our model, even if nodes indeed generate unique identi-
ties, the fact that Eve can potentially keep jamming one honest node (with some
small probability) and isolate it from the remaining honest nodes also seems to
imply that consensus cannot always be guaranteed.
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13. Go�lȩbiewski, Z., Klonowski, M., Koza, M., Kuty�lowski, M.: Towards fair leader elec-
tion in wireless networks. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-
NOW 2009. LNCS, vol. 5793, pp. 166–179. Springer, Heidelberg (2009)

14. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Computing Survey 42(1), 1:1–1:31 (2009)

15. Klonowski, M., Koza, M.: Countermeasures against sybil attacks in wsn based
on proofs-of-work. In: Proceedings of the 6th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pp. 179–184. ACM, New York (2013)

16. Klonowski, M., Koza, M., Kuty�lowski, M.: Repelling sybil-type attacks in wireless
ad hoc systems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168,
pp. 391–402. Springer, Heidelberg (2010)

17. Mónica, D., Leitão, J., Rodrigues, L., Ribeiro, C.: On the use of radio resource
tests in wireless ad-hoc networks. In: Proceedings of the 3rd Workshop on Recent
Advances on Intrusion-Tolerant Systems, pp. F21–F26 (2009)

18. Mónica, D., Leitão, J., Rodrigues, L., Ribeiro, C.: Observable non-sybil quorums
construction in one-hop wireless ad hoc networks. In: 2010 IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, pp. 31–40 (2010)

19. Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks:
Analysis & defenses. In: Proceedings of the 3rd International Symposium on Infor-
mation Processing in Sensor Networks, pp. 259–268. ACM, New York (2004)



242 S. Gilbert, C. Newport, and C. Zheng

20. Piro, C., Shields, C., Levine, B.N.: Detecting the sybil attack in mobile ad hoc
networks. In: Securecomm and Workshops, pp. 1–11 (2006)

21. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing 2(2), 80–94 (1987)

22. Yu, H., Gibbons, P., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social
network defense against sybil attacks. In: 2008 IEEE Symposium on Security and
Privacy, pp. 3–17 (2008)

23. Yu, H., Kaminsky, M., Gibbons, P., Flaxman, A.: Sybilguard: Defending against
sybil attacks via social networks. IEEE/ACM Transactions on Networking 16(3),
576–589 (2008)



Approximate Local Sums and Their Applications

in Radio Networks

Zhiyu Liu and Maurice Herlihy

Department of Computer Science
Brown University

zhiyu liu@brown.edu, mph@cs.brown.edu

Abstract. Although any problem in a radio network can be solved using
broadcast algorithms, some problems can be solved substantially more
efficiently by more specialized algorithms. This paper presents two new
approximate algorithms for the local sum problem, in which each node
computes a (1 ± ε)-approximation to the sum of the values held by its
incoming neighbors (nodes that have outgoing edges to the node). We
propose algorithms both with and without collision detection, as well

as for the beeping model, with round complexity O( log
2 n+log n logm

ε2
),

where n is the number of nodes and the value held by each node is a real
number in {0} ∪ [1, m]. We then show how these algorithms can be used
as building blocks to construct applications such as approximate random
walk distribution, PageRank, and global sum.

Keywords: radio networks, algorithms, model with collision detection,
model without collision detection, beeping model, local sum, random
walk, PageRank.

1 Introduction

Broadcasting problems [6] [3] are a class of extensively studied, fundamental
problems in radio networks. In broadcasting problems, each message that needs
to be broadcast is considered as a piece of abstract information, such that the
only way for a node in a network to receive a message is to hear the message
directly. Imagine there are a clique of n nodes, each having a message to broad-
cast to others. Because of the existence of message collisions in radio networks,
a node cannot hear more than one message at a time, and hence any broadcast
algorithm has to take Ω(n) rounds to let a node collect all messages.

However, in many applications, the information that a node needs to col-
lect can be expressed as a function of some neighbors’ values, such as the sum
of numbers held by some neighbors, the highest temperature in a district, or
the distribution of some items. It is possible that a node can get an accurate
approximation to such numerical information, using a specialized algorithm sub-
stantially faster than the Ω(n) bound. A key to achieving this is usually to let
the node communicate with others in a clever way, such that it can reveal the
information by interpreting its communication history. For example, it is well
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known that a node in a radio network can get a good approximation of the
number of its neighbors in only O(log n) rounds, using techniques similar to the
famous Decay procedure [3], such as [13].

In this paper, we show a non-trivial generalization of the idea in [13] to ef-
ficiently solve the approximate local sum problem, in which each node has an
input value and is asked to get an accurate enough approximation to the sum
of the inputs of its incoming neighbors (nodes that have outgoing edges to the
node). More specifically, we propose a randomized (1 ± ε) approximate local

sum algorithm with round complexity O( log
2 n+logn logm

ε2 ) for both the model
with collision detection and the beeping model, where n is the number of nodes
and the input of each node is a real number in {0} ∪ [1,m]1. Solving problems
in radio networks without the help of collision detection is usually harder and
more costly. However, by some subtle modifications to our algorithm, we manage
to design an approximate local sum algorithm for the model without collision
detection, with the same round complexity.

These approximate local sum algorithms turn out to be useful for some impor-
tant applications. We show how to use them as building blocks to approximate
the distribution of a random walk in a radio network. Suppose a random walk
in a radio network starts with an initial distribution x0 = (x0

1, ..., x
0
n) at time 0,

where xi
k denotes node k’s value in the distribution xi at time i. We present an

algorithm, by which each node k computes an (1 ± ε) approximation of xt
k in

O
(
t3

ε2 log(tn) log
(
tn·max
ε·min

))
rounds with high probability, where min and max are

known upper bound and lower bound on xt
k, respectively. We then show how this

algorithm in turn can be used to solve approximate PageRank and approximate
global sum in a radio network.

The paper is organized as follows. Section 2 shows the related work. The ra-
dio network models and the local sum problem are defined formally in Section
3. In Section 4, we present the approximate local sum algorithm for both the
model with collision detection and the beeping model. In Section 5, we show
the approximate local sum algorithm for the model without collision detection.
Then in Section 6, we describe how to use the approximate local sum algorithms
as building blocks to construct algorithms for approximate random walk distri-
bution, PageRank, and global sum. Due to space limits, we only present in the
appendix a proof sketch of the approximate local sum algorithm for both the
model with collision detection and the beeping model. The complete version of
that proof and the proofs for other results are deferred to the full version of this
paper.

2 Related Work

The local broadcasting problem has been extensively studied in the setting of
single-hop radio networks since the late 1970s (e.g. [5] [4] [14] [21]). In this prob-

1 In fact, our algorithm works for input range {0} ∪ [min,max], for any positive
numbersmin andmax, by simply scaling inputs from [min,max] to [1,m] = [1, max

min
]

by dividing them by min.
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lem, a clique of n nodes (or k of the n nodes) need to exchange their messages
with each other. When n is unknown to the nodes, a natural solution is to first
estimate the value of n, as Greenberg et al. [13] proposed. Their estimating pro-
tocol is the following. In round i, each node broadcasts a signal with probability
2−i. The protocol stops in round j, when no collision occurs for the first time. It
can be proved that the expectation of 2j is roughly 0.9n. The estimating tech-
nique in [13] is analogous to the well-known Decay strategy [3], which has been
widely used to solve different broadcasting, conflict resolution, wakeup problems
(e.g. [8] [17] [9] [12] [11] [10] [16]) in radio networks.

It is easy to see that estimating n is actually a special case of estimating the
local sum of a clique of nodes, where each node has input value 1. The idea
behind our approximate local sum algorithms can be thought of as a general-
ization of the technique in [13]. While the estimating protocol in [13] gives a
constant-factor approximation to n in a single-hop network (since a constant-
factor approximation to n is usually good enough for efficiently solving broad-
casting and conflict resolution problems), our local sum algorithms, with the
help of Chernoff bounds, can compute arbitrarily close approximations to the
local sums of all nodes in a multi-hop network. As the informal descriptions of
our algorithms show in Sections 4 and 5, accurately approximating local sums,
especially in multi-hop radio networks without the help of collision detection, is
much more complicated and it requires some non-trivial, subtle modifications in

order to keep the complexities of our algorithms as small as O( log
2 n+logn logm

ε2 )
(note that in the local broadcasting problem in multi-hop radio networks, it
takes Ω(log2 n) for some node to receive even a single message from a neighbor
[12]). To the best of our knowledge, our algorithms are the first to accurately
approximate local sums in the radio network models with and without collision
detection.

Besides the two classical radio network models—the models with and without
collision detection, we also consider the beeping model [7], which has drawn a lot
of attention recently (e.g. [1] [15]). The beeping model is a model where nodes
have extremely weak communication power.

One important application of our approximate local sum algorithms is to
approximate PageRank [19] in a radio network. The random walk-based method
we use to solve approximate PageRank was first proposed by Avrachenkov et al.
[2]. Sarma et al. [20] showed how to use this method to approximate PageRank
in the classical CONGEST model, in which no collisions exist, while we solve
the problem in radio network models, in which collisions exist.

3 Local Sum Problem in Radio Networks

A multi-hop radio network is modeled as a directed graph G = (V,E) consisting
of n = |V | nodes, where node k can receive messages from node � if edge (�, k) ∈
E (we call k an outgoing neighbor of � and � an incoming neighbor of k). Nodes
communicate in synchronous rounds. In each round, a node k either broadcasts a
single message of size O(log n) to all outgoing neighbors, or listens for messages
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from its incoming neighbors. If k listens in a round and only one of its incoming
neighbors broadcast a message, v receives that message. If k listens while all its
incoming neighbors are also listening, k receives nothing. If k listens while two
or more incoming neighbors broadcast, a collision occurs and k cannot receive
those messages. In the paper, we consider two different models with respect to
collision detection. In the model with collision detection, node k receives a special
“collision message” ⊥ when k listens and two or more incoming neighbors are
broadcasting. In the model without collision detection, k receives nothing when
such a collision occurs. In other words, in the model without collision detection,
nodes cannot distinguish a collision from a silence.

We also consider the beeping model [7], in which each message is just a beep
signal. When a node k listens, it has only binary feedback: if no incoming neigh-
bors are broadcasting, k receives nothing; if one or more incoming neighbors are
broadcasting, k receives a beep.

In the local sum problem, each node k has an input vk, a real number in
{0} ∪ [1,m]. Let N(k) denote the set of k’s incoming neighbors. The goal is to
let each node k compute its local sum sumk =

∑

∈N(k) v
, which is in the range

{0} ∪ [1, nm]. Given an arbitrarily small positive ε < 1, a value s is said to be a
(1± ε) approximation of sumk, if (1− ε)sumk ≤ s ≤ (1 + ε)sumk.

4 Approximate Local Sum with Collision Detection

Figure 1 shows Algorithm 1, a (1 ± ε) approximate local sum algorithm that
works for the radio network model with collision detection. Since each message
in Algorithm 1 is just a beep signal, Algorithm 1 also works for the beeping
model.

The algorithm has two parts. In the first part, called the preprocessing stage
(Lines 3-13), node k estimates the maximum input contributed by any incoming
neighbor. There are lognm preprocessing phases (Line 3), where preprocessing
phase i is concerned with the range [2i, 2i+1). In each round of preprocessing
phase i, if its input is in that range, node k broadcasts a signal with probability
1/2 (Line 6). In every other round, it listens for a message (or collision) (Lines 8-
10). At the end of the preprocessing stage, the node’s flag variable holds the
highest range where it received a signal. With high probability, the highest input
contributed by any incoming neighbor lies within [2flag, 2flag+1).

In the main part of the algorithm (Lines 14-29), node k computes s, a (1+ ε)-
approximation of the local sum. This part proceeds in a sequence of logmn+ 1
phases (Line 14), and each phase encompasses Θ( log n

ε2 ) rounds (Lines 16-25).
Node k keeps track of r, the number of rounds in the current phase in which
node k listens (Line 22), and c, the number of rounds in the current phase in
which it listens but receives nothing (Line 23). In each round of phase i, if the
input vk of node k satisfies vk < 2i, then node k broadcasts with probability
1 − (1 − 1

2i )
vk (Lines 18–19), and otherwise it listens (Lines 20–23). In phases

where vk ≥ 2i, the node just listens (Line 18). Each time the node listens, it
increments r, and each time it fails to receive a signal, it increments c. At the end
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node k: input vk

1 s = 0;
2 flag = 0;
3 for i = 1 to log nm
4 for j = 1 to Θ(log n)
5 draw δ from [0, 1] uniformly at random;
6 if (2i ≤ vk < 2i+1 and δ < 1

2
)

7 broadcast a signal in this round;
8 else
9 listen in this round;
10 if (receive a signal) flag = i; end if
11 end if
12 end for
13 end for
14 for i = 1 to log nm+ 1
15 c = r = 0;

16 for j = 1 to Θ( log n
ε2

)
17 draw δ from [0, 1] uniformly at random;
18 if (vk < 2i and δ > (1− 1

2i
)vk)

19 broadcast a signal in this round;
20 otherwise
21 listen in this round;
22 r = r + 1;
23 if (receive nothing in this round) c = c+ 1; end if
24 end if
25 end for
26 if (both i > flag and c

r
> 1

6
hold for the first time)

27 solve s for c
r
= (1− 1

2i
)s;

28 end if
29 end for
30 return s;

Fig. 1. Algorithm 1: a (1± ε) approximate local sum algorithm for the radio network
model with collision detection and the beeping model

of each phase, node k checks whether it can compute the estimate s. If this phase
is the first satisfying the condition at line 26, node k computes s, by solving the
equation at line 27. After that, the node will not recompute s, but it continues
to broadcast with the probabilities shown until the algorithm completes.

Here is an informal sketch why this algorithm works. First, consider phase i
where every input vk < 2i. In each of the Θ( log n

ε2 ) rounds (Line 16) of phase
i, node k broadcasts its input vk with probability 1 − (1 − 1

2i )
vk , and with the

complementary probability, (1− 1
2i )

vk , it listens without broadcasting. If node k
listens, it will hear nothing from its incoming neighbors (because they are also
listening) with probability
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∏
v�∈N(k)

(
1− 1

2i

)v�

=

(
1− 1

2i

)sumk

.

Recall that r is the number of rounds in phase i in which the node listens, and c
the number of those rounds in which it receives nothing, so c

r is an approximation
of (1− 1

2i )
sumk . If sumk is roughly in the range [2i−1, 2i), (1− 1

2i )
sumk will be a

constant greater than 1
6 . While for a smaller i′ ≤ i− 2, such that sumk ≥ 2i

′+1,
(1 − 1

2i′
)sumk will be less than 1

e2 , a constant less than 1
6 . Therefore, if node k

listens in Θ( log n
ε2 ) rounds in each phase, we can prove by the Chernoff bound

[18] that with high probability node k finds c
r > 1

6 for the first time at Line 26
in phase i, such that sumk is in the range [2i−1, 2i) or [2i, 2i+1) (see Lemma
4). In fact, we can prove that c

r in this phase will be a (1 ± ε)-approximation
of (1− 1

2i )
sumk with high probability. Moreover, consider the strictly decreasing

function f(s) = (1 − 1
2i )

s as in the right hand side of the equation at Line 27.
We will see that for s roughly in the range [2i−1, 2i+1), the slope f ′(s) is steep
enough that a (1 ± ε) multiplicative error on f(s) will induce only a (1 ∓ Θ(ε))
multiplicative error on s. Therefore, we can conclude that the solution s to the
equation2 at Line 27 is a (1± ε) approximation of the local sum sumk with high
probability.

We call attention to some subtle aspects of Algorithm 1. First, if vk is much
bigger than 2i in phase i, then node k will listen with very small probability
(1− 1

2i )
vk in a round in phase i. If so, node k will not listen for sufficiently many

rounds in phase i to get an accurate enough approximation. The preprocessing
stage addresses this problem by having each node tell its outgoing neighbors
the range in which its input lies. As mentioned, at the end of the preprocessing
phase, node k will have flag = imax with high probability, such that the biggest
value among the inputs of its incoming neighbors is in the range [2imax , 2imax+1).
Recall that we can accurately approximate sumk in a phase i when sumk is in
the range [2i−1, 2i+1). Hence, it suffices to let node k compute s in phase i when
sumk is in the range [2i−1, 2i). Note that sumk ≥ 2i in the first imax phases.
That is, only in some phase i ≥ flag + 1 is sumk in the range [2i−1, 2i) and
only then does computing s yield a good approximation of sumk. By testing
whether i > flag at Line 26, we prevent node k from computing s in the first
flag phases. This condition holds for neighbors of node k as well, so node k knows
that each of its outgoing neighbors � has a value of flag (which we call flag
 here
to distinguish it from k’s flag) such that 2flag� ≥ sum
 ≥ vk, so node � also does
not compute s in the first flag
 rounds. It follows that node k does not have
to broadcast messages in phases i, when 2i < vk. That is why we have vk < 2i

as a condition at Line 18. By doing so, node k can always listen in the first
�log vk� phases, avoiding the risk that it listens with a very small probability,
when

(
1− 1

2i

)vk is very small at Line 18.

2 In fact, it suffices to let node k compute a (1 ± Θ(ε)) approximate solution to the
equation, instead of an accurate one. Since f(x) is strictly decreasing and its slope
is steep enough, node k can efficiently get an approximate solution by binary search.
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Second, for node k, there can be Θ(log nm) phases between phase 1 and phase
i∗, where 2i

∗−1 ≤ sumk < 2i
∗
. Thus, even if we use the Chernoff bound to show

that in each phase i < i∗, c
r ≤

1
6 at Line 26 with probability 1 − O

(
1
na

)
for

some constant a, we would end up showing that c
r ≤

1
6 in all phases i < i∗ with

probability 1−O( logmn
na ). When m is extremely large, probability 1−O( logmn

na )
is not considered high probability. One way to improve the probability of success
is to increase the number of rounds in each phase, but doing so will increase the
round complexity of the algorithm. Fortunately, we can avoid these costs with
the help of the flag variable: node k needs to consider c

r only in phases i > flag .
As Lemma 3 shows, there are only O(log n) rounds in between phase flag and
phase i∗ and hence node k can succeed with probability 1 − O( log n

na ), which is
still high probability.

Theorem 1. All nodes in Algorithm 1 compute (1± ε) approximations of their

local sums with probability 1−O( 1
n ) in O

(
log2 n+logn logm

ε2

)
rounds.

5 Approximate Local Sum without Collision Detection

Figure 2 shows Algorithm 2, a way to modify Algorithm 1 to work in the radio
network model without collision detection. Each node k first sets v′k = 4vk
(Line 3) and computes a (1 + ε) approximation s of sum ′

k =
∑


∈N(k) v
′

 =∑


∈N(k)(4v
) = 4sumk in order to finally get s/4, a (1 + ε) approximation of

sumk. Note that v′k ∈ {0} ∪ [4, 4m] and sum ′
k ∈ {0} ∪ [4, 4nm].

The preprocessing stage (Lines 4–14) is modified as follows. First, node k
may send messages in any preprocessing phase i if v′k ≥ 2i (Line 7), while in
Algorithm 1, it can only send messages in preprocessing round i if 2i ≤ vk < 2i+1.
(In fact, vk ≥ 2i also works for Algorithm 1, but we think 2i ≤ vk < 2i+1 is
easier for readers to understand the high-level idea of the algorithm.) Second,
instead of sending a message with probability 1

2 in each of the Θ(log n) rounds
in preprocessing phase i, node k sends a message with probability ( 12 )

j (Line 7)
in the jth round.

The main part of the algorithm is modified as follows. In phase i, node k
temporarily sets v′k = 2i+3 if vk > 2i+3 (Line 17). Second, node k now has

three choices in a round: with probability (1 − 1
2i )

v′
k (line 20), it listens; with

probability
v′
k

2i (1−
1
2i )

v′
k−1 (Line 24), it sends a message “1”; otherwise (Line 26),

it sends a message “2+”. Third, c now counts the number of rounds in a phase
i in which it listens and receives a message “1” (line 23). Finally, the condition
under which s is computed is changed (Line 31) and node k chooses the solution
s that is greater than 2i (Line 32).

The high-level idea of Algorithm 2 is as follows. Suppose no node changes its
v′k at Line 17, i.e., v′k ≤ 2i+3. To better understand the algorithm, let us assume
that each v′k is an integer. Then, we can think of node k as a simulation of a

collection of v′k nodes, each with input value 1: with probability (1 − 1
2i )

v′
k , all

the v′k nodes listen, simulated by node k listening in this round with the same
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node k: input vk

1 s = 0;
2 flag = 0;
3 v′k = 4vk;
4 for i = 1 to log nm
5 for j = 1 to Θ(log n)
6 draw δ from [0, 1] uniformly at random;
7 if (v′k ≥ 2i and δ < ( 1

2
)j)

8 broadcast a signal in this round;
9 else
10 listen in this round;
11 if (receive a signal) flag = i; end if
12 end if
13 end for
14 end for
15 for i = 1 to log nm+ 1
16 c = r = 0;
17 v′k = min{4vk, 2i+3}
18 for j = 1 to Θ( log n

ε2
)

19 draw δ from [0, 1] uniformly at random;

20 if (δ < (1− 1
2i
)v

′
k )

21 listen in this round;
22 r = r + 1;
23 if (receive a message “1”) c = c+ 1; end if

24 else if ( (1− 1
2i
)v

′
k ≤ δ < (1− 1

2i
)v

′
k +

v′
k

2i
(1− 1

2i
)v

′
k−1 )

25 broadcast a message “1” in this round;
26 else
27 broadcast a message “2+”;
28 end if
29 end if
30 end for

31 if (both i > flag − 3 and c
r
> 2(1− 1

2i
)2

i+2−1 hold for the first time)
32 solve s for c

r
= s

2i
(1− 1

2i
)s−1 and s > 2i;

33 end for
34 return s/4;

Fig. 2. Algorithm 2: a (1± ε) approximate local sum algorithm for the radio network
model without collision detection

probability (Lines 20-21); with probability
v′
k

2i (1 −
1
2i )

v′
k−1, only one of them

sends a message, simulated by node k sending a message “1” with the same
probability(Lines 24-25); otherwise, two or more nodes send messages, simulated
by node k sending a message “2+” (Lines 26-27) . Thus, if node k listens in a
round in phase i, it will receive a single massage “1” with probability
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∑

∈N(k)

(
v′

2i

(
1− 1

2i

)v′
�−1(

1− 1

2i

)sum′
k−v′

�

)
=

∑

∈N(k)

(
v′

2i

(
1− 1

2i

)sum ′
k−1

)

=
sum ′

k

2i

(
1− 1

2i

)sum ′
k−1

.

Note that this equation holds even if v′
’s are not integers. Hence, we know

that c
r is an approximation of

sum ′
k

2i (1− 1
2i )

sum ′
k−1, which can be used to compute

an approximation of sum′
k .

If sum ′
k is roughly in the range [2i+1, 2i+2),

sum′
k

2i (1 − 1
2i )

sum′
k−1 will be a

constant greater than 2(1− 1
2i )

2i+2−1 in phase i, while in any phase i′ ≤ i − 2,
sum′

k

2i′
(1− 1

2i′
)sum

′
k−1 will be less than 2(1− 1

2i′
)2

i′+2−1. Suppose m is polynomial

in n. As in Algorithm 1, if node k listens in Θ( log n
ε2 ) rounds in each phase, we can

prove by the Chernoff bound and the union bound that with high probability
node k finds c

r > 2(1− 1
2i )

2i+2−1 for the first time in phase i at Line 31, such that
sum ′

k is roughly in the range [2i+1, 2i+2) (or [2i+2, 2i+3). Moreover, the function
f(s) = s

2i (1−
1
2i )

s−1 is strictly decreasing when s > 2i, and if s is roughly in the
range [2i+1, 2i+3), the slope f ′(s) is steep enough3 that a (1 ± ε) multiplicative
error on f(s) will incur only a (1 ∓ Θ(ε)) multiplicative error on s. It follows
that the unique solution s at Line 32 will be a (1 ± ε) approximation of sum ′

k

with high probability.
However,m can be superpolynomial in n, in which case the “high probability”

guarantee above by the union bound will break, as there are Θ(log nm) phases.
As in Algorithm 1, the preprocessing stage deals with this situation. We can
prove that after the preprocessing stage, node k has imax − flag = O(log n)
with probability 1 − O( 1

n2 ), where imax is the integer such that the maximum
value among its incoming neighbors’ v′
’s is in the range [2imax , 2imax+1). Unlike
Algorithm 1, Algorithm 2 does not guarantee that flag = imax, since making
flag = imax is too costly without the help of collision detection. Fortunately, we
will show that imax−flag = O(log n) is good enough. The reason for computing
flag in Algorithm 2 is similar to that in Algorithm 1: node k knows that it does
not need to compute s in the first flag−3 rounds, since only in phase i > flag−3
can sum′

k be in the range [2i+1, 2i+2). Given imax−flag = O(log n), we can prove
that i∗ − flag = O(log n), for i∗ such that sum ′

k is in the range [2i
∗+1, 2i

∗+2).
Thus, there are only O(log n) rounds from phase flag − 2 to phase i∗. As in
Algorithm 1, we can prove by the Chernoff bound that c

r is “very close to” its
expected value in each phase i ∈ [flag − 2, i∗] with probability 1−O( 1

na ), so we
can prove that c

r is always “very close to” its expected values in all these phases

with probability 1−O( log n
na ). This implies that Algorithm 2 succeeds with high

probability.

3 If s is in the range [2i−1, 2i+1), the slope may be too flat that a small error on f(s)
can induce a very large error on s. That is why we scaled sum ′

k to [4, 4nm], assuring
sum ′

k ∈ (2i+1, 2i+3) for some i.
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There is one more point to consider. If v′k is much bigger than 2i in phase i,

then node k will listen in a round with very small probability (1 − 1
2i )

v′
k , as in

Algorithm 1. However, since an outgoing neighbor �’s flag is only close to, but
not necessarily equal to �’s imax in Algorithm 2, we cannot simply let node k
listen all the time in phase i, as it does in Algorithm 1 at Line 18 when vk ≥ 2i.
This is because otherwise, node � may compute a wrong s ≈ (sum′


 − v′k) in
some phase i ∈ [flag − 2, imax − 1]. Therefore, we let node k set v′k = 2i+3 when

v′k is too big, assuring that node k can listen in Θ( log n
ε2 ) rounds in phase i with

high probability. On the other hand, setting v′k = 2i+3 guarantees that with
high probability any outgoing neighbor � will have a value of c

r not bigger than

a value close to 2i+3

2i (1 − 1
2i )

2i+3−1. Thus, node � will have c
r < 2(1 − 1

2i )
2i+2−1

with high probability at Line 31 and hence it will not compute s in this phase.

Theorem 2. All nodes in Algorithm 2 compute (1± ε) approximations of their

local sums with probability 1−O( 1
n ) in O

(
log2 n+logn logm

ε2

)
rounds.

6 Applications in Computing Random Walk Distributions

6.1 Approximate Random Walk Distribution Algorithm

Suppose a random walk in a radio network starts with an initial distribution
x0 = (x0

1, ..., x
0
n) at time 0, where xi

k denotes the value of node k at time i, for
any 1 ≤ k ≤ n and any 1 ≤ i ≤ t (Note that

∑
k x

i
k doesn’t have to be 1). The

goal is to let each node k compute an approximation of xt
k, its own value in the

random walk distribution xt at time t.
We assume that each node k knows Δk, the number of k’s outgoing neighbors.

We also assume that a lower bound min on mink x
t
k and an upper bound max on∑

k x
0
k are known to all nodes. In Figure 3, we present Algorithm 3 that computes

an (1 ± ε) approximation of xt
k for each node k. Algorithm 3 uses Algorithm 1

(or Algorithm 2, depending on the radio network model) as a building block.
Each node k in Algorithm 3 takes as input v0k = x0

k, its value at time 0. At
time i, for each 1 ≤ i ≤ t, node k uses the approximate local sum algorithm4 A
at Line 4 to distribute vi−1

k evenly to its outgoing neighbors and get its local sum
vik, which turns out to be a good approximation of xi

k. Finally, node k outputs
vtk, a (1± ε) approximation of xt

k.
To reduce the round complexity of Algorithm 3, we restrict A for input range

[ ε·min
3tn2 ,max]. However, vi−1

k may be smaller than ε·min
3tn . Also, since A can in-

troduce errors on the values of nodes, vi−1
k may exceed its upper bound max.

Therefore, we let node k modify vi−1
k if necessary at Lines 2 and 3, such that

vi−1
k /Δ is always within A’s input range at Line 4. In the appendix, we prove
that Line 2 will only reduce but not increase errors while Line 3 will introduce
at most a ε/2 relative error to vtk at the end of Algorithm 3. We also prove that

4 As we mentioned earlier, A works for input range [ ε·min
3tn2 ,max] by simply scaling

each input in the range to [1, 3tn2·max
ε·min

].



Approximate Local Sums and Their Applications in Radio Networks 253

node k: input v0k = x0
k

Let A be an (1± ε
3t
) approximate local sum algorithm in Figure 1 for input range

[ ε·min
3tn2 ,max], where Lines 4 and 16 in Figure 1 consist of Θ(log(tn))

and Θ( 9t
2 log(tn)

ε2
) iterations instead, respectively.

1 for i = 1 to t
2 if (vi−1

k > max) vi−1
k = max; end if;

3 if (vi−1
k < ε·min

3tn
) vi−1

k = ε·min
3tn

; end if;
4 run A with input vi−1

k /Δk, and get the return value vik;
5 end for
6 return vtk

Fig. 3. Algorithm 3: a (1± ε) approximation algorithm for xt

the amount of errors accumulated over time will not go beyond ±εxt
k and hence

Algorithm 3 is a (1± ε) approximate algorithm for xt
k, as stated in the following

theorem.

Theorem 3. Algorithm 3 computes a (1±ε) approximation of xt
k for every node

k with probability 1−O( 1
n ) in O

(
t3

ε2 log(tn) log
(
tn·max
ε·min

))
rounds.

6.2 Applications: PageRank and Global Sum

An immediate application of Algorithm 3 is to approximate the PageRank values
for nodes in a radio network. In the PageRank problem, a small constant c, called
reset probability, is fixed. The goal is to compute the stationary distribution π
that satisfies

π = π((1− c)P +
c

n
E),

where E is a matrix whose entries are all 1’s, and each entry pkl of P is 1
Δk

if node � is an outgoing neighbor of k, and 0 otherwise. Recall that Δk is the
number of k’s outgoing neighbors. As [2] pointed out, we can rewrite the above
equation as

π =
( c
n

)
1T

∞∑
t=0

(1 − c)kP k.

This implies we can compute the PageRank as follows. Each node k starts with

a uniform input value x0
k = c

n . At time i, node k distributes
xt−1
k

1−c according

to P and receives its value xt
k. Thus we have πk =

∞∑
t=0

xt
k. Since π ≥ c

n , it is

easy to prove that π′
k =

T∑
t=0

xt
k is a (1 − ε

2 ) approximation of πk, where T =

a log( n
εc )

c , for a large enough constant a. Therefore, we can run Algorithm 3 for



254 Z. Liu and M. Herlihy

(1± ε′) approximation to simulate this procedure from time 0 to time T , where
ε′ = ε/3 and the input range of the local sum algorithm A in Algorithm 3

is [
ε c
n

3Tn2 , n · c
n ] = [ εc2

3an3 log( n
εc )

, c]. Given that the relative error is in the range

[(1 − ε
2 )(1 − ε′), (1 − ε′)] ∈ [(1 − ε), (1 − ε/3)] with high probability, It is trivial

to prove the following theorem.

Theorem 4. Each node k in a radio network can compute a (1± ε) approxima-

tion of its PageRank value πk in O
(
T 3

ε2 log(Tn) log
(
Tn
ε

))
rounds with probability

1−O( 1
n ), where T =

log( n
εc )

c .

Another application of Algorithm 3 is to let each node in a radio network
compute an (1 ± ε) approximation of the global sum, the sum of the inputs of
all nodes.

Assume that an upper bound Tε on a mixing time of a random walk on
a connected radio network is known to all nodes. More specifically, every node
knows that the randomwalk distribution xTε at time Tε is a (1± ε

6 ) approximation
of the stationary distribution π, where ε is a small enough constant.

Suppose each node k in the global sum problem has an input vk ∈ {0}∪ [1,m].
To approximate the global sum, each node k first runs Algorithm 3 for (1 ± ε

6 )
approximation with input 1 for Tε time steps, and receives a return value ak.
Then, node k runs Algorithm 3 for (1± ε

6 ) approximation again for Tε time steps,
now with its input vk, and receives a return value bk. It is easy to see that the
global sum S ≈ πkbkn

πkak
= bkn

ak
, and more specifically bkn

ak
is a (1±ε) approximation

of S with high probability, as stated in the following theorem.

Theorem 5. Each node k in a radio network can compute a (1 ± ε) approxi-

mation of the global sum in O
(T 3

ε

ε2 log(Tεn) log
(
Tεnm

ε

))
rounds with probability

1−O( 1
n ).
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A Proof of Algorithm 1

Fact 6 For |t| = 1 and for any n > 1, it holds that et(1 − 1
n ) ≤ (1 + t

n )
n ≤ et.

More specifically, for all positive integers i, it holds that 1
2e ≤

1
e (1 −

1
2i ) ≤

(1− 1
2i )

2i ≤ 1
e .
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It is easy to verify that Algorithm 1 always correctly returns s = 0 for node
k when sumk = 0. If sumk > 0, we can prove the correctness of the algorithm
by the following lemmas.

Lemma 1. Let imax be the maximum integer such that there is an incoming
neighbor � of node k with v
 ∈ [2imax , 2imax+1). Then after the preprocessing
stage, node k has flag = imax with probability 1−O( 1

n2 ).

Lemma 2. In phase i, for each 1 ≤ i ≤ lognm+ 1, node k listens in Θ( log n
ε2 )

rounds with probability 1−O( 1
n3 ).

Lemma 3. Suppose 2i
∗−1 ≤ sumk < 2i

∗
for some 1 ≤ i∗ ≤ lognm + 1. Then

with probability 1− O( 1
n2 ), node k will find i ≤ flag or c

r ≤
1
6 at line 26 in the

first i∗ − 2 phases.

Proof. Let imax be the maximum integer such that there is an incoming neighbor
� of node k with v
 ≥ 2imax . Obviously imax < i∗. By lemma 1, node k will find
flag = imax after the preprocessing stage with probability 1−O( 1

n2 ) and hence
it will find i ≤ flag in the first imax phases with with probability 1−O( 1

n2 ).
Now consider phase i′, for imax < i′ ≤ i∗ − 2. Suppose node k listens in

d logn
ε2 rounds in phase i′, for some constant d. We know that node k receives

no signal with probability (1 − 1
2i′

)sumk < (1 − 1
2i′

)2
i∗−1 ≤ 1

e2 in a round of

phase i′ when it listens. By the Chernoff bound, if node k listens in r = d logn
ε2

rounds in phase i∗ for a large enough constant d, say d ≥ 9/( e
2

6 − 1)2, we know

Pr[c ≥ 1
6r] ≤ Pr[c ≥ (1 + ( e

2

6 − 1)) r
e2 ] ≤ e−d logn( e2

6 −1)2/3 ≤ 1
n3 . Combining this

result and Lemma 2, we can conclude that node k finds c
r < 1

6 at the end of
phase i′ with probability 1−O( 1

n3 ).
Since node k has at most n − 1 incoming neighbors, each having an input

less than 2imax+1, we know that 2i
∗−1 ≤ sumk < 2imax+1(n − 1) and hence

log 2i
∗−1

2imax+1 ≤ logn. That is to say, there are at most logn phases between
phase imax and phase i∗ − 1. Therefore, we can conclude in all phases between
phase imax and phase i∗ − 2, node k cannot find c

r > 1
6 will probability at least

1−O( log n
n3 ) ≥ 1−O( 1

n2 ). This completes the proof. �	

Lemma 4. Suppose 2i
∗−1 ≤ sumk < 2i

∗
for some 1 ≤ i∗ ≤ lognm + 1. Then

with probability 1 − O( 1
n2 ), node k will find both i′ > flag and c

r > 1
6 for the

first time at line 26 in phase i′, where i′ = i∗ − 1 or i′ = i∗.

Lemma 5. Node k returns a (1 + ε) approximation of sumk with probability
1−O( 1

n2 ).

Proof. If sumk = 0, then it is easy to see that none of its incoming neighbors
will broadcast a message and hence node k will always successfully return s = 0.
Now consider 2i

∗−1 ≤ sumk < 2i
∗
for some 1 ≤ i∗ ≤ lognm+ 1. Suppose node

k finds both i′ > flag and c
r > 1

6 for the first time in phase i′, where i′ = i∗ − 1
or i′ = i∗. Then we know that all incoming neighbors of node k have inputs
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smaller than 2i
′
. Also suppose node k listens in d logn

ε2 rounds in phase i′, for

a constant d. Thus at the end of phase i′, node k has r = d log n
ε2 and E[c] =

d logn
ε2 (1− 1

2i′
)sumk > d logn

ε2 (1− 1
2i′

)2
i∗ ≥ d logn

ε2 (1− 1
2i∗−1 )

2i
∗
≥ d logn

(2e)2ε2 = d′ log n
ε2 ,

for a constant d′ = d
4e2 . Again, by the Chernoff bound, Pr[c ≥ (1 + 1

4ε)E[c]] ≤

e
−E[c]ε2

42×3 = e−d′ logn/48. If d and d′ are large enough, we have e−d′ logn/48 < 1
n2

and hence Pr[ cr < (1 + 1
4ε)(1 −

1
2i′

)sumk ] = Pr[c < (1 + 1
4ε)E[c]] ≥ 1 − 1

n2 .

Similarly, we can prove that Pr[ cr > (1− 1
4ε)(1−

1
2i′

)sumk ] ≥ 1− 1
n2 . Therefore,

Pr[(1− 1
4ε)(1−

1
2i′

)sumk < c
r < (1 + 1

4ε)(1−
1
2i′

)sumk ] ≥ 1− 2
n2 .

Now we analyze the accuracy of s computed at line 27 in phase i′. Note that
f(s) = (1− 1

2i′
)s is a strictly decreasing function. Also note that 2i

′−1 ≤ sumk <

2i
′+1. Thus, f((1+ ε)sumk) = (1− 1

2i′
)(1+ε)sumk = (1− 1

2i′
)εsumk(1− 1

2i′
)sumk ≤

(1 − 1
2i′

)ε2
i′−1

(1 − 1
2i′

)sumk ≤ (1e )
ε/2(1 − 1

2i′
)sumk < ( 1

2e)
ε/4(1 − 1

2i′
)sumk <

(1 − 1
4ε)(1 −

1
2i′

)sumk . Similarly, we can prove that f((1 − ε)sumk) = (1 −
1
2i′

)(1−ε)sumk > (1 + 1
4ε)(1 −

1
2i′

)sumk . Therefore, if (1 − 1
4ε)(1 −

1
2i′

)sumk <

(1− 1
2i′

)s < (1 + 1
4ε)(1−

1
2i′

)sumk , we can conclude that the s computed at line
27 satisfies (1 − ε)sumk < s < (1 + ε)sumk. That is, with probability at least
1 − 2

n2 , node k will have (1 − 1
4ε)(1 −

1
2i′

)sumk < c
r < (1 + 1

4ε)(1 −
1
2i′

)sumk at
the end of phase i′ and hence it will get a s which is a (1 + ε) approximation of
sumk. Combining this with Lemma 2 and Lemma 4, we can conclude that node
k returns a (1 + ε) approximation of sumk with probability 1−O( 1

n2 ). �	
It is easy to see thatAlgorithm1finishes inO(lognm· logn

ε2 ) = O( log
2 n+logn logm

ε2 )
rounds. Combining Lemma 5 and the union bound, we immediately prove
Theorem 1.
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Abstract. Theoreticians have studied distributed algorithms in the syn-
chronous radio network model for close to three decades. A significant
fraction of this work focuses on lower bounds for basic communication
problems such as wake-up (symmetry breaking among an unknown set of
nodes) and broadcast (message dissemination through an unknown net-
work topology). In this paper, we introduce a new technique for prov-
ing this type of bound, based on reduction from a probabilistic hitting
game, that simplifies and strengthens much of this existing work. In
more detail, in this single paper we prove new expected time and high
probability lower bounds for wake-up and global broadcast in single and
multi-channel versions of the radio network model both with and with-
out collision detection. In doing so, we are able to reproduce results
that previously spanned a half-dozen papers published over a period of
twenty-five years. In addition to simplifying these existing results, our
technique, in many places, also improves the state of the art: of the eight
bounds we prove, four strictly strengthen the best known previous result
(in terms of time complexity and/or generality of the algorithm class for
which it holds), and three provide the first known non-trivial bound for
the case in question. The fact that the same technique can easily gen-
erate this diverse collection of lower bounds indicates a surprising unity
underlying communication tasks in the radio network model—revealing
that deep down, below the specifics of the problem definition and model
assumptions, communication in this setting reduces to finding efficient
strategies for a simple game.

1 Introduction

In this paper, we introduce a new technique for proving lower bounds for basic
communication tasks in the radio network model. We use this technique to unify,
simplify, and in many cases strengthen the best known lower bounds for two
particularly important problems: wake-up and broadcast.

The Radio Network Model. The radio network model represents a wireless
network as a graph G = (V,E), where the nodes in V correspond to the wireless
devices and the edges inE specify links. Executions proceed in synchronous rounds.
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In each round, each node can choose whether or not to broadcast messages to its
neighbors in G. If multiple neighbors of a given node broadcast during the same
round, however, the messages are lost due to collision. This model was first intro-
duced by Chlamtac and Kutten [4], who used it to study centralized algorithms.
Soon after, Bar-Yehuda et al. [2,3] introduced the model to the distributed algo-
rithms community where variations have since been studied in a large number of
subsequent papers; e.g., [1,20,18,21,13,19,6,10,11,17,9,12,8,7,15,14].

Two of the most investigated problems in the radio network model are wake-
up (basic symmetry breaking among an unknown set of participants in a single
hop network) and broadcast (propagating a message from a source to all nodes in
an unknown multihop network). Lower bounds for these problems are important
because wake-up and/or broadcast reduce to most useful communication tasks
in this setting, and therefore capture something fundamental about the cost of
distributed computation over radio links.

Our Results. In this paper, we introduce a new technique (described below)
for proving lower bounds for wake-up and broadcast in the radio network model.
We use this technique to prove new expected time and high probability lower
bounds for these two problems in the single and multiple channel versions of the
radio network model both with and without collision detection. In doing so, we
reproduce in this single paper a set of existing results that spanned a half-dozen
papers [23,20,18,13,9,7] published over a period of twenty-five years. Our tech-
nique simplifies these existing arguments and establishes a (perhaps) surprising
unity among these diverse problems and model assumptions. Our technique also
strengthens the state of the art. All but one of the results proved in this paper
improve the best known existing result by increasing the time complexity and/or
generalizing the class of algorithms for which the bound holds (many existing
bounds for these problems hold only for uniform algorithms that require nodes
to use a pre-determined sequence of independent broadcast probabilities; all of
our lower bounds, by contrast, hold for all randomized algorithms). In several
cases, we prove the first known bound for the considered assumptions.

The full set of our results with comparisons to existing work are described
in Figure 1. Here we briefly mention three highlights (in the following, n is the
network size and D the network diameter). In Section 6, we significantly simplify
Willard’s seminal Ω(log log n) bound for expected time wake-up with collision
detection [23]. In addition, whereas Willard’s result only holds for uniform al-
gorithms, our new version holds for all algorithms. In Section 7, we prove the
first tight bound for high probability wake-up with multiple channels and the
first known expected time bound in this setting. And in Section 9, we prove that
Kushilevitz and Mansour’s oft-cited Ω(D log (n/D)) lower bound for expected
time broadcast [20] still holds even if we assume multiple channels and/or colli-
sion detection—opening an unexpected gap with the wake-up problem for which
these assumptions improve the achievable time complexity.

Our Technique. Consider the following simple game which we call k-hitting. A
referee secretly selects a target set T ⊆ {1, 2, ..., k}. The game proceeds in rounds.
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In each round, a player (represented by a randomized algorithm) generates a
proposal P . If |P ∩ T | = 1, the player wins. Otherwise, it moves on to the next
round. In Section 3, we leverage a useful combinatorial result due to Alon et al. [1]
to prove that this game requires Ω(log2 k) rounds to solve with high probability
(w.r.t. k), and Ω(log k) rounds in expectation. (Notice, you could propose the
sets of a (k, k)-selective family [5] to solve this problem deterministically, but
this would require Ω(k) proposals in the worst-case.)

These lower bounds are important because in this paper we show that this
basic hitting game reduces to solving wake-up and broadcast under all of the
different combinations of model assumptions that we consider. In other words,
whether or not you are solving wake-up or broadcast, assuming multiple channels
or a single channel, and/or assuming collision detection or no collision detection,
if you can solve the problem quickly you can solve this hitting game quickly. Our
lower bounds on the hitting game, therefore, provide a fundamental speed-limit
for basic communication tasks in the radio network model.

The trick in applying this method is identifying the proper reduction argument
for the assumptions in question. Consider, for example, our reduction for wake-
up with a single channel and no collision detection. Assume some algorithm
A solves wake-up with these assumptions in f(n) rounds, in expectation. As
detailed in Section 5, we can use A to define a player that solves the k-hitting
game in f(k) rounds with the same probability—allowing the relevant hitting
game lower bound to apply. Our strategy for this case is to have the player
simulate A running on all k nodes in a network of size k. For each round of the
simulation, it proposes the ids of the nodes that broadcast, then simulates all
nodes receiving nothing. This is not necessarily a valid simulation of A running
on k nodes: but it does not need to be. What we care about are the simulated
nodes with ids in T : the (unknown to the player) target set for this instance of
the hitting game. The key observation is that in the target execution where only
the nodes in T are active, they will receive nothing until the first round where
one node broadcasts alone—solving wake-up. In the player’s simulation, these
same nodes are also receiving nothing (by the the player’s fixed receive rule) so
they will behave the same way. This will lead to a round of the simulation where
only one node from T (and perhaps other nodes outside of T ) broadcast. The
player will propose these ids, winning the hitting game.

These reductions get more tricky as we add additional assumptions. Consider,
for example, what happens when we now assume collision detection. Maintaining
consistency between the nodes in T in the player simulation and the target
execution becomes more complicated, as the player must now correctly simulate
a collision event whenever two or more nodes from T broadcast—even though
the player does not know T . Adding multiple channels only further complicates
this need for consistency. Each bound in this paper, therefore, is built around its
own clever method for a hitting game player to correctly simulate a wake-up or
broadcast algorithm in such a way that it wins the hitting game with the desired
efficiency. These arguments are simple to understand and sometimes surprisingly
elegant once identified, but can also be elusive before they are first pinned down.
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Existing (exp. | high) This Paper (exp. | high)
wake-up Ω(log n) | Ω(log2 n) [18,13] Ω(log n) | Ω(log2 n) (*)

wake-up/cd Ω(log log n) | Ω(log n) [23] Ω(log log n) | Ω(logn) (*)

wake-up/mc ? | Ω( log2 n
C log log n

+ log n) [9,7] Ω( log n
C + 1) | Ω( log

2 n
C + log n) (*)

wake-up/cd/mc Ω(1) | ? Ω(1) | Ω( logn
log C + log log n)

broadcast Ω(D log (n/D)) [20] Ω(D log (n/D))

broadcast/cd/mc ? Ω(D log (n/D)

Fig. 1. This table summarizes the expected time (exp.) and high probability (high)
results for wake-up and broadcast in the existing literature as well as the new bounds
proved in this paper. In these bounds, n is the network size, C the number of channels,
and D the network diameter. In the problem descriptions, “cd” indicates the collision
detection assumption and “mc” indicates the multiple channels assumption. In the
existing results we provide citation for the paper(s) from which the results derive
and use “?” to indicate a previously open problem. In all cases, the new results in
this paper simplify the existing results. We marked some of our results with “(*)” to
indicate that the existing results assumed the restricted uniform class of algorithms.
All our algorithms hold for all randomized algorithms, so any result marked by “(*)” is
strictly stronger than the existing result. We do not separate expected time and high
probability for the broadcast problems as the tight bounds are the same for both cases.

Roadmap. A full description of our results and how they compare to existing
results is provided in Figure 1. In addition, before we prove each bound in the
sections that follow, we first discuss in more detail the relevant related work. In
Section 2, we formalize our model and the two problems we study. In Section 3,
we formalize the hitting games at the core of our technique then bound from
below their complexity. In Section 4, we detail a general simulation strategy that
we adopt in most of our wake-up bounds (by isolating this general strategy in its
own section we reduce redundancy). Sections 5 to 8 contain our wake-up lower
bounds, and Section 9 contains our broadcast lower bound. (We only need one
section for broadcast as we prove that the same result holds for all assumptions
considered in this paper.)

2 Model and Problems

In this paper we consider variants of the standard radio network model. This
model represents a radio network with a connected undirected graph G = (V,E)
of diameterD. The n = |V | nodes in the graph represent the wireless devices and
the edges in E capture communication proximity. In more detail, executions in
this model proceed in synchronous rounds. In each round, each node can choose
to either transmit a message or receive. In a given round, a node u ∈ V can
receive a message from a node v ∈ V , if and only if the following conditions
hold: (1) u is receiving and v is transmitting; (2) v is u’s neighbor in G; and
(3) v is the only neighbor of u transmitting in this round. The first condition
captures the half-duplex nature of the radio channel and the second condition
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captures message collisions. To achieve the strongest possible lower bounds, we
assume nodes are provided unique ids from [n]. In the following, we say an algo-
rithm is uniform if (active) nodes use a predetermined sequence of independent
broadcast probabilities to determine whether or not to broadcast in each round,
up until they first receive a message. A uniform algorithm, for example, cannot
select its broadcast probability in a given round based on the outcome of a coin
flip during a previous round. This prohibits, among other strategies, allowing
nodes to change their behavior based on whether or not they previously chose
to broadcast (e.g., as in [21]).

In the collision detection variant of the radio network model, a receiving node
u can distinguish between silence (no neighbor is transmitting) and collision
(two or more neighbors are transmitting) in a given round. In this paper, to
achieve the strongest possible lower bounds, when studying single hop networks
we also assume that a transmitter can distinguish between broadcasting alone
and broadcasting simultaneously with one or more other nodes. In themultichan-
nel variant of the radio network model, we use a parameter C ≥ 1 to indicate
the number of orthogonal communication channels available to the nodes. When
C > 1, we generalize the model to require each node to choose in each round
a single channel on which to participate. The communication rules above apply
separately to each channel. In other words, a node u receives a message from v
on channel c in a given round, if and only if in this round: (1) u receives on c
and v transmits on c; (2) v is a neighbor of u; and (3) no other neighbor of u
transmits on c.

We study both expected time and high probability results, where we define the
latter to mean probability at least 1− 1

n . We define the notation [i, j], for integers
i ≤ j, to denote the range {i, i + 1, ..., j}, and define [i], for integer i > 0, to
denote [1, i].

Problems. The wake-up problem assumes a single hop network consisting of
inactive nodes. At the beginning of the execution, an arbitrary subset of these
nodes are activated by an adversary. Inactive nodes can only listen, while ac-
tive nodes execute an arbitrary randomized algorithm. We assume that active
nodes have no advance knowledge of the identities of the other active nodes. The
problem is solved in the first round in which an active node broadcasts alone
(therefore waking up the listening inactive nodes). When considering a model
with collision detection, we still require that an active node broadcasts alone to
solve the problem (e.g., to avoid triviality, we assume that the inactive nodes
need to receive a message to wake-up, and that simply detecting a collision is
not sufficient1). When considering multichannel networks, we assume the inac-
tive nodes are all listening on the same known default channel (say, channel 1).
To solve the problem, therefore, now requires that an active node broadcasts
alone on the default channel.

The broadcast problem assumes a connected multihop graph. At the beginning
of the execution, a single source node u is provided a message m. The problem

1 Without this restriction, the problem is trivially solved by just having all active
nodes broadcast in the first round.



Radio Network Lower Bounds Made Easy 263

is solved once every node in the network has received m. We assume nodes do
not have any advance knowledge of the network topology. As is standard, we
assume that nodes are inactive (can only listen) until they first receive m. As in
the wake-up problem, detecting a collision alone is not sufficient to activate an
inactive node, and in multichannel networks, we assume inactive nodes all listen
on the default channel.

3 The k-Hitting Game

The k-hitting game, defined for some integer k > 1, assumes a player that faces
off against an referee. At the beginning of the game, the referee secretly selects
a target set T ⊆ {1, ..., k}. The game then proceeds in rounds. In each round,
the player generates a proposal P ⊆ {1, ..., k}. If |P ∩ T | = 1, then the player
wins the game. Otherwise, the player moves on to the next round learning no
information other than the fact that its proposal failed. We formalize both enti-
ties as probabilistic automata and assume the player does not know the referee’s
selection and the referee does not know the player’s random bits. Finally, we
define the restricted k-hitting game to be a variant of the game where the target
set is always of size two.

A Useful Combinatorial Result. Before proving lower bounds for our hitting
game we cite an existing combinatorial result that will aid our arguments. To
simplify the presentation of this result, we first define some useful notation. Fix
some integer � > 0. Consider two sets A ⊆ {1, 2, ..., �} and B ⊆ {1, 2, ...�}. We
say that A hits B if |A ∩ B| = 1. Let an �-family be a family of non-empty
subsets of {1, 2, ..., �}. The size of an �-family A , sometimes noted as |A |, is the
number of sets in A . Fix two �-families A and B. We say A hits B, if for every
B ∈ B there exists an A ∈ A such that A hits B. Using this notation, we can
now present the result:

Lemma 1 ([1,15]). There exists a constant β > 0, such that for any integer
� > 1, these two results hold:

1. There exists an �-family R, where |R| ∈ O(�8), such that for every �-family
H that hits R, |H | ∈ Ω(log2 �).

2. There exists an �-family S , where |S | ∈ O(�8), such that for every H ⊆
{1, 2, ..., �}, H hits at most a ( 1

β log (
) )-fraction of the sets in S .

The first result from this lemma was proved in a 1991 paper by Alon et al. [1].
It was established using the probabilistic method and was then used to prove a
Ω(log2 n) lower bound on centralized broadcast solutions in the radio network
model. The second result is a straightforward consequence of the analysis used
in [1], recently isolated and proved by Ghaffari et al. [15].

Lower Bounds for the k-Hitting Game. We now prove lower bounds on
our general and restricted k-hitting games. These results, which concern proba-
bilities, leverage Lemma 1, which concerns combinatorics, in an interesting way
which depends on the size of R and S being polynomial in �.
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Theorem 1. Fix some player P that guarantees, for all k > 1, to solve the
k-hitting game in f(k) rounds, in expectation. It follows that f(k) ∈ Ω(log k).

Proof. Fix any k > 1. Let β and S be the constant and �-family provided by
the second result of Lemma 1 applied to � = k. The lemma tells us that for any
P ⊆ [k], P hits at most a ( 1

β log k )-fraction of the sets in S . It follows that for

any k-family H , such that |H | < β log k
2 , H hits less than half the sets in S .

We now use these observations to prove our theorem. Let P be a k-hitting
game player. Consider a referee that selects the target set by choosing a set T
from S with uniform randomness. Let H be the first �β log k

2 � − 1 proposals
generated by P in a given instance of the game. By our above observation, this
sequence of proposals hits less than half the sets in S . Because the target set
was chosen from S with randomness that was uniform and independent of the
randomness used by P to generate its proposals, it follows that the probability
that H hits the target is less than 1/2. To conclude, we note that f(k) must
therefore be larger than �β log k

2 � − 1 ∈ Ω(log k), as required by the theorem.

Theorem 2. Fix some player P that guarantees, for all k > 1, to solve the
k-hitting game in f(k) rounds with probability at least 1 − 1

k . It follows that

f(k) ∈ Ω(log2 k).

Proof. Fix any � > 1. Let R be the �-family provided by the first result of
Lemma 1 applied to this value. Let t = |R|. We know from the lemma that
t ∈ O(�8).

To achieve our bound, we will consider the behavior of a player P in the k-
hitting game for k = t+1. As in Theorem 1, we have our referee select its target
set by choosing a set from R with uniform randomness. (Notice, in this case, our
referee is actually making things easier for the player by restricting its choices
to only the values in [�] even though the game is defined for the value set [k],
which is larger. As we will show, this advantage does not help the player much.)

Let c log2 (�), for some constant c > 0, be the exact lower bound from the
first result of Lemma 1. Let H be the first �c log2 (�)� − 1 proposals generated
by P in a given instance of the game. Lemma 1 tells us that there is at least
one set R ∈ R that H does not hit. Because the target set was chosen from R
with randomness that was uniform and independent of the randomness used by
P , it follows that the probability that H misses the target is at least 1/t (recall
that t is the size of R). Inverting this probability, it follows that the probability
that P wins the game with the proposals represented by H is less than or equal
to 1 − 1

t = 1 − 1
k−1 < 1 − 1

k . It follows that f(k) must be larger than |H | and
therefore must be of size at least c log2 (�) ∈ Ω(log2 (�)). To conclude the proof,
we note that k ∈ O(�8), from which it follows that � ∈ Ω(k1/8) and therefore
that log2 (�) ∈ Ω(log2 k), as required by the theorem.

The below theorem is proved similar to Theorem 2. The details can be found in
the full version of this paper [22].
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Theorem 3. Fix some player P that guarantees, for all k > 1, to solve the
restricted k-hitting game in f(k) rounds with probability at least 1− 1

k . It follows
that f(k) ∈ Ω(log k).

4 Simulation Strategy

Most of our bounds for the wake-up problem use a similar simulation strategy. To
reduce redundancy, we define the basics of the strategy and its accompanying
notation in its own section. In more detail, the wake-up simulation strategy,
defined with respect to a wake-up algorithm A, is a general strategy for a k-
hitting game player to generate proposals based on a local simulation of A. The
strategy works as follows. The player simulates A running on all k nodes in
a k-node network satisfying the same assumptions on collision detection and
channels assumed by A. For each simulated round, the player will generate one
or more proposals for the hitting game. In more detail, at the beginning of a
new simulated round, the player simulates the k nodes running A up until the
point that they make a broadcast decision. At this point, the player applies a
proposal rule that transforms these decisions into one or more proposals for the
hitting game. The player then makes these proposals, one by one, in the game.
If none of these proposals wins the hitting game, then the player most complete
the current simulated round by using a receive rule to specify what each node
receives; i.e., silence, a message, or a collision (if collision detection is assumed
by A). In other words, a given application of the wake-up simulation strategy
is defined by two things: a definition of the proposal rule and receive rule used
by the player to generate proposals from the simulation, and specify receive
behavior in the simulation, respectively.

To analyze a wake-up simulation strategy for a given instance of the k-hitting
game with target set T , we define the target execution for this instance to be
the execution that would result if A was run in a network where only the nodes
corresponding to T were active and they used the same random bits as the player
uses on their behalf in the simulation. We say the simulation strategy is consistent
with its target execution through a given round, if the nodes corresponding to
T in the simulation behave the same (e.g., send and receive the same messages)
as the corresponding nodes in the target execution through this round.

5 Lower Bounds for Wake-Up

We begin by proving tight lower bounds for both expected and high probability
solutions to the wake-up problem in the most standard set of assumptions used
with the radio network model: a single channel and no collision detection. As
explained below, our bounds are tight and generalize the best know previous
bounds, which hold only for uniform algorithms, to now apply to all randomized
algorithms. (We note that a preliminary version of our high probability bound
below appeared as an aside in our previous work on structuring multichannel
radio networks [8]).
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In terms of related work, the decay strategy introduced Bar-Yehuda et al. [3]
solves the wake-up problem in this setting with high probability in O(log2 n)
rounds and in expectation in O(log n) rounds. In 2002, Jurdzinski and Sta-

chowiak [18] proved the necessity of Ω
( logn log (1/ε)
log logn+log log (1/ε)

)
rounds to solve wake-

up with probability at least 1− ε, which proves decay optimal within a log logn
factor. Four years later, Farach-Colton et al. [13] removed the log log n factor by
applying linear programming techniques. As mentioned, these existing bounds
only apply to uniform algorithms in which nodes use a predetermined sequence
of broadcast probabilities. (Section 3.1 of [13] claims to extend their result to a
slightly more general class of uniform algorithms in which a node can choose a
uniform algorithm to run based on its unique id.)

Theorem 4. Let A be an algorithm that solves wake-up with high probability in
f(n) rounds in the radio network model with a single channel and no collision
detection. It follows that f(n) ∈ Ω(log2 n).

Proof. Fix some wake-up algorithm A that solves wake-up in f(n) rounds with
high probability in a network with one channel and no collision detection. We
start by defining a wake-up simulation strategy that uses A (see Section 4). In
particular, consider the proposal rule that has the player propose the id of every
node that broadcasts in the current simulated round, and the receive rule that
always has all nodes receive nothing.

Let PA be the k-hitting game player that uses this simulation strategy. We
argue that PA solves the k-hitting game in f(k) rounds with high probability in
k. To see why, notice that for a given instance of the hitting game with target T ,
PA is consistent with the target execution until the receive rule of the first round
in which exactly one node in T broadcasts. (In all previous rounds, PA correctly
simulates the nodes in T receiving nothing, as its receive rule has all nodes always
receive nothing.) Assume A solves wake-up in round r in the target execution.
It follows that r is the first round in which a node in T broadcasts alone in this
execution. By our above assumption, PA is consistent with the target execution
up to the application of the receive rule in r. In particular, it is consistent when
it applies the proposal rule for simulated round r. By assumption, this proposal
will include exactly one node from T—winning the hitting game.

We assumed that A solves wake-up in f(n) rounds with high probability in n.
Combined with our above argument, it follows that PA solves the k-hitting game
in f(k) rounds with high probability in k. To complete our lower bound, we apply
a contradiction argument. In particular, assume for contradiction that there ex-
ists a wake-up algorithm A that solves wake-up in f(n) ∈ o(log2 n) rounds, with
high probability. The hitting game player PA defined above will therefore solve
k-hitting in o(log2 n) rounds with high probability. This contradicts Theorem 2.

Theorem 5. Let A be an algorithm that solves wake-up in f(n) rounds, in
expectation, in the radio network model with a single channel and no collision
detection. It follows that f(n) ∈ Ω(logn).



Radio Network Lower Bounds Made Easy 267

Proof (Idea). It is sufficient to apply the same argument as in Theorem 4. The
only change is in the final contradiction argument, where we simply replace
log2 n with logn, and now contradict Theorem 1.

6 Lower Bounds for Wake-Up with Collision Detection

We prove tight lower bounds for expected and high probability bounds on the
wake-up problem in the radio network model with collision detection. In terms
of related work, a seminal paper by Willard [23] describes a wake-up algorithm
(he called the problem “selection resolution,” but the definition in this setting
is functionally identical) which solves the problem in O(log logn) rounds, in ex-
pectation. He also proved the result tight with an Ω(log logn) lower bound for
uniform algorithms. As Willard himself admits, his lower bound proof is mathe-
matically complex. Below, we significantly simplify this bound and generalize it
to hold for all algorithms. From a high-probability perspective, many solutions
exist in folklore for solving wake-up (and related problems) in O(log n) rounds.
Indeed, leveraging collision detection, wake-up can be solved deterministically in
O(log n) rounds (e.g., use the detector to allow the active nodes to move con-
sistently through a binary search tree to identify the smallest active id). The
necessity of Ω(log n) rounds seems also to exist in folklore.

We begin with our high probability result. Our simulation strategy is more
difficult to deploy here because the player must now somehow correctly simu-
late the collision detection among the nodes in the (unknown) target set T . To
overcome this difficulty, we apply our solution to networks in which only two
nodes are activated and then achieve a contradiction with our lower bound on
restricted hitting. The details of this proof are deferred to the full version [22].

Theorem 6. Let A be an algorithm that solves wake-up with high probability
in f(n) rounds in the radio network model with a single channel and collision
detection. It follows that f(n) ∈ Ω(logn).

We now simplify and strengthen Willard’s bound of Ω(log logn) rounds for
expected time wake up. At the core of our result is a pleasingly simple but
surprisingly useful observation: if you can solve wake-up in t rounds with collision
detection, you can then use this strategy to solve the hitting game in 2t rounds by
simulating (carefully) all possible sequences of outcomes for the collision detector
behavior in a t round execution. Solving the problem in o(log logn) rounds (in
expectation) with collision detection, therefore, yields a hitting game solution
that requires only 2o(log log k) = o(log k) rounds (in expectation), contradicting
Theorem 1—our lower bound on expected time solutions to the hitting game.

Theorem 7. Let A be an algorithm that solves wake-up in f(n) rounds, in
expectation, in the radio network model with a single channel and collision de-
tection. It follows that f(n) ∈ Ω(log logn).

Proof. Fix some algorithmA that solves wake-up in f(n) rounds, in expectation,
in this setting. We start by defining a player PA that simulates A to solve k-
hitting in no more than 2f(k)+1 rounds, in expectation. Our player will use a
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variant of the simulation strategy defined in Section 4 and used in the preceding
proofs, and we will, therefore, adopt much of the terminology of this approach
(with some minor modifications). In more detail, in this variant, PA will run a
different fixed-length simulation of A, starting from round 1, to generate each of
its guesses in the hitting game. Most of these simulations will not be consistent
with the relevant target execution. We will show, however, that in the case that
the target execution solves wake-up, at least one such simulation is consistent
and will therefore win the game.

In more detail, for a given k, let Bf(k) be a full rooted binary tree of depth
f(k). We define a tree node labeling �, such that for every non-root node u,
�(u) = 0 if u is a left child of its parent and �(u) = 1 if u is a right child (by some
consistent orientation). Let d be the depth function (i.e., d(u) is the depth of u
in the tree with d(root) = 0). Finally, let p(u) return the d(u)-bit binary string
defined by the sequence of labels (by �) on the path that descends from the root
to u (including u). For example, if the path from the root to u goes from the
root to its right child v, then from v to its left child u, p(u) = 10.

Our player PA, when playing the k-hitting game, generate one guess for each
node in Bf(k). Fix some such node u. To generate a guess for u, the player
first executes a d(u)-round simulation of A, running on all k nodes in a k-node
network, using p(u) to specify collision detector behavior (in a manner described
below). After it simulates these d(u) full rounds, it then simulates just enough
of round d(u) + 1 to determine the simulated nodes’ broadcast decisions in this
round. The player proposes the id of the nodes that choose to broadcast in this
final partial round. (When generating a guess for the root node, the player simply
proposes the nodes that broadcast in the first round.)

In more detail, for each round r ≤ d(u) of the simulation for tree node u, if
the rth bit of p(u) is 0, the player simulates all nodes detecting silence, and if
the bit is 1, it simulates all nodes detecting a collision. As a final technicality, let
κ be the random bits provided to the player to resolve its random choices. We
assume that for each simulated node i, the players uses the same bits from κ for
i in each of its simulations. We do not, therefore, assume independence between
different simulations.

Consider the target execution of A for a given instance of the hitting game
with target set T and random bits κ. Assume that the target execution defined
for these bits and target set solves wake-up in some round r ≤ f(k). Notice
that in every round r′ < r, there are only two possible behaviors: (1) no nodes
broadcast (and all nodes therefore receive and detect nothing); and (2) two or
more nodes broadcast (and all nodes therefore detect a collision). By definition,
there exists a node u in Bf(k) such that p(u) is a binary string of length r − 1,
where for each bit position i in the string, i = 0 if no nodes broadcast in that
round of the target execution, and i = 1 if two or more nodes broadcast in
that round of the target execution. It follows that the first r − 1 rounds of the
simulation associated with tree node u are consistent with the target execution.
Because exactly one node from T broadcasts in round r of the target execution,
and the u-simulation is consistent through round r − 1, then this same single
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node from T will broadcast in the simulated beginning of round r. The player’s
proposal associated with u will therefore win the hitting game.

Pulling together the pieces, by assumption, the target execution for a given T
and κ solves wake-up in f(k) rounds, in expectation. It follows that our player
solves k-hitting with the same probability. The number of guesses required to
solve the problem in this case is bounded by the number of nodes in Bf(k) (as

there is one guess per node), which is 2f(k)+1−1. We can now conclude with our
standard style of contradiction argument. Assume for contradiction that there
exists an algorithm A that solves wake-up with a single channel and collision
detection in f(n) ∈ o(log logn) rounds, in expectation. It follows that PA wins
the k-hitting game in 2f(k)+1 ∈ o(log k) rounds, in expectation. This contradicts
Theorem 1.

7 Lower Bounds for Wake-Up with Multiple Channels

In recent years, theoreticians have paid increasing attention to multichannel
versions of the radio network model (e.g., [10,11,17,9,12,8,7]). These investiga-
tions are motivated by the reality that most network cards allow the device to
choose its channel from among multiple available channels. From a theoretical
perspective, the interesting question is how to leverage the parallelism inherent
in multiple channels to improve time complexity for basic communication prob-
lems. Daum et al. [7], building on results from Dolev et al. [9], prove a lower

bound of Ω
(

log2 n
C log logn + logn

)
rounds for solving wake-up with high probabil-

ity and uniform algorithms in a network with C channels. A lower bound for
expected-time solutions was left open. The best known upper bound solves the

problem in O
(
log2 n

C + logn
)
rounds with high probability and in O

(
logn
C + 1

)
rounds in expectation [7].

In the theorems that follow, we prove new lower bounds that match the best
known upper bounds. These bounds close the log logn gap that exists with
the best known previous results, establish the first non-trivial expected time
bound, and strengthen the results to hold for all algorithms. To prove our high
probability bound, both terms in the sum are tackled separately. To prove the
first term, we show that a player can simulate an algorithm using C channels by
making C proposals for each simulated round—one for each channel—to test if T
has an isolated broadcast on any channel. The second term uses a reduction from
the restricted hitting game. The expected time result adopts a similar strategy as
the first term. The proofs for these theorems are deferred to the full version [22].

Theorem 8. Let A be an algorithm that solves wake-up with high probability in
f(n, C) rounds in the radio network model with C ≥ 1 channels. It follows that
for every C ≥ 1, f(n, C) ∈ Ω(log2 n/C + logn).

Theorem 9. Let A be an algorithm that solves wake-up in f(n, C) rounds, in
expectation, in the radio network model with C ≥ 1 channels. It follows that for
every C ≥ 1, f(n, C) ∈ Ω(log n/C + 1).



270 C. Newport

8 Lower Bound for Wake-Up with Collision Detection
and Multiple Channels

The final combination of model parameters to consider for wake-up is colli-
sion detection and multiple channels. No non-trivial upper or lower bounds are
currently known for this case. We rectify this omission by proving below that
Ω(log n/ log C + log logn) rounds are necessary to solve this problem with high
probability in this setting. Notice, this bound represents an interesting split with
the preceding multichannel results (which assume no collision detection), as the
speed-up is now logarithmic in C instead of linear. On the other hand, the log2 n
term in the previous case is replaced here with a faster logn term. Collision
detection, in other words, seems to be powerful enough on its own that adding
extra channels does not yield much extra complexity gains. We do not consider
an expected time result for this setting. This is because even without collision de-
tection, the best known upper bound for multichannel networks [7] approaches
O(1) time (which is trivially optimal) quickly as the number of channels in-
creases. The proof for the below theorem, which combines techniques from both
Section 6 and Section 7, is deferred to the full version[22].

Theorem 10. Let A be an algorithm that solves wake-up with high probability
in f(n, C) rounds in the radio network model with C ≥ 1 channels and collision
detection. It follows that for every C ≥ 1, f(n, C) ∈ Ω(log n/ log C + log logn).

9 Lower Bound for Global Broadcast

We now turn our attention to proving a lower bound for global broadcast. The
tight bound for this problem is Θ(D log (n/D) + log2 n) rounds for a connected
multihop network of size n with diameter D. The lower bound holds for ex-
pected time solutions and the matching upper bounds hold with high probabil-
ity [3,19,6]. The log2 n term was established in [1], where it was shown to hold
even for centralized algorithms, and the D log (n/D) term was later proved by
Kushilevitz and Mansour [20]. Below, we apply our new technique to reprove
(and significantly simplify) the Ω(D log (n/D)) lower bound for expected time
solutions to global broadcast. (We do not also reprove the Ω(log2 n) term be-
cause this bound is proved using the same combinatorial result from [1] that
provides the mathematical foundation for our technique. To reprove the result
of [1] using [1] is needlessly circular.)

Perhaps surprisingly, we show that this bound holds even if we allow multiple
channels and collision detection, both of which are assumptions that break the
original lower bound from [20]. Notice, this indicates a interesting split with
the wake-up problem for which these assumptions improve the achievable time
complexity.

It is important to remind the reader at this point that the definition of col-
lision detection we consider in this paper does not allow a collision to activate
a node. Instead, activation still requires that a node receive a message. Once
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activated, however, nodes can use collision detection to speed up or otherwise
simplify contention management. The assumption that collisions can activate
nodes (essentially) reduces the problem to the less well-studied synchronous start
variation in which all nodes activate in round 1 (if collisions can activate nodes
then the source can instigate a wave of collisions that activates the entire net-
work quickly). Recent work solved the synchronous start broadcast problem in
O(D+polylog(n)) rounds using collision detection [16]. The problem’s complex-
ity without collision detection remains open.

Returning to our result, the proof details for the theorem below are deferred
to the full version of this paper [22]. The intuition, however, is straightforward
to describe. Given n nodes, we can construct a network consisting of D ordered
layers each containing n/D nodes. Imagine that only a subset of the nodes in
each layer are connected to the next layer. The only way to advance the message
from one layer to the next, therefore, is to isolate a single node from this unknown
set of connected nodes. Accordingly, it is not hard to reduce our hitting game to
this task, reducing the challenge of broadcast to solving D sequential instances
of the (n/D)-hitting game, where each instance requires Ω(log (n/D)) rounds.

Theorem 11. Let A be an algorithm that solves global broadcast in f(n, C, D)
rounds, in expectation, in the radio network model with collision detection, C ≥ 1
channels, and a network topology with diameter D. It follows that for every
C, D ≥ 1, f(n, C, D) ∈ Ω(D log (n/D)).

Acknowledgments. The author acknowledges Mohsen Ghaffari for his helpful
conversations regarding the combinatorial results from [1,15]. The author also
acknowledges Sebastian Daum and Fabian Kuhn for their feedback on early
applications of this technique to the wake-up problem.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A Lower Bound for Radio Broadcast.
Journal of Computer and System Sciences 43(2), 290–298 (1991)

2. Bar-Yehuda, R., Goldreigch, O., Itai, A.: On the Time-Complexity of Broadcast
in Multi-Hop Radio Networks: An Exponential Gap between Determinism and
Randomization. In: Proceedings of the ACM Conference on Distributed Computing
(1987)

3. Bar-Yehuda, R., Goldreigch, O., Itai, A.: On the Time-Complexity of Broadcast
in Multi-Hop Radio Networks: An Exponential Gap between Determinism and
Randomization. Journal of Computer and System Sciences 45(1), 104–126 (1992)

4. Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks–Problem Analysis
and Protocol Design. IEEE Transactions on Communications 33(12), 1240–1246
(1985)

5. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed Broadcast in Radio Networks
of Unknown Topology. Theoretical Computer Science 302(1-3) (2003)

6. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. Journal of Algorithms 60, 115–143 (2006)



272 C. Newport

7. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader Election in Shared Spectrum
Radio Networks. In: Proceedings of the ACM Conference on Distributed Comput-
ing. ACM (2012)

8. Daum, S., Kuhn, F., Newport, C.: Efficient Symmetry Breaking in Multi-Channel
Radio Networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 238–
252. Springer, Heidelberg (2012)

9. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The Wireless Synchro-
nization Problem. In: Proceedings of the ACM Conference on Distributed Com-
puting (2009)

10. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-channel Ra-
dio Network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer,
Heidelberg (2007)

11. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure Communication Over
Radio Channels. In: Proceedings of the ACM Conference on Distributed Comput-
ing (2008)

12. Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging Channel Diversity
to Gain Efficiency and Robustness for Wireless Broadcast. In: Proceedings of the
ACM Conference on Distributed Computing (2011)

13. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower Bounds for Clear
Transmissions in Radio Networks. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.)
LATIN 2006. LNCS, vol. 3887, pp. 447–454. Springer, Heidelberg (2006)

14. Ghaffari, M., Haeupler, B.: Near Optimal Leader Election in Multi-Hop Radio
Networks (2013)

15. Ghaffari, M., Haeupler, B., Khabbazian, M.: A Bound on the Throughput of Radio
Networks. CoRR (ArXiv), abs/1302.0264 (February 2013)

16. Ghaffari, M., Haeupler, B., Khabbazian, M.: Randomized Broadcast in Radio Net-
works with Collision Detection. In: Proceedings of the ACM Conference on Dis-
tributed Computing (2013)

17. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-Resilient In-
formation Exchange. In: Proceedings of the IEEE International Conference on
Computer Communications (2009)
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Abstract. We study the correctness of shared data structures under
reads-write concurrency. A popular approach to ensuring correctness of
read-only operations in the presence of concurrent update, is read-set
validation, which checks that all read variables have not changed since
they were first read. In practice, this approach is often too conserva-
tive, which adversely affects performance. In this paper, we introduce a
new framework for reasoning about correctness of data structures under
reads-write concurrency, which replaces validation of the entire read-set
with more general criteria. Namely, instead of verifying that all read
shared variables still hold the values read from them, we verify abstract
conditions over the shared variables, which we call base conditions. We
show that reading values that satisfy some base condition at every point
in time implies correctness of read-only operations executing in parallel
with updates. Somewhat surprisingly, the resulting correctness guarantee
is not equivalent to linearizability, and is instead captured through two
new conditions: validity and regularity. Roughly speaking, the former re-
quires that a read-only operation never reaches a state unreachable in a
sequential execution; the latter generalizes Lamport’s notion of regular-
ity for arbitrary data structures, and is weaker than linearizability. We
further extend our framework to capture also linearizability. We illus-
trate how our framework can be applied for reasoning about correctness
of a variety of implementations of data structures such as linked lists.

1 Introduction

Motivation Concurrency is an essential aspect of computing nowadays. As part
of the paradigm shift towards concurrency, we face a vast amount of legacy
sequential code that needs to be parallelized. A key challenge for parallelization is
verifying the correctness of the new or transformed code. There is a fundamental
tradeoff between generality and performance in state-of-the-art approaches to
correct parallelization. General purpose methodologies, such as transactional
memory [13,23] and coarse-grained locking, which do not take into account the
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inner workings of a specific data structure, are out-performed by hand-tailored
fine-grained solutions [19]. Yet the latter are notoriously difficult to develop and
verify. In this work, we take a step towards mitigating this tradeoff.

It has been observed by many that correctly implementing concurrent modi-
fications of a data structure is extremely hard, and moreover, contention among
writers can severely hamper performance [21]. It is therefore not surprising that
many approaches do not allow write-write concurrency; these include the read-
copy-update (RCU) approach [18], flat-combining [12], coarse-grained readers-
writer locking [8], and pessimistic software lock-elision [1]. It has been shown
that such methodologies can perform better than ones that allow write-write
concurrency, both when there are very few updates relative to queries [18] and
when writes contend heavily [12]. We focus here on solutions that allow only
read-read and read-write concurrency.

A popular approach to ensuring correctness of read-only operations in the
presence of concurrent updates, is read-set validation, which checks that no
shared variables have changed since they were first read. In practice, this ap-
proach is often too conservative, which adversely affects performance. For exam-
ple, when traversing a linked list, it suffices to require that the last read node
is connected to the rest of the list; there is no need to verify the values of other
traversed nodes, since the operation no longer depends on them. In this paper,
we introduce a new framework for reasoning about correctness of concurrent
data structures, which replaces validation of the entire read-set with more gen-
eral conditions: instead of verifying that all read shared variables still hold the
values read from them, we verify abstract conditions over the variables. These
are captured by our new notion of base conditions.

Roughly speaking, a base condition of a read-only operation at time t, is
a predicate over shared variables, (typically ones read by the operation), that
determines the local state the operation has reached at time t. Base conditions
are defined over sequential code. Intuitively, they represent invariants the read-
only operation relies upon in sequential executions. We show that the operation’s
correctness in a concurrent execution depends on whether these invariants are
preserved by update operations executed concurrently with the read-only one.
We capture this formally by requiring each state in every read-only operation
to have a base point of some base condition, that is, a point in the execution
where the base condition holds. In the linked list example – it does not hurt to
see old values in one section of the list and new ones in another section, as long
as we read every next pointer consistently with the element it points to. Indeed,
this is the intuition behind the famous hand-over-hand locking (lock-coupling)
approach [20,3].

Our framework yields a methodology for verifiable reads-write concurrency. In
essence, it suffices for programmers to identify base conditions for their sequential
data structure’s read-only operations. Then, they can transform their sequential
code using means such as readers-writer locks or RCU, to ensure that read-only
operations have base points when run concurrently with updates.
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It is worth noting that there is a degree of freedom in defining base conditions.
If coarsely defined, they can constitute the validity of the entire read-set, yielding
coarse-grained synchronization as in snapshot isolation and transactional mem-
ories. Yet using more precise observations based on the data structure’s inner
workings can lead to fine-grained base conditions and to better concurrency. Our
formalism thus applies to solutions ranging from validation of the entire read-set
[9], through multi-versioned concurrency control [5], which has read-only opera-
tions read a consistent snapshot of their entire read-set, to fine-grained solutions
that hold a small number of locks, like hand-over-hand locking.

Overview of Contributions This paper makes several contributions that arise
from our observation regarding the key role of base conditions. We observe that
obtaining base points of base conditions guarantees a property we call validity,
which specifies that a concurrent execution does not reach local states that are
not reachable in sequential ones. Intuitively, this property is needed in order to
avoid situations like division by zero during the execution of the operation. To
incorporate read-time order, we restrict base point locations to ones that fol-
low all operations that precede the read-only operation, and precedes ones that
ensue it. Somewhat surprisingly, this does not suffice for the commonly-used
correctness criterion of linearizability (atomicity) [14] or even sequential consis-
tency [15] (discussed in the full paper [17]). Rather, it guarantees a correctness
notion weaker than linearizability, similar to Lamport’s regularity semantics for
registers, which we extend here for general objects for the first time.

In Section 2, we present a formal model for shared memory data structure im-
plementations and executions, and define correctness criteria. Section 3 presents
our methodology for achieving regularity and validity: We formally define the no-
tion of a base condition, as well as base points, which link the sequentially-defined
base conditions to concurrent executions. We assert that base point consistency
implies validity, and that the more restricted base point condition, which we call
regularity base point consistency, implies regularity (formal proofs appear in the
full paper). We proceed to exemplify our methodology for a standard linked list
implementation, in Section 4 (see the full paper for more examples). In Section 5
we turn to extend the result for linearizability. We define a condition on update
operations, namely, having a single visible mutation point (SVMP), which along
with regularity base point consistency ensures linearizability.

We note that we see this paper as the first step in an effort to simplify rea-
soning about fine-grained concurrent implementations. It opens many directions
for future research, which we overview in Section 6. Due to space considerations,
some formal definitions and proofs are deferred to the full paper, as is our result
about sequential consistency.

Comparison with Other Approaches The regularity correctness condition was
introduced by Lamport [16] for registers. To the best of our knowledge, the
regularity of a data structure as we present in this paper is a new extension of
the definition.
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Using our methodology, proving correctness relies on defining a base condi-
tion for every state in a given sequential implementation. One easy way to do
so is to define base conditions that capture the entire read-set, i.e., specify that
there is a point in the execution where all shared variables the operation has
read hold the values that were first read from them. But often, such a defini-
tion of base conditions is too strict, and spuriously excludes correct concurrent
executions. Our definition generalizes it and thus allows for more parallelism in
implementations.

Opacity [11] defines a sufficient condition for validity and linearizability, but
not a necessary one. It requires that every transaction see a consistent snapshot
of all values it reads, i.e., that all these values belong to the same sequentially
reachable state. We relax the restriction on shared states busing base conditions.

Snapshot isolation [4] guarantees that no operation ever sees updates of con-
current operations. This restriction is a special case of the possible base points
that our base point consistency criterion defines, and thus also implies our con-
dition for the entire read-set.

We prove that the SVMP condition alongwith regularity base point consistency
suffices for linearizability. There aremechanisms, for example, transactionalmem-
ory implementations [9], for which it is easy to see that these conditions hold for
base conditions that capture the entire read-set. Thus, the theorems that we prove
imply, in particular, correctness of such implementations.

In this paper we focus on correctness conditions that can be used for deriving
a correct data structure that allows reads-write concurrency from a sequen-
tial implementation. The implementation itself may rely on known techniques
such as locking, RCU [18], pessimistic lock-elision [1], or any combinations of
those, such as RCU combined with fine-grained locking [2]. There are several
techniques, such as flat-combining [12] and read-write locking [8], that can nat-
urally expand such an implementation to support also write-write concurrency
by adding synchronization among update operations.

Algorithm designers usually prove linearizability of by identifying a serializa-
tion point for every operation, showing the existence of a specific partial ordering
of operations [7], or using rely-guarantee reasoning [24]. Our approach simplifies
reasoning – all the designer needs to do now is identify a base condition for
every state in the existing sequential implementation, and show that it holds
under concurrency. This is often easier than finding and proving serialization
points, as we exemplify. In essence, we break up the task of proving data struc-
ture correctness into a generic part, which we prove once and for all, and a
shorter, algorithm-specific part. Given our results, one does not need to prove
correctness explicitly (e.g., using linearization points or rely-guarantee reason-
ing, which typically result in complex proofs). Rather, it suffices to prove the
much simpler conditions that read-only operations have base points and updates
have an SVMP, and linearizability follows from our theorems. Another approach
that simplifies verifiable parallelization is to re-write the data structure using
primitives that guarantee linearizability such as LLX and SCX [6]. Whereas the
latter focuses on non-blocking concurrent data structure implementations using
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their primitive, our work is focused on reads-write concurrency, and does not
restrict the implementation; in particular, we target lock-based implementations
as well as non-blocking ones.

2 Model and Correctness Definitions

We consider a shared memory model where each process performs a sequence
of operations on shared data structures. The data structures are implemented
using a set X = {x1, x2, ...} of shared variables. The shared variables support
atomic read and write operations (i.e., are atomic registers), and are used to
implement more complex data structures. The values in the xi’s are taken from
some domain V .

2.1 Data Structures and Sequential Executions

A data structure implementation (algorithm) is defined as follows:

– A set of states, S, were a shared state s ∈ S is a mapping s : X → V ,
assigning values to all shared variables. A set S0 ⊆ S defines initial states.

– A set of operations representing methods and their parameters. For example,
find(7) is an operation. Each operation op is a state machine defined by:
• A set of local states Lop, which are usually given as a set of mappings l
of values to local variables. For example, for a local state l, l(y) refers to
the value of the local variable y in l. Lop contains a special initial local
state ⊥∈ Lop.

• A deterministic transition function τop(Lop×S)→ Steps×Lop×S where
step∈ Steps is a transition label, which can be invoke, a ← read(xi),
write(xi,v), or return(v) (see the full paper for more details). Note that
there are no atomic read-modify-write steps. Invoke and return steps
interact with the application while read and write steps interact with
the shared memory.

We assume that every operation has an isolated state machine, which begins
executing from local state ⊥.

For a transition τ(l, s) = 〈step, l′, s′〉, l determines the step. If step is an
invoke, return, or write step, then l′ is uniquely defined by l. If step is a read
step, then l′ is defined by l and s, specifically, read(xi) is determined by s(xi).
Since only write steps can change the content of shared variables, s = s′ for
invoke, return, and read steps.

For the purpose of our discussion, we assume the entire shared memory is
statically allocated. This means that every read step is defined for every shared
state in S. One can simulate dynamic allocation in this model by writing to
new variables that were not previously used. Memory can be freed by writing a
special value, e.g., “invalid”, to it.

A state consists of a local state l and a shared state s. By a slight abuse of
terminology, in the following, we will often omit either shared or local component
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of the state if its content is immaterial to the discussion. A sequential execution
of an operation is an alternating sequence of steps and states with transitions
being according to τ . A sequential execution of a data structure is a sequence
of operation executions that begins in an initial state; see the full paper for a
formal definition. A read-only operation is an operation that does not perform
write steps in any execution. All other operations are update operations.

A state is sequentially reachable if it is reachable in some sequential execution
of a data structure. By definition, every initial state is sequentially reachable.
The post-state of an invocation of operation o in execution μ is the shared state
of the data structure after o’s return step in μ; the pre-state is the shared state
before o’s invoke step. Recall that read-only operations do not change the shared
state and execution of update operations is serial. Therefore, every pre-state
and post-state of an update operation in μ is sequentially reachable. A state st′

is sequentially reachable from a state st if there exists a sequential execution
fragment that starts at st and ends at st′.

In order to simplify the discussion of initialization, we assume that every
execution begins with a dummy (initializing) update operation that does not
overlap any other operation.

2.2 Correctness Conditions for Concurrent Data Structures

A concurrent execution fragment of a data structure is a sequence of interleaved
states and steps of different operations, where state consists of a set of local
states {li, ..., lj} and a shared state sk, where every li is a local state of a pending
operation. A concurrent execution of a data structure is a concurrent execution
fragment of a data structure that starts from an initial shared state. Note that
a sequential execution is a special case of concurrent execution. An example of
a concurrent execution is detailed in the full paper.

A single-writer multiple-reader (SWMR) execution is one in which update
operations are not interleaved; read-only operations may interleave with other
read-only operations and with update operations. In the remainder of this paper
we discuss only SWMR executions.

For an execution σ of data structure ds, the history of σ, denoted Hσ, is
the subsequence of σ consisting of the invoke and return steps in σ (with their
respective return values). For a history Hσ, complete(Hσ) is the subsequence
obtained by removing pending operations, i.e., operations with no return step,
from Hσ. A history is sequential if it begins with an invoke step and consists of
an alternating sequence of invoke and return steps.

A data structure’s correctness in sequential executions is defined using a se-
quential specification, which is a set of its allowed sequential histories.

Given a correct sequential data structure, we need to address two aspects when
defining its correctness in concurrent executions. As observed in the definition of
opacity [11] for memory transactions, it is not enough to ensure serialization of
completed operations, we must also prevent operations from reaching undefined
states along the way. The first aspect relates to the data structure’s external
behavior, as reflected in method invocations and responses (i.e., histories):
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Linearizability and Regularity A history Hσ is linearizable [14] if there exists
H ′

σ that can be created by adding zero or more return steps to Hσ, and there
is a sequential permutation π of complete(H ′

σ), such that: (1) π belongs to the
sequential specification of ds; and (2) every pair of operations that are not in-
terleaved in σ, appear in the same order in σ and in π. A data structure ds is
linearizable, also called atomic, if for every execution σ of ds, Hσ is linearizable.

We next extend Lamport’s regular register definition [16] for SWMR data
structures (we do not discuss regularity for MWMR executions, which can be
defined similarly to [22]). A data structure ds is regular if for every execution
σ of ds, and every read-only operation ro ∈ Hσ, if we omit all other read-only
operations from Hσ, then the resulting history is linearizable.

Validity The second correctness aspect is ruling out bad cases like division by
zero or access to uninitialized data. It is formally captured by the following
notion of validity: A data structure is valid if every local state reached in an
execution of one of its operations is sequentially reachable. We note that, like
opacity, validity is a conservative criterion, which rules out bad behavior without
any specific data structure knowledge. A data structure that does not satisfy
validity may be correct, but proving that requires care.

3 Base Conditions, Validity and Regularity

3.1 Base Conditions and Base Points

Intuitively, a base condition establishes some link between the local state an
operation reaches and shared variables the operation has read before reaching
this state. It is given as a predicate Φ over shared variable assignments. Formally:

Definition 1 (Base Condition). Let l be a local state of an operation op.
A predicate Φ over shared variables is a base condition for l if every sequential
execution of op starting from a shared state s such that Φ(s) = true, reaches l.

For completeness, we define a base condition for stepi in an execution μ to be
a base condition of the local state that precedes stepi in μ.

Consider a data structure consisting of an array of elements v and a variable
lastPos, whose last element is read by the function readLast. An example of
an execution fragment of readLast that starts from state s1 (depicted in Figure
1) and the corresponding base conditions appear in Algorithm 1. The readLast
operation needs the value it reads from v[tmp] to be consistent with the value
of lastPos that it reads into tmp because if lastPos is newer than v[tmp], then
v[tmp] may contain garbage. The full paper details base conditions for every
possible local state of readLast.

The predicate Φ3 : lastPos = 1 ∧ v[1] = 7 is a base condition of l3 because l3
is reachable from any shared state in which lastPos = 1 and v[1] = 7 (e.g., s2
in Figure 1), by executing lines 1-2.

We now turn to define base points of base conditions, which link a local state
with base condition Φ to a shared state s where Φ(s) holds.
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v[0] v[1] v[2] ...
35 7 99 ...

lastPos
1

(a) s1

v[0] v[1] v[2] ...
2 7 15 ...

lastPos
1

(b) s2
Fig. 1. Two shared states satisfying the same base condition Φ3 : lastPos = 1∧v[1] = 7

local state
l1 : {}
l2 : {tmp = 1}
l3 : {tmp = 1, res = 7}

base condition
Φ1 : true
Φ2 : lastPos = 1
Φ3 : lastPos = 1 ∧ v[1] = 7

Function readLast()
tmp← read(lastPos)
res← read(v[tmp])
return(res)

Algorithm 1. The local states and base conditions of readLast when executed
from s1. The shared variable lastPos is the index of the last updated value in
array v. See Algorithm 2 for corresponding update operations.

Definition 2 (Base Point). Let μ be a concurrent execution, ro be a read-
only operation executed in μ, and Φt be a base condition of the local state and
step at index t in μ. An execution fragment of ro in μ has a base point for point
t with Φt, if there exists a sequentially reachable post-state s in μ, called a base
point of t, such that Φt(s) holds.

Note that together with Definition 1, the existence of a base point s implies
that t is reachable from s in all sequential runs starting from s.

We say that a data structure ds satisfies base point consistency if every point
t in every execution of every read-only operation ro of ds has a base point with
some base condition of t.

The possible base points of read-only operation ro are illustrated in Figure 2.
To capture real-time order requirements we further restrict base point locations.

ro
uo uo uououo uo uo

Fig. 2. Possible locations of ro’s base points

Definition 3 (Regularity Base Point). A base point s of a point t of ro in
a concurrent execution μ is a regularity base point if s is the post-state of either
an update operation executed concurrently with ro in μ or of the last update
operation that ended before ro’s invoke step in μ.

The possible regularity base points of a read-only operation are illustrated
in Figure 3. We say that a data structure ds satisfies regularity base point con-
sistency if it satisfies base point consistency, and every return step t in every
execution of every read-only operation ro of ds has a regularity base point with
a base condition of t. Note, in particular, that the base point location is only
restricted for the return step, since the return value is determined by its state.
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ro
uo uo uououo uo uo

Fig. 3. Possible locations of ro’s regularity base points

Function writeSafe(val)
i ← read(lastPos)
write(v[i+ 1], val)
write(lastPos, i+ 1)

Function writeUnsafe(val)
i ← read(lastPos)
write(lastPos, i+ 1)
write(v[i+ 1], val)

Algorithm 2. Unlike writeUnsafe, writeSafe ensures a regularity base point
for every local state of readLast ; it guarantees that any concurrent readLast
operation sees values of lastPos and v[tmp] that occur in the same sequentially
reachable post-state. It also has a single visible mutation point (as defined in
Section 5), and hence linearizability is established.

In Algorithm 2 we see two versions of an update operation: writeSafe guaran-
tees the existence of a base point for every local state of readLast (Algorithm 1),
and writeUnsafe does not. As shown in the full paper, writeUnsafe can cause
a concurrent readLast operation interleaved between its two write steps to see
values of lastPos and v[lastPos] that do not satisfy readLast ’s return step’s base
condition, and to return an uninitialized value.

3.2 Deriving Correctness from Base Points

In the full paper we prove the following theorems:

Theorem 1 (Validity). If a data structure ds satisfies base point consistency,
then ds is valid.

Theorem 2 (Regularity). If a data structure ds satisfies regularity base point
consistency, then ds is regular.

4 Using Our Methodology

We now demonstrate the simplicity of using our methodology. Based on The-
orems 1 and 2 above, the proof for correctness of a data structure (such as a
linked list) becomes almost trivial. We look at three linked list implementations:
Algorithm 3, which assumes managed memory (i.e., automatic garbage collec-
tion), an algorithm that uses RCU methodology, and an algorithm based on
hand-over-hand locking (the latter two are deferred to the full paper for space
limitations).

For Algorithm 3, we first prove that the listed predicates are indeed base
conditions, and next prove that it satisfies regularity base point consistency. By
doing so, and based on Theorem 2, we get that the algorithm satisfies both
validity and regularity.
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Function remove(n)
p ← ⊥
next ← read(head.next)
while next = n

p ← next
next← read(p.next)

write(p.next, n.next)

Function insertLast(n)
last ← readLast()
write(last.next, n)

Base conditions:

Φ1 : true

Φ2 : head
∗⇒ n

Φ3 : head
∗⇒ n

Function readLast()
n ← ⊥
next ← read(head.next)
while next =⊥

n ← next
next← read(n.next)

return(n)

Algorithm 3. A linked list implementation in a memory-managed environment.
For simplicity, we do not deal with boundary cases: we assume that a node can
be found in the list prior to its deletion, and that there is a dummy head node.

Consider a linked list node stored in local variable n (we assume the en-

tire node is stored in n, including the value and next pointer). Here, head
∗⇒

n denotes that there is a set of shared variables {head, n1, ..., nk} such that
head.next = n1 ∧ n1.next = n2 ∧ ... ∧ nk = n, i.e., that there exists some path
from the shared variable head to n. Note that n is the only element in this
predicate that is associated with a specific read value. We next prove that this
defines base conditions for Algorithm 3.

Lemma 3. In Algorithm 3, Φi defined therein is a base condition of the i-th
step of readLast.

Proof. For Φ1 the claim is vacuously true. For Φ2, let l be a local state where
readLast is about to perform the second read step in readLast ’s code, meaning
that l(next) �=⊥. Note that in this local state both local variables n and next

hold the same value. Let s be a shared state in which head
∗⇒ l(n). Every

sequential execution from s iterates over the list until it reaches l(n), hence the
same local state where n = l(n) and next = l(n) is reached.

For Φ3, Let l be a local state where readLast has exited the while loop, hence
l(n).next =⊥. Let s be a shared state such that head

∗⇒ l(n). Since l(n) is
reachable from head and l(n).next =⊥, every sequential execution starting from
s exits the while loop and reaches a local state where n = l(n) and next =⊥. �	

Lemma 4. In Algorithm 3, if a node n is read during concurrent execution μ
of readLast, then there is a shared state s in μ such that n is reachable from
head in s and readLast is pending.

Proof. If n is read in operation readLast from a shared state s, then s exists
concurrently with readLast. The operation readLast starts by reading head, and
it reaches n.
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Thus, n must be linked to some node n′ at some point during readLast. If n
was connected (or added) to the list while n′ was still reachable from the head,
then there exists a state where n is reachable from the head and we are done.
Otherwise, assume n is added as the next node of n′ at some point after n′ is
already detached from the list. Nodes are only added via insertLast, which is not
executed concurrently with any remove operation. This means nodes cannot be
added to detached elements of the list. A contradiction. �	

The following lemma, combined with Theorem 2 above, guarantees that Al-
gorithm 3 satisfies regularity.

Lemma 5. Every local state of readLast in Algorithm 3 has a regularity base
point.

Proof. We show regularity base points for predicates Φi, proven to be base points
in Lemma 3.

The claim is vacuously true for Φ1. We now prove for Φ2 and Φ3 : head
∗⇒ n.

By Lemma 4 we get that there is a shared state s where head
∗⇒ n and readLast

is pending. Note that n’s next field is included in s as part of n’s value. Since
both update operations - remove and insertLast - have a single write step, every
shared state is a post-state of an update operation. Specifically this means that
s is a sequentially reachable post-state, and because readLast is pending, s is
one of the possible regularity base points of readLast. �	

5 Linearizability

We first show that regularity base point consistency is insufficient for lineariz-
ability. In Figure 4 we show an example of a concurrent execution where two
read-only operations ro1 and ro2 are executed sequentially, and both have regu-
larity base points. The first operation, ro1, reads the shared variable first name
and returns Joe, and ro2 reads the shared variable surname and returns Doe. An
update operation uo updates the data structure concurrently, using two write
steps. The return step of ro1 is based on the post-state of uo, whereas ro2’s
return step is based on the pre-state of uo. There is no sequential execution of
the operations where ro1 returns Joe and ro2 returns Doe.

Thus, an additional condition is required for linearizability. We suggest single
visible mutation point (SVMP), which adds a restriction regarding the behaviour
of update operations. A data structure that satisfies SVMP and regularity base
point consistency is linearizable.

The SVMP condition is related to the number of visible mutation points an
execution of an update operation has. Intuitively, a visible mutation point in an
execution of an update operation is a write step that writes to a shared variable
that might be read by a concurrent operation. A more formal definition ensues.

Let α be an execution fragment of op starting from shared state s. We define αt

as the shortest prefix of α including t steps of op, and we denote by stepsop(α)
the subsequence of α consisting of the steps of op in α. We say that αt and
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uo

Shared variables:
first name = Ron 
surname = Doe

Shared variables:
first name =  John
 surname = Smithwrite(first name, John) write(surname, Smith)

return surname:
return(Doe)

ro2
return first name: 

return(John)

ro1

Fig. 4. Every local state of ro1 and ro2 has a regularity base point, and still the
execution is not linearizable. If ro1 and ro2 belong to the same process, then the
execution is not even sequentially consistent (see the full paper).

αt−1 are indistinguishable to a concurrent read-only operation ro if for every
concurrent execution μt starting from s and consisting only of steps of ro and
αt, and concurrent execution μt−1 starting from s and consisting only of steps
of ro and αt−1, stepsro(μt) = stepsro(μt−1). In other words, ro’s executions are
not unaffected by the t’th step of op.

If αt and αt−1 are indistinguishable to a concurrent read-only operation ro,
then point t is a silent point for ro in α. A point that is not silent is a visible
mutation point for ro in α.

Definition 4 (SVMP condition). A data structure ds satisfies the SVMP
condition if for each update operation uo of ds, in every execution of uo from
every sequentially reachable shared state, uo has at most one visible mutation
point, for all possible concurrent read-only operations ro of ds.

Note that a read-only operation may see mutation points of multiple updates.
Hence, if a data structure satisfies the SVMP condition and not base point
consistency, it is not necessarily linearizable. For example, in Figure 5 we see
two sequential single visible mutation point operations, and a concurrent read-
only operation ro that counts the number of elements in a list. Since ro only
sees one element of the list, it returns 1, even though there is no shared state in
which the list is of size 1. Thus, the execution is not linearizable or even regular.

Intuitively, if a data structure ds satisfies the SVMP condition, then all of its
shared states are sequentially reachable post-states. If ds also satisfies regularity
base point consistency, then the visible mutation point condition guarantees that
the order among base points of non-interleaved read-only operations preserves
the real time order among those operations.

In Algorithm 3, the remove operation has a single visible mutation point,
which is the step that writes to p.next. Thus, from Theorem 6 below, this im-
plementation is linearizable. The theorem is proven in the full paper.

Theorem 6 (Linearizability). If data structure ds satisfies SVMP and regu-
larity base point consistency, then ds is linearizable.
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ro
A.next = NULL 

return count = 1 
Read head

list size = 3 list size = 2list size = 2
Remove last

uo2uo1
Add first

ro

A
head

Bnext

(a) The initial state.

head
nextAnext

ro 

C B

(b) uo1’s post-state.

C
head

Anext

ro 

(c) uo2’s post-state.

Fig. 5. Every update operation has a single visible mutation point, but the execution
is not linearizable

6 Conclusions and Future Directions

We introduced a new framework for reasoning about correctness of data struc-
tures in concurrent executions, which facilitates the process of verifiable paral-
lelization of legacy code. Our methodology consists of identifying base conditions
in sequential code, and ensuring regularity base points for these conditions under
concurrency. This yields two essential correctness aspects in concurrent execu-
tions – the internal behaviour of the concurrent code, which we call validity, and
the external behaviour, in this case regularity, which we have generalized here
for data structures. Linearizability is guaranteed if the implementation further
satisfies the SVMP condition.

We believe that this paper is only the tip of the iceberg, and that many
interesting connections can be made using the observations we have presented.
For a start, a natural expansion of our work would be to consider also multi-
writer data structures. Another interesting direction to pursue is to use our
methodology for proving the correctness of more complex data structures than
the linked lists in our examples.

Currently, using our methodology involves manually identifying base condi-
tions. It would be interesting to create tools for suggesting a base condition for
each local state. One possible approach is to use a dynamic tool that identifies
likely program invariants, as in [10], and suggests them as base conditions. Al-
ternatively, a static analysis tool can suggest base conditions, for example by
iteratively accumulating read shared variables and omitting ones that are no
longer used by the following code (i.e., shared variables whose values are no
longer reflected in the local state).

Another interesting direction for future work might be to define a synchro-
nization mechanism that uses the base conditions in a way that is both general
purpose and fine-grained. A mechanism of this type will use default conservative
base conditions, such as verifying consistency of the entire read-set for every
local state, or two-phase locking of accessed shared variables. In addition, the
mechanism will allow users to manually define or suggest finer-grained base con-
ditions. This can be used to improve performance and concurrency, by validating
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the specified base condition instead of the entire read-set, or by releasing locks
when the base condition no longer refers to the value read from them.

From a broader perspective, we showed how correctness can be derived from
identifying inner relations in a sequential code, (in our case, base conditions),
and maintaining those relations in concurrent executions (via base points). It
may be possible to use similar observations in other models and contexts, for
example, looking at inner relations in synchronous protocol, in order to derive
conditions that ensure their correctness in asynchronous executions.

And last but not least, the definitions of internal behaviour correctness can be
extended to include a weaker conditions than validity, (which is quiet conserva-
tive). These weaker conditions will handle local states in concurrent executions
that are un-reachable via sequential executions but still satisfy the inner cor-
rectness of the code.

Acknowledgements. We thank Naama Kraus, Dahlia Malkhi, Yoram Moses,
Dani Shaket, Noam Shalev, and Sasha Spiegelman for helpful comments and
suggestions.
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Abstract. In this paper we study efficient implementations for deter-
ministic abortable objects. Deterministic abortable objects behave like
ordinary objects when accessed sequentially, but they may return a spe-
cial response abort to indicate that the operation failed (and did not take
effect) when there is contention.

It is impossible to implement deterministic abortable objects only
with read/write registers [3]. Thus, we study solo-fast implementations.
These implementations use stronger synchronization primitives, e.g., CAS,
only when there is contention. We consider interval contention.

We present a non-trivial solo-fast universal construction for determin-
istic abortable objects. A universal construction is a method for obtain-
ing a concurrent implementation of any object from its sequential code.
The construction is non-trivial since in the resulting implementation a
failed process can cause only a finite number of operations to abort. Our
construction guarantees that operations that do not modify the object
always return a legal response and do not use CAS. Moreover in case of
contention, at least one writing operation succeeds. We prove that our
construction has asymptotically optimal space complexity for objects
whose size is constant.

1 Introduction

With the raise of multicore andmany core machines efficient concurrent program-
ming is a major challenge. Linearizable shared objects are central in concurrent
programming;They provide a convenient abstraction to simplify the design of con-
current programs. But implementing them is complex and expensive when strong
progress conditions are required, e.g. wait-freedom (every process completes its
operations in a finite number of steps) [10]. The complexity originates in execu-
tions where processes execute concurrent operations. Obstruction-freedom was
proposed to circumvent this difficulty by allowing an operation to never return
in case of contention [11]. This separation between correctness and progress let
devise simpler and more efficient algorithms. In fact any obstruction free object
can be implemented using only read/write registers.
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On the other hand, as pointed out by Attiya et al. in [3], ideally shared ob-
jects should always return the control, and when this happens the caller should
know if the operation took place or not. This behavior is formalized in the no-
tion of deterministic abortable object proposed by Hadzilacos and Toueg [9]. A
deterministic abortable object ensures that if several processes contend to oper-
ate on it, it may return a special response abort to indicate that the operation
failed. And it assures that an operation that aborts does not take effect. Oper-
ations that do not abort return a response which is legal w.r.t. the sequential
specification of the object.

In this paper we study efficient implementations for deterministic abortable
objects. Attiya et al. proved that it is impossible to implement deterministic
abortable objects only with read/write registers [3]. Thus, we study implemen-
tations that use only read/write registers when there is no contention and use
stronger synchronization primitives, e.g., Compare and Swap (CAS), when con-
tention occurs. These implementations are called solo-fast and are expected to
take advantage of the fact that in practice contention is rare.

The notion of solo-fast was defined in [3] for step contention : There is step
contention when the steps of a process are interleaved with the steps of another
process. In the same paper, they prove a linear lower bound on the space com-
plexity of solo-fast implementations of obstruction-free objects. This result also
holds for deterministic abortable objects.

We consider an asynchronous shared-memory system where processes commu-
nicate through linearizable shared objects and can fail by crashing, i.e. ; a process
can stop taking steps while executing an operation. In this model, we study the
possibility that deterministic abortable objects can be implemented efficiently if
a process is allowed to use strong synchronization primitives even in absence of
step contention, provided that its operation is concurrent with another one. This
notion of contention is called interval contention [1]. Step contention implies in-
terval contention, the converse is not true. We only consider implementations
where a crashed process can cause only a finite number of concurrent operations
to abort. This property, called non-triviality, is formally defined in [2].

Our results. First we prove a linear lower bound on the space complexity of
solo-fast implementations of abortable objects for our weaker notion of solo-fast.
To prove our result we adapt the notion of pertubable object presented in [14] to
abortable objects and we prove that a k-CAS abortable register is perturbable
according to our definition.

Then, we present a solo-fast universal construction for deterministic abortable
objects, called NSUC. A universal construction [10] is a methodology for auto-
matically transform any sequential object in a concurrent one. An implementa-
tion resulting from our universal construction is solo-fast and has asymptotically
optimal space complexity if the implemented object has constant size. The NSUC
algorithm guarantees that operations that do not modify the object always re-
turn a legal response. Also in case of contention, at least one writing operation
succeeds to modify the object. In particular, writing operations are applied one
at the time. Each process makes a local copy of the object and computes the
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new state locally. We associate a sequence number with each state. A process
that wants to modify the ith state has to compete to win the i + 1th sequence
number. A process that does not experience contention uses only read/write
registers, while a CAS register is used in case of contention to decide the new
state. It may happen that (at most) one process p behaves as if it was running
solo, while other processes were competing for the same sequence number. In
this case, we use a lightweight helping mechanism to avoid inconsistency : any
other process acquires the state proposed by p as its new state. If it succeeds
to apply it, it notifies the process p that its state has been applied. Then the
helping process aborts. We ensure that if a process crashes while executing an
operation, then it can cause at most two operations per process to abort. Our
construction uses O(n) read/write registers and n + 1 CAS registers. Also it
keeps at most 2n+ 1 versions of the object.

Related work. Attiya et al. were the first to propose the idea of shared objects
that in case of contention return a fail response [3]. Few variants of these objects
have been proposed [2,3,9]. The ones proposed in [2,3] differ from deterministic
abortable objects in the fact that when a fail response is returned the caller does
not know if the operation took place or not.

A universal construction for deterministic abortable objects is presented in
[9]. This construction can be easily transformed into solo-fast by using the solo-
fast consensus object proposed in [3], but it has unbounded space complexity,
since it stores all the operations performed on the object. Also operations that
only read the state of the object modify the representation of the implemented
object and may fail by returning abort.

Several universal constructions have been proposed for ordinary wait-free con-
current objects. A good summary can be found in [5]. These constructions could
be transformed in solo-fast by replacing the strong synchronization primitives
they use with their solo-fast counterpart. To the best of our knowledge no solo-
fast LL/SC or CAS register exist. Luchangco et al. presented a fast-CAS register
[15] whose implementation ensures that no strong synchronization primitive is
used in execution without contention. But, in case of contention, concurrent op-
erations can leave the system in a state such that a successive operation will
use strong synchronization primitives even if running solo. So, their implemen-
tation is not solo-fast. Even using the solo-fast consensus object by Attiya at
al, which has Θ(n) space complexity, we cannot easily modify existing universal
constructions while ensuring all the good properties of our solution.

Abortable objects behave similarly to transactional memory [12]. Transac-
tional memory enables processes to synchronize via in-memory transactions. A
transaction can encapsulate any piece of sequential code. This generality costs a
greater overhead as compared to abortable objects. Also transactional memory is
not aware of the sequential code embedded in a transaction. A hybrid approach
between transactional memory and universal constructions has been presented
by Crain et al. [6]. Their solution assumes that no failures occur. In addition they
use a linked list to store all committed transactions. Thus, their solution has un-
bounded space complexity. Finally, the NSUC algorithm ensures multi-version
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permissiveness and strong progressiveness proposed for transactional memory
respectively in [16] and in [8] when conflicts are at the granularity of the entire
implemented object.

Paper organization. In Section 2 we present our model and preliminaries. In
Section 3 we prove the lower bound on the space complexity. In Section 4 we
present our solo-fast universal construction. Finally, a sketch of the correctness
proof of our construction is given in Section 5.

2 Preliminaries

We consider an asynchronous shared memory system, in which n processes
p1 . . . pn communicate through shared objects, such as read/write registers and
CAS objects. Every object has a type that is defined by a quadruple (Q,O,R,Δ),
where Q is a set of states, O is a set of invocations, R is a set of responses,
and Δ ⊆ Q × O × Q × R is the sequential specification of the type. A tuple
(s, op, s′, res) in Δ means that if type T is in state s when op ∈ O is invoked,
then T can change its state to s′ and return the response res.

For each type T = (Q,O,R,Δ), we consider the deterministic abortable coun-
terpart of T as defined in [9] and denoted T da. T da is equal to (Q,O,Rda, Δda)
where Rda = R ∪ {⊥} for some ⊥ /∈ R, and, for every tuple (s, op, s′, res) in Δ,
the sequential specification Δda contains the following two tuples: (s, op, s′, res)
and (s, op, s,⊥). These two tuples of Δda correspond to op completing normally,
and op aborting without taking effect.

A universal construction is a method to transform any sequential object into a
linearizable concurrent object. It takes as input the sequential code of an opera-
tion and its arguments. The algorithm that implements this method is a sequence
of operations on shared objects provided by the system, called base objects. To
avoid confusion between the base objects and the implemented ones, we reserve
the term operation for the objects being implemented and we call primitives the
operations on base objects. We say that an operation of an implemented object
is performed and that a primitive is applied to a base object.

In the following, we consider that for any given base object o the set of its
primitives is either historyless or not. Let o be a base object that supports two
operations f and f ′. Following [7], we say that f overwrites f ′ on o, if applying f ′

and then f results in the same state of o as applying just f , using the same input
parameters (if any) in both cases. A set of primitives is called historyless if all the
primitives in the set that may change the state of the object overwrite each other;
we also require that each such operation overwrites itself. A primitive/operation
is a writing primitive/operation if its application may change the state of the
object. Otherwise it is a read-only primitive/operation.

A step of a process consists of a primitive applied to a base object and pos-
sibly some local computation. A configuration specifies the value of each base
object and the state of each process at some point in time. A step e by a pro-
cess p is enabled at a given configuration C, if p is about to apply e at C. In
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an initial configuration, all base objects have their initial values and all pro-
cesses are in their initial states. An execution is a (possibly infinite) sequence
Ci, φi, Ci+1, φi+1, . . . , φj−1, Cj of alternating configurations (Ck) and steps (φk),
where the application of φk to configuration Ck results in configuration Ck+1, for
each i ≤ k < j. For any configuration C, for any finite execution α ending with
C and any execution α′ starting at C, the execution αα′ is the concatenation of
α and α′; in this case α′ is called an extension of α. An execution α is q-free if
no step in α is applied by the process q.

The execution interval of an operation starts with an invocation and terminates
when a response is returned. An invocationwithout a matching response is a pend-
ing operation. Two operations op and op′ are concurrent in a execution α, if they
are both pending in some finite prefix ofα. This implies that their intervals overlap.
An operation op precedes an operation op′ in α if the response of op precedes the in-
vocation of op′ in α. An operation experiences interval contention in an execution
α if it is concurrent with at least another operation in α.

Processes may experience crash failures. For any given execution α, if a process
p does not fail in α, we say that p is correct in α.

Properties of the implemented object. We consider universal constructions that
guarantee that all implementations resulting by their application are wait-free
[10], linearizable [13], non-trivial and non-trivial solo-fast. Wait-free implemen-
tations ensure that in every execution, each correct process completes its opera-
tion in a finite number of steps. Linearizability ensures that for every execution α
and for every operation that completes and some of the uncompleted operations
in α, there is some point within the execution interval of the operation called
its linearization point, such that the response returned by the operation in α is
the same as the response it would return if all these operations were executed
serially in the order determined by their linearization points.

Informally, an implementation of an object is non-trivial if for any given
execution α every operation that aborts is concurrent with some other operation
in α, and an operation that remains incomplete, due to a crash, does not cause
infinitely many other operations to abort. A more formal definition can be found
in [2].

Finally, an implementation is said non-trivial solo-fast if for any given execu-
tion α a process p applies some non-historyless primitives while performing an
instance of an operation op, only if op is concurrent with some other operation in
α; and an operation that remains incomplete, due to a crash, does not justify the
application of non-historyless primitives by infinitely many other operations.

3 Lower Bound

In the following we adapt the definition of perturbable objects presented in [3]
and originally proposed in [14] to deterministic abortable objects.

Definition 1. A deterministic abortable object O is perturbable for n processes,
if for every linearizable and non-trivial implementation of O there is an operation
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instance opn by process pn, such that for any pn-free execution αλ where some
process pl �= pn applies no step in λ and no process applies more than a single
step in λ, there is an extension of α, γ, consisting of steps by pl, such that
the first response res �= ⊥, that pn returns when repeatedly performing opn solo
after αλ is different from the first response res′ �= ⊥ it returns when repeatedly
performing opn solo after αγλ.

By adjusting the proof of Lemma 4.7 in [14], in [4] we prove that
the set of deterministic abortable objects which are perturbable is not
empty. In particular, we prove that the k-valued deterministic abortable
CAS is perturbable. A k-valued deterministic abortable CAS is the
type (Q,O,R,Δ), where Q = {1, 2, .., k}, O = {Read,CAS(u, v) with
u, v ∈ {1, 2, .., k}}, R = {1, 2, .., k} ∪ {true, false,⊥} and ∀s, u, v ∈ {1, 2, .., k}
Δ = {(s,Read, s, s)} ∪ {(s, CAS(s, v), v, true)} ∪ {(s, CAS(u, v), s, false) with
u �= s} ∪ {(s,Read, s,⊥)} ∪ {(s, CAS(u, v), s,⊥)}.

In the following we prove that any non-trivial solo-fast implementation of
a deterministic abortable object that is perturbable has space complexity in
Ω(n). The proof is similar to the proof of Theorem 4 in [3]. This proof does not
directly apply because we consider a notion of solo-fast which is weaker than the
one assumed in [3].

The following definition is needed for our proof.

Definition 2. A base object o is covered after an execution α if the set of prim-
itives applied to o in α is historyless, and there is a process that has, after α, an
enabled step e about to apply a writing primitive to o. We also say that e covers
o after α.
An execution α is k-covering if there exists a set of processes {pj1 , ..., pjk}, called,
covering set, such that each process in the covering set has an enabled writing
step that covers a distinct base object after α.

Theorem 1. Let A be an n-process non-trivial solo-fast implementation of a
perturbable deterministic abortable object. The space complexity of A is at least
n− 1.

Proof. To prove the theorem we construct an execution which is pn-free and
(n−1)-covering. The proof goes by induction. The empty execution is vacuously
a 0-covering execution and it is pn-free. Assume that αi, for i < n − 1, is an
i-covering execution with covering set {pj1 , ..., pji} and is pn-free. Let λi be the
execution fragment that consists of the writing steps by processes pj1 ...pji that
are enabled after αi, arranged in some arbitrary order.

Let pji+1 be a process not in {pn, pj1 , ..., pji}. Since i < n − 1, this process
exists. Because of the non-triviality of the solo-fast property process pji+1 applies
only historyless primitives after a finite number of its own steps when executing
solo after αi. Let δ be the shortest execution by pji+1 when executing solo after
αi such that pji+1 applies only historyless primitives (if any) after αiδ if still
running solo. αi

′ = αiδ is pn-free and the writing steps of processes pj1 ...pji are
enabled at the configuration immediately after αi

′.
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By Definition 1, there is an extension of αi
′, γ, by pji+1 such that the first

response different than abort returned to pn when repeatedly executing opn
respectively after α′

iλi and α′
iγλi is different. We claim that γ contains a writing

step that accesses a base object not covered after α′
i . We assume otherwise

to obtain a contradiction. Since all steps in λi and γ apply primitives from a
historyless set, every writing primitive applied to a base object in γ is overwritten
by some event in λi. Thus, the values of all base objects are the same after α′

iλi

and after α′
iγλi. This implies that opn must return the same response after both

α′
iλi and α′

iγλi , which is a contradiction.
We denote γ′ the shortest prefix of γ at the end of which pji+1 has an enabled

writing step about to access an object not covered after α′
i. We define αi+1

to be α′
iγ

′. αi+1 is a pn-free execution and it is (i + 1)-covering. This latter
property is true because at the configuration immediately after αi+1 processes
{pj1 , ..., pji , pji+1} have enabled writing steps that cover distinct base objects. It
follows that A has an (n− 1)-covering execution. �	

4 A Non-trivial Solo-Fast Universal Construction (NSUC)

The NSUC algorithm uses single writer multi reader (SWMR) registers and
Compare&Swap registers (CAS). A register R stores a value from some set and
supports a read primitive which returns the value of R, and a write primitive
which writes a value into R. A CAS object supports the primitive CAS(c, e, v)
and Read(c), If the value of c matches the expected value e, then CAS(c, e, v)
writes the new value v into c and returns true (the CAS succeeds). Otherwise,
CAS returns false and does not modify the state of the CAS (the CAS fails).
Read(c) returns the value in c and it does not modify its state.

In the following we describe the shared variables used by our universal con-
struction.

– An array A of n SWMR registers. Each register contains a sequence number.
In particular, process pi announces its intention to change the current state
of the shared object, by writing into location A[i] the sequence number that
will be associated with the new state if pi succeeds its operation. Initially,
A[j] = 0 for j = 1..n.
An array F of n SWMR registers. The process pi writes < sv, σ > in F [i] if
it has detected that it is the first process to announce its intention to define
a state for the sequence number sv. σ is a pointer to the state proposed by
pi for the sequence number sv. Initially, F [j] =< 0,⊥ > for j = 1..n.

– An array OS of n SWMR registers. If there is no contention process pi writes
< sv, s > into OS[i] where s is the pointer to the new state of the shared
object computed by pi while executing its operation and sv is the associated
sequence number. Initially, OS[j] =< 0,⊥ > for j = 1..n.

– A CAS register OC. It is used in case of contention to decide the new state
of the object among the ones proposed by the concurrent operations. If a
process pi detects contention, it tries to change the value of OC into a tuple
< sv, id, s > where id is the identifier of the process that proposes the state
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pointed by s and associated with the sequence number sv. idmay be different
than i if process pi detects that another process pid is the first one to propose
a new state for sv. pi then helps the other process to apply its operation.
Initially, OC =< 0, 0, σ > where σ is the pointer to the initial state of the
shared object.

– An array S of n CAS registers. Before trying to update the CAS register
OC, a process writes the sequence number stored in OC into S. Precisely,
if the value of OC is < sv, i, s >, S[i] will be set to sv. This is necessary to
ensure that a process is always aware that its operation succeeded even if
its operation was completed by another (helping) process. Thus, if S[i] = sv
process i knows that its operation which computed the state associated with
sv succeeded. Initially, S[j] = 0 for j = 1..n.

At any configuration, the tuple with the highest sequence number stored either
in the CAS register OC or in the array OS contains the pointer to the current
state of the implemented object.

NSUC Description

In the following, unless explicitely stated, all line numbers refer to Algorithm 1.
When a process pi wants to execute an operation op on an object of type

T , it first gets the current state of the object and the corresponding sequence
number and stores them locally in variables state and seq respectively (line
1). Then, pi locally applies op to the read state (line 2). The NSUC algorithm
assumes a function APPLYT(s, op, arg) that returns the response matching the
invocation of the operation op on a type T in a sequential execution of op with
input arg applied to the state of the object pointed by s. APPLYT(s, op, arg)
also returns a pointer to the new state of the object.

If op is a read-only operation, pi immediately returns the response (lines 3 to
5). We suppose to know a priori if an operation is read-only. Then, pi checks
if some other process is concurrently executing a writing operation on it. This
is done by reading the other entries of the array A and looking for sequence
numbers greater than or equal to sv + 1.

Three cases can be distinguished :

– lines 10 to 11. A sequence number greater than sv + 1 is found. This
implies that some other process already decided the state for sv + 1, so pi
aborts.

– lines 13 to 17. All the sequence numbers read by pi are smaller than
sv+ 1. Then, pi writes its computed new state together with the associated
sequence number (< sv+1, newState >) into the register F [i] (line 14) and
checks again for concurrent operations (line 15). Consider the case where
again all the sequence numbers read by pi in the announce array A are
smaller than sv+1 (the other case will be studied below). Any other process
competing for sv + 1 will discover that pi was the first process to propose a
state for sv + 1 and then it will abort its own operation, after helping pi to
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complete its operation (lines 21 to 24). Finally, pi writes its new state into
the read/write register OS[i] and returns the response of the operation (lines
16-17). The state of the object associated with sv + 1 is the one proposed
by pi.

1 < seq, state >← STATE() ; //Find the object state

2 < newState, res >← APPLYT(state, op, arg);
3 if op is read-only then
4 return res
5 end
6 seq ← seq + 1;
7 A[i]← seq; //The process announces its intention

8 idnew ← i;
9 seqA ← LEV ELA(i);

10 if seqA > seq then //A state is already decided for seq value

11 return ⊥
12 end
13 if seqA < seq then //The process is alone

14 F [i]←< seq, newState >;
15 if LEV ELA(i) < seq then //The process is still alone

16 OS[i]←< seq, newState >;
17 return res

18 end

19 else //There is interval contention

20 < idF , newStateF >←WHOS FIRST(seq);
21 if newStateF �= ⊥ then //Presence of a first process

22 newState← newStateF ;
23 idnew ← idF ;

24 end

25 end
26 < seqOC , idOC , stateOC >←READ(OC);
27 while seqOC < seq do
28 if (seqOC �= 0) then OLD WIN(seqOC , idOC);
29 CAS(OC,< seqOC , idOC , stateOC >,< seq, idnew, newState >);
30 < seqOC , idOC , stateOC >←READ(OC);

31 end
32 if (seqOC = seq ∧ idOC �= i) ∨ (seqOC > seq ∧READ(S[i]) �= seq) then
33 res← ⊥;
34 end
35 return res

Algorithm 1: NSUC - Code for process pi to apply operation op with the
input arg on the implemented object
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– lines 20 to 35.pi reads sv+1 in one of the other entries. So, it detects that
another process is concurrently trying to decide the state for this sequence
number. If the detection is done on line 13, then pi checks the presence of a
process pj competing for sv+1 and which has seen no contention (i.e. pj has
written its proposal in F [j]) in line 14. If this process exists, pi will help pj
to apply its new state of the object (lines 21 to 24). In particular, since there
is contention pi will try to write state computed by pj into the CAS register
OC (lines 26 to 31). Then it will return abort (lines 32 to 35). Otherwise
pi continues to compete for its own proposal. It tries to write the proposed
state into OC (lines 26 to 31) until a decision is taken for sv+1. If a process
(pi or a helper) succeeds to perform a CAS in OC with pi’s proposal then
pi returns the response of its own operation (line 35). Otherwise it aborts.
We have a similar behavior if a process detects the contention on line 15.

1 seqmax ← 0; σmax ← ⊥;
2 for j = 1..n do
3 < seqOS , σ >← OS[j];
4 if seqOS > seqmaxthen seqmax ← seqOS ; σmax ← σ; end

5 end
6 < seqOC , idOC , σOC >←READ(OC);
7 if seqOC < seqmax then return < seqmax, σmax > end
8 return < seqOC , σOC >

Algorithm 2: function STATE()

STATE returns a pointer to the current state of the shared object and its
sequence number.

1 seqmax ← 0;
2 for j = 1..n | j �= i do
3 seqA ← A[j];
4 if seqmax < seqA then seqmax ← seqA; end

5 end
6 return seqmax

Algorithm 3: function LEV ELA(i)

LEV ELA(i) returns the highest sequence number written into the announce
array A by a process other than pi.

1 for j = 1..n do
2 < seqF , σF >← F [j];
3 if seqF = sv then return < j, σF > end

4 end
5 return < 0,⊥ >

Algorithm 4: function WHOS FIRST (sv)
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For a given sequence number sv, WHOS FIRST (sv) returns the tuple (j, σ)
where j is the first process (if any) to propose a new state for sv and σ is a
pointer to the proposed state.

1 seqS ← READ(S[idOC ]);
2 if seqOC > seqS then CAS(S[idOC ], seqS , seqOC) end

Algorithm 5: function OLD WIN((seqOC , idOC)

OLD WIN tries to write seqOC in the CAS S[idOC ] if S[idOC ]’s value is
smaller than seqOC . This ensures that a slow process p whose operation suc-
ceeded to modify the CAS OC is aware that its operation was successfully ex-
ecuted. In fact, it may happen that p did not take steps while another process
completed its operation and, then another operation overwrote its changes by
writing into OC. p can recover the status of its operation checking into its loca-
tion in S and then it can return the correct response.

Complexity

Let t be the worst case step complexity to perform an operation on the sequential
implementation of the object (i.e. the time complexity of the function APPLYT ).
By inspecting the pseudocode it is simple to see that the step complexity of the
functions STATE, LEV ELA and WHOS FIRST is in O(n). Also the step
complexity of the function OLD WIN is O(1). We establish that a process can
repeat the loop (lines 27 to 31 of the Algorithm 1) at most n times. Thus, the
step complexity of our construction is O(n + t). Since the execution of every
operation includes the execution of the functions STATE and APPLYT , the
step complexity of the NSUC construction is in Θ(n+ t).

Let s be the size of the sequential representation of the object. The NSUC
algorithm stores at most 2n + 1 sequential representations of the object (n in
the array F , n in the array OS and 1 in OC). So the space complexity of NSUC
algorithm is in O(ns).

5 Proof Sketch of NSUC

In this section we sketch the ideas behind the correctness of our construction.
The complete proof can be found in [4]. In the following all the line numbers
refer to Algorithm 1 unless otherwise stated.

Wait-freedom. A process p stays in the loop (lines 27 to 31) only if another
process q succeeds the CAS at line 29 with a sequence number smaller than the
seq value of p when executing line 27, in between the last read of OC by p and
the last application of the CAS primitive to OC by p. After its CAS, q exits the
loop and its operation is terminated.

The sequence numbers written in the CAS object OC and in the register
OS[i] ∀i = 1..n are increasing. Then the next operation of q will have a sequence
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number greater than or equal to seq (from line 1 and from the pseudocode of
the function STATE). So, process q can prevent p to exit the loop at most once.
This implies the next theorem.

Theorem 2. Every invocation of an operation by a correct process returns after
a finite number of its own steps.

Deterministic Abortable Object. Roughly speaking, the next theorem states that
an operation that aborts does not modify the state of the object.

Theorem 3. Let op be an operation instance executed by a process p in an
execution α such that op aborts. Let sv be the sequence number computed by p
at lines 1 and 6 of Algorithm 1 while executing op. The tuple with the sequence
number sv and the corresponding pointer to the state computed by p will never
be written either into OC or into OS.

By inspecting the pseudocode of NSUC algorithm, a process p can abort only
on line 11 or line 33. If op completes succesfully it defines the sv-th state of the
object. If p aborts on line 11, it did not write into the shared register OS or any
CAS. So, consider the case where process p aborts on line 33. According to line
32, one of the two following conditions has to be verified.

Either, the process p reads in OC a pointer to the state corresponding to
the sequence number sv and the process identifier associated with this sequence
number is different than p. This means that another operation has succeeded to
define the sv-th state of the object. We complete the proof by proving that each
sequence number is associated with a single state.

Or the process p reads in OC a sequence number greater than sv. We prove
that if a state corresponding to a sequence number v has been written into OC
So, a state < sv, i, state > has been defined for the sv-th sequence number
and it has been overwritten. We prove that before the overwritting of the tuple
< sv, i, state > in OC a process has written in S[i] the sequence number sv,
in order to notify process i that the state it proposed for sv has been applied.
Therefore, process p aborts only if S[p] �= sv. This means that the state computed
by p while executing op has not been associated with sv.

Non-triviality. In its first steps, a process p executing an operation op computes
sv, the sequence number associated with the state it will define if op succeeds.
To compute sv, (line 1) p reads the greatest sequence number associated with a
state of the object and it increments this value by one (line 6). Then, p announces
its intention to define the sv-th state by writing sv in a shared register A[p] (line
7). p may abort its operation op only if it detects (by reading A) an operation
op′ with a sequence number greater than or equal to sv. We prove that op is
concurrent with op′.

Also, we prove that if op aborts, at the configuration immediately after it
aborts the sv-th state has been defined. As the sequence number written in CAS
OC and OS are increasing, if process p executes a new operation, this latter will
be associated with a greater sequence number than sv. An operation does not
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change its sequence number.Thus, for any operation op′ that does not complete,
process p will eventually only execute operations whose sequence number are
greater than the sequence number of op′. Thus, op′ cannot cause the abort of
these latter operations. In particular, we prove that an operation that does not
complete can cause the abort of at most two operations per process.

Theorem 4. The universal construction NSUC is non-trivial.

Non-trivial solo-fast. Similarly to the non-trivial property, we prove that during
the execution of an operation a process applies some no-histoyless primitives
only if this operation is concurrent with another one. Also, an operation op that
does not complete can cause a process to apply no-histoyless primitives for only
2 consecutive operations.

Theorem 5. The universal construction NSUC is non-trivial solo-fast.

Linearizability. For any given execution α we construct a permutation π of the
high-level operations in α such that π respects the sequential specification of the
object and the real-time order between operations. Since the operations that
abort do not change the state of the object and return a special response abort,
they do not impact on the response returned by the other operations and on the
state computed by writing operations. Thus, in the following we discuss how to
create the permutation without taking into account aborted operations; then we
put aborted operations in π respecting their real-time order.

First, we order all writing operations according to the ascending order on the
sequence number associated with them. Secondly, we consider each read-only
operation in the order in which its reponse occurs in α. A read-only operation
that returns the state of the object corresponding to the sequence number k is
placed immediately before the writing operation with sequence number k+1 or
at the end of the linearization if this latter write does not exist.

By inspecting the pseudocode it is simple to see that the total order defined by
the sequence numbers respects the real-time order between writing operations.
Also a read-only operation r that starts after the response of a successful writing
operation w with sequence number i, will return a state of the object whose
sequence number is greater than or equal to i. Thus r follows w in π. Similarly,
consider two read-only operations op and op′. If op precedes op′ in α, the sequence
number of op′ is greater than or equal to the sequence number of op, then op′ is
not ordered before op in π.

Theorem 6. The universal construction NSUC is linearizable.

6 Conclusion

We have studied solo-fast implementations of deterministic abortable objects.
We have investigated the possibility for those implementations to have a better
space complexity than linear if relaxing the constraints for a process to use strong
synchronization primitives.
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We have proved that solo-fast implementations of some deterministic abor-
table objects have space complexity in Ω(n) even if we allow a process to use
strong synchronization primitives in absence of step contention, provided that its
operation is concurrent with another one. To prove our result we consider only
non-trivial implementations, that is implementations where a crashed process
can cause only a finite number of concurrent operations to abort.

Then, we have presented a non trivial solo-fast universal construction for deter-
ministic abortable objects. Any implementation resulting from our construction is
wait-free, non-trivial and non-trivial solo-fast : without interval contention, an op-
eration uses only read/write registers; and a failed process can abort at most two
operations per process. Similarly at most two operations per process use strong
synchronization primitives being concurrent with a failed operation. Moreover, in
case of contention our universal construction ensures that at least one writing op-
eration succeeds to modify the object. Finally, a process that executes a read-only
operation does not apply strong synchronization primitives and the operation al-
ways returns a legal response.

If t is the worst time complexity to perform an operation on the sequential
object, then Θ(t + n) is the worst step complexity to perform an operation on
the resulting object. If the sequential object has size s, then the resulting object
implementation has space complexity in O(ns). This is asymptotically optimal
if the implemented object has constant size. On the other hand to prove our
lower bound we consider base objects accessed via a set of historyless primi-
tives, e.g., read/write registers. Thus, it does not imply that n CAS objects are
needed to implement a non trivial solo-fast universal construction for determinis-
tic abortable objects. The possibility to design this universal construction using
O(n) read/write registers but just a constant number of CAS objects is an open
problem.
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Abstract. We study the space complexity of implementing long-lived and one-
shot adaptive renaming from multi-reader multi-writer registers, in an asyn-
chronous distributed system with n processes. In an f (k)-adaptive renaming al-
gorithm each participating process gets a distinct name, in the range {1, . . . , f (k)}
provided k processes participate.

We show that any obstruction-free long-lived f (k)-adaptive renaming object
requires m registers, where m ≤ n− 1 is the largest integer such that f (m) ≤
n−1. This implies a lower bound of n−c registers for long-lived (k+c)-adaptive
renaming, which is tight. We also prove a lower bound of � n

c+1� registers for
implementing any obstruction-free one-shot (k+c)-adaptive renaming.

We also provide one-shot renaming algorithms, e.g., a wait-free one-shot
( 3k2

2 )-adaptive one from �
√

n� registers, and an obstruction-free one-shot f (k)-
adaptive renaming algorithm from only � f−1(n)� registers.

1 Introduction

Networks with a large number of processes, such as the Internet, provide services that
are typically used by only a small number of processes simultaneously. This is problem-
atic if the time or space used by the service is a function of the size of the name-space
of the processes that could use it. The time or space consumed by such applications can
be significantly diminished by having each process that wants to use the application
first acquire a temporary name from a name space that is adequate to distinguish all the
participants, but much smaller than the name-space of the network, and then return the
temporary name to the pool when it is finished with the service. This is the role of a
shared renaming object. A related application of the renaming object is in operating sys-
tems where processes repeatedly acquire and release names that correspond to a limited
number of resources [10]. Renaming is an important tool in distributed computing [5]
because it enhances the practicality and usefulness of network services. A renaming ob-
ject may be even more useful if the time and space resources it consumes is a reasonable
function of the actual number of processes that are currently either holding, acquiring,
or releasing a name.

With an adaptive renaming object, each of the n processes can perform a getName()
and return a name in a small domain {1, . . . , f (k)}where f : {1, . . . ,n}→N is a function
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of the number of participants, k. The step complexity of deterministic and randomized
algorithms has been studied extensively in asynchronous systems (see e.g., [2–4,8,11]).
However, there are no previous results on the space complexity of adaptive renam-
ing. Because renaming seems to require that participants discover information about
each other, adaptive renaming appears related to f (k)-adaptive collect. Attiya, Fich and
Kaplan [6], proved that Ω( f−1(n)) multi-reader multi-writer registers are required for
f (k)-adaptive collect. In this case, like renaming, k is total contention, but unlike re-
naming, f (k) is the step complexity.

Suppose you have m shared registers available to construct a renaming object for a
system with n processes. First we would like to know under what additional conditions
such an implementation exists, and when it does, how best to use the m registers. Sup-
pose, when there are k participants, the acquired names are in the range {1, . . . , f (k)}.
Will f (k) = kc for a small constant c suffice for the application? Must f (k) be closer to
k, say within a constant? Perhaps it should even be exactly k (tight adaptive renaming)?
Does the application need to permit processes to repeatedly acquire and release a name
(long-lived renaming), or do processes get a name at most once (one-shot renaming)?
How strong a progress guarantee is required? Is the number of participants usually less
than some bound b much smaller than n? If so, is there still some significant likelihood
that the number of participants is somewhat bigger than b, or is there confidence that
the bound b is never, or only very rarely, exceeded? In the rare cases when there are
a large number of participants, can the system tolerate name assignments from a very
large name space?

In order to study the space complexity implication for these questions, we first gener-
alize the adaptive renaming definition. A one-shot b-bounded f (k)-adaptive renaming
object supports the operation getName(), which returns a name x, and satisfies: 1) no
two participating processes acquire the same x, 2) when the number of participants, k,
is at most b, x ∈ {1, . . . , f (k)}. A long-lived b-bounded f (k)-adaptive renaming object
supports the operation relName() as well as getName() and satisfies the same two re-
quirements, where the participating processes are those that last executed getName()
without a subsequent relName(). The special case when f (k) = k is called tight re-
naming. Our goal is to determine the relationships between b, f (k), and m for one-shot
versus long-lived, and wait-free versus obstruction-free implementations of adaptive
renaming objects from multi-reader/multi-writer registers.

In this paper we show:
– Let m be the largest integer such that f (m) ≤ n− 1 and m≤ n− 1. At least m reg-

isters are required to implement any obstruction-free long-lived m-bounded f (k)-
adaptive renaming object.

– At least � n
c+1� registers are required to implement any obstruction-free one-shot

(k+ c)-adaptive renaming object where, c is a non-negative integer constant.
– For any m≤ n, there is a wait-free one-shot (m−1)-bounded (k(k+1)/2)-adaptive

renaming algorithm implemented from m bounded registers. When k ≥ m, the re-
turned names are in the range {1, . . . ,n+ m(m−1)

2 }.
– For any m ≤ n, there is a obstruction-free one-shot (m− 1)-bounded k-adaptive

renaming algorithm implemented from m+ 1 bounded registers. When k ≥ m, the
returned names are in the range {1, . . . ,n+m− 1}.
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Corollaries of these results include a wait-free one-shot ( 3k2

2 )-adaptive renaming al-
gorithm that uses only �√n� registers, an obstruction-free one-shot f (k)k-adaptive re-
naming algorithm that uses only � f−1(n)� registers, as well as a tight space bound of
n− c registers for long-lived (k+ c)-adaptive renaming for any integer constant c≥ 0.

Our lower bound proofs use covering techniques first introduced by Burns and Lynch
[9]. The main challenge is to exploit the semantics of the renaming object to force the
processes to write to a large number of registers. In the lower bound for the one-shot
case, we first build an execution in which some processes are poised to write to (cover)
a set of registers. Then we argue that if enough new processes take steps after this, at
least one of them must become poised to write to a register not already covered, since,
otherwise, the covering processes can obliterate all the traces of the new processes,
causing some getName() to return an incorrect result. For the lower bound for the long-
lived case, we exploit that fact that processes can perform getName() and relName()
repeatedly to build a long execution where, in each inductive step either another register
is covered or an available name is used up without being detected by other processes.

2 Preliminaries

This section describes our model of computation and the notation, vocabulary and
general techniques used in this paper. Previous work by many researchers (for exam-
ple [7,9,12,13,15,16]) have collectively developed notation, vocabulary and techniques
that serve to make our description of results and presentation of proofs precise, concise
and clear. Much of the terminology presented in this section is borrowed or adapted
from this previous research.

Our computational model is an asynchronous shared memory system consisting of
n processes P = {p1, . . . , pn} and m shared registers R = {R1, . . . ,Rm}. The processes
each execute code (possibly, nondeterministic) that can access their own private regis-
ters as well as shared registers. Each shared register supports two operations, read and
write. Each such operation happens atomically in memory. Processes can only commu-
nicate via those operations on shared registers. The algorithm is deterministic if each
processes code is deterministic.

A configurationC is a tuple (s1, . . . ,sn,v1, . . . ,vm), denoting that process pi, 1≤ i≤ n,
is in state si, and register r j , 1≤ j ≤m, has value v j. Configurations will be denoted by
capital letters, and the initial configuration is denoted C∗. A schedule σ is a sequence of
process identifiers. An execution (C;σ) is a sequence of steps that starts at configuration
C where at each step, the next process pi indicated in the schedule σ, performs the next
operation in its program. The final configuration of the execution (C;σ) is denoted σ(C).
A configuration, C, is reachable if there exists a finite schedule, σ, such that σ(C∗) =C.
If σ and π are finite schedules then σπ denotes the concatenation of σ and π. Let P be
a set of processes, and σ a schedule. We say σ is P-only if only identifiers of processes
in P appear in σ. If the set P contains only one process, p, then we say σ is p-only. We
denote the set of processes that appear in schedule σ by procs(σ).

We say process p covers register r in a configurationC, if there is a choice available to
p such that in its next step, it writes to register r. A set of processes P covers a set of reg-
isters R if for every register r ∈ R there is a process p∈ P such that p covers r. Consider
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a process set P that covers the register set R in configuration C. If πP is a permutation
of P, where all processes in P that cover a register in R appear before all processes that
don’t cover a register in R, then the execution (C;πP) is called a block-write by P to R.
Two configurations C1 = (s1, . . . ,sn,v1, . . . ,vm) and C2 = (s′1, . . . ,s

′
n,v

′
1, . . . ,v

′
m) are in-

distinguishable to process pi if si = s′i and v j = v′j for 1≤ j≤ n. If S is a set of processes,
and for every process p ∈ S, C1 and C2 are indistinguishable to p, then for any S-only
schedule σ, σ(C1) and σ(C2) are indistinguishable to p.

A deterministic implementation of a method is wait-free if for any reachable config-
uration C and any process p, p completes its method call in a finite number of its own
steps, regardless of the steps taken by other processes. A deterministic implementation
of a method is obstruction-free if for any reachable configuration C and any process
p, there is a finite p-only schedule σ, such that p finishes its method call in execution
(C,σ). The notion of obstruction-free progress is extended to non-deterministic imple-
mentations by only requiring that there is some finite sequence of choices available
to p such that under these choices p finishes its method call. More precisely, a non-
deterministic implementation of a method satisfies non-deterministic solo-termination,
if for any reachable configuration C and any process p, there is a finite p-only schedule
σ, and a set of choices available to p, such that p finishes its method call in execution
(C,σ) given those choices.

For a renaming algorithm, process p participates in execution E if it takes steps
during E . It participates in configuration C if p has started a getName operation and
has not completed the following relName(x). A process is called idle, if it does not
participate. A configuration C is called quiescent, if ∀p ∈ P , p is idle in C. We say
process p owns name x in execution E , if p has completed a getName operation which
returned name x and p has not started relName(x).

3 A Space Lower Bound for Long-Lived Loose Renaming Objects

Let m be the largest integer such that f (m) ≤ n− 1. We prove that at least m registers
are required for obstruction-free long-lived f (k)-adaptive renaming in our system. The
proof relies on two lemmas. Lemma 1 says that there is no reachable configuration in
which n−m of the processes own names in the range {1, . . . ,n− 1}, while all of the
other m processes are idle and unaware of any of the processes with names. The intu-
ition for this proof is simple: Suppose there is such a configuration. Then we let each of
the m idle processes get a name. The result is that these m processes and the n−m in-
visible ones all hold names from {1, . . . ,n−1}, so they cannot all be distinct. Lemma 2
provides the core of the lower bound argument. It says that for any reachable configura-
tion in which fewer than n−m processes own names in the range {1, . . . ,n− 1}, while
all of the other m processes are idle and unaware of the processes with names, there
is an execution starting from that configuration in which either m distinct registers are
written, or one more name is owned, and the unnamed processes are again idle and still
unaware of the processes with names. Since the initial configuration has no processes
with names, and all processes are idle, we can apply Lemma 2 repeatedly until either we
have covered m registers or we reach a configuration in which n−m−1 processes own
names in the range {1, . . . ,n−1}. Since, according to Lemma 1, we cannot get beyond
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an (n−m− 1)-named configuration, we must eventually cover m registers, complet-
ing the proof. We will see, in the formal proof, that the result applies even when the
renaming implementation is m-bounded.

The definitions and lemmas that follow refer to any obstruction-free implementation
from shared registers of a long-lived f (k)-adaptive renaming object. For a configuration
C and a set of processes Q, we say Q is invisible in C, if there is a reachable quiescent
configuration D such that C and D are indistinguishable to all processes in Q. If the set
Q contains only one process q, then we say process q is invisible. Configuration C is
called �-named, if there is a set Q of � processes, such that in C every process in Q owns
a name in {1, . . . ,n− 1} and Q is invisible.

Lemma 1. For the largest integer m satisfying f (m) ≤ n− 1, there is no reachable
(n−m)-named configuration.

The full proof is omitted due to space constraints.
The intuition for Lemma 2 is as follows. Recall that in an �-named configuration,

� processes have names, the n− � others are idle and unaware of the presence of the
named processes, and no register is covered. Starting from this configuration we select
one process at a time from the set of idle processes and let it execute until either it
covers a register not already covered, or it gets a name without covering a new register.
We continue this construction as long as the selected process covers a new register. If
we reach m processes we are done. Otherwise, we reached a configuration in which one
more process holds a name. Furthermore, we can obliterate the trace of this process with
the appropriate block write, and then let all non-idle process complete their getName()
method. This takes us to an (�+ 1)-named configuration.

Lemma 2. Let m be the largest integer such that f (m) ≤ n− 1. For any 0 ≤ � ≤
n−m and any reachable �-named configuration C, there exists a schedule σ, where
|procs(σ)| ≤ m, and either

– in configuration σ(C) at least m distinct registers are covered; or
– configuration σ(C) is (�+ 1)-named.

Proof. Let C be an �-named configuration, and let Q be the set of � processes that are
invisible in C and D the quiescent configuration that is indistinguishable from C for all
processes in Q. First, we inductively construct a sequence of schedules δ0,δ1, . . . until
we have constructed δlast such that in δlast(C) either
a) m registers are covered, or,
b) (�+ 1) processes own names in {1, . . . ,n− 1}.

We maintain the invariant that for each i ∈ {0, . . . , last} in configuration δi(C), a set
Pi of i processes covers a set Ri of i distinct registers, Pi ∩Q = /0, and all processes in
Pi are idle in execution (C;δi). Let δ0 be the empty schedule. Then in configuration
δ0(C) =C, no register is covered, so the invariant is true for P0 = R0 = /0.

Now consider i≥ 0. If a) or b) holds for δi, we let last = i and are done. Otherwise,
since in δi(C) a set Ri of i distinct registers is covered, we have i <m. We construct δi+1

as follows. Select p ∈ Pi∪Q. Let γ be the shortest p-only schedule such that either
1) p does a complete getName() in execution (δi(C);γ), or
2) in configuration γ(δi(C)), p covers a register r /∈ Ri.
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Let δi+1 be δiγ. First assume case 1) happens. Then because Q is invisible to p, in
(δi(C);γ) p becomes aware of at most the i < m other processes in Pi. Since f (m) ≤
n−1, p gets a name in {1, . . . ,n− 1}, and thus in configuration δi+1(C) all processes in
Q∪{p} own names in {1, . . . ,n−1} and |Q∪{p}|= �+1. So condition b) is achieved,
the construction stops and δlast = δi+1.

Now suppose case 2) happens. If i + 1 = m, then condition a) is achieved, the
construction stops and δlast = δi+1. Otherwise, the invariant remains satisfied for
Ri+1 = Ri ∪ {r} and Pi+1 = Pi ∪ {p}. Clearly, after at most m steps either a) or b) is
achieved.

Now, using schedule δlast we construct schedule σ. If δlast(C) satisfies a), let σ= δlast

and the lemma holds. Hence, suppose that δlast(C) satisfies b). Let α be the Plast−1-only
schedule such that in execution (δlastπPlast−1(C);α) every process q ∈ Plast−1 completes
its pending getName() operation and performs a complete relName(). During exe-
cution (C;δlast ) only registers in Rlast−1 were written and in configuration δlast(C),
Plast−1 covers these registers. Because δlast = δlast−1γ for some p-only postfix γ of
δlast , after a block write by Plast−1, configurations δlastπPlast−1(C) and δlast−1πPlast−1(C)

are indistinguishable to Q∪{p}. Since C and D are indistinguishable to Q, config-
urations δlast−1πPlast−1(C) and δlast−1πPlast−1(D) are also indistinguishable to Q. So,

configurations δlastπPlast−1(C) and δlast−1πPlast−1(D) are indistinguishable to Q∪{p}.
Hence, configurations δlastπPlast−1α(C) and δlast−1πPlast−1α(D) are indistinguishable to

(Q∪{p}). Since δlast−1πPlast−1α(D) is quiescent, configuration δlastπPlast−1α(C) is an
(�+ 1)-named configuration. Therefore, the lemma holds for σ = δlastπPlast−1α. �	

Theorem 3. Let m the the largest integer such that f (m)≤ n−1. Any obstruction-free
implementation of a long-lived m-bounded f (k)-adaptive renaming object requires at
least m registers.

Proof. Let C0 = C∗, and note that C0 is a reachable 0-named configuration. We itera-
tively construct a sequence of schedules σ0,σ1, . . . ,σlast as follows: If 0 ≤ i ≤ n−m
and Ci is a reachable i-named configuration, we apply Lemma 2 to obtain a schedule σi,
|procs(σi)| ≤ m, such that Ci+1 = σi(Ci) is either an (i+ 1)-named configuration, or in
Ci+1 at least m distinct registers are covered. In the latter case we let last = i+1 and fin-
ish the iterative construction. By Lemma 1, the iterative construction ends eventually, as
no (n−m)-named configuration Cn−m exists. Hence, there is a reachable configuration
Clast , last < n−m, in which m registers are covered, and in particular the implementa-
tion uses at least m registers. �	

Corollary 4. Let c ∈ {1, . . . ,n− 1} and b = � n−1
c �. Any obstruction-free implemen-

tation of a long-lived b-bounded (c · k)-adaptive renaming object requires at least b
registers.

4 A Space Lower Bound for One-shot Additive Loose Renaming

Proving space lower bounds for one-shot renaming is more difficult, since we cannot
obtain a covering of registers by letting processes repeatedly get and release names.
Therefore we study almost tight one-shot renaming objects, where the name space is
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only an additive constant term larger than the contention. We refer to one-shot (k +
c)-renaming object as an additive loose renaming object, where k is the number of
participants and c≥ 0 is an integer constant. For the case c = 0, it is called an adaptive
tight renaming object.

We prove a lower bound of � n
c+1� registers for one-shot obstruction-free additive

loose renaming objects. Since in the (k+ c)-renaming problem a process is allowed to
return a name in the range {1, . . . ,c+ 1} when it runs alone, there is no incentive for
having a (k+ c)-renaming object in a system with n ≤ c+ 1. Hence in our proofs we
assume c≤ n− 2.

We consider an arbitrary obstruction-free one-shot (k+ c)-adaptive renaming algo-
rithms. Our lower bound proof relies on two lemmas. Lemma 5 says that there are at
most c processes in the system, which do not write to any register while completing a
getName() call in a solo-execution. The reason is that if there are c+1 such processes,
then then we can let all of them run in such a way that they remain invisible, and get
names in {1, . . . ,c+ 1}. If we run any other process afterwards, it also gets a names in
{1, . . . ,c+ 1}, contradicting name distinctness.

Lemma 5. Let c≤ n− 2, and for any process p, let σp denote a p-only schedule such
that p performs a complete getName() in execution (C∗;σp). There are at most c pro-
cesses q that do not write to any register in execution (C∗;σq).

The straight-forward proof of this lemma is omitted due to space restrictions.
In Lemma 6, we extend this idea by partitioning processes into sets of size c+1 and

then constructing an execution such that in each such set, there must be at least one
process that writes to a register not previously written.

Lemma 6. Let c∈ {0, . . . ,n−2}, k ∈ {1, . . . ,� n
c+1�}, Bk = {p1, . . . , p(c+1)k}, and B̂k =

{pc+2, . . . , p(c+1)k} (and thus B̂1 = /0). There exists a Bk-only schedule σk and a B̂k-only

schedule σ̂k, such that for Ck = σk(C∗) and Ĉk = σ̂k(C∗) we have
a) in configuration Ck, there is a set Rk of k distinct registers covered by Bk;
b) σ̂k is the subsequence of σk constructed by removing from σk all occurrences of

processes in {p1, . . . , pc+1}; and
c) Ck and Ĉk are indistinguishable to P −{p1, . . . , pc+1}.

Proof. The proof proceeds by induction on k. For the base case, k = 1, by Lemma 5,
there is a process p ∈ {p1, . . . , pc+1} and a p-only schedule σp such that during the
execution (C∗;σp) process p performs a complete getName() and writes to a register.
Let σ1 be the shortest prefix of σp such that p covers a register in σ1(C∗), and let r be
the register covered. Then the lemma is true for R1 = {r} and the empty schedule σ̂1.

Suppose that a), b), and c) are true for k ≥ 1. Let A be the set of processes
{p(c+1)k+1, . . . , p(c+1)(k+1)}. Let α be an A-only schedule such that in execution (Ck;α),
every process p ∈ A performs a complete getName(). First suppose there is a process
q∈A that writes during (Ck;α) to a register that is not in Rk. Let α′ be the shortest prefix
of α such that in α′(Ck) some process q ∈ A covers a register r /∈ Rk. Set σk+1 = σkα′,
σ̂k+1 = σ̂kα′, and Rk+1 = Rk ∪ {r}. By the induction hypothesis, Ck = σk(C∗) and
σ̂k(C∗) = Ĉk are indistinguishable to P −{p1, . . . , pc+1}, so Ck+1 = σk+1(C∗) = α′(Ck)
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and Ĉk+1 = σ̂k+1(C∗) = α′(Ĉk) are also indistinguishable to P −{p1, . . . , pc+1}. More-
over, in Ck all registers in Rk are covered, so in Ck+1 all registers in Rk+1 are covered,
and the inductive hypothesis follows.

It remains to prove that there is a process q∈ A that writes during (Ck;α) to a register
that is not in Rk. By way of contradiction, assume that each process p ∈ A writes only
to Rk during (Ck;α). Since processes in A do not distinguish Ck from Ĉk, where only
processes in B̂k are participants, processes in A must return names of value at most
|B̂k|+ |A|+ c ≤ (c+ 1)k+ c in execution (Ck;α). Let πBk be a permutation of Bk such
that (πBk ;α(Ck)) is a block-write to Rk. Let β be a Bk-only schedule such that each
process p∈Bk completes its getName() in execution (απBk(Ck);β). Since no process in
Bk distinguishes απBk(Ck) from πBk(Ck), processes in Bk return names of value at most
|Bk|+ c≤ (c+ 1)k+ c during (απBk(Ck);β). We showed above, that also all processes
in A return names of value at most (c+ 1)k+ c in (Ck;α) and thus in (απBk(Ck);β).
Hence, in that execution all processes in Bk ∪A return names in {1, . . . ,(c+ 1)k+ c}.
This contradicts name distinctness because |Bk∪A|= (c+ 1)k+ c+ 1. �	

Maximizing k in Lemma 6 provides space lower bounds for one shot additive loose
renaming objects and for tight renaming objects.

Theorem 7. For any constant integer c ≥ 0, any obstruction-free implementation of a
one-shot (k + c)-adaptive renaming object for a system with n processes requires at
least � n

c+1� registers. In particular, adaptive tight renaming for n processes requires at
least n registers.

5 One-shot (m−1)-Bounded Renaming Algorithms

This section contains two different one-shot renaming algorithms using only shared
registers. These algorithms are simplified by assuming that there is a scan operation
available in the system, which atomically returns the complete contents of all the m
registers. Later we show how to remove this assumption.

In our proofs, a register configuration is a tuple (v1, . . . ,vm), denoting that register
R[i], 1 ≤ i ≤ m, has value vi. The proofs focus on just the sub-sequence of register
configurations produced by an execution. Specifically, given an execution E = (C∗;σ),
let write schedule σ̂ denote the sub-sequence of σ that produces write steps in (C∗;σ).
Execution E gives rise to the sequence of register configurations ΓE =C0,C1, . . . such
that the i-th step of σ̂ is a write that changes register configuration Ci−1 to register
configuration Ci and C0 = C∗. For any scan operation s in E , define index(s) = i, if
s occurs in E between Ci and Ci+1 in ΓE . Notice that the view returned by a scan
with index i is equal to Ci. A register configuration C = (v1, . . . ,vm) is consistent if
v1 = · · · = vm in which case we say v1 is the content of C. Let Ci and Cj be register
configurations in the sequence ΓE =C0,C1, . . . such that i≤ j. Interval (Ci,Cj) denotes
the sub-sequence of steps in execution E that begins at register configuration Ci and
ends at register configuration Cj in ΓE .

A local variable x in these algorithms is denoted by xp when it is used in the method
call invoked by process p.
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shared: R = R[1, . . . ,m]: array of
multi-writer multi-reader registers,
initialized to ⊥;

local: An array r[0, . . . ,m−1]; pos
initialized to 0; S initialized to {id};

Function getName

1 repeat
2 R[pos].write(S)
3 r[0, . . . ,m−1] := R .scan

4 S :=
⋃m−1

i=0 r[i]∪S
5 pos := (pos+1) mod m
6 until
(|S| ≥ m)∨ (r[0] = r[1] = · · ·= r[m−1] = S)

7 if |S| ≤m−1 then
8 return (|S|(|S|−1))/2+ rank(id,S)
9 else

10 return m(m−1)/2+ id
11 end

Fig. 1. (m−1)-Bounded (k(k+1)/2)-Adaptive Renaming

5.1 Wait-Free One-shot (m− 1)-Bounded (k(k+ 1)/2)-Adaptive Renaming

In the algorithm presented in Fig. 1, each process maintains a set of the processes,
S, that it knows are participating including itself, and alternately executes write and
scan operations. In the write operation, it writes S to the next register after where it
last wrote, in cyclic order through the m registers. After each of its scan operations, it
updates S to all the processes it sees in the scan together with the processes already in
its set. The process stops with an assigned name when either its scan shows exactly its
own set, S, in every register, or S has grown to size at least m. If |S| is less than m, its
name is based on |S| and its rank in S, where rank(id,S) = |{i|(i ∈ S)∧ (i≤ id)}|. If |S|
is m or greater, it returns a safe but large name. The correctness of this algorithm relies
on the fact that if any two processes return names based on a set of size s < m, then they
have the same set. The main component of the proof is to establish this fact.

Observation 8. For any write operation with value S by process p, p ∈ S.

Lemma 9. For any execution E, let C0 be a consistent register configuration with con-
tent Ŝ. For any register configuration C following C0 in E, define RC = {R∈ R |Ŝ �⊆ R}.
Then there exists a one-to-one function fC : RC → P satisfying, ∀R∈RC, fC(R)∈ R and
fC(R) performs at least one write in Interval (C0,C).

Proof. Let C0,C1, . . . be the sequence of register configurations that arises from E start-
ing at C0. We prove the lemma by induction on the indices of this sequence. The base
case k = 0, is trivially true since set RC0 is the empty set.

Suppose that the induction hypothesis is true for k− 1 ≥ 0. Let the write step be-
tween Ck−1 and Ck be the operation, w, by process p, into register R[ j] with value V .
Let s be the most recent scan operation by p preceding w if it exists.

If Ŝ ⊆ V , then RCk = RCk−1 \ {R[ j]}. Define fCk (R) = fCk−1(R), ∀R ∈ RCk . Since
fCk−1 satisfies the induction hypothesis, and RCk ⊆RCk−1 , fCk also satisfies the induction
hypothesis.
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Now consider the case Ŝ �⊆ V . So RCk = RCk−1 ∪ {R[ j]}. We first show that s hap-
pens before C0 or it does not exist. Suppose, for the purpose of contradiction, that
0≤ index(s)≤ k−1. We have ∀i, 0≤ i≤m−1, Ŝ �⊆ R[i] in configuration Cindex(s), since

otherwise, by Line 4, Ŝ⊆V . Thus |RCindex(s)
|= m. By the induction hypothesis, fCindex(s)

selects a distinct process from each register in RCindex(s)
, implying, by Line 4, that the size

of Sp at least m. Hence p would have stopped in Line 6 before performing any write
operation. Therefore s happens before C0 or s does not exist, and consequently any
write by p before w happens before C0. On the other hand, ∀R ∈ RCk−1 , f (R) performs
a write during Interval (C0,Ck−1) implying p is not in { f (R)|R ∈RCk−1}. By Observa-
tion 8, p∈V and p performs a write after C0. Therefore by defining fCk (R) = fCk−1(R),
∀R, R ∈ (RCk−1 \ {R[ j]}) and fCk (R[ j]) = p, the induction hypothesis holds for k. �	

Lemma 10. For any execution E, let Ŝp and Ŝq be the value of Sp and Sq in Line 7 for
p and q when they have completed the repeat loop. If |Ŝp|= |Ŝq|< m then Ŝp = Ŝq.

Proof. Let Cp and Cq be the consistent register configurations that resulted in Ŝp and
Ŝq respectively and assume, without loss of generality, that Cp precedes Cq in ΓE . By
Line 6, R[0] = · · ·= R[m−1] = Ŝq in Cq. Thus in Cq, either ∀i, 0≤ i≤m−1, Ŝp ⊆ R[i]
or ∀i, 0≤ i≤ m− 1, Ŝp �⊆ R[i].

For the first case, by Line 4, Ŝp ⊆ Ŝq and since |Ŝp| = |Ŝq|, Ŝp = Ŝq. For the latter
case, set RCq has size m. By Lemma 9, there is a distinct process fCq(R) in each register

in RCq . So there are at least m distinct processes in Ŝq contradicting |Ŝq|< m. �	

Lemma 11. The names returned by any two distinct processes are distinct.

Proof. Let Ŝp and Ŝq be the values of Sp and Sq in Line 7. If |Ŝp| ≥ m and |Ŝq| ≥ m,
the names returned by p and q in Line 10 are distinct because p �= q. If |Ŝp| < m and
|Ŝq| ≥ m, then, by Line 8, the name returned by p is at most (m− 1)(m− 2)/2+(m−
1) = m(m− 1)/2 and, by Line 10, the name returned by q is bigger than m(m− 1)/2.
If |Ŝp|< m and |Ŝq|< m, both processes return at Line 8. First suppose l = |Ŝp|< |Ŝq|.
Then the name returned by p is at most (l + 1)(l)/2 and the name returned by q is at
least (l + 1)(l)/2+ 1. If |Ŝp| = |Ŝq|, by Lemma 10, Ŝp = Ŝq. Therefore rank(p, Ŝp) �=
rank(q, Ŝq). Thus, in all cases the names returned by p and q are distinct. �	

Observation 12. Set {p} is written by p before any other write of any set V ⊇ {p}.

Lemma 13. Let k be the number of participating processes. Then, any name returned
by any process p, is in the range {1, . . . , k(k+1)

2 }, if k < m and in the range {1, . . . ,n+
m(m−1)

2 }, if k≥ m.

Proof. By Observation 12, ∀q ∈ Sp, q performs at least one write before p returns.
Thus, ∀q ∈ Sp, q is a participating process. Hence, |Sp| ≤ k. If k < m, then |Sp| < m.

Therefore, process p returns in Line 8, and the name is in the range {1, . . . , k(k+1)
2 }. If

k ≥ m, then p returns either in Line 8 or in Line 10. Therefore the name is in the range
{1, . . . , m(m−1)

2 + n}. �	
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Intuitively, we see that there is a finite bound, say B, on the number of times any
process can execute Line 2 because, either a process continues to write the same set and
thus terminates at Line 8, or it keeps updating its set with new values, in which case
it eventually terminates at Line 10 because its set is large. The formal proof of this is
omitted due to page constraints.

The atomic scan in Line 3 is replaced with a linearizable implementation, using the
standard double collect technique [1]. A process obtains a view of R by reading R[1]
through R[m] consecutively. It repeatedly gets a view until it obtains two identical con-
secutive views, and the scan returns this view. In order to guarantee linearizability of
the scan method, processes augment the values they write to R with sequence num-
bers. Since there can be only a finite number of write operations to R , the scan method
based on double collects is wait-free. Moreover, each process increments its sequence
number at most B times, and thus sequence numbers can be stored in bounded registers.
Thus, Lemmas 11 and 13, and the observed bound B yield the following result.

Theorem 14. For any m ≥ 1, there is a wait-free one-shot (m− 1)-bounded (k(k +
1)/2)-adaptive renaming algorithm implemented from m bounded registers. Addition-

ally, when k ≥ m, the returned names are in the range {1, . . . ,n+ m(m−1)
2 }.

Setting m = �√n� we have,

Corollary 15. There is a wait-free one-shot (3k2)/2)-adaptive renaming algorithm im-
plemented from �

√
n� bounded registers.

5.2 Obstruction-Free (m− 1)-Bounded k-Adaptive Renaming

Algorithm Description. Pseudo-code for the algorithm is found in Fig. 2. A naming
set is a set of ordered pairs where each pair is a process id and a proposed name such
that each process id occurs in at most one pair in the set. Let S be a naming set. In our
algorithm and the analysis we use the following notation:

– Procs(S) = {x|(x,y) ∈ S},
– Names(S) = {y|(x,y) ∈ S},
– if (p,n) ∈ S, then name(p,S) is n; otherwise name(p,S) is equal to 0.
Each register R stores either the value ⊥ (the initial value), or an ordered triple

(set,writer, proposal). In the latter case, set is a naming set, writer is a process id
and proposal is a positive integer less than m. Each process p maintains a naming set
Sp and alternates between write and scan until it terminates with a name for itself.
Each scan returns a view, which is the content of all registers. Each write by p writes
a triple consisting of its set Sp, its id p, and its proposed name namep, to some register
R[ j]. Process p uses its preceding scan and its previous value of Sp to determine the
new value of Sp, namep and j.

Function Update describes how p constructs Sp in three steps. In the first step
(Lines 18-22), p creates a naming set based only on the writers and proposals of each
register in its view. If the view contains a writer with more than one proposal, p chooses
one pair arbitrarily. In the second step (Lines 23-31), p augments its naming set with
additional pairs for processes that are not writers in its view but occur in the union of
all naming sets in its view. The main issue occurs when there is some process that is



314 M. Helmi, L. Higham, and P. Woelfel

shared: R = R[1, . . . ,m]: array of multi-writer
multi-reader registers, initialized to ⊥;
local: An array r[1, . . . ,m]; pos initialized to 1;
S initialized to /0; proposed initialized to 1.

Function getName

1 repeat
2 R[pos].write(S, id, proposed)
3 r[1, . . . ,m] := R .scan
4 S :=U pdate(S,r[1, . . . ,m])
5 proposed = min{i ∈ N|i /∈

Names(S)}
6 if ∃i, s.t. (r[i].writer = id)∧ (r[i] �=

(S, id, proposed)) then
7 pos := max{i|(r[i].writer =

id)∧ (r[i] �= (S, id, proposed))}
8 else if ∃ j, s.t.

r[ j] �= (S, id, proposed) then
9 pos := j

10 end
11 until (|S|+1≥ m)∨ (r[1] = r[2] = · · ·=

r[m] = (S, id, proposed))
12 if |S|+1 < m then
13 return proposed
14 else
15 return m−1+ id
16 end

Function Update

17 Snew = /0
18 for all

w ∈ {r[i].writer|1≤ i≤ m}\{id} do
19 Let j ∈ {1, . . . ,m} such that

r[ j].writer = w
20 namew := r[ j].proposal
21 Snew := Snew∪{(w,namew)}
22 end
23 for ∀p ∈

Procs(
⋃m

i=1 r[i].set)\Procs(Snew) do
24 if ∃i, j, (i < j)∧ (r[i].writer =

r[ j].writer)∧ (p∈
Procs(r[ j].set)) then

25 namep := name(p,r[ j].set)
26 else
27 Let j ∈ {1, . . . ,m} s.t.

p ∈ Procs(r[ j].set)
28 namep := name(p,r[ j].set)
29 end
30 Snew := Snew∪{(p,namep)}
31 end
32 for ∀p ∈ Procs(S)\Procs(Snew) do
33 Snew := Snew ∪{(p,name(p,S))}

34 end
35 return Snew

Fig. 2. (m−1)-Bounded k-Adaptive Renaming

paired with more that one name in two or more naming sets from different registers. In
this case, if there are two such registers with the same writer then, p chooses the pair
which occurs in the register with bigger index. Otherwise, p picks one pair arbitrarily.
Finally (Lines 32-34), p adds any pair (q,nq) such that q exists in the previous version
of Sp and is not yet added. Observe that Sp is a naming set.

Line 5 describes how p sets namep— It chooses for namep the smallest integer that
is not paired by some other process in Sp.

Lines 6-10 describe how p sets j— If there is any register with writer component
equal to p but with content different from (Sp, p,namep) then p writes to register R[ j]
where j is the biggest index amongst these registers. Otherwise it writes to some register
whose content is different than (Sp, p,namep). Process p continues until either in some
scan, all registers contain the same information that p has written or |Sp| is larger than
m− 1. In the first case p returns namep and in the second case it returns m+ p− 1.

Overview of Proof. Once a process p terminates with name np <m−1, the pair (writer,
proposal) of every register is equal to (p,np). The core idea is that after p terminates,
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every register that is overwritten with the wrong name for p or no name for p, has a
distinct writer component. Therefore, if a subsequent scan by another process, say q,
does not include the correct name for p, the set of processes in that scan is large and q
terminates with a name larger than m. If the set of processes in the scan is not large, then
there is some writer that is in the writer component of at least 2 registers. In that case,
we prove that for any such pair of registers with the same writer, the correct name for p
is in the register with the larger index. In this way, the algorithm ensures that process q
keeps (p,np) in its naming set, and discards incorrect names for p.

Let p be a process that has terminated and returned name np. Define lastp to be
the last scan by p. For any register configuration D following register configura-
tion Cindex(lastp), define a set of registers Wp(D) = {R ∈ R |(R.writer �= p)∧ ((p,np) /∈
R.set)} and a set of processes ρp(D) =

⋃
R∈Wp(D){R.writer}.

Lemma 16. Let E be an execution starting in the initial configuration and ending in
configuration C, and suppose (R[1], . . . ,R[m]) = (v1, . . . ,vm) in configuration C. If there
are two integers i and j such that i < j, vi.writer = v j.writer = p and vi �= v j, then the
last write of vi to R[i] happens before the last write of v j to R[ j].

Due to space constraints, the proof of this lemma is omitted.

Lemma 17. Consider an execution E in which process p’s getName() call returns
name np ≤ m− 1. Let ΓE = C0,C1, . . . be the sequence of register configurations that
arise from E. Then for any register configuration Ck where k ≥ index(lastp),

i) |Wp(Ck)|= |ρp(Ck)|;
ii) ∀q ∈ ρp(Ck), q performs a write in the interval (Cindex(lastp),Ck); and

iii) for any q∈ P and any write schedule σk =α1qα2qα3, where σk(Cindex(lastp)) =Ck,
if v is the value written by q in the one step execution (α1qα2(Cindex(lastp)),q), then
(p,np) ∈ v.set.

Proof. We prove the lemma by induction on k. Since np ≤ m− 1, p returns in Line 13.
Therefore the condition r[1] = · · · = r[m] = (Sp, p,np) held when p last executed
Line 11. Hence, condition R[1] = · · · = R[m] = (Sp, p,np) held in Cindex(lastp). There-
fore the lemma holds for the base case k = index(lastp) because Wp(Cindex(lastp)) =
ρp(Cindex(lastp)) = /0 and σindex(lastp) is the empty schedule.

Suppose that the lemma holds for k− 1 ≥ index(lastp). Let w be the write that
changes register configuration Ck−1 to Ck, and let x be the process that performs w.
Then clearly x �= p, since p has performed its last write before Cindex(lastp). Suppose w
puts value (Sx,x,nx) into register R, and let s be x’s scan operation that precedes w if it
exists.

We first show that if Cindex(lastp) precedes Cindex(s) in ΓE , then (p,np) ∈ Sx. If in
Cindex(s), there exists an i such that R[i].writer = p, then by Line 21, (p,np) ∈ Sx.
Otherwise suppose, in Cindex(s), there is a process u and indices i, j, i < j, such that
r[i].writer = r[ j].writer = u. Then there exist two writes by u, one, say w1, to R[i] with
value r[i] and another one, say w2, to register R[ j] with value r[ j], and both w1 and w2

occur in Interval (Cindex(lastp),Cindex(s)). If r[i] �= r[ j] then by Lemma 16, w1 precedes
w2 in E and by the induction hypothesis (iii), (p,np) ∈ r[ j].set. If r[i] = r[ j] then again
by induction hypothesis (iii), (p,np) ∈ r[ j].set. In either case, Line 24 evaluates to true.
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Hence by Line 25, (p,np) ∈ Sx. Finally, if ∀i �= j, r[i].writer �= r[ j].writer, then by the
for-loop (Lines 18-22), |Sx| ≥m−1. Hence, the presumed write w by x cannot happen.

If (p,np) ∈ Sx then, Wp(Ck) = Wp(Ck−1) \ {R}. Therefore (i) and (ii) are trivially
true. Since (p,np) ∈ Sx, (iii) is true for σk = σk−1x.

If (p,np) /∈ Sx then, as proved above, Cindex(s) precedes Cindex(lastp) in ΓE or s does
not exist. Since for all q ∈ ρp(Ck−1), q performs a write during (Cindex(lastp),Ck−1)
and the most recent operation before w by x happens before Cindex(lastp) or there is no
operation before w, x /∈ ρp(Ck−1). Thus, Wp(Ck) = Wp(Ck−1)∪ {R}. Since the most
recent operation before w by x happens before Cindex(lastp), there is no write schedule
α1xα2xα3 satisfying α1xα2xα3(Cindex(lastp)) =Ck. Therefore (iii) remains true. �	

Lemma 18. Let p and q be two distinct processes that have terminated in execu-
tion E and returned names np and nq respectively. Suppose that Cindex(lastp) precedes
Cindex(lastq) in ΓE. If np,nq ≤ m− 1, then |Wp(Cindex(lastq))|= 0.

Proof. Since nq ≤ m − 1, q returns in Line 13. Hence Cindex(lastq) is consis-
tent with content (Sq,q,nq). Therefore, |Wp(Cindex(lastq))| ∈ {0,m}. By Lemma 17,
|Wp(Cindex(lastq))| = |ρp(Cindex(lastq))|. Since in Cindex(lastq), R.writer = q for all R ∈ R ,
|ρp(Cindex(lastq))| ≤ 1, and thus |Wp(Cindex(lastq))| ≤ 1. Therefore |Wp(Cindex(lastq))|= 0.

�	

Lemma 19. The names returned by any two distinct processes and are distinct.

Proof. (Sketch.) Let np and nq be the names returned by p and q, respectively. Let Ŝp

(respectively, Ŝq) be the value of Sp (respectively, Sq) when p (respectively, q) executes
Line 12. The cases: |Ŝp|, |Ŝq| ≥m−1 and |Ŝp|< m−1 and |Ŝq| ≥m−1 are straightfor-
ward, with proofs similar to the corresponding cases in the proof of Lemma 11. Con-
sider the case |Ŝp|, |Ŝq|< m− 1 implying np,nq ≤ m− 1. Without loss of generality as-
sume that Cindex(lastp) precedes Cindex(lastq) in ΓE . By Lemma 18, |Wp(Cindex(lastq))|= 0.

Thus, (p,np) ∈ Ŝq. Therefore proposedq �= np in Line 5. �	

Observation 20. Let Ŝp be the value of Sp created by U pdate in Line 5 following p’s
scan operation scanp in Line 3. Then ∀q ∈ Procs(Ŝp), q performs at least one write
before scanp.

Lemma 21. Suppose that k is the number of participating processes. Then, any name
returned by any process p, is in the range {1, . . . ,k}, if k ≤ m− 1 and in the range
{1, . . . ,n+m− 1}, if k ≥ m.

The proof of Lemma 21 is straightforward. It is omitted due to space constraints.

Theorem 22. For any m ≥ 2 there is an obstruction-free (m− 1)-bounded k-adaptive
renaming algorithm implemented from m + 1 bounded registers such that when k ≥
m− 1 the returned names are in the range {1, . . . ,n+m− 1}.

Proof. There is an obstruction-free implementation of m-component snapshot objects
from m+1 bounded registers [14]. Since our algorithm in Fig. 2 is deterministic we can
replace the atomic scan registers with a linearizable scan. By Lemma 21 and Lemma 19,
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the algorithm solves (m− 1)-bounded k-adaptive renaming. Thus, it suffices to prove
that the algorithm is obstruction-free.

If p runs alone then the value of Sp computed in Line 4 and proposedp computed
in Line 5 remain the same. Therefore after m write operations all registers contain
(Sp, p, proposedp). Therefore, in the m-th iteration of the repeat-until loop (Line 11)
evaluates to true and p stops. �	
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Abstract. In this paper, we study lower bounds for randomized solu-
tions to the maximal independent set (MIS) and connected dominating
set (CDS) problems in the dual graph model of radio networks—a gener-
alization of the standard graph-based model that now includes unreliable
links controlled by an adversary. We begin by proving that a natural ge-
ographic constraint on the network topology is required to solve these
problems efficiently (i.e., in time polylogarthmic in the network size). In
more detail, we prove that in the absence of this constraint, for a network
of size n: every MIS algorithm now requires Ω(n1−ε) rounds to solve the
problem, for any constant ε, 0 < ε ≤ 1, and every CDS algorithm that
provides a reasonable approximation of a minimum CDS now requires
Ω(
√
n/ log n) rounds. We then prove the importance of the assumption

that nodes are provided advance knowledge of their reliable neighbors
(i.e, neighbors connected by reliable links). In more detail, we prove that
in the absence of this assumption, for any CDS algorithm that guaran-
tees a g(n)-approximation of a minimum CDS in f(n) rounds, it follows
that g(n) + f(n) = Ω(n). This holds even if we assume the geographic
constraint and the weakest possible adversary controlling the unreliable
links. Finally, we show that although you can efficiently build an MIS
without advance neighborhood knowledge, this omission increases the
problem’s dependence on the geographic constraint. When both con-
straints are missing, every MIS algorithm now requires Ω(n) rounds,
even if we assume the weakest possible adversary. Combined, these re-
sults answer an open question by proving that the efficient MIS and
CDS algorithms from [2] are optimal with respect to their dual graph
model assumptions. They also provide insight into what properties of an
unreliable network enable efficient local computation.

1 Introduction

This paper proves four new lower bounds on the maximal independent set (MIS)
and connected dominating set (CDS) problems in radio networks with unreli-
able links. These bounds establish the necessary model assumptions for building
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structures efficiently in this dynamic setting. In doing so, they also prove that
the MIS and CDS algorithms of [2] are optimal with respect to their assump-
tions. As emphasized in previous studies (e.g., [11,14,2]), these two problems are
important in the radio setting as they provide clusterings and routing backbones,
respectively, both of which are useful to higher-level applications.

The Dual Graph Model. Theoreticians have studied distributed algorithms in
radio network models since the 1980s. Most of this existing work assumes static
models in which receive behavior depends on a fixed set of deterministic rules.
This property is true, for example, of both the popular graph-based [3,1] and
signal-strength [15] models. We argue that it is important, however, to also study
radio network models that are more dynamic and less predictable. This type of
model uncertainty can abstract the complex behavior observed in real wireless
networks [17], and therefore improve the likelihood that properties proved in
the theory setting will remain satisfied in a practical deployment. Our call for
dynamic radio network models, in other words, is an attempt to help close the
gap between theory and practice.

In a recent series of papers motivated by this argument, we study distributed
computation in a dynamic radio network environment that we call the dual
graph model [10,9,2,6,7]. This model generalizes the well-studied graph-based
models [3,1] to now include two topology graphs. The first graph captures reliable
links that are present in every round of the computation1 and the second captures
unreliable links that come and go as determined by a (bounded) adversary. The
collision rules in each round are the same as in the standard graph-based models.

Results. In previous work [2], we studied the MIS and CDS problems in the dual
graph model with an adaptive adversary and the following two strong assump-
tions: (1) a natural geographic constraint holds with respect to the dual graphs
(see Section 2); and (2) the nodes are provided the ids of their reliable neighbors
(i.e., neighbors in the reliable link graph) at the beginning of the execution. Un-
der these assumptions, we described randomized MIS and CDS algorithms that
are efficient, which we define in the following to mean time polylogarthmic in
the network size. Furthermore, the CDS algorithm guarantees a structure that
is a constant-approximation of a minimum CDS in the network. We note that
in the standard graph-based model without unreliable links, the best known so-
lutions to these problems are also polylogarthmic [14], indicating that the above
assumptions enable algorithms to minimize the impact of unreliability.

In this paper, we explore the necessity of these two assumptions. We begin
by proving that the geographic constraint is required to efficiently build an

1 Notice, a more general approach to modeling unreliability would be to assume a
single graph that changes from round to round. The dual graph model assumes
the same reliable sub-graph is present in each each round because it enables more
natural and simple definitions of standard problems; e.g., to define broadcast, we can
simply say the message gets to all nodes connected to the source in the reliable sub-
graph, and to define structuring algorithms, we can require that the structures to
be correct with respect to this sub-graph—definitions that are complicated without
this stability.
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MIS or CDS in the dual graph model. In more detail, in Section 3.1 we prove
that without this assumption, every randomized MIS algorithm now requires
Ω(n1−ε/ logn) rounds to solve the problem in a network of size n, for any con-
stant ε, 0 < ε ≤ 1. We then prove, in Section 3.2, that any randomized CDS
algorithm that guarantees to provide at least a o(

√
n)-approximation of the

minimum CDS now requires Ω(
√
n/ logn) rounds to solve the problem. In both

cases, these results hold even when we weaken the adversary from the offline
adaptive adversary assumed in [2] (which knows the nodes’ random bits) to
the weaker online adaptive adversary (which does not know these bits). Note
that these lower bounds are exponentially worse than what is possible with the
geographic constraint—underscoring its importance.

To prove our MIS lower bound, we show that any algorithm that works ef-
ficiently in this setting must work in a ring with a (non-geographic) unreliable
link topology that allows a clever adversary to prevent many segments of the
ring from receiving any messages. The nodes in these isolated segments must
then make an MIS decision based only on their id and the ids of their neighbors
(which, by assumption, they are provided). By repurposing a key combinatorial
result due to Linial [13], we are able to show that for a particular method of
assigning ids to the ring, it is likely that some isolated segments will make mis-
takes. To prove the CDS result, we use simulations of the algorithm in question
to carefully build a challenging (non-geographic) dual graph network and id as-
signment in which it is likely that either the CDS is too large (leading to a bad
approximation) or is not connected (violating correctness).

We proceed by exploring the necessity of the second assumption which pro-
vides nodes advance knowledge of their reliable neighbors. We emphasize that
for structuring problems, nodes need some way to distinguish reliable links from
unreliable links, as the problem definitions require that the structures be correct
with respect to the reliable link graph (see Section 2). They do not, however, nec-
essarily require advance knowledge of their reliable neighbors. With this in mind,
we study what happens when we replace this advance knowledge assumption
with a passive alternative that simply labels messages received from a reliable
neighbor as reliable—leaving it up to the algorithm to discover these nodes.

We prove in Section 4.1 that the advance knowledge assumption is neces-
sary to efficiently solve the CDS problem. In more detail, we prove that with a
geographic constraint, the weakest possible adversary (a static adversary that
never changes the unreliable links it includes), but only passive neighborhood
knowledge, for any randomized CDS algorithm that guarantees to construct
a g(n)-approximation of the minimum CDS in f(n) rounds, it follows that
g(n) + f(n) = Ω(n). We then turn our attention to the MIS problem. In Sec-
tion 4.2, we first show that the MIS solution from [2] still works with passive
knowledge—identifying a gap with respect to the CDS problem. We then prove,
however, that the switch to passive knowledge increases the dependence of any
MIS solution on the assumption of a geographic constraint. In particular, we
prove that with the passive neighborhood knowledge, the static adversary, and
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no geographic constraint, every randomized MIS algorithm now requires Ω(n)
rounds to solve the problem.

In both bounds, we rely on a static adversary that adds unreliable links be-
tween all nodes in all rounds. In such a network, only one node can successfully
send a message in a given round (if any two nodes send, there will be a col-
lision everywhere), but any successful message will be received by all nodes in
the network. The key to the arguments is the insight that a received message
is only useful if it comes from a reliable neighbor, and therefore, in each round,
at most a small fraction of the network receives useful information. If we run
the algorithm for a sufficiently small number of rounds, a significant fraction of
nodes will end up making an MIS or CDS decision without any knowledge of
their reliable neighborhood (as they did not receive any useful messages and we
assume no advance knowledge of reliable neighbors). Our bounds use reductions
from hard guessing games to careful network constructions to prove that many
nodes are subsequently likely to guess wrong.

Implications. In addition to proving the algorithms from [2] optimal, our lower
bounds provide interesting general insight into what enables efficient local com-
putation in an unreliable environment. They show us, for example, that geo-
graphic network topology constraints are crucial—without such constraints, the
MIS and CDS problems cannot be solved efficiently in the dual graph model,
even with strong assumptions about neighborhood knowledge. Though existing
structuring results in other radio network models all tend to use similar con-
straints (e.g., [11,14]), to the best of our knowledge this is the first time they are
shown to be necessary in a radio setting. Our lower bounds also identify an inter-
esting split between the MIS and CDS problems, which are typically understood
to be similar (building an MIS is often a key subroutine in CDS algorithms).
In particular, the MIS problem can still be solved efficiently with passive neigh-
borhood knowledge, but the CDS problem cannot. Our intuition for this divide,
as highlighted by the details of our proof argument (see Section 4.1), is that a
CDS’s requirement for reliable connectivity necessitates, in the absence of ad-
vance neighborhood knowledge, a sometimes laborious search through a thicket
of unreliable links to find the small number of reliable connections needed for
correctness.

Related Work. Thedual graphmodelwas introduced independentlybyClementi
et al. [4] and Kuhn et al. [10], and has since been well-studied [9,2,6,7]. In [2], we
presented an MIS and CDS algorithm that both require O(log3 n) rounds, for a
network of size n and the strong assumptions described above. It was also shown
in [2], that an efficient CDS solution is impossible if provided imperfect advance
neighborhood knowledge (i.e., a list of reliable neighbors that can contain a small
number ofmistakes). In the classical graph-based radio networkmodel [3,1], which
does not include unreliable edges, the best knownMISalgorithmrequiresO(log2 n)
rounds [14] (which is tight [8,5]), and assumes a similar geographic constraints
as in [2] (and which we prove necessary in the dual graph model in this paper).
Strategies for efficiently building a CDS once you have anMIS in the classical radio
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network model (with geographic constraints) are well-known in folklore. It is suf-
ficient, for example, to simply connect all MIS nodes within 3 hops, which can be
accomplished in this setting inO(log2 n) rounds with a bounded randomized flood
(see [2] for more discussion). Finally, we note that the dual graphmodel combined
with the geographic constraint defined below is similar to the quasi-unit disk graph
model [12]. The key difference, however, is that the dual graphmodel allows the set
of unreliable links selected to change from round to round.

2 Model and Problems

The dual graph model describes a synchronous multihop radio network with both
reliable and unreliable links. In more detail, the model describes the network
topology with two graphs on the same vertex set: G = (V,E) and G′ = (V,E′),
where E ⊆ E′. The n = |V | nodes in V correspond to the wireless devices and
the edges describe links. An algorithm in this model consists of n randomized
processes. An execution of an algorithm in a given network (G,G′) begins with
an adversary assigning each process to a node in the graph. This assignment is
unknown to the processes. To simplify notation, we use the terminology node u,
with respect to an execution and vertex u, to refer to the process assigned to node
u in the graph in the execution. Executions then proceed in synchronous rounds.
In each round r, each node decides whether to transmit a message or receive
based on its randomized process definition. The communication topology in this
round is described by the edges in E (which we call the reliable links) plus some
subset (potentially empty) of the edges in E′ \ E (which we call the unreliable
links). This subset, which can change from round to round, is determined by a
bounded adversary (see below for the adversary bounds we consider).

Once a topology is fixed for a given round, we use the standard communication
rules for graph-based radio network models. That is, we say a node u receives a
messagem from node v in round r, if and only if: (1) node u is receiving; (2) node
v is transmitting m; and (3) v is the only node transmitting among the neighbors
of u in the communication topology fixed by the adversary for r. Notice, the dual
graph model is a strict generalization of the classical graph-based radio network
model (they are equivalent when G = G′).

Network Assumptions. To achieve the strongest possible lower bounds, we
assume nodes are assigned unique ids from [n] (where we define [i], for any inte-
ger i > 0, to be the sequence {1, 2, ..., i}). Structuring algorithms often require
constraints on the network topology. In this paper, we say a dual graph (G,G′)
satisfies the geographic constraint, if there exists some constant γ ≥ 1, such that
we can embed the nodes in our graph in a Euclidean plane with distance function
d, and ∀u, v ∈ V , u �= v: if d(u, v) ≤ 1 then (u, v) is in G, and if d(u, v) > γ,
(u, v) is not in G′. This constraint says that close nodes can communicate, far
away nodes cannot, and for nodes in the grey zone in between, the behavior is
controlled by the adversary.

We consider two assumptions about nodes’ knowledge regarding the dual
graph. The advance neighborhood knowledge assumption provides every node
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u, at the beginning of the execution, the ids of its neighbors in G (which we
also call u’s reliable neighbors). This assumption is motivated by the real world
practice of providing wireless algorithms a low-level neighbor discovery service.
The passive neighborhood knowledge assumption, by contrast, labels received
messages at a node u with a “reliable” tag if and only if the message was sent
by a reliable neighbor. This assumption is motivated wireless cards’ ability to
measure the signal quality of received packets.

Adversary Assumptions There are different assumptions that can be used to
bound the adversary that decides in the dual graphmodel which edges fromE′\E
to include in the communication topology in each round. Following the classical
definitions of adversaries in randomized analysis, in this paper we consider the
following three types: (1) the offline adaptive adversary, which when making a
decision on which links to include in a given round r, can use knowledge of the
network topology, the algorithm being executed, the execution history through
round r− 1, and the nodes’ random choices for round r; (2) the online adaptive
adversary, which is a weaker version of the offline adaptive variant that no longer
learns the nodes’ random choices in r before it makes its link decisions for r;
and (3) a static adversary, which includes the same set of unreliable links in
every round. In this paper, when we refer to the “〈adversary type〉 dual graph
model”, we mean the dual graph model combined with adversaries that satisfy
the 〈adversary type〉 constraints.
The MIS and CDS Problems. Fix some undirected graph H = (V,E). We
say S ⊆ V is a maximal independent set (MIS) of H if it satisfies the following
two properties: (1) ∀u, v ∈ S, u �= v: {u, v} /∈ E (no two nodes in S are neighbors
in H); and (2) ∀u ∈ V \ S, ∃v ∈ S: {u, v} ∈ E (every node in H is either in S
or neighbors a node in S). We say C ⊆ V is a connected dominating set (CDS)
of H if it satisfies property 2 from the MIS definition (defined now with respect
to C), and C is a connected subgraph of H .

In this paper, we assume the structuring algorithms used to construct an
MIS or CDS run for a fixed number of rounds then have each node output a 1 to
indicate it joins the set and a 0 to indicate it does not (that is, we consider Monte
Carlo algorithms). It simplifies some of the lower bounds that follow to exactly
specify how a node makes its decision to output 1 and 0. With this in mind, in
this paper, we assume that at the end of a fixed-length execution, the algorithm
provides the nodes a function that each node will use to map the following
information to a probability p ∈ [0, 1] of joining the relevant set: (1) the node’s
id; (2) the ids of the node’s neighbors (in the advance neighborhood knowledge
setting); and (3) the node’s message history (which messages it received and in
what rounds they were received). The node then outputs 1 with probability p
and 0 with probability 1 − p. For a given algorithm A, we sometimes use the
notation A.out to reference this function.

We say a structuring algorithm A solves the MIS problem in f(n) rounds if it
has each node output after f(n) rounds, for network size n, and this output is
a correct MIS with respect to G (the reliable link graph) with at least constant
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probability. We say an algorithm A solves the CDS problem in f(n) rounds and
provides a g(n)-approximation if it has each node output after f(n) rounds, it
guarantees that this output is a correct CDS with respect to G, and it guarantees
the size of the CDS is within a factor of g(n) of the size of the minimum-sized
CDS for G, for network size n, also with at least constant probability.

3 The Necessity of Geographic Constraints

We begin by proving that the geographic constant is necessary to efficiently solve
the MIS and CDS problem in the dual graph model. In both bounds we assume
an online adaptive adversary, which is weaker than the offline adaptive adversary
assumed in [2]—strengthening our results.

3.1 MIS Lower Bound

We prove that without the geographic constraint every MIS solution requires a
time complexity that is arbitrarily close to Ω(n/ logn) rounds. This is exponen-
tially worse than the O(log3 n)-round solution possible with this constraint. Our
proof argument begins by introducing and bounding an abstract game that we
call selective ring coloring. This game is designed to capture a core difficulty of
constructing in MIS in this unreliable setting. We then connect this game to the
MIS problem using a reduction argument.

The Selective Ring Coloring Game. The (g, n)-selective ring coloring game
is defined a function g : N → N and some integer n > 0. The game is played
between a player and a referee (both formalized as randomized algorithms) as
follows. Let t(n) be the set containing all n!

(n−3)! ordered triples of values from

[n]. In the first round, the player generates a mapping C : t(n) → {1, 2, 3}
that assigned a color from {1, 2, 3} to each triple in t(n). Also during the first
round, the referee assigns unique ids from [n] to a ring of size n. In particular,
we define the ring as the graph R = (V,E), where V = {u1, u2, ..., un}, and
E = {{ui, ui+1} | 1 ≤ i < n} ∪ {un, u1}. Let � : V → [n] be the bijection
describing the referee’s assignment of ids to this ring. The player and referee
have no interaction during this round—their decisions regarding C and � are
made independently.

At the beginning of the second round, the player sends the referee C and
the referee sends the player �. Consider the coloring that results when we color
each ui in the ring with color C(�(uCC

i ), �(ui), �(u
C
i )), where uCC

i and uC
i are

ui’s counterclockwise and clockwise neighbors, respectively. Notice, it is possible
that this graph suffers from some coloring violations. This brings us to the third
round. In the third round, the player generates a set S containing up to g(n)
ids from [n]. It sends this set of exceptions to the referee. The referee considers
the coloring of the nodes left in R once the exceptions and their incident edges
are removed from the graph. If any coloring violations still remain, the referee
declares that the player loses. Otherwise, it declares that the player wins.
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A Lower Bound for Selective Ring Coloring. We now prove a fundamental
limit on solutions to the selective ring coloring game. In particular, we prove that
to win the game with constant probability requires a value of g(n) that is close
to n. To prove this lower bound we will make use of a useful combinatorial
result established in Linial’s seminal proof of the necessity of Ω(log∗ n) rounds
to constant-color a ring in the message passing model. This result concerns
the following graph definition which captures relationships between possible t-
neighborhoods of a ring with ids from [m]:

Definition 1. Fix two integers t and m, where t > 0 and m > 2t+1. We define
the undirected graph Bt,m = (Vt,m, Et.m) as follows:

– Vt.m = {(x1, x2, ..., x2t+1) | ∀i, j ∈ [2t+ 1] : xi ∈ [m], i �= j ⇒ xi �= xj}.
– Et,m = {{v1, v2} | v1 = (x1, ..., x2t+1), v2 = (y, x1, ..., x2t), y �= x2t+1}.

Notice that in the context of the message passing model, each node
(x1, x2, ..., x2t+1) in Bt,m represents a potential view of a target node xt+1 in
an execution, where view describes what ids a given node in the ring learns in a
t round execution in this model; i.e., its id, and the id of nodes within t hops in
both directions. The following result (adapted from Theorem 2.1 of [13]) bounds
the chromatic number of Bt,m.

Lemma 1 (From [13]). Fix two integers t and m, where t > 0 and m > 2t+1,

and consider the graph Bt,m. It follows: χ(Bt,m) = Ω(log(2t) m), where log(2t) m
is the 2t times iterated logarithm of m.

We use this lemma in a key step in our following multi-step proof of the need
for close to n exceptions to win selective ring coloring.

Lemma 2. Let P be a player that guarantees to solve the (g, n)-selective ring
coloring game with constant probability, for all n. It follows that for every con-
stant ε, 0 < ε ≤ 1: g(n) = Ω(n1−ε).

Proof. Assume for contradiction that for some constant ε that satisfies the con-
straints of the lemma statement, some g(n) = o(n1−ε), and some player P that
guarantees for all n to win the (g, n)-selective ring coloring game with constant
probability.

We start by describing a referee that will give P trouble. In more detail, to
define �, the referee first assigns i to node ui, for all i ∈ [n]. It then partitions the
ring with this preliminary assignment into consecutive sequences of nodes each of
length f(n) = nε/5. Finally, for each partition, it takes the ids assigned to nodes
in the partition and permutes them with uniform randomness. We emphasize
that the permutation in each partition is independent. We reference the n/f(n)
partitions2 of R as P1, P2, ..., Pn/f(n). We use I1, I2, ..., In/f(n) to describe the
corresponding ids in each partition.

2 For simplicity of notation, we assume f(n) and n/f(n) are whole numbers. We can
handle the other case through the (notationally cluttered) use of ceilings and floors.
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To understand the effectiveness of this strategy we start by exploring the dif-
ficulty of correctly coloring these partitions. Intuitively, we note that a 1-round
coloring algorithm in the message passing model needs more than a constant
number of colors to guarantee to correctly color all permutations of a non-
constant-sized partition. This intuition will provide the core of our upcoming
argument that many of our referee’s random id assignments generate coloring
violations for any given C provided by P . To formalize this intuition we lever-
age the result from Linial we established above. To do so, fix some Pi. Let b
be a bijection from [|Pi|] to Ii. Next consider B

b
1,f(n), which we define the same

as B1,f(n), except we now relabel each vertex (x, y, z) as (b(x), b(y), b(z)). By

Lemma 1, we know that χ(B1,f(n)) = Ω(log(2) f(n)). Clearly, this same result

still holds for χ(Bb
1,f(n)) (as we simply transformed the labels). Notice, because

f(n) = ω(1), it follows that for sufficiently large n, χ(Bb
1,f(n)) is strictly larger

than 3. Fix this value of n for the remainder of this proof argument.
We now consider a specific instance of our game with P , our referee, and our

fixed value of n. Focus as above on partition Pi. Let C be the coloring function
produced by the player and � the assignment produced by our referee. Because
we just established that the chromatic number of Bb

1,f(n) is larger than 3, if we

color this graph with C (which uses only three colors), there are (at least) two
neighbors v1 = (x1, x2, x3) and v2 = (y, x1, x2) in the graph that are colored the
same.

It follows that if � happens to assign the sequence of ids y, x1, x2, x3 to four
consecutive nodes in Pi, C will color x1 and x2 the same, creating a coloring
violation.3 We can now ask what is the probability that this bad sequence of ids
is chosen by �? This probability is crudely lower bounded by |Ii|−4 = f−4(n).
We can now expand our attention to the total number of partitions with coloring
violations. To do so, we define the following indicator variables to capture which
partitions have coloring violations:

∀j ∈ [n/f(n)], Xj =

{
1 if Pj has a coloring violation w.r.t. C and �,

0 else.

We know from above that for any particular j, Pr[Xj = 1] > f−4(n). It follows
directly from our process for defining � that this probability is independent for
each Xj . If Y = X1+X2+ ...+Xn/f(n) is the total number of coloring violations,

therefore, by linearity of expectation, and the fact that f(n) = nε/5, the following
holds:

E[Y ] = E[X1] + E[X2] + ...+ E[Xn/f(n)] >
n

f5(n)
= n1−ε.

A straightforward application of Chernoff tells us that Y is within a constant
factor of this expectation with high probability in n. We are now ready to pull

3 A subtlety in this step is that we need |Pi| = f(n) ≥ 4. If this is not true for the
value of n fixed above we can just keep increasing this value until it becomes true.
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together the pieces to reach our contradiction. We have shown that with high
probability our referee strategy, combined with player P , generates at least n1−ε

coloring violations, with high probability. We assumed, however, that g(n) =
o(n1−ε). It follows (for sufficiently large n) that with high probability, the player
will not have enough exceptions to cover all the coloring violations. His success
probability, therefore, is sub-constant. This contradicts our assumption that the
player wins with at least constant probability for this definition of g.

Connecting Selective Ring Coloring to the MIS Problem. Our next step
is to connect the process of building an MIS in our particular wireless model
to achieving efficient solutions to the ring coloring game we just bounded. At a
high-level, this argument begins by noting that if you can build an MIS fast then
you can three color a ring fast. It then notes this if you can three-color a ring fast
in our online adaptive model, then you can do so with an adversary that ends
up forcing many partitions in the ring to decide without receiving a message
(and therefore, base their decision only on the ids of their reliable neighbors).
To conclude the proof, we show that the coloring generated by this function
can be used to win the selective ring coloring game. The faster the original MIS
algorithm works, the smaller the g for which it can solve selective ring coloring.
The proof details for the below lemma can be found in the full version [16].

Lemma 3. Let A be an algorithm that solves the MIS problem in g(n) rounds,
for some polynomial g, in the online adaptive dual graph model with a network
size of n, advance neighborhood knowledge, but no geographic constraint. It fol-
lows that there exists a player PA that solves the (g′, n)-selective coloring game
with some constant probability p′, where g′(n) = O(g(n) · logn).

Our final theorem follows directly from Lemmata 2 and 3:

Theorem 1. Let A be an algorithm that solves the MIS problem in f(n) rounds
in the online adaptive dual graph model with a network size of n, advance neigh-
borhood knowledge, and no geographic constraint. It follows that for every con-
stant ε, 0 < ε ≤ 0, f(n) = Ω(n1−ε/ logn).

As an immediate corollary to the above, we note that the family of functions
described by Ω(n1−ε/ logn) is equivalent to the family described by Ω(n1−ε),
allowing for the omission of the logn divisor if desired in describing the bound.

3.2 CDS Lower Bound

We now prove the necessity of the geographic constraint for the CDS problem.
In particular, we prove that in the absence of this constraint, any CDS algorithm
that guarantees a reasonable approximation now requires Ω(

√
n/ logn) rounds.

This is worse than the O(log3 n) solution that provides a O(1)-approximation
that is possible with this constraint. Unlike our lower bound in the previous
section, we do not use a reduction argument below. We instead deploy the more
traditional strategy of using the definition of a fixed algorithm to construct a
network in which the algorithm performs poorly.
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Theorem 2. Let A be an algorithm that solves the CDS problem in f(n) rounds
and provides a o(

√
n)-approximation in the online adaptive dual graph model

with a network size of n, advance neighborhood knowledge, and no geographic
constraint. It follows that f(n) = Ω(

√
n/ logn).

Proof. Assume for contradiction that there exists some algorithmA that achieves
an o(

√
n)-approximation in f(n) ≤

√
n/(2 logn) rounds with (at least) constant

probability p. Our proof proceeds in two steps. During the first step, we use the
definition of A to construct a challenging dual graph network (GA, G

′
A) and as-

signment of ids to nodes in that network. The second step describes and analyzse
an online adaptive adversary that causes A, with sufficiently high probability, to
either violate correctness or produce (at best) an Ω(

√
n)-approximation of the

minimum CDS when run in this network with these id assignments. This yields
the needed contradiction.

Beginning with the first step, we fix k =
√
n (assume for simplicity that

√
n is

a whole number, the proof easily extends to fractional values, but at the expense
of increased notational cluttering). To construct our dual graph (GA, G

′
A), we

first fix G′
A to be the complete graph over all n nodes. (It is here we potentially

violate the geographic constraint.) To define GA, we partition the set I = [n]
of unique ids from 1 to n into sets C1, C2, ..., Ck of size k. We will now create
a subgraph of size k in GA for each Ch and assign ids from Ch to these nodes.
In particular, for each id partition Ch, let i0 ∈ Ch be the smallest id in Ch. We
add a node to GA and assign it id i0. We call this the core node for Ch. Moving
forward in our process, let C′

h = Ch \ {i0}. We call C′
h a point set.

We must now add nodes corresponding to the ids in point set C′
h. To do so, for

each i ∈ C′
h, we define p

h
i to be the probability that i joins the CDS as defined by

the function A.out applied to id i, neighbor set C′
h \ {i}, and an empty message

history (see Section 2). We call each such ph value a join probability. How we add
nodes to the graph associated with point set C′

h depends on the join probability
values. In more detail, we consider two cases:

Case 1: ∀i ∈ C′
h : phi ≥ 1/2. In this case, we add a clique of size k − 1 to the

graph. We then assign the ids in C′
h to nodes in this clique arbitrarily. Finally,

we choose one i ∈ C′
h to act as a connector, and connect the node with this id

to the core node for Ch that we previously identified. Notice, the neighbor set
for i is different now than it was when we calculated phi , but for all other nodes
with ids in C′

h, the neighbor sets are the same.
Case 2: ∃i ∈ C′

h : phi < 1/2. In this case, we add a clique of size k − 2 to the
graph, then add an edge from a single connector node in the clique to a new
node, that we call the extender, then connect the extender to our previously
identified core node for this set. Let i be the id from C′

h for which the property
that defines this case holds. We assign this id to the connector. We then assign
the ids from C′

h \ {i} to the clique and extender nodes arbitrarily. Notice, in this
case, the node with the id i is the only id in C′

h for which its neighbor set is the
same here as it was when its join probability was calculated.

We repeat this behavior for every set Ch, h ∈ [k]. Finally, to ensure our graph
is connected, we add edges between all � core nodes to form a clique.
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Having now used the definition of A to define a specific reliable link graph GA,
and an id assignment to this graph, consider the behavior of A when executed
in (GA, G

′
A), with this specfied id assignment, and an online adaptive adversary

that behaves as follows in each round r. By definition, the adversary knows the
probability that each node in the network will broadcast in this round, so it
can therefore calculate E[Br], the expected value of Br, the actual number of
broadcasters in round r. If E[Br] ≥ b logn, for a constant b > 0 we will fix
later, then the adversary includes all edges in the network for r, and otherwise
it includes no extra edges from G′

A \GA.
Notice, this is the same online adaptive adversary strategy we used in the

proof of Lemma 3, and as in that proof, a standard Chernoff analysis tells us
that for any constant c ≥ 1, there exists a constant b that guarantees that
with probability at least 1− n−c, in any round in which more than logn nodes
broadcast, all edges from G′

A are included in the network by the adversary. If
we combine this property with the observation that no node in GA neighbors
more than one set C′

h (by “neighbors Ch” we mean neighbors at least one node
in Ch), it follows that with this same high probability no more than logn point
sets include a node that receives a message in any given round.

At this point, we remind ourselves of our assumption that f(n) ≤
√
n/(2 logn).

If our communication bound from above holds, it would then hold that in f(n)
rounds, at least half of the

√
n point sets received no messages. Moving forward,

assume this property holds. Let us consider what will happen when the nodes
in these silent point sets decide whether or not to join the CDS by using the
probabilities specified by A.out applied to their neighborhood ids and an empty
message history.

There are two possibilities. The first possibility is that half or more of these
silent points sets fell under Case 1 from our above procedure. For each such point
set, there are

√
n− 2 nodes that will now join the CDS with probability at least

1/2 (i.e., the nodes in C′
h with the exception of the connector). The expected

number of nodes that join from this point set is therefore at least
√
n−2
2 . (Key in

this result is the fact that these nodes are in silent sets, which means they have
received no messages, and therefore their behavior is based on an independent
coin flip weighted according to the probability returned by A.out.) Given that
we have at least

√
n/2 such silent point sets, the total expected number of nodes

that join is in Ω(n) (by linearity of expectation). A Chernoff bound concentrates
this expectation around the mean and provides that with high probability in n,
the total number of nodes that join is within a constant factor of this linear
expectation.

The second possibility is that half or more of these silent point sets fall under
Case 2. For each such silent point set, the connector node does not join with
probability at least 1/2. Notice, if the connector does not join, then its point set
is disconnected from the rest of the network, and therefore, the overall CDS is
not correct. Because there are at least

√
n/2 silent point sets in this case that

are violating correctness with probability at least 1/2, the probability that this
CDS is correct is exponentially small in n.
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We are left to combine the probabilities of the relevant events. We have shown
that with high probability, a f(n)-round execution of A in (GA, G

′
A), with our

above adversary strategy, concludes with at least half of the point sets having re-
ceived no messages. If this event occurs, then there are two possibilities analyzed
above concerning whether these silent point sets mainly fall under Case 1 or 2
from our graph construction procedure. We proved that the first possibility leads
to a Ω(

√
n)-approximation with high probability (as with this probability, Ω(n)

nodes join in a network where O(
√
n) nodes is sufficient to form a CDS), and the

second possibility leads to a lack of connectivity with (very) high probability. A
union bound on either of these two events (many silent sets and bad performance
given many silent sets) failing yields a sub-constant probability. This probability,
however, upper bounds the probability of the algorithm satisfying the theorem.
This provides our contradiction.

4 The Necessity of Advance Neighborhood Knowledge

In this section we explore the importance of advance neighborhood knowledge
by proving new lower bounds for the MIS and CDS problems when provided the
weaker assumption of passive neighborhood knowledge.

4.1 CDS Lower Bound

In this section, we prove that any CDS solution requires both the geographic
constraint and advance neighborhood knowledge. In more detail, we prove be-
low that if we assume the geographic constraint but only passive neighborhood
knowledge, any CDS algorithm now requires either a slow time complexity or
a bad approximation factor (formally, these two values must add to something
linear in the network size). Our bound reduces k-isolation, a hard guessing game,
to the CDS problem.
The k-Isolation Game. The game is defined for an integer k > 0 and is played
by a player P modeled as a synchronous randomized algorithm. At the beginning
of the game, a referee chooses a target value t ∈ [k] with uniform randomness.
The player P now proceeds in rounds. In each round, the player can guess a single
value i ∈ [k] by sending it to referee. If i = t, the player wins. Otherwise, it is told
it did not win and continues to the next round. Once again, the straightforward
probabilistic structure of the game yields a straightforward bound:

Lemma 4. Fix some k > 1 and r ∈ [k]. No player can win the k-isolation game
in r rounds with probability better than r/k.

Connecting Isolation to the CDS Problem. We now reduce this isolation
game to CDS construction. To do so, we show how to use a CDS algorithm
to construct an isolation game player that simulates the algorithm in a barbell
network (two cliques connected by a single edge) with the bridge nodes indicating
the target. The proof details for the below theorem can be found in the full
version [16].
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Theorem 3. Let A be an algorithm that solves the CDS problem in f(n) rounds
and provides a g(n)-approximation in the static dual graph model with a network
of size n, passive neighborhood knowledge, and the geographic constraint. It fol-
lows that g(n) + f(n) = Ω(n).

4.2 MIS Lower Bound

It is straightforward to show that the MIS algorithm from [2] still works if we
replace the advance neighborhood knowledge assumption with its passive alter-
native (the algorithm uses this knowledge only to discard messages it receives
from unreliable neighbors). We prove below, however, that the passive assump-
tion increases the fragility of any MIS solution. In particular, we show that when
we switch from advance to passive, the bound from Section 3.1 now increases to
Ω(n) and still holds even with a static adversary. As before, we use a reduction
argument from a hard guessing game.

The k-Bit Revealing Game. The game is defined for an integer k > 0 and is
played by a player P modeled as a synchronous randomized algorithm. At the
beginning of the game, a referee generates a sequence κ of k bits, where each
bit is determined with uniform and independent randomness. In the following,
we use the notation κ[i], for i ∈ [k], to refer to the ith bit in this sequence. The
player P now proceeds in rounds. In each round, it can request a value i ∈ [k],
and the adversary will respond by returning κ[i]. At the end of any round (i.e.,
after the bit is revealed), the player can decide to guess κ by sending the referee
a sequence κ̂ of k bits. If κ̂ = κ, the player wins; otherwise it loses. We say a
player P solves the k-bit revealing game in f(k) rounds with probability p, if with
probability p it wins the game by the end of round f(k). Given the well-behaved
probabilistic structure of this game, the following bound is straightforward to
establish.

Lemma 5. Fix some k > 1 and t ∈ [k]. No player can solve the k-bit revealing
game in t rounds with probability p > 2−(k−t).

Connecting Bit Revealing to the MIS Problem. We now reduce our bit
revealing game to the more complex task of building an MIS in a non-geographic
static dual graph network. In particular, we will show how to use an MIS algo-
rithm to solve the bit revealing game by having a player simulate the algorithm in
a carefully constructed dual graph network. In this network, we partition nodes
into sets, such that we can match these sets to bits, and use the MIS decisions
of nodes in a given set to guess the corresponding bit in the revealing game. The
proof details for the below theorem can be found in the full version [16].

Theorem 4. Let A be an algorithm that solves the MIS problem in f(n) rounds
in the static dual graph model with a network of size n, passive neighborhood
knowledge, and no geographic constraint. It follows that f(n) = Ω(n).
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Abstract. In this paper we consider dynamic networks that can change over
time. Often, such networks have a repetitive pattern despite constant and oth-
erwise unpredictable changes. Based on this observation, we introduce the notion
of a ρ-recurring family of a dynamic network, which has the property that the
dynamic network frequently contains a graph in the family, where frequently
means at a rate 0<ρ≤1. Using this concept, we reduce the analysis of max-
degree random walks on dynamic networks to the case for static networks. Given
a dynamic network with a ρ-recurring family F , we prove an upper bound of
O
(
ρ−1t̂hit(F) logn

)
on the hitting and cover times, and an upper bound of

O
(
ρ−1(1− λ̂(F))−1 log n

)
on the mixing time of random walks, where n is

the number of nodes, t̂hit(F) is upper bound on the hitting time of graphs in F ,
and λ̂(F) is upper bound on the second largest eigenvalue of the transition matri-
ces of graphs inF . These results have two implications. First, they yield a general
bound of O

(
ρ−1n3 log n

)
on the hitting time and cover time of a dynamic net-

work (ρ is the rate at which the network is connected); this result improves on the
previous bound of O

(
ρ−1n5 log2 n

)
[3]. Second, the results imply that dynamic

networks with recurring families preserve the properties of random walks in their
static counterparts. This result allows importing the extensive catalogue of re-
sults for static graphs (cliques, expanders, regular graphs, etc.) into the dynamic
setting.

1 Introduction

In this paper we consider dynamic networks that can change over time. These networks
abstract many important systems, such as mobile networks, where nodes may change
neighbors as they move; and peer-to-peer networks, where nodes may connect or dis-
connect due to churn. A dynamic network is modeled as an evolving graph, which is a
sequence of graphs G = {Gi} over n nodes, each graph representing a snapshot of the
system at a given instant.

Much recent work has considered dynamic networks, by proposing and analyzing
new algorithms [11,17,24] and by deriving new complexity bounds [18,26]. Because
of their generality, dynamic networks are not only of theoretical importance, but also
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of practical relevance. At the same time, this generality makes it hard to derive strong
results, which has motivated new properties that constrain the behavior of dynamic
networks. Unfortunately, existing properties are either too restrictive or hard to evaluate
in practice (see Section 2).

We propose a new and intuitive approach to study dynamic networks, by looking
at families of graphs that recur frequently in the dynamic network. Informally, a ρ-
recurring family of an evolving graph G is a family F of (static) graphs such that, with
frequency ρ, some graph in F appears in the sequence G. For example, if ρ = 1/2,
then half of the graphs in the sequence G belong to F ; note that it is possible that
no individual graph in F recurs with frequency 1/2. Also note that the other half of
the graphs in the sequence G may be completely arbitrary and even contain a different
recurring family.

Every evolving graph has a trivial 1-recurring family, the family of all graphs. But
real networks may have other more interesting recurring families because, by their own
nature, these networks tend to preserve certain topological characteristics. For example,
nodes in a peer-to-peer network may keep a constant number of neighbors [28]; such
network has graphs with constant degree as a recurring family. Also, numerous dynamic
networks build and maintain global structures, such as overlay rings [32] or routing
trees [31]; in these examples, the recurring families are graphs with the required ring or
tree structures. Table 1 has more examples of recurring families in various contexts.

In this paper, we focus on the study of random walks. Due to their simplicity, local-
ity, low overhead, and correct operation under topology changes, random walks have
been recently used in different types of dynamic networks for a number of applications:
querying, searching, routing, topology maintenance, etc. [4,13,15,30,27].

We show that recurring families can be used to reduce the analysis of random walks
in dynamic networks—which are complex—to the simpler case of static networks—
which are well understood. Specifically, we give upper bounds on the behavior of ran-
dom walks in dynamic networks based on similar bounds in static networks, given a
recurring family.

In this study, we make two assumptions. First, we assume an oblivious adversary
controlling the dynamic network; that is, the evolution of the graph is independent of the
position of the random walk. Without this assumption, the adversary can degenerate the
random walk, causing it to oscillate forever between two nodes (see Section 3). Second,
we assume a max-degree random walk: at each node, the probability of transitioning to
each neighbor is 1/dmax, where dmax is the maximum degree of the graph. For nodes
with degree d < dmax, there is a probability of 1−d/dmax of remaining at the node.
Max-degree random walks are a well-behaved variant of simple random walks—which
choose each neighbor uniformly at random—but simple random walks can have an
erratic behavior in dynamic networks [3] (e.g., their cover time can be exponential).

Our main result states that, if F is a ρ-recurring family of an evolving graph G, then a
max-degree random walk on G has hitting time and cover time of O

(
ρ−1t̂hit(F) log n

)
and mixing time of O

(
ρ−1(1−λ̂(F))−1 logn

)
, where t̂hit(F) is an upper bound on

the hitting time of graphs in F , and λ̂(F) is an upper bound on the second largest
eigenvalue of the transition matrices of graphs in F . To prove these results, we consider
the homogeneous Markov Chains of the graphs in the recurring family, and relate these
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chains to the time non-homogeneous Markov Chain of the random walk on the dynamic
network. Specifically, using arguments from matrix analysis, we analyze the transition
matrices in the recurring family and obtain bounds on the algebraic properties (eigen-
values, etc.) for each matrix considered as a homogeneous Markov chain. We then relate
the product of the matrices in the recurring family to the product of all matrices in the
non-homogeneous chain, and map the bounds to the original dynamic network.

The obtained bounds are nearly tight and have two important implications. First, they
reduce the known gap between the complexity of random walks in dynamic and static
networks. In particular, in static networks, the cover time has a general upper bound of
O(n3) [2]1, but in dynamic networks, the previously known bound was much higher:
O(ρ−1n5 log2 n) [3], where ρ is the frequency with which the network is connected.
We reduce this gap to just a logn factor: by using the trivial ρ-recurring family of all
connected graphs, we obtain a general bound of O(ρ−1n3 logn).

Second, these results imply that dynamic networks with ρ-recurring families preserve
the random-walk properties of their static counterparts. It is thus possible to import
the extensive catalogue of results for random walks on static graphs to the dynamic
setting. For instance, it is known that random walks are especially efficient on certain
families of graphs, such as expanders. For expanders, hitting time is O (n), cover time
is O (n logn) and mixing time is O (logn). Thus, in evolving graphs where expanders
appear frequently, we can derive stronger bounds. We say that evolving graph G has a
ρ-recurring expander if fraction ρ of the graphs in G are expanders. Then, it follows
that, for G, hitting time is O

(
ρ−1n logn

)
, cover time is O

(
ρ−1n logn

)
, and mixing

time is O
(
ρ−1 logn

)
, respectively.

In summary, this paper makes the following contributions:

• we introduce a novel property of evolving graphs, which we call a ρ-recurring
family;

• using recurring families, we derive new bounds for a random walk on an evolving
graph;

• we show that random walks on evolving graphs with recurring families preserve
the properties of their static counterparts;

• we argue that our bounds are nearly tight and improve upon previously known
bounds.

Paper Organization. The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 states the model and Section 4 defines the problem
addressed in this paper. In Section 5 we state the main results and in Section 6 we
discuss their implications. In Section 7 we sketch the proofs. Finally, Section 8 presents
the conclusions and outlines directions for future work.

1 More precisely, [2] proves an O(nm) cover time bound of a simple random walk on a graph
with n nodes and m edges. It can be shown that the max-degree random walk on a graph is
equivalent to a simple random walk on the graph, augmented with sufficiently many self-loops,
such that the degree of each node is dmax. In such augmented graph m≤n2; thus, [2] implies
an O(n3) cover time bound for the max-degree random walk (we defer the complete proof to
the full version of the paper).
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2 Related Work

Dynamic Networks. There is a growing interest in the study of graphs that evolve over
time, representing a variety of dynamic networks. Different models of dynamic net-
works have been proposed, each capturing specific features of some concrete scenario.
Random changes of links are considered in [8]. In [9], the authors propose a model of
a dynamic network where the existence of an edge in a round stochastically depends
on its existence in the previous round. Adversarial networks have also received atten-
tion [8,24,16,26], representing a worst-case scenario where link changes are controlled
by an adversary that tries to slow down communication. This last model covers the
widest range of different network behaviors; therefore, we adopt it for our study.

Different properties have been proposed to analyze algorithms in such networks.
For an extensive discussion, we refer the interested reader to [7] and [25]. In [24],
the authors propose an elegant concept of T -interval connectivity and use it to study
token dissemination. Evolving graph G is T -interval connected if, for every T consec-
utive rounds, there exists a connected spanning subgraph of G that does not change.
T -interval connectivity is a strong property and may be too restrictive for some real
world scenarios. Moreover, we focus on random walks, and this property is not well-
suited for this problem, because the behavior of a random walk is not governed by a
stable spanning subgraph. For example, a lollipop graph has cover time of Θ(n3), de-
spite having a line as a spanning subgraph, which has a cover time of Θ(n2). Here, the
existence of the line does not help the cover time of the lollipop. By contrast, we show
that recurring families closely relate to the behavior of random walks in the evolving
graph. In fact, our results imply that T -interval connectivity is not necessary for the ran-
dom walk to make fast progress, as long as the evolving graph forms good topologies
often enough.

Another popular property of the dynamic network is its dynamic diameter [11,24,26],
which is the worst-case number of rounds required to route a piece of information from
any given node to all other nodes. Intuitively, the concept of dynamic diameter is useful
in the study of information spreading. Unfortunately, however, the dynamic diameter is
hard to estimate in a real network, which is a practical drawback.

A number of other papers study information spreading in dynamic networks, e.g.,
[17,18]. Our paper differs from these works because it proposes and uses a different
property to study dynamic networks (recurring families) and it focuses on a different
problem, random walks.

Random Walks. Much work has considered random walks on static graphs, with the
proposal of bounds for many families of graphs. For a comprehensive survey please
refer to [29]. More recently, there has been growing interest in random walks in dynamic
settings. In [10] the authors study random walks on a graph that evolves by adding new
node with random or preferential connections to existing nodes. Since the graph grows,
one never visits all nodes, and so the usual notions of hitting, cover, and mixing times
(which we consider) do not apply.

In [13], the authors consider connected randomly evolving graphs where, in each
round, the set of edges for a node is chosen uniformly at random. The authors show
that the random walk on such evolving graph is essentially a random walk on a clique:
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each transition can be seen as a random choice of a list of neighbors and then a random
choice of an item in the list. Thus, the cover time of such graph is O(n logn). This
result does not apply to adversarial evolving graphs (which we consider). For example,
if an adversary chooses a sparse random graph and never changes it, then the cover time
of such graph is O(n2 log n) [21].

To our knowledge, [3] is the first paper to address randoms walks on adversarial
evolving graphs. The authors show that the behavior of a simple random walk on evolv-
ing graphs can differ significantly from the static case. In particular, the cover time
of a simple random walk can be exponential as demonstrated by an example of a dy-
namic star over nodes 0, . . . , n−1, where in round t the center of the star is node t
mod (n−1), and the remaining nodes are leaves. In addition, all nodes have self-loops,
allowing the random walk to remain at one node for several rounds. Notice that node
n−1 is never at the center of the star. The only way the walk can reach node n−1 is by
staying at some leaf for n−2 rounds until this leaf becomes a center of the star (if the
walk moves to the center too soon, the process starts over, because the center will itself
be a leaf again in the next round). The probability that the random walk stays at a leaf
for n−2 consecutive rounds is 1

2(n−2) ; hence, the cover time is Ω (2n). Additionally,
[3] gives a O

(
ρ−1d2maxn

3 log2 n
)

[3] bound on the cover time of a max-degree random
walk on G, where ρ is the fraction of connected graphs G and dmax is the maximum de-
gree of any graph in G. The result of [3] implies the general bound of O

(
ρ−1n5 log2 n

)
for any evolving graph. We improve this result to the nearly tight O(ρ−1n3 logn). Our
results also give stronger bounds on evolving graphs with structure, as we later explain.

Random walks in dynamic networks are also considered in [11], which studies sim-
ple random walks on connected regular evolving graphs. Note that the results of [11]
also apply to max-degree random walks on any connected evolving graph. The au-
thors formally discuss the notion of mixing time in a dynamic network and give a
O((1 − λ)−1 logn) bound where λ is an upper bound on the second largest (in ab-
solute value) eigenvalue of all transition matrices of graphs in G. This result is weaker
than ours for two reasons. First, it considers only mixing time and not hitting nor cover
times. Second, the bound in [11] is governed by the worst graph appearing in the en-
tire evolving graph, whereas our bounds are governed by the good graphs that appear
frequently. The authors of [11] also propose an algorithm for distributed computation
of a random walk that runs in O(

√
tmixτ) rounds where tmix is the mixing time and τ

is the dynamic diameter of the evolving graph. The analysis of the running time of this
algorithm can benefit from our new results on the mixing time in dynamic networks
with structure (which we explain later).

3 Evolving Graph Model

We consider an undirected network with a fixed set V of n nodes, where edges between
nodes may change over time. Execution proceeds in synchronous rounds, where in each
round an adversary chooses the set of links connecting pairs of nodes. An execution
generates an evolving graph, which is a sequence G = G1, G2, . . . of graphs over nodes
V , where Gt is a snapshot of the evolving graph in round t. We omit reference to V
when it is clear from the context.
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Definition 1 (ρ-Recurring Family). Given an evolving graph G = G1, G2, . . . and a
number 0<ρ≤1, a ρ-recurring family F of G is a family of graphs such that, for every
M≥1, at least �ρM� elements in G1, . . . , GM are in F .

Intuitively, this definition requires that, with frequency at least ρ, the graphs in a ρ-
recurring family appear in G. The definition can be weakened to require the frequency
ρ to hold only for sufficiently large M ; the results in this paper can be easily modified
to work with this weaker definition.

Note that every evolving graph has a 1-recurring family, the family of all (including
disconnected) graphs on V . Also, if F is a ρ-recurring family of G then we can add
any graphs to F and still have a ρ-recurring family of G. Generally, we are interested in
small recurring families, because our bounds are based on the worst graph in the family.

The paper focuses on random walks on G. We assume an oblivious adversary that
determines the evolving graph without knowledge of the random walk. Without this
assumption, an adaptive adversary could degenerate the random walk using a simple
strategy: in odd rounds, the adversary provides the current position vi of the random
walk with a single edge to some fixed node vj . In even rounds the adversary provides
vj with a single edge to vi. Under this strategy, the random walk oscillates between vi
and vj forever. Such a random walk never converges (it has infinite mixing time, hitting
time, etc).

4 Random Walk Definition

We assume that, in round one, a random walk starts at some node of a given evolving
graph and, in each round, it moves from a node to one of its neighbors with certain
probability. We consider a max-degree random walk: at every node, we move to a given
neighbor with fixed probability 1/dmax, where dmax is the maximum degree of the graph
or an upper bound on the maximum degree (if dmax is unknown, we can let dmax = n);
with probability 1−d/dmax we do not move, where d is the node degree. The max-
degree random walk can be seen as a simple random walk on a graph augmented with
self-loops so that every node has the same degree dmax. We further make the standard
assumption of an aperiodic random walk; this can be ensured, for example, by avoiding
bipartite graphs or by assuming that all nodes have self-loops.

Max-degree aperiodic random walks are attractive for two reasons. First, in steady
state, it is easy to show that every node has equal probability; this property is useful
for applications that require fairness, such as fair token circulation [20]. Second, the
random walk avoids the poor exponential behavior that simple random walks may ex-
hibit [3].

We are interested in the following asymptotic properties of the random walk, which
are natural extensions of the properties of random walks on static graphs. Given evolv-
ing graph G:

• Hitting time thit(G) is the maximal expected number of rounds before the random
walk visits some node of G;

• Cover time tcov(G) is the expected number of rounds before the random walk visits
every node of G at least once;
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• Mixing time tmix(G) is the expected number of rounds before reaching the steady
state distribution of the random walk on G (if such distribution exists).

5 Statement of the Main Results

We now state the upper bounds on the hitting time, cover time, and mixing time of
random walks on evolving graphs, based on the properties of a recurring family of that
graph. The graph will generally have many recurring families; the bounds apply to each
of them.

For a family F of graphs, let t̂hit(F) be an upper bound on the hitting time of the
graphs in F and λ̂(F) be an upper bound on the second largest eigenvalue of the tran-
sition matrices of the graphs in F . Our main results are the following:

Theorem 2. Let G be an evolving graph over n nodes and F be a ρ-recurring family
of G. The hitting time and cover time of a max-degree random walk on G are bounded
by

thit(G) ≤ tcov(G) = O
(
ρ−1t̂hit(F) logn

)
.

Theorem 3. Let G be an evolving graph over n nodes and F be a ρ-recurring family
of G. The mixing time of a max-degree random walk on G is bounded by

tmix(G) = O
(
ρ−1(1− λ̂(F))−1 logn

)
.

The bounds on cover time and mixing time are tight in the sense that there is an
evolving graph that matches the bounds; meanwhile, the bounds on hitting time are
within logn factor from the optimal. Specifically, take an evolving graph G that is a
static expander, that is G = G,G, . . . where G is an expander. Then G’s hitting time is

Θ(n), its cover time is Θ(n log n), and its mixing time is O
(
(1− λ̂({G}))−1 logn

)
.

We see that the cover and mixing times match Theorems 2 and 3, while the hitting time
is within a logn factor.

Thus, the behavior of the random walk on evolving graphs can be studied via its
recurring families. Doing so allows importing the results on static graphs to the dynamic
setting. We next give several applications of this idea.

6 Implications

General Bound. In some cases, little is known about the topology of the dynamic
network G; its changes over time can be arbitrary and unpredictable. However, if we
only know that there exists some ρ > 0 such that, for every M ≥ 1, G is connected
in at least ρM rounds, we can apply our results to obtain non-trivial bounds2. For such
G, we can take the ρ-recurring family of all connected graphs and obtain the following
result:

2 If G does not remain connected for any fraction ρ of rounds, its mixing, hitting, and cover
times can be infinite.
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Theorem 4. Let G be an evolving graph such that, for every M ≥ 1, G is connected
in at least ρM rounds. Then, the hitting time and cover time of a max-degree random
walk on G are bounded by

tcov(G) = O
(
ρ−1n3 logn

)
.

This theorem improves on the cover time bound of O
(
ρ−1n5 log2 n

)
in [3]. The proof

is by direct application of Theorem 2.

Relevant ρ-Recurring Families. We can model many dynamic networks by evolv-
ing graphs with structure. For instance, many mobile ad hoc networks have cliques as
recurring families. Cliques have excellent mixing and hitting times of only Θ(1) and
Θ(n). However, unfavorable topologies can emerge frequently, such as lollipop and
barbell graphs, which have poor mixing and hitting times of Θ(n3). If G′ forms a clique
at least a fraction ρ > 0 of the time—we say that G′ has a ρ-recurring clique—then
even if G′ has frequent lollipops and barbell graphs, our results show that its behavior
is governed by the good topologies. Here, the ρ-recurring clique provides an intuitive
example: when the network forms a clique, the random walk can jump to any node,
irrespective of the remaining rounds. It is thus easy to see that the random walk quickly
covers the network. Theorems 2 and 3 yield a bound of O(ρ−1n logn) on the cover and
hitting times of G′ and a bound of O(ρ−1 logn) on the mixing time. By contrast, the
result in [11], which is governed by the worst graphs in G′, yields a much looser bound
of O(n3 log n) on the mixing time (and no results on hitting and cover time). With a
little more work, we can further improve the bounds of Theorems 2 and 3 using the
same proof techniques, to obtain tight bounds for all metrics, as stated in the following
theorem:

Theorem 5. If evolving graph G has a ρ-recurring clique, then the mixing time of a
max-degree random walk on G is O(ρ−1), the hitting time is O(ρ−1n), and the cover
time is O(ρ−1n logn).

Expander graphs are another important recurring family in many dynamic networks.
For instance, some unstructured peer-to-peer overlays seek to maintain good expansion
properties [28]. Our results imply that an evolving graph with ρ-recurring bounded-
degree expander has O(ρ−1n logn) cover time and O(ρ−1 logn) mixing time. Thus,
regardless of arbitrary topologies generated during transition periods, a random walk
on such evolving graph preserves the properties of its good static topologies.

In Table 1 we illustrate more implications of our results. All the graphs in the table
have (dmax−dmin) < c, for some constant c. This property minimizes the difference
between simple and max-degree random walks, allowing us to use the bounds for simple
random walks in static graphs (the intuition is that adding bounded holding probabilities
does not change the asymptotic behavior of the random walk).

Unions as ρ-Recurring Families. We further note that a recurring family F can be
defined as a union of multiple well-known families of graphs. As an example, consider
a network arranged in a ring in which one fixed link is intermittent (e.g., it may be an
unstable link in a radio network). We can model such network as an evolving graph.
When the link is present, the graph is a ring; when the link is absent, the graph is a
chain. We may have no information about what fraction ρ of the time the graph is a ring
or chain, making it impossible to apply our results to either ring or chain. However,
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Table 1. New bounds obtained from Theorems 2, 3, and 5, for a max-degree random walk on
evolving graphs, with the corresponding recurring families
ρ-recurring occurrence static

family in dynamic networks cover time mixing time ref

cliques
mobile ad-hoc networks

mesh networks O(ρ−1n logn) O(ρ−1) [14]
regular and structured overlays(rings)

nearly regular unstructured overlays O(ρ−1n2 logn) O(ρ−1n2 log n) [22]
2-dim grids sensor networks O(ρ−1n log2 n) O(ρ−1n logn) [12]

bound.degree
trees routing overlays O(ρ−1n2 logn) O(ρ−1n2 log n) [5]

d-regular
expanders unstructured overlays O(ρ−1n logn) O(ρ−1 logn) [6]

we can take the ρ-recurring family to contain both the ring and chain, and in this case
ρ = 1. Then, Theorems 2 and 3 give strong bounds of O

(
n2 logn

)
on the hitting and

cover times, and of O
(
n2 logn

)
on the mixing time. In this example, the intermittent

link was fixed, but the example carries through identically even if the intermittent link
varies over time.

7 Proofs

In this section we sketch the proofs of the main results. Due to space constraints, the
complete proofs have been deferred to the full version of the paper.

Preliminaries and Main Technique. Let G = G1, G2, . . . be an evolving graph; in
each round t, AGt denotes the transition probability matrix of the random walk on
Gt. If pt = (p1, p2, . . . , pn) is the probability distribution on the nodes in round t,
then, the probability distribution on the nodes in round t + 1 is calculated by pt+1 =
ptAGt . Hence, the random walk on G can be modeled as a stochastic process that
holds the Markov property, i.e., each transition of the random walk depends only on its
current position and the transition probabilities in a given round. This kind of stochastic
processes is known in the literature as time non-homogeneous Markov chains [23].

We model the random walk on evolving graphs as a time non-homogeneous Markov
chain and work with products of stochastic matrices. For conciseness, we denote by
Gρ,F an evolving graph G with a ρ-recurring family F . In the analysis of Gρ,F , we rely
on the common algebraic properties of the stochastic matrices of graphs in F . We then
use the fact that, for any M > 0, in a set of M matrices, there are at least ρM matrices
with those properties, to obtain the overall bounds.

For the mixing time we use the well known relation to the second largest eigenvalue.
For the hitting and cover times, we bound the spectral radii of principal submatrices
(i.e., matrices resulting from deleting an i-the row and an i-th column). The bound
on the spectral radii of the principal submatrices is related to the hitting time of the
homogeneous Markov chain.
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Below we summarize the notation used in our proofs.

Notation

• ||v||p = p
√∑n

i=1 |vi|
p for some vector v = (v1, . . . , vn).

• λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) are eigenvalues of square matrix A.
• λ(A) = max{|λ2(A)| , |λn(A)|}.
• λ̂(F) = maxG∈F λ(AG), where AG is the transition matrix of a max-degree ran-

dom walk on G.
• δ(A) = maxi |λi(A)| is spectral radius of matrix A .

•
∥∥∥v −w

∥∥∥
TV

= maxX∈Ω |v(X)−w(X)| denotes the total variation of two proba-

bility measures v and w over Ω.
• thit(G) is the hitting time of graph G.
• t̂hit(F) denotes upper bound on the hitting times of all graphs in family F .
• Gρ,F denotes an evolving graph G with a ρ-recurring family F .

Recall that we make the standard aperiodicity assumption. Moreover, as a result of
using the max-degree strategy, the transition probability matrices AGt , in each round
t, are symmetric and doubly stochastic (i.e., every row sums to one and every column
sums to one). Therefore, each AGt has eigenvector i

n =
(
1
n ,

1
n , . . .

)
with a correspond-

ing eigenvalue λ1 (AGt) = 1.
Also, since the matrices AGt are real symmetric with all entries 0 ≤ ai,j ≤ 1, for any

i, j ≤ n, all eigenvalues of AGt are real (see e.g. [19]). In particular,−1 < λn (AGt) ≤
. . . ≤ λ1 (AGt) ≤ 1 (the strict inequality follows from aperiodicity). Also, when Gt

is connected, λ(AGt)=max{|λ2(AGt)| , |λn(AGt)|}<1. Hence, if the evolving graph
is connected in sufficiently many rounds, the resulting time non-homogeneous Markov
chain is ergodic and has unique stationary distribution π = i

n .

Mixing Time. We start by bounding the mixing time. The convergence rate of the
Markov chain is the rate at which the chain approaches stationary distribution. For ho-
mogeneous chains, the spectral gap of the transition matrix, i.e. the difference between
the largest and the second largest eigenvalues in absolute value, defines the convergence
rate to the stationary distribution [1].

The following Lemma 6 bounds the convergence rate of a max-degree random walk
on an evolving graph in any given round t.

Lemma 6. If pt = (p1, . . . , pn) is a probability distribution on nodes of Gt, then∥∥∥pt+1 − i
n

∥∥∥2
2
≤ λ2(AGt)

∥∥∥pt − i
n

∥∥∥2
2
.

The following Lemma 7 establishes the monotonicity property of distribution pt:
whenever Gt belongs to F , the random walk on Gρ,F gets closer to the stationary dis-
tribution at a known rate, while never moving away from the stationary distribution in
the remaining rounds.

Lemma 7. Consider a max-degree random walk on Gρ,F . Let λ̂(F) denote an upper
bound on the second largest (in absolute value) eigenvalues of the stochastic matrices
of all graphs in F (i.e., ∀G∈Fλ(AG) ≤ λ̂(F)). It holds that∥∥∥pt+1 − i

n

∥∥∥2
2
≤
(
λ̂(F)

)2ρt ∥∥∥p1 − i
n

∥∥∥2
2
.
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We are now ready to prove the bound on the mixing time in Theorem 3. We use the
standard definition of the mixing time via the total variation distance to the steady state
distribution (e.g., [1]):

tmix=min
{
t:
∥∥∥pt−π

∥∥∥
TV
<1

4

}
.

This definition gives the expected value of minimal random time at which the random
walk has the stationary distribution.

We use the standard method of bounding the total variation distance via the 2-norm
distance to the steady state distribution.

By taking t=O
(
ρ−1(1 − λ̂(F))−1 logn

)
and applying Lemma 7, we show that after

t rounds, the total variation distance is less than 1
4 .

Hitting Time and Cover Time. We take an arbitrary node j and remove the corre-
sponding row and column from matrix AGt . Let A′ be the resulting matrix. Lemma 8
connects the largest eigenvalue of A′ to the largest eigenvalue of the fundamental matrix
(I−A′)

−1.

Lemma 8. Let AGt be the transition probability matrix of a max-degree random walk
on graph Gt. Let A′ be an (n−1)× (n−1) matrix resulting from deleting the j-th row
and j-th column from AGt , for some 1 ≤ j ≤ n. And let I be an (n−1)×(n−1) identity
matrix. Then,

λ1 (A
′) = 1− 1

λ1

(
(I−A′)

−1
) .

The following lemma uses Lemma 8 to connect the spectral radius of A′ to the hitting
time of the deleted node j.

Lemma 9. Let AGt be the transition probability matrix of a max-degree random walk
on graph Gt. Let A′ be an (n−1)× (n−1) matrix resulting from deleting the j-th row
and j-th column from AGt , for some 1 ≤ j ≤ n. Then,

δ(A′) ≤
{(

1− 1
thit(Gt)

)
if Gt is connected

1 otherwise.

We now sketch the proof of Theorem 2. We take an arbitrary node i and remove the
corresponding rows and columns from the matrices AG1 , AG2 , . . .. We use the bounds
on the spectral radii of these submatrices, given in Lemma 9, to obtain the bound on the
spectral radius of the product of those submatrices. Then, we relate the spectral radius
of the product to the hitting time of the deleted node i. The cover time is obtained by
the union bound over all n nodes.

8 Conclusions

We have introduced the notion of a ρ-recurring family of evolving graphs, which has
the property that the evolving graph frequently contains a graph in the family. We be-
lieve that recurring families is a natural and powerful concept to understand many real
dynamic networks.
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We have studied max-degree random walks and, using the concept of recurring fam-
ilies, derived bounds on hitting, cover, and mixing times of an evolving graph with a
ρ-recurring family F . These results imply that dynamic networks with recurring fam-
ilies preserve the properties of random walks in their static counterparts. This allows
importing the extensive catalogue of results for static graphs into the dynamic setting.

We believe that ρ-recurring families may be useful to study other problems in dy-
namic networks, such as rumour spreading, information dissemination, and token cir-
culation. We leave this as future work.

Acknowledgements. The authors are grateful to Fabian Kuhn and the anonymous ref-
erees for their valuable feedback on the previous versions of the paper.
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Abstract. The Push-Pull protocol is a well-studied round-robin rumor
spreading protocol defined as follows: initially a node knows a rumor
and wants to spread the rumor to all nodes in a network quickly. In
each round, every informed node sends the rumor to a random neigh-
bor, and every uninformed node contacts a random neighbor and gets
the rumor from her if she knows it. We analyze the behavior of this
protocol on random k-trees, a class of power law graphs which are small-
world and have large clustering coefficients, built as follows: initially
we have a k-clique. In every step a new node is born, a random k-
clique of the current graph is chosen, and the new node is joined to
all nodes of the k-clique. When k > 2 is fixed, we show that if ini-
tially a random node is aware of the rumor, then with probability 1 −
o(1) after O

(
(log n)(k+3)/(k+1) · log log n · f(n)

)
rounds the rumor prop-

agates to n − o(n) nodes, where n is the number of nodes and f(n)
is any slowly growing function. When k = 2, the previous statement
holds for O

(
log2 n · log log n · f(n)

)
many rounds. Since these graphs

have polynomially small conductance, vertex expansion O(1/n) and con-
stant treewidth, these results demonstrate that Push-Pull can be efficient
even on poorly connected networks.

On the negative side, we prove that with probability 1 − o(1) the

protocol needs at least Ω
(
n(k−1)/(k2+k−1)/f2(n)

)
rounds to inform all

nodes. This exponential dichotomy between time required for inform-
ing almost all and all nodes is striking. Our main contribution is to
present, for the first time, a natural class of random graphs in which
such a phenomenon can be observed. Our technique for proving the up-
per bound successfully carries over to a closely related class of graphs,
the random k-Apollonian networks, for which we prove an upper bound

of O
(
(log n)(k

2−3)/(k−1)2 · log log n · f(n)
)
rounds for informing n−o(n)

nodes with probability 1− o(1), when k > 2 is a constant.

Keywords: randomized rumor spreading, push-pull protocol, random
k-trees, random k-Apollonian networks.

� Supported by the Vanier Canada Graduate Scholarships program. Part of this work
was done while the author was visiting Monash University, Australia.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 346–360, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Rumor Spreading in Poorly Connected Networks 347

1 Introduction

Randomized rumor spreading is an important primitive for information dissem-
ination in networks and has numerous applications in network science, ranging
from spreading information in the WWW and Twitter to spreading viruses and
diffusion of ideas in human communities (see [5, 10–12, 19]). A well studied ru-
mor spreading protocol is the Push-Pull protocol, introduced by Demers, Greene,
Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, and Terry [9]. Suppose that
one node in a network is aware of a piece of information, the ‘rumor.’ The proto-
col proceeds in rounds. In each round, every informed node contacts a random
neighbor and sends the rumor to it (‘pushes’ the rumor), and every uninformed
nodes contacts a random neighbor and gets the rumor if the neighbor possibly
knows it (‘pulls’ the rumor). Note that this is a synchronous protocol, e.g. a node
that receives a rumor in a certain round cannot send it on in the same round.

A point to point communication network can be modelled as an undirected
graph: the nodes represent the processors and the links represent communication
channels between the nodes. Studying rumor spreading has several applications
to distributed computing in such networks, of which we mention just two. The
first is in broadcasting algorithms: a single processor wants to broadcast a piece
of information to all other processors in the network (see [25] for a survey). There
are at least three advantages to the Push-Pull protocol: it is simple (each node
makes a simple local decision in each round; no knowledge of the global topology
is needed; no state is maintained), scalable (the protocol is independent of the
size of network: it does not grow more complex as the network grows) and robust
(the protocol tolerates random node/link failures without the use of error recov-
ery mechanisms, see [15]). A second application comes from the maintenance of
databases replicated at many sites, e.g., yellow pages, name servers, or server
directories. There are updates injected at various nodes, and these updates must
propagate to all nodes in the network. In each round, a processor communicate
with a random neighbor and they share any new information, so that eventu-
ally all copies of the database converge to the same contents. See [9] for details.
Other than the aforementioned applications, rumor spreading protocols have
successfully been applied in various contexts such as resource discovery [24],
load balancing [3], data aggregation [28], and the spread of computer viruses [2].

We only consider simple, undirected and connected graphs. For a graph G,
let Δ(G) and diam(G) denote the maximum degree and the diameter of G,
respectively, and let deg(v) denote the degree of a vertex v. Most studies in
randomized rumor spreading focus on the runtime of this protocol, defined as
the number of rounds taken until a rumor initiated by one vertex reaches all
other vertices. It is clear that diam(G) is a lower bound for the runtime of the
protocol. We say an event happens with high probability (whp) if its probability
approaches 1 as n goes to infinity. Feige, Peleg, Raghavan and Upfal [15] showed
that for an n-vertexG, whp the rumor reaches all vertices inO(Δ(G)·(diam(G)+
logn)) rounds. This protocol has been studied on many graph classes such as
complete graphs [27], Erdös-Réyni random graphs [14, 15, 17], random regular
graphs [1, 18], and hypercube graphs [15]. For most of these classes it turns



348 A. Mehrabian and A. Pourmiri

out that whp the runtime is O(diam(G) + logn), which does not depend on the
maximum degree.

Randomized rumor spreading has recently been studied on real-world net-
works models. Doerr, Fouz, and Friedrich [10] proved an upper bound of O(log n)
for the runtime on preferential attachment graphs, and Fountoulakis, Pana-
giotou, and Sauerwald [19] proved the same upper bound (up to constant factors)
for the runtime on the giant component of random graphs with given expected
degrees (also known as the Chung-Lu model) with power law degree distribution.

The runtime is closely related to the expansion profile of the graph. Let
Φ(G) and α(G) denote the conductance and the vertex expansion of a graph
G, respectively. After a series of results by various scholars, Giakkoupis [22, 23]
showed that for any n-vertex graph G, the runtime of the Push-Pull protocol
is O

(
min{Φ(G)−1 · logn, α(G)−1 · log2 n}

)
. It is known that whp preferential

attachment graphs and random graphs with given expected degrees have con-
ductance Ω(1) (see [6, 30]). So it is not surprising that rumors spread fast
on these graphs. Censor-Hillel, Haeupler, Kelner, and Maymounkov [4] pre-
sented a different rumor spreading protocol that whp distributes the rumor in
O(diam(G)+polylog(n)) rounds on any connected n-vertex graph, which seems
particularly suitable for poorly connected graphs.

1.1 Our Contribution

We study the Push-Pull protocol on random k-trees, a class of random graphs
defined as follows.

Definition 1 (Random k-tree process [20]1). Let k be a positive integer.
Build a sequence G(0), G(1), . . . of random graphs as follows. The graph G(0)
is just a clique on k vertices. For each 1 ≤ t ≤ n, G(t) is obtained from G(t− 1)
as follows: a k-clique of G(t − 1) is chosen uniformly at random, a new vertex
is born and is joined to all vertices of the chosen k-clique. The graph G(n) is
called a random k-tree on n+ k vertices.

Sometimes it is convenient to view this as a ‘random graph evolving in time.’
In this interpretation, in every round 1, 2, . . . , a new vertex is born and is added
to the evolving graph, and G(t) denotes the graph at the end of round t. Observe
that G(t) has k + t many vertices and kt+ 1 many k-cliques.

The definition of random k-trees enjoys a ‘the rich get richer’ effect, as in the
preferential attachment scheme. Think of the number of k-cliques containing any
vertex v as the ‘wealth’ of v (note that this quantity is linearly related to deg(v)).
Then, the probability that the new vertex attaches to v is proportional to the
wealth of v, and if this happens, the wealth of v increases by k− 1. On the other
hand, random k-trees have much larger clustering coefficients than preferential
attachment graphs, as all neighbors of each new vertex are joined to each other. It
is well-known that real-world networks tend to have large clustering coefficients
(see, e.g., [32, Table 1]).

1 Note that this process is different from the random k-tree process defined by Cooper
and Uehara [8] which was further studied in [7].
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Gao [20] showed that whp the degree sequence of G(n) asymptotically fol-
lows a power law distribution with exponent 2 + 1

k−1 . The diameter of G(n) is
O(log n) whp. It is not hard to verify that the clustering coefficient of G(n) is
at least 1/2, as opposed to preferential attachment graphs and random graphs
with given expected degrees, whose clustering coefficients are o(1) whp. As per
these properties, random k-trees serve as more realistic models for real-world
networks.

On the other hand, whp a random k-tree on n+ k vertices has conductance
O
(
logn · n−1/k

)
and vertex expansion O(k/n). Therefore we can not resort to

existing results linking the runtime to expansion properties to show rumors
spread fast in these graphs. Another interesting structural property of a ran-
dom k-tree is its treewidth (see [29] for a comprehensive survey). Gao [21] proved
that many random graph models, including Erdös-Réyni random graphs with
expected degree ω(logn) and preferential attachment graphs with out-degree
greater than 11, have treewidth Θ(n), whereas all random k-trees have treewidth
k by construction.2

In conclusion, distinguishing features of random k-trees, such as high clus-
tering coefficient, polynomially bad expansion and tree-like structure (due to
a small treewidth), inspired us to study randomized rumor spreading on this
unexplored random environment. Our first main contribution is the following
theorem.

Theorem 1. Let k > 2 be constant and let f(n) = o(log logn) be an ar-
bitrary function going to infinity with n. If initially a random vertex of an
(n + k)-vertex random k-tree knows a rumor, then with high probability af-

ter O
(
(logn)

k+3
k+1 · log logn · f(n)

)
rounds of the Push-Pull protocol, n − o(n)

vertices will know the rumor. If k = 2, then the previous statement holds for
O
(
log2 n · log logn · f(n)3/2

)
rounds.

We give a high-level sketch of the proof of Theorem 1. Let m = o(n) be a
suitably chosen parameter, and note that G(m) is a subgraph of G = G(n).
Consider the connected components of G−G(m). Most vertices born later than
round m have relatively small degree, so most these components have a small
maximum degree (and logarithmic diameter) thus the rumor spreads quickly
inside each of them. A vertex v ∈ V (G(m)) typically has a large degree, but
this means that there is a high chance that v has a neighbor x with small
degree, which quickly receives the rumor from v and spreads it (or vice versa).
We build an almost-spanning tree T of G(m) with logarithmic height, such
that for every edge uv of T , one of u and v have a small degree, or u and v
have a common neighbor with a small degree. Either of these conditions implies
the rumor is exchanged quickly between u and v. This tree T then works as
a ‘highway system’ to spread the rumor among the vertices of G(m) and from
them to the components of G−G(m).

2 According to [21], not much is known about the treewidth of a preferential attach-
ment graph with out-degree between 3 and 11.
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The main novelty in this proof is how the almost-spanning tree is built and
used (using small degree vertices for fast rumor transmission between high de-
gree vertices has also been used in previous papers, e.g. [10] and [19]). Our
second main contribution is the following theorem, which gives a polynomial
lower bound for the runtime.

Theorem 2. Let f(n) = o(log logn) be an arbitrary function going to infinity
with n. Suppose that, initially, one vertex in the random k-tree, G(n), knows
the rumor. Then, with high probability, the Push-Pull protocol needs at least
n(k−1)/(k2+k−1)f(n)−2 rounds to inform all vertices of G(n).

We give a high-level sketch of the proof of Theorem 2. A barrier in a graph is
a subset D of edges of size O(1), whose deletion disconnects the graph. If both
endpoints of every edge of a barrier D have very large degrees, then the protocol
needs a very large time to pass the rumor through D. For proving Theorem 2,
we prove the random k-tree has a barrier whp. The main novelty in this proof
is introducing and using the notion of a barrier.

It is instructive to contrast Theorems 1 and 2. The former implies that if
you want to inform almost all the vertices, then you just need to wait for a
polylogarithmic number of rounds. The latter implies that, however, if you want
to inform each and every vertex, then you have to wait for polynomially many
rounds. This is a striking phenomenon and the main message of this paper is
to present, for the first time, a natural class of random graphs in which this
phenomenon can be observed. In fact, in many applications, such as epidemics,
viral marketing and voting, it is more appealing to inform 99 percent of the
vertices very quickly instead of waiting a long time until everyone gets informed.

It is worth mentioning that bounds for the number of rounds to inform almost
all vertices have already appeared in the literature, see for instance [11, 19]. In
particular, for power-law Chung-Lu graphs with exponent ∈ (2, 3), it is shown
in [19] that whp after O(log logn) rounds the rumor spreads in n−o(n) vertices,
but to inform all vertices of the giant component Θ(log n) rounds are necessary
and sufficient. This result also shows a great difference between the two cases,
however in both cases the required time is quite small.

A closely related class of graphs is the class of random k-Apollonian networks,
introduced by Zhang, Comellas, Fertin, and Rong [33]. Their construction is very
similar to the construction of random k-trees, with just one difference: if a k-
clique is chosen in a certain round, it will never be chosen again. It is known
that whp random k-Apollonian networks exhibit a power law degree distribution
and large clustering coefficient [31, 34] and have logarithmic diameter [7]. The
proof of the following theorem is similar to the proof of Theorem 1 and is thus
omitted from this abstract.

Theorem 3. Let k > 2 be constant and let f(n) = o(log logn) be an arbitrary
function going to infinity with n. Assuming that initially a random vertex of an
(n+k)-vertex random k-Apollonian network knows a rumor, with high probability

after O
(
(log n)(k

2−3)/(k−1)2 · log logn · f(n)
)

rounds of the Push-Pull protocol,

at least n− o(n) vertices will know the rumor.
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For the rest of the paper, k is a constant larger than 1, and the asymptotics
are for n going to infinity. Preliminaries and connections with urn models appear
in Section 2. Theorems 1 and 2 are proved in Sections 3 and 4, respectively.

2 Preliminaries

We will need some definitions and results from urn theory (see, e.g., [26] for a
general introduction).

Definition 2 (Pólya-Eggenberger urn). Start with W0 white and B0 black
balls in an urn. In every step a ball is drawn from the urn uniformly at random,
the ball is returned to the urn, and s balls of the same color are added to the
urn. Let Polya(W0, B0, s, n) denote the distribution of the number of white balls
right after n draws.

Proposition 1. Let X = Polya(a, b, k, n), w = a+b and let c � (a+b)/k. Then

Pr [X = a] 	
(

c
c+n

)a/k

and

E
[
X2

]
=
(
a+

a

w
kn

)2

+
abk2n(kn+ w)

w2(w + k)
.

Definition 3 (Generalized Pólya-Eggenberger urn). Let α, β, γ, δ be non-
negative integers. We start with W0 white and B0 black balls in an urn. In every
step a ball is drawn from the urn uniformly at random and returned to the urn.
Additionally, if the ball is white, then δ white balls and γ black balls are returned
to the urn; otherwise, i.e. if the ball is black, then β white balls and α black balls

are returned to the urn. Let Polya

(
W0, B0,

[
α β
γ δ

]
, n

)
denote the distribution of

the number of white balls right after n draws.

Note that Pólya-Eggenberger urns correspond to the matrix

[
s 0
0 s

]
. The following

proposition follows from known results.

Proposition 2. Let X = Polya

(
W0, B0,

[
α 0
γ δ

]
, n

)
and let r be a positive in-

teger. If γ, δ > 0, α = γ + δ, and rδ � α, then we have

E [Xr] 	
(

αn

W0 +B0

)rδ/α r−1∏
i=0

(W0 + iδ) +O
(
n(r−1)δ/α

)
.

Proposition 3. Suppose that in G(j) vertex x has A > 0 neighbors, and is
contained in B many k-cliques. Conditional on this, the degree of x in G(n+ j)
is distributed as

A+

(
Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
−B

)/
(k − 1) .
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Proof. We claim that Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
is the total number

of k-cliques containing x in G(n+ j). At the end of round j, there are B many
k-cliques containing x, and kj +1−B many k-cliques not containing x. In each
subsequent round j + 1, . . . , j + n, a random k-clique is chosen and k new k-
cliques are created. If the chosen k-clique contains x, then k − 1 new k-cliques
containing x are created, and 1 new k-clique not containing x is created. Oth-
erwise, i.e. if the chosen k-clique does not contain x, then no new k-cliques
containing x is created, and k new k-cliques not containing x are created. Hence

Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
is exactly the total number of k-cliques con-

taining x in G(n+ j). Hence the number of k-cliques that are created in rounds

j + 1, . . . , j + n and contain x is Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
− B, and

the proof follows by noting that every new neighbor of x creates k − 1 new k-
cliques containing x. �	
Combining Propositions 2 and 3 we obtain the following lemma.

Lemma 1. Let 1 	 j 	 n and let q be a positive integer. Let x denote the vertex
born in round j. Conditional on any G(j), the probability that x has degree greater
than k + q(n/j)(k−1)/k in G(n) is O

(
q
√
q exp(−q)

)
.

3 Proof of Theorem 1

Once we have the following lemma, our problem reduces to proving a structural
result for random k-trees. The proof is along the lines of that of [15, Theorem 2.2].

Lemma 2. Let G be an n-vertex graph and let Σ ⊆ V (G) with |Σ| = n −
o(n) be such that for every pair of vertices u, v ∈ Σ there exists a (u, v)-
path uu1u2 . . . ul−1v such that l 	 χ and for every 0 	 i 	 l − 1 we have
min{deg(ui), deg(ui+1)} 	 τ (where we define u0 = u and ul = v). If a random
vertex in G knows a rumor, then whp after 6τ(χ+log n) rounds of the Push-Pull
protocol, at least n− o(n) vertices will know the rumor.

Let f(n) = o(log logn) be an arbitrary function going to infinity with n, and

m =

⌈
n

f(n)3(logn)2

⌉
if k = 2, and

m =

⌈
n

f(n)(logn)2k/(k2−1)

⌉
if k > 2. Finally, let q = �4 log logn� and let

τ = 2k + q(n/m)1−1/k . (1)

An argument similar to the proof of Lemma 4 gives that whp a random k-tree
on n+ k vertices has diameter O(log n). Theorem 1 thus follows from Lemma 2
and the following structural result, which we prove in the rest of this section.
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Lemma 3. Let G be an (n + k)-vertex random k-tree. Whp there exists Σ ⊆
V (G) satisfying the conditions of Lemma 2 with τ defined in (1) and χ =
O(log n+ diam(G)).

For the rest of this section, G is an (n + k)-vertex random k-tree. Recall
from Definition 1 that G = G(n), where G(0), G(1), . . . , is the random k-tree
process. Consider the graph G(m), which has k +m vertices and mk + 1 many
k-cliques. For an edge e of G(m), let N(e) denote the number of k-cliques of
G(m) containing e. We define a spanning forest F of G(m) as follows: for every
1 	 t 	 m, if the vertex x born in round t is joined to the k-clique C, then in
F , x is joined to a vertex u ∈ V (C) such that

N(xu) = max
v∈V (C)

N(xv) .

Note that F has k trees and the k vertices of G(0) lie in distinct trees. Think
of these trees as rooted at these vertices. The tree obtained from F by merging
these k vertices is the ‘highway system’ described in the sketch of the proof of
Theorem 1. Informally speaking, the proof is divided into three parts: first, we
show that this tree has a small height (Lemma 4), second, we show that each
edge in this tree quickly exchanges the rumor with a reasonably large probability
(Lemma 6), and finally we show that almost all vertices in G−G(m) have quick
access to and from F (Lemma 7). Let LOG denote the event ‘each tree in F has
height O(log n).’

Lemma 4. With high probability LOG happens.

Proof. We inductively define the notion of draft for vertices and k-cliques of
G(m). The draft of the vertices of G(0) as well as the k-clique they form equals
0. The draft of every k-clique equals the maximum draft of its vertices. Whenever
a new vertex is born and is joined to a k-clique, the draft of the vertex equals
the draft of the k-clique plus one. It is easy to see that if xy ∈ E(G(m)) and x
is born later than y, then draft(x) � draft(y) + 1. In particular, if x is a vertex
of F with distance h to the root, then draft(x) � h. Hence we just need to show
that whp the draft of each k-clique is O(log n).

We define an auxiliary tree whose vertices are the k-cliques of G(m). Start
with a single vertex corresponding to G(0). Whenever a new vertex x is born
and is joined to a k-clique C, k new k-cliques are created. In the auxiliary tree,
add these to the set of children of C. The depth of each vertex in this auxiliary
tree equals the draft of its corresponding k-clique, as defined above. The height
of this auxiliary tree is stochastically less than or equal to the height of a random
k-ary recursive tree (see [13, Section 1.3.3] for the definition), whose height is
O(log n) whp, as proved in [13, Theorem 6.47]. �	

We prove Lemma 3 conditional on the event LOG. In fact, we prove it for any
G(m) that satisfies LOG. Let G1 be an arbitrary instance of G(m) that satisfies
LOG. All randomness in the following refers to roundsm+1, . . . , n. The following
deterministic lemma, whose proof appears at the end of the section, will be used
in the proof of Lemma 6.
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Lemma 5. Assume that k > 2 and xy ∈ E(F ) and suppose that x is born later
than y. If the degree of x in G1 is greater than 2k− 2, then N(xy) � (k2− 1)/2.

A vertex of G is called modern if it is born later than the end of round m,
and is called traditional otherwise. In other words, vertices of G1 are traditional
and vertices of G−G1 are modern. We say edge uv ∈ E(G) is fast if at least one
of the following is true: deg(u) 	 τ , or deg(v) 	 τ , or u and v have a common
neighbor w with deg(w) 	 τ . For an edge uv ∈ E(F ), let pS(uv) denote the
probability that uv is not fast, and let pS denote the maximum of pS over all
edges of F .

Lemma 6. We have pS = o(1/(f(n) logn)).

Proof. Let xy ∈ E(F ) be arbitrary. By symmetry we may assume that x is born
later than y. First, suppose that k > 2. By Lemma 5, at least one of the following
is true: vertex x has less than 2k − 1 neighbors in G1, or N(xy) � (k2 − 1)/2.
So we may consider two cases.

– Case 1: vertex x has less than 2k − 1 neighbors in G1. In this case vertex
x lies in at most k2 − 2k + 2 many k-cliques of G1. Assume that x has A
neighbors in G1 and lies in B many k-cliques in G1. Let

X = Polya

(
B, km+ 1−B,

[
k 0
1 k − 1

]
, n−m

)
.

Then by Proposition 3 the degree of x is distributed as A+(X −B) /(k−1).
By Proposition 2,

E [Xq] 	 (1 + o(1))

(
k(n−m)

km+ 1

) q(k−1)
k

q−1∏
i=0

(B + i(k − 1))

	 (1 + o(1))
( n

m

) q(k−1)
k

(k − 1)q
q−1∏
i=0

(k + i)

	 (k − 1)q(k + q)!
( n

m

) q(k−1)
k

,

where we have used B 	 k(k − 1) for the second inequality. Therefore,

Pr
[
deg(x) > 2k + q(n/m)

k−1
k

]
	 Pr

[
X � (k − 1)q(n/m)

k−1
k

]

	 E [Xq]

(k − 1)qqq(n/m)
q(k−1)

k

= O
(
(k + q)k+q√q

qq exp(k + q)

)
= o

(
1

f(n) logn

)
.

– Case 2: N(xy) � (k2 − 1)/2. In this case we bound from below the prob-
ability that there exists a modern vertex w that is adjacent to x and y
and has degree at most τ . We first bound from above the probability that x
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and y have no modern common neighbors. For this to happen, none of the k-
cliques containing x and y must be chosen in rounds m+1, . . . , n. This prob-
ability equals Pr [Polya(N(xy),mk + 1−N(xy), k, n−m) = N(xy)]. Since
N(xy) � (k2 − 1)/2, by Proposition 1 we have

Pr [Polya(N(xy),mk + 1−N(xy), k, n−m) = N(xy)] 	
(
m+ 1

n+ 1

) k2−1
2k

,

which is o (1/(f(n) logn)).
Now, assume that x and y have a modern common neighbor w. If there are
multiple such vertices, choose the one that is born first. Since w appears
later than round m, by Lemma 1,

Pr
[
deg(w) > k + q(n/m)(k−1)/k

]
= O (q

√
q exp(−q)) = o

(
1

f(n) logn

)
.

The proof for k = 2 is very similar to the argument for Case 2 above: note
that in this case we have N(xy) � 1 for all edges xy ∈ E(F ), and we have

Pr [Polya(1, 2m, 2, n−m) = 1] 	
√

m+ 1

n+ 1
= O

(√
m

n

)
= o

(
1

f(n) logn

)
. �	

Enumerate the k-cliques of G1 as C1, . . . , Cmk+1. Then choose r1 ∈ C1, . . . ,
rmk+1 ∈ Cmk+1 arbitrarily, and call them the representative vertices. Starting
from G1, when modern vertices are born in roundsm+1, . . . , n until G is formed,
every clique Ci ‘grows’ to a random k-tree with a random number of vertices,
which is a subgraph of G. Enumerate these subgraphs asH1, . . . , Hmk+1, and call
them the pieces. More formally, H1, . . . , Hmk+1 are induced subgraphs of G such
that a vertex v is in V (Hj) if and only if every path connecting v to a traditional
vertex intersects V (Cj). In particular, V (Cj) ⊆ V (Hj) for all j ∈ {1, . . . ,mk+1}.
Note that the Hj ’s may intersect as a traditional vertex may lie in more than
one Cj , however every modern vertex lies in a unique piece.

A traditional vertex is called nice if it is connected to some vertex in G(0)
via a path of fast edges. Since F has height O(log n) and each edge of F is fast
with probability at least 1 − pS , the probability that a given traditional vertex
is not nice is O(pS logn) by the union bound. A piece Hj is called nice if all
its modern vertices have degrees at most τ , and the vertex rj is nice. A modern
vertex is called nice if it lies in a nice piece. A vertex/piece is called bad if it is
not nice.

Lemma 7. The expected number of bad vertices is o(n).

Proof. The total number of traditional vertices is k +m = o(n) so we may just
ignore them in the calculations below. Let η = nf(n)/m = o(log3 n). Say piece
Hj is sparse if |V (Hj)| 	 η+ k. We first bound the expected number of modern
vertices in non-sparse pieces. Observe that the number of modern vertices in each
piece is distributed as X = (Polya(1, km, k, n−m)− 1)/k. Using Proposition 1
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we get E
[
X2

]
	 2kn2/m2. By the second moment method, for every t > 0 we

have

Pr [X � t] 	
E
[
X2

]
t2

	 2kn2

m2t2
.

The expected number of modern vertices in non-sparse pieces is thus at most

∞∑
i=0

(2i+1η)(km+ 1)Pr
[
2iη < X 	 2i+1η

]
	

∞∑
i=0

(2i+1η)(km+ 1)
2kn2

m2η222i

	 O
(

n2

mη

) ∞∑
i=0

2−i = O
(

n2

mη

)
,

which is o(n).
We now bound the expected number of modern vertices in sparse bad pieces.

For bounding this from above we find an upper bound for the expected number
of bad pieces, and multiply by η. A piece Hj can be bad in two ways:

(1) the representative vertex rj is bad: the probability of this is O (pS logn).
Therefore, the expected number of pieces that are bad due to this reason is
O (mkpS logn), which is o(n/η) by Lemma 6.

(2) there exists a modern vertex in Hj with degree greater than τ : the proba-
bility that a given modern vertex has degree greater than τ is O

(
q
√
q exp(−q)

)
by Lemma 1. So the average number of modern vertices with degree greater
than τ is O

(
nq
√
q exp(−q)

)
. Since every modern vertex lies in a unique piece,

the expected number of pieces that are bad because of this reason is bounded
by O

(
nq
√
q exp(−q)

)
= o(n/ log3 n).

So the expected number of bad pieces is o(n/η+n/ log3 n). and the expected
number of modern vertices in sparse bad pieces is o(n+ ηn/ log3 n) = o(n). �	

We now prove Lemma 3, which concludes the proof of Theorem 1.

Proof (of Lemma 3). Let Σ denote the set of nice modern vertices. By Lemma 7
and using Markov’s inequality, we have |Σ| = n − o(n) whp. Let {a1, . . . , ak}
denote the vertex set ofG(0). Using an argument similar to the proof of Lemma 6,
it can be proved that given 1 	 i < j 	 k, the probability that edge aiaj is not
fast is o(1). Since the total number of such edges is a constant, whp all such
edges are fast. Let u and v be nice modern vertices, and let ru and rv be the
representative vertices of the pieces containing them, respectively. Since the piece
containing u is nice, there exists a (u, ru)-path whose vertices except possibly ru
all have degrees at most τ . The length of this path is at most diam(G). Since
ru is nice, for some 1 	 i 	 n there exists an (ru, ai)-path in F consisting
of fast edges. By appending these paths we find a (u, ai)-path with length at
most diam(G) +O(log n) such that for every pair of consecutive vertices in this
path, one of them has degree at most τ . Similarly, for some 1 	 j 	 n there
exists a (v, aj)-path of length O(log n + diam(G)), such that one of every pair
of consecutive vertices in this path has degree at most τ . Since the edge aiaj is
fast, we can build a (u, v)-path of length O(log n+diam(G)) of the type required
by Lemma 2, and this completes the proof. �	
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Proof (of Lemma 5). Assume that x is joined to u1, . . . , uk when it is born. Also
assume that v1, v2, . . . , vk−1, . . . are the neighbors of x that are born later than x,
in the order of birth. Let Ψ denote the number of pairs (uj , C), where uj ∈ V (G1)
and C is a k-clique in G1 such that {x, uj} ⊆ V (C). Consider the round in which
vertex x is born and is joined to u1, . . . , uk. For every j ∈ {1, . . . , k}, the vertex
uj is contained in k − 1 new k-cliques, so in this round Ψ increases by k(k − 1).
For each i ∈ {1, . . . , k − 1}, consider the round in which vertex vi is born. This
vertex is joined to x and k − 1 neighbors of x. At this round x has neighbor set
{u1, . . . , uk, v1, . . . , vi−1}. Thus at least k − i of the uj ’s are joined to vi in this
round. Each vertex uj that is joined to vi in this round is contained in k−1 new
k-cliques, so in this round Ψ increases by at least (k − i)(k − 1). Consequently,

we have Ψ � k(k − 1) +
∑k−1

i=1 (k − i)(k − 1) = (k2 − 1)k/2. By the pigeonhole
principle, there exists some � ∈ {1, . . . , k} such that the edge xu
 is contained in
at least (k2 − 1)/2 many k-cliques, and this completes the proof. �	

4 Proof of Theorem 2

Definition 4 (s-barrier). A pair {C1, C2} of disjoint k-cliques in a connected
graph is an s-barrier if (i) the set of edges between C1 and C2 is a cut-set,
i.e. deleting them disconnects the graph, and (ii) the degree of each vertex in
V (C1) ∪ V (C2) is at least s.

Observe that if G has an s-barrier, then for any starting vertex, whp the
Push-Pull protocol needs at least Ω(s) rounds to inform all vertices.

Lemma 8. The graph G(n) has an Ω(n1−1/k)-barrier with probability Ω(n1/k−k).

Proof. Let u1, . . . , uk be the vertices of G(0), and let v1, . . . , vk be the vertices of
G(k)−G(0) in the order of appearance. We define two events: Event A is that for
every 1 	 i 	 k, when vi appears, it attaches to v1, v2, . . . , vi−1, ui, ui+1, . . . , uk;
and for each 1 	 i, j 	 k, ui and vj have no common neighbor in G(n)−G(k).
Event B is that all vertices of G(k) have degree Ω(n(k−1)/k) in G(n). Note that if
A and B both happen, then the pair {u1u2 . . . uk, v1v2 . . . vk} is an Ω(n(k−1)/k)-
barrier in G(n). Hence to prove the lemma it suffices to showPr [A] = Ω(n1/k−k)
and Pr [B|A] = Ω(1).

For A to happen, first, the vertices v1, . . . , vk must choose the specific k-
cliques, which happens with constant probability. Moreover, the vertices ap-
pearing after round k must not choose any of the k2 − 1 many k-cliques that
contain both ui’s and vj ’s. Since 1− y � e−y−y2

for every y ∈ [0, 1/4],



358 A. Mehrabian and A. Pourmiri

Pr [A] = Ω(Pr
[
Polya(k2 − 1, 2, k, n− k) = k2 − 1

]
)

= Ω

(
n−k−1∏
i=0

(
2 + ik

k2 + 1 + ik

))

� Ω

(
4k−1∏
i=0

(
2 + ik

k2 + 1 + ik

) n−k−1∏
i=4k

(
1− k2 − 1

ik

))

� Ω

(
exp

(
−

n−k−1∑
i=4k

{
k2 − 1

ik
+

(
k2 − 1

ik

)2
}))

which is Ω(n1/k−k) since
∑n−k−1

i=4k
k2−1
ik 	 (k − 1/k) logn+ O(1) and moreover∑n−k−1

i=4k

(
k2−1
ik

)2

= O(1).
Conditional on A and using an argument similar to that in the proof of Propo-

sition 3, the degree of each of the vertices u1, . . . , uk, v1, . . . , vk in G(n) is at least

k+(Polya(1, 1,

[
k 0
1 k − 1

]
, n−k)−1)/(k−1). By [16, Proposition 16], there exists

δ > 0 such that

Pr

[
Polya(1, 1,

[
k 0
1 k − 1

]
, n− k) < δn(k−1)/k

]
< 1/(2k + 1) .

By the union bound, the probability that all vertices u1, . . . , uk, v1, . . . , vk have
degrees at least δn(k−1)/k/(k−1) is at least 1/(2k+1), hence Pr [B|A] � 1/(2k+
1) = Ω(1). �	

Let f(n) = o(log logn) be a function going to infinity with n, and let m =⌈
f(n)n1−k/(k2+k−1)

⌉
. (Note that the value of m is different from that in Sec-

tion 3, although its role is somewhat similar.) Consider the random k-tree pro-
cess up to roundm. Enumerate the k-cliques of G(m) as C1, . . . , Cmk+1. Starting
from G(m), when new vertices are born in rounds m+1, . . . , n until G = G(n) is
formed, every clique Ci ‘grows’ to a random k-tree with a random number of ver-
tices, which is a subgraph of G. Enumerate these subgraphs as H1, . . . , Hmk+1,
and call them the pieces. We say a piece is moderate if its number of vertices is
between n/(mf(n)) and nf(n)/m. Note that the number of vertices in a piece
has expected value Θ(n/m). The following lemma is proved by showing this
random variable does not deviate much from its expected value.

Lemma 9. With high probability, there are o(m) non-moderate pieces.

Proof (of Theorem 2). Consider an alternative way to generate G(n) from G(m):
first, we determine how many vertices each piece has, and then we expose the
structure of the pieces. Let Y denote the number of moderate pieces. By Lemma 9
we have Y = Ω(m) whp. We prove the theorem conditional on Y = y, where y =
Ω(m) is otherwise arbitrary. Note that after the sizes of the pieces are exposed,
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what happens inside each piece in rounds m+ 1, . . . , n is mutually independent
from other pieces. Let H be a moderate piece with n1 vertices. By Lemma 8, the

probability that H has an Ω(n
1−1/k
1 )-barrier is Ω(n

1/k−k
1 ). Since n/(mf(n)) 	

n1 	 nf(n)/m, the probability that H has a Ω((n/(mf(n))1−1/k)-barrier is
Ω((nf(n)/m)1/k−k). Since there are y = Ω(m) moderate pieces in total, the
probability that no moderate piece has an Ω

(
(n/(mf(n)))1−1/k

)
-barrier is at

most (1 − Ω((nf(n)/m)1/k−k))y 	 exp(−Ω(f(n))) = o(1), which means whp

there exists an Ω
(
n(k−1)/(k2+k−1)f(n)−2

)
-barrier in G(n), as required. �	
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“Time is an illusion.”
—Albert Einstein

Abstract. Linearizability, a widely-accepted correctness property for
shared objects, is grounded in classical physics. Its definition assumes
a total temporal order over invocation and response events, which is
tantamount to assuming the existence of a global clock that determines
the time of each event. By contrast, according to Einstein’s theory of
relativity, there can be no global clock: time itself is relative. For example,
given two events A and B, one observer may perceive A occurring before
B, another may perceive B occurring before A, and yet another may
perceive A and B occurring simultaneously,with respect to local time.

Here, we generalize linearizability for relativistic distributed sys-
tems using techniques that do not rely on a global clock. Our novel
correctness property, called relativistic linearizability, is instead defined
in terms of causality. However, in contrast to standard “causal consis-
tency,” our interpretation defines relativistic linearizability in a manner
that retains the important locality property of linearizability. That is,
a collection of shared objects behaves in a relativistically linearizable
way if and only if each object individually behaves in a relativistically
linearizable way.

1 Introduction

Distributed computing theory is deeply intertwined with physics, particularly the
fundamental concepts of space and time. A distributed computation is often de-
scribed as a collection of events, each of which occurs at a specific place and time.
The ordering of events lies at the heart of many proposed correctness properties.
Most notably, Herlihy and Wing’s widely-accepted linearizability property [14]
for shared objects relies on a totally ordered collection of operation invocations
and responses. This total order over events induces a partial “happens before”
order over the underlying operations, which are regarded as executing over in-
tervals of time. Linearizability requires that these operations behave as though
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they were executed one at a time, in some sequence consistent with the “happens
before” partial order. This ordering creates the illusion that each operation takes
effect instantaneously, despite executing over a longer interval.

Herlihy and Wing’s definition (see Section 3), as well as the method they
propose for proving linearizability, weave together a number of mathematical
building blocks—partial orders, total orders, representation invariants and ab-
straction functions. Underlying these convenient abstractions are two funda-
mental assumptions: (1) events can be totally ordered according to an irreflex-
ive, transitive temporal relation; (2) the states of the “base objects” used to
construct the implemented object can be observed simultaneously. While these
assumptions are in line with classical or Newtonian physics, Einstein’s theory of
relativity tells us that both time and simultaneity are in fact relative [8]. That is,
two events may occur in opposite orders from the perspectives of two observers,
and two events that appear simultaneous to one observer may not be simultane-
ous to another observer. Intuitively, these phenomena occur because the speed of
light in a vacuum appears the same to all observers irrespective of their relative
motion or the motion of the light source. As a result, assumptions (1) and (2)
break in a relativistic distributed system where components may move relative
to each other at high speeds.

Correctness properties generally fall into two categories: those that assume to-
tally ordered events, and those based upon some notion of causality. Properties
in the first category lack a precise interpretation in a relativistic environment,
whereas properties in the second category lack the important property of local-
ity. Locality, also known as composability, states that a collection of consistent
objects is, collectively, consistent. For building larger systems, locality is critical:
with it, you can use a collection of well-designed (i.e., consistent) objects to build
a larger system that continues to behave as you would expect it to. By contrast,
without locality, it is difficult to reason about systems of many shared objects.

Thus, neither of the two categories of known correctness properties is ideal for
specifying the behavior of distributed systems in a relativistic setting—a problem
of growing importance in light of ongoing endeavors to establish a human colony
on Mars [1], and construct an interplanetary Internet [15]. Consider for example
a hypothetical key-value storage system for inter-planetary data sharing, and
suppose that scientists using the system insist on always seeing the latest version
of the data. How can the desired behavior of get and put operations on key-value
pairs be specified without referring to a global clock or sacrificing locality?

In this paper, we define relativistic linearizability—a generalization of lineariz-
ability for relativistic distributed systems. We then: (1) present four candidate
definitions of relativistic linearizability that do not rely on global clocks; (2)
prove that these definitions form a hierarchy, and that only one provides local-
ity; (3) describe special cases in which different levels of our hierarchy collapse;
and (4) discuss techniques for constructing relativistically linearizable objects.
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2 Related Work

In this section, we overview the role of time and causality in correctness proper-
ties of shared objects. In his seminal paper on inter-process communication [16],
Lamport considers a model where events are related by an irreflexive partial
order called “precedes,” denoted →. Lamport considers two cases. In one case,
the set of events corresponds to the set of points in Einstein’s four-dimensional
spacetime continuum and → is the “happens before” relation of special relativ-
ity: event A happens before event B if a pulse of light emitted at A may be
observed at B, and hence A may influence or even cause B. In the second case,
called the global-time model, events are totally ordered according to real-valued
tags, which are most naturally interpreted as timestamps from a global clock.
An operation on an object can thus be regarded as an interval of time.

Lamport defines several correctness conditions for read-write registers, i.e.,
safe, regular, and atomic. These definitions are grounded in the global-time
model, in that they refer to “overlap” among operation. For example, a read
operation on a safe register may return any value if the read operation overlaps
(i.e., is concurrent with) a write. In principle, this definition could be generalized
to the relativistic model; such a generalization is not stated explicitly in [16].

Herlihy and Wing’s linearizability property generalizes Lamport’s notion of
the atomic register to arbitrary typed shared objects [14]. Linearizability is a
local property, meaning that an execution involving a collection of objects is lin-
earizable if and only if for each object the “sub-execution” of only that object is
linearizable. The technique proposed for proving linearizability assumes that the
states of the underlying objects can be observed simultaneously, i.e., by defining
an abstraction function that maps the joint state of the underlying objects to a
set of possible states of the abstract type. Alternatively, linearizability can be
proved by showing that each operation takes effect at some linearization point
(see, e.g., [10,11]), which is tantamount to the assumption of a global clock.

Strong linearizability is a specialized form of linearizability that simplifies the
analysis of randomized algorithms [11]. Informally, strong linearizability ensures
that linearization points are determined at runtime whereas linearizability only
requires that such points can be found after an execution is observed. Strong
linearizability is a local property, similar to linearizability.

Causal consistency is another commonlyproposed correctness condition [2,9,19].
It states that operationsmust appear to take effect in some total order that extends
a particular “causally precedes” relation. Specifically, two operations are causally
ordered if they are executed by the same processor, or if one reads a valuewritten by
the other, or by way of a transitive relationship involving a third operation. In fact
(see Section 4), an execution can be causally consistent even when operations ap-
pear to take effect in a total order that disagrees with the “happens before” partial
order of relativity, and hence causal consistency is not a local property. As a result,
compositions of causally consistent objects require additional synchronization to
preserve causal consistency. In practice this is achieved using dependency tracking
mechanisms, which increase latency and limit scalability when the number of de-
pendencies is large [4,19]. The overhead is especially high in systems that track all
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potential causal dependencies represented by the “happens before” relation of spe-
cial relativity.Alternatively, a systemmay track only a subset of such dependencies
that are declared explicitly by applications. The drawback of this approach is that
causal relationships among interactions of different users are not always known to
an application.

Eventual consistency is a popular correctness property for key-value storage
systems [7,21,22]. Informally, a system is eventually consistent if clients agree on
the latest value of an object if, for a sufficient length of time, there are no updates
to the object and no failures. Eventual consistency is a local property and can be
formalized without reference to global clocks [6,23], but it is not suitable for all
applications because it allows clients to observe arbitrarily stale or out-of-order
data. In contrast to strongly consistent systems, such as conventional relational
databases, eventually consistent storage systems can remain available for both
reading and updating even in the presence of network partitions [5,20].

3 Model

We consider a distributed message passing model with a fixed number N of
processors denoted P = {p1, p2, ..., pN}. Processors may fail by crashing perma-
nently and the message channels between them may drop and reorder messages.
The system is relativistic in the sense that processors may be in motion at high
speeds relative to one another. As a result, relativistic effects such as time dila-
tion and length contraction may be observed as stipulated by Einstein’s theory
of relativity [8]. This implies that processors cannot in general agree on a global
clock, on the order in which events occur globally, or on whether two events
occurred simultaneously.

An execution is modeled as a history H = (E,<E) where E is a finite set
of events and <E is an irreflexive partial order over E. Events are points in
Einstein’s four-dimensional spacetime and represent primitive actions such as
sending a message, receiving a message, or performing some local computation.
The partial order <E is the “happens before” relation of relativity, as in Lam-
port’s general model [16,17]. That is, e1 <E e2 means that it is possible for a
hypothetical pulse of light originating at event e1 to reach event e2. The light
cone of event e1 is the set of events in H that may be influenced by e1, namely
{e2 ∈ E | e1 <E e2}. For example, a message receive event is always in the light
cone of the corresponding message send event. We refer to H as a classic history
in the special case when <E is a total order. Informally, H is classic when each
pair of events occurs sufficiently close in space or far apart in time so that one
event in the pair is in the light cone of the other.

Although the events occurring in a history H = (E,<E) are in general only
partially ordered, a particular observer perceives them as occurring in some
total order in terms of local time [8]. In this context, “perceives” means that
the local time at which an event occurs is calculated by taking into account the
propagation time of light from the position of the event to the observer, rather
than merely the time when such light might reach the observer. E.g., a human
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observer on Earth who sees a solar flare eruption on the surface of the sun at
local time t perceives this eruption as occurring roughly at local time t less eight
minutes. Local time is defined within a specific frame of reference [8], which is
a coordinate system that captures the observer’s motion (i.e., velocity, rotation)
in space.

In this paper, we focus specifically on distributed systems that simulate shared
objects, such as key-value pairs, using a message passing protocol. We model
such objects similarly to Herlihy and Wing [14]. Processors interact with objects
by executing operations that read and modify the state of exactly one object,
and produce a return value. A processor initiates an operation by executing a
single event, usually sending a message, called an invocation. The operation is
terminated when the same processor executes another event, usually receiving a
message, called a response. An invocation of operation op by processor p on object
X is denoted (In, p,X, op). A response of this operation with return value ret is
denoted (Re, p,X, ret). A response is matching with respect to an invocation if
both refer to the same processor and object. An operation execution (or op-ex)
comprises an invocation and its matching response, if it exists. For any history
H = (E,<E), an op-ex ox is pending if it lacks a matching response, and is
complete otherwise. If ox is complete, then its invocation precedes its matching
response in the happens before partial order <E . We denote by compl(H) the
subsequence of H comprising the events of complete op-ex’s in H .

Given histories H = (E,<E) and H ′ = (E′, <E′), we say that H is a sub-
history of H ′, denoted H ⊆ H ′, if E ⊆ E′ and <E⊆<E′ . Given history H and
object X , we denote by H |X the subhistory of H comprising the events in E
applied to X and the corresponding subset of <E . For processor p, we denote by
H |p the subhistory comprising events applied at processor p and the correspond-
ing subset of <E . Two histories H and H ′ are equivalent if for every processor p,
H |p = H ′|p. We assume that every history H is well-formed : for every processor
p, if H |p is non-empty, then the events in H |p are totally ordered and form an
alternating sequence of invocations and responses, starting with an invocation.

For any given history H = (E,<E), Lamport [16] defines two temporal rela-
tions over pairs of operation executions, ox1 and ox2 in H : ox1 −→H ox2 denotes
that ox1 is complete and its response happens before the invocation of ox2; and
ox1 ���H ox2 denotes that the invocation of ox1 happens before some event of
ox2. If ox1 −→H ox2 holds then ox1 ���H ox2 holds as well, but the converse is
not true. Relation −→H is an irreflexive partial order, but ���H is not a partial
order as it lacks transitivity. We say that H is sequential if every pair of distinct
op-ex’s is related by −→H .

The correct behavior of an object in a sequential history can be captured
succinctly as a type τ = (S, sinit,O,R, δ) where S is the set of states, sinit ∈ S
is the initial state, O is a set of operation types, R is the set of responses, and
δ : S × O → S × R is a (one-to-many) state transition mapping. Specifically,
if a processor applies an operation of type ot to an object of type τ that is in
state s, then the object may return a response r and change its state to s′ if
and only if (s′, r) ∈ δ(s, ot). For a sequential history H , we say that an object
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X conforms to its type τ = (S, sinit,O,R, δ) in H if H |X is consistent with
some sequence of transitions of δ starting from state sinit, in the following sense:
letting oti and reti denote the operation type and response of the i’th operation
execution on X in H |X (according to the order −→H) and letting k = |H |X |,
there exists a sequence 〈s0, s1, s2, ..., sk〉 of states in S such that s0 = sinit, and
(si, reti) ∈ δ(si−1, oti) holds for all i ≤ k. We say that H is legal if for every
object X accessed in H , X conforms to its type in H .

4 Defining Relativistic Linearizability

Our goal is to devise a correctness property for shared objects that is general
enough to encompass relativistic distributed systems, and yet retains the prin-
cipal advantages of linearizability—the illusion that operation executions take
effect instantaneously, and the locality property. We present several candidate
definitions of relativistic linearizability that refer to the “happens before” tem-
poral relation described in Section 3, but do not rely on the existence of a global
clock. We establish precise relationships between these candidate definitions and
also prove that some (but not all) of them achieve locality.

Causality-based correctness properties for shared objects have been previously
considered (see Section 2). These definitions are suitable for a relativistic envi-
ronment and do not require a global clock. However, it is well known that causal
consistency lacks the locality property of linearizability. As an example, Figure 1
illustrates causal consistency in an execution involving two processors, p and q,
interacting with two objects, X and Y . Both objects have integer-valued states
initialized to 0. Short solid arrows indicate the responses of reads, whereas long
solid arrows denote the “causally precedes” partial order [2]. The op-ex’s ap-
plied to X are by themselves causally consistent because they can be regarded
as taking effect in the following order: q.read(X), p.write(X , 1), p.read(X , 1).
An analogous comment holds for Y . However, it is easily seen that the entire ex-
ecution is not causally consistent—there is no total order over the op-ex’s that
extends the “causally precedes” relation and in which every read returns the
value assigned by the last write. (This example is similar to Theorem 2.)

As we show in the remainder of the paper, locality is in fact attainable in cor-
rectness properties based upon causality. In other words, the absence of locality

p.write(X, 1) p.read(X) 1 

q.write(Y, 1) q.read(X) 0 q.read(Y) 1 

p.read(Y) 0

q

pp

q

(X( )XX

d(Y)Y

Fig. 1. Example of an execution in which causal consistency is not local
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in Figure 1 is a side-effect of how causality is used in the definition of causal
consistency, rather than a fundamental weakness of causality itself. A hint of the
problem is the absence of causal relationships between p’s operations in the top
half of Figure 1 and q’s operations in the bottom half. By contrast, the partial
order used to define linearizability is an interval order, which in this case would
guarantee that either p.write(X , 1) happens before q.read(X) or q.write(Y , 1)
happens before p.read(Y ). In the former case H |X is not linearizable, and in the
latter case H |Y is not linearizable, hence locality holds trivially.

The key insight underlying our definitions of relativistic linearizability is that
causality is most naturally interpreted as the “happens before” relation of rela-
tivity, which captures all possible dependencies among events. Accordingly, the
main technical challenge lying ahead is to decide how exactly this partial or-
der should be used to constrain the total order in which operation executions
must appear to take effect. Before continuing further, we first restate Herlihy
and Wing’s definition in the context of our relativistic model. Such a rephrasing
is necessary because Herlihy and Wing model operation executions explicitly as
intervals of time whose endpoints are totally ordered, and hence their definition
lacks an obvious counterpart in our relativistic model.

Definition 1. For any classic history H = (E,<E), we say that H is lineariz-
able if there exists a classic history H ′ = (E′, <E′) such that:

L1 H ⊆ H ′;
L2 there exists a set M of matching responses for a subset of operation execu-

tions that are pending in H such that E′ = E ∪M and <E′=<E ∪(E ×M)
(i.e., H ′ is obtained from H by “appending” the matching responses in M);

L3 compl(H ′) is equivalent to some legal sequential history S; and
L4 −→S extends −→H .

The sequential history S referred to by property L3 is called a linearization of H.

Definition 1 assumes that <E is a total order (since H is classic), and hence
the partial order −→H is an interval order over the time intervals corresponding
to operation executions, as in [14]. Since we adopt Lamport’s more general def-
inition of −→ rather than using interval orders explicitly, in our model one can
in principle obtain a definition of relativistic linearizability from Definition 1 by
simply removing the restriction that H is classic:

Definition 2 (R0-linearizability). For any history H = (E,<E), we say that
H is R0-linearizable if and only if it satisfies Definition 1 generalized to arbitrary
histories. The corresponding linearization S is called an R0-linearization of H.

Although Definition 2 is very natural and meets our goal of avoiding global
clocks, we found dealing with it difficult as it requires reasoning directly about
partially ordered events. Moreover, as we show later on in Theorem 2, R0-
linearizability lacks locality. As a result, we explore an alternative approach
in which an arbitrary history H is first reduced to a classic history.



368 S. Gilbert and W. Golab

Specifically, consider how H might be perceived by an observer in a particular
frame of reference where events are totally ordered in terms of local time. Such
a frame of reference can be described as a coordinate system with the observer
positioned at the origin, but for our purposes it is more convenient to reason
directly about events and local time. Thus, we model a frame of reference as a
total order over events that extends the “happens before” partial order:

Definition 3. For any history H = (E,<E), a total order <T over E is called
feasible with respect to H (or H-feasible for short) if and only if <E⊆<T . Fur-
thermore, HT denotes the classic history (E,<T ) and −→T denotes −→HT .

Lemma 1. For any history H = (E,<E), suppose that E contains events e1, e2
such that neither e1 <E e2 nor e2 <E e1. Then there exist H-feasible total orders
<T and <T ′ such that e1 <T e2 and e2 <T ′ e1.

Note that Definition 3 is more general than necessary to accommodate all
possible frames of reference in special relativity. That is, for every history H and
every frame of reference F there exists a corresponding H-feasible total order
<T , meaning that events in F are ordered in terms of local time identically to <T .
However, not every H-feasible <T corresponds to a frame of reference. Consider
for example the hypothetical scenario of a train passing through a station, where
an observer standing on the station platform perceives the train getting struck by
three lightning bolts simultaneously: one at the front of the train (event A), one
in the middle of the train (event B), and one at the rear of the train (event C). A
passenger who is stationary with respect to the train (i.e., on the train) instead
perceives A occurring first, then B, then C, and a passenger on a different train
passing the station in the opposite direction perceives C first, then B, then A. In
Einstein’s theory of special relativity, which considers non-accelerating frames of
reference and ignores gravitational effects, there is no frame of reference in which
an observer perceives B occurring before both A and C as that would require the
“plane of simultaneity” to intersect twice in spacetime with the line along which
A, B and C are positioned. In contrast, such a total order (e.g., B then A then
C) is feasible according to Definition 3.

We now present our candidate definitions of relativistic linearizability, called
R1, R2 and R3. Loosely speaking (i.e., ignoring the technicality discussed in
the previous paragraph), R1 states that H appears linearizable in some frame
of reference, R2 states that H appears linearizable in every frame of reference,
and R3 states that H is not only linearizable in every frame of reference but all
observers furthermore agree on a common linearization.

Definition 4 (R1-linearizability). For any history H = (E,<E), we say that
H is R1-linearizable if and only if there exists an H-feasible total order <T such
that the history HT = (E,<T ) is linearizable. Any linearization of HT is called
an R1-linearization of H.

Definition 5 (R2-linearizability). For any history H = (E,<E), we say that
H is R2-linearizable if and only if for every H-feasible total order <T , the history
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HT = (E,<T ) is linearizable. Any linearization S of any such HT is called an
R2-linearization of H.

Definition 6 (R3-linearizability). For any history H = (E,<E), we say that
H is R3-linearizable if and only if there exists an R1-linearization S of H such
that for every H-feasible total order <T , the history HT = (E,<T ) is lineariz-
able, and moreover S is a linearization of HT . Any such history S is called an
R3-linearization of H.

The properties R0-R3 form a hierarchy, as stated in Theorem 1.

Theorem 1. For any history H = (E,<E), if H is R3-linearizable then H is
R2-linearizable; if H is R2-linearizable then H is R1-linearizable; and if H is
R1-linearizable then H is R0-linearizable.

Proof (sketch). The relationships among R1, R2 and R3 follow from Defini-
tions 4–6. Next, suppose that H is R1-linearizable and let <T be any H-feasible
total order. Since −→T extends −→H it follows that H is also R0-linearizable.

Next, in Theorems 2–4 we separate R0 and R1 against R2 and against R3 in
terms of locality.

Theorem 2. R0-linearizability and R1-linearizability are not local properties.

Proof (sketch). The analysis is analogous to the earlier argument that causal
consistency is not local, and also uses the history illustrated in Figure 1.

Theorem 3. R2-linearizability is a local property.

Proof. Consider an arbitrary history H = (E,<E) over some set of objects
X0, X1, . . . , Xk. Suppose that H |Xi is R2-linearizable for every object Xi. We
must show that for every H-feasible total order <T , the classic history HT =
(E,<T ) is linearizable. Since linearizability is local, it suffices to show thatHT |Xi

is linearizable for every object Xi. Choose an arbitrary i and consider the his-
tories H |Xi = (Ei, <Ei) and HT |Xi = (Ei, <Ti), where Ei is the subset of E
pertaining to Xi, <Ei is the subset of <E pertaining to Ei, and <Ti is the sub-
set of <T pertaining to Ei. Since <T is H-feasible, it follows that <E⊆<T and
hence <Ei⊆<Ti . Furthermore, since <Ti is a total order over Ei, it follows that
<Ti is H |Xi-feasible. Since we assume that H |Xi is R2-linearizable, this implies
that HT |Xi is linearizable, as wanted.

For R3-linearizability, we can proceed similarly to Theorem 2 by construct-
ing a history H = (E,<E) containing operation executions whose events are
not related at all by <E . However, to aid discussion later on in Section 5 we
apply a different proof technique that relies on relative motion between the
processors that execute operations. The scenario is presented in Figure 2 as a
two-dimensional Minkowski diagram where the horizontal axis represents time
and the vertical axis represents one dimension of space. The thinner dashed lines
indicate hypothetical rays of light, which according to special relativity follow
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p.write(X, 1)
q.read(X) 0

r.read(Y) 0

time

rea

ad(

q.r

r.rea

Fig. 2. Example of an execution in which R3-linearizability is not local

straight paths in spacetime and are shown at a 45◦ angle from the horizontal
axis. The thicker solid lines with round endpoints indicate operation executions.
The partial order <E can be interpreted as follows: if event e1 appears to the
left of point e2 in the diagram, and the hypothetical line from e1 to e2 is angled
less than 45◦ from the horizontal axis (i.e., e2 is in the light cone of e1), then
e1 <E e2.

Theorem 4. R3-linearizability is not a local property.

Proof. Consider the history H = (E,<E) illustrated in Figure 2, where X and
Y are integer-valued read/write register objects initialized to 0. Let oxp, oxq ,
and oxr denote p’s, q’s and r’s operation executions. Let Ii and Ri denote the
invocation and response of oxi for i ∈ {p, q, r}.

Since Ip <E Rq and Iq <E Rp, it follows that H |X has exactly one R3-
linearization SX in which oxq −→SX oxp. And since there is only one op-ex on Y
inH ,H |Y is trivially R3-linearizable. We will show thatH is not R3-linearizable.
Suppose otherwise. Let S be an R3-linearization of H . Since SX is the only R3-
linearization of H |X , it follows that oxq −→S oxp. Next, consider oxp and oxr .
Since Rp is not related to Ir in <E , there exists an H-feasible total order <T ′

such that Rp <T ′ Ir, hence oxp −→S oxr . Finally, consider oxr and oxq. Since
Rr is not related to Iq in <E , there exists an H-feasible total order <T ′′ such
that Rr <T ′′ Iq, hence oxr −→S oxq. Thus, oxq −→S oxp, oxp −→S oxr , and
oxr −→S oxq , which contradicts −→S being irreflexive and transitive.

5 Proof Techniques

Proving that a history satisfies one of our interpretations R1-R3 of relativistic
linearizability amounts to reasoning about conventional linearizability in one or
more frames of reference. R1 is the easiest property to prove in that it suffices
to fix one frame of reference, e.g., where one of the processors is stationary,
and to reason about the partial order of operations executions in that frame of
reference. At the same time, R1 lacks locality (see Theorem 2). R2 is superior
in that regard, but requires reasoning about all possible frames of reference.

To bridge the gap between R1 and R2, we characterize in Definitions 7–
10 a condition under which R1 implies R2 (see Theorem 5). Informally, the
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condition (Definition 10) requires that the order of operation executions in an
R1-linearization S of a history H reflects the direction of the ���H relation (see
Definitions 7 and 8), or else if two operations are not related by ���H then they
and any other operation executions positioned between them in S must commute
(Definition 9). This ensures that for anyH-feasible total order <T a linearization
of HT can be obtained by permuting groups of consecutive operations in S.

Definition 7. For any history H = (E,<E), and any distinct operation execu-
tions ox, ox′ in H, we say that ox and ox′ are:

– strongly connected in H if ox ���H ox′ and ox′ ���H ox
– weakly connected in H if either ox ���H ox′ or ox′ ���H ox (but not both)
– connected in H if they are strongly or weakly connected in H
– disconnected in H if they are not connected in H

(Recall: ox ���H ox′ means the invoc. of ox happens before some event of ox′.)

Definition 8. A history H = (E,<E) is called connected if every pair of oper-
ation executions in H is connected. Otherwise, H is called disconnected.

Definition 9. For any shared object type τ = (S, sinit,O,R, δ), an operation
type ot ∈ O is called read-only if for every state s ∈ S, δ(s, ot) = (s, r) for some
response r. (I.e., executing ot always causes a trivial state transition.)

Definition 10. For any history H = (E,<E), an R1-linearization S of H is
called R2-conducive if for every pair of op-ex’s ox, ox′ the following hold:

1. if ox and ox′ are weakly connected and ox ���H ox′, then ox −→S ox′; and
2. if ox and ox′ are disconnected then both are executions of read-only operation

types, and all operation executions that appear between ox and ox′ in S are
also of read-only operation types.

Theorem 5. Let H = (E,<E) be any history and suppose that S is an R2-
conducive R1-linearization of H. Then H is R2-linearizable. Furthermore, if H
is connected then S itself is an R2-linearization of H.

Proof. Let <T be any H-feasible total order. First, we will show that HT =
(E,<T ) is linearizable, hence H is R2-linearizable. If S itself is a linearization
of HT then we are done, so suppose otherwise. Since S is an R1-linearization, it
is a legal sequential history, and so it follows that −→S does not extend −→T .
That is, S contains op-ex’s ox and ox′ such that ox −→S ox′ and ox′ −→T ox.
Case A: ox and ox′ are strongly connected. This contradicts ox′ −→T ox.
Case B: ox and ox′ are weakly connected. Then ox ���H ox′ or ox′ ���H ox but
not both. Since ox′ −→T ox it follows that ox′ ���H ox, and hence ox′ −→S ox
since S is R2-conducive. This contradicts ox −→S ox′.
Case C: ox and ox′ are disconnected. Since S is R2-conducive, this implies that
ox and ox′ both have read-only operation types, and similarly for any operation
executions ox1, ox2, ..., oxk that appear between ox and ox′ in S. Transform S to
S′ by permuting ox, ox1, ox2, ..., oxk, ox

′ so that they appear in any order that
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extends −→T . We will show that S′ is also an R1-linearization of H , hence by
applying the transformation repeatedly we can eliminate Case C entirely.

Note that the transformation from S to S′ may break the R2-conducive
property, particularly clause 1 of Definition 10 for one or more op-ex pairs in
ox, ox1, ox2, ..., oxk, ox

′. This is not a problem for two reasons. First, although
we use R2-conduciveness in Case B, we never return to this case for such a pair of
op-ex’s because the transformation arranges them in S′ consistently with −→T .
Second, the R2-linearization we are constructing need not itself be R2-conducive.

Since S′ is a permutation of S, it suffices to show that S′ is legal and that−→S′

extends −→H . Since S′ is obtained from S by permuting consecutive operation
executions of read-only types, S′ is legal because S is legal. Next, suppose for
contradiction that −→S′ does not extend −→H . That is, −→S′ orders two op-
ex’s differently than −→H . Since −→S extends −→H , it follows that these two
op-ex’s are in the subset ox, ox1, ox2, ..., oxk, ox

′, which are permuted in the
transformation from S to S′. This contradicts the fact that by construction S′

orders these operation executions consistently with −→T , hence with −→H .
Finally, we must show that if H is connected then S is an R2-linearization of

H . Following earlier parts of the proof we see that if H is connected then Case C
does not apply, whereas Cases A and B both lead to contradictions. Thus, S
itself must be a linearization of HT no matter how <T is chosen, as wanted.

Since R2 is a local property, when applying Theorem 5 to deduce R2 from R1
it suffices to consider each object in isolation. This result is captured as follows:

Corollary 1. Let H = (E,<E) be an R1-linearizable history over some set
of objects X1, X2, . . . , Xk. Suppose for each object Xi that H |Xi has an R2-
conducive R1-linearization. Then H is R2-linearizable.

Proof. By Theorem 5, each H |Xi is R2-linearizable, and so by Theorem 3 H is
R2-linearizable.

Similarly to Theorem 5, it is possible also to deduce R3 from R2 under special
conditions, as stated in Lemma 2 and Theorem 6.

Lemma 2. For any history H = (E,<E), if H is R3-linearizable then H is
connected.

Proof (sketch). If H is disconnected then two op-ex’s in H may linearize in
opposite orders in different frames of reference (Lemma 1), which precludes R3.

Theorem 6. Let H = (E,<E) be any history and suppose that S is an R2-
conducive R1-linearization of H. If H is connected then H is R3-linearizable.

Proof. If H is connected then it follows directly from Theorem 5 that S is an R2-
linearization of H . Furthermore, S is by definition R2-conducive. We will show
that S is also an R3-linearization of H , as wanted. Let <T be any H-feasible
total order and considerHT = (E,<T ). Suppose for contradiction that S is not a
linearization ofHT . Since S is an R1-linearization, it is a legal sequential history,
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and so it must be the case that −→S does not extend −→T . That is, S contains
operation executions ox and ox′ such that ox −→S ox′ and ox′ −→T ox. If ox
and ox′ are strongly or weakly connected then we derive a contradiction as in
Cases A and B in the proof of Theorem 5. Otherwise ox and ox′ are disconnected,
which contradicts H being connected.

In contrast to Theorem 5, Corollary 1 has no analog in the context of deducing
R3 from R1. That is, if H is R3-linearizable then one can show that for each
object Xi the history H |Xi has an R2-conducive R1-linearization, but in general
it is not possible to compose these R1-linearizations to form an R2-conducive R1-
linearization of H itself, which could be used to deduce that H is R3-linearizable
using Theorem 6.

Although Theorem 6 asserts that connectedness combined with the property
of being R2-conducive are sufficient to obtain R3 from R1, it does not promise
R3 locality. In cases where locality is needed, it can be achieved by defining the
relativistic counterpart of linearization points.

Definition 11. Let H = (E,<E) be a history. A linearization point for an
op-ex ox in H is an event e in spacetime (not necessarily in E) where: (i) the
invocation of ox happens before e; and (ii) if ox is complete, then e happens
before the repsonse of ox.

Theorem 7. Let H = (E,<E) be a history and let L be a set of linearization
points for the op-ex’s in H. Suppose that all the linearization points are distinct
and totally ordered by the happens before relation of relativity, and let −→L de-
note the corresponding total order on operation executions in H. Then H has an
R3-linearization S such that −→S⊆−→L if and only for each object Xi accessed
in H the subhistory H |Xi has an R3-linearization Si such that −→Si⊆−→L.

Proof. IfH has an R3-linearization S such that −→S⊆−→L, then for each object
Xi, Si = S|Xi is an R3-linearization of H |Xi; furthermore −→Si⊆−→S⊆−→L

by construction. Conversely, if for each objectXi the subhistoryH |Xi has an R3-
linearization Si such that −→Si⊆−→L, then the sequential histories Si can be
composed into an R3-linearization S ofH by ordering op-ex’s according to −→L.

Theorem 7 yields a recipe for constructing a restricted class of R3-linearizations
that provide locality. However, choosing linearization points in our relativistic
model is strictly harder than in Herlihy and Wing’s classic model because we
must ensure that they are totally ordered in the happens before relation of rela-
tivity. Thus the linearization points of all objects must be defined jointly, whereas
in conventional linearizability it suffices to define them for each object individu-
ally. In that sense linearization points themselves lack locality in our relativistic
model.

6 Discussion and Conclusions

Our results demonstrate that linearizability can be defined precisely in a rela-
tivistic environment without sacrificing locality. In particular, we established in
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Theorem 3 that the R2-linearizability property is local. As such, we consider R2
the most natural definition of relativistic linearizability. Since R2 captures the
idea that the linearization order is relative, like time and distance, we propose
that R2 be referred to as Einstein-linearizability or E-linearizability for short.

Although we favor R2, properties R1 and R3 offer other advantages despite
lacking locality. R1 is strictly weaker than R2 in our hierarchy (see Theorems 1,
2 and 3), and therefore is easier to prove for a given history H . Specifically, to
prove R1 it suffices to consider only a single H-feasible total order, whereas R2
and R3 refer to all such orders. On the other hand, R3 is easier to reason about
than R2 in that all possible observers perceive a common linearization.

In Section 5, we described techniques for inferring R2 from R1 and R3 from R1
under special conditions. Our technique for inferring R2 from R1 requires that if
the events of two operation executions ox, ox′ are causally related in any way then
in a given frame of reference ox cannot be linearized before ox′ unless some event
of ox precedes some event of ox′ in the happens before partial order of relativity
(see clause 1 of Definition 10). This requirement holds even if the two op-ex’s are
concurrent in Herlihy and Wing’s sense with respect to local time. Furthermore,
disconnected operations must commute (see clause 2 of Definition 10). Deducing
R3 from R1 further requires that all operation executions be connected. R3
becomes local if we restrict our attention to linearizations constructed specifically
by defining linearization points (see Theorem 7).

Many known implementations of shared objects inmessage passing systems sat-
isfy R1-linearizability. These include key-value storage systems whose replication
protocols can be configured to use majority quorums, such as Amazon’s Dynamo
key-value store [7], the ABD simulation of read-write registers [3], as well as any
system that uses Paxos state machine replication [18]. Furthermore, these systems
satisfy both ourR2-conducive and connectedproperties, and so it is possible to rea-
son about their behavior by deducing R3 from R1 via Theorem 6. In fact, a Paxos-
replicated state machine can be used to obtain a fault-tolerant R3-linearizable im-
plementation of any shared object type. On the other hand, quorum-based replica-
tion in general does not guarantee connectedness since it does not require that read
quorums overlapwith each other. (Overlap is needed only to detect read-write and
write-write conflicts.) For example,with five-way replication read operations could
access only two replicas provided that writes access four replicas, and hence some
pairs of readsmay be disconnected. In that case R3-linearizability is not attainable
but Theorem 5 can be used to prove that such systems satisfy R2-linearizability
since clause 2 of Definition 10 accommodates disconnected reads.

Acknowledgements. Theorems 2 and 3 are joint work with Jonathan Z.Y. Hay
andY.C.Tay.Parts of these results have been presentedpreviously in their keynote
talk [13] and Hay’s final year project [12].
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Abstract. One of the main challenges in stating the correctness of transactional
memory (TM) systems is the need to provide guarantees on the system state ob-
served by live transactions, i.e., those that have not yet committed or aborted. A
TM correctness condition should be weak enough to allow flexibility in imple-
mentation, yet strong enough to disallow undesirable TM behavior, which can
lead to run-time errors in live transactions. The latter feature is formalized by ob-
servational refinement between TM implementations, stating that properties of a
program using a concrete TM implementation can be established by analyzing its
behavior with an abstract TM, serving as a specification of the concrete one.

We show that a variant of transactional memory specification (TMS), a TM
correctness condition, is equivalent to observational refinement for the common
programming model in which local variables are rolled back upon a transaction
abort and, hence, is the weakest acceptable condition for this case. This is chal-
lenging due to the nontrivial formulation of TMS, which allows different aborted
and live transactions to have different views of the system state. Our proof reveals
some natural, but subtle, assumptions on the TM required for the equivalence re-
sult.

1 Introduction

result := abort;
while (result == abort) {

result := atomic {
x := X.read();
y := Y.read();
z := 42 / (x - y);
Z.write(z); } }

Fig. 1. TM usage

Transactional memory (TM) eases the task of writing con-
current applications by letting the programmer designate
certain code blocks as atomic. TM allows developing a pro-
gram and reasoning about its correctness as if each atomic
block executes as a transaction—in one step and without
interleaving with others—even though in reality the blocks
can be executed concurrently. Figure 1 shows how atomic
blocks are used to manipulate several shared transactional
objects X, Y and Z, access to which is mediated by the TM.

The common approach to stating TM correctness is through a consistency condition
that restricts the possible TM executions. The main subtlety of formulating such a con-
dition is the need to provide guarantees on the state of transactional objects observed
by live transactions, i.e., those that have not yet committed or aborted. Because live
transactions can always be aborted, one might think it unnecessary to provide any guar-
antees for them, as done by common database consistency conditions [1]. However, in
the setting of transactional memory, this is often unsatisfactory. For example, in Fig-
ure 1 the programmer may rely on the fact that X �= Y, and, correspondingly, make sure
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that every committing transaction preserves this invariant. If we allow the transaction
to read values of X and Y violating the invariant (counting on it to abort later, due to
inconsistency), this will lead to the program faulting due to a division by zero.

The question of which TM consistency condition to use is far from settled, with sev-
eral candidates having been proposed [2–5]. An ideal condition should be weak enough
to allow flexibility in TM implementations, yet strong enough to satisfy the intuitive
expectations of the programmer and, in particular, to disallow undesirable behaviors
such as the one described above. Observational refinement [6, 7] allows formalizing
the programmer’s expectations and thereby evaluating consistency conditions system-
atically. Consider two TM implementations—a concrete one, such as an efficient TM,
and an abstract one, such as a TM executing every atomic block atomically. Informally,
the concrete TM observationally refines the abstract one for a given programming lan-
guage if every behavior a user can observe of any program P in this language using
the concrete TM can also be observed when P uses the abstract TM instead. This al-
lows the programmer to reason about the behavior of P (e.g., the preservation of the
invariant X �= Y) using the expected intuitive semantics formalized by the abstract TM;
the observational refinement relation implies that the conclusions (e.g., the safety of the
division in Figure 1) will carry over to the case when P uses the concrete TM.

In prior work [8] we showed that a variant of the opacity condition [2] is equiva-
lent to observational refinement for a particular programming language and, hence, is
the weakest acceptable consistency condition for this language. Roughly speaking, a
concrete TM implementation is in the opacity relation with an abstract one if for any
sequence of interactions with the concrete TM, dubbed a history, there exists a history
of the abstract TM where: (i) the actions of every separate thread are the same as in the
original history; and (ii) the order of non-overlapping transactions present in the original
history is preserved. However, our result considered a programming language in which
local variables modified by a transaction are not rolled back upon an abort. Although
this assumption holds in some situations (e.g., Scala STM [9]), it is non-standard and
most TM systems do not satisfy it. In this paper, we consider a variant of transactional
memory specification (TMS) [5], a condition weaker than opacity,1 and show that, under
some natural assumptions on the TM, it is equivalent to observational refinement for a
programming language in which local variables do get rolled back upon an abort.

This result is not just a straightforward adjustment of the one about opacity to a
more realistic setting: TMS weakens opacity in a nontrivial way, which makes reason-
ing about its relationship with observational refinement much more intricate. In more
detail, the key feature of opacity is that the behavior of all transactions in a history of
the concrete TM, including aborted and live ones, has to be justified by a single history
of the abstract TM. TMS relaxes this requirement by requiring only committed trans-
actions in the concrete history to be justified by a single abstract one obeying (i)–(ii)
above; every response obtained from the TM in an aborted or live transaction may be
justified by a separate abstract history. The constraints on the choice of the abstract
history are subtle: on one hand, somewhat counter-intuitively, TMS allows it to include
transactions that aborted in the concrete history, with their status changed to committed,
and exclude some that committed; on the other hand, this is subject to certain carefully
chosen constraints. The flexibility in the choice of the abstract history is meant to al-

1 The condition we present here is actually called TMS1 in [5, 10]. These papers also propose
another condition, TMS2, but it is stronger than opacity [10] and therefore not considered here.
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low the concrete TM implementation to perform as many optimizations as possible.
However, it is not straightforward to establish that this flexibility does not invalidate
observational refinement (and hence, the informal guarantees that programmers expect
from a TM) or that the TMS definition cannot be weakened further.

Our results ensure that this is indeed the case. Informally, if local variables are not
rolled back when transactions abort, threads can communicate to each other the obser-
vations they make inside aborted transactions about the state of transactional objects.
This requires the TM to provide a consistent view of this state across all transactions, as
formalized by the use of a single abstract history in opacity. However, if local variables
are rolled back upon an abort, no information can leak out of an uncommitted transac-
tion, possibly apart from the fact that the code in the transaction has faulted, stopping
the computation. To get observational refinement in this case we only need to make
sure that a fault in the transaction occurring with the concrete TM could be reproduced
with the abstract one. For this it is sufficient to require that the state of transactional ob-
jects seen by every live transaction can be justified by some abstract history; different
transactions can be justified by different histories.

Technically, we prove that TMS is sufficient for observational refinement by estab-
lishing a nontrivial property of the set of computations of a program, showing that a
live transaction cannot notice the changes in the committed/aborted status of transac-
tions concurrent with it that are allowed by TMS (Lemma 1, Section 6.1). Proving that
TMS is necessary for observational refinement is challenging as well, as this requires us
to devise multiple programs that can observe whether the subtle constraints governing
the change of transaction status in TMS are fulfilled by the TM. We have identified sev-
eral closure properties on the set of histories produced by the abstract TM required for
these results to hold. Although intuitive, these properties are not necessarily provided
by an arbitrary TM, and our results demonstrate their importance.

To concentrate on the core goal of this paper, the programming language we con-
sider does not allow explicit transaction aborts or transaction nesting and assumes a
static separation of transactional and non-transactional shared memory. Extending our
development to lift these restrictions is an interesting avenue for future work. Also, due
to space constraints, we defer some of the proofs to [11, Appendix D].

2 Programming Language Syntax

We consider a language where a program P = C1 ‖ · · · ‖ Cm is a parallel compo-
sition of threads Ct, t ∈ ThreadID = {1, . . . ,m}. Every thread t ∈ ThreadID has a
set of local variables LVart = {x, y, . . .} and threads share a set of global variables
GVar = {g, . . .}, all of type integer. We let Var = GVar *

⊎m
t=1 LVart be the set of

all program variables. Threads can also access a transactional memory, which manages
a fixed collection of transactional objects Obj = {o, . . .}, each with a set of methods
that threads can call. For simplicity, we assume that each method takes one integer pa-
rameter and returns an integer value, and that all objects have the same set of methods
Method = {f, . . .}. The syntax of commands C is standard: C can be of the forms

c | C;C | while (b) do C | if (b) then C else C | x := atomic{C} | x := o.f(e)

where b and e denote Boolean and integer expressions over local variables, left un-
specified. The syntax includes primitive commands c from a set PComm, sequential
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composition, conditionals, loops, atomic blocks and object method invocations. Prim-
itive commands execute atomically, and they include assignments to local and global
variables and a special fault command, which stops the execution of the program in
an error state. Thus, fault encodes illegal computations, such as division by zero.

An atomic block x := atomic{C} executes C as a transaction, which the TM can
commit or abort. The system’s decision is returned in the local variable x, which gets
assigned distinguished values committed or aborted. We do not allow programs in our
language to abort a transaction explicitly and forbid nested atomic blocks and, hence,
nested transactions. We also assume that a program can invoke methods on transac-
tional objects only inside atomic blocks and access global variables only outside them.
Local variables can be accessed in both cases; however, threads cannot access local
variables of other threads. Due to space constraints, we defer the formalisation of the
rules on variable accesses to [11, Appendix A]. When we later define the semantics of
our programming language, we mandate that, if a transaction is aborted, local variables
are rolled back to the values they had at its start, and hence, the values written to them
by the transaction cannot be observed by the following non-transactional code.

3 Model of Computations

To define the notion of observational refinement for our programming language and the
TMS consistency condition, we need a formal model for program computations. To this
end, we introduce traces, which are certain finite sequences of actions, each describing
a single computation step (we do not consider infinite computations).

Definition 1. Let ActionId be a set of action identifiers. A TM interface action ψ has
one of the following forms:

Request actions Matching response actions

(a, t, txbegin) (a, t,OK) | (a, t, aborted)
(a, t, txcommit) (a, t, committed) | (a, t, aborted)
(a, t, call o.f(n)) (a, t, ret(n′) o.f) | (a, t, aborted)

where a ∈ ActionId, t ∈ ThreadID, o ∈ Obj, f ∈ Method and n, n′ ∈ Z. A primitive
action χ has the form (a, t, c), where c ∈ PComm is a primitive command. We use ϕ to
range over actions of either type.

TM interface actions denote the control flow of a thread t crossing the boundary be-
tween the program and the TM: request actions correspond to the control being trans-
ferred from the former to the latter, and response actions, the other way around. A
txbegin action is generated upon entering an atomic block, and a txcommit action
when a transaction tries to commit upon exiting an atomic block. Actions call and ret
denote a call to and a return from an invocation of a method on a transactional object
and are annotated with the method parameter or return value. The TM may abort a
transaction at any point when it is in control; this is recorded by an aborted response
action.

A trace τ is a finite sequence of actions satisfying certain natural well-formedness
conditions (stated informally due to space constraints; see [11, Appendix B]): every
action in τ has a unique identifier; no action follows a fault; request and response
actions are properly matched; for every thread t, τ |t cannot contain a request action
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immediately followed by a primitive action; actions denoting the beginning and end of
transactions are properly matched; call and ret actions occur only inside transactions;
and commands in τ do not access local variables of other threads and do not access
global variables when inside a transaction. We denote the set of traces by Trace. A his-
tory is a trace containing only TM interface actions; we use H,S to range over histories.
We specify the behavior of a TM implementation by the set of possible interactions it
can have with programs: a transactional memory T is a set of histories that is prefix-
closed and closed under renaming action identifiers.

We denote irrelevant expressions by _ and use the following notation: τ(i) is the i-th
element of τ ; τ |t is the projection of τ onto actions of the form (_, t, _); |τ | is the length
of τ ; τ1τ2 is the concatenation of τ1 and τ2. We say that an action ϕ is in τ , denoted
by ϕ ∈ τ , if τ = _ϕ_. The empty sequence of actions is denoted ε.

A transaction T is a nonempty trace such that it contains actions by the same thread,
begins with a txbegin action and only its last action can be a committed or an aborted
action. A transaction T is: committed if it ends with a committed action, aborted if it
ends with aborted, commit-pending if it ends with txcommit, and live, in all other cases.
We refer to this as T ’s status. A transaction T is completed if it is either committed or
aborted, and visible if it contains a txcommit action. A transaction T is in a trace τ ,
written T ∈ τ , if τ |t = τ1Tτ2 for some t, τ1 and τ2, where either T is completed or
τ2 is empty. We denote the set of all transactions in τ by tx(τ) and use self-explanatory
notation for various subsets of transactions: committed(τ), aborted(τ), pending(τ),
live(τ), visible(τ). For ϕ ∈ τ , the transaction of ϕ in τ , denoted txof(ϕ, τ), is the
subsequence of τ comprised of all actions that are in the same transaction in τ as ϕ
(undefined if ϕ does not belong to a transaction).

4 Transactional Memory Specification (TMS)

In this section we define the TMS [5] correctness condition in our setting. TMS was
originally formulated using I/O automata; here we define it in a different style appro-
priate for our goals (we provide further comparison in Section 7). Since threads may
communicate through global variables outside of transactions, they may observe the
real-time order between non-overlapping transactions in a history. Therefore, this order
is a crucial building block in the TMS definition, as is common in consistency condi-
tions for shared-memory concurrency, such as opacity [2] or linearizability [12].

Definition 2. Let ψ = (_, t, _) and ψ′ = (_, t′, _) be two actions in a history H; ψ is
before ψ′ in the real-time order in H , denoted by ψ ≺H ψ′, if H = HψH2H

′
2ψ

′H3

and either (i) t = t′ or (ii) (_, t′, txbegin) ∈ H ′
2ψ

′ and either (_, t, committed) ∈ ψH2

or (_, t, aborted) ∈ ψH2. A transaction T is before an action ψ′ in the real-time order
in H , denoted by T ≺H ψ′, if ψ ≺H ψ′ for every ψ ∈ T . A transaction T is before a
transaction T ′ in the real-time order in H , denoted by T ≺H T ′, if T ≺H T ′(1).

The following opacity relation [2, 8] H ,op S ensures that S is a permutation of H
preserving the real-time order.

Definition 3. A history H is in the opacity relation with a history S, denoted by H ,op

S, if ∀ψ, ψ′. (ψ ∈ S ⇐⇒ ψ ∈ H) ∧ (ψ ≺H ψ′ =⇒ ψ ≺S ψ′).

Given a history H of program interactions with a concrete TM, TMS requires us
to justify the behavior of all committed transactions in H by a single history S of
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the abstract TM, and to justify each response action ψ inside a transaction in H by
an abstract history Sψ. As we show in this paper, the existence of such justifications
ensures that TMS implies observational refinement between the two TMs: the behavior
of a program during some transaction in the history H of the program’s interactions
with the concrete TM can be reproduced when the program interacts with the abstract
TM according to the history S or Sψ. Below we use this insight when explaining the
rationale for key TMS features.

The history Sψ used to justify a response action ψ includes the transaction of ψ and
a subset of transactions from H whose actions justify the response ψ. The following
notion of a possible past of a history H = H1ψ defines all sets of transactions from
H that can form Sψ. Note that, if a transaction selected by this definition is aborted
or commit-pending in H , its status is changed to committed when constructing Sψ,
as formalized later in Definition 5. Informally, the response ψ is given as if all the
transactions in its possible past have taken effect and all the others have not. We first
give the formal definition of a possible past, and then explain it using an example.

Definition 4. A history Hψ = H ′
1ψ is a possible past of a history H = H1ψ, where ψ

is a response action that it is not a committed or aborted action, if:
(i) H ′

1 is a subsequence of H1;
(ii) Hψ is comprised of the transaction of ψ and some of the visible transactions in

H: tx(Hψ) ⊆ {txof(ψ,H)} ∪ visible(H).
(iii) for every transaction T ∈ Hψ, out of all transactions preceding T in the real-time

order in H , the history Hψ includes exactly the committed ones:

∀T ∈ tx(Hψ). ∀T ′ ∈ tx(H). T ′ ≺H T =⇒
(T ′ ∈ tx(Hψ) ⇐⇒ T ′ ∈ committed(H)).

We denote the set of possible pasts of H by TMSpast(H).

We explain the definition using the history H of the trace shown in Figure 2; one
of its possible pasts Hψ consists of the transactions T1, T4 and T5. According to (ii),
the transaction of ψ (T5 in Figure 2) is always included into any possible past, and
live transactions are excluded: since they have not made an attempt to commit, they
should not have an effect on ψ. Out of the visible transactions in H , we are allowed
to select which ones to include (and, hence, treat as committed), subject to (iii): if we
include a transaction T then, out of all transactions preceding T in the real-time order
in H , we have to include exactly the committed ones. For example, since T4 and T5 are
included in Hψ, T1 must also be included and T3 must not. This condition is necessary
for TMS to imply observational refinement. Informally, T3 cannot be included into Hψ

because, in a program producing H , in between T3 aborting and T5 starting, thread
t2 could have communicated to thread t3 the fact that T3 has aborted, e.g., using a
global variable g, as illustrated in Figure 2. When executing ψ, the code in T5 may
thus expect that T3 did not take effect; hence, the result of ψ has to reflect this, so that
the code behavior is preserved when replacing the concrete TM by an abstract one in
observational refinement. This is a key idea used in our proof that TMS is necessary for
observational refinement (Section 6.2). In contrast to T3, we can include T4 into Hψ

even if it is aborted or commit-pending. Since our language does not allow accessing
global variables inside transactions, there is no way for the code in T5 to find out about
the status of T4 from thread t2, and hence, this code will not notice if the status of
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t1 T1 C
χ1

T2 C/A/CP/L
g′ == 1

t2 T3 A
g := 1 χ2

T4 C/A/CP
g′ := 1

t3
g == 1

T5 ψ

Fig. 2. Transactions T1, T4 and T5 form one possible past of the history H of the trace shown.
Allowed status of transactions in H is denoted as follows: committed – C, aborted – A, commit-
pending – CP, live – L. The transaction T5 executes only primitive actions after ψ in the trace.

T4 is changed to committed when replacing the concrete TM by an abstract one in
observational refinement. For similar reasons, we can exclude T2 from Hψ even if it
is committed. This idea is used in our proof that TMS is sufficient for observational
refinement (Section 6.1).

Before giving the definition of TMS, we introduce operations used to change the sta-
tus of transactions in a possible past of a history to committed. Suffix commit completion
below converts commit-pending transactions into committed; then completed possible
past defines a possible past with all transactions committed.

Definition 5. A history Hc is a suffix completion of a history Hψ if Hc = HψH ′,
every action in H ′ is either committed or aborted, and every transaction in Hc except
possibly that of ψ, is completed. It is a suffix commit completion of H if H ′ consists of
committed actions only. The sets of suffix completions and suffix commit completions
of H are denoted comp(H) and ccomp(H), respectively.

A history Hc
ψ is a completed possible past of a history H = H1ψ, if Hc

ψ is a suffix
commit completion of a history obtained from a possible past H ′

1ψ of H by replacing
all the aborted actions in H ′

1 by committed actions. The set of completed possible pasts
of H is denoted cTMSpast(H):

cTMSpast(H1ψ)= {Hc
ψ | ∃H ′

1.H
′
1ψ ∈TMSpast(H1ψ)∧Hc

ψ ∈ ccomp(com(H ′
1)ψ)},

where |com(H ′
1)| = |H ′

1| and

com(H ′
1)(i) = (if (H ′

1(i) = (a, t, aborted)) then (a, t, committed) else H ′
1(i)).

For example, one completed possible past of the history in Figure 2 consists of the
transactions T1, T4 and T5, with the status of the latter changed to committed if it was
previously aborted or commit-pending. Note that a history H has a suffix completion
only if H is of the form H = H1ψ where all the transactions in H1ψ, except possibly
that of ψ, are commit-pending or completed. Also, cTMSpast(H1ψ) �= ∅ only if ψ is a
response action.

The following definition of the TMS relation between TMs matches a history H
arising from a concrete TM with a similar history S of an abstract TM. As part of this
matching, we require that S preserves the real-time order of H . As in Definition 4(iii),
this requirement is necessary to ensure observational refinement between the TMs: pre-
serving the real-time order is necessary to preserve communication between threads
when replacing the concrete TM with the abstract one.
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Definition 6. A history H is in the TMS relation with TM T , denoted H ,tms T , if:
(i) ∃Hc ∈ comp(H |¬live), S ∈ T . Hc|com ,op S, where ·|¬live and ·|com are the pro-

jections to actions by transactions that are not live and by committed transactions,
respectively; and

(ii) for every response action ψ such that it is not a committed or aborted action and
H = H1ψH2, we have ∃Hc

ψ ∈ cTMSpast(H1ψ). ∃Sψ ∈ T . Hc
ψ ,op Sψ.

A TM TC is in the TMS relation with a TM TA, denoted by TC ,tms TA, if ∀H ∈
TC . H ,tms TA.

5 Observational Refinement

Our main result relates TMS to observational refinement, which we introduce in this
section. This requires defining the semantics of the programming language, i.e., the set
of traces that computations of programs produce. Due to space constraints, we defer its
formal definition to [11, Appendix C] and describe only its high-level structure. A state
of a program records the values of all its variables: s ∈ State = Var → Z. The seman-
tics of a program P = C1 ‖ · · · ‖ Cm is given by the set of traces [[P, T ]](s) ⊆ Trace
it produces when executed with a TM T from an initial state s. To define this set, we
first define the set of traces [[P ]](s) ⊆ Trace that a program can produce when executed
from s with the behavior of the TM unrestricted, i.e., considering all possible values
the TM can return to object method invocations and allowing transactions to commit
or abort arbitrarily. We then restrict to the set of traces produced by P when executed
with T by selecting those traces that interact with the TM in a way consistent with T :
[[P, T ]](s) = {τ | τ ∈ [[P ]](s) ∧ history(τ) ∈ T }, where history(·) projects to TM
interface actions. The definition of [[P ]](s) follows the intuitive semantics of our pro-
gramming language. In particular, it mandates that local variables be rolled back upon
a transaction abort and includes traces corresponding to incomplete program computa-
tions into [[P ]](s).

We can now define observations and observational refinement. Informally, given a
trace τ of a client program, we consider observable: (i) the sequence of actions per-
formed outside transactions in τ ; (ii) the per-thread sequence of actions in τ excluding
uncommitted transactions; and (iii) whether a τ ends with fault or not. Then observa-
tional refinement between a concrete TM TC and an abstract one TA states that every
observable behavior of a program P using TC can be reproduced when P uses TA.
Hence, any conclusion about its observable behavior that a programmer makes assum-
ing TA will carry over to TC . Since our notion of observations excludes actions per-
formed inside aborted or live transactions other than faulting, the programmer cannot
make any conclusions about them. But, crucially, the programmer can be sure that, if a
program is non-faulting under TA, it will stay so under TC . An action ϕ ∈ τ is transac-
tional if ϕ ∈ T for some T ∈ τ , and non-transactional otherwise. We denote by τ |trans
and τ |¬trans the projections of τ to transactional and non-transactional actions.

Definition 7. The thread-local observable behavior of thread t in a trace τ , denoted by
observablet(τ), is � if τ |t ends with a fault action, and (τ |t)|obs otherwise, where ·|obs
denotes the projection to non-transactional actions and actions by committed transac-
tions. A TM TC observationally refines a TM TA, denoted by TC � TA, if for every
program P , state s and trace τ ∈ [[P, TC ]](s) we have: (i) ∃τ ′ ∈ [[P, TA]](s). τ ′|¬trans =
τ |¬trans; and (ii) ∀t. ∃τ ′t ∈ [[P, TA]](s). observablet(τ ′t) = observablet(τ).
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6 Main Result

The main result of this paper is that the TMS relation is equivalent to observational
refinement for abstract TMs that enjoy certain natural closure properties. Their formu-
lation relies on the following notions.

A history Ha is an immediate abort extension of a history H if H is a subse-
quence of Ha, and whenever ψ ∈ Ha and ψ �∈ H we have: (i) ψ = (_, _, txbegin)
or ψ = (_, _, aborted), (ii) if ψ = (_, t, txbegin) then Ha = H ′

aψ (_, t, aborted) _,
where H ′

a ∈ {ε, _ (_, _, committed), _ (_, _, aborted)}, and (iii) if ψ = (_, _, aborted)
then there exists ψ′ �∈ H such that Ha = _ψ′ψ_. We denote by addab(H) the set of all
immediate abort extensions of H . Informally, a history Ha ∈ addab(H) is an exten-
sion of H with transactions that abort immediately after their invocation. Note that the
added transactions are placed either right before other transactions begin or right after
they complete.

A history Hc is a non-interleaved completion of a history H if H is a subse-
quence of Hc, pending(Hc) = ∅ and whenever ψ ∈ Hc and ψ �∈ H we have
Hc = _ (_, t, txcommit)ψ_ and either ψ = (_, t, committed) or ψ = (_, t, aborted).
We denote the set of non-interleaved completions of H by nicomp(H). Informally,
H ′ ∈ nicomp(H) completes each commit-pending transaction in H by adding a
committed or aborted action at its end.

The required closure properties are formulated as follows:
CLP1 A TM T is closed under immediate aborts if whenever H ∈ T and

aborted(H) = ∅, we also have H ′ ∈ T for any history H ′ ∈ addab(H).
CLP2 A TM T is closed under removing transaction responses if whenever

H1(_, t, aborted)H2 ∈ T or H1(_, t, committed)H2 ∈ T for H2 not containing
actions by t, we also have H1H2 ∈ T .

CLP3 A TM T is closed under removing live and aborted transactions if whenever
H ∈ T , we also have H ′ ∈ T for any history H ′ which is a subsequence of
H such that committed(H ′) = committed(H), pending(H ′) = pending(H),
live(H ′) ⊆ live(H) and aborted(H ′) ⊆ aborted(H).

CLP4 A TM T is closed under completing commit-pending transactions if whenever
H ∈ T , we have nicomp(H) ∩ T �= ∅.

These properties are satisfied by the expected TM specification that executes every
transaction atomically [8].

Theorem 1. Let TC and TA be transactional memories.
(i) If TA satisfies CLP1 and CLP2, then TC ,tms TA =⇒ TC � TA.

(ii) If TA satisfies CLP3 and CLP4, then TC � TA =⇒ TC ,tms TA.

6.1 Proof of Theorem 1(i) (Sufficiency)

Let us fix a program P = C1 ‖ . . . ‖ Cm and a state s. As we have noted before, the
main subtlety of TMS lies in justifying the behavior of a live transaction under TC by
a history of TA where the committed/aborted status of some transactions is changed, as
formalized by the use of cTMSpast in Definition 6(ii). Correspondingly, the most chal-
lenging part of the proof is to show that a trace from [[P, TC ]](s) with a fault inside a
live transaction can be transformed into a trace with the fault from [[P, TA]](s). The
following lemma describes the first and foremost step of this transformation: given a
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trace τ ∈ [[P ]](s) with a live transaction and a history Hc
ψ ∈ cTMSpast(history(τ)),

the lemma converts τ into another trace from [[P ]](s) that contains the same live trans-
action, but whose history of non-aborted transactions is Hc

ψ. In other words, this estab-
lishes that the live transaction cannot notice changes in the committed/aborted status of
other transactions done by cTMSpast. Let τ |¬abortedtx be the projection of τ excluding
aborted transactions.

Lemma 1 (Live transaction insensitivity). Let τ = τ1ψτ2 ∈ [[P ]](s) be such that ψ
is a response action by thread t0 that is not a committed or aborted action and τ2 is a
sequence of primitive actions by thread t0. For any Hc

ψ ∈ cTMSpast(history(τ)) there
exists τψ ∈ [[P ]](s) such that history(τψ)|¬abortedtx = Hc

ψ and τψ|t0 = τ |t0 .

Proof. We first show how to construct τψ and then prove that it satisfies the required
properties. We illustrate the idea of its construction using the trace τ in Figure 2. Let
history(τ) = H1ψ. Since Hc

ψ ∈ cTMSpast(H), by Definition 5 there exist histories
H ′

1, H ′′
1 , and Hcc such that

H ′
1ψ ∈ TMSpast(H1ψ) ∧ H ′′

1 = com(H ′
1) ∧ Hc

ψ = H ′′
1 ψH

cc ∈ ccomp(H ′′
1 ψ).

Recall that, for the τ in Figure 2, H ′
1ψ consists of the transactions T1, T4 and T5.

Then H ′′
1 is obtained from H ′

1 by changing the last action of T4 to committed if it was
aborted; Hc

ψ is obtained by completing T4 with a committed action if it was commit-
pending. The trickiness of the proof comes from the fact that just mirroring these trans-
formations on τ may not yield a trace of the program P : for example, if T4 aborted,
the code in thread t2 following T4 may rely on this fact, communicated to it by the TM
via a local variable. Fortunately, we show that it is possible to construct the required
trace by erasing certain suffixes of every thread and therefore getting rid of the actions
that could be sensitive to the changes of transaction status, such as those following T4.
This erasure has to be performed carefully, since threads can communicate via global
variables: for example, the value written by the assignment to g′ in the code following
T4 may later be read by t1, and, hence, when erasing the the former, the latter action
has to be erased as well. We now explain how to truncate τ consistently.

Let ψb be the last txbegin action in H ′
1ψ; then for some traces τb1 and τb2 we have

τ = τb1ψ
bτb2ψτ2. For the τ in Figure 2, ψb is the txbegin action of T4. Our idea is, for

every thread other than t0, to erase all its actions that follow the last of its transactions
included into H ′

1ψ or its last non-transactional action preceding ψb, whichever is later.
Formally, for every thread t, let τIt denote the prefix of τ |t that ends with the last TM
interface action of t in H ′

1ψ, or ε if no such action exists. For example, in Figure 2, τIt1
and τIt2 end with the last TM interface actions of T1 and T4, respectively. Similarly, let
τNt denote the prefix of τ |t that ends in the last non-transactional action of t in τb1 , or
ε if no such action exists. For example, in Figure 2, τNt1 and τNt2 end with χ1 and χ2,
respectively. Let τt0 = τ |t0 and for each t �= t0 let τt be τIt , if |τNt | < |τIt |, and τNt ,
otherwise. We then let the truncated trace τ ′ be the subsequence of τ such that τ ′|t = τt
for each t. Thus, for the τ in Figure 2, in the corresponding trace τ ′ the actions of t1 end
with χ1 and those of t2 with the last action of T4; note that this erases both operations
on g′. To construct τψ from τ ′, we mirror the transformations of H ′

1 into H ′′
1 and Hc

ψ.
Let τ ′′ be defined by |τ ′′| = |τ ′| and

τ ′′(i) = (if (τ ′(i) = (a, t, aborted) ∧ τ ′(i) ∈ H ′
1)) then (a, t, committed) else τ ′(i)).
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τ ψb ∗∗
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t

τN
t

(c) τt = τ I
t

Fig. 3. Cases in the proof of Lemma 1. ∗ all actions by t are transactional; ∗∗ all actions by t come
from a single transaction, started before or by ψb.

Then we let τψ = τ ′′Hcc.
We first prove that τψ |t0 = τ |t0 . Let T = txof(ψ,H1ψ); then by Definition 4(ii),

T ∈ H ′
1ψ. Hence, by Definition 4(iii) we have

∀T ′. T ′ ≺H′
1ψ

T ⇐⇒ T ′ ≺H1ψ T ∧ T ′ ∈ committed(H1ψ), (1)

so that (H ′
1ψ)|t0 does not contain aborted transactions and τ ′′|t0 = τ ′|t0 = τ |t0 . Be-

sides, Hcc|t0 = ε and, hence, τψ|t0 = τ ′′|t0 = τ |t0 .
We now sketch the proof that τψ ∈ [[P ]](s), appealing to the intuitive understanding

of the programming language semantics. To this end, we show that τ ′ and then τ ′′

belong to [[P ]](s). We start by analyzing how the trace τ |t is truncated to τt for every
thread t �= t0. Let us make a case split on the relative positions of τNt , τIt and ψb in
τ . There are three cases, shown in Figure 3. Either τt = τNt (a, thread t1 in Figure 2)
or τt = τIt (b, c). In the former case, ψb has to come after the end of τNt . In the latter
case, either ψb comes after the end of τIt (b) or is its last action or precedes the latter (c,
thread t2 in Figure 2).

By the choice of τNt , in (a) and (b) the fragment of τ in between the end of τNt andψb

can contain only those actions by t that are transactional (T2 in Figure 2). By the choice
of τIt and ψb, in (c) the fragment of τ in between ψb and the end of τIt cannot contain
a txbegin action by t; hence, by the choice of τNt it can contain only those actions by t
that are transactional. Furthermore, these have to come from a single transaction, started
either by ψb or before it (T4 in Figure 2). Finally, by the choice of ψb the actions of t0
following ψb are transactional and come from the transaction of ψ, also started either
by ψb or before it (T5 in Figure 2). Given this analysis, the transformation from τ to τ ′

can be viewed as a sequence of two: (i) erase all actions following ψb, except those in
some of transactions that were already ongoing at this time; (ii) erase some suffixes of
threads containing only transactional actions. Since transactional actions do not access
global variables, they are not affected by the actions of other threads. Furthermore, as
we noted in Section 5, [[P ]](s) includes incomplete program computations. This allows
us to conclude that τ ′ ∈ [[P ]](s).

We now show that τ ′′ is valid, again referring to cases (a-c). Let T = txof(ψb, H1ψ);
then T ∈ H ′

1ψ by the choice ofψb and by Definition 4(iii) we get (1). Hence, for threads
t falling into cases (a) or (b), τ ′|t does not contain aborted transactions that are also in
H ′

1ψ. For threads t falling into case (c), an aborted transaction by t included into H ′
1ψ

can only be the last one in τ ′|t. Finally, above we established that (H ′
1ψ)|t0 does not

contain aborted transactions. Hence, transactions in τ ′ whose status is changed from
aborted to committed when switching to τ ′′ do not have any actions following them
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in τ ′. Furthermore, [[P ]](s) allows committing or aborting transactions arbitrarily. This
allows us to conclude that τ ′′ ∈ [[P ]](s). For the same reason, we get τψ ∈ [[P ]](s).

Finally, we show that history(τψ)|¬abortedtx = Hc
ψ. It is sufficient to show that

history(τ ′′)|¬abortedtx = H ′′
1 ψ; since τψ = τ ′′Hcc and Hcc contains only committed

actions, this would imply

history(τψ)|¬abortedtx = history(τ ′′Hcc)|¬abortedtx =

history(τ ′′)|¬abortedtxH
cc = H ′′

1ψH
cc = Hc

ψ.

By the choice of τIt for t �= t0, every transaction in (H ′
1ψ)|t is also in τIt . Hence,

H ′
1ψ is a subsequence of history(τ ′). By the definition of τ ′′ and H ′′

1 , H ′′
1ψ is a subse-

quence of history(τ ′′). Then since H ′′
1ψ does not contain aborted transactions, H ′′

1ψ is
a subsequence of history(τ ′′)|¬abortedtx.

Thus, to prove history(τ ′′)|¬abortedtx = H ′′
1 ψ it remains to show that every non-

aborted transaction in history(τ ′′) is in H ′′
1ψ. Since the construction of τ ′′ from τ ′

changes the status of only those transactions that belong to H ′
1ψ, it is sufficient to

show that every non-aborted transaction in history(τ ′) is in H ′
1ψ. Here we only con-

sider the case when such a transaction is by a thread t �= t0 and τ ′|t = τNt �= ε; we
cover the other cases in [11, Appendix D]. Let χN

t be the last action in τNt and T =
txof(ψb, H1ψ) ∈ H ′

1ψ. Then by Definition 4(iii) we get (1). Since χN
t comes before

ψb in H1ψ, any transaction T ′ in τ ′|t is such that T ′ ≺H1ψ T , which together with (1)
implies the required. This concludes the proof that history(τ ′′)|¬abortedtx = H ′′

1 ψ. �	
We now give the other lemmas necessary for the proof. Definition 6 matches a his-

tory of TC with one of TA using the opacity relation, possibly after transforming the
former with cTMSpast. The following lemma is used to transform a trace of P ac-
cordingly. The lemma shows that, if we consider only traces where aborted transactions
abort immediately (i.e., are of the form (_, _, txbegin) (_, _, aborted)), then the opacity
relation implies observational refinement with respect to observing non-transactional
actions and thread-local trace projections. This result is a simple adjustment of the one
about the sufficiency of opacity for observational refinement to our setting [8, Theorem
16] (it was proved in [8] for a language where local variables are not rolled back upon a
transaction abort; this difference, however, does not matter if aborted transactions abort
immediately).

Lemma 2. Consider τ ∈ [[P ]](s) such that all the aborted transactions in τ abort
immediately. Let S be such that history(τ) ,op S. Then there exists τ ′ ∈ [[P ]](s) such
that history(τ ′) = S, τ |¬trans = τ ′|¬trans and ∀t. τ ′|t = τ |t.

Let τ |¬abortact be the trace obtained from τ by removing all actions inside aborted
transactions, so that every such transaction aborts immediately. We can benefit from
Lemma 2 because local variables are rolled back if a transaction aborts, and, hence,
applying ·|¬abortact to a trace preserves its validity.

Proposition 1. ∀τ. τ ∈ [[P ]](s) =⇒ τ |¬abortact ∈ [[P ]](s).

Finally, Definition 6 matches only histories of committed transactions, but the histo-
ries of the traces in Lemma 2 also contain aborted transactions. Fortunately, the follow-
ing lemma allows us to add empty aborted transactions into the abstract history while
preserving the opacity relation.
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Lemma 3. Let H be a history where all aborted transactions abort immediately and
S be such that H |¬abortedtx ,op S. There exists a history S′ ∈ addab(S) such that
H ,op S

′.

Definition 6(i), Proposition 1 and Lemmas 2 and 3 can be used to prove that the
TMS relation preserves non-transactional actions and thread-local observable behavior
of threads whose last action is not a fault.

Lemma 4. If TC ,tms TA and TA satisfies CLP1 and CLP2, then

∀τ ∈ [[P, TC ]](s). ∃τ ′ ∈ [[P, TA]](s). (τ ′|¬trans = τ |¬trans) ∧ (∀t. (τ ′|t)|obs = (τ |t)|obs).

Proof of Theorem 1(i). Given Lemma 4, we only need to establish the preservation
of faults inside transactions. Consider τ0 ∈ [[P, TC ]](s) such that τ0 = τ1ψτ2χ, where
χ = (_, t0, fault) is transactional and ψ is the last TM interface action by thread t0.
Then τ2|t0 consists of transactional actions and thus does not contain accesses to global
variables. Hence, τ = τ1ψ(τ2|t0)χ ∈ [[P, TC ]](s). By our assumption, TC ,tms TA.
Then there exists Hc

ψ ∈ cTMSpast(history(τ)) and S ∈ TA such that Hc
ψ ,op S. By

Lemma 1, for some trace τψ we have τψ ∈ [[P ]](s), history(τψ)|¬abortedtx = Hc
ψ and

τψ|t0 = τ |t0 . By Proposition 1, τψ|¬abortact ∈ [[P ]](s). Using Lemma 3, we get a history
S′ such that history(τψ |¬abortact) ,op S′ and S′ ∈ addab(S). Since S ∈ TA and TA is
closed under immediate aborts (CLP1), we get S′ ∈ TA. Hence, by Lemma 2, for some
τ ′ ∈ [[P, TA]](s) we have τ ′|t0 = τψ |t0 = τ |t0 = _χ, as required. �	

6.2 Proof Sketch for Theorem 1(ii) (Necessity)

Consider TC and TA such that TC � TA and TA satisfies the closure conditions stated in
the theorem. To show that for any H0 ∈ TC we have H0 ,tms TA, we have to establish
conditions (i) and (ii) from Definition 6. We sketch the more interesting case of (ii), in
which H0 = H1ψH2 = HH2 ∈ TC , where ψ is a response action by a thread t0 that is
not a committed or aborted action. We need to find Hc ∈ cTMSpast(H) and S ∈ TA
such that Hc ,op S.

To this end, we construct a program PH (as we explain further below) where every
thread t performs the sequence of transactions specified in H |t. The program monitors
certain properties of the TM behavior, e.g., checking that the return values obtained
from methods of transactional objects in committed transactions correspond to those
in H and that the real-time order between actions includes that in H . If these proper-
ties hold, thread t0 ends by executing the fault command. Let s be a state with all
variables set to distinguished values. We next construct a trace τ ∈ [[PH , TC ]](s) such
that history(τ) = H and t0 faults in τ . By Definition 7, there exists τ ′ ∈ [[PH , TA]](s)
such that t0 faults in τ ′. However, the program PH is constructed so that t0 can fault
in τ ′ only if the properties of the TM behaviour the program monitors hold, and thus
H is related to history(τ ′) in a certain way. This relationship allows us to construct
Hc ∈ cTMSpast(H) from H and S ∈ TA from history(τ ′) such that Hc ,op S.

In more detail, thread t0 in PH monitors the return status of every transaction and
the return values obtained inside the atomic blocks corresponding to transactions com-
mitted in H |t0 and the (live) transaction of ψ. If there is a mismatch with H |t0 , this is
recorded in a special local variable. At the end of the transaction of ψ, t0 checks the
variable and faults if the TM behavior matched H |t0 . This construction is motivated by
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the fact that faulting is the only observation Definition 7 allows us to make about the
behavior of the live transaction of ψ. Since the definition does not correlate actions by
threads t other than t0 between τ and τ ′, such threads monitor TM behavior differently:
if there is a mismatch with H |t, a thread t faults immediately. Since a trace can have
at most one fault and t0 faults in τ ′, this ensures that any committed transaction in τ ′

behaves as in H .
To check whether an execution of PH complies with the real-time order in H , for

each transaction in H , we introduce a global variable g, which is initially 0 and is set
to 1 by the thread executing the transaction right after the transaction completes, by
a command following the corresponding atomic block. Before starting a transaction,
each thread checks whether all transactions preceding this one in the real-time order
in H have finished by reading the corresponding g variables. Thread t0 records the
outcome in the special local variable checked at the end; all other threads fault upon
detecting a mismatch.

Let H ′ = history(τ ′). This construction of PH allows us to infer that: (i) the projec-
tion of H ′|t0 to committed transactions and txof(ψ,H ′) is equal to the corresponding
projection of H |t0 ; (ii) for all other threads t a similar relationship holds for the prefix of
H ′|t ending with the last transaction preceding txof(ψ,H ′) in the real-time order; (iii)
the real-time order in H ′ includes that in H . Transactions concurrent with txof(ψ,H ′)
in H ′ may behave differently from H . However, checks done by PH inside these trans-
actions ensure that, if such a transaction T is visible in H ′, then the return values inside
T match those in H . The checks on the global variables g done right before T also
ensure that all transactions preceding T in the real-time order in H commit or abort in
H ′ as prescribed by H . This relationship between H and H ′ allows us to establish the
requirements of Definition 6(ii). �	

7 Related Work

When presenting TMS [5], Doherty et al. discuss why it allows programmers to think
only of serial executions of their programs, in which the actions of a transaction ap-
pear consecutively. This discussion—corresponding to our sufficiency result—is infor-
mal, since the paper lacks a formal model for programs and their semantics. Most of
it explains how Definition 6(i) ensures the correctness of committed transactions. The
discussion of the most challenging case of live transactions—corresponding to Def-
inition 6(ii) and our Lemma 1—is one paragraph long. It only roughly sketches the
construction of a trace with an abstract history allowed by TMS and does not give any
reasoning for why this trace is a valid one, but only claims that constraints in Defi-
nition 6(ii) ensure this. This reasoning is very delicate, as indicated by our proof of
Lemma 1, which carefully selects which actions to erase when transforming the trace.
Moreover, Doherty et al. do not try to argue that TMS is the weakest condition possible,
as we established by our necessity result.

Another TM consistency condition, weaker than opacity but incomparable to TMS,
is virtual world consistency (VWC) [3]. Like TMS, VWC allows every operation in
a live or aborted transaction to be justified by a separate abstract history. However,
it places different constraints on the choice of abstract histories, which do not take
into account the real-time order between actions. Because of this, VWC does not im-
ply observational refinement for our programming language: taking into account the
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real-time order is necessary when threads can communicate via global variables out-
side transactions.

Our earlier paper [8] laid the groundwork for relating TM consistency and observa-
tional refinement, and it includes a detailed comparison with related work on opacity
and observational refinement. The present paper considers a much more challenging
case of a language where local variables are rolled back upon an abort. To handle this
case, we developed new techniques, such as establishing the live transaction insensitiv-
ity property (Lemma 1) to prove sufficiency and proposing monitor programs for the
nontrivial constraints used in the TMS definition to prove necessity. Similarly to [8] and
other papers using observational refinement to study consistency conditions [13, 14],
we reformulate TMS so that it is not restricted to a particular abstract TM TA. This
generality, not allowed by the original TMS definition, has two benefits. First, our re-
formulation can be used to compare two TM implementations, e.g., an optimized and
an unoptimized one. Second, dealing with the general definition forces us to explic-
itly state the closure properties required from the abstract TM, rather than having them
follow implicitly from its atomic behavior.

Acknowledgements. We thank Mohsen Lesani, Victor Luchangco and the anonymous
reviewers for comments that helped us improve the paper. This work was supported by
EU FP7 project ADVENT (308830).
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Abstract. Transactional memory (TM) algorithms are subtle and the
TM correctness conditions are intricate. Decomposition of the correct-
ness condition can bring modularity to TM algorithm design and veri-
fication. We present a decomposition of opacity called markability as a
conjunction of separate intuitive invariants. We prove the equivalence of
opacity and markability. The proofs of markability of TM algorithms can
be aided by and mirror the algorithm design intuitions. As an example,
we prove the markability and hence opacity of the TL2 algorithm. In
addition, based on one of the invariants, we present lower bound results
for the time complexity of TM algorithms.

1 Introduction

A transactional memory (TM) [24, 36] is a concurrent object that encapsulates
and manages accesses to an array of memory locations. The clients of a TM are
transactions, sequences of accesses to the encapsulated locations. A transactional
processing system is the composition of a TM and a set of client transactions.
While the clients issue the invocation events, the TM issues the response events.
Researchers have proposed several TM correctness conditions including opacity
[20], VWC [25], TMS1 and TMS2 [13], and DU-opacity [2] that characterize the
required safety conditions on TM response events.

Considering strength of the promised safety properties, designing a correct
TM is an art. TM algorithms whether in software [9, 11, 12, 15, 23, 35], hard-
ware [1, 7, 22, 37] or hybrid [8, 10, 26, 31, 32] are subtle and prone to bugs [30].
Thus, verification of TM algorithms by model checking [4–6,16–18,33], invariant
generation [14] and theorem proving [28] has been a topic of recent attention.
Verifying a complicated monolithic condition for a realistic specification of a
TM algorithm can be a formidable problem. Can the correctness condition of
TM be stated as a conjunction of simpler intuitive conditions? In other words,
is there an meaningful decomposition of the correctness condition? What are
the separate invariants that the TM designers should maintain? Decomposition
of the correctness condition enhances the understanding of the correctness and
brings modularity to the algorithm design. It showcases different aspects of cor-
rectness and helps designers concentrate on maintaining one aspect at a time.
More importantly, separation has obvious benefits of modularity and scalabil-
ity for verification. Furthermore, it supports studying the time complexity and
performance of TM algorithms.
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We decompose opacity to separate intuitive invariants. We define that an
execution history is markable if there is a specific ordering relation on the set
of transactions and read operations called marking such that three invariants
are satisfied. We prove that markability is required and sufficient for opacity.
At a high level, the first invariant called write-observation requires that each
read operation returns the most current value. The second invariant called read-
preservation requires that the read location is not overwritten in the interval
that the location is read and the transaction takes effect. The third invariant
is the well-known real-time-preservation property. We show that the marking
relation for the TL2 algorithm [11] can be defined using the execution order and
the linearization order of method calls on the used synchronization objects and
proofs of markability can be aided by and mirror the algorithm design intuitions.
We prove markability and hence opacity of TL2. Finally, inspired by the read-
preservation invariant, we present lower bound results for the time complexity
of a class of TM algorithms.

In the following sections, we first introduce the notion of markability and
present the marking of TL2 as an example. We then formally define markability,
and present the marking theorem that states the equivalence of opacity and
markability. Next, we formally state the marking relation of TL2 and state that
TL2 is markable and hence opaque. Finally, we present our lower bound results
for the time complexity of TM algorithms.

2 Write-observation and Read-preservation

In this section, we explain the main ideas behind markability by focusing on
complete histories with only global reads and writes. A history is complete if
every transaction in it is either aborted or committed. A read R by a transaction
T is global if T has no write to the same location before R. A write W by a
transaction T is global if T has no write to the same location after W .

A transaction history is markable if and only if there exists a marking of
it that is write-observant, read-preserving, and real-time-preserving. We explain
each property in turn.

A marking of a transaction history is a relation on the union of the transactions
and the read operations in the history. We can think of the marking as the union
of a collection of orders: The effect order : The effect order is a total order of
the transactions. The access orders : Consider an unaborted read operation R
on a location i. Let us refer to the committed transactions that have write
operation(s) to location i as writers of i. For each such R, the access order is
an antisymmetric relation that orders R and every writer of i. The effect order
represents the order in which the transactions appear to take effect. The access
order of a read operation R from a location i represents where the access to i
by R has happened between the accesses to i by the writers of i.

Note that marking not only recognizes the points where transactions take ef-
fect but also the points where reads take place. The effect point of a transaction
captures the point where the whole transaction takes effect. But a transaction
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Fig. 1. Illustrations of Write-observation and Read-preservation

is split into multiple operations. Particularly, read operations observe values be-
fore the commit operation is even invoked. Any value that the TM algorithm
returns in response to a read invocation should be justified at the point where the
transaction takes effect. There is a point where each writer transaction writes the
new value to the underlying shared objects. Every read operation reads the value
that it returns at a certain point between the write points of the writer trans-
actions. The access order captures this design decision. Having the access order
in addition to the effect order makes it possible to decompose the consistency
condition into two orthogonal invariants. Particularly, the read-preservation in-
variant makes sure that the read value is not overwritten in the interval between
the point where a read happens and the point where the transaction takes effect.
Next, we will explain write-observation and read-preservation invariants in turn.

At a high level, write-observation means that each read operation should read
the most current value. Let us explain this idea in more detail. Consider an
unaborted read operation R from a location i. Let pre-accessors be the writers
of i that come before R in the access order for R. We can use the effect order to
determine the last pre-accessor that is, the pre-accessor that is greatest in the
effect order. Write-observation requires that the value that R reads be the same
as the value written by the last pre-accessor.

Figure 1 illustrates the write-observation and read-preservation invariants.
Each sub-figure shows a marking relation ,. In every sub-figure, the effect order
is T1 , T2 , T3 , T4 and the transaction T3 performs the read operation
R. In Figure 1(a), T1 and T 4 are writers of i and the access order for R is
{T1 , R,R , T4}. T1 is the last pre-accessor for R. Thus, by write-observation,
R is expected to return the value that T1 writes to i.

At a high level, read-preservation means that the location read by a read
operation is not overwritten between the points that the read takes place and
the transaction takes effect. Let us explain this idea in more detail. Consider an
unaborted read operation R by a transaction T from a location i. Intuitively,
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read-preservation requires that no writer of i comes between R and T in the
marking relation. More precisely, read-preservation requires that there is no
writer T ′ of i that accesses i after R and takes effect before T and there is
no writer T ′ of i that takes effect after T and accesses i before R. (Note that de-
pending on whether a transaction takes effect earlier or later in its lifetime, one of
these two conditions is usually trivially true.) In other words, read-preservation
requires the writers to both access i and take effect on the same side of R and
T . More precisely, if a writer T ′ accesses i before R (T ′ is marked before R in
the access order), then T ′ takes effect before T (T ′ is marked before T in the
effect order) too. Similarly, read-preservation requires that if T ′ accesses i after
R, it takes effect after T too.

The marking relation in Figure 1(a) satisfies read-preservation as there is no
writer between R and T3. The transaction T1 accesses i before R and takes effect
before T3 too. The transaction T4 accesses i after R and takes effect after T3 too.
Figures 1(b) and 1(c) show markings that are not read-preserving. In Figure 1(b),
T1, T2 and T 4 are writers of i and the access order is {T1 , R,R , T2, R , T4}.
The transaction T2 is between R and T3. Therefore, the marking is not read-
preserving. In Figure 1(c), T1 and T 4 are writers of i and the access order is
{T1 , R, T4 , R}. The transaction T 4 is between T3 and R. Therefore, the
marking is not read-preserving.

The real-time-preservation condition requires that if all the events of a trans-
action T happen before all the events of another transaction T ′, then T is less
than T ′ in the effect order.

Our marking theorem says that a history is opaque if and only if it is mark-
able. So, to prove opacity, we can focus on proving markability. The algorithm
designer can usually define the marking relation readily from the guarantees
(such as linearization orders) of the used shared objects. In contrast to opacity,
markability of the algorithm can be established by modular verification of the
separate markability conditions that involve different aspects of the algorithm.

If a transaction history H is markable, we can show that H is opaque. We
construct a justifying history by ordering the transactions in the effect order.
Consider an arbitrary read R from i by T . We call the writers of i that take
effect before T , pre-effectors. Let the last pre-effector be the pre-effector that is
the greatest in the effect order. We need to show that the value that R returns
is the value that the last pre-effector writes. We recall that we refer to the
writers of i that access i before R as pre-accessors and refer to the pre-accessor
that is greatest in the effect order as the last pre-accessor. First, we argue that
pre-accessors are exactly pre-effectors. If a writer of i accesses before R, by read-
preservation, it does not take effect after T . Thus, by totality of effect order, it
takes effect before T . In the other direction, if a writer of i takes effect before T ,
by read-preservation, it does not access after R. Thus, as the access order orders
R and every writer of i, T accesses before R. Second, from write-observation,
we have that R returns the value written by the last pre-accessor. Thus, from
the two above statements, we have that R returns the value written by the last
pre-effector. This is the essence of the condition needed to prove opacity.
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3 Marking TL2

Now, we look at the marking of the TL2 algorithm [11] as an example. TL2
is specified in Figure 2. The specification first declares the type of the used
synchronization objects and then defines the methods of the TM interface.

In the initmethod, each transaction t reads the current snapshot version from
clock at I01 and writes it to the read version register rver[t] at I02. The read
version is read at R07 and C08 to validate the read values. TL2 is a deferred-
update TM algorithm. A value that a transaction t writes to a location is buffered
in the write set wset[t] at W01 and is written back to register reg[i] at C16i
while t is committing. TL2 records a version in the register ver[i] for the value
stored in the register reg[i]. The version register ver[i] is updated to ascending
numbers at C17i after new values are written back to reg[i] at C16i. The try-
lock lock[i] is used for exclusive access to the registers for location i. At commit,
the lock lock[i] of each location i in the write set wset[t] is acquired at C01 to
C06. (If a lock cannot be acquired, the previously acquired locks are released
at C05 and the transaction is aborted at C06.) Then, a new snapshot number
is read from clock at C07. Then, for each location in the read set rset[t], first
lock[i] and then ver[i] are read at C10i and C11i and the read is validated. (If a
read is not validated, the acquired locks are released at C13 and the transaction
is aborted at C14.) Finally, the value buffered for each location i in wset[t] is
written back at C15i to C18i. For each pair in the write set wset[t], the following
three operations are executed in order. First, the buffered value is written back
to reg[i], then ver[i] is updated, and then lock[i] is released. To read a location i,
a transaction reads ver[i], reg[i], lock[i] and again ver[i] in order at R03 to R06
and then validates the read. (If the validation fails, the transaction is aborted.)
Finally, i is added to the read set rset[t] and the read value is returned.

Let us describe the marking relation for TL2. The clock object numbers the
snapshots. Every transaction reads an initial snapshot number at I01. A com-
mitting transaction makes a new snapshot at C07. The effect point of a TL2
transaction is I01, if it is live or aborted and, is C07, if it is committed. The ef-
fect order of transactions is the linearization order of clock for their effect points.
The access point of a read operation is at R04 where reg[i] is read and the access
point of a writer of i is C16i where reg[i] is written. Consider a read R from
i and a writer T ′ to i. If the access point of T ′ is executed before the access
point of R, then T ′ is ordered before R in the access order of R. Otherwise,
T ′ is ordered after R in the access order of R. The access and effect points for
markability of a TM are reminiscent of the linearization points for linearizability
of a concurrent data structure.

One of the two conjuncts of the read-preservation property requires that for
every transaction T with an unaborted read operation R from a location i, there
is no writer T ′ of i such that T ′ takes effect after T and accesses i before R.
Let us see how TL2 preserves this property. We assume that there exists such
a writer T ′ and show that the validation checks embodied in TL2 detect the
existence of T ′ and abort R. We consider a transaction T with a read operation
R from a location i and a writer T ′ of i. We assume that T ′ takes effect after
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reg : BasicRegister[|I |], rver : ThreadLocal BasicRegister,
ver : AtomicRegister[|I |], rset : ThreadLocal BasicSet,
lock : TryLock[|I |], wset : ThreadLocal BasicMap,
clock : SCounter, lset : ThreadLocal BasicSet

def initt() def committ()

I01 � snap = clock.read() C01 � foreach (i ∈ wset[t])
I02 � rver[t].write(snap) C02i � locked = lock[i].trylock()
I03 � return ok if (¬locked)
def readt(i) C03i � lset.add(i)
R01 � pv = wset[t].get(i) else

if (pv = ⊥) C04i � foreach (j ∈ lset)
R02 � return pv C05ij � lock[j].unlock()

C06i � return A
R03 � s1 = ver[i].read()

R04 � v = reg[i].read() C07 � wver = clock.iaf()
R05 � l = lock[i].read()
R06 � s2 = ver[i].read() C08 � sver = rver[t].read()
R07 � sver = rver[t].read() if (wver = sver + 1)

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver)) C09 � foreach (i ∈ rset[t])
R08 � return A C10i � l = lock[i].read()

C11i � s = ver[i].read()
R09 � rver[t].add(i) if (¬(¬l ∧ s ≤ sver))
R10 � return v C12i � foreach (j ∈ lset)
{R03→ R04, R04→ R05, R05→ R06} C13ij � lock[j].unlock()
def writet(i, v) C14i � return A
W 01 � wset[t].put(i, v)
W 02 � return ok C15 � foreach ((i, v) ∈ wset[t])

def abortt() C16i � reg[i].write(v)

A01 � return A C17i � ver[i].write(wver)
C18i � lock[i].unlock()

C19 � return C
{C01→ C07, C10→ C11, C09→ C15,
C16→ C17, C17→ C18}

Fig. 2. TL2 Algorithm Specification

T and T ′ accesses i before R. For brevity, we consider only the case that T
is a live or aborted (not a committed) transaction. Figure 3 depicts the two
transactions. We use the binary operators ≺X to denote execution order, ∼X to
denote concurrent execution and 
X to denote in-order or concurrent execution
of method calls. We use the binary operators≺clock, ≺ver[i] and ≺lock[i] to denote
the linearization order of clock, ver[i] and lock[i] respectively.1 We recall that the

1 We have formally proved the markability of TL2 using a novel program logic [27]
that facilitates reasoning about execution and linearization orders. To keep the focus
of this paper on markability, we use a simplified reasoning instead of the logic.
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T T ′

I01 � snap = clock.read() C02i � lock[i].trylock()

I02 � rver[t].write(snap) ...

C07 � wver = clock.iaf()

... ...

C16i � reg[i].write(v)

R04 � v = reg[i].read() C17i � ver[i].write(wver)

R05 � l = lock[i].read() C18i � lock[i].unlock()

R06 � s2 = ver[i].read()

R07 � sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Fig. 3. TL2 Read-Preservation Example

real-time-preservation property of a linearizable object o states that if a method
callm1 on o is executed before another method callm2 on o, thenm1 is linearized
before m2. Equivalently, if m1 is linearized before m2, then m1 is executed before
or concurrent to m2. By the marking relation defined above, from the premise
that T ′ takes effect after T , and that T is aborted and T ′ is committed, we have
(1) I01 ≺clock C07. Similarly, by the marking relation defined above, from the
premise that T ′ accesses i before R, we have (2) C16i ≺reg[i] R04. The method
calls R05 and C18i are on the object lock[i]. We consider two cases for the
linearization order of them and show that R returns A in both cases. Case 1:
(3) R05 ≺lock[i] C18i. From the execution, we have (4) C02i ≺X C16i and (5)
R04 ≺X R05. By the real-time-preservation property for ver[i] on 2, we have (6)
C16i 
X R04. By the transitivity of the execution order on 4, 6 and 5, we have
C02i ≺X R05; thus, by the real-time-preservation property for lock[i], we have
(7) C02i ≺lock[i] R05. From 7 and 3, we have that R05 is executed when lock[i]
is acquired. Therefore, R05 returns true i.e. l = true. Thus, the validation check
fails and R returns A.

Case 2: (8) C18i ≺lock[i] R05. By the real-time-preservation property for
lock[i], from 8, we have (9) C18i 
X R05. From the execution, we have (10)
C17i ≺X C18i and (11) R05 ≺X R06. By the transitivity of the execution or-
der on 10, 9 and 11, we have (12) C17i ≺X R06. By the real-time-preservation
property for ver[i], from 12, we have (13) C17i ≺ver[i] R06. It is straightforward
to separately prove that (14) The register ver[i] is updated only to ascending
numbers. From 14 and 13, we have that R06 reads a value that is greater than
or equal to the value that C17i writes i.e. (15) s2 ≥ wver. From 1, and that iaf
returns the incremented value, we have (16) snap < wver. The value of sver is
read at R07 from rver. The thread-local register rver is only assigned at I02 to
snap. Thus, we have (17) snap = sver. From 15, 16 and 17, we have s2 > sver.
Thus, the validation check fails and R returns A in this case too.
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Please see the appendix [29] for the proof of markability of TL2 and also the
marking relations for DSTM (visible reads) [23] and NORec [9] TM algorithms.

4 Markability

In this section, we first present preliminary definitions about execution histories
and then, present the formal definition of markability and state its equivalence
to opacity.

4.1 Histories

Strings. We use ||s|| to denote the size of the string s. If s1 and s2 are strings, we
write s1 � s2 iff s1 is a subsequence of s2. For example, bd � abcde. Let s be an
isogram string (i.e. contains no repeating occurrence of the alphabet.) For any
s1, s2, we write s1 �s s2 iff the last element of s1 occurs before the first element
of s2 in s. For example, ab �abcde de.

Method Calls and Events. An invocation event is of the form inv(l$ o.nT (v))
where l is a label, o is an object, n is a method name, T is a transaction identifier
and v is a value. A response event is of the form ret(l $ v) where l is a label
and v is a value. A completed method call is the sequence of an invocation event
and the matching response event (with the same label). We use l $ o.nT (v):v to
denote the completed method call inv(l $ o.nT (v)) · ret(l $ v).

Operations on Event Sequences. Let E and E′ be event sequences. We use
E · E′ to denote the concatenation of E and E′. For a transaction T , we use
E|T to denote the subsequence of all events of T in E. A sequence of events
is sequential if and only if it is a sequence of completed method calls possibly
followed by an invocation event. A transaction T is sequential in a sequence of
events E if E|T is sequential.

Execution History.An execution history is an event sequence where invocation
events have unique labels and every transaction is sequential. We say label l is
in X and write l ∈ X if there is an invocation event with label l in X . We
use l, R and W to denote labels. As the labels are unique in a history, the
following functions on labels are defined. The functions objX , nameX , transX ,
arg1X , arg2X , retvX map labels to the receiving object, the method name, the
transaction identifier, the first and the second arguments, and the return value
associated with the labels. Similary, iEv and rEv functions on labels map labels
to the invocation and the response events associated with the labels.

Real-time Relations. For an execution history X , we define the method call
real-time relations≺X and �X on labels as follows: First, l1 ≺X l2 iff rEv(l1)�X

iEv(l2). Second, l1 �X l2 iff l1 ≺X l2 ∨ l1 = l2.
For an execution history X , we define the transaction real-time relations ≺≺X

and ��X as follows. First, T ≺≺X T ′ iff X |T �X X |T ′. Second, T ��X T ′ iff
T ≺≺X T ′ ∨ T = T ′.
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Transactional Memory. The transactional memory is a singleton object mem
that encapsulates a set of locations where each location, i ∈ I, I = {1, . . . ,m}
encapsulates a value v. The object mem has five methods initt(), readt(i),
writet(i, v), committ() and abortt(). The parameter t is the invoking transaction
identifier. The method call initt() initializes t and returns ok. The method call
readt(i) returns the value of location i or aborts t and returns A. The method
writet(i, v) writes v to location i and returns ok or aborts t and returns A. The
method committ() tries to commit transaction t. If t is successfully committed,
it returns C; otherwise, it returns A. The method abortt() aborts t and returns
A. The object mem can be implicit, that is readt(i) abbreviates mem.readT (i).
The reserved values ok, A, C denote successful completion of writes and, abortion
and commitment of transactions respectively.

Transaction History.A transaction history H is an execution history such that
H |mem = HInit ·H ′ with the following conditions. HInit is the following history
that initializes every location to v0. HInit = l0i $initT0() · l00 $writeT0(1, v0):ok ·
. . . · l0m $ writeT0(m, v0):ok · l0c $ commitT0 :C. For every T ∈ H ′, the history
H ′|T is a prefix of E.E′. The event sequence E is the initialization method
call l $ initT () (for some l), and then a sequence of reads l $ readT (i):v and
writes l $ writeT (i, v) (for some l, i, and v). The event sequence E′ is one of
the following sequences (for some l, i, and v): (1) inv(l $ readT (i)), ret(l $ A),
(2) inv(l $ writeT (i, v)), ret(l $A), (3) inv(l $ commitT ()), ret(l $C), (4) inv(l $
commitT ()), ret(l $A), or (5) inv(l $ abortT ()), ret(l $A). Let THistory denote
the set of transaction histories. Let Trans(H) denote the set of transactions of
H . The projection of H on i, written H |i, denotes the subsequence of history H
that contains exactly the events on location i. For a TM algorithm specification
π, let H(π) denote the set of complete transaction histories that result from
execution of transactions with π.

4.2 Formal Definition of Markability

First, we present some preliminary definitions in Figure 4. (We use the prefix
T before some of the terms for transactions to avoid confusion with similar
terms that are usually used for general concurrent objects.) A transaction T is
committed or aborted in a transaction history H if there is respectively a commit
or abort response event for T in H . A completed transaction is either committed
or aborted. A live transaction is a transaction that is not completed. A pending
transaction has a pending event and a commit-pending transaction has a commit
pending event. An extension of a history is obtained by committing or aborting
its commit-pending transactions and aborting the other live transactions.

A local read is a read that is preceded by a write by the same transaction to
the same location. Intuitively, a local read should read a value that is previously
written by the same transaction and hence the name. A global read is a read that
is not local. A local write is a write that precedes a write by the same transaction
to the same location. A local write is overwritten by the same transaction and



400 M. Lesani and J. Palsberg

Committed(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧
retvH(l) = C}

Aborted(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧
retvH(l) = A}

Completed(H) = Committed(H)∪ Aborted(H)

Live(H) = Trans(H) \ Completed(H)

CommitPending(H) = {T | T ∈ Live(H) ∧ ∃l ∈ H :

objH(l) = mem ∧ objH (l) = mem ∧ transH(l) = T}
TExtension(H) = {H ′ | H ′ ∈ THistory ∧ ∃H ′′ : H ′ = H ·H ′′ ∧

Trans(H ′′) ⊆ Trans(H) ∧ ∀T : ||H ′′|T || ≤ 1 ∧
Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

TReads(H) = {R | R ∈ H ∧ objH (R) = mem ∧ nameH(R) = read ∧
retvH(R) = A}

TWrites(H) = {W |W ∈ H ∧ objH (W ) = mem ∧ nameH(W ) = write ∧
retvH(W ) = A}

LocalTReads(H) = {R | R ∈ TReads(H) ∧ ∃W ∈ TWrites(H) :

transH(R) = transH(W ) ∧
arg1H(R) = arg1H(W ) ∧ W ≺H R}

GlobalTReads(H) = TReads(H) \ LocalTReads(H)

LocalTWrites(H) = {W |W ∈ TWrites(H) ∧ ∃W ′ ∈ TWrites(H) :

transH(W ) = transH(W ′) ∧
arg1H(W ) = arg1H(W ′) ∧ W ≺H W ′}

GlobalTWrites(H) = TWrites(H) \ LocalTWrites(H)

WritersH(i) = {T | T ∈ Trans(H) ∧ ∃l ∈ TWrites(H) : arg1H(l) = i ∧
transH(l) = T ∧ T ∈ Committed(H)}

Fig. 4. Basic Definitions

hence the name. A global write is a write that is not local. The writers of i are
the committed transactions that write to location i.

Markability is defined in Figure 5. A marking , of a transaction history
is the union of the following relations on the set of transactions and the global
reads. The effect order : The set of transactions is totally ordered by the marking
relation ,. In other words, the marking relation , is total, antisymmetric and
transitive on the set of transactions. The access orders : For each global read R
from a location i, R and every writer of i are ordered by the marking relation ,.
In other words, the marking relation , totally orders every global read R from
a location i with respect to writers of i and is antisymmetric.

The write-observation property is comprised of the two properties: local write-
observation and global write-observation. Local write-observation requires that
every local read R from a location i returns the value written by the last write
to i that is executed before R by the same transaction. As we defined before,
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Marking(H) = {� |
∀T1, T2, T3 ∈ Trans(H) :

(T1 � T2 ∨ T2 � T1) ∧
(T1 � T2 ∧ T2 � T1)⇒ (T1 = T2) ∧
(T1 � T2) ∧ (T2 � T3)⇒ (T1 � T3) ∧

∀R, T : Let i = arg1H(R) : (R ∈ GlobalTRead(H) ∧ T ∈ WritersH(i))⇒
(R � T ∨ T � R) ∧
(R � T ⇒ ¬T � R) ∧ (T � R⇒ ¬R � T )}

NoWriteBetweenH(W,R)⇔
∀W ′ ∈ TWrites(H) : W ′ !H W ∨ R ≺H W ′

LocalWriteObs(H)⇔
∀R ∈ LocalTReads(H) : Let T = transH(R), i = arg1H(R),H ′ = H |T |i :
∃W ∈ TWrites(H ′) :

W ≺H′ R ∧ NoWriteBetweenH′(W,R) ∧ retvH′(R) = arg2H′(W )

N oWriterBetweenH,i(x,�, x′)⇔
∀T ∈W ritersH(i) : T � x ∨ x′ � T

LastPreAccessorH,�(T
′, R)⇔ Let i = arg1H(R), T = transH(R) :

T ′ ∈ WritersH(i) ∧ T ′ = T ∧ T ′ � R ∧ N oWriterBetweenH,i(T
′,�,R)

GlobalWriteObs(H,�)⇔
∀R ∈ GlobalTReads(H) : ∃W ∈ GlobalTWrites(H) : Let T ′ = transH(W ) :

LastPreAccessorH,�(T
′, R) ∧

arg1H(R) = arg1H(W ) ∧ retvH(R) = arg2H(W )

W riteObs(H,�)⇔
LocalWriteObs(H) ∧ GlobalWriteObs(H,�)

ReadPres(H,�)⇔
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

N oWriterBetweenH,i(R,�, T ) ∧ N oWriterBetweenH,i(T,�, R)

RealT imePres(H,�)⇔
!!H ⊆ �

F inalStateMarkable = {H |
H ∈ THistory ∧ ∃H ′ ∈ TExtension(H) : ∃ � ∈Marking(H ′) :

W riteObs(H ′,�) ∧ ReadPres(H ′,�) ∧ RealT imePres(H ′,�)}

Fig. 5. F inalStateMarkable

pre-accessors of R are the writers of i that are ordered before R in the access
order and the last pre-accessor of R is the one that is greatest in the effect order.
Global write-observation requires that the value that every global read R from
a location i returns is the value written by the global write to i by the last
pre-accessor transaction of R.

The Read-preservation property requires that for every global read R from
location i by transaction T , there is no writer transaction T ′ of i such that T ′

is marked between R and T (i.e. T ′ accesses i after R and takes effect before
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T ), or similarly, T ′ is marked between T and R (i.e. T ′ takes effect after T and
accesses i before R).

The real-time-preservation property requires that if T is before T ′ in the
transaction real-time order, then T takes effect before T ′ as well.

A transaction history is final-state-markable if and only if there exists a mark-
ing for an extension of it that is write-observant, read-preserving, and real-time-
preserving.

The marking theorem states that a transaction history is final-state-opaque
if and only if it is final-state-markable. The formal definition of opacity and the
proofs are available in the appendix [29].

Theorem 1 (Marking). F inalStateOpaque = F inalStateMarkable.

5 Opacity of TL2

Now, we define the marking relation for the TL2 algorithm in Figure 2. We use
the call string label l1’l2 to denote the method call labeled l2 that is executed in
the body of the method call labeled l1. We use initOfH(T ) and commitOfH(T )
to denote the init and commit method calls of T in H .

Definition 1 (Marking TL2). Consider an execution history H ∈ H(TL2).
Let

Eff(T ) =

{
initOfH(T )’I01 if T ∈ Aborted(H)

commitOfH(T )’C07 if T ∈ Committed(H)

readAcc(R) = R’R04

writeAcc(T, i) = commitOfH(T )’C16i

The marking , for H is the reflexive closure of the relation � that is defined as
follows:

{(T, T ′) | T, T ′ ∈ Trans(H) ∧ Eff(T ) ≺clock Eff(T ′)} ∪
{(T,R) | Let i = arg1(R) : R ∈ GlobalTReads(H), T ∈ WritersH(i) ∧

writeAcc(T, i) ≺H readAcc(R)} ∪
{(R, T ) | Let i = arg1(R) : R ∈ GlobalTReads(H), T ∈WritersH(i) ∧

readAcc(R) 
H writeAcc(T, i)}

The following theorems state the markability and the opacity of TL2.

Theorem 2 (Markability of TL2). ∀H∈H(TL2): H ∈ F inalStateMarkable

Corollary 1 (Opacity of TL2). ∀H ∈ H(TL2): H ∈ F inalStateOpaque

The appendix [29] presents the proofs. The above corollary states that every
history of TL2 is final-state-opaque. As the set of histories of a TM algorithm
is prefix-closed, a TM algorithm is opaque if and only if every history of it is
final-state-opaque. (See [21], Observation 7.4.) Therefore, TL2 is opaque.
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6 The Cost of Read Validation

The read-preservation invariant requires the TM algorithm to check that a read
location is not overwritten between the point where the location is read and
the point where the transaction takes effect. This requirement motivated us to
study how read-preservation can influence the time complexity of TM operations
and helped us construct client scenarios that exhibit lower bounds. We present
a generalization of the seminal lower bound result presented in [20]. We first
recall some definitions from previous works on the inherent complexity of TM
[3,19, 20, 34].

An aborted transaction that did not invoke an abort operation is said to be
forcefully aborted. We say that two transactions conflict if they access the same
location and one of them writes to the location. A TM algorithm is (weakly)
progressive if and only if it forcefully aborts a transaction only when it conflicts
with a live transaction. More precisely, it aborts a transaction only when there is
a time t at which it conflicts with another concurrent transaction that is live at
time t (not committed or aborted by time t). In addition to providing progress,
progressive TM algorithms are expected to retry transactions less frequently and
therefore, improve performance.

A TM algorithm is invisible-reads if and only if the read operation does not
mutate (i.e. change the state of) any base object. Mutating base objects can
potentially invalidate the caches and adversely affect performance. Thus, most
high-performance TM algorithms are invisible-reads. A transaction is read-only
if and only if it does invoke any write operations. We assume that the abort
operation for a read-only transaction does not mutate any base shared object.

Two transactions contend on a base object o if and only if they access o and at
least one of them mutates o. A TM algorithm is (strictly) disjoint-access-parallel
if and only if two transactions contend on a base object only if they access a
common memory location. Disjoint-access-parallelism can improve scalability as
transactions that access disjoint memory locations access disjoint base objects.

A TM algorithm is single-version if and only if it stores a single value for each
memory location in the base objects.

Theorem 3. The time complexity of the commit operation of every opaque,
progressive, disjoint-access-parallel and invisible-reads TM algorithm is Ω(|R|)
where R is the read set.

This theorem shows that designers should pick at least one of the following
sources of inefficiency in the design of every opaque TM algorithm: aborting
non-conflicting transactions, sharing base objects between transactions that ac-
cess disjoint locations, visible reads or linear-time complexity of the commit
method. As an example, TL2 shares the clock object between all transactions
and is, therefore, not disjoint-access-parallel. In addition, it has linear-time read-
validation in the commit method.

Theorem 4. The time complexity of the commit operation of every opaque,
progressive, and invisible-reads TM algorithm that stores information about a
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constant number of locations in each shared object is Ω(|R|) where R is the read
set.

The above theorem generalizes Theorem 3 of [20] by dropping the single-
version requirement. Note that the assumption about limited capacity of shared
objects is stated before the theorem in [20] and explicitly in the theorem here.
We leave the proofs to the appendix [29].

7 Conclusion

We presented a decomposition of opacity called markability as a conjunction of
separate invariants. We proved the equivalence of opacity and markability. We
showcased the applicability of markability as a proof technique for opacity by
stating the marking relation and proving the markability of the TL2 algorithm. In
addition, we presented a lower bound for the time complexity of TM algorithms.

References

1. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: HPCA (2005)

2. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in transac-
tional memory. In: ICDCS (2013)

3. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory of Computing Systems 49(4)
(2011)

4. Baek, W., Bronson, N., Kozyrakis, C., Olukotun, K.: Implementing and evaluating
a model checker for transactional memory systems. In: ICECCS (2010)

5. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: FMCAD (2007)

6. Cohen, A., Pnueli, A., Zuck, L.D.: Mechanical verification of transactional memo-
ries with non-transactional memory accesses. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 121–134. Springer, Heidelberg (2008)

7. Intel Corporation. Intel architecture instruction set extensions programming refer-
ence, tsx. 319433-012 (2012)

8. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott, M.L., Spear,
M.F.: Hybrid norec: A case study in the effectiveness of best effort hardware trans-
actional memory. In: ASPLOS (2011)

9. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining stm by abolishing
ownership records. In: PPoPP (2010)

10. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid
transactional memory. SIGPLAN Not. 41(11) (2006)

11. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

12. Dice, D., Shavit, N.: TLRW: Return of the read-write lock. In: SPAA (2010)
13. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and

verifying transactional memory. Formal Aspects of Computing (2012)
14. Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-

tional memories. In: PLDI (2010)



Decomposing Opacity 405

15. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: PPoPP (2008)

16. Guerraoui, R., Henzinger, T.A., Jobstmann, B., Singh, V.: Model checking trans-
actional memories. In: PLDI (2008)

17. Guerraoui, R., Henzinger, T.A., Singh, V.: Software transactional memory on
relaxed memory models. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 321–336. Springer, Heidelberg (2009)

18. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distributed Computing (2010)

19. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In: SPAA (2008)
20. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:

PPOPP (2008)
21. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. M&C (2010)
22. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,

Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory
coherence and consistency. In: ISCA (2004)

23. Herlihy, M., Luchangco, V., Moir, M., Scherer, I.W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC (2003)

24. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA (1993)

25. Imbs, D., de Mendivil, J.R., Raynal, M.: Brief announcement: virtual world con-
sistency: A new condition for stm systems. In: PODC (2009)

26. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional
memory. In: PPoPP (2006)

27. Lesani, M.: On the correctness of transactional memory algorithms. Phd Disserta-
tion (2014), http://www.cs.ucla.edu/~lesani/companion/dissertation

28. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software
transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012)

29. Lesani, M., Palsberg, J.: Decomposing opacity, the companion page,
http://www.cs.ucla.edu/~lesani/companion/disc14

30. Lesani, M., Palsberg, J.: Proving non-opacity. In: Afek, Y. (ed.) DISC 2013. LNCS,
vol. 8205, pp. 106–120. Springer, Heidelberg (2013)

31. Matveev, A., Shavit, N.: Reduced hardware transactions: A new approach to hybrid
transactional memory. In: SPAA (2013)

32. Minh, C.C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J.,
Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system
with strong isolation guarantees. In: ISCA (2007)

33. O’Leary, J., Saha, B., Tuttle, M.R.: Model checking transactional memory with
spin. In: ICDCS (2009)

34. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in stm. In:
PODC (2010)

35. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: A high performance software transactional memory system for a multi-core
runtime. In: PPoPP (2006)

36. Shavit, N., Touitou, D.: Software transactional memory. In: PODC (1995)
37. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera,

R., Michael, M.: Evaluation of blue gene/q hardware support for transactional
memories. In: PACT (2012)

http://www.cs.ucla.edu/~lesani/companion/dissertation
http://www.cs.ucla.edu/~lesani/companion/disc14


The Adaptive Priority Queue

with Elimination and Combining

Irina Calciu, Hammurabi Mendes, and Maurice Herlihy

Department of Computer Science
Brown University

115 Waterman St., 4th floor
Providence RI, USA

{irina,hmendes,mph}@cs.brown.edu

Abstract. Priority queues are fundamental abstract data structures,
often used to manage limited resources in parallel programming. Several
proposed parallel priority queue implementations are based on skiplists,
harnessing the potential for parallelism of the add() operations. In ad-
dition, methods such as Flat Combining have been proposed to reduce
contention, batching together multiple operations to be executed by a
single thread. While this technique can decrease lock-switching overhead
and the number of pointer changes required by the removeMin() opera-
tions in the priority queue, it can also create a sequential bottleneck and
limit parallelism, especially for non-conflicting add() operations.

In this paper, we describe a novel priority queue design, harnessing
the scalability of parallel insertions in conjunction with the efficiency
of batched removals. Moreover, we present a new elimination algorithm
suitable for a priority queue, which further increases concurrency on
balanced workloads with similar numbers of add() and removeMin()

operations. We implement and evaluate our design using a variety of
techniques including locking, atomic operations, hardware transactional
memory, as well as employing adaptive heuristics given the workload.

1 Introduction

A priority queue is a fundamental abstract data structure that stores a set of
keys (or a set of key-value pairs), where keys represent priorities. It usually
exports two main operations: add(), to insert a new item in the priority queue,
and removeMin(), to remove the first item (the one with the highest priority).
Parallel priority queues are often used in discrete event simulations and resource
management, such as operating systems schedulers. Therefore, it is important to
carefully design these data structures in order to limit contention and improve
scalability. Prior work in concurrent priority queues exploited parallelism by
using either a heap [6] or a skiplist [8] as the underlying data structures. In the
skiplist-based implementation of Lotan and Shavit [8], each node has a “deleted”
flag, and processors contend to mark such “deleted” flags concurrently, in the
beginning of the list. When a thread logically deletes a node, it tries to remove
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it from the skiplist using the standard removal algorithm. A lock-free skiplist
implementation is presented in [11].

However, these methods may incur limited scalability at high thread counts
due to contention on shared memory accesses. Hendler et al. [3] introduced Flat
Combining, a method for batching together multiple operations to be performed
by only one thread, thus reducing the contention on the data structure. This
idea has also been explored in subsequent work on delegation [9,1], where a ded-
icated thread called a server performs work on behalf of other threads, called
clients. Unfortunately, the server thread could become a sequential bottleneck.
A method of combining delegation with elimination has been proposed to al-
leviate this problem for a stack data structure [2]. Elimination [4] is a method
of matching concurrent inverse operations so that they don’t access the shared
data structure, thus significantly reducing contention and increasing parallelism
for otherwise sequential structures, such as stacks. An elimination algorithm has
also been proposed in the context of a queue [10], where the authors introduce
the notion of aging operations - operations that wait until they become suitable
for elimination.

In this paper, we describe, to the best of our knowledge, the first elimina-
tion algorithm for a priority queue. Only add() operations with values smaller
than the priority queue minimum value are allowed to eliminate. However, we
use the idea of aging operations introduced in the queue algorithm to allow
add() values that are small enough to participate in the elimination protocol,
in the hope that they will soon become eligible for elimination. We implement
the priority queue using a skiplist and we exploit the skiplist’s capability for
both operations-batching and disjoint-access parallelism. RemoveMin() requests
can be batched and executed by a server thread using the combining/delegation
paradigm. Add() requests with high keys will most likely not become eligible for
elimination, but need to be inserted in the skiplist, requiring expensive traver-
sals towards the end of the data structure. These operations would represent a
bottleneck for the server and a missed opportunity for parallelism if executed
sequentially. Therefore, we split the underlying skiplist into two parts: a sequen-
tial part, managed by the server thread and a parallel part, where high-valued
add() operations can insert their arguments in parallel. Our design reduces con-
tention by performing batched sequential removeMin() and small-value add()

operations, while also leveraging parallelism opportunities through elimination
and parallel high-value add() operations. We show that our priority queue out-
performs prior algorithms in high contention workloads on a SPARC Niagara
II machine. Finally, we explore whether the use of hardware transactions could
simplify our design and improve throughput. Unfortunately, machines that sup-
port hardware transactional memory (HTM) are only available for up to four
cores (eight hardware threads), which is not enough to measure scalability of our
design in high contention scenarios. Nevertheless, we showed that a transactional
version of our algorithm is better than a non-transactional version on a Haswell
four-core machine. We believe that these preliminary results will generalize to



408 I. Calciu, H. Mendes, and M. Herlihy

machines with more threads with support for HTM, once they become available.
In summary, our main contributions are:

– We propose the first elimination algorithm for a priority queue, consisting
of (1) immediate elimination, where suitable add() and removeMin() op-
erations exchange arguments; and (2) upcoming elimination, where add()

operations with small keys, yet not suitable for elimination, wait some time
until either they become suitable or time out.

– We describe a scalable design for a priority queue based on our elimination
algorithm and the delegation/combining paradigm introduced by prior work.

– We augment our priority queue design with an adaptive component that
allows it to perform combining and elimination efficiently, while also allowing
add() operations not involved in the elimination to insert in parallel.

– We analyze how hardware transactions could be used to simplify and improve
our initial design and show performance results on a Haswell machine with
transactional memory enabled.

2 Design

Our priority queue exports two operations: add() and removeMin() and is im-
plemented using an underlying skiplist. The elements of the skiplist are buckets
associated with keys. For a bucket b, the field b.key denotes the associated key.
We split the skiplist in two distinct parts. The sequential part, in the begin-
ning of the skiplist, is likely to serve forthcoming removeMin() operations of
the priority queue (PQ::removeMin() for short) as well as add(v) operations of
the priority queue (PQ:add() for short) with v small enough (hence expected
to be removed soon). The parallel part, which complements the sequential part,
is likely to serve PQ::add(v) operations where v is large enough (hence not
expected to be removed soon). Either the sequential or the parallel part may
become empty. Both lists are complete skiplists, with (dummy) head buckets
called headSeq and headPar, respectively, with key −∞. Both lists also contain
(dummy) tail buckets, with key +∞. We call the last non-dummy bucket of
the sequential part lastSeq, which is the logical divisor between parts. Figure 1
shows the design.

When a thread performs a PQ::add(v), either (1) v > lastSeq.key, and the
thread inserts the value concurrently in the parallel part of the skiplist, calling
the SL::addPar() skiplist operation; or (2) v ≤ lastSeq.key, and the thread
tries to perform elimination with a PQ::removeMin() using an elimination array.
A PQ::add(v) with v less than the smallest value in the priority queue can im-
mediately eliminate with a PQ::removeMin(), if one is available. A PQ::add(v)
operation with v bigger than minValue (the current minimal key) but smaller
than lastSeq.key lingers in the elimination array for some time, waiting to be-
come eligible for elimination or timeout. A server thread executes sequentially
all operations that fail to eliminate.

This mechanism describes the first elimination algorithm for a priority queue,
well integrated with delegation/combining, presented in more detail in Sec-
tion 2.2. Specifically: (1) The scheme harnesses the parallelism of the priority
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Sequential Part Parallel Part

Elimination  
Layer

Add (small) Remove

Add (bigger keys): parallelAdd (small keys)/Remove: server thread

…

Fig. 1. Skiplist design. An elimination array is used for removeMin()s and add()s with
small keys. A dedicated server thread collects the operations that do not eliminate and
executes them on the sequential part of the skiplist. Concurrent threads operate on the
parallel part, performing add()s with bigger keys. The dotted lines show pointers that
would be established if the single skiplist was not divided in two parts.

queue add() operations, letting the ones with keys physically distant and large
enough (bigger than lastSeq.key) execute in parallel. (2) At the same time,
we batch concurrent priority queue add() with small keys and removeMin() op-
erations that timed out in the elimination array, serving such requests quickly
through the server thread – this latter operation simply consumes elements from
the sequential part by navigating through elements in its bottom level, merely
decreasing counters and moving pointers in the most common situation. While
detaching a sequential part is non-negligible cost-wise, a sequential part has the
potential to serve multiple removals.

2.1 Concurrent Skiplist

Our underlying skiplist is operated by the server thread in the sequential part
and by concurrently inserting threads with bigger keys in the parallel part.

Sequential Part. The server calls the skiplist function SL::moveHead() to
extract a new sequential part from the parallel part if some PQ::removeMin()

operation was requested and the sequential part was empty. Conversely, it calls
the skiplist function SL::chopHead() to relink the sequential and the parallel
parts, forming a completely parallel skiplist, if no PQ::removeMin() operations
are being requested for some time. In SL::moveHead(), we initially determine
the elements to be moved to the sequential part. If no elements are found, the
server clears the sequential part, otherwise separating the sequential part from
the rest of the list, which becomes the parallel part. The number of elements
that SL::moveHead() tries to detach to the sequential part adaptively varies
between 8 and 65,536. Our policy is simple: if more than N insertions (e.g.
N = 1000) occurred in the sequential part since the last SL::moveHead(), we
halve the number of elements moved; otherwise, if less than M insertions (e.g.
M = 100) were made, we double this number. After SL::moveHead() executes,
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a pointer called currSeq indicates the first bucket in the sequential part, and
another called lastSeq indicates the final bucket. The server uses SL::addSeq()
and SL::removeSeq() within the sequential part to remove elements or insert
elements with small keys (i.e., belonging to the sequential part) that failed to
eliminate. Buckets are not deleted at this time; they are deleted lazily when the
whole sequential part gets consumed. A new sequential part can be created by
calling SL::moveHead() again.

Parallel Part. The skiplist function SL::addPar() inserts elements into the
parallel part, and is called by concurrent threads performing PQ::add(). While
these insertions are concurrent, the skiplist still relies on a Single-Writer
Multi-Readers lock with writer preference for the following purpose. Multiple
SL::addPar() operations acquire the lock for reading (executing concurrently),
while SL::moveHead() and SL::chopHead() operations acquire the lock for
writing. This way, we avoid that SL::addPar() operates on buckets that are
currently being moved to the sequential part by SL::moveHead(), or interferes
with SL::chopHead(). Despite the lock, SL::addPar() is not mutually exclu-
sive with the head-moving operations (SL::moveHead() and SL::chopHead()).
Only the pointer updates (for new buckets) or the counter increment (for ex-
isting buckets) must be done in the parallel part (and not have been moved to
the sequential part) after we determine the locations of these changes. Hence,
in the SL::addPar() operation, we first try to get a clean SL::find(): a find
operation followed by lock acquisition for reading, with no intervening head-
moving operations. We can tell whether no head-moving operation took place
since our lock operations always increases a timestamp variable, checked in the
critical section. After a clean SL::find(), therefore now holding the lock, if a
bucket corresponding to the key is found, we insert the element in the bucket
(incrementing a counter). Otherwise, a new bucket is created, and inserted level
by level using CAS() operations. If a CAS() fails in a certain level, we release the
lock and retry a clean SL::find().

Our algorithm differs from the traditional concurrent skiplist insertion al-
gorithms in two ways: (1) we hold a lock to avoid head-moving operations
to take place after a clean SL::find(); and (2) if the new bucket is moved
out of the parallel section while we insert the element in the upper levels, we
stop SL::addPar(), leaving this element with a capped level. This bucket is
likely to be soon consumed by a SL::removeSeq() operation, resulting from a
PQ::removeMin() operation.

2.2 Elimination and Combining

Elimination allows matching operations to complete without accessing the shared
data structure, thus increasing parallelism and scalability. In a priority queue,
any SL::removeMin() operation can be eliminated, but only SL::add() oper-
ations with values smaller or equal to the current minimum value can be so. If
the priority queue is empty, any SL::add() value can be eliminated. We used
an elimination array similar to the one in the stack elimination algorithm [4].
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Each slot uses 64 bits to pack together a 32-bit value that represents either
an opcode or a value to be inserted in the priority queue and a stamp that is
unique for each operation. The opcodes are: EMPTY, REMREQ, TAKEN and
INPROG. These are special values that cannot be used in the priority queue.
All other values are admissible. In our implementation, each thread has a local
count of how many operations it performed. This count is combined with the
thread ID to obtain a unique stamp for each operation. Overflow was not an
issue in our experiments, but if it becomes a problem a different algorithm for
associating unique stamps to each operation could be used. The unique stamp
is used to ensure linearizability, as explained in Section 3. All slots are initially
empty, marked with the special value EMPTY, and the stamp value is zero.

A PQ::removeMin() thread loops through the elimination array until it finds
a request to eliminate with or it finds an empty slot in the array, as described in
Algorithm 1. If it finds a value in the slot, then it must ensure that the stamp
is positive, otherwise the value was posted as a response to another thread.
The value it finds must be smaller than the current priority queue minimum
value. Then, the PQ::removeMin() thread can CAS the slot, which contains both
the value and the stamp, and replace it with an indicator that the value was
taken (TAKEN, with stamp zero). The thread returns the value found. If in-
stead, the PQ::remove() thread finds an empty slot, it posts a remove request
(REMREQ), with a unique stamp generated as above. The thread waits until
the slot is changed by another thread, having a value with stamp zero. The
PQ::removeMin() thread can then return that value.

Algorithm 1. PQ::removeMin()

1: while true do
2: pos ← (id+ 1)% ELIM SIZE; (value, stamp) ← elim[pos]
3: if IsValue(value) and (stamp > 0) and (value ≤ skiplist.minValue)) then
4: if CAS(elim[pos], (value, stamp), (TAKEN, 0)) then
5: return value
6: if value = EMPTY then
7: if CAS(elim[pos], (value, stamp), (REMREQ, uniqueStamp())) then
8: repeat
9: (value, stamp) ← elim[pos]
10: until value = REMREQ and value = INPROG
11: elim[pos] ← (EMPTY, 0); return value

12: inc(pos)

A PQ::add() thread initially tries to use SL::addPar() to add its key con-
currently in the parallel part of the skiplist. A failed attempt indicates that
the value should try to eliminate or should be inserted in the sequential part
instead. The PQ::add() thread tries to eliminate by checking through the elimi-
nation array for REMREQ indicators. If it finds a remove request, and its value
is smaller than the priority queue minValue, it can CAS its value with stamp
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zero, effectively handing it to another thread. If multiple such attempts fail, the
thread changes its behavior: it still tries to perform elimination as above, but
as soon as an empty slot is found, it uses a CAS to insert its own value and the
current stamp in the slot, waiting for another thread to match the operation
(and change the opcode to TAKEN) returning the corresponding value.

The PQ::add() and PQ::removeMin() threads that post a request in an empty
slot of the elimination array wait for a matching thread to perform elimination.
However, elimination could fail because no matching thread shows up or be-
cause the PQ::add() value is never smaller than the priority queue minValue.
To ensure that all threads make progress, we use a dedicated server thread that
collects add and remove requests that fail to eliminate. The server thread ex-
ecutes the operations sequentially on the skiplist, calling SL::addSeq() and
SL::removeSeq() operations. To ensure linearizability, the server marks a slot
that contains an operation it is about to execute as in progress (INPROG).
Subsequently, it executes the sequential skiplist operation and writes back the
response in the elimination slot for the other thread to find it. A state machine
showing the possible transitions of a slot in the elimination array is shown in
Figure 2, and the algorithm is described in Algorithm 2.

Algorithm 2. Server::execute()

1: while true do
2: for i: 1 → ELIM SIZE do
3: (value, stamp) ← elim[i]
4: if value = REMREQ then
5: if CAS(elim[i], (value, stamp), (INPROG, 0)) then
6: min ← skiplist.removeSeq(); elim[i] ← (min, 0)

7: if IsValue(value) and (stamp > 0) then
8: if CAS(elim[i], (value, stamp), (INPROG, 0)) then
9: skiplist.addSeq(value); elim[i] ← (TAKEN, 0)

3 Linearizability

Our design provides a linearizable priority queue algorithm. Some operations
have multiple possible linearization points by design, requiring careful analysis
and implementation.

Skiplist. A successful SL::addPar(v) (respectively, SL::addSeq(v)) usually
linearizes when it inserts the element in the bottom level of the skip list with
a CAS (respectively, with a store), or when the bucket for key v has its counter
incremented with a CAS (respectively, with a store). However, a thread inserting
a minimal bucket, whenever v < minValue, is required to update minValue.
When the sequential part is not empty, only the server can update minValue

(without synchronization). When the sequential part is empty, a parallel add
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Fig. 2. Transitions of a slot in the elimination array

with minimal value needs to update minValue. The adding thread loops until
a CAS decreasing minValue succeeds or another thread inserts a bucket with
key smaller than v. Note that no head-moving operation is taking place (the
SL::addPar() threads hold the lock). Threads that succeed changing minValue

linearize their operation at the point of the successful CAS.
The head-moving operations SL::moveHead() and SL::chopHead() execute

while holding the lock for writing, which effectively linearizes the operation at
the lock.release() instant because: (1) no SL::addPar() is running; (2) no
SL::addSeq() or SL::removeSeq() are running, as the server thread is the sin-
gle thread performing those operations. Head-moving operations do not change
minValue, in fact they preclude any changes to it. During these operations,
however, threads may still perform elimination, which we discuss next.

Elimination. A unique stamp is used in each request posted in the array en-
tries to avoid the “ABA” problem. Each elimination slot is a 64-bit value that
contains 32 bits for the posted value (for PQ::add()) or a special opcode (for
PQ::removeMin()) and 32 bits for the unique stamp. In our implementation,
the unique stamp is obtained by combining the thread id with the number of
operations performed by each thread. Each thread, either adding or removing,
that finds the inverse operation in the elimination array must verify that the
exchanged value is smaller than minValue. If so, the thread can CAS the elim-
ination slot, exchanging arguments with the waiting thread. It is possible that
the priority queue minimum value is changed by a concurrent PQ::add(). In
that case, the linearization point for both threads engaged in elimination is at
the point where the value was observed to be smaller than the priority queue
minimum. See Fig. 3.

The thread performing the CAS first reads the stamp of the thread that posted
the request in the array and verifies that it is allowed to eliminate. Only then it
performs a CAS on both the value and the stamp, guaranteeing that the thread
waiting did not change in the meantime. Because both threads were running at
the time of the verification, they can be linearized at that point. Without the



414 I. Calciu, H. Mendes, and M. Herlihy

Fig. 3. Concurrent execution of an op thread posting its request to an empty slot, and
an inv thread, executing a matching operation. The operation by the inv thread could
begin anytime before the Read and finish any time after the CAS. The linearization
point is marked with a red X.

unique stamp, the eliminating thread could perform a CAS on an identical request
(i.e., identical operation and value) posted in the array by a different thread.
The CAS would incorrectly succeed, but the operations would not be linearizable
because the new thread was not executing while the suitable minimum was
observed.

The linearizability of the combining operation results from the linearizability
of the skiplist. The threads post their operation in the elimination array and wait
for the server to process it. The server first marks the operation as in progress
by CASing INPROG into the slot. Then it performs the sequential operation on
the skiplist and writes the results back in the slot, releasing the waiting thread.
The waiting thread observes the new value and returns it. The linearization
point of the operation happens during the sequential operation on the skiplist,
as discussed above. See Fig. 4.

Fig. 4. Concurrent execution of a client thread and the server thread. The client posts
its operation op to an empty slot and waits for the server to collect the operation and
execute it sequentially on the skiplist. The linearization point occurs in the sequential
operation and is marked with a red X.

4 Evaluation

In this section, we discuss results on a Sun SPARC T5240, which contains two
UltraSPARC T2 Plus chips with 8 cores each, running at 1.165 GHz. Each core
has 8 hardware strands, for a total of 64 hardware threads per chip. A core has
a 8KB L1 data cache and shares an 4MB L2 data cache with the other cores
on a chip. Each experiment was performed five times and we report the median.
Variance was very low for all experiments. Each test was run for ten seconds
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to measure throughput. We used the same benchmark as flat combining [3]. A
thread randomly flips a coin with probability p to be an PQ::add() and 1 − p
to be a PQ::removeMin(). We started a run after inserting 2000 elements in the
priority queue for stable state results.

Our priority queue algorithm (pqe) uses combining and elimination, and lever-
ages the parallelism of PQ::add().We performed experiments to compare against
previous priority queues using combining methods, such as flat combining skiplist
(fcskiplist) and flat combining pairing heap (fcpairheap). We also compared
against previous priority queues using skiplists with parallel operations, such
as a lock free skiplist (lfskiplist) and a lazy skiplist (lazyskiplist). The flat com-
bining methods are very fast at performing PQ::removeMin() operations, which
then get combined and executed together. However, performing the PQ::add()

operations sequentially is a bottleneck for these methods. Conversely, the lf-
skiplist and lazyskiplist algorithms are very fast at performing the parallel adds,
but get significantly slowed down by having PQ::removeMin() operations in the
mix, due to the synchronization overhead involved. Our pqe design tries to ad-
dress these limitations through our dual (sequential and parallel parts), adaptive
implementation that can be beneficial in the different scenarios.

Fig. 5. Priority queue performance with
50% add()s, 50% removeMin()s

Fig. 6. Priority queue performance with
80% add()s, 20% removeMin()s

Fig. 7. add() work breakdown Fig. 8. removeMin() work breakdown
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We considered different percentages of PQ::add() and PQ::removeMin() in
our tests. When the operations are roughly the same number, pqe can fully
take advantage of both elimination and parallel adds, so it has peak perfor-
mance. Figure 5 shows how for 50% PQ::add() and 50% PQ::removeMin(), pqe
is much more scalable and can be up to 2.3 times faster than all other methods.
When there are more PQ::add() than PQ::removeMin(), as in Figure 6 with
80% PQ::add() and 20% PQ::removeMin(), pqe behavior approaches the other
methods, but it is still 70% faster than all other methods at high thread counts.
In this specific case there is only little potential for elimination, but having par-
allel insertion operations makes our algorithm outperform the flat combining
methods. The lazyskiplist algorithm also performs better than other methods,
as it also takes advantage of parallel insertions. However, pqe uses the limited
elimination and the combining methods to reduce contention, making it faster
than the lazyskiplist. For more PQ::removeMin() operations than PQ::add() op-
erations, the pqe’s potential for elimination and parallel adds are both limited,
thus other methods can be faster. Pqe is designed for high contention scenarios,
in which elimination and combining thrive. Therefore, it can incur a penalty at
lower thread counts, where there is not enough contention to justify the overhead
of the indirection caused by the elimination array and the server thread.

To better understand when each of the optimizations used is more beneficial,
we analyzed the breakdown of the PQ::add() and PQ::removeMin() operations
for different PQ::add() percentages. When we have 80% PQ::add(), most of
them are likely to be inserted in parallel (75%), with a smaller percentage being
able to eliminate and an even smaller percentage being executed by the server, as
shown in Fig. 7. In the same scenario, 75% of removeMin() operations eliminate,
while the rest is executed by the server, as seen in Fig. 8. For balanced workloads
(50%− 50%), most operations eliminate and a few PQ::add() operations are in-
serted in parallel. When the workload is dominated by PQ::removeMin(), most
PQ::add() eliminate, but most PQ::removeMin() are still left to be executed
by the server thread, thus introducing a sequential bottleneck. Eventually the
priority queue would become empty, not being able to satisfy PQ::removeMin()

requests with an actual value anymore. In this case, any add() operation can
eliminate, allowing full parallelism. We do not present results for this case be-
cause it is an unlikely scenario that unrealistically favors elimination.

4.1 Evaluating the Overhead of PQ::moveHead() and PQ::chopHead()

Maintaining separate skiplists for the sequential and the parallel part of the
priority queue is beneficial for the overall throughput, but adds some overhead,
which we quantify in this section. The number of elements that become part
of the sequential skiplist changes dynamically based on the observed mix of
operations. This adaptive behavior helps reduce the number of moveHead() and
chopHead() operations required. Table 1 shows the percentage of the number of
head-moving operations out of the total number of PQ::removeMin() operations
for different mixes of PQ::add() and PQ::removeMin() operations. The head-
moving operations are rarely called due to the priority queue’s adaptive behavior.
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Table 1. The number of head-moving operations as a percentage of the total number
of PQ::removeMin() operations, considering different add() and removeMin() mixes

Add() percentages % moveHead() % chopHead()
80 0.24% 0.03%

50 0.32% 0.01%

20 0.00% 0.00%

5 Hardware Transactions

Transactional memory [5] is an optimistic mechanism to synchronize threads
accessing shared data. Threads are allowed to execute critical sections spec-
ulatively in parallel, but, if there is a data conflict, one of them has to roll
back and retry its critical section. Recently, IBM and Intel added HTM instruc-
tions to their processors [12,7]. In our priority queue implementation, we used
Intel’s Transactional Synchronization Extensions (TSX) [7] to simplify the im-
plementation and reduce the overhead caused by the synchronization necessary
to manage a sequential and a parallel skiplist. We evaluate our results on an
Intel Haswell four core processor, Core i7-4770, with hardware transactions en-
abled (restricted transactional memory - RTM), running at 3.4GHz. There are
8GB of RAM shared across the machine and each core has a 32KB L1 cache.
Hyperthreading was enabled on our machine so we collected results using all 8
hardware threads. Hyperthreading causes resource sharing between the hyper-
threads, including L1 cache sharing, when running with more than 4 threads,
thus it can negatively impact results, especially for hardware transactions. We
did not notice a hyperthreading effect in our experiments. We used the GCC 4.8
compiler with support for RTM and optimizations enabled (-O3).

5.1 Skiplist

The Single-Writer-Multi-Readers lock used to synchronize the sequential and
the parallel skiplists complicates the priority queue design and adds overhead.
In this section, we explore an alternative design using hardware transactions. The
naive approach of making all operations transactional causes too many aborts.
Instead, the server increments a timestamp whenever a head-moving operation
- SL::moveHead() or SL::chopHead() - starts or finishes. A SL::addPar() op-
eration first reads the timestamp and executes a nontransactional SL::find()
and then starts a transaction for the actual insertion, adding the server’s times-
tamp to its read set and aborting if it is different from the initially recorded
value. Moreover, if the timestamp changes after starting the transaction, in-
dicating a head-moving operation, the transaction will be aborted due to the
timestamp conflict. If the timestamp is valid, SL::find() must have recorded
the predecessors and successors of the new bucket at each level i in preds[i]
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and succs[i], respectively. If a bucket already exists, the counter is incremented
inside the transaction and the operation completes. If the bucket does not exist,
the operation proceeds to check if preds[i] points to succs[i] for all lev-
els 0 ≤ i ≤ MaxLvl. If so, the pointers have not changed before starting the
transaction and the new bucket can be correctly inserted between preds[i] and
succs[i]. Otherwise, we commit the (innocuous) transaction, yet restart the
operation.

Figures 9 and 10 compare the performance of the lock-based implementation
and the implementation based on hardware transactions for two different per-
centages of PQ::add()s and PQ::removeMin()s. When fewer PQ::removeMin()
operations are present, the timestamp changes less frequently and the PQ::add()
transactions are aborted fewer times, which increases performance in the 80%-
20% insertion-removal mix. In the 50%-50% mix, we obtain results comparable
to the pqe algorithm using the lock-based approach, albeit with a much simpler
implementation.
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5.2 Evaluating the Overhead of Aborted Transactions

The impact of aborted transactions is reported in Tables 2 and 3. As the num-
ber of threads increases, the number of transactions per successful operation also
increases, as does the percentage of operations that need more than 10 retries
to succeed. Note that the innocuous transactions that find inconsistent point-
ers, changed between the SL::find() and the start of the transaction are not
included in the measurement. After 10 retries, threads give up on retrying the
transactional path and the server executes the operations on their behalf, either
in the sequential part, using sequential operations, or in the parallel part, using
CAS() for the pointer changes, but without holding the readers lock. The server
does not need to acquire the readers lock because no other thread will try to
acquire the writer lock.
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Table 2. Transaction stats for varying #
of threads, with 50% PQ::add()s and 50%
PQ::removeMin()s

Working
Threads

Transactions per
successful operation

Fallbacks per
total operations

1 1.01 0.00%

2 2.34 0.51%

3 3.21 1.73%

4 3.31 2.12%

5 3.46 2.74%

6 3.46 2.67%

7 3.61 3.25%

Table 3. Transaction stats for varying
mixes, with 1 server thread and 3 working
threads

Add
percentage

Transactions per
successful operation

Fallbacks per
total operations

100 1.32 0.00%

80 1.77 0.01%

60 2.37 0.29%

50 3.22 2.01%

40 3.64 5.24%

20 3.92 10.34%

0 1.09 0.00%

The number of transactions per successful operation is at most 3.92, but 3.22
in the 50%− 50% case. The percentage of operations that get executed by the
server (after aborting 10 times) is at most 10% of the total number of operations,
but between 1.73% and 2.01% for the 50%− 50% case.

6 Conclusion

In this paper, we describe a technique to implement a scalable, linearizable pri-
ority queue based on a skiplist, divided into a sequential and a parallel part.
Our scheme simultaneously enables parallel PQ::add() operations as well as se-
quential batched PQ::removeMin() operations. The sequential part is beneficial
for batched removals, which are performed by a special server thread. While
detaching the sequential part from the parallel part is non-negligible cost-wise,
the sequential part has the potential to serve multiple subsequent removals at
a small constant cost. The parallel part is beneficial for concurrent insertions of
elements with bigger keys (smaller priority), not likely to be removed soon. In
other words, we integrate the flat combining/delegation paradigm introduced in
prior work with disjoint-access parallelism.

In addition, we present a novel priority queue elimination algorithm, where
PQ::add() operations with keys smaller than the priority queue minimum can
eliminate with PQ::removeMin() operations. We permit PQ::add() operations,
with keys small enough, to linger in the elimination array, waiting to become
eligible for elimination. If the elimination is not possible, the operation is dele-
gated to the server thread. Batched removals (combining) by the server thread is
well-integrated with both: (1) parallelism of add() operations with bigger keys;
and (2) the elimination algorithm, that possibly delegates failed elimination at-
tempts (of elements with smaller keys) to the server thread in a natural manner.
Our priority queue integrates delegation, combining, and elimination, while still
leveraging the parallelism potential of insertions.
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Abstract. Linearizability is a powerful consistency condition but can
be expensive to implement. Recently, reserarchers have suggested gain-
ing performance by relaxing the sequential specification of objects’ data
types. We consider, for the first time, linearizable message-passing im-
plementations of relaxed Queues and prove upper and lower bounds on
the elapsed time for Dequeue operations both in the worst case and on
average.

Our results imply that worst-case time complexity does not indicate
benefit from relaxation. In contrast, we present implementations of re-
laxed Queues for which the average time complexity of Dequeue is signifi-
cantly smaller than both the worst-case lower bound for unrelaxed Queues
and a newly-proved lower bound on the average time for unrelaxedQueues.
We also prove lower bounds on the average time complexity of Dequeue
for relaxed Queues that show our algorithms are asymptotically optimal
and that there is an inherent complexity gap between different levels of
relaxation.

Keywords: consistency conditions, distributed data structures, relaxed
specifications, average cost, time bounds.

1 Introduction

The advent of cloud computing has rekindled interest in implementing shared
data objects in message-passing distributed environments. Linearizability [9,7]
has been the gold standard of consistency conditions for shared objects; for in-
stance, the cloud storage system Windows Azure Storage provides linearizability
(strong consistency) [5]. However, linearizability can be expensive to implement,
in both message-passing [10,4] and shared memory [3], as processors must com-
municate in order to synchronize. One approach to circumventing this problem is
to consider consistency conditions weaker than linearizability for “classic” data
types; for instance, quasi-linearizability [1], sequential consistency [8], eventual
consistency [11], and quiescent consistency [2]. Another approach, and the one
we follow here, is to retain linearizability as the desired consistency condition
but consider “relaxed” versions of classic data types. [1] and [6] introduced and
formalized this concept. The relaxations typically allow nondeterminism in the
return values of operations.
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We explore the possible performance benefits of four kinds of relaxed data
structures, originally proposed by Henzinger et al. [6]: out-of-order, lateness,
restricted-out-of-order, and stuttering. We focus on the elapsed time for opera-
tions when the shared object is implemented in a message-passing system with
bounded message delays and approximately synchronized clocks. In contrast,
Henzinger et al. considered shared memory implementations of relaxed shared
objects. To our knowledge, we are the first to consider message-passing imple-
mentations of these relaxations.

First, we prove that for a general class of operations, the worst-case elapsed
time must be at least d, the maximum message delay. We then show that for
three of the relaxations being considered (lateness, restricted-out-of-order, and
stuttering), the Dequeue operation of the FIFO Queue data type falls into this
class and thus must take at least d time. This lower bound indicates that, with
respect to worst-case time for operations, there is marginal gain, at best, from
these relaxations, as recent work [12] has shown that an unrelaxed FIFO Queue
can be implemented with worst-case time for Dequeue at most d+ ε, where ε is
the maximum skew between local clocks.

In light of this negative result regarding worst-case time for Dequeues, we
next consider average time, in the hope that relaxed data types would require
expensive synchronization less frequently. By average time, we mean the sum
of the total time taken by all Dequeues, divided by the number of Dequeues,
in the worst case. As a first step, we focus on shared Queues; analogous results
hold for shared Stacks. We consider two relaxations from [6], each with an integer
parameter k ≥ n, where n is the number of processes. In an out-of-order k-relaxed
Queue, the Dequeue operation can return any one of the k oldest elements in
the Queue. In a restricted-out-of-order k-relaxed Queue, the Dequeue operation
can return any one of the k − � oldest elements in the Queue, where � is the
number of elements that were enqueued after the current top was enqueued but
have already been dequeued. We present an algorithm for implementing an out-
of-order k-relaxed Queue in which the average time for Dequeue is d/� kn�+ε. We
also present an algorithm for implementing a restricted-out-of-order k-relaxed
Queue in which the average time for Dequeue is (2d+ ε)/� kn�+ ε. In both cases,
the average time for the Dequeue operation is significantly below the worst-case
lower bound of d, and decreases as k increases. In contrast, we show that the
best possible average time for Dequeue in an unrelaxed Queue must be at least
d(1− 1

n ), indicating that relaxation does pay when considering average time.

We further show a lower bound of d/� kn� on the average time for Dequeue
for the same two relaxations, still for k ≥ n, which indicates that one of our
algorithms is optimal while the other is within a factor of two of optimal. Our
upper and lower bounds on averageDequeue time imply that there is an inherent
performance benefit achievable by increasing k for these two forms of relaxation,
as the lower bounds for any fixed value of k are larger than the corresponding
upper bounds for sufficiently greater values of k. In contrast, the results in [1],[6]
show performance improvements for shared memory implementations, based on
experimental analyses of specific algorithms; no lower bounds are shown.
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Unlike prior work that has proved lower bounds on the time complexity of
operations (e.g., [10,4,3,12]), ours are for nondeterministic data types. Nonde-
terminism is harder to deal with, as one cannot always rely on some operation
returning a certain value. In our proofs, we take care to argue that the object
can be “boxed into a corner” under certain circumstances, so that there is only
one possible right answer.

Table 1 summarizes the known bounds on the elapsed time for Dequeue.
Section 2 contains our definitions and model assumptions. In Section 3, we prove
lower bounds on the worst-case time for operations. Our two algorithms and their
average-time analyses are presented in Section 4. Section 5 contains our lower
bounds on the average time for Dequeues, and we conclude in Section 6.

Table 1. Bounds on Dequeue Time Complexity

Worst Case Cost Average Cost

Lower Bound Upper Bound Lower Bound Upper Bound

FIFO Queue d+min{ε, u, d
3
} [12] d+ ε [12] d(1− 1

n
) (Sec 5.1) d+ ε [12]

Out-of-Order ? d+ ε [12]
d

�k/n�

(Sec 5.2; k < n2)

d
�k/n� + ε

(Sec 4.2; heavily-loaded)

Lateness d (Sec 3) d+ ε [12] ? d
�k/n� + ε

Restricted-
Out-of-Order

d (Sec 3) d+ ε [12] d
�k/n� (Sec 5.3)

2d+ε
�k/n� + ε

(Sec 4.3; heavily-loaded)

Stuttering d (Sec 3) d+ ε [12] ? ?

2 Model and Definitions

2.1 Specifying Data Types

We begin by defining abstract data types in the sequential case. We follow the
definitions in [12] but modified to encompass nondeterminism (and thus relax-
ation).

A data type T provides a set of operations OPS(T ). Each operation OP has a
set of possible invocations, which differ only in their possible arguments, and a set
of possible responses, which differ only in their possible return values. An invoca-
tion of an operation followed immediately by a response for the same operation
creates an operation instance. This can be denoted OPinv(arg)-OPresp(ret), or,
more concisely, OP (arg, ret).

A data type T also provides a set of sequences of its operation instances,
called the legal sequences and denoted L(T ). L(T ) must satisfy the following
constraints:

– Prefix-Closure: If ρ is in L(T ), then every prefix of ρ is also in L(T ). Also,
the empty sequence is in L(T ).

– Completeness: If ρ is in L(T ), then for every operation invocationOPinv(arg),
there exists a response OPresp(ret) such that ρ·OP(arg,ret) is in L(T ).
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Queue Specifications We give the definitions of a standard FIFO Queue and
four different relaxed versions, which we will be using in this paper. The special
value ⊥ is assumed to not be a possible input. These relaxations were specified
in terms of state machines in [6]. We here give equivalent definitions in terms
of legal sequences of operation instances. These relaxations allow a bounded
non-deterministic choice of return value for Dequeue.

Definition 1. A Queue over a set of values V is a data type with two operations:

– Enqueue(val,−), val ∈ V ; intuitively, adds element val and has no return
value

– Dequeue(−, val), val ∈ V ∪{⊥}; intuitively, removes an element and returns
it, and has no argument

A sequence of operation instances is legal iff it satisfies the following conditions:

(C1) Every argument to an instance of Enqueue is unique1.
(C2) Every return value of a Dequeue instance is unique.
(C3) Every non-⊥ value which an instance of Dequeue returns is the argument

to a previous instance of Enqueue.
(C4) If ρ is a legal sequence of operation instances, then ρ · Dequeue(−, val),

val �= ⊥, is legal iff Enqueue(val,−) is the first Enqueue in ρ which does
not have a matching Dequeue(−, v) in ρ. Furthermore, ρ ·Dequeue(−,⊥)
is legal iff every Enqueue(val,−) in ρ has a matching Dequeue(−, val)
in ρ.

The relaxed versions of Queue use some of conditions (C1)-(C3), but each
modifies condition (C4) to give a different set of legal return values for Dequeue,
and one does not use (C2). The altered versions of (C4) allow a larger set of
possible return values.

The out-of-order relaxation, instead of requiring a Dequeue to return the old-
est element, allows any of the k oldest elements as a return value for a Dequeue.

Definition 2. An Out-of-Order k-Relaxed Queue satisfies (C1)-(C3) from Def-
inition 1, and the following condition:

(C4) If ρ is a legal sequence of operation instances, then ρ ·Dequeue(−, val), is
legal iff there are fewer than k distinct val′s such that Enqueue(val′,−)
precedes Enqueue(val,−) in ρ and there is not a matching Dequeue(−, val′)
in ρ. Furthermore, ρ · Dequeue(−,⊥) is legal iff there are fewer than k
Enqueue(val′,−)’s in ρ without matching Dequeue(−, val′)’s in ρ.

The next relaxation, lateness, does not impose any restriction on how close to
the true top an element which a Dequeue returns must be, but instead enforces
that the oldest element Enqueued is returned by at most the kth Dequeue after
it became the oldest element left in the structure. In effect, the structure tracks
the lateness of the current top element (the number of other elements which
have been returned by Dequeues since it became the top element). This lateness
must always be less than k.

1 This can easily be achieved by timestamping elements when they are added.
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Definition 3. A Lateness k-Relaxed Queue satisfies (C1)-(C3) from Definition
1, and the following condition:

(C4) If ρ is a legal sequence of operation instances, then ρ · Dequeue(−, val) is
legal iff every Enqueue(val′,−) preceding Enqueue(val,−) has a matching
Dequeue(−, val′) inρor thereare fewer thank−1 instancesDequeue(−, val′)
that follow the first Enqueue(val′′,−) which does not have a matching
Dequeue(−, val′′) in ρ.
Further, ρ ·Dequeue(−,⊥) is legal iff there are fewer than k− 1 instances
Dequeue(−, val′) that follow the first Enqueue(val′′,−) without a match-
ing Dequeue(−, val′′) in ρ or every val′ such that Enqueue(val′,−) is in
ρ has a matching Dequeue(−, val′) in ρ.

The restricted out-of-order relaxation is effectively a combination of the previ-
ous two relaxations. It allows an instance of Dequeue to return any of the oldest
k elements, as fixed in time when last the single oldest element was returned.
Thus, at least once every k instances of Dequeue, the true top element must be
returned.

Definition 4. A Restricted Out-of-Order k-Relaxed Queue satisfies (C1)-(C3)
from Definition 1, and the following condition:

(C4) If ρ is a legal sequence of operation instances, ρ·Dequeue(−, val), val �= ⊥,
is legal iff, in the suffix ρ′ of ρ which starts at the first Enqueue(val′,−)
which does not have a matching Dequeue(−, val′) in ρ, Enqueue(val,−)
is among the first k instances of Enqueue.
ρ · Dequeue(−,⊥) is legal iff there are fewer than k instances
Enqueue(val′,−) in ρ′.

The stuttering relaxation has a very different flavor than the other relaxations.
Instead of requiring a return value to be one of the oldest left in the structure, it
allows Dequeues to execute without actually changing the simulated state of the
shared queue. Instead, up to k times, the same value may be returned to multiple
instances of Dequeue, as if it were not actually removed from the shared queue.

Definition 5. A Stuttering k-Relaxed Queue satisfies (C1) and (C3) from Def-
inition 1, and the following condition:

(C4) If ρ is a legal sequence of operation instances, then ρ · Dequeue(−, val),
val �= ⊥ is legal iff there is no Dequeue(−, val′) with val′ �= val such that
either Enqueue(val′,−) is in ρ after Enqueue(val,−) or val′ = ⊥, and
there are fewer than k copies of Dequeue(−, val) in ρ.
ρ ·Dequeue(−,⊥) is legal iff every Enqueue(val′,−) in ρ has at least one
corresponding Dequeue(−, val′).

2.2 System Model

We consider a set Π = {p0, . . . , pn−1} of processes, each modeled as a state
machine. There are three kinds of events that can trigger a transition of the
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state machine for a process: the receipt of a message, a local timer going off,
or the invocation of an operation instance. A step of a process is a 6-tuple
(s, T, C,M,R, s′), where s is a state of the process (the old state), T is a trigger
event, C is the local clock value (a real number), M is a set of messages (to be
sent), R is either ∅ or an operation instance response, and s′ is a state of the
process (the new state), such that M , R, and s′ are the result of the transition
function operating on s, T , and C.

A view of a process is a sequence of steps such that

– the old state of the first step is an initial state of the state machine;
– the old state of each step after the first one equals the new state of the

previous step;
– each timer in the old state of each step has a value that does not exceed the

clock time of the step;
– if the trigger of a step is a timer going off, then the old state of the step has

a timer whose value is equal to the clock time for the step
– clock times of steps are increasing, and if the sequence is infinite then they

increase without bound;
– at most one operation instance is pending at a time

A timed view is a view with a real number, called “real time”, associated
with each step. There must exist a real number c such that, for each step, the
difference between the clock time and the real time is exactly c (the “offset” of
the process’ local clock from real time).

A run is a set of n timed views, one for each process, such that every message
receipt has exactly one matching message send, and every message send has at
most one matching message receipt. A run is complete if

– every message sent is received; and
– each timed view is either infinite or ends in a state in which no timers are

set.

A run is admissible with respect to parameters d, u, and ε, if

– every received message has delay in the range [d − u, d] and if a message is
sent but not received, then the recipient’s last step is at real time less than
t+ d, where t is the real time when the message is sent;

– for all processes pi and pj , |ci− cj | ≤ ε, where ci is the clock offset of pi and
cj is the clock offset of pj .

We assume that any message from a process to itself is simulated as taking the
minimum message delay d− u.

We consider only algorithms which are Eventually Quiescent: Every complete
admissible run with a finite number of operations is finite (i.e., every view is
finite).

2.3 Correctness Condition

We are interested in algorithms that run on the message-passing model described
in Section 2.2 and provide a linearizable implementation of data types described
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in Section 2.1. We require such an algorithm to satisfy the following two condi-
tions:

1. Liveness: In every complete admissible run, every operation invocation has
a matching response and every response has a matching invocation.

Because of the Liveness property, in every complete admissible run, we can
pair up matching operation invocations and responses to form operation in-
stances in the run. We can now state our second requirement:

2. Linearizability: For every complete admissible run R, there is a permutation
π of the set of operation instances in R such that (i) π is legal and (ii) if
operation instance op1 responds before operation instance op2 is invoked,
with respect to real time in R, then op1 precedes op2 in π. We call π a
linearization of R.

The worst-case time complexity of operation OP , denoted |OP |, is defined as
the maximum over every instance of OP in every complete admissible run, of the
real time that elapses between the invocation of the instance and its response.
Consider a run R, an operation OP , and a real time t. Let avg time(R,OP, t) be
the sum of the elapsed time taken by all instances of OP in R which complete
by time t, divided by the number of such instances of OP . Then the average
time complexity of OP is the least upper bound, over every complete admissible
run R and every real time t, of avg time(R,OP, t).

3 Worst-Case Lower Bound

First, we will show a lower bound on the worst case time complexity for a class of
operations which includes some of the Dequeues defined in the previous section.
This lower bound is nearly equal to the upper bound given in [12] for arbitrary
data types. This shows that there is negligible, if any, benefit from relaxation,
with regard to this complexity measure.

To show this bound, we consider runs carefully structured so that the sequen-
tial specification of the data type gives tight limits on what values are legal to
return. By simultaneously invoking multiple operation instances, we can use an
indistinguishability argument to show that at least one of the instances must
delay returning long enough to learn about another instance.

Definition 6. Define an operation OP to be non-repeatable with respect to
ρ if there exists a sequence of operation instances ρ and an instance
op = OP (arg, ret) ∈ OP such that ρ · op is legal and no ret′ �= ret is a legal
return value for ρ · OP (arg), but ρ · op · op is not legal.

Theorem 1. In any distributed shared memory implementation A, if there is
an admissible run with linearization of its operation instances ρ and operation
OP which is non-repeatable with respect to ρ, then |OP | ≥ d.

We next show that in several relaxations of Queues, Dequeue satisfies the
hypothesis of Theorem 1.
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Lemma 1. For any algorithm implementing a lateness k-relaxed Queue, there
is some admissible run with linearization ρ such that Dequeue is non-repeatable
with respect to ρ.

Corollary 1. In any implementation of a lateness k-relaxed Queue,
|Dequeue| ≥ d.

Lemma 2. For any algorithm implementing a restricted out-of-order k-relaxed
Queue, there is some admissible run with linearization ρ such that Dequeue is
non-repeatable with respect to ρ.

Corollary 2. In any implementation of a restricted out-of-order k-relaxedQueue,
|Dequeue| ≥ d.

Lemma 3. For any algorithm implementing a stuttering k-relaxed Queue which
has an admissible run R in which Dequeue stutters k times, Dequeue is non-
repeatable with respect to the linearization of ρ, where ρ · op is the prefix of R’s
linearization ending with the kth stuttering instance op of Dequeue.

Corollary 3. For any algorithm implementing a stuttering k-relaxed Queue
which in some admissible run has Dequeue stutter k times, |Dequeue| ≥ d.

The arguments used so far in this section to show a lower bound of d on
the worst-case time complexity for relaxed versions of the Dequeue operation of
relaxed Queues can be generalized to operations that remove elements from a set
of elements. Consider any data type which maintains a set of current elements
and has at least two operations, one to add elements and one to remove. Suppose
further that the remove operation cannot remove any single element more than
once. Finally, constrain the set of legal sequences of operation instances so that
repeatedly invoking the remove operation must eventually remove every element
in the set. Then we can show that the remove operation is non-repeatable with
respect to some operation sequence, and thus the remove operation has worst-
case time complexity at least d.

4 k-Relaxed Algorithms for Queues

We have shown that, with regard to the metric of worst-case operation time,
there is no useful gain from relaxation of some common data types. This is
due to the fact that distributed storage must still synchronize itself at times.
But, in a relaxed data type, the required coordination may not be quite as
close, so synchronization may not be required as often. We give two algorithms
which exploit this lesser synchronization requirement to achieve better average
operation cost, where the improvement scales with the degree of relaxation.

4.1 Local Variables

We specify the local variables our algorithms will use. Both algorithms use the
same local variables, with the addition of available fields on lQueue elements
and topsj arrays for Algorithm 2. We will also use the parameter l, defined as⌊
k
n

⌋
, throughout this section.
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– clean: Boolean, initially true
– lQueue: Local copy of data structure, initially empty. Values have two as-

sociated fields: a label field which is initially null and can hold a process id
and a Boolean available, initially true. Behavior is an extension of a local
(non-distributed) FIFO Queue. Operations:
• enq(val): inserts val
• deqByLabel(pj): removes and returns top (oldest) element labeled pj, ⊥
if none exists

• peekByLabel(pj): returns, without removing, top element labeled pj , ⊥
if none exists

• deqBySet(S): removes and returns top element in lQueue which is also
in the set S

• peekBySet(S): returns, without removing, the top element in both
lQueue and S

• contains(val): returns true if val is in lQueue, false otherwise
• size(): returns current number of elements
• sizeByLabel(pj): Returns number of elements with label pj
• unlabeledSize(): returns current number of unlabeled elements
• tail(): returns, without removing, the last element added
• remove(val): removes val
• label(pj, val): label val with pj
• labelOldest(pj, x): labels the oldest x elements with pj

– Pending: Priority queue to hold operation instances, keyed by timestamp;
initially empty. Supports standard operations insert(val, ts), min(),
extractMin()

– topsj [], 0 ≤ j < n: Arrays of data elements of size n, initially empty

4.2 Out-of-Order Relaxed Queues

First, we give an algorithm for an out-of-order k-relaxed Queue. This algorithm
introduces the basic idea behind our later algorithm for restricted out-of-order
k-relaxed Queues. This algorithm assumes k > n, and gives improved average
performance over algorithms for unrelaxed Queues, increasing as k increases by
multiples of n. The algorithm is designed to gracefully degrade performance as
it runs out of elements, since a k-relaxed Dequeue on a Queue with fewer than
k elements is not very meaningful. Instead, there will be an effectively lower k
(down to a minimum of n) until the size of the Queue grows sufficiently. This
also allows us to use fast Enqueues at all times.

The algorithm is inspired by the algorithm from [12]. To allow quick returns
of most operation instances, giving good average performance, we distribute the
top k elements of the Queue, which are legal to return at any given time, evenly
among the processes. Each process can quickly return those elements assigned
to it, then must synchronize to obtain more. When a process needs to return
an element, due to a Dequeue, it returns the top element labeled with its own
id. If there are no elements so labeled, then the process will not return until it has
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Algorithm 1. Code for each process pi to implement a Queue with out-of-order
k-relaxed Dequeue, where k ≥ n and l = �k/n�, part 1.
1: HandleEvent Enqueue(val)
2: send (enq, val, 〈localT ime, i〉) to all
3: setT imer(ε, 〈enq, val, 〈localT ime, i〉〉, respond)
4: HandleEvent r-Dequeue

5: if lQueue.peekByLabel(pi) �= ⊥ then
6: ret = lQueue.deqByLabel(pi)
7: send (deq f, ret, 〈localT ime, i〉) to all
8: setT imer(ε, 〈deq f, ret, null〉, respond)
9: else send (deq s, null, 〈localT ime, i〉) to all

10: HandleEvent ExpireTimer(〈op, val, ts〉, respond)
11: if op == peek then return lQueue.peekByLabel(pi)
12: else if op == deq f then return val
13: else return ACK
14: HandleEvent Receive (op, val, ts) from pj
15: Pending.push(〈op, val, ts〉)
16: setT imer(u+ ε, 〈op, val, ts〉, execute)
17: HandleEvent ExpireTimer(〈op, val, ts〉, execute)
18: while ts ≥ Pending.min() do
19: 〈op′, val′, ts′〉 = Pending.extractMin()
20: executeLocally(op′, val′, ts′)
21: cancelT imer(〈op′, arg′, ts′〉, execute)
22: function executeLocally(op, val, 〈∗, j〉)
23: if op == enq then
24: lQueue.enq(val)
25: if clean == true and lQueue.size() ≤ k then
26: let a = (lQueue.size()− 1) mod n
27: lQueue.label(pa, lQueue.tail())

28: else clean = false
29: if op == deq f then
30: if j �= i then lQueue.remove(val)

31: else
32: if lQueue.peekByLabel(pj) �= ⊥ then
33: ret = lQueue.deqByLabel(pj)
34: else ret = lQueue.deqByLabel(null)

35: labelElements(j)
36: if j == i then return ret
37: if lQueue.size() == 0 then clean = true

38: function labelElements(j)
39: y = lQueue.unlabeledSize()
40: lQueue.labelOldest(pj, x), where x = min{l, �lQueue.size()/n�, y}

waited long enough to learn about concurrent and recent operations at other
processes, effectively synchronizing, as every operation in [12] did.

When a process tries to Dequeue, but has no local elements available and
must synchronize, as part of its operation, it labels more elements for itself. No
more than k elements are ever labeled, and for exactly k to be labeled, each
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process must have l elements labeled2. Thus, since the current process has no
labeled elements, it is safe to claim more, up to a total of l. Then there will be at
most k elements labeled, so every future operation returning a labeled element
will return a legal element, according to the relaxation.

Before any elements are dequeued (while clean is true), Enqueue operations
label up to k elements in round-robin fashion. This allows the first Dequeue
invoked to return quickly, since it will find elements labeled with its invoking
process. After aDequeue is invoked, we mark the Queue as dirty (clean = false)
and no longer label elements during Enqueues, because round-robin order may
not be maintained if Dequeues are not invoked evenly across all processes. This
maintains the good average performance in executions which may only perform
a few Dequeues.

When there are fewer than k elements left in the Queue, a synchronizing
Dequeue will act as if k were lQueue.size(), the number of elements which it
knows are in the Queue. This means that it labels fewer elements for itself,
allowing even performance across all processes. This behavior is adopted, as
having a k larger than the current size of the Queue means that every element
is legal to return.

Theorem 2. Algorithm 1 is a correct implementation of an out-of-order k-
relaxed Queue.

Out-of-Order Relaxation Performance

Definition 7. We will call a run R heavily loaded if for some linearization π
of R, every prefix of π which is immediately followed by an instance of Dequeue
has at least k more Enqueues than Dequeues.

Theorem 3. The average time complexity of Dequeue in any heavily-loaded
complete, admissible run of Algorithm 1 is no more than d

l + ε, where l = �k/n�.

We can consider the more general case when the Queue is not necessarily
heavily loaded.

Definition 8. At each process pi, the effective l is set when either (1) a Dequeue
at the process is executed in a clean state or (2) when a slow Dequeue labels

elements, to min{l,
⌊
lQueuei.size()

n

⌋
,

lQueuei.unlabelled size()} and remains until a new effective l is set.

Thus, every instance in a linearization, except initial Enqueues, can be said to
have an effective l determined by its invoking process and its location in the lin-
earization. We show that each process’ Dequeues maintain average performance
determinedd by their effective l, which we call l′. The proof is very similar to
the proof of Theorem 3, using the fact that there are at most l′ elements labeled
pi at any time.

2 Or l + 1 elements when k is not an exact multiple of n, and elements have been
labeled by Enqueues.
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Theorem 4. Consider a complete, admissible run. For each process pi, the av-
erage time complexity of Dequeues executed by pi during a time interval in which
its effective l is equal to l′ is at most d

l′ + ε.

4.3 Restricted Out-of-Order Relaxed Queues

We now present an algorithm for implementing a Queue with restricted out-of-
order k-relaxed Dequeues, for k ≥ n. This algorithm uses the idea of locally
distributing the top elements of the Queue to allow processes to return quickly
several times, before they must take time to synchronize their state with other
processes. In addition, the algorithm uses the synchronizing operations to guar-
antee that the Queue’s head is returned with sufficient frequency. Doing this
imposes extra cost on some operations, because they effectively may be forced
to “steal” the head element from another process. The algorithm still has good
performance for sufficiently large k, and performance which improves monoton-
ically as k increases.

The algorithm assigns elements to different processes by labeling them with
process ids. The correctness argument depends on an invariant of the labeling:
every element which has a label in the local state of a process is legal for an
instance of Dequeue by that process to return. Further, labeled elements will
only be returned by the process whose id they have, unless another process goes
through an expensive synchronization process to steal it. Thus, if a process finds
an element labeled with its own id, it can return it quickly without waiting to
coordinate with other processes.

If a Dequeue does not find any elements labeled with its invoking process’ id,
then it must find another element to return, making it a slow Dequeue, since
this will be expensive and require synchronization. A slow Dequeue ensures that
the top element in the simulated queue is removed, either by itself or by another,
concurrent slow Dequeue. When a process must return the top element, by the
definition of a restricted out-of-order k-relaxed queue the top k elements in the
simulated queue are now legal to return, so the process labels them. Thus, after
a process executes a slow Dequeue, there will be more elements labeled with its
id, if there are enough elements currently stored.

To ensure the top element is returned, a process pi which invokes a slow
Dequeue notifies all other processes of the operation instance. Each other pro-
cess pj will mark the element labeled pj which is nearest the top of the simulated
queue as unavailable for fast local return and broadcast it to all, marking it as
being relevant to a slow Dequeue invoked at pi. We call this element the local
top for pj . Timers in the algorithm are set such that every process will receive
every other process’ local top before it tries to execute the slow Dequeue. Since
processes label elements from the top of the queue without skipping, if there
are any labeled elements, then the top element in the simulated queue will be
some process’ local top. Then when a slowDequeue is executed, it will return the
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top element in the entire queue, unless another, concurrent slow Dequeue has
already returned it. In this case, the later slow Dequeue need not worry about
returning the global top or labeling elements, and can return any of the local
top elements, since they are reserved by their processes.

Since Dequeues synchronize as needed when the simulated queue empties,
Enqueues do not need to synchronize. Thus, we always have fast Enqueues.

Theorem 5. Algorithm 2 is a correct implementation of an out-of-order k-
relaxed Dequeues.

Restricted Out-of-Order Relaxation Performance We show the following
upper bound on the average cost of Dequeues in Algorithm 2:

Theorem 6. The average time complexity per Dequeue in any heavily loaded,
complete, admissible run of Algorithm 2 is no more than 2d+ε

l +ε, where l = �k/n�.

We will later compare this to lower bounds on performance of an arbitrary
algorithm for unrelaxed Dequeues to show that this relaxation gives better av-
erage performance. Further, our bound decreases with increasing k, which shows
that stronger relaxation of the data type specification allow better performance.

4.4 Relaxed Stacks

Relaxed Stacks, with different semantics for Pop operations, can be defined
analogously to relaxed Queues. The lower bounds from Section 3 all also apply
to the equivalently-relaxed Stack.

The algorithms can be altered to implement Stacks with k-relaxed Pops. The
only change required is that Pushes will be slow, taking d + ε or 2d + ε time
respectively for the out-of-order and restricted out-of-order relaxations. This
extra cost is necessary because there is always contention between Push and
Pop, since they interact with the same end of the data structure. This higher
performance cost suggests that this algorithm, and possibly any implementation
of a relaxed stack,is best used in scenarios with a long initialization time to add
elements to the data structure, but which need high performance while only
removing elements.

The upper bounds on average time complexity given by adapting our algo-
rithms for out-of-order k-relaxed stacks will be d

l for out-of-order relaxed Pop
and d + ε for Push. For restricted out-of-order k-relaxed stacks, we will have
2d+ε

l + ε average time complexity for Pop and 2d+ ε for Push.
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Algorithm 2. Code for each process pi to implement a Queue with restricted
out-of-order k-relaxed Dequeues for k ≥ n, where l = �k/n�.
1: HandleEvent Enqueue(val)
2: send (enq, val, 〈localT ime, i〉) to all
3: setT imer(ε, 〈enq, val, 〈localT ime, i〉〉, respond)
4: HandleEvent r-Dequeue

5: if lQueue.peekByLabel(pi ) �= ⊥ then
6: x = lQueue.deqByLabel()
7: send (deq f, x, 〈localT ime, i〉) to all
8: setT imer(ε, 〈deq f, x, 〈localT ime, i〉〉, respond)
9: else send (deq s, null, 〈localT ime, i〉) to all

10: HandleEvent Receive (op, val, ts) from pj

11: Pending.push(〈op, val, ts〉)
12: if op = deq s then
13: clear topsj
14: top = lQueue.peekByLabel(pi )
15: top.available = false
16: send (top, j) to all

17: setT imer(d + u + ε, 〈op, val, ts〉, execute)
18: HandleEvent Receive (val, k) from pj

19: topsk[j] = val

20: HandleEvent ExpireTimer(〈op, val, ts〉, respond)
21: if op == deq f then return val
22: else return ACK
23: HandleEvent ExpireTimer(〈op, val, ts〉, execute)
24: while ts ≥ Pending.min() do
25: 〈op′, val′, ts′〉 = Pending.extractMin()
26: executeLocally(op′, val′, ts′)
27: cancelT imer(〈op′, arg′, ts′〉, execute)
28: function executeLocally(op, val, 〈∗, j〉)
29: if op == enq then
30: lQueue.enq(val)
31: if clean == true and lQueue.size() ≤ k then
32: let a = (lQueue.size() − 1) mod n
33: lQueue.label(pa , lQueue.tail())

34: else
35: clean = false
36: if op == deq f then
37: if j �= i then lQueue.remove(val)

38: else if op == deq s then
39: if lQueue.peekBySet(topsj ) �= ⊥ then
40: ret = lQueue.deqBySet(topsj )
41: else if lQueue.peekByLabel(pj ) �= ⊥ then
42: ret = lQueue.deqByLabel(pj )
43: else
44: ret = lQueue.deqByLabel(null)

45: if ∀x ∈ topsj , lQueue.contains(x) == true then
46: labelElements()

47: if �deq s ∈ Pending and ∃topsj [i] for some 0 ≤ j < n then topsj [i].available = true

48: if j == i then return ret

49: if lQueue.size() == 0 then clean = true

50: function labelElements

51: while lQueue.unlabeledSize() > 0 and
∃j ∈ [0, n − 1] s.t. lQueue.sizeByLabel(pj ) < min{l, �Queue.size/n�} do

52: let m = minj{lQueue.sizeByLabel(pj )}
53: lQueue.label(pm , lQueue.peekByLabel(null))
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5 Lower Bounds on Average Time Complexity

Finally, we give lower bounds on the average time complexity of Dequeue oper-
ations in Queues. We show, first, that both of our algorithms give performance
gains over unrelaxed Queues, when we consider average time per operation. This
verifies our intuition that a relaxed data type can allow higher performance by
reducing the required frequency of synchronization between processes.

Next, we give lower bounds on the average cost of Dequeues for algorithms
implementing relaxed Queues. We show that our algorithm for Out-of-Order k-
relaxed Queue is approximately optimal for Dequeue (with an extra term of ε,
the clock skew bound), for reasonable values of k. We then show a lower bound
for the Restricted Out-of-Order k-relaxed Queue which is approximately a factor
of two less than the performance of our algorithm. Thus, we see that we have
algorithms that are near-optimal for both of these intuitive relaxations, and
implicitly for lateness-k relaxed Queues, as well, since a restricted out-of-order
k-relaxed Queue is also lateness k-relaxed.

Our proofs rely heavily on the indistinguishability of runs, and the fact that
no element can be returned more than once. We construct runs in which any
algorithm with better performance than the lower bound we wish to show must
have multiple processes behave in such a way that more than one will return the
same element, based on the information they have. This contradiction allows us
to conclude that algorithms performing faster than the proposed lower bounds
are impossible.

Throughout this section, we assume k ≥ n, the range where our algorithms
are useful.

5.1 Strict Queue Lower Bound

We first consider implementations of unrelaxed Queues. Every Dequeue must
return the unique top element in the structure. The proof for the average cost
is very similar to the proof for the worst case cost. As we forced one operation
instance to wait to make sure that it was not removing the top element a second
time, so we can force multiple simultaneous operation instances to wait, giving
a high average cost.

Theorem 7. In any linearizable implementationof a (unrelaxed)Queue,Dequeue
must take at at least d

(
1− 1

n

)
time, on average.

Our average operation times given by the algorithms for the two relaxations
were d

l and 2d+ε
l + ε, respectively. We can see that for l ≥ 1 and n > 2, the

first algorithm gives better average performance per operation than the lower
bound for unrelaxed queues, and for l ≥ 2, n > 2 and sufficiently small ε, the
second algorithm also performs better. Further, as l (and thus k) increases,
the algorithms’ performance will continue to increase, leaving the lower bound
farther and farther behind. This shows that our algorithms give a benefit over
prior algorithms for unrelaxed Queues, so we turn our attention to determining
how close our algorithms are to optimal.
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5.2 Out-of-Order Relaxation Lower Bound

Theorem 8. Any algorithm implementing an out-of-order k-relaxed Queue with
k < n2 must have an average time complexity for Dequeue at least d

l , where

l = � kn�.

This bound only holds for l < n, which is equivalent to k < n2, but it
is reasonable to think that at some point, having k significantly larger than
the number of available processes ceases to be as useful in real-world systems,
particularly if n is large. Another consideration is that this relaxation may not
be the most useful in practice. When there are fewer than k elements in the
structure, the specification allows returning ⊥, indicating that the structure is
empty, even though it may not be. Thus, there could be algorithms satisfying the
specification of this relaxation which never return every element in the queue.
Due to these limitations, we focus our attention next on the restricted out-of-
order relaxation, which provides stronger guarantees and, as we have seen, is not
asymptotically more costly to implement.

5.3 Restricted Out-of-Order Relaxation Lower Bound

Our last lower bound shows us that Algorithm 2 is less than a factor of two above
the lower bound on average performance. Because a Restricted Out-of-Order k-
Relaxed Queue satisfies the conditions of an Out-of-Order k-relaxed Queue, we
could apply the previous lower bound to these operations as well. However, we
next show a bound without the limitation of k < n2.

Theorem 9. Any algorithm implementing a restricted out-of-order k-relaxed
Queue which guarantees an upper bound c on the average time complexity for
Dequeue at all times during any complete, admissible run must have c > d

l .

5.4 Relaxed Stacks

All three of the lower bounds in this section can be straightforwardly adapted
to stacks, with the semantics of Pop altered analogously to those of Dequeue.
Thus, we achieve analogous results for relaxed stacks as we have shown for
relaxed queues.

6 Conclusion

We have made an introductory exploration into the benefits of relaxing data
types to achieve higher performance in message-passing systems. Based on the
intuition that non-determinism in a data type could make a lower degree of syn-
chronization between processes sufficient, we have shown that there is a benefit
to be gained by relaxing. First, we showed that the worst-case operation time
is not affected by relaxation for a general class of operations. This follows from
the fact that there are still times when we must have synchronization to enforce
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coherent behavior. Proceeding from there, we gave two algorithms for relaxed
Queues which perform significantly better, on average for Dequeues, than the
worst-case lower bounds for strict data types, for sufficient levels of relaxation
(k ≥ n). These algorithms exploit the non-determinism in the data type specifi-
cation to assign different legal elements to different users in such a way that each
user will be able to run locally, and thus quickly, for a time before they must
resynchronize. Even with somewhat more costly synchronizing operations, as in
one of the algorithms, the average cost per operation instance is significantly
below the worst-case cost. To formalize this, we show a lower bound on average
time complexity of Dequeue for unrelaxed Queues. This bound is higher than the
performance our algorithms achieve, showing that there is a strict performance
gain from relaxation. We then show lower bounds on average time complexity
of Dequeue for relaxed Queues. We see that, for moderate relaxation, one of
our algorithms is optimal, and for any level of relaxation, the other is less than
twice the lower bound. Both algorithms have performance which improves as k
increases, achieving greater performance gains from greater relaxation.

Looking forward, we would first like to tighten and complete the bounds
given in this paper. Next, generalization of these results, both towards abstract
data types and towards arbitrary relaxations, is of interest. It would also be
interesting to see if there is any strong correlation between relaxations of data
type specifications, as we consider here, and weaker consistency conditions, such
as sequential consistency or eventual consistency. Some of our results, wherein
processes operate quickly, merely maintaining a consistent local state for a time,
feel as if they might correlate closely to such concepts.
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1 Introduction

Minimum cut is an important measure of networks. It determines, e.g., the net-
work vulnerability and the limits to the speed at which information can be
transmitted. While this problem has been well-studied in the centralized setting
(e.g. [5,9,6,7,14,13,2,20,8]), very little is known in the distributed setting, espe-
cially in the relevant context where communication links are constrained by a
small bandwidth – the so-called CONGEST model (cf. Section 2).

Consider, for example, a simple variation of this problem, called λ-edge-
connectivity: given an unweighted undirected graph G and a constant λ, we want
to determine whether G is λ-edge-connected or not. In the centralized setting,
this problem can be solved in O(m + nλ2 logn) time [2], thus near-linear time
when λ is a constant. (Throughout, n, m, and D denotes the number of nodes,
number of edges, and the network diameter, respectively.) In the distributed
setting, however, non-trivial solutions exist only when λ ≤ 3; this is due to al-
gorithms of Pritchard and Thurimella [19] which can compute 2-edge-connected
and 3-edge-connected components in O(D) and O(D+n1/2 log∗ n) time, respec-
tively, with high probability1. This implies that the λ-edge-connectivity problem
can be solved in O(D) time when λ = 2 and O(D+n1/2 log∗ n) time when λ = 3.

For the general version where input graphs could be weighted, the problem
can be solved in near-linear time [8,13,6,7] in the centralized setting. In the dis-
tributed setting, the first non-trivial upper bounds are due to Ghaffari and Kuhn
[4], who presented (2 + ε)-approximation O((

√
n log∗ n+D)ε−5 log2 n log logn)-

time and O(ε−1)-approximation O(D + n
1
2+ε poly logn)-time algorithms. These

upper bounds are complemented by a lower bound of Ω(D+n1/2/ logn) for any
approximation algorithm which was earlier proved by Das Sarma et al. [1] for
the weighted case and later extended by [4] to the unweighted case. This means
that the running times of the algorithms in [4] are tight up to a polylogn factor.
Yet, it is still open whether we can achieve an approximation factor less than
two in the same running time, or in fact, in any sublinear (i.e. O(D + o(n)))
time.

Results. In this paper, we present improved distributed algorithms for com-
puting the minimum cut both exactly and approximately. Our exact determin-
istic algorithm for finding the minimum cut takes O((

√
n log∗ n +D)λ4 log2 n)

time, where λ is the value of the minimum cut. Our approximation algorithm
finds a (1 + ε)-approximate minimum cut in O((D +

√
n log∗ n)ε−5 log3 n) time

with high probability. (If we only want to compute the (1 + ε)-approximate
value of the minimum cut, then the running time can be slightly reduced to
O((
√
n log∗ n+D)ε−5 log2 n log logn).) As noted earlier, prior to this paper there

was no sublinear-time exact algorithm even when λ is a constant greater than
three, nor sublinear-time algorithm with approximation ratio less than two. Ta-
ble 1 summarizes the results.

1 We say that an event holds with high probability (w.h.p.) if it holds with probability
at least 1− 1/nc, where c is an arbitrarily large constant.
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Table 1. Summary of Results

Reference Time Approximation
Pritchard&Thurimella [19] O(D) for λ ≤ 2 exact
Pritchard&Thurimella [19] O(

√
n log∗ n+D) for λ ≤ 3 exact

This paper O((
√
n log∗ n+D)λ4 log2 n) exact

Das Sarma et al. [1] Ω(
√

n
log n

+D) any
Ghaffari&Kuhn [4] O((

√
n log∗ n+D)ε−5 log2 n log log n) 2 + ε

This paper O((
√
n log∗ n+D)ε−5 log3 n) 1 + ε

Techniques. The starting point of our algorithm is Thorup’s tree packing
theorem [22, Theorem 9], which shows that if we generate Θ(λ7 log3 n) trees
T1, T2, . . ., where tree Ti is the minimum spanning tree with respect to the loads
induced by {T1, . . . , Ti−1}, then one of these trees will contain exactly one edge
in the minimum cut (see Section 4 for the definition of load). Since we can
use the O(

√
n log∗ n +D)-time algorithm of Kutten and Peleg [11] to compute

the minimum spanning tree (MST), the problem of finding a minimum cut is
reduced to finding the minimum cut that 1-respects a tree; i.e., finding which
edge in a given spanning tree defines a smallest cut (see the formal definition in
Section 3). Solving this problem in O(D+

√
n log∗ n) time is the first key technical

contribution of this paper. We do this by using a simple observation of Karger
[8] which reduces the problem to computing the sum of degree and the number
of edges contained in a subtree rooted at each node. We use this observation
along with Garay, Kutten and Peleg’s tree partitioning [11,3] to quickly compute
these quantities. This requires several (elementary) steps, which we will discuss
in more detail in Section 3.

The above result together with Thorup’s tree packing theorem immediately
imply that we can find a minimum cut exactly in O((D +

√
n log∗ n)λ7 log3 n)

time. By using Karger’s random sampling result [7] to bring λ down to
O(log n/ε2), we can find an (1 + ε)-approximate minimum cut in O((D +√
n log∗ n)ε−14 log10 n) time. These time bounds unfortunately depend on large

factors of λ, logn and 1/ε, which make their practicality dubious. Our second
key technical contribution is a new algorithm which significantly reduces these
factors by combining Thorup’s greedy tree packing approach with Matula’s con-
traction algorithm [13]. In Matula’s (2 + ε)-approximation algorithm for the
minimum cut problem, he partitioned the graph into components according to
the spanning forest decomposition by Nagamochi and Ibaraki [14]. He showed
that either a component induces a (2 + ε)-approximate minimum cut, or the
minimum cut does not intersect with the components. In the latter case, it is
safe to contract the components. Our algorithm used a similar approach, but
we partitioned the graph according to Thorup’s greedy tree packing approach
instead of the spanning forest decomposition. We will show that either (i) a
component induces a (1 + ε)-approximate minimum cut, (ii) the minimum cut
does not intersect with the components, or (iii) the minimum cut 1-respect a
tree in the tree packing. This algorithm and analysis will be discussed in detail
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in Section 4. We note that our algorithm can also be implemented in the cen-
tralized setting in O(m+ nε−7 log3 n) time. It is slightly worse than the current
best O(m+ nε−3 log3 n) by Karger [6].

2 Preliminaries

Communication Model. We use a standard message passing network model
called CONGEST [18]. A network of processors is modeled by an undirected un-
weighted n-node graph G, where nodes model the processors and edges model
O(log n)-bandwidth links between the processors. The processors (henceforth,
nodes) are assumed to have unique IDs in the range of {1, . . . , poly(n)} and infi-
nite computational power. We denote the ID of node v by id(v). Each node has
limited topological knowledge; in particular, it only knows the IDs of its neigh-
bors and knows no other topological information (e.g., whether its neighbors are
linked by an edge or not). Additionally, we let w : E(G) → {1, 2, . . . , poly(n)}
be the edge weight assignment. The weight w(uv) of each edge uv is known only
to u and v. As commonly done in the literature (e.g., [4,10,12,11,3,16]), we will
assume that the maximum weight is poly(n) so that each edge weight can be
sent through an edge (link) in one round.

There are several measures to analyze the performance of distributed algo-
rithms. One fundamental measure is the running time defined as the worst-case
number of rounds of distributed communication. At the beginning of each round,
all nodes wake up simultaneously. Each node u then sends an arbitrary message
of B = log n bits through each edge uv, and the message will arrive at node v
at the end of the round. (See [18] for detail.) The running time is analyzed in
terms of number of nodes and the diameter of the network, denoted by n and
D respectively. Since we can compute n and 2-approximate D in O(D) time, we
will assume that every node knows n and the 2-approximate value of D.

Minimum Cut Problem. Given a weighted undirected graph G = (V,E),
a cut C = (S, V \ S) where ∅ � S � V , is a partition of vertices into two
non-empty sets. The weight of a cut, denoted by w(C), is defined to be the sum
of the edge weights crossing C; i.e., w(C) =

∑
u∈S,v/∈S w(uv). Throughout the

paper, we use λ to denote the weight of the minimum cut. A (1+ε)-approximate
minimum cut is a cut C whose weight w(C) is such that λ ≤ w(C) ≤ (1 + ε)λ.
The (approximate) minimum cut problem is to find a cut C = (S, V \ S) with
the minimum or approximately minimum weight. In the distributed setting, this
means that nodes in S should output 1 while other nodes output 0.

Graph-Theoretic Notations. For G = (V,E), we define V (G) = V and
E(G) = E. When we analyze the correctness of our algorithms, we will always
treat G as an unweighted multi-graph by replacing each edge e with w(e) by w(e)
copies of e with weight one. We note that this assumption is used only in the
analysis, and in particular we still allow only O(log n) bits to be communicated
through edge e in each round of the algorithm (regardless of w(e)). For any cut
C = (S, V \ S), let E(C) denote the set of edges crossing between S and V \ S
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in the multi-graph; thus w(C) = |E(C)|. Given an edge set F ⊆ E, we use G/F
to denote the graph obtained by contracting every edge in F . Given a partition
P of nodes in G, we use G/P to denote the graph obtained by contracting each
set in P into one node. Note that E(G/P) may be viewed as the set of edges
in G that cross between different sets in P . For any U ⊆ V , we use G | U to
denote the subgraph of G induced by nodes in U . For convenience, we use the
subscript ∗H to denote the quantity ∗ of H ; for example, λH denote the value
of the minimum cut of the graph H . A quantity without a subscript refer to the
quantity of G, the input graph.

3 Distributed Algorithm for Finding a Cut That
1-Respects a Tree

In this section, we solve the following problem: Given a spanning tree T on a
network G rooted at some node r, we want to find an edge in T such that when
we cut it, the cut defined by edges connecting the two connected component of
T is smallest. To be precise, for any node v, define v↓ to be the set of nodes that
are descendants of v in T , including v. Let Cv = (v↓, V \ v↓). The problem is
then to compute c∗ = minv∈V (G)w(Cv). The main result of this section is the
following.

Theorem 1. There is an O(D+n1/2 log∗ n)-time distributed algorithm that can
compute c∗ as well as find a node v such that c∗ = w(Cv).

In fact, at the end of our algorithm every node v knows w(Cv). Our al-
gorithm is inspired by the following observation used in Karger’s dynamic
programming [8]. For any node v, let δ(v) be the weighted degree of v, i.e.
δ(v) =

∑
u∈V (G) w(u, v). Let ρ(v) denote the total weight of edges whose

end-points’ least common ancestor in T is v. Let δ↓(v) =
∑

u∈v↓ δ(u) and
ρ↓(v) =

∑
u∈v↓ ρ(u).

Lemma 2 (Karger [8], Lemma 5.9). w(Cv) = δ↓(v)− 2ρ↓(v).

Our algorithm will make sure that every node v knows δ↓(v) and ρ↓(v). By
Theorem 2, this will be sufficient for every node v to compute w(Cv). The algo-
rithm is divided in several steps, as follows.

Step 1: Partition T into Fragments and Compute “Fragment Tree”
TF . We use the algorithm of Kutten and Peleg [11, Section 3.2] to partition
nodes in tree T into O(

√
n) subtrees, where each subtree has O(

√
n) diameter2

(every node knows which edges incident to it are in the subtree containing it).
This algorithm takes O(n1/2 log∗ n+D) time. We call these subtrees fragments
2 To be precise, we compute a (

√
n + 1, O(

√
n)) spanning forest. Also note that we

in fact do not need this algorithm since we obtain T by using Kutten and Peleg’s
MST algorithm, which already computes the (

√
n+ 1, O(

√
n)) spanning forest as a

subroutine. See [11] for details.
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(a) (b) (c)

(d) (e) (f)

Fig. 1

and denote them by F1, . . . , Fk, where k = O(
√
n). For any i, let id(Fi) =

minu∈Fi id(u) be the ID of Fi. We can assume that every node in Fi knows
id(Fi). This can be achieved in O(

√
n) time (the running time is independent of

D) by a communication within each fragment. Figure 1a illustrates the tree T
(marked by black lines) with fragments (defined by triangular regions).

Let TF be a rooted tree obtained by contracting nodes in the same fragment
into one node. This naturally defines the child-parent relationship between frag-
ments (e.g. the fragments labeled (5), (6), and (7) in Figure 1b are children of
the fragment labeled (0)). Let the root of any fragment Fi, denoted by ri, be the
node in Fi that is nearest to the root r in T . We now make every node know
TF : Every “inter-fragment” edge, i.e. every edge (u, v) such that u and v are in
different fragments, either node u or v broadcasts this edge and the IDs of frag-
ments containing u and v to the whole network. This step takes O(

√
n+D) time

since there are O(
√
n) edges in T that link between different fragments and so

they can be collected by pipelining. Note that this process also makes every node
know the roots of all fragments since, for every inter-fragment edge (u, v), every
node knows the child-parent relationship between two fragments that contain u
and v.

Step 2: Compute Fragments in Subtrees of Ancestors. For any node v
let F (v) be the set of fragments Fi ⊆ v↓. For any node v in any fragment Fi, let
A(v) be the set of ancestors of v in T that are in Fi or the parent fragment of Fi

(also let A(v) contain v). (For example, Figure 1c shows A(15).) We emphasize
that A(v) does not contain ancestors of v in the fragments that are neither Fi

nor the parent of Fi. The goal of this step is to make every node v knows (i)
A(v) and (ii) F (u) for all u ∈ A(v).
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First, we make every node v know F (v): for every fragment Fi we aggregate
from the leaves to the root of Fi (i.e. upcast) the list of child fragments of Fi.
This takes O(

√
n+D) time since there are O(

√
n) fragments to aggregate and

each fragment has diameter O(
√
n). In this process every node v receives a list

of child fragments of Fi that are contained in v↓. It can then use TF to compute
fragments that are descendants of these child fragments, and thus compute all
fragments contained in v↓.

Next, we make every node v in every fragment Fi know A(v): every node u
sends a message containing its ID down the tree T until this message reaches the
leaves of the child fragments of Fi. Since each fragment has diameter O(

√
n) and

the total number of messages sent inside each fragment is O(
√
n), this process

takes O(
√
n) time (the running time is independent of D). With the following

minor modifications, we can also make every node v know F (u) (the fragment
that u is in) for all u ∈ A(v): Initially every node u sends a message (u, F ′), for
every F ′ ∈ F (u), to its children. Every node u that receives a message (u′, F ′)
from its parent sends this message further to its children if F ′ /∈ F (u). (A
message (u′, F ′) that a node u sends to its children should be interpreted as “u′

is the lowest ancestor of u such that F ′ ∈ F (u′)”.)

Step 3: Compute δ↓(v). For every fragment Fi, we let δ(Fi) =
∑

v∈Fi
δ(v)

(i.e. the sum of degree of nodes in Fi). For every node v in every fragment
Fi, we will compute δ↓(v) by separately computing (i)

∑
u∈Fi∩v↓ δ(u) and (ii)∑

Fj∈F (v) δ(Fj). The first quantity can be computed in O(
√
n) time (regardless of

D) by computing the sum within Fi (every node v sends the sum
∑

u∈Fi∩v↓ δ(u)
to its parent). To compute the second quantity, it suffices to make every node
know δ(Fi) for all i since every node v already knows F (v). To do this, we make
every root ri know δ(Fi) in O(

√
n) time by computing the sum of degree of nodes

within each Fi. Then, we can make every node know δ(Fi) for all i by letting ri
broadcast δ(Fi) to the whole network.

Step 4: Compute Merging Nodes and T ′
F . We say that a node v is a

merging node if there are two distinct children x and y of v such that both x↓

and y↓ contain some fragments. In other words, it is a point where two fragments
“merge”. For example, nodes 0 and 1 in Figure 1a are merging nodes since the
subtree rooted at node 0 (respectively node 1) contains fragments (5), (6), and
(7) (respectively (5) and (6)).

Let T ′
F be the following tree: Nodes in T ′

F are both roots of fragments (ri’s)
and merging nodes. The parent of each node v in T ′

F is its lowest ancestor in
T that appears in T ′

F (see Figure 1d for an example). Note that every merging
node has at least two children in T ′

F . This shows that there are O(
√
n) merging

nodes. The goal of this step is to let every node know T ′
F .

First, note that every node v can easily know whether it is a merging node
or not in one round by checking, for each child u, whether u↓ contains any
fragment (i.e. whether F (u) = ∅). The merging nodes then broadcast their IDs
to the whole network. (This takes O(

√
n) time since there are O(

√
n) merging

nodes.) Note further that every node v in T ′
F knows its parent in T ′

F because
its parent in T ′

F is one of its ancestors in A(v). So, we can make every node
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know T ′
F in O(

√
n+D) rounds by letting every node in T ′

F broadcast the edge
between itself and its parent in T ′

F to the whole network.

Step 5: Compute ρ↓(v). We now count, for every node v, the number of edges
whose least common ancestors (LCA) of their end-nodes are v. For every edge
(x, y) in G, we claim that x and y can compute the LCA of (x, y) by exchanging
O(
√
n) messages through edge (x, y). Let z denote the LCA of (x, y). Consider

three cases (see Figure 1e).
Case 1: First, consider when x and y are in the same fragment, say Fi. In this
case we know that z must be in Fi. Since x and y have the lists of their ancestors
in Fi, they can find z by exchanging these lists. There are O(

√
n) nodes in such

list so this takes O(
√
n) time. In the next two cases we assume that x and y are

in different fragments, say Fi and Fj , respectively.
Case 2: z is not in Fi and Fj . In this case, z is a merging node such that z↓

contains Fi and Fj . Since both x and y knows T ′
F and their ancestors in T ′

F ,
they can find z by exchanging the list of their ancestors in T ′

F . There are O(
√
n)

nodes in such list so this takes O(
√
n) time.

Case 3: z is in Fi (the case where z is in Fj can be handled in a similar way).
In this case z↓ contains Fj . Since x knows F (x′) for all its ancestors x′ in Fi, it
can compute its lowest ancestor x′′ such that F (x′′) contains Fj . Such ancestor
is the LCA of (x, y).

Now we compute ρ↓(v) for every node v by splitting edges (x, y) whose LCA is
v into two types (see Figure 1f): (i) those that x and y are in different fragments
from v, and (ii) the rest. For (i), note that v must be a merging node. In this case
one of x and y creates a message 〈v〉. We then count the number of messages of
the form 〈v〉 for every merging node v by computing the sum along the breadth-
first search tree of G. This takes O(

√
n+D) time since there are O(

√
n) merging

nodes. For (ii), the node among x and y that is in the same fragment as v creates
and keeps a message 〈v〉. Now every node v in every fragment Fi counts the
number of messages of the form 〈v〉 in v↓ ∩ Fi by computing the sum through
the tree Fi. Note that, to do this, every node u has to send the number of
messages of the form 〈v〉 to its parent, for all v that is an ancestor of u in
the same fragment. There are O(

√
n) such ancestors, so we can compute the

number of messages of the form 〈v〉 for every node v concurrently in O(
√
n) time

by pipelining.

4 Minimum Cut Algorithms

This section is organized as follows. In Section 4.1, we review properties of the
greedy tree packing as analyzed by Thorup [22]. We use these properties to
develop a (1 + ε)-approximation algorithm in Section 4.2. We show how to effi-
ciently implement this algorithm in the distributed setting in Section 4.3. Due
to the space limit, the implmentation in the sequential setting is deferred to the
full version.
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4.1 A Review of Thorup’s Work on Tree Packings

In this section, we review the duality connection between the tree packing and
the partition of a graph as well as their properties from Thorup’s work [22].

A tree packing T is a multiset of spanning trees. The load of an edge e with
respect to T , denoted by LT (e), is the number of trees in T containing e. Define
the relative load to be �T (e) = LT (e)/|T |. A tree packing T = {T1, . . . , Tk} is
greedy if each Ti is a minimum spanning tree with respect to the loads induced
by {T1, . . . , Ti−1}.

Given a tree packing T , define its packing value pack_val(T ) =
1/maxe∈E �T (e). The packing value can be viewed as the total weight of a frac-
tional tree packing, where each tree has weight 1/maxe∈E LT (e). Thus, the sum
of the weight over the trees is |T |/maxe∈E LT (e), which is pack_val(T ). Given
a partition P , define its partition value part_val(P) = |E(G/P)|

|P|−1 . For any tree
packing T and partition P , we have the weak duality:

pack_val(T ) = 1

maxe∈E �T (e)

≤ 1

maxe∈E(G/P) �T (e)

≤ |E(G/P)|∑
e∈E(G/P) �

T (e)
(since max ≥ avg)

≤ |E(G/P)|
|P| − 1

(since each T ∈ T contains at least |P| − 1 edges crossing P)

= part_val(P)

The Nash-Williams-Tutte Theorem [17,24] states that a graph G contains
minP� |E(G/P)|

|P|−1 � edge-disjoint spanning trees. Construct the graph G′ by dupli-
cating |P|−1 edges for every edge in G. It follows from the Nash-Williams-Tutte
Theorem that G′ has exactly |E(G/P)| edge-disjoint spanning trees. By assign-
ing each spanning tree a weight of 1/(|P|− 1), we get a tree packing in G whose
packing value equals to |E(G/P)|

|P|−1 . Therefore,

max
T

pack_val(T ) = min
P

part_val(P).

We will denote this value by Φ. Let T ∗ and P∗ denote a tree packing and a
partition with pack_val(T ∗) = Φ and part_val(P∗) = Φ. Karger [8] showed
the following relationship between Φ and λ (recall that λ is the value of the
minimum cut).

Lemma 3. λ/2 < Φ ≤ λ

Thorup [22] defined the ideal relative loads �∗(e) on the edges of G by the
following.
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1. Let P∗ be an optimal partition with part_val(P∗) = Φ.
2. For all e ∈ G/P∗, let �∗(e) = 1/Φ.
3. For each S ∈ P∗, recurse the procedure on the subgraph G|S.

Define the following notations:

EX
◦δ = {e ∈ E | �X(e) ◦ δ}

where X can be T or ∗, and ◦ can be <, >, ≤, ≥, or =. For example, E∗
<δ denote

the set of edges with ideal relative loads smaller than δ.

Lemma 4 ([22], Lemma 14). The values of Φ are non-decreasing in the sense
that for each S ∈ P ∗, ΦG|S ≥ Φ

Corollary 5. Let 0 ≤ l ≤ 1/Φ. Each component H of the graph (V,E∗
≤l) must

have edge-connectivity of at least Φ.

Proof. Accroding to how the ideal relative load was defined and Lemma 4, we
must have ΦH ≥ Φ. By Lemma 3, λH ≥ ΦH ≥ Φ.

Thorup showed that the relative loads of a greedy tree packing with a sufficient
number of trees approximate the ideal relative loads, due to the fact that greedily
packing the trees simulates the multiplicative weight update method. He showed
the following lemma.

Lemma 6 ([22], Proposition 16). A greedy tree packing T with at least
(6λ lnm)/ε2 trees, ε < 2 has |�T (e)− �∗(e)| ≤ ε/λ for all e ∈ E.

4.2 Algorithms

In this section, we show how to approximate the value of the minimum cut as
well as how to find an approximate minimum cut.

Algorithm for Computing Minimum Cut Value. The main idea is that
if we have a nearly optimal tree packing, then either λ is close to 2Φ or all the
minimum cuts are crossed exactly once by some trees in the tree packing.

Lemma 7. Suppose that T is a greedy tree packing with at least 6λ lnm/ε2 trees,
then λ ≤ (2+ ε) · pack_val(T ). Furthermore, if there is a minimum cut C such
that it is crossed at least twice by every tree in T , then (2 + ε) · pack_val(T ) ≤
(1 + ε/2)λ.

Proof. By Theorems 3 and 6, 1/pack_val(T ) ≤ 1/pack_val(T ∗) + ε/λ ≤
2/λ+ ε/λ. Therefore, λ ≤ (2 + ε) · pack_val(T ).

If each tree in T crosses C at least twice, we have
∑

e∈C �T (e) ≥ 2. Therefore,

2/λ ≤
∑
e∈C

�T (e)/w(C) ≤ max
e∈C

�T (e) ≤ 1/pack_val(T ) . (1)

This implies that (2 + ε) · pack_val(T ) ≤ (1 + ε/2)λ.
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Using Theorem 7, we can obtain a simple algorithm for (1+ ε)-approximating
the minimum cut value. First, greedily pack Θ(λ log n/ε2) trees and compute
the minimum cut that 1-respects the trees (using our algorithm in Section 3).
Then, output the smaller value between the minimum cut found and (2 + ε) ·
pack_val(T ). The running time is discussed in Section 4.3.

Algorithm for Finding a Minimum Cut. More work is needed to be done
if we want to find the (1+ ε)-approximate minimum cut (i.e. each node wants to
know which side of the cut it is on). Let ε′ = Θ(ε) be such that (1 − 2ε′) · (1 −
ε′) = 1/(1 + ε). Let la = (1 − 2ε′)/pack_val(T ). We describe our algorithm in
Algorithm 4.1.

1. Find a greedy tree packing T with (6λ lnm)/ε′2 trees in G.
2. Let C∗ be the minimum cut among cuts that 1-respect a tree in T .
3. Let la = (1− 2ε′)/pack_val(T ).
4. if (V,ET

<la) has more than (1− ε′)|V | components then
5. Let Cmin be the smallest cut induced by the components in (V,ET

<la).
6. else
7. Let Cmin be the cut returned by Approx-Min-Cut(G/ET

<la).
8. Return the smaller cut between C∗ and Cmin.

Algorithm 4.1. Approx-Min-Cut(G)

The main result of this subsection is the following theorem.

Theorem 8. Algorithm 4.1 gives a (1 + ε)-approximate minimum cut.

The rest of this subsection is devoted to proving Theorem 8. First, observe
that if a minimum cut is crossed exactly once by a tree in T , then C∗ must be
a minimum cut. Otherwise, C is crossed at least twice by every tree in T . In
this case, we will show that the edges of every minimum cut will be included in
ET

≥la
. As a result, we can contract each connected component in the partition

(V,ET
<la

) without contracting any edges of the minimum cuts.
If (V,ET

<la
) has at most (1−ε′)|V | components, then we contract each compo-

nent and then recurse. The recursion can only happen at most O(log n/ε) times,
since the number of nodes reduces by a (1− ε′) factor in each level. On the other
hand, if (V,ET

<la
) has more than (1− ε′)|V | components, then we will show that

one of the components induces an approximate minimum cut.

Lemma 9. Let C be a minimum cut such that C is crossed at least twice by
every tree in T . For all e ∈ C, �T (e) ≥ (1− 2ε′)/pack_val(T ).

Proof. The idea is to show that if an edge in E(C) has a small relative load, then
the average relative load over the edges in E(C) will also be small. However, since
each tree cross E(C) twice, the average relative load should not be too small.
Otherwise, a contradiction will occur.
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Let l0 = mine∈C �∗(e) be the minimum ideal relative load over the edges in
E(C). Consider the induced subgraph (V,E∗

≤l0
). E(C) must contain some edges

in a component of (V,E∗
≤l0

), say component H . Notice that two endpoints of an
edge in a minimum cut must lie on different sides of the cut. Therefore, C ∩H
must be a cut of H . By Corollary 5, w(C∩H) ≥ Φ. Therefore, more than Φ edges
in C have ideal relative loads equal to l0. Since the maximum relative load of an
edge is at most 1

Φ ,
∑

e∈C �T
∗
(e) ≤ Φ · l0 +(λ−Φ) · 1

Φ = Φ · l0 + λ
Φ − 1 < Φ · l0+1,

where the last inequality follows by Lemma 3 that λ < 2Φ.
On the other hand, since each tree in T crosses C at least twice,

∑
e∈C �T (e) ≥

2. By Lemma 6,
∑

e∈C �∗(e) ≥ 2− ε′. Therefore, Φ · l0+1 > 2− ε′, which implies

l0 ≥ (1− ε′) · 1
Φ

>
1

Φ
− 2ε′

λ
λ < 2Φ

≥ 1/pack_val(T )− 3ε′

λ
By Lemma 6

Therefore, by Lemma 6 again, for any e ∈ E(C), �T (e) ≥ l0 − ε′/λ >
1/pack_val(T ) − 4ε′/λ ≥ (1 − 2ε′)/pack_val(T ), where the last inequality
follows from equation (1).

Lemma 10. Let Cmin be the smallest cut induced by the components in
(V,ET

<la
). If (V,ET

<la
) contains at least (1− ε′)|V | components, then w(Cmin) ≤

(1 + ε)λ.

Proof. Let comp(V,ET
<la

) denote the collection of connected components in
(V,ET

<la
), and n′, the number of connected components in (V,ET

<la
). By an

averaging argument, we have

w(Cmin) ≤
∑

S∈comp(V,ET
<la

) |E(S, V \ S)|
n′

=
2|E(G/ET

<la
)|

n′ ≤
2|E(G/ET

<la
)|

(1 − ε′) · |V | (2)

Next we will bound |E(G/ET
<la

)|. Note that for each e ∈ E(G/ET
<la

), �T (e) ≥
(1− 2ε′)/pack_val(T ).

∑
e∈E(G/ET

<la
)

�T (e) ≥ |E(G/ET
<la)| · (1− 2ε′) ·

(
1

pack_val(T )

)

≥ |E(G/ET
<la)| · (1− 2ε′) · 2

λ
(by Equation (1)). (3)

On the other hand, ∑
e∈E(G/ET

<la
)

�T (e) ≤ |V | − 1, (4)
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since each tree in T contains |V |−1 edges. Equations (3) and (4) together imply
that

|E(G/ET
<la)| ≤

λ · |V |
2(1− 2ε′)

.

By plugging in this into (Equation (2)), we get that

w(Cmin) ≤
λ

(1− 2ε′)(1− ε′)
≤ (1 + ε)λ .

4.3 Distributed Implementation

In this section, we describe how to implement Algorithm 4.1 in the distributed
setting. To compute the tree packing T , it is straightforward to apply |T | mini-
mum spanning tree computations with edge weights equal to their current loads.
This can be done in O(|T |(D+

√
n log∗ n)) rounds by using the algorithm of Kut-

ten and Peleg [11].
We already described how to computes the minimum cut that 1-respects a tree

in O(D +
√
n log∗ n) rounds in Section 3. To compute la, it suffices to compute

pack_val(T ). To do this, each node first computes the largest relative load
among the edges incident to it. By using the upcast and downcast techniques,
the maximum relative load over all edges can be aggregated and boardcast to
every node in O(D) time. Therefore, we can assume that every node knows
la now. Now we have to determine whether (V,ET

<la
) has more than (1 − ε′)|V |

components or not. This can be done by first removing the edges incident to each
node with relative load at least la. Then label each node with the smallest ID
of its reachable nodes by using Thurimella’s connected component identification
algorithm [23] in O(D +

√
n log∗ n) rounds. The number of nodes whose label

equals to its ID is exactly the number of connected component of the subgraph.
This number can be aggregated along the BFS tree in O(D) rounds after every
node is labeled.

If (V,ET
<la

) has more than (1− ε′)|V | components, then we will compute the
cut values induced by each component of (V,ET

<la
). We show that it can be done

in O(D +
√
n) rounds in the full version. On the contrary, if (V,ET

<la
) has less

than (1− ε′)|V | components, then we will contract the edges with load less than
la and then recurse. The contraction can be easily implemented by setting the
weights of the edges inside contracted components to be −1, which is strictly
less than the load of any edges. The MST computation will automatically treat
them as contracted edges, since an MST must contain exactly n′ − 1 edges with
weights larger than −1, where n′ is the number of connected components. 3

Time Analysis. Suppose that we have packed t spanning trees throughout
the entire algorithm, the running time will be O(t(D +

√
n log∗ n)). Note that

t = O(ε−3λ log2 n), because we pack at most O(ε−2λ logn) spanning trees in
each level of the recursion and there can be at most O(ε−1 logn) levels, since
the number of nodes reduces by a (1− ε′) factor in each level. The total running
time is O(ε−3λ log2 n · (D +

√
n log∗ n)).

3 We note that the MST algorithm of [11] allows negative-weight edges.
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Dealing with Graphs with High Edge Connectivity. For graphs with
λ = ω(ε−2 logn), we can use the well-known sampling result from Karger’s [7] to
construct a subgraph H that perserves the values of all the cuts within a (1± ε)
factor (up to a scaling) and has λH = O(ε−2 logn). Then we run our algorithm
on H .

Lemma 11 ([6], Corollary 2.4). Let G be any graph with minimum cut λ and
let p = 2(d + 2)(lnn)/(ε2λ). Let G(p) be a subgraph of G with the same vertex
set, obtained by including each edge of G with probability p independently. Then
the probability that the value of some cut in G(p) has value more than (1+ ε) or
less than (1− ε) times its expected value is O(1/nd).

In particular, let ε′ = Θ(ε) such that (1 + ε) = (1+ ε′)2/(1− ε′). First we will
compute λ′, a 3-approximation of λ, by using Ghaffari and Kuhn’s algorithm. Let
p = 6(d+2) lnn/(ε′2λ′) and H = G(p). Since p is at least 2(d+2) lnn/(ε′2λ), by
Lemma 11, for any cut C, w.h.p. (1− ε′)p ·wG(C) ≤ wHi(C) ≤ (1+ ε′)p ·wG(C).
Let C∗ be the (1 + ε′)-approximate minimum cut we found in H . We have that
w.h.p. for any other cut C′,

wG(C
∗) ≤ 1

p
· wHi(C

∗)

1− ε′
≤ 1

p
· (1 + ε′)λH

1− ε′

≤ 1

p
· (1 + ε′)wHi (C

′)

1− ε′
≤ (1 + ε′)2

1− ε′
· wG(C

′) = (1 + ε)wG(C
′) (5)

Thus, we will find an (1 + ε)-approximate minimum cut in O(ε−5 log3 n(D +√
n log∗ n)) rounds.

Computing the Exact Minimum Cut. To find the exact minimum cut,
first we will compute a 3-approximation of λ, λ′, by using Ghaffari and Kuhn’s
algorithm [4] in O(λ log n log logn(D+

√
n log∗ n)) rounds.4 Now since λ ≤ λ′ ≤

3λ, by applying our algorithm with ε = 1/(λ′ + 1), we can compute the exact
minimum cut in O(λ4 log2 n(D +

√
n log∗ n)) rounds.

Estimating the Value of λ. As described in Section 4.2, we can avoid the
recursion if we just want to compute an approximation of λ without actually find-
ing the cut. This gives an algorithm that runs in O(ε−2λ logn · (D+

√
n log∗ n))

time. Also, the exact value of λ can be computed in O((λ3+λ log logn) logn(D+√
n log∗ n)) rounds. Notice that the λ log logn factor comes from Ghaffari and

Kuhn’s algorithm for approximating λ within a constant factor. Similarly, us-
ing Karger’s sampling result, we can (1 + ε)-approximate the value of λ in
O(ε−5 log2 n log logn(D +

√
n log∗ n)) rounds.

4 Ghaffari and Kuhn’s result runs in O(log2 n log log n(D +
√
n log∗ n)) rounds.

However, without using Karger’s random sampling beforehand, it runs in
O(λ log n log log n(D +

√
n log∗ n)) rounds, which will be absorbed by the running

time of our algorithm for the exact minimum cut.
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for Coloring Interval Graphs�
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Abstract. We explore the question how well we can color graphs in
distributed models, especially in graph classes for which Δ+ 1-colorings
provide no approximation guarantees. We particularly focus on interval
graphs.

In the LOCAL model, we give an algorithm that computes a con-
stant factor approximation to the coloring problem on interval graphs
in O(log∗ n) rounds, which is best possible. The result holds also for the
CONGEST model when the representation of the nodes as intervals is
given.

We then consider restricted beep models, where communication is re-
stricted to the aggregate acknowledgment of whether a node’s attempted
coloring succeeds. We apply an algorithm designed for the SINR model
and give a simplified proof of aO(log n)-approximation. We show a nearly
matching Ω(log n/ log log n)-approximation lower bound in that model.

1 Introduction

In this paper, we study distributed algorithms for vertex coloring, especially
on interval graphs. Given a set of intervals on the line V = {I1, . . . , In} with
Ij = (aj , bj) and aj , bj being real numbers such that aj < bj , an interval graph
G is obtained from V as follows: The vertex set of G are the intervals V , and two
vertices Ij , Ik ∈ V are adjacent if and only if Ij and Ik intersect. Interval graphs
have a multitude of applications, appear naturally in scheduling problems, and
can for instance be seen as one-dimensional projections of disk graphs that are
often used for modeling wireless networks [1–3].

Graph Coloring. For an integer s, an s-coloring of a graph G = (V,E) is an
assignment γ : V → {1, . . . , s} of colors to the vertices of a graph such that
any two adjacent vertices have different colors. The chromatic number χ(G) of
a graph G is the minimum number of colors that is needed to color G. It is well-
known that determining χ(G) is NP-complete [4] in general graphs and it is even
hard to approximate it within a Θ(n1−ε) factor, for any ε > 0 [5]. Sequentially, it
is easy to find a coloring that uses at most Δ+1 colors where Δ is the maximal
degree of a graph: Traverse the vertices of G in any order and assign the smallest

� Both authors are supported by Icelandic Research Fund grant-of-excellence
no. 120032011.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 454–468, 2014.
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possible color to the current vertex. Since there are graphs for which Δ = Θ(n)
and χ(G) = Θ(1) (for instance a star graph), such a coloring may be as bad as a
Θ(n)-approximation. An optimal coloring of an interval graph can be found by
traversing the intervals with increasing left interval boundary and coloring them
with the smallest possible color. Even if the intervals are traversed in arbitrary
order, we obtain a canonical coloring, where a node colored s(v) is adjacent to
nodes colored 1, 2, . . . , s(v)−1. It is known that such colorings of interval graphs
yield a C-approximation, where 5 ≤ C ≤ 8 [6].

Distributed Graph Coloring. Graph coloring has been extensively studied in the
distributed setting (see [7–11] to name a few). In the distributed computational
model, we assume a network of computational units modeled by a graph G =
(V,E) which is also the input graph of the problem. The computational units
constitute the vertices of G, and two computational units can exchange messages
if and only if an edge connecting them is included in E. Then, the runtime of
a distributed algorithm is the number of communication rounds required to
complete the algorithm. We assume that each vertex has a unique ID. In the
LOCAL model, in each round, messages of unbounded size may be exchanged. In
the CONGEST model, all message are of size at most O(logn) (n is the number
of computational units). Due to the hardness of the graph coloring problem, the
objective of most works on this topic in the distributed model is to find a coloring
that usesΔ+1 or O(Δ) colors on general graphs. A (Δ+1)-coloring can be found
by a distributed randomized algorithm in O(logn) communication rounds by a
reduction to the maximal independent set problem that was first mentioned in [7]
(a maximal independent set can be found in O(log n) time by Luby’s algorithm
[12]). An O(Δ)-coloring can be computed by a distributed randomized algorithm

in 2O(
√
log logn) rounds [13]. The best deterministic distributed coloring algorithm

that finds an O(Δ)-coloring performs O(Δε logn) rounds, for any ε > 0 [10]. Only
few works consider more specialized graph classes for which better colorings can
be obtained, and we reuse some of those works in this paper. In O(log∗ n) rounds,
Cole and Vishkin showed that a 3-coloring of a ring can be computed [14]. In
[15], this technique has been extended to coloring bounded-independence graphs
with Δ + 1 colors (see Definition 1). Linial showed in [7] that coloring a ring
with 3 colors requires Ω(log∗ n) rounds which renders the previous algorithms
optimal.

Distributed Algorithms for Coloring Interval Graph. Our interest in coloring
interval graphs in a distributed fashion stems from the following observation. As
previously mentioned, most distributed coloring algorithms compute (Δ + 1)-
colorings which may be as bad as Θ(n) approximations. We are therefore inter-
ested in graph classes for which better approximation ratios can be obtained. Sur-
prisingly, for interval graphs, we identify that in the LOCAL model, a constant
factor approximation with runtime O(log∗ n) can be obtained (Theorem 4). To
this end, we identify that the subgraph GP ⊆ G of proper intervals (roughly
those intervals that are not properly contained in other intervals) has a maximal
degree of O(χ(G)). Furthermore, GP is of bounded-independence (Theorem 2)
which is defined as follows:
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Definition 1. A graph G = (V,E) is of bounded-independence if there is a
bounding function f(r) such that for each node v ∈ V , the size of a maxi-
mum independent set in the r-neighborhood of v is at most f(r), ∀r ≥ 0. The
r-neighborhood of a node v is the set of nodes at distance at most r from v
(excluding v).

Schneider andWattenhofer present in [15] a distributed maximal independent set
algorithm for bounded-independence graphs that runs in time O(log∗ n). Using
this algorithm, we compute an independent set in the subgraph GP in O(log∗ n)
time, and we show how to extend it to a dominating set that dominates the
whole graph G. Then, we use this dominating set to coordinate the coloring of
all vertices. By construction, this coloring is a canonical one, and since every
canonical coloring in an interval graph is at least an 8-approximation, the result
follows.

Furthermore, we show that computing an O(log∗ n)-approximation to the col-
oring problem in interval graphs requires Ω(log∗ n) time by a reduction to a
result of Linial [7]. Linial showed that obtaining a 3-coloring on a ring requires
Ω(log∗ n) rounds. We show that any algorithm that colors interval graphs with
fewer rounds would imply a faster 3-coloring algorithm of the ring contradict-
ing the previous lower bound. This renders our algorithm tight. Moreover, we
observe that if nodes are aware of their interval boundaries then the previous
algorithm can even be implemented in the CONGEST where all messages are
of size at most O(logn).

A Simple Coloring Scheme. We also consider a particular class of simple dis-
tributed coloring algorithms that have been successfully applied in the past to
solve the coloring problem in the SINR (Signal to Interference plus Noise Ratio)
model for wireless communication [16–18]. From a graph theoretical point of
view, in the SINR model, a complete directed edge-weighted graph with vertex
set L is given, where each vertex l ∈ L represents a transmission link consisting
of a sender and a receiver. The weights of the edges between transmission links
determine the amount of relative interference that a transmitting sender has on
the receiver of another link. The notion of independent sets and colorings are
adapted as follows: A subset of nodes L′ ⊆ L is an independent set if the in-
degree of every node l ∈ L′ from other nodes of L′ is at most 1. An independent
set corresponds here to a set of links that can successfully transmit simultane-
ously. Then an s-coloring is a decomposition of the vertex set into s independent
sets. An s-coloring corresponds here to a schedule that permits the successful
transmission of all links in s rounds. The algorithms for coloring SINR-instances
of [16–18] are round-based, and they follow the scheme of Algorithm 1 (Algo-
rithm 1 is stated for unweighted graphs G = (V,E) which is the form we need
in this paper).

The scheme of Algorithm 1 computes a coloring γ : V → N. In each round
i, a probability pi is determined in Line 4. Different Algorithms that follow this
scheme such as the algorithms of [16–18] compute different sequences (pi)i. The
sequence of probabilities pi determine the efficiency of the scheme, and different
graphs classes may require different sequences. Then, all not-yet colored nodes v
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Algorithm 1. Simple coloring scheme

Require: G = (V,E) {Input graph}
1. γ(v)← ⊥ for all v ∈ V {The coloring to be computed}
2. i← 1 {Current color}
3. while ∃v ∈ V with γ(v) = ⊥ do
4. Determine pi {Algorithms following this scheme have to implement this line}
5. for all v ∈ V with γ(v) = ⊥ do
6. Tv ←coin(pi) {Pre-selection step: If coin(pi) = true then v is a candidate

to be colored}
7. end for
8. for all v ∈ V with γ(v) = ⊥ and Tv = true do
9. if

∨
u∈ΓV (v) with γ(u)=⊥ Tu = false then {Check whether a neighbor of v has

been pre-selected}
10. γ(v)← i {Color node v}
11. end if
12. end for
13. i← i+ 1
14. end while
15. return γ

pre-select themselves as candidates to be colored with probability pi in Line 6. We
assume that we have a function coin: [0, 1]→ {true, false} to our disposal such
that coin(p) returns true with probability p, otherwise false. Next, in Line 10,
pre-selected nodes color themselves with color i if none of its not yet colored
neighbors pre-selected themselves.

Algorithms that follow the scheme of Algorithm 1 are simple and easy to im-
plement. They do not require a complicated mechanism for breaking ties as a
pre-selected node is only colored if none of its neighbors is pre-selected, or, in
other words, a node only has to learn the logical OR of the bits of its neighbors
indicating whether a neighbor is pre-selected. As we will discuss in Section 5, ex-
changing this type of information does not put high demands on the distributed
model in which this algorithm is implemented. This makes the algorithm a good
candidate for being implemented in various models. We will show that an im-
plementation of this scheme is possible in the very restrictive discrete beeping
model [19] in which, among other things, nodes cannot distinguish between dif-
ferent neighboring nodes, and the number of neighbors of a node is unknown to
the node itself. Algorithms of type Algorithm 1 are essentially the only type of
coloring algorithms that can be implemented in this model.

This scheme of algorithms is referred to as acknowledgement-only (ack-only)
algorithms [16–18] in the SINR community. As previously mentioned, in the
SINR model, a set of communication links each consisting of a sender and a re-
ceiver is considered. Links are not aware of their neighborhood. In each round, a
sender may either attempt to transmit (pre-select itself) and hope for a success-
ful transmission, or it may remain silent and wait. Ack-only algorithms assume
that senders receive an acknowledgment of whether their transmission was suc-
cessful or whether it failed (check whether there are neighbors that pre-selected
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themselves). Successful links then remain silent until all links successfully trans-
mitted (once a node is colored it does not attempt to color itself again). Since
there is no information exchange between communication links, in each round,
senders essentially can only flip a coin and transmit with a certain probability.
Note that this situation is modeled by the scheme of Algorithm 1. While in the
scheme of Algorithm 1 the identification of whether a communication attempt
was success is checked in Line 9, this is achieved in the SINR model with explicit
acknowledgments in a separate round that succeed with constant probability.

It is known that:

Theorem 1 ([20]). There is an algorithm that follows the scheme of Algo-
rithm 1 and colors a graph with O(dχ(G) logn) colors w.h.p. where d is the
inductive independence number of a graph.

Inductive independence [21] is defined as follows:

Definition 2. A graph G = (V,E) is inductive d-independent if there exists an
ordering π of the vertices V such that for every independent set I ⊆ V and every
vertex v ∈ V :

|{u ∈ ΓG(v) with π(u) > π(v)} ∩ I| ≤ d.

The inductive independence number of G is the smallest d such that G is induc-
tive d-independent.

Many interesting graph classes have bounded inductive independence, e.g., disc
graphs are inductive 5-independent, planar graphs are inductive 3-independent,
claw-free graphs are inductive 2-independent, and most importantly, chordal
graphs (a superclass of interval graphs) are inductive 1-independent. It is well-
known that chordal graphs are exactly those graphs that admit a perfect elimina-
tion ordering: A perfect elimination ordering in a graphG = (V,E) is an ordering
π of the vertices V such that, for each v ∈ V , v ∪ {u ∈ ΓG(v) with π(u) > π(v)}
forms a clique. Note that this is equivalent to the definition of inductive 1-
independence. In the context of SINR coloring, it is shown in [20] that many
important SINR instances are inductive O(1)-independent, and by Lemma 1, an
O(logn)-approximation algorithm to the coloring problem in the SINR model is
obtained. It is an open question whether there is an algorithm that follows the
scheme of Algorithm 1 and computes an O(1)-approximation (in fact, for many
instances no algorithm at all is known that computes an O(1)-approximation).

Fig. 1. Example of a perfect elimination ordering of an interval graph. For each interval
with index i, the size of an independent set among its neighbors with larger index is
at most 1.
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In [18], an instance is provided that can be colored with 2 colors, while any such
algorithm requires Ω(log n) rounds. However, no hard instances are known with
larger chromatic number.

In this paper, we settle this question for interval graphs up to a log logn fac-
tor. As interval graphs are inductive 1-independent, we immediately obtain an
O(logn)-approximation by Theorem 1. We will show that every algorithm that

follows the scheme of Algorithm 1 requiresΩ
(

log n
log lognχ(G)

)
colors (Theorem 6),

matching the upper bound up to a log logn factor.
Furthermore, we provide an alternative proof of Theorem 1. We essentially

identify that there is an algorithm following the scheme of Algorithm 1 that
colors graphs G that have the property that any induced subgraph on α vertices
has at most αk edges using O(k logn) colors (Theorem 5). We observe that
inductive d-independent graphs have at most dχ(G)n edges, which allows us
to conclude the statement of Theorem 1. Alternatively, our theorem can also
be applied to k-degenerate graphs. A graph is k-degenerate if every induced
subgraph has a node of degree at most k. Clearly, such a graph has at most kn
edges.

While the lower bound does not carry over to the geometric SINR model, it
shows that in the abstract SINR model, improved results for scheduling in terms
of inductive independence are not possible by these types of algorithms.

Outline. In Section 2, we present necessary definitions and notations, and we
prove a property about interval graphs that is required in the subsequent sec-
tion. In Section 3, we present our upper and lower bound for a constant factor
approximation in the LOCAL model and its adaption to the CONGEST model.
Then, in the following sections, we consider the previously mentioned class of
simple coloring algorithms. We revisit the result that an inductive d-independent
graph can be colored by an algorithm of the previous scheme with O(dχ(G) log n)
colors in Section 4. Then, In Section 5, we underline the simplicity of algorithms
that follows the scheme of Algorithm 1, and we show that they can be im-
plemented in the very restrictive discrete beeping model. Finally, we prove in
Section 6 that any algorithm of the previous scheme requires Ω( logn

log log nχ(G))
colors on interval graphs.

Furthermore, we note that due to space restrictions, some proofs are omitted
but can be found in the full version of this article.

2 Preliminaries

Definitions. An independent set in a graph G = (V,E) is a subset I ⊆ V
of vertices such that for every pair of vertices v1, v2 ∈ I : (v1, v2) /∈ E. An
independent set I is maximal if I ∪ {v} is not an independent set for all v ∈
V \ I. A dominating set in a graph G = (V,E) is a subset D ⊆ V such that
for any vertex v ∈ V \ D, v is adjacent to at least one vertex u ∈ D. Any
maximal independent set is a dominating set, however, the converse is not true.
For an integer k, a distance-k-coloring of a graph G = (V,E) is an assignment
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γ : V → {1, . . . , s} of colors to the vertices of a graph such that any two vertices
at distance at most k have different colors.

Interval Graphs. Let V = {v1, . . . , vn} be a set of intervals with vj = (aj , bj)
for all 1 ≤ j ≤ n and real numbers aj, bj such that aj < bj . Let G = (V,E) be
the corresponding interval graph, i.e., there is an edge between vertices (inter-
vals) vj , vk if the two intervals overlap. Let m = |E|. We assume that all ai, bi
are distinct. For simplicity, we will assume that the input interval graphs are
connected. The neighborhood of a vertex v in graph G is denoted by ΓG(v), and
we define ΓG [v] = ΓG(v) ∪ {v}. For a subset V ′ ⊆ V , we may write ΓV ′(v) to
denote ΓG(v) ∩ V ′. Furthermore, the k-neighborhood of a vertex v is the set of
nodes that are within distance at most k from v, and we denote it by Γ k

G(v).
Then Γ 1

G(v) = ΓG(v). For a vertex v ∈ V , we denote by degG(v) the degree of v
in G. For a subset V ′ ⊆ V , we may also write degV ′(v) for the degree of v in the
subgraph of G which is induced by the nodes V ′, that is, degV ′(v) := degG|V ′ (v).

We say that an interval v is proper if there is no other interval u such that
ΓG [v] � ΓG [u]. For an interval graphG = (V,E), we denote byGP = (VP , E|VP )
the subgraph of G that is induced by the proper intervals of G. It is easy to see
that the subgraph GP of a connected interval graph is connected, too. Then the
following degree bound holds (proof omitted).

Fact 1. For all v ∈ VP : degGP
(v) ≤ 2χ(GP )− 2.

Distributed Algorithms. In the following, we will reuse existing distributed
algorithms. The deterministic distributed algorithm of Wattenhofer and Schnei-
der [15] colors a bounded-independence graph using Δ + 1 colors in O(log∗ n)
time, and we will denote this algorithm by ColBI (BI stands for bounded inde-
pendence). This algorithm can be implemented such that it returns a canonical
coloring, i.e., a coloring such that no node could change its color to a smaller
one. In the same work, Wattenhofer and Schneider show that in a bounded-
independence graph, a maximal independent set can be deterministically com-
puted in O(log∗ n) time, and we denote this algorithm by MisBI. Both, ColBI

and MisBI, can be implemented in the CONGEST model.

3 O(1)-approximation for Coloring Interval Graphs in
the LOCAL Model

In this section, we show that an interval graph G can be colored in O(log∗ n)
time with O(χ(G)) colors in the LOCAL model. Our algorithm makes use of
the distributed algorithms ColBI and MisBI for computing a coloring and an
independent set in bounded-independence graphs. We run these algorithms on
the subgraph GP of proper intervals. Unit disc graphs are of bounded indepen-
dence [15]. Since the class of proper interval graphs is equivalent to the class of
unit interval graphs, and unit interval graphs are a subclass of unit disc graphs,
the following fact follows immediately:

Fact 2. Proper interval graphs are of bounded independence.
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We present our algorithm in Subsection 3.1, its analysis in Subsection 3.2, and
we discuss an implementation of the algorithm in the CONGEST model in
Subsection 3.3.

3.1 Algorithm

1. Identify the Subgraph GP of Proper Intervals: Each node v determines
if v ∈ GP by checking if there is a neighbor u ∈ ΓG(v) such that ΓG [u] �
ΓG [v]. If no such neighbor exists then v is in GP . This involves one round
of communication where each node sends the list of its neighbors to all its
neighbors.

2. Compute a Maximal Independent Set J of GP : Using MisBI, we
compute a maximal independent set J of the graph GP in O(log∗ n) rounds.
J is needed for the computation of a dominating set in the next step.

3. Compute a Dominating Set N ∪J : Algorithm 2 computes a set N such
that N ∪ J is a dominating set of the graph G. Ties are broken arbitrarily.
In step one, every node communicated already its list of neighbors to its
neighbors, and hence no further communication is required.

Algorithm 2. Computation of a dominating set

1. for all v ∈ J do
2. u1 ← argmaxu∈ΓGP

(v) |ΓG(u) \ ΓG(v)|
3. u2 ← argmaxu∈ΓGP

(v) |ΓG(u) \ (ΓG(v) ∪ ΓG(u1)) |
4. N ← N ∪ {u1, u2}
5. end for

4. Find a Distance-3 Coloring of G|N∪J and Obtain Color Classes
(Ii)i≥1: We argue in the analysis that the maximal degree in the vertex
induced graph G|N is 4, and hence the maximal degree in G|N∪J is 5. There-
fore, the size of the 4-neighborhood of every node is bounded by some con-
stant C. We build the graph H on vertex set N ∪J where nodes are adjacent
if they are at distance at most 3 in GP . This involves two additional rounds
of communication to establish knowledge about the 3-neighborhood of each
node. We run ColBI to color H in time O(log∗ n) and we obtain a con-
stant number of color classes (Ii)i≥1. This coloring is a distance-3 coloring
of G|N∪J .

5. Coloring. After each of the following iterations, in one round of communi-
cation, each node that has received a color notifies its neighbors about its
own color. This guarantees that a not-yet colored node always knows the
palette of still available colors that it may be colored with.
Iterate over the sets (Ii)i≥1 and do the following:

Every node u′ ∈ Ii coordinates the coloring of not-yet colored nodes
u ∈ ΓG[u

′] as follows: Nodes u send the palette of possible colors with which
they may be colored to u′. The node u′ is unique for u: As Ii is a color class
of a distance-3 coloring, every other node u′′ ∈ Ii \{u′} is at distance at least
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2 from u. Then, u′ determines a canonical coloring of all nodes u respecting
the color restrictions of the nodes, and notifies the nodes u about their color.

3.2 Analysis

Due to space restrictions, the proof of the following lemma is omitted.

Lemma 1. The following properties hold: (1) J ∪N is a dominating set in G.
(2) The maximal degree of a node in the graph G|N is 4.

Concerning Item 1, note that for any node u ∈ G\GP there is a node v ∈ GP that
dominates u. Therefore, GP contains a dominating set. J is an independent set.
For each u ∈ J , Algorithm 2 basically selects the two intervals intersecting with
u that reach out furthest to the left and the right, hence, dominating as many
intervals of G \ GP as possible. It turns out that this is sufficient to dominate
all nodes. Item 2 follows from the fact that GP is a proper interval graph, and
intervals do not include each other. Therefore, not too many intervals selected
by Algorithm 2 may overlap.

Lemma 2. For every u ∈ V there is at least one set Ii s.t. |ΓG[u] ∩ Ii| =
|ΓG[ΓG[u]] ∩ Ii| = 1. That is, each node is dominated by a node in some Ii but
has then no other node in Ii in its 2-neighborhood.

Proof. Let u be a vertex in V . Since J ∪ N = ∪iIi is a dominating set, u is
adjacent to at least one node u′ of J ∪N . So, |ΓG[ΓG[u]]∩ Ii| ≥ |ΓG[u]∩ Ii| ≥ 1.
Let i be the index with u′ ∈ Ii.

Suppose that |ΓG[ΓG[u]] ∩ Ii| ≥ 2. Then, there is a vertex v in V that is
adjacent to both u and u′′, for some u′′ in Ii \ {u′}. There is a vertex û (v̂) in
GP (not necessarily distinct from u (v)) corresponding to a proper interval that
contains the interval of u (v̂), and the neighbors of u (v) are also neighbors of û
(v̂), respectively. Thus, u′, û, v̂, u′′ is a path of length 3 in GP , contradicting the
distance-3 coloring property. �	

Lemma 2 shows that every node will be correctly colored in Step 5 of the
algorithm. |ΓG[u]∩Ii| = 1 shows that all nodes will be considered in the coloring
step of the algorithm, and |ΓG[ΓG[u]] ∩ Ii| = 1 guarantees that the computed
colorings of the different nodes of Ii do not interfere with each other. We conclude
with the main theorem:

Theorem 2. In the LOCAL model, there is a deterministic O(1)-approximation
algorithm that computes a canonical coloring of an interval graph and runs in
time O(log∗ n).

Proof. Concerning correctness of the algorithm, we showed in Lemma 2 that
every node v ∈ G will be colored in Step 5. By construction, the algorithm
computes a canonical coloring, i.e., it always assigns the smallest color possi-
ble to a node. Therefore, the total amount of required colors can be bounded by
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the fact that any canonical coloring of an interval graph uses at most 8 · χ(G)
colors [6]. The runtime of the algorithm is O(log∗ n) since we essentially run a
constant number of times the algorithms MisBI and ColBI whose runtimes are
O(log∗ n). �	

3.3 Adapting the Algorithm to the CONGEST Model

Suppose that every node vi ∈ V is aware of its interval representation and knows
its interval boundaries ai, bi. We assume that the numbers ai, bi require space
O(logn) to be written down. Then the previous algorithm can be implemented
in the CONGEST model: Concerning Step 1, exchanging interval boundaries
and the number of neighbors is enough to determine whether a node v ∈ V
is also in VP . Step 2 remains unchanged. Since each node v ∈ VP knows the
interval boundaries of its neighbors, Step 3 is simplified and v simply selects
incident intervals that reach out furthest to the left and to the right. Step 4
remains unchanged. Since the maximal degree in H is bounded by a constant,
all messages sent in order to compute the 3-neighborhood of every node are still
of size O(logn). Concerning Step 5, note that it is impossible that every node
u sends its palette of still available colors to the coordinator u′ with a message
of size O(logn). We therefore give up on obtaining a canonical coloring, and,
instead, for each coloring round we use a set of new colors (for instance round
i uses the colors {(i − 1)n + 1, in}. Since, however, each coloring round uses
O(χ(G)) colors and there are only a constant number of sets Ii, we still obtain
a constant factor approximation.

Theorem 3. There is a deterministic O(1)-approximation algorithm that com-
putes a coloring of an interval graph in the CONGEST model and runs in time
O(log∗ n) if each node knows its interval boundaries.

3.4 Lower Bound for Coloring Interval Graphs in the LOCAL
Model

Linial’s lower bound shows that any distributed algorithm for coloring the n-cycle
with three colors requires time Ω(log∗ n) [7]. By removing an arbitrary edge from
an n-cycle, we obtain a path which in turn is an interval graph. We make use
of this connection together with a well-known color reduction technique, and we
obtain the following theorem (due to space restrictions, all details of this section
are deferred to the full version of this paper).

Theorem 4. Every (possibly randomized) distributed algorithm that colors an in-
terval graph G on n vertices using o(log∗(n)χ(G)) colors requires time Ω(log∗ n).

4 Simple Coloring Algorithm

We show now that an algorithm that follows the scheme of Algorithm 1 can be
used to compute a (k logn)-coloring on graphs G that have the property that
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every induced subgraph on α nodes has at most αk edges (Theorem 5). This
property is fulfilled by k-degenerate graphs since clearly k-degenerate graphs
have at most kn edges, and k-degeneracy inherits to induced subgraphs. Fur-
thermore, it is easy to see that the degeneracy k of an inductive d-independent
graph is bounded as k ≤ dχ(G). Theorem 1 as stated in the introduction follows
hence immediately from Theorem 5.

In order to color a graph with a limited number of edges in each induced sub-
graph with an algorithm of type Algorithm 1, we use the following sequence of

probabilities: we start with probability p1 = 1, and we repeat it 32e2 logn
p1

times.

Then, we halve this probability, i.e., p2 = p1/2 and we repeat it 32e2 logn
p2

times.

This procedure of halving the previous probability pi+1 = pi/2 and repeating it
32e2 logn

pi+1
times continues until all nodes are colored. We will prove now Theo-

rem 5. We note again that this type of proof was already used in [18] and [17],
and we defer it therefore, and for space reasons, to the full version of this paper.

Theorem 5. There is an algorithm that follows the scheme of Algorithm 1 and
colors graphs G = (V,E) that have the property that every induced subgraph on
α vertices has at most αk edges with O(k logn) colors and rounds w.h.p. Thus,
the algorithm uses O(dχ(G) log n) colors, where d is the inductive independence.

5 Implementation in the Beep Model

In the discrete beeping communication model as introduced in [19], nodes of a
network modeled by a graph G = (V,E) communicate with each other via beeps.
Nodes are not aware of their neighborhoods. In each round, a node v ∈ V has the
choice between two actions: Either v transmits a beep signal (v beeps), or v is in
listening mode. If v is in listening mode, then v receives a signal only if at least
one of its neighbors transmits a beep. The reception of a beep signal does not
allow v to determine the number of its neighbors that transmitted it. Node v can
only distinguish between the situation where none of its neighbors transmitted,
or at least one of its neighbors transmitted. While in [19] asynchronous wake-up
times of nodes are considered, we assume a synchronous model where all nodes
are awake at time 0. Furthermore, we assume that nodes know a polynomial
upper bound on n, the number of nodes. We assume that they have only O(log n)
memory.

Despite the fact that the discrete beeping model is very restrictive, many
non-trivial problems can be solved in this model. It models aspects of wireless
networks (carrier sensing) and biological phenomena. Algorithms that can be im-
plemented in this model can certainly be implemented in many other distributed
models.

We will show now that the scheme of Algorithm 1 can be implemented in
the discrete beeping model. In Line 9 of Algorithm 1, a pre-selected node has
to determine whether either none of its neighbors pre-selected themselves, or
whether there is at least one neighbors that pre-selected itself. Note that if we
gave a node the ability to beep and listen at the same time, Line 9 of Algorithm 1
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could be implemented in one communication round. The main difficulty for an
implementation in the discrete beeping model stems from the fact that if a node
decides to beep it cannot receive any information. Therefore, the pre-selected
nodes cannot simply beep simultaneously in one round since the beep of a node
wouldn’t be heard by another beeping node. We will show, however, that this
task can be computed in O(logn) rounds of communication. In the following,
we denote by beep() the action that a node decides to beep, and by listen()
the action that a node is in listening mode. The function listen() returns true,
if at least one neighboring node beeped, otherwise it returns false. Algorithm 3
implements one round of Algorithm 1 in the discrete beeping model.

Algorithm 3. Iteration i in the beep model

Require: pi {Probability pi, integer C ≥ 4}
1. if coin(pi) then
2. Select uniformly at random S ⊂ {1, 2, . . . , C log n} such that |S| = C logn

2

3. B ← false
4. for l = 1 . . . C log n do
5. if l ∈ S then beep() else B ← B ∨ listen() end if
6. end for
7. if B = false then γ(v)← i end if
8. end if

Lemma 3. Let C ≥ 4 be an integer. The probability that a pre-selected node
v ∈ V colors itself in Line 7, despite having a pre-selected neighbor, is at most

1
nC−3 assuming that n > 2C.

Since every node may get pre-selected at most O(dχ(G) logn) times in the algo-
rithm of Theorem 1, selecting a large enough value for C (for instance C ≥ 7)
guarantees that the overall error probability is small enough when implementing
this algorithm in the discrete beeping model. From Lemma 3 and Theorem 1 we
obtain the following corollary:

Corollary 1. There is an algorithm that follows the scheme of Algorithm 1 that
can be implemented in the discrete beeping model with O(dχ(G) log2 n) rounds
and colors a graph with O(dχ(G) log n) colors w.h.p. where d is the inductive
independence number of a graph.

6 Lower Bound for Algorithms of Type Algorithm 1

We discuss now a hard instance showing that no algorithm that follows the
scheme of Algorithm 1 can achieve an approximation ratio of o( log n

log logn ) on in-

terval graphs. We present the hard instance graph GT,b = (V,E) in its interval
representation, where T and b are parameters as follows: As basic building blocks
of our construction we use cliques of size T = o(n) (we determine the precise
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value of T later). Their adjacency relations follow a tree structure with branch-
ing factor logb n for an integer b ≥ 6 (we set b = 6, but any constant b ≥ 6
equally works), and we obtain a containment interval graph as in Figure 2, i.e.,
an interval graph where the set {ΓGT,b

(v) | v ∈ V } forms a laminar family. The

vertex set V is decomposed into layers V0, . . . , Vk. We have |Vi| = T · (log n)ib,
and, therefore, k = Θ( logn

log log n ) in order to have a total of n vertices. The chro-

matic number of this graph is χ(GT,b) = Tk. We aim to construct the hard
instances for a given chromatic number, and we therefore set the parameter
T to be T = χ(GT,b)/k. Let us summarize the values of our parameters: We
consider the n-vertex graph GT,b with chromatic number χ(GT,b) and we set
T = χ(GT,b)/k = Θ(χ(GT,b) log logn/ logn) and b = 6.

V0

V1

V2

Fig. 2. Hard instance GT,b = (V,E). V0 is a clique of size T , V1 are logb(n) cliques

each of size T . This construction continues recursively until level k = Θ(
log( n

T )
log log n

).

We shall prove now that any algorithm following the scheme of Algorithm 1
requires Ω(χ(GT,b)k) iterations on graph GT,b. However, due to space restric-
tions, all proofs of this section are omitted and can be found in the full version of
this article. Our argument is as follows: Let p1, p2, . . . be the sequence of prob-
abilities chosen by the algorithm, where pi is the probability chosen in round
i. We will argue that for any k/2 ≤ i < k, layer Vi+1 will be eliminated by
the algorithm before the elimination of at most 1/10 of the nodes of layer Vi

since the presence of layer Vi+1 induces high degrees to all nodes in layer Vi.
For the nodes in Vi, this reduces the probability of being selected and colored.
We show that the elimination of a layer takes time Ω(χ(GT,b)) for any choice of

probabilities. Since there are k = Θ( log n
log logn ) layers, the result follows.

Denote by V j
i ⊆ Vi the set of not-yet colored nodes after iteration j. Then

V 0
i = Vi. Let V j =

⋃
i V

j
i . Denote by ti the least number of iterations of the

algorithm such that at least one clique of Vi lost at least 1/2T of its vertices,
i.e., at least half of the vertices of at least one clique of layer i have disappeared.
In any iteration j, any node v ∈ V j gets pre-selected with probability pj. Then
it is colored only if none of its neighbors have been preselected. Therefore, the
probability of v being chosen and colored is pi(1− pi)

degV j (v).



Distributed Algorithms for Coloring Interval Graphs 467

Next, we show that it is very unlikely that a node of layer i is colored before
iteration ti+1.

Lemma 4. Consider graph GT,b. Let 0 ≤ i < k. For every iteration j < ti+1,

every v ∈ V j
i , and large enough n:

P [v is colored in iteration j] ≤ 1

T logb−2 n
.

This fact is then used in the following lemma. With high probability, all cliques
of layer i are still of size at least 9/10 of its initial size just after iteration ti+1.

Lemma 5. Consider graph GT,b. Suppose that ti+1 ≤ T log2 n. Then with prob-

ability at least 1−O
(

1

nlogb−5(n)T−1

)
and n large enough, the size of the smallest

clique in Vj after iteration ti+1 is at least 9
10T for any j ≤ i.

Using Lemma 5 we conclude that the number of rounds between ti+1 and ti is
Θ(χ(G)).

Lemma 6. Suppose that GT,b is such that χ(GT,b) ≥ log5 n. Then for any i ≥
k/2, a small enough but constant c, and n large enough:

P [ti − ti+1 ≤ cχ(G)] = O

(
1

nlogn−1

)
.

The previous lemma allows us to obtain our lower bound result.

Theorem 6. Suppose that GT,b is such that log5 n ≤ χ(GT,b) ≤ n1−ε for any
ε > 0 and let n be sufficiently large. Then any algorithm that follows the scheme
of Algorithm 1 requires Ω(χ(GT,b)

logn
log logn ) colors to color GT,b with high proba-

bility.
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Abstract. Fundamental local symmetry breaking problems such as
Maximal Independent Set (MIS) and coloring have been recognized as
important by the community, and studied extensively in (standard)
graphs. In particular, fast (i.e., logarithmic run time) randomized algo-
rithms are well-established for MIS and Δ+ 1-coloring in both the LO-
CAL and CONGEST distributed computing models. On the other hand,
comparatively much less is known on the complexity of distributed sym-
metry breaking in hypergraphs. In particular, a key question is whether
a fast (randomized) algorithm for MIS exists for hypergraphs.

In this paper, we study the distributed complexity of symmetry break-
ing in hypergraphs by presenting distributed randomized algorithms for
a variety of fundamental problems under a natural distributed comput-
ing model for hypergraphs. We first show that MIS in hypergraphs (of
arbitrary dimension) can be solved in O(log2 n) rounds (n is the number
of nodes of the hypergraph) in the LOCAL model. We then present a
key result of this paper — an O(Δε polylog n)-round hypergraph MIS
algorithm in the CONGEST model where Δ is the maximum node de-
gree of the hypergraph and ε > 0 is any arbitrarily small constant. We
also present distributed algorithms for coloring, maximal matching, and
maximal clique in hypergraphs.

To demonstrate the usefulness of hypergraph MIS, we present appli-
cations of our hypergraph algorithm to solving problems in (standard)
graphs. In particular, the hypergraph MIS yields fast distributed algo-
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Harris et al. [ICALP 2013]) and the minimal connected dominating set
problem.

Our work shows that while some local symmetry breaking problems
such as coloring can be solved in polylogarithmic rounds in both the LO-
CAL and CONGEST models, for many other hypergraph problems such
as MIS, hitting set, and maximal clique, it remains challenging to obtain
polylogarithmic time algorithms in the CONGEST model. This work is
a step towards understanding this dichotomy in the complexity of hyper-
graph problems as well as using hypergraphs to design fast distributed
algorithms for problems in (standard) graphs.

1 Introduction
The importance, as well as the difficulty, of solving problems on hypergraphs was
pointed out recently by Linial, in his Dijkstra award talk [24]. While standard
graphs1 model pairwise interactions well, hypergraphs can be used to model
multi-way interactions. For example, social network interactions include sev-
eral individuals as a group, biological interactions involve several entities (e.g.,
proteins) interacting at the same time, distributed systems can involve several
agents working together, or multiple clients who share a server (e.g., a cellular
base station), or multiple servers who share a client, or shared channels in a
wireless network. In particular, hypergraphs are especially useful in modelling
social networks (e.g., [33]) and wireless networks (e.g., [2]). Unfortunately, as
pointed out by Linial, much less is known for hypergraphs than for graphs. The
focus of this paper is studying the complexity of fundamental local symmetry
breaking problems in hypergraphs2 . A related goal is to utilize these hypergraph
algorithms for solving (standard) graph problems.

In the area of distributed computing for (standard) graphs, fundamental local
symmetry breaking problems such as Maximal Independent Set (MIS) and col-
oring have been studied extensively (see e.g., [26,23,5,30,20] and the references
therein). Problems such as MIS and coloring are “local” in the sense that a solu-
tion can be verified easily by purely local means (e.g., each node communicating
only with its neighbors), but the solution itself should satisfy a global property
(e.g., in the case of coloring, every node in the graph should have a color different
from its neighbors and the total number of colors is at most Δ+ 1, where Δ is
the maximum node degree). Computing an MIS or coloring locally is non-trivial
because of the difficulty of symmetry breaking: nodes have to decide on their
choices (e.g., whether they belong to the MIS or not) by only looking at a small
neighbourhood around it. (In particular, to get an algorithm running in k rounds,

1 Henceforth, when we say a graph, we just mean a standard (simple) graph.
2 Formally, a hypergraph (V, F ) consists of a set of (hyper)nodes V and a collection
F of subsets of V ; the sets that belong to F are called hyperedges. The dimension of
a hypergraph is the maximum number of hypernodes that belong to a hyperedge.
Throughout, we will use n for the number of nodes, m for the number of hyperedges,
and Δ for the degree of the hypergraph which is the maximum node degree (i.e.,
the maximum number of edges a node is in). A standard graph is a hypergraph of
dimension 2.
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each node v has to make its decision by looking only at information on nodes
within distance k from it.) Some of the most celebrated results in distributed
algorithms are such fast localized algorithms. In particular, O(log n)-round (ran-
domized) distributed algorithms are well-known for MIS [26] and Δ+1-coloring
[5] in both the LOCAL and CONGEST distributed computing models [30].

Besides the interest in understanding the complexity of fundamental prob-
lems, the solutions to such localizable symmetry breaking problems had many
obvious applications. Examples are scheduling (such as avoiding the collision
of radio transmissions, see e.g. [13], [9], or matching nodes such that each pair
can communicate in parallel to the other pairs, see e.g. [4]), resource manage-
ment (such as assigning clients to servers, see, e.g. [3]), and even for obtaining
O(Diameter) solutions to global problems that cannot be solved locally, such as
MST computation [14,22].

In contrast to graphs which have been extensively studied in the context of
distributed algorithms, many problems become much more challenging in the
context of hypergraphs. An outstanding example is the MIS problem, whose
local solutions for graphs were mentioned above. On the other hand, in hy-
pergraphs (of arbitrary dimension) the complexity of MIS is wide open. (In a
hypergraph, an MIS is a maximal subset I of hypernodes such that no subset
of I forms an hyperedge.) Indeed, determining the parallel complexity (in the
PRAM model) of the Maximal Independent Set (MIS) problem in hypergraphs
(for arbitrary dimension) remains as one of the most important open problems in
parallel computation; in particular, a key open problem is whether there exists
a polylogarithmic time PRAM algorithm [17,6,19]. As discussed later, efficient
CONGEST model distributed algorithms that uses simple local computations
will also give efficient PRAM algorithms.

1.1 Main Results

We present distributed (randomized) algorithms for a variety of fundamental
problems under a natural distributed computing model for hypergraphs (cf. Sec-
tion 2).

Hypergraph MIS. A main focus is the hypergraph MIS problem which has been
the subject of extensive research in the PRAM model (see e.g., [17,18,19,6,27]).
We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in
O(log2 n) distributed rounds (n is the number of nodes of the hypergraph) in the
LOCAL model (cf. Theorem 1). We then present an O(Δε polylogn) round algo-
rithm for finding a MIS in hypergraphs of arbitrary dimension in the CONGEST
model, where Δ is the maximum degree of the hypergraph (we refer to Theorem 1
for a precise statement of the bound) and ε > 0 is any small positive constant. In
the distributed computing model (both LOCAL and CONGEST), computation
within a node is free; in one round, each node is allowed to compute any function
of its current data. However, in our CONGEST model algorithms, each processor
will perform very simple computations (but this is not true in the LOCAL model).
In particular, each step of any node v can be simulated in O(dv) time by a single
processor or in O(logm) time with dv processors. Here, dv is the degree of the
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node in the server-client computation model — cf. Section 2; dv = O(m), where
m is the number of hyperedges. From these remarks, it follows that our algorithms
can be simulated on the PRAM model to within an O(logm) factor slowdown us-
ing O(m + n) processors. Thus our CONGEST model algorithm also implies a
PRAM algorithm for hypergraph MIS running in O(Δε polylogn logm) rounds
using a linear number of processors for a hypergraph of arbitrary dimension.

Algorithms for Standard Graph Problems Using Hypergraph MIS. In
addition to the importance of hypergraph MIS as a hypergraph problem, we
outline its importance to solving several natural symmetry breaking problems
in (standard) graphs too. For the results discussed below, we assume the CON-
GEST model.

Consider first the following graph problem called the restricted minimal dom-
inating set (RMDS) problem which arises as a key subproblem in other problems
that we discuss later. We are given a (standard) graph G = (V,E) and a subset
of nodes R ⊆ V , such that R forms a dominating set in G (i.e., every node v ∈ V
is either adjacent to R or belongs to R). It is required to find a minimal domi-
nating set in R that dominates V . (The minimality means that no subset of the
solution can dominate V ; it is easy to verify the minimality condition locally.)
Note that if R is V itself, the problem can be solved by finding a MIS of G, since
a MIS is also a minimal dominating set (MDS); hence an O(log n) algorithm ex-
ists. However, if R is some arbitrary proper subset of V (such that R dominates
V ), then no distributed algorithm running even in sublinear (in n) time (let
alone polylogarithmic time) is known. Using our hypergraph MIS algorithm, we
design a distributed algorithm for RMDS running in O(min{Δε polylogn, no(1)})
rounds in the CONGEST model (Δ is the maximum node degree of the graph)
— cf., Section 4.

RMDS arises naturally as the key subproblem in the solution of other prob-
lems, in particular, the balanced minimal dominating set (BMDS) problem [16]
and the minimal connected dominating set (MCDS) problem. Given a (standard)
graph, the BMDS problem (defined formally in Section 4) asks for a minimal
dominating set whose average degree is small with respect to the average degree
of the graph; this has applications to load balancing and fault-tolerance [16]. It
was shown that such a set exists and can be found using a centralized algorithm
[16]. Finding a fast distributed algorithm was a key problem left open in [16].
In Section 4, we use our hypergraph MIS algorithm of Section 3 to present an
Õ(D+min{Δε, no(1)}) round algorithm (the notation Õ hides a polylogn factor)
for BMDS problem (in the CONGEST model), where D is the diameter (of the
input standard graph) and Δ is the maximum node degree.

The MCDS problem is a variant (similar to variants studied in the context of
wireless networks, e.g. [10]) of the well-studiedminimum connected dominating set
problem (which is NP-hard) [8,11]. In the MCDS problem, we require a dominat-
ing set that is connected and isminimal (i.e., no subset of the solution is a MCDS).
In contrast to the approximate minimum connected dominating set problem (i.e.,
finding a connected dominating set that is not too large compared to the opti-
mal) which admits efficient distributed algorithms [12,15] (polylogarithmic run
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time algorithms are known for both the LOCAL and CONGEST model for the
unweighted case), we show that it is impossible to obtain an efficient distributed
algorithm for MCDS. In Section 4, we use our hypergraph MIS algorithm of Sec-
tion 3 as a subroutine to construct a distributed algorithm for MCDS that runs
in time Õ(D(Dmin{Δε, no(1)} +

√
n)). We also show that Ω̃(D +

√
n) is a lower

bound on the run time for any distributed MCDS algorithm.

Algorithms for Other Hypergraph Problems. Besides MIS (and the above
related standard graph problems), we also study distributed algorithms for col-
oring, maximal matching, and maximal clique in hypergraphs in the full paper.
We show that a Δ+1-coloring of a hypergraph (of any arbitrary dimension) can
be computed in O(log n) rounds (this generalizes the result for standard graphs).
We also show that maximal matching in hypergraphs can be solved in O(logm)
rounds. Maximal clique is a less-studied problem, even in the case of graphs, but
nevertheless interesting. Given a (standard) graph G = (V,E), a maximal clique
(MC) L is subset of V such that L is a clique in G and is maximal (i.e., it is
not contained in a bigger clique). MC is related to MIS since any MIS in the
complement graph Gc is an MC in G. For a hypergraph, one can define an MC
with respect to the server graph (cf. Section 2). Finding MC has applications in
finding a non-dominated coterie in quorum systems [28]. We show that an MC in
a hypergraph can be found in O(dim logn) rounds, where dim is the dimension
of the hypergraph and n is the number of nodes. All the above results hold in
the CONGEST model as well.

1.2 Technical Overview and Other Related Work

We study two natural network models for computing with hypergraphs — the
server-client model and the vertex-centric models (cf. Section 2). Our algorithmic
results apply to both models (except the one on maximal matching).

The distributed MIS problem on hypergraphs is significantly more challenging
than that on (standard) graphs. Simple variants/modifications of the distributed
algorithms on graphs (e.g., Luby’s algorithm and its variants [26,29,30]) do not
seem to work for higher dimensions, even for hypergraphs of dimension 3. For ex-
ample, running Luby’s algorithm or its permutation variant [26] on a (standard)
graph by replacing each hyperedge with a clique does not work — in the graph
there can be only one node in the MIS, whereas in the hypergraph all nodes of
the clique, expect one, can be in the MIS. It has been conjectured by Beame and
Luby [6] that a generalisation of the permutation variant of an algorithm due to
Luby [26] can give a polylog(m+ n) run time in the PRAM model, but this has
not been proven so far (note that this bound itself can be large, since m can be
exponential in n).

Our distributed hypergraph MIS algorithm (Section 3) consists of several in-
gredients. A key ingredient is the decomposition lemma (cf. Lemma 3) that shows
that the problem can be reduced to solving a MIS problem in a low diameter
network. The lemma is essentially an application of the network decomposition
algorithm of Linial and Saks [25]. This applies to the CONGEST model as well
— the main task in the proof is to show that the Linial-Saks decomposition works
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for (both) the hypergraph models in the CONGEST setting. The polylogarith-
mic run time bound for the LOCAL model follows easily from the decomposition
lemma. However, this approach fails in the CONGEST model, since it involves
collecting a lot of information at some nodes. The next ingredient is to show how
the PRAM algorithm of Beame and Luby [6] can be simulated efficiently in the
distributed setting; this we show is possible in a low diameter graph. Kelsen’s
analysis [19] of Beame-Luby’s algorithm (which shows a polylogarithmic time
bound in the PRAM model for constant dimension hypergraphs) immediately
gives a polylogarithmic round algorithm in the CONGEST model for a hyper-
graph of constant dimension. To obtain the Õ(Δε) algorithm (for any constant
ε > 0) for a hypergraph of arbitrary dimension in the CONGEST model, we
use another ingredient: we generalize a theorem of Turan (cf. Theorem 6) for
hypergraphs — this shows that a hypergraph of low average degree has a large
independent set. We show further that such a large independent set can be found
when the network diameter is O(log n). Combining this theorem with the anal-
ysis of Beame and Luby’s algorithm gives the result for the CONGEST model
for any dimension. Our CONGEST model algorithm, as pointed out earlier, also
implies a Õ(Δε) round algorithm for the PRAM model. Recently, independently
of our result, Bercea et al.[7] use a similar approach to obtain an improved al-
gorithm for the PRAM model. In particular, they improve Kelsen’s analysis of
Beame-Luby algorithm to apply also for slightly super-constant dimension. This
improved analysis of Kelsen also helps us in obtaining a slightly better bound
(cf. Theorem 1).

We apply our hypergraph MIS algorithm to solve two key problems — BMDS
and MCDS. The BMDS problem was posed in Harris et al. [16], but no efficient
distributed algorithm was known. A key bottleneck was solving the RMDS prob-
lem (defined earlier) which appears as a subroutine in solving BMDS. We can view
RMDS as a hypergraph problem. To see this, it is useful to define a hypergraph us-
ing the following server-client bipartite graph model B = (S,C): the server set S
represents the nodes of the hypergraph and the client set C represents the hyper-
edges; an edge is present between a server s and a client c if and only if node s
belongs to the hyperedge c. Given an instance of the RMDS problem, we take the
server set asR and the client set as V and an edge is present between a server and a
client if the server is adjacent to (or is the same as) the client in the given graphG.
Solving the RMDS problem now reduces to solving the minimal hitting set (MHS)
(same as the minimal vertex cover(MVC)) problem3 in this hypergraph (cf., Sec-
tion 4). Since a MHS is just the complement of the MIS (in the server set), this
reduces to solving MIS problem in a hypergraph.

The MCDS problem, to the best of our knowledge, has not been considered
before and seems significantly harder to solve in the distributed setting com-
pared to the more well-studied approximate version of the connected dominat-
ing set problem [12,15]. The key difficulty is being minimal with respect to both

3 A MHS (same as MVC) of a hypergraph is a minimal subsetH of hypernodes that such
that H ∩ e = ∅, for every hyperedge e of the hypergraph. Note that the complement
of a MHS is a MIS.
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connectivity and domination. We use a layered approach to the problem, by first
constructing a breadth-first tree (BFS) and then adding nodes to the MCDS,
level by level of the tree (starting with the leaves). We also show a lower bound
of Ω̃(D +

√
n) for the MCDS problem by using the techniques of Das Sarma

et al. [31]. This lower bound holds even when D = polylogn. In this case, our
upper bound is tight up to a polylogn factor. We also show that Ω(D) is a
universal lower bound for MCDS as well as for maximal clique and spanning
tree problems, i.e., it applies essentially to all graphs. These are shown in the
full paper.

2 Preliminaries

A hypergraph H consists of a set V (H) of n (hyper)nodes and a set family E(H)
of m hyperedges, each of which is a subset of V (H). We define the degree of node
u to be the total number of hyperedges that u is contained in. Furthermore,
we define the degree of the hypergraph, denoted by Δ, as the maximum over all
hypernode degrees. The size of each hyperedge is bounded by the dimension dim

of H; note that a hypergraph of dimension 2 is a graph.
We now introduce our main model of computation. In our distributed model,

H is realized as a (standard) undirected bipartite graph G with vertex sets S
and C where |S| = n and |C| = m. We call S the set of servers and C the set
of clients and denote this realization of a hypergraph as the server-client model.
That is, every vertex in S corresponds to a vertex in H and every vertex in C
corresponds to a hyperedge of H. For simplicity, we use the same identifiers for
vertices in C as for the hyperedges in H. There exists a (2-dimensional) edge in
G from a server u ∈ S to a client e ∈ C if and only if u ∈ e. See Figure 1a for an
example. Thus, the degree of H is precisely the maximum degree of the servers
and the dimension of H is given by the maximum degree of the clients.

u1

u2

u3

u4

(a)

servers clients

u1

u2

u3

u4

e1

e2

e3

(b)

u1 u2

u3 u4

(c)

Fig. 1. Figure (a) depicts a hypergraph consisting of vertices u1, . . . , u4 and edges
e1 = {u1, u2, u3}, e2 = {u2, u4}, and e3 = {u3, u4}. Figures (b) and (c) respectively
show this hypergraph in the bipartite server-client model and the vertex-centric model.

An alternative way to model a hypergraph H as a distributed network is the
vertex-centric model (cf. Figure 1c). Here, the nodes are exactly the nodes of
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H and there exists a communication link between nodes u and v if and only if
there exists a hyperedge e ∈ E(H) such that u, v ∈ e. Note that in this model,
we assume that every node locally knows all hyperedges in which it is contained.
For any hypergraph H, we call the above underlying communication graph in
the vertex-centric model (which is a standard graph) the server graph, denoted
by G(H).

We consider the standard synchronous round model (cf. [30]) of communica-
tion. That is, each node has a unique id (arbitrarily assigned from some set of
size polynomial in n) and executes an instance of a distributed algorithm that
advances in discrete rounds. To correctly model the computation in a hyper-
graph, we assume that each node knows whether it is a server or a client. In
each round every node can communicate with its neighbors (according to the
edges in the server-client graph) and perform some local computation. We do
not assume shared memory and nodes do not have any a priori knowledge about
the network at large.

We will consider two types of models — CONGEST and LOCAL [30]. In the
CONGEST model, only a O(log n)-sized message can be sent across a communi-
cation edge per round. In the LOCAL model, there is no such restriction. Unless
otherwise stated, we use the CONGEST model in our algorithms.

Due to lack of space, the complete proofs can be found in the full paper.

3 Distributed Algorithms for Hypergraph MIS Problem
We present randomized distributed algorithms and prove the following for the
hypergraph MIS problem:

Theorem 1. The hypergraph MIS problem can be solved in the following ex-
pected time4 in both vertex-centric and server-client representations.
1. O(log2 n) time in the LOCAL model.
2. O(log(d+4)!+4 n) time5 in the CONGEST model when the input hypergraph

has constant dimension d.
3. O(min{Δε log(1/ε)

O(1/ε)

n,
√
n}) time in the CONGEST model for any di-

mension, where ε is such that 1 ≥ ε ≥ 1
log log n

c log log log n−1
from some (large) con-

stant c. (In particular, Δε log(1/ε)
O(1/ε)

n becomes Δo(1)no(1) when we use
ε = 1

log log n
c log log log n−1

.)

In Section 3.1, we prove a decomposition lemma which plays an important role
in achieving all the above results.

3.1 Low-Diameter Decomposition

First, we note that, for solving MIS, it is sufficient to construct an algorithm
that solves the following subgraph-MIS problem on low-diameter networks.
4 Our time bounds can also be easily shown to hold with high probability, i.e., with

probability 1− 1/n.
5 As is common, we use the notation logf n which is the same as (log n)f .
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Definition 2 (Subgraph-MIS Problem). In the Subgraph-MIS problem, we
are given an n-node network G. This network is either in a vertex-centric or
server-client representation of some hypergraph H. Additionally, we are given a
subnetwork G′ of G representing a sub-hypergraph6 H′ of H. The goal is to find
an MIS of H′.

Lemma 3 (Decomposition Lemma). For any function T , if there is an al-
gorithm A that solves subgraph-MIS on CONGEST server-client (respectively
vertex-centric) networks G of O(log n) diameter in T (n) time (where n is the
number of nodes in G), then there is an algorithm for MIS on CONGEST
server-client (respectively vertex-centric) networks of any diameter that takes
O(T (n) log4 n) time.

The main idea of the lemma is to run the network decomposition algorithm of
Linial and Saks [25] and simulate A on each cluster resulting from the decompo-
sition. The only part that we have to be careful is that running A simultaneously
on many clusters could cause a congestion. We show that this can be avoided by
a careful scheduling. The details are as follows.

The network decomposition algorithm of [25] produces an O(log n)-
decomposition with weak-diameter O(log n). That is, given a (two-dimensional)
graphG, it partitions nodes into sets S1, S2, . . . Sk and assigns color ci ∈ {1, 2, . . . ,
O(log n)} to each set Si with the following properties:
– the distance between any two nodes in the same set Si is O(log n), and
– any two neighboring nodes of the same color must be in the same set (in

other words, any two “neighboring” sets must be assigned different colors).
This algorithm takes O(log2 n) time even in the CONGEST model [25]. We

use the above decomposition algorithm to decompose the server graph G(H) (cf.
Section 2) of the input hypergraph. The result is the partition of hypernodes
(servers) into colored sets satisfying the above conditions (in particular, two
nodes sharing the same hyperedge must be in the same partition or have differnet
colors). In addition, we modify the Linial-Saks (LS) algorithm to produce low-
diameter subgraphs that contain these sets with the property that subgraphs of
the same color have “small overlap”.

Lemma 4. Let G be the input network (server-client or vertex-centric model)
representing hypergraph H. In O(log3 n) time and for some integer k, we can
partition hypernodes into k sets S1, . . . , Sk, produce k subgraphs of G denoted
by G1, G2, . . .Gk, and assign color ci ∈ {1, 2, . . . , O(log n)} to each subgraph Gi,
with the following properties:
1. For all i, Gi has diameter O(log n) and Si ⊆ V (Gi).
2. For any Si and Sj that are assigned the same color (i.e. ci = cj), there is

no hyperedge in H that contains hypernodes (servers) in both Si and Sj.
3. Every edge in G is contained in O(log3 n) graphs Gi1 , Gi2 , . . .

6 Given a subset V ′ ⊆ V , a sub-hypergraph of H is simply a hypergraph induced by
V ′ — except hyperedges that contain vertices that do not belong to V ′, all other
hyperedges of H (which intersect with V ′) are present in the sub-hypergraph.
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Observe that the first two properties in Theorem 4 are similar to the guarantees
of the Linial-Saks algorithm, except that Theorem 4 explicitly gives low-diameter
graphs that contain the sets S1, . . . , Sk. The third property guarantees that such
graphs have “small congestion”.

Lemma 5. MIS can be solved in O(log2 n) rounds in the LOCAL models (both
vertex-centric and server-client representations).

Proof (Proof Sketch). Using Theorem 4, we partition the hypernodes of the
input network into subgraphs each of which have O(log n) diameter and no two
subgraphs assigned the same colour share a hyper edge. Note that there is no
congestion in the LOCAL model when we simulate A (as specified in Lemma
3) on all graphs of color i. Thus, we need O(T (n)) time per color instead of
O(T (n) log3 n). Moreover, we can solve the subgraph-MIS problem on a network
of O(log n) diameter in O(log n) time by collecting the information about the
subgraph to one node, locally compute the MIS on such node, and send the
solution back to every node. Thus, T (n) = O(log n). It follows that we can solve
MIS on networks of any diameter in O(log2 n) time.

3.2 O(log(d+4)!+4 n) Time in the CONGEST Model Assuming
Constant Dimension d

Let (H,H′) be an instance of the subgraph-MIS problem such that the network
G representing H has O(log n) diameter. We now show that we can solve this
problem in O(log(d+4)! n) time when H′ has a constant dimension d, i.e. |e| ≤ d

for every hyperedge e in H′. By Theorem 3, we will get a O(log(d+4)!+4 n)-time
algorithm for the MIS problem in the case of constant-dimensional hypergraphs
(of any diameter) which works in both vertex-centric and server-client represen-
tations and even in the CONGEST model. This algorithm is also an important
building block for the algorithm in the next section.

Our algorithm simulates the PRAM algorithm of Beame and Luby [6] which
was proved by Kelsen [19] to finish in O(log(d+4)! n) time when the input hyper-
graph has a constant dimension d and this running time was recently extended
to any d ≤ log logn

4 log log log n by Bercea et al. [7]7. The crucial part in the simula-
tion is to compute a number ζ(H′) defined as follows. For ∅ �= x ⊆ V (H′)
and an integer j with 1 ≤ j ≤ d − |x| we define: Nj(x,H′) = {y ⊆ V (H′) |
x ∪ y ∈ E(H′) ∧ x ∩ y = ∅ ∧ |y| = j}, and dj(x,H′) = (|Nj(x,H′)|)1/j . Also,
for 2 ≤ i ≤ d, let8 ζi(H′) = max{di−|x|(x,H′) | x ⊆ V (H′) ∧ 0 < |x| < i} and
ζ(H′) = max{ζi(H′) | 2 ≤ i ≤ d}. We now explain how to compute ζ(H′) in
7 The original running time of Kelsen [19] is in fact O((log n)f(d)) where f(d) is defined

as f(2) = 7 and f(i) = (i−1)
∑i−1

j=2 f(j)+7 for i > 2. The O(log(d+4)! n) time (which
is essentially the same as Kelsen’s time) was shown in [7]. We will use the latter
running time for simplicity. Also note that the result in this section holds for all
d ≤ log log n

4 log log log n
due to [7].

8 A note on the notation: [6,19] use Δ to denote what we use ζ to denote here. We
use a different notation since we use Δ for another purpose.
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O(log(d+4)! n) time. First, note that we can assume that every node knows the
list of members in each hyperedge that contains it: this information is already
available in the vertex-centric representation; and in the server-client represen-
tation, every hyperedge can send this list to all nodes that it contains in O(d)
time in the CONGEST model. Every node v can now compute, for every i,
ζi(v,H′) = max{di−|x|(x,H′) | x ⊆ V (H′) ∧ 0 < |x| < i ∧ v ∈ x}. This does
not require any communication since for any x such that v ∈ x, node v already
knows all hyperedges that contain x (they must be hyperedges that contain v).
Now, we compute ζ(H′) = max{ζi(v,H′) | 2 ≤ i ≤ d ∧ v ∈ V (H′)} by comput-
ing through the breadth-first search tree of the network representing H (this is
where we need the fact that the network has O(log n) diameter).

Once we get ζ(H′), the rest of the simulation is trivial; we refer to the full
paper for details.

3.3 Δε log(1/ε)O(1/ε)

n and Δo(1)no(1) Time in the CONGEST Model

We rely on a modification of Turán’s theorem, which states that a (two-
dimensional) graph of low average degree has a large independent set (see e.g.
Alon and Spencer [1]). We show that this theorem also holds for high-dimensional
hypergraphs, and show further that such a large independent set can be found
w.h.p when the network diameter is O(log n).

Lemma 6 (A simple extension of Turán’s theorem). Let d ≥ 2 and δ ≥ 2
be any integers. Let H be any hypergraph such that every hyperedge in H has
dimension at least d, there are n hypernodes, and the average hypernode degree
is δ. (Note that the diameter of the network representing H can be arbitrary.) If
every node knows δ and d, then we can find an independent set M whose size in
expectation is at least n

δ1/(d−1) (1 − 1
d) in O(1) time.

Algorithm. We use the following algorithm to solve the subgraph-MIS prob-
lem on a sub-hypergraphH′ of H, assuming that the network representingH has
O(log n) diameter. Let n′ = |V (H′)|. Let d be an arbitrarily large constant. LetH′

d

be the sub-hypergraph ofH′ where V (H′
d) = V (H′) and we only keep hyperedges

of dimension (i.e. size) at least d in H′
d. (It is possible that H′

d contains no edge.)
We then find an independent set of expected size at least n′

Δ1/(d−1) (1− 1/d) inH′
d,

denoted by S; this can be done in O(1) time by Theorem 6 (note that we use the
fact that δ ≤ Δ here). Let H′

S be the sub-hypergraph of H′ induced by nodes in
S. Note thatH′

S does not contain any hyperedge inH′
d and thus has dimension at

most d, which is a constant. So, we can run the O(log(d+4)! n)-time algorithm from
Section 3.2 to find an MIS of H′

S . We let M ′
S be such a MIS of H′

S .
Our intention is to use M ′

S as part of some MIS M ′ of H′. Of course, any
hypernode v in V (H′

S) \M ′
S cannot be in such M ′ since M ′ ∪ {v} will contain

some hyperedge e in H′
S which is also a hyperedge in H′. It is thus left to find

which hypernodes in V (H ′)\S should be added to M ′
S to construct an MIS M ′ of

H′. To do this, we use the following hypergraph. Let H′′ be the sub-hypergraph
of H′ such that V (H′′) = V (H′) \ S and for every hyperedge e ∈ E(H′), we add



480 S. Kutten et al.

a hyperedge e ∩ V (H′′) to H′′ if and only if e ⊆ M ′
S ∪ V (H′′); in other words,

we keep edge e that would be “violated” if we add every hypernode in H′′ to
M ′. We now find an MIS M ′′ of H′′ by recursively running the same algorithm
with H′′, instead of H′, as a subgraph of H. The correctness follows from the
following claim (see the full paper for the proof).

Claim. M ′ = M ′
S ∪M ′′ is a MIS of H′.

We now analyze the running time of this algorithm. Recall that E[|S|] ≥
n′

δ(1/(d−1)) (1 − 1/d). In other words, the expected value of |V (H′′)| ≤ (1 −
c(d)

Δ1/(d−1) )|V (H′)| where c(d) = 1
2 (1−1/d) is a constant which is strictly less than

one (recall that d is a constant). It follows that the expected number of recursion
calls is O(Δ

1
d−1 ). Since we need O(log(d+4)! n) time to compute M ′

S and to con-
struct H′′, the total running time is O(Δ

1
d−1 log(d+4)! n). By Theorem 3, we can

compute MIS on any hypergraph H (of any diameter) in O(Δ
1

d−1 log(d+4)!+4 n)
time. For any constant ε > 0, we set d = 1 + 1/ε to get the claimed running
time of O(Δε log(5+1/ε)!+4 n) = Δε log(1/ε)

O(1/ε)

n. Moreover, by the recent re-
sult of Bercea et al. [7], we can in fact set d as large as log logn

4 log log log n . If we set
d = log logn

c log log logn for some large enough constant c, the term log(d+4)! n can be
bounded by no(1) and thus the running time becomes Δo(1)no(1).

We obtain the O(
√
n) time by modifying the PRAM algorithm of Karp, Upfal,

and Wigderson [18, Section 4.1]. This algorithm can be found in the full version.

4 Applications of Hypergraph MIS Algorithms to
Standard Graph Problems

In this section we show that our distributed hypergraph algorithms have direct
applications in the standard graph setting.

Restricted Minimal Dominating Set (RMDS). We are given a (standard)
graph G = (V,E) and a subset of nodes R ⊆ V , such that R forms a dominating
set in G (i.e., every node v ∈ V is either adjacent to R or belongs to R). We are
required to find a minimal dominating set that is a subset of R and dominates
V . Since a minimal vertex cover is the complement of a maximal independent
set, we can leverage our MIS algorithm (cf. Section 3). To this end, we show that
the RMDS problem can be solved by finding a minimal hitting set (or minimal
vertex cover) on a specific hypergraph H . The server client representation of
H is determined by G and R as follows: For every vertex in V we add a client
(i.e. hyperedge) and, for every vertex in R, we also add a server. Thus, for every
vertex u ∈ V , we have a client eu and, if u ∈ R, we also have a server su. We
then connect a server su to a client ev, iff either u and v are adjacent in G, or
u = v. See the full paper for the complete pseudo code of this construction.
Note that we can simulate this server client network on the given graph with
constant overhead in the CONGEST model. We have the following result by
virtue of Theorem 1:



Distributed Symmetry Breaking in Hypergraphs 481

Nodes compute the average network degree δ.
Every node u of degree > 2δ marks itself with probability log t

t where t = 2δ log δ
log log δ .

Every node of degree ≤ 2δ marks itself.
If a node v is not marked, and none of the neighbors of v are marked, then v marks itself.
Let marked be the set of nodes that are marked. Invoke the RMDS algorithm (cf. Section 4) on
G where the restricted set is given by marked.
Every node that is in the solution set of the RMDS algorithm remains in the final output set.

Algorithm 4.1. A distributed BMDS-algorithm

Theorem 7. RMDS can be solved in expected time Õ(min{Δε, no(1)}) (for any
const. ε > 0) on graph G in the CONGEST model and in time O(log2 n) in the
LOCAL model where Δ is the maximum degree of G.

Balanced Minimal Dominating Set. We define the average degree of a
(standard) graph G, denoted by δ, as the total degrees of its vertices (degree of
a vertex is its degree in G) divided by the number of vertices in G. A balanced
minimal dominating set (BMDS) (cf. [16]) is a minimal dominating set D in G
that minimizes the ratio of the average degree of D to that of the graph itself
(the average degree of the set of nodes D is defined as the average degree of the
subgraph induced by D). A centralized polynomial time algorithm for computing
a BMDS with (the best possible in general 9) average degree O( δ log δ

log log δ ) was
given in [16]. A distributed algorithm that gives the same bounds was left a
key open problem. We now present a distributed variant of this algorithm (cf.
Algorithm 4.1) that uses our hypergraph MIS-algorithm as a subroutine.

Theorem 8. Let δ be the average degree of a graph G. There is a CONGEST
model algorithm that finds a BMDS with average degree O( δ log δ

log log δ ) in expected
Õ(D+min{Δε, no(1)}) rounds, where D is the diameter, Δ is the maximum node
degree of G, and ε > 0 is any constant.
Minimal Connected Dominating Sets (MCDS). Given a graph G, the
MCDS problem requires us to find a minimal dominating set M that is con-
nected in G. We now describe our distributed algorithm for solving MCDS in the
CONGEST model (see the full paper for the complete pseudo code) and argue its
correctness. We first elect a node u as the leader using a O(D) time algorithm of
[21]. Node u initiates the construction of a BFS tree B, which has k ≤ D levels,
after which every node knows its level (i.e. distance from the leader u) in the
tree B. Starting at the leaf nodes (at level k), we convergecast the maximum
level to the root u, which then broadcasts the overall maximum tree level to all
nodes in B along the edges of B.

We then proceed in iterations processing two adjacent tree levels at a time,
starting with nodes at the maximum level k. Note that since every node knows k
and its own level, it knows after how many iterations it needs to become active.
Therefore, we assume for simplicity that all leafs of B are on level k. We now
describe a single iteration concerning levels i and i − 1: First, consider the set
9 That is, there exists graphs with average degree δ, where this bound is essentially

the optimal.
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Li of level i nodes that have already been added to the output set M in some
previous iteration; initially, for i = k, set Li will be empty. We run the O(D+

√
n)

time algorithm of [32] to find maximal connected components among the nodes
in Li in the graph G; let C = {C1, . . . , Cα} be the set of these components and
let �j be the designated component leader of component Cj ∈ C.

We now simulate a hypergraph that is defined as the following bipartite server
client graph H : Consider each component in C as a super-node; we call the other
nodes on level i non-super-nodes. The set C of clients contains all super-nodes
in C and all nodes on level i that are neither adjacent to any super-node nor
have been added to the output set O. The set S of servers contains all nodes
on level i − 1. The edges of H are the induced inter-level edges of G between
servers and non-super-node clients. In addition, we add an edge between a server
s ∈ S and a (super-node) client Cj ∈ C, iff there exists a v ∈ Cj such that
(v, s) ∈ E(G). Conceptually, we can think of the edges incident to Cj as pointing
to the component leader node �j. Next, we find a MIS (cf. Section 3) on the
(virtual) hypergraph H . We refer to the full paper for details.

Theorem 9. MCDS can be solved in the CONGEST model in expected time
Õ(D(Dmin{Δo(1), no(1)}+

√
n)).
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Abstract. We develop the first streaming algorithm and the first two-party com-
munication protocol that uses a constant number of passes/rounds and sublin-
ear space/communication for logarithmic approximation to the classic Set Cover
problem. Specifically, for n elements and m sets, our algorithm/protocol achieves
a space bound of O(m · nδ log2 n logm) using O(41/δ) passes/rounds while
achieving an approximation factor of O(41/δ log n) in polynomial time (for δ =
Ω(1/ log n)). If we allow the algorithm/protocol to spend exponential time per
pass/round, we achieve an approximation factor of O(41/δ). Our approach uses
randomization, which we show is necessary: no deterministic constant approx-
imation is possible (even given exponential time) using o(mn) space. These
results are some of the first on streaming algorithms and efficient two-party com-
munication protocols for approximation algorithms. Moreover, we show that our
algorithm can be applied to multi-party communication model.

1 Introduction

The Set Cover problem is one of the classic tasks in combinatorial optimization. Given
a set of n elements E and a collection of m sets S = {S1, . . . , Sm}, the goal of the
problem is to pick a subset I ⊂ S such that (i) I covers E , i.e., E ⊆

⋃
S∈I S, and subject

to this constraint, (ii) the number of sets in I is as small as possible. Set Cover is a well-
studied problem with applications in many areas, including operations research [7],
information retrieval and data mining [14], web host analysis [2], and many others.

Although the problem is NP-hard, a simple greedy algorithm is guaranteed to report
a solution of size at most O(lnn) larger than the optimum. The algorithm is highly
efficient and surprisingly accurate, with the reported solution size often within the 10%
of the optimum on typical data sets [7]. However, it has been observed that, due to its
sequential nature, the greedy algorithm is significantly less efficient when implemented
on hierarchical, parallel and distributed architectures, which are commonly used nowa-
days for processing massive amounts of data. As a result, there has been considerable
work on algorithms for Set Cover that are optimized for external memory [3], stream-
ing [14,6], and cluster computing [2] architectures.

In this paper we consider Set Cover in three related computational models:

1. Streaming Model: In this model, the sets S1, . . . , Sm are stored consecutively in
a read-only repository. An algorithm can access the sets by performing sequential
scans of the repository. However, the amount of read-write memory available to

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 484–498, 2014.
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the algorithm is limited, and is smaller than the input size (which could be as large
as mn). The objective is to design an algorithm that performs few passes over the
data, and uses as little memory as possible.

2. Two-Party Communication Model: In this model, the sets are partitioned between
two parties, Alice and Bob. Without loss of generality we can assume that Alice
holds S1, . . . , Sm/2, while Bob holds Sm/2+1, . . . , Sm. The parties communicate
by exchanging messages, with Alice sending her messages to Bob during the odd
rounds, and Bob sending his messages to Alice during the even rounds. The ob-
jective is to design a communication protocol to find a minimum cover of E that
terminates in a few rounds such that the total length of the exchanged messages is
as small as possible.

3. Multi-party Communication Model: In this model, the sets are partitioned among
p parties that are not allowed to communicate with each other. However, there is a
coordinator that communicates with each of the parties in rounds. In odd rounds,
the coordinator performs some computation and broadcasts a single message to all
of the parties; in even rounds, each party receives the message, performs some local
computation, and sends a message back to the coordinator. Moreover, each party
executes the same algorithm. The objective is to design a communication protocol
to find a minimum cover of E that terminates in a few rounds and that the total size
of the communication is as small as possible.

The first two models are intimately related. Specifically, any p-pass streaming algo-
rithm that uses s bits of storage yields a (2p − 1)-round communication protocol ex-
changing at most (2p− 1)s bits (see e.g., [8]). Thus, any efficient streaming algorithm
induces a good communication protocol, while any lower bound for the communication
complexity provides a lower bound for the amount of storage required by a streaming
algorithm. Understanding the amount of communication necessary to solve problems in
distributed communication complexity settings has been a subject of extensive research
over the last few years, see e.g., [15] for an overview.

The Set Cover problem has attracted a fair amount of research over the last few
years. The upper and lower bounds for the problem are depicted in Figure 1. Note that
the simple greedy algorithm can be implemented by either storing the whole input (in
one pass), or by iteratively updating the set of yet-uncovered elements (in at most n
passes).

Our Results. Our main result is an O(41/δ) pass, O(41/δρ)-approximation streaming
algorithm with Õ(m·nδ) space1 for the Set Cover problem, where ρ denotes the approx-
imation factor of an algorithm that solves Set Cover in off-line model. For example, the
greedy algorithm yields ρ = O(log n), while an exponential algorithm yields ρ = 1. In
particular, setting ρ = 1 and 1/δ = 1

2 log logn− 1 implies a 1
4 logn-approximate com-

munication protocol with complexity mnO(1/ log logn). This matches the lower bound
of Nisan [11] up to a factor of no(1).

Furthermore, we show Ω(mn) lower bound for the communication complexity of
any deterministic protocol approximating two-party Set Cover within a constant factor.
Thus, the use of randomness is essential in order to achieve our result.

1 Õ(f(n,m)) is defined as O(f(n,m) · logk f(n,m)).
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Result Approximation Passes/rounds Space/communication Type

Greedy O(lnn) 1 O(m · n) deterministic algorithm

O(lnn) n O(n) deterministic algorithm

[14] O(log n) O(log n) O(n log n) deterministic algorithm

[6] O(
√
n) 1 Õ(n) deterministic algorithm

[11] 1
2 log n any Ω(m) randomized lower bound

This paper O(41/δρ) O(41/δ) Õ(m · nδ) randomized algorithm2

This paper O(1) any Ω(m · n) deterministic lower bound

Fig. 1. Summary of past work and our results. The algorithmic bounds are stated for the streaming
model, while the lower bounds are stated for the two-party communication complexity model.
We use ρ to denote the approximation factor of an off-line algorithm solving Set Cover, which
is O(lnn) for the greedy algorithm and 1 for the exponential time algorithm. Furthermore, our
result holds for any δ = Ω(1/ log n).

We also show in Appendix A that our algorithm implies an O(41/δ)-roundO(41/δρ)-
approximation communication protocol for multi-party communication model which
communicates Õ(m · nδ + p · n) bits per round.

Our Techniques. Our algorithms exploit random sampling. Two variants of sampling
are used, depending on the size OPT of the minimum cover. If OPT is large, we use
set sampling, i.e., we sample O(OPT) random sets and include them in the solution.
This ensures that all universe elements contained in (m logn)/OPT sets are covered
with high probability. Since each of the remaining elements is contained in at most
(m logn)/OPT sets, the space needed to represent the input is reduced.

On the other hand, if OPT is small, the algorithm performs element sampling. Specif-
ically, for a parameter α > 0, the algorithm selects O((OPT · logm)/α) elements
and computes a small cover of those elements. This task can be solved using only
O((m · OPT · logm)/α) space. We then show that any such solution in fact covers
a 1− α fraction of the whole universe. Therefore, it suffices to cover the remaining αn
elements, which can be done using less space since the universe size becomes smaller.
The aforementioned process can be repeated recursively in order to reduce the space
complexity to O(mnδ) for any δ > 0. A variant of the latter approach, element sam-
pling, was previously applied in semi-streaming k-Max Coverage problem [9].

Preliminaries. In this paper we consider the Set Cover problem in the set streaming
model which is based on the following setup appeared in [14].

Definition 1 (Set Streaming Model). In set streaming model we are given E in ad-
vance and sets in S are revealed in a stream.

2 Our algorithms are randomized. Specifically, we assume that the streaming algorithm has ac-
cess to a random oracle r(i) such that the bits r(1), r(2), . . . are i.i.d. symmetric Bernoulli
variables. The approximation guarantees offered by our algorithms are required to hold with
high probability.
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In the off-line Set Cover model, the universe of elements E and the collection of sets
S are given all at once to the algorithm. In this paper, we assume that we are able to
approximate off-line Set Cover within a factor ρ of its optimal solution. It is known
that under P �= NP , ρ cannot be smaller than c · lnn where c is a constant [13,1]. At
the same time, setting ρ = 1 (i.e., assuming an exact algorithm for set cover) provides
space/approximation trade-offs without running time considerations. In particular, it es-
tablishes the “upper bounds on lower bounds”, given that communicational complexity
tools for proving lower bounds do not take the running time into account.

A trivial one pass streaming algorithm for the Set Cover problem is to read the whole
stream and store all sets of S in memory. This leads to a ρ-approximation algorithm
with O(mn) space. We refer to this algorithm as Simple-Set-Cover algorithm which
is shown in Figure 2 and will be used later in our algorithms. In Section 3, we show
that any deterministic constant pass constant factor approximation algorithm for set
streaming Set Cover requires Ω(mn) space (see Corollary 1). This implies that the triv-
ial Simple-Set-Cover algorithm is tight. Thus to break the Ω(mn) space barrier of the
constant pass algorithms for set streaming Set Cover, we should consider randomized
approaches. In Section 2 we give a randomized constant pass algorithm for the problem
that uses o(mn) memory space. Moreover, Nisan proved that any randomized proto-
col of the Set Cover in two-party communication that achieves an approximation ratio
better than log n

2 requires Ω(m) memory space [11].

Simple-Set-Cover Algorithm 〈〈Set Cover Problem. Input: 〈E ,S〉〉〉
Store the projection of all sets in S over E in memory
Run the off-line algorithm to find a ρ-approximate cover sol
Return sol

Fig. 2. One pass algorithm for set streaming Set Cover(E ,S) using O(m · n) space

2 A Constant Pass Algorithm

In this section, we give a randomized algorithm for set streaming Set Cover that has
constant number of passes and consumes Õ(m · nδ) space where δ is an arbitrary con-
stant greater than 4/ logn. To this end, first in Section 2.1, we describe set sampling and
element sampling approaches followed by a two pass randomized (2ρ)-approximation
algorithm that uses Õ(m ·n2/3) space to solve the Set Cover problem. Then, in Section
2.2, we extend the techniques further to obtain our main result as follows.

Theorem 1 (Main Theorem). Suppose that there exists a ρ-approximation algorithm
for the Set Cover problem in the off-line model. For δ = Ω(1/ logn), there exists a ran-
domized O(41/δρ)-approximation algorithm to set streaming Set Cover with O(41/δ)
number of passes that consumes O(m · nδ log2 n logm) bit of memory.

Note that we can assume that δ = Ω(1/ logn) because otherwise the approximation
guarantee of Theorem 1 will be Ω(

√
n) and there exists a single pass 41/δ approxima-

tion algorithm in this case [6].
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2.1 Sampling Approaches

In this section, we present two key modules in our algorithm: element sampling and set
sampling.

Element Sampling. Let us assume that we are given k, the size of an optimal solution
to Set Cover(E ,S). Let Esmp be a subset of E of size O(ρ · kε logm) picked uniformly at
random where ε < 1. We claim that a ρ-approximate cover Csmp of Esmp is an ε-cover
of E with high probability where ε-cover is defined as follows.

Definition 2. A collection of sets C is an ε-cover of a set of elements E if |E∩
⋃

S∈C S| ≥
(1− ε)|E|; in other words, C covers at least 1− ε fraction of E .

Since we have assumed that an optimal cover of E is of size k, there exists a cover
of size at most k for Esmp as well. Let Ssmp = {S ∩ Esmp | S ∈ S} be the collection
of the intersections of all sets in S with Esmp. By calling Simple-Set-Cover(Esmp,S),
in one pass we can find a ρ-approximate cover of Esmp, Csmp, using O(m · |Esmp|) =
O(mρ · kε logm) bits of memory. We say that Esmp is a successful element sampling if
Csmp is an ε-cover of E . The following lemma shows that if Esmp is picked uniformly
at random, then with high probability Esmp is a successful element sampling.

Lemma 1 (Element Sampling Lemma). Consider an instance of Set Cover with E
and S as inputs. Let us assume that an optimal cover of Set Cover(E ,S) has size at
most k. Let Esmp be a subset of E of size ρ · ck

ε logm chosen uniformly at random and
let Csmp ⊆ S be a ρ-approximate cover for Esmp. Then Csmp is an ε-cover for E with
probability at least 1− 1

m(c−2) .

Proof: Since an optimal solution of Set Cover(E ,S) has size at most k, an optimal
solution of Set Cover(Esmp,Ssmp) is also of size at most k. Thus a ρ-approximate cover
Csmp for Esmp is of size at most kρ.

Let C′ be a subset of S covering less than 1− ε fraction of E . The probability that C′
covers Esmp is at most (1 − ε)ρ

ck
ε logm < 1

m

ckρ
. Thus by union bound, the probability

that Csmp covers Esmp and Csmp is an ε-cover of E is at least

1−
[ kρ∑

i=1

(
m

i

)]
1

mckρ
≥ 1−

[ kρ∑
i=1

mi

]
1

mckρ
≥ 1− mkρ+1

mckρ

≥ 1− 1

m(c−2)kρ
≥ 1− 1

mc−2
.

Note that the term
∑kρ

i=1

(
m
i

)
counts the number of all covers of size at most kρ which

can be possibly returned as a solution to Set Cover(Esmp,Ssmp). �
Let Erem be the set of elements remained uncovered after picking Csmp in the first pass.
Lemma 1 showed that with high probability |Erem| ≤ εn. In the second pass, we cover
the set Erem by calling Simple-Set-Cover(Erem,S) using O(m · εn) space. These two
steps together give a randomized two-pass (2ρ)-approximation for the problem that
uses O(m · kρε logm+m · εn) bits of memory which can be optimized by setting ε =√

kρ logm
n . Thus the total required memory of element sampling is O(m ·

√
ρkn logm).
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Theorem 2. Let (E ,S) be an instance of set streaming Set Cover. Assume that an op-
timal solution to Set Cover(E ,S) has size at most k. Then there exists a two pass ran-
domized (2ρ)-approximation algorithm for the problem that uses O(m ·

√
ρkn logm)

bits of memory.

However, the required memory space of the described algorithm depends on k and it
only performs well for small values of k. In the rest, we remove the dependency on k
in the memory space of our algorithm by introducing another sampling module.

Set Sampling. In the set sampling module, in a single pass, the algorithm picks a subset
of S uniformly at random. In contrast to element sampling technique, set sampling
works effectively for large k. A set sampling Srnd of size c� logn is successful if Srnd
covers all elements that appear in at least m


 sets of S. The following lemma shows that
a subset of S of size c� logn picked uniformly at random is a successful set sampling
with high probability.

Lemma 2 (Set Sampling Lemma). Consider an instance (E ,S) of set streaming Set
Cover. Let Srnd be a collection of sets of size c� logn picked uniformly at random. Then,
Srnd covers all elements of E that appear in at least m


 sets of S with probability at least
1− 1

nc−1 .

Proof: Let e be an element of E that appears in at least m

 sets of S. The probability

that e is not covered by Srnd is at most (1− 1

 )

c
 log n < e−c lnn/ ln 2 = n−c/ ln 2. Thus
the probability that there exists an element of E that appears in at least m


 sets of S and
is not covered by Srnd is at most n · n−c/ ln 2 ≤ n−c+1. �
Two Pass Algorithm. Now we describe a randomized two-pass (2ρ)-approximation
algorithm for set streaming Set Cover problem that uses Õ(m · n2/3) space. Let k be a
parameter to be determined later and let OPT be the size of an optimal solution of Set
Cover(E ,S). Consider the following two cases:

1. OPT ≤ k. In this case we apply the element sampling approach to solve Set
Cover(E ,S) using O(m ·

√
ρnk logm) bits (see Theorem 2).

2. OPT ≥ k. In this case we apply the set sampling module. First, we pick a subset
Srnd of S of size ckρ uniformly at random. By Lemma 2, each element e that is
not covered by Srnd with high probability appears in m

ρk · logn sets of S. Thus
the required space to solve the problem over uncovered elements off-line is O(n ·
m
ρk log2 n) bits; the total number of elements in projection of S over uncovered
elements is O(n · m

ρk logn) and O(log n) bits is required for representing each of n
elements.

Note that the algorithm does not really need to know OPT. It can run both cases in
parallel and at the end, report the best solution of these two. Since each of these subrou-
tines requires two passes, the whole algorithm can be done in two passes. Moreover, the
total memory space is O(m · (

√
nρk logm+ n

ρk log2 n)) which is minimized by letting

k = 1
ρ (

n log4 n
logm )1/3. Thus it is a randomized two-pass (2ρ)-approximation algorithm for

set streaming Set Cover using O(m · n2/3(logm log2 n)1/3) bits of memory.

Lemma 3. There exists a randomized two-pass (2ρ)-approximation algorithm for set
streaming Set Cover that uses Õ(m · n2/3) bits of memory.
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2.2 Our Algorithm

In this section we show that we can improve the result of Lemma 3 further in terms of
required space by applying the sampling modules recursively. Our main claim is that
the Recursive-Sample-Set-Cover algorithm described in Figure 3, achieves the guaran-
tees mentioned in Theorem 1. More precisely, Recursive-Sample-Set-Cover(E ,S, n, δ)
finds an O(41/δρ)-approximate cover of E in O(41/δ) passes using Õ(m · nδ) bits of
memory. We prove Theorem 1 at the end of this section.

In Recursive-Sample-Set-Cover(E ,S, n, δ), first we check whether |E| ≤ nδ . If
|E| ≤ nδ, we call Simple-Set-Cover(E ,S) to find a cover of E in one pass using
O(m · nδ) bits. Otherwise, similar to the two pass algorithm, we combine set sampling
and element sampling modules. However, here we recurse in element sampling module.
In Recursive-Sample-Set-Cover(E ,S, n, δ) we choose a threshold k to decide whether
the size of an optimal cover is large or not. By the proper choice of k and the assumption
that all sampling modules are successful, we show that Case 1 in Recursive-Sample-
Set-Cover returns an O(41/δρ)-approximate cover if the size of an optimal cover of E is
larger than or equal to k. Similarly, we show that in the case that the size of an optimal
cover of E is smaller than k, Case 2 of the algorithm returns an O(41/δρ)-approximate
cover. Moreover, in Case 2 of the algorithm, which corresponds to the element sam-
pling, we recursively invoke two instances of Recursive-Sample-Set-Cover on element
sets of size at most |E|

nδ/2 . At the end, we return the best solution of these two cases.

Lemma 4. Let E ′smp and E ′rem be subsets of E ′ as defined in Recursive-Sample-Set-

Cover(E ′,S, n, δ). Then |E ′smp| =
|E′|
nδ/2 and for large enough c, with high probability,

|E ′rem| ≤
|E′|
cnδ/2 .

Proof: Since k is chosen to be |E ′|/(c2ρ · nδ · logm),

|E ′smp| = c
√
ρ|E ′|k logm =

|E ′|
nδ/2

.

We can rewrite |E ′smp| as

c
√
ρ|E ′|k logm = cρk logm/

√
ρk logm

|E ′| .

Thus by Lemma 1, a ρ-approximate cover of E ′smp is a (
√

ρk logm
|E′| )-cover of E ′ with

high probability. Hence, with high probability,

|E ′rem| ≤ |E ′| ·
√

ρk logm

|E ′| =
√
ρ|E ′|k logm =

|E ′|
cnδ/2

.

�
Next we define the successful invocation of Recursive-Sample-Set-Cover.

Definition 3. An invocation of Recursive-Sample-Set-Cover(E ′,S, n, δ) is successful
if either |E ′| ≤ nδ; or Srnd and E ′smp are respectively successful element sampling
and set sampling, and both Recursive-Sample-Set-Cover(E ′smp,S, n, δ) and Recursive-
Sample-Set-Cover(E ′rem,S, n, δ) are successful.
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Recursive-Sample-Set-Cover 〈〈Set Cover Problem. Input: 〈E ,S, n, δ〉〉〉
Let k = |E|/(c2ρ · nδ logm)
If |E| ≤ nδ

sol← Simple-Set-Cover(E ,S) 〈〈In one pass〉〉
Return sol

〈〈Case 1: handling OPT(E ,S) ≥ k via “set sampling” module〉〉
Let Srnd be a collection of ckρ sets of S picked uniformly at random. 〈〈In one pass〉〉
If each element of E \

⋃
S∈Srnd

S appears in less than m logn
k sets of S

solrnd ← Simple-Set-Cover(E \
⋃

S∈Srnd
S,S) 〈〈In one pass〉〉

Else 〈〈Unsuccessful set sampling〉〉
solrnd ← Invalid

〈〈Case 2: handling OPT(E ,S) < k via “element sampling” module〉〉
Sample a set of elements Esmp of size c

√
ρ|E|k logm uniformly at random

solsmp ← Recursive-Sample-Set-Cover(Esmp,S, n, δ)
Let Erem = E \

⋃
S∈solsmp

S 〈〈In one pass〉〉
If |Erem| ≤ |E|/(cn

δ
2 )

solrem ← Recursive-Sample-Set-Cover(Erem,S, n, δ)
Else 〈〈Unsuccessful element sampling〉〉

solrem ← Invalid

If any of solrnd, solsmp or solrem is Invalid
Return Invalid

Return the best of (Srnd ∪ solrnd) and (solsmp ∪ solrem)

Fig. 3. Recursive-Sample-Set-Cover for the Set Cover problem in set streaming model

Note that in Recursive-Sample-Set-Cover algorithm we only consider the result of
successful invocations. To this end, we discard the run of the algorithm as soon as a
sampling module fails.

Consider the recursion tree of Recursive-Sample-Set-Cover(E ,S, n, δ). Each inter-
mediate node in the tree has two children. Moreover, for each leaf of the tree, the num-
ber of elements in its corresponding Recursive-Sample-Set-Cover instance is at most
nδ. Thus, we have the following lemma.

Lemma 5. The height the recursion tree of Recursive-Sample-Set-Cover(E ,S, n, δ) is
at most 2/δ and the number of nodes in the tree is less than 2 · 41/δ. Moreover, the
number of nodes in the recursion tree is O(n).

Proof: In the root node of the tree, the element size is n and by lemma 4, the element
size decreases by a factor of at least nδ/2 at each level of recursion. Thus, in level i
we have at most 2i instances of Recursive-Sample-Set-Cover with element size at most
n1−iδ/2. Moreover, the element size of the corresponding instances of a leaf is at most
nδ. Thus, we can compute the height of the tree, h, as follows:
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n1−hδ
2 ≤ nδ =⇒ (1 − hδ

2
) ≤ δ =⇒ h ≤ 2(1− δ)

δ
≤ 2

δ

Since the height of the tree is at most 2/δ, the total number nodes in the tree is at most
2 · 41/δ. Moreover since δ = Ω(logn), the number of nodes in the tree is O(n). �
The following lemma shows that an invocation of Recursive-Sample-Set-Cover is suc-
cessful with high probability.

Lemma 6. Consider an invocation of Recursive-Sample-Set-Cover(E ,S, n, δ).For suf-
ficiently large c, the invocation is successful with high probability.

Proof of Lemma 6: Consider any particular node of the recursion tree. By Lemma 2
the probability that set sampling performed at that node is successful is at least 1− 1

nc−1

and by Lemma 1, the probability that the element sampling performed at that node is
successful is at least 1 − 1

mc−2 . Therefore, by union bound over all the nodes in the
recursion tree and using the fact that the number of nodes in the recursion tree is O(n)
(See Lemma 5), an invocation of the subroutine is successful with probability at least
1−O(n) · 2

nc−2 ≥ 1− 1
O(nc−3) . �

In the rest we compute the number of passes, approximation guarantee and the re-
quired space of Recursive-Sample-Set-Cover(E ,S, n, δ).

Lemma 7. The number of passes in Recursive-Sample-Set-Cover(E ,S, n, δ) is O(41/δ).

Proof: We show that the number of passes the algorithm makes in each node of the
recursion tree of Recursive-Sample-Set-Cover is at most 3. Therefore, by Lemma 5 the
total number of passes of Recursive-Sample-Set-Cover is O(41/δ).

In each leaf node which corresponds to an invocation of Recursive-Sample-Set-cover
with element size at most nδ, we call Simple-Set-Cover and it is done in one pass. For
intermediate nodes, the algorithm has at most the following three passes.

– In the first pass, the algorithm picks Srnd. In the meantime, it maintains the set of
uncovered elements by so far selected sets. Moreover, for each uncovered element
e, it stores the number of sets in S containing e. These numbers are used to decide
whether the set sampling is successful.

– Next, if Srnd is successful, then the algorithm makes another pass to find a cover
for the elements that are not covered by Srnd via Simple-Set-Cover algorithm.

– Then the algorithm samples a set of elements Esmp and recursively finds a cover of
Esmp. Note that in Recursive-Sample-Set-Cover, we return the indices of the sets in
the selected cover. Thus, to decide whether the element sampling is successful, the
algorithm must make a pass to find the uncovered elements, Erem. If |Erem| ≤ εn,
the module is successful and we recursively find a cover for Erem.

�

Lemma 8. For sufficiently large c, Recursive-Sample-Set-Cover(E ,S, n, δ) algorithm
returns an O(41/δρ)-approximate solution of Set Cover(E ,S) with high probability.
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Proof: By Lemma 6, an invocation of Recursive-Sample-Set-Cover is successful with
high probability. In the following we only consider successful invocations of Recursive-
Sample-Set-Cover and compute the approximation factor for successful runs.

Consider a successful run of Recursive-Sample-Set-Cover(E ′,S, n, δ). If |E ′| ≤ nδ,
then the solution returned by the subroutine has size at most ρ · OPT where OPT is the
size of an optimal cover of E .

Otherwise, if an optimum solution for this instance has size at least |E ′|/(c2ρ ·
nδ logm) (Case 1), the size of the cover constructed by the subroutine is at most
cρ · (|E ′|/c2ρ · nδ logm) + ρ · OPT ≤ (c+1)ρ ·OPT, where the first term denotes the
size of Srnd and the second term denotes the size of the cover the algorithm picked for
the elements that are not covered by Srnd.

If an optimum cover of the instance has size less than |E ′|/(c2ρ · nδ logm) (Case
2), then the union of the covers returned by Recursive-Sample-Set-Cover(E ′smp,S, n, δ)
and Recursive-Sample-Set-Cover(E ′rem,S, n, δ) is a cover of E with small size (for pre-

cise value, see Equation 1). By Lemma 4, |E ′smp| ≤
|E′|
nδ/2 and |E ′rem| ≤

|E′|
cnδ/2 . Since the

size of an optimal cover of each of E ′smp and E ′rem is less than or equal to the size of an
optimal cover of E ′, in this case

Approx(|E ′|, n, δ) ≤ 2×Approx(
|E ′|
nδ/2

, n, δ). (1)

Thus, we can write the following recursive formula for the approximation guarantee of
Recursive-Sample-Set-Cover algorithm.

Approx(|E ′|, n, δ) ≤
{
max{(c+ 1)ρ, 2×Approx(|E ′|/nδ/2, n, δ)} if |E ′| > nδ

ρ if |E ′| ≤ nδ

(2)

By Lemma 5, the height of the recursion tree of our algorithm is 2/δ. Hence, a success-
ful run of the algorithm returns an O(41/δρ)-approximate cover. �

Lemma 9. Consider a successful run of Recursive-Sample-Set-Cover(E ′,S, n, δ). Af-
ter pickingSrnd, the required memory space to call Simple-Set-Cover(E ′\

⋃
S∈Srnd

S,S)

is O(m · nδ logm log2 n) bits.

Proof: As defined in Figure 3, Srnd is a collection of sets selected uniformly at ran-
dom and |Srnd| = ckρ where k = |E ′|/(c2ρ · nδ logm). In a successful set sampling,
Srnd covers all elements that appear in at least m

kρ · logn sets of S. Hence the re-
quired space to run Simple-Set-Cover(E ′ \

⋃
S∈Srnd

S,S) is |E ′| · m
kρ logn · logn =

c2m · nδ log2 n logm. Note that the additional logn in the memeory space is for repre-
senting the elements; logn bits is required to represent each element. �

Lemma 10. Recursive-Sample-Set-Cover(E ,S, n, δ) uses O(m · nδ logm log2 n) bits
of memory to solve set streaming Set Cover(E ,S) where n = |E|.

Proof: We prove by induction that the space Recursive-Sample-Set-Cover(E ,S, n, δ)
requires is less than c1(m · nδ + |E|) logm log2 n for a large enough constant c1.
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It is straightforward to see that the induction hypothesis holds for |E ′| ≤ nδ. In
this case we call Simple-Set-Cover(E ′,S) that can be executed using m · nδ bits. Lets
assume that the induction hypothesis holds for instances with |E| < n′. In the following
we show that the induction hypothesis holds for |E ′| = n′ too.

In Recursive-Sample-Set-Cover(E ′,S, n, δ), first we perform the set sampling mod-
ule and in this case the required space is bounded by the required space to store Srnd
which is |Srnd|·logm plus the required space to run Simple-Set-Cover(E\

⋃
S∈Srnd

S,S)

which is O(m · nδ logm log2 n) (see Lemma 9). We assume that the required space for
Simple-Set-Cover(E \

⋃
S∈Srnd

S,S) is c2 ·m · nδ logm log2 n (c2 is computed in the
proof of Lemma 9). Thus the total space to run set sampling

ckρ logm+ c2 ·m · nδ logm log2 n ≤ n1−δ/c+ c2 ·m · nδ logm log2 n

≤ c1 ·m · nδ logm log2 n

which holds for large enough c1. After executing the set sampling module, we only
need to keep the constructed cover which requires at most |E ′| logm bits (the size of
the cover is at most |E ′| and for each set in the cover we keep its index).

Then we perform the element sampling module. To this end, first we run Recursive-
Sample-Set-Cover(E ′smp,S, n, δ) using c1(m · nδ+ |E ′smp|) logm log2 n bits (by induc-
tion hypothesis). After constructing a cover for E ′smp, we only keep the cover of E ′smp

which requires at most |E ′smp| · logm bits. Next, if E ′smp is a successful element sam-
pling, we cover E ′rem recursively; otherwise, we return Invalid.

Thus the required space of Recursive-Sample-Set-Cover(E ,S, n, δ) is

max{c1 ·m · nδ logm log2 n, |E ′| logm+ c1 · (m · nδ +
|E ′|
nδ/2

) logm log2 n, (3)

(|E ′|+ |E ′|/nδ/2) logm+ c1 · (m · nδ + |E ′|/nδ/2) logm log2 n}
= (|E ′|+ |E ′|/nδ/2) logm+ c1 · (m · nδ + |E ′|/nδ/2) logm log2 n

≤ c1 · (m · nδ + |E ′|) logm log2 n (for large enough c1)

In Equation 3, the first term denotes the required space while the algorithm is running
the set sampling module. The second term denotes the required space for the case that
the execution of the set sampling module is completed and the algorithm is running the
first recursive call of the element sampling module. The last term is the required memory
space while the algorithm is running the second recursive call of the element sampling
module. Thus induction hypothesis holds for |E ′| = n′ and the proof is complete.

�
Theorem 1 follows from Lemma 8, Lemma 7 and Lemma 10.

3 Lower Bounds

In this section, we give some lower bound results for the Set Cover problem in the set
streaming model. Specifically, we discuss deterministic protocols and we show that one
cannot give a constant pass algorithm with o(mn) memory space that achieves a con-
stant factor approximation for set streaming Set Cover. Our lower bound results follow
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from some results in the two-party communication model. In particular we consider the
following variant of Set Disjointness problem in two-party communication model.

Definition 4 ((Sparse) Set Disjointness Problem). In Set Disjointness(n), each of Al-
ice and Bob receives a subset of {1, . . . , n}, SA and SB . The goal is to determine
whether SA and SB are disjoint or not. In Sparse Set Disjointness(n, k), each of two
parties receives a subset of size at most k of {1, . . . , n} and the goal is to determine
whether their sets intersect or not.

Set Disjointness(n) is a well-studied problem in communication complexity and it is
known that the best protocol (up to constant) in term of bits of communication is the triv-
ial one in which Alice sends her entire input to Bob. Moreover, using the rank method,
it has been shown that any deterministic protocol for Sparse Set Disjointness(n, k) re-
quires Ω(m log(n/k)) bits of communication.

Nisan [11] proved that any randomized protocol approximating Set Cover in two-
party communication with a factor better than logn

2 has communication complexity
Ω(m). In this section, exploiting the techniques of [11], we get Ω(mn) lower bound
for the memory space of deterministic two-party protocols approximating Set Cover
within a constant factor.

Definition 5 (r-covering property [10,11]). Let S be a collection of subsets of {1, . . . ,
n}. The collection S has the r-covering property if for every collection A ⊆ {S | S ∈
S or S ∈ S} of size at most r, A does not cover {1, . . . , n} unless a set S and its
complement are both selected in A.

Lemma 11 (From [11]). For any r ≤ logn−O(log log n), there exists a collection S
of subsets of {1, . . . , n} that satisfies the r-covering property such that |S| ≥ en/(r2

r).

Combining the known lower bound of Sparse Set Disjointness(n, k) with the r-covering
property, we achieve the following lower bound result for deterministic protocols of Set
Cover in two-party communication.

Theorem 3. Any deterministic α-approximation protocol for Set Cover(E ,SA,SB) in
two-party communication requires Ω(|SA ∪ SB| · |E|) communication if α = O(1).

Proof: Given an instance (xA, xB) of Sparse Set Disjointness(n, k), we construct the
following corresponding instance of two-party Set Cover(E ,SA,SB).
Let r = 2α and let S = {S1, . . . , Sn} be a collection of subsets of {1, . . . , p} satisfying
r-covering property. By Lemma 11, it is enough to have |S| = ep/(r2

r) which implies
that p = r2r lnn. Since r = O(1), we have p = O(log n).

Define E = {1, . . . , p}. Let SA be the collection of sets that Alice owns and let SB
denote the collection of sets owned by Bob. We define SA = {Si | xA[i] = 1} and
SB = {Si | xB [i] = 1}.
The r-covering property of S guarantees that the size of an optimal cover of E , C ⊆ S,
is either 2 (the case that C contains both S and S for a set S ∈ S) or at least r. Note
that xA and xB intersect iff the size of an optimal cover of E is 2. Thus any protocol
for two party Set Cover(E ,SA,SB) with approximation ratio smaller than r/2 solves
Sparse Set Disjointness(n, k) exactly.
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It has been shown that Sparse Set Disjointness(n, k) has communication complex-
ity Ω(k log(2n/k)). If we pick k such that k = O(n1−ε) for some constant ε, then
|E| = p = O(log n) = O(log 2n

k ). Thus by the known lower bound of Sparse Set
Disjointness(n, k) in two party communication, two-party Set Cover(E ,SA,SB) re-
quires Ω(k log(2n/k)) = Ω(k · p) = Ω((|SA| + |SB |) · |E|) bits of communication.

�

Corollary 1. Any deterministic constant factor approximation algorithm for set stream-
ing Set Cover with constant number of passes requires Ω(mn) space.

The following is based on the lower bound of [11].

Corollary 2. Any randomized constant pass algorithm that approximates set streaming
Set Cover(E ,SA,SB) within a factor smaller than logn

2 uses Ω(|SA ∪ SB|) space.
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A Multiparty Communication Algorithm for Set Cover

In this section, we describe how our algorithm can be applied in the multi-party com-
munication model where the input is distributed among a set of p parties and the goal
is to compute a function over the input, while minimizing the total amount of com-
munication. It is assumed that there is coordinator which can communicate with each
of the parties, however the parties do not communicate with each other directly. This
model has been widely studied before (see for example [5,4,12]). Note that this model
is an example of the number-in-hand model in which each party sees its own input, as
opposed to the number-on-forehead model where each party can see the inputs of all
the other parties except his own.

Our Model. In coordinator model there are p parties P1, . . . , Pp and one coordina-
tor. The coordinator can communicate with each of the parties, but the parties cannot
communicate with each other. Also, only synchronous executions are considered: in
even rounds, each party receives a message from the coordinator, performs some local
computation, and sends a message back to the coordinator. In odd rounds, the coordina-
tor receives messages from each party, performs some computation and broadcasts the
same message to all of the parties. We consider a restricted variant of the coordinator
model in which each party executes the same algorithm.

The Problem and Our Result. Let E = {1, · · · , n} be the element set and let S be
a collection of m sets and let S1, . . . ,Sp be a partitioning of S such that the party i
only has the collection Si. The goal of the algorithm is for the coordinator to output the
indices of the sets in S that constitute a minimum cover for E .

We are interested in the total number of rounds, approximation factor and total
amount of communication per round. Note that the communication of odd rounds is
counted as the size of the single message broadcasted from the coordinator, and the
communication of even rounds is counted as the total size of the messages from all
the parties to the coordinator. Assuming the described model, we have the following
theorem which mainly follows from Theorem 1.

Theorem 4. There is a randomizedO(41/δ)-round,O(41/δρ)-approximation algorithm
to Set Cover(E ,S) with total communication of Õ(m · nδ + p · n) in each round.

Here ρ is the approximation ratio of the off-line Set Cover achieved by the coordinator.

Our Algorithm. We can show that it is possible for the coordinator to run the Recursive-
Sample-Set-Cover such that its total communication with the parties is Õ(m·nδ) in each
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round. The algorithm only needs to access the sets in one of the following three cases.
If |E| ≤ nδ:

1. First the coordinator broadcasts E to the parties using O(nδ logn) bits.
2. Each party Pi, sends the projection of it sets on E back to the coordinator, i.e.,
{S ∩ E | S ∈ Si}. This needs at most O(mnδ logn) bits of communication.

Set Sampling:

1. To choose a collection of ckρ sets uniformly at random, Srnd, the coordinator sends
a constant size message to all parties to initiate the set sampling module.

2. Then each party Pi generates and sends a random number corresponding to each
of its sets which is a vector of size |Si| of random numbers. Note that it is enough
for the random numbers to be in the range (1, . . . ,mc) for some constant c so that
with high probability, the numbers for all the sets in S do not collide. This needs at
most O(m logm) bits of communication.

3. The coordinator finds a threshold thr such that there are exactly ckρ numbers below
thr among the received numbers and broadcasts thr. It requires O(logm) bits.

4. Each party Pi sends back a bit vector of size n showing which elements are covered
by the sets in Si whose assigned random number is less than thr. This needs at most
O(p · n) bits of communication.

5. The coordinator broadcasts the set of uncovered elements Erem using O(n log n)
bits.

6. Each party Pi returns for each uncovered element e, the number of sets in Si that
contains e. This needs at most O(p · n logm) bits of communication.

7. The coordinator checks whether Srnd is successful. In the case of success, it sends
“success” message using O(1) bits.

8. In the case of success, each of the parties projects its sets on the uncovered ele-
ments and sends it back to the coordinator. Then coordinator solves the Set Cover
problem over the uncovered elements off-line. By Lemma 9, this needs at most
O(mnδ logm log2 n) bits of communication.

Element Sampling. The element sampling requires recursively invoking the algorithm
for the instances of the Set Cover problem with smaller element size. The coordinator
samples a set of elements Esmp and solves the problem recursively for Esmp. Then the
coordinator checks whether Esmp was successful and in this case of success, it solves
the problem recursively for the set of uncovered elements Erem.

By the analysis of Recursive-Sample-Set-Cover in Section 2, it is straightforward to
check that the total communication in each round is Õ(m · nδ + p · n). Also the total
number of rounds is constant per each recursive call of Recursive-Sample-Set-Cover.
Therefore similar to the proof of Lemma 7, the total number of rounds of the algorithm
is O(41/δ). Hence the total communication of the algorithm is Õ(41/δ(m ·nδ +p ·n)).
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Abstract. We study the communication complexity of linear algebraic
problems over finite fields in the multi-player message passing model,
proving a number of tight lower bounds. We give a general framework
for reducing these multi-player problems to their two-player counter-
parts, showing that the randomized s-player communication complexity
of these problems is at least s times the randomized two-player com-
munication complexity. Provided the problem has a certain amount of
algebraic symmetry, we can show the hardest input distribution is a
symmetric distribution, and therefore apply a recent multi-player lower
bound technique of Phillips et al. Further, we give new two-player lower
bounds for a number of these problems. In particular, our optimal lower
bound for the two-player version of the matrix rank problem resolves an
open question of Sun and Wang.

A common feature of our lower bounds is that they apply even to
the special “threshold promise” versions of these problems, wherein the
underlying quantity, e.g., rank, is promised to be one of just two values,
one on each side of some critical threshold. These kinds of promise prob-
lems are commonplace in the literature on data streaming as sources of
hardness for reductions giving space lower bounds.

1 Introduction

Communication complexity, introduced in the celebrated work of Yao [30],
is a powerful abstraction that captures the essence of a host of problems in
areas as disparate as data structures, decision trees, data streams, VLSI design,
and circuit complexity [11]. It is concerned with problems (or games) where an
input is distributed among s ≥ 2 players who must jointly compute a function
f : X1 × · · · × Xs → Z, each Xi and Z being a finite set: Player i receives
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an input xi ∈ Xi, the players then communicate by passing messages to one
another using a predetermined protocol P , and finally they converge on a shared
output P(x1, . . . , xs). The main goal of the players is to minimize the amount
of communication, i.e., the total length of messages communicated. Put x =
(x1, . . . , xs). We say that a deterministic protocol P computes f if P(x) = f(x)
for all inputs x. In a randomized protocol, the players can flip coins and send
messages dependent on the outcomes; we shall focus on the public coin variant,
wherein the coin flip outcomes are known to all players.1 We say a randomized
protocol P computes f with error δ if Pr[P(x) = f(x)] ≥ 1 − δ for all inputs
x. In all cases, we define the cost of P to be the maximum number of bits
communicated by P over all inputs. We define the deterministic (resp. δ-error
randomized) communication complexity of f , denoted D(f) (resp. Rδ(f)) to be
the minimum cost of a protocol that computes f (with error δ in the randomized
case). It holds that D(f) ≥ Rδ(f) for all f and 0 ≤ δ ≤ 1.

Most work in communication complexity has focused on the two-player model
(the players are named Alice and Bob in this case), which already admits a
deep theory with many applications. However, one especially important class of
applications is data stream computation [8,16]: the input is a very long sequence
that must be read in a few streaming passes, and the goal is to compute some
function of the input while minimizing the memory (storage space) used by the
algorithm. Several data stream lower bounds specifically call for multi-player
communication lower bounds [1]. Moreover, several newer works have considered
distributed computing problems with streamed inputs, such as the distributed
functional monitoring problems of Cormode et al. [6]: in a typical scenario, a
number of “sensors” must collectively monitor some state of their environment by
efficiently communicating with a central “coordinator.” Studying the complexity
of problems in such models naturally leads one to questions about multi-player
communication protocols.

In the multi-player setting, strong lower bounds in the message passing model2

are a fairly recent achievement, even for basic problems. For the SetDisjoint-

ness problem, a cornerstone of communication complexity theory, two-player
lower bounds were long known [10,20] but an optimal multi-player lower bound
was only obtained in the very recent work of Braverman et al. [3]. For computing
bit-wise AND, OR, and XOR functions of vectors held by different parties, as well
as other problems such as testing connectivity and computing coresets for approx-
imating the geometric width of a pointset, optimal lower bounds were given in [19].
For computing a number of graph properties or exact statistics of databases, a re-
cent work achieved optimal lower bounds [28]. There are also recent tight lower
bounds for approximating frequency moments [27] and approximating distinct

1 Though the private coin model may appear more “natural,” our key results, being
lower bounds, are stronger for holding in the more general public coin model. In
any case, for the particular problems we consider here, the private and public coin
models are asymptotically equivalent by a theorem of Newman [18].

2 In contrast to the message passing model is the blackboard model, where players write
messages on a shared blackboard.
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elements [29]. Our chief motivation is to further develop this growing theory, giv-
ing optimal lower bounds for other fundamental problems.

Linear algebra is a fundamental area in pure and applied mathematics, appear-
ing ubiquitously in computational applications. The communication complexity
of linear algebraic problems is therefore intrinsically interesting. The connection
with data streaming adds further motivation, since linear algebraic problems are
a major focus of data stream computation. Frieze, Kannan and Vempala [7] de-
veloped a fast algorithm for the low-rank approximation problem. Clarkson and
Woodruff [5] gave near-optimal space bounds in the streaming model for many
linear algebra problems, e.g., matrix multiplication, linear regression and low
rank approximation. Muthukrishnan [17] asked several linear algebra questions
in the streaming model including rank-k approximation, matrix multiplication,
matrix inverse, determinant, and eigenvalues. Sárlos [21] gave upper bounds for
many approximation problems, including matrix multiplication, singular value
decomposition and linear regression.

Our Results: Let us first describe the new two-player communication complex-
ity results proved in this work. We then describe how to extend these to obtain
our multi-player results.

Two-Player Lower Bounds:We start by studying the following closely related
matrix problems. In each case, the input describes a matrix z ∈Mn(Fp), the set
of n× n matrices with entries in the finite field Fp for some prime p.

– Problem Rankn,k: Under the promise that rank(z) ∈ {k, k + 1}, compute
rank(z).

– Problem Inversen: Under the promise that z is invertible, decide whether
the (1, 1) entry of z−1 is zero.

– Problem LinSolven,b: Under the promise that z is invertible, for a fixed
non-zero vector b ∈ Fn

p , consider the linear system zt = b in the unknowns
t ∈ Fn

p . Decide whether t1 is zero.

There are two natural ways to split z between Alice and Bob. In the concatena-
tion model, Alice and Bob hold the top n/2 rows and the bottom n/2 rows of
z, respectively. In the additive split model, Alice and Bob hold x, y ∈ Mn(Fp)
respectively, and z = x + y. The two models are equivalent up to a constant
factor [25], see Section 5.3. All of this generalizes in the obvious manner to the
multi-player setting.

Theorem 1. Let f be one of Rankn,n−1, Inversen, or LinSolven,b. Then
R1/10(f) = Ω(n2 log p).

The above immediately implies Ω(n2 log p) space lower bounds for randomized
streaming algorithms for each of these problems, where the input matrix z is
presented in row-major order. See the full version for details. Clearly these lower
bounds are optimal, since the problems have trivial O(n2 log p) upper bounds,
that being the size of the input. We remark that Theorem 1 in fact extends to the
quantum communication model, a generalization of randomized communication
that we shall not elaborate on in this paper.
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To prove these lower bounds, we use the Fourier witness method [25] for
the promised rank problem, then reduce it to other problems. The reductions
critically use the promise in the rank problem, for which establishing a lower
bound was posed as an open question in [25]. Roughly speaking, the Fourier
witness method is a special type of dual norm method [13,22,24]. In the dual
norm method, there is a witness (a feasible solution of the dual maximization
problem for the approximate norms). A typical choice of witness is the function
itself (such as in the discrepancy method). In the Fourier witness method the
witness is chosen as the Fourier transform of the function. This method works
well for plus composed functions. For details, see Section 5.1.

We also consider the inner product and Hamming weight problems. Alice and
Bob now hold vectors x and y.

– Problem IPn: Under the promise that 〈x, y〉 ∈ {0, 1}, compute 〈x, y〉. Here
x, y ∈ Fn

p .
– Problem Hamn,k: Under the promise that ‖x + y‖ ∈ {k, k + 2}, compute
‖x+ y‖. Here x, y ∈ Fn

2 and ‖z‖ denotes the Hamming weight of z, i.e., the
number of 1 entries in z. Note that x− y = x+ y.

We do not provide new two-player lower bounds for IPn and Hamn,k, but state
the known ones here for use in our s-player lower bounds. It is known that
R1/3(IPn) = Ω(n log p) [26] and R1/3(Hamn,k) = Ω(k) [9].

s-Player Lower Bounds: For each of the above problems, there are natural s-
player variants. We consider the coordinator model in which there is an additional
player, called the coordinator, who has no input. We require that the s players
can only talk to the coordinator. The message-passing model can be simulated
in the coordinator model since every time a Player i wants to talk to a Player j,
Player i can first send a message to the coordinator, and then the coordinator
can forward the message to Player j. This only affects the communication by a
factor of 2. See, e.g., Section 3 of [3] for a more detailed description.

For the matrix problems, Player i holds a matrix x(i) and the computations
need to be performed on z = x(1) + · · · + x(s). The Hamming weight problem
is similar, except that each x(i) is a vector in Fn

2 . For the inner product prob-
lem, each x(i) ∈ Fn

p and we consider the generalized inner product, defined as∑n
j=1

∏s
i=1 x

(i)
j .

We provide a framework for applying the recent symmetrization technique of
Phillips et al. [19] to each of these problems. Doing so lets us “scale up” each of
the above lower bounds to the s-player versions of the problems.

However, the symmetrization technique in [19] does not immediately apply,
since it requires a lower bound on the distributional communication complexity
of the two-player problem under an input distribution with certain symmetric
properties. Nevertheless, for many of the two-player lower bounds above, e.g.,
those in Theorem 1, our lower bound technique does not give a distributional
complexity lower bound. We instead exploit the symmetry of the underlying
problems, together with a re-randomization argument in Theorem 3 to argue
that the hardest input distribution to these problems is in fact a symmetric
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distribution; see Definition 1 for a precise definition of symmetric. We thus obtain
a distributional lower bound by the strong version of Yao’s minimax principle.

We obtain the following results. Here, Rs
δ(f) denotes the δ-error randomized

communication complexity of the s-player variant of f . We give precise defini-
tions in Section 3.

Theorem 2. If f is one of Rankn,n−1, Inversen, or LinSolven,b,
then Rs

1/40(f) = Ω(sn2 log p). Further, Rs
1/12(IPn) = Ω(sn log p) and

Rs
1/12(Hamn,k) = Ω(sk).

We note that this has an application to the information-theoretic privacy of the
Rankn,n−1 problem. See the full version for details.

Related Work: Many linear algebra problems have been studied in both the
communication complexity model and the streaming model. Chu and Schnit-
ger [4] proved that Ω(n2 log p) communication is required by deterministic pro-
tocols for the singularity problem over Fp. Luo and Tsitsiklis [14] proved that
a deterministic protocol must transfer Ω(n2) real numbers for the matrix in-
version problem over C, but Alice and Bob can only use addition, subtraction,
multiplication and division of real numbers. Clarkson and Woodruff [5] proposed
a randomized one pass streaming algorithm that uses O(k2 logn) space to de-
cide if the rank of an integer matrix is k and proved an Ω(k2) lower bound for
randomized one-way protocols in the communication complexity model via a re-
duction from the Indexing communication problem. It implies an Ω(n2) space
lower bound in the streaming model with one pass. Miltersen et al. [15] showed
a tight lower bound for deciding whether a vector is in a subspace of Fn

2 in the
one-sided error randomized asymmetric communication complexity model, using
the Richness Lemma. Sun and Wang [25] proved the quantum communication
complexities for matrix singularity and determinant over Fp are both Ω(n2 log p).

Compared to previous results, our results are stronger. For the rank problem,
the matrix singularity problem in [25] is to decide if the rank of a matrix is
n or less than n, but Rankn,n−1 is to decide if the rank is n or n − 1. This
additional promise enables our lower bounds for Inversen and LinSolven,b. If
we set k = n in Clarkson and Woodruff’s result [5], the result gives us an Ω(n2)
bound for randomized one-way protocols. However, our lower bounds work even
for quantum two-way protocols. For the inverse problem, Luo and Tsitsiklis’s
result [14] is in a non-standard communication complexity model, in which Alice
and Bob can only make arithmetic operations on real numbers. However, our
lower bound works in the standard model of communication complexity. A result
of Miltersen et al. [15] is to decide if a vector is in a subspace. Sun and Wang [25]
studied the problem deciding whether two n/2 dimensional subspaces intersect
at {0} only or not, but we get the same bound in Corollary 1 even with the
promise. The results are analogous to the difference between set disjointness [2]
and unique set disjointness [10,20].

Corollary 1. Alice and Bob each hold an n/2-dimensional subspace of Fn
p . We

promise that the intersection of the two subspaces is either {0} or a one-dimensional
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space. Any quantum protocol requiresΩ(n2 log p) communication to distinguish the
two cases.

In the communication model, there is another way to distribute the input:
Alice and Bob each hold an n× n matrix x and y, respectively, and they want
to compute some property of x + y. This is equivalent to our model of matrix
concatenation up to a constant factor [25], a fact we shall use in the paper.

Paper Organization: In Section 3 we present our framework of multi-party
communication lower bound for a class of problems. In Section 4 we discuss the
IPn problem and in Section 5 the Rankn,n−1 problem and related linear algebra
problems.

2 Preliminaries

Communication Complexity: We briefly summarize the notions from com-
munication complexity that we will need. For more background on communica-
tion complexity, we refer the reader to [11].

Let f : X × Y → {1,−1} be a given function, which could be a partial func-
tion. Let dom(f) be the domain of f . Alice and Bob, with unlimited computing
power, want to compute f(x, y) for (x, y) ∈ dom(f). Alice only knows x ∈ X
and Bob y ∈ Y . To perform the computation, they follow a protocol Π and
send messages to each other in order to converge on a shared output Π(x, y).
We say a deterministic protocol Π computes f if Π(x, y) = f(x, y) for all in-
puts (x, y) ∈ dom(f), and define the deterministic communication complexity,
denoted by D(f), to be the minimum over correct deterministic protocols for f ,
of the maximum number of bits communicated over all inputs. In a randomized
protocol, Alice and Bob toss private coins and the messages can depend on the
coin flips. We say a randomized protocol Π computes f with error probability
δ if Pr{Π(x, y) = f(x, y)} ≥ 1 − δ for all inputs (x, y) ∈ dom(f), and define
the randomized communication complexity, denoted by Rδ(f), in the same way.
When Alice and Bob share public random coins, the randomized communication
complexity is denoted by Rpub

δ (f). Let μ be a probability distribution on X×Y .
The μ-distributional communication complexity of f , denoted by Dμ

δ (f), is the
least cost of a deterministic protocol for f with error probability at most δ with
respect to μ. Yao’s principle states that Rpub

δ (f) = maxμ D
μ
δ (f).

In the model for multiparty communication complexity, there are s play-
ers, each gets an input xi ∈ Xi, and they want to compute some function
f : X1×· · ·×Xs → {−1, 1} (which could be partially defined). We shall assume
the coordinator model, in which there is an additional player called coordinator,
who has no input. Players can only communicate with the coordinator but not
each other directly. The coordinator will output the value of f . The private-coin,
public-coin randomized communication complexity and μ-distributional commu-
nication complexity are denoted by Rs

δ(f), R
s,pub
δ (f), and Ds,μ

δ (f), respectively.
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3 Reduction for Multi-player Communication

Let (G,⊗) be a finite group and f be a function on G (could be a partial
function). Suppose that G =

⋃
i Gi is the coarsest partition of G such that

f is a constant function (allowing the value to be undefined) over each Gi.
For a subset X ⊆ G, let pre(X) := {(g1, g2) ∈ G × G : g1 ⊗ g2 ∈ X}. Let
I(f) = {i : Gi ⊆ dom(f)}, where dom(f) ⊆ G is the set on which f is defined.

We say that a family H of functions h : G × G → G × G is a uniformizing
family for function f if there exists a probability measure μ on H such that for
any i and (g1, g2) ∈ pre(Gi), when h ∈ H is randomly chosen according to μ,
the image h(g1, g2) is uniformly distributed on pre(Gi).

Example 1 (Rankn,n−1). G = Mn(F), the group of all n × n matrices over F,
with ⊗ being the usual matrix addition. In fact G is a ring, with the usual matrix
multiplication. Define

f(x) =

⎧⎪⎨⎪⎩
1, rank(x) = n;

0, rank(x) = n− 1;

undefined, otherwise,

x ∈ G.

Then I(f) = {1, 2} and G1 = {x ∈ G : rank(x) = n} and G2 = {x ∈ G :
rank(x) = n− 1}. The uniformizing family is H = {ha,b}a∈G1,b∈G endowed with
uniform measure, where ha,b(g1, g2) = (a(g1 − b), a(g2 + b)).

Example 2 (Hamn,k). G = Fn
2 with the usual vector addition. Define

f(x) =

⎧⎪⎨⎪⎩
1, w(x) = k;

0, w(x) = k + 2;

undefined, otherwise,

x ∈ G.

Then |I(f)| = 2. Let Sn denote the symmetric group of degree n. The uni-
formizing family H = {hσ,b}σ∈Sn,b∈G endowed with uniform measure, where
hσ,b(g1, g2) = (σ(g1 − b), σ(g2 + b)).

By reduction from the Disjointness problem, we know that Rpub
1/10(Hamk,k+2) =

Ω(k).

As an auxiliary problem to the IP problem, we define

– Problem IP
′
n: Suppose that p > 2. Alice and Bob hold two vectors x, y ∈

(F∗
p)

n respectively. We promise that inner product 〈x, y〉 ∈ {0, 1}. They want
to output 〈x, y〉.

Removing 0 from the scalar domain gives us a group structure as below.

Example 3 (IP′
n). G = (F∗

p)
n associated with the multiplication ⊗ defined to

be the pointwise product, i.e., x ⊗ y = (x1y1, x2y2, . . . , xnyn). Let f(x) =
1{x1+x2+···+xn=0}.
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The following problem was considered in [26].

– Problem Cyclen: Let π and σ be permutations in symmetric group Sn.
Alice holds π and Bob σ, and they want to return 1 if π ◦σ is exactly 1-cycle
and return 0 otherwise.

Example 4 (Cyclen). G = Sn, the symmetric group of degree n, with the usual
permutation composition. Define

f(x) =

{
1, x has exactly one cycle;

0, otherwise,
x ∈ G.

Then |I(f)| = 2. The uniformizing family is H = {hσ,τ}σ,τ∈Sn endowed with
uniform measure, where hσ,τ (g1, g2) = (σ−1g1τ

−1, τg2σ). Observe that g /→
σ−1gσ maps a cycle (a1, . . . , ak) of g to (σ(a1), . . . , σ(ak)), it is easy to verify

that H is a uniformizing family. It is known that Rpub
1/3 (Cyclen) = Ω(n) [26].

We analyze the randomized communication complexity of problems that have a
uniformizing family.

Definition 1. A distribution ν on G×G is called weakly sub-uniform if

1. ν is supported on
⋃

i∈I(f) pre(Gi)

2. ν|pre(Gi) is uniform for all i ∈ I(f)

In addition, if ν(pre(Gi)) = 1/|I(f)| for all i ∈ I(f), we say ν is the sub-uniform
distribution.

Theorem 3. If there exists a uniformizing family for f and δ · |I(f)| < 1, then
for the two-player game computing f it holds that

Rpub
δ|I(f)|(f) ≤ Dν

δ (f) ≤ C log|I(f)|δ δ ·R
pub
|I(f)|δ(f)

where C > 0 is an absolute constant and ν the sub-uniform distribution on G×G.

Proof. Suppose the input is (g1, g2) ∈ G × G. Next we describe a public-coin
protocol Π ′. With the public randomness, Alice and Bob choose a random h
from the uniformizing family. They then run the optimal protocol Πν for input
distribution ν (i.e., cost(Πν) = Dν

δ (f)) on input h(g1, g2).
It is not difficult to see that the public-coin protocol Π ′ has error probability

at most δ · |I(f)|. Therefore, Rpub
δ·|I(f)| ≤ cost(Π ′) = cost(Πν) = Dν

δ (f). On

the other hand, by Yao’s principle, Rpub
δ (f) ≥ Dν

δ (f). Note that Rpub
δ (f) ≤

C log|I(f)|δ δ · R
pub
|I(f)|δ(f) for some absolute constant C, the conclusion follows.

�	

Now consider the following multi-player problem in coordinator model: There
are s players and a coordinator. Each player receives an input xi ∈ G. The coordi-
nator will output the value of f(x1⊗x2⊗· · ·⊗xs) with probability≥ 1−δ. Denote

by Cs,pub
δ (f) the number of bits that must be exchanged by the best protocol. By

the symmetrization technique from [19], we have the following lemma.
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Lemma 1. Suppose that f has a uniformizing family. Let ν be an arbitrary
weakly sub-uniform distribution on G×G and Πν be a public-coin protocol that
computes f with error probability δ on input distribution ν. Then Rs,pub

δ (f) ≥
sE[cost(Πν)].

Proof. Let νs be the distribution over Gs such that νs is the uniform distribution
over pres(Gi) := {(x1, . . . , xs) ∈ Gs : x1⊗ · · · ⊗ xs ∈ Gi} when restricted onto it
and νs(pres(Gi)) = ν(pre(Gi)). Let Πs be an s-player (deterministic) protocol
for input distribution νs with error probability δ.

Consider the following two-player protocol Π ′ on input (g1, g2) ∼ ν: First
suppose that Alice and Bob have public randomness. They first use the public
randomness to agree on an index j chosen at random uniformly from {1, . . . , s}.
Alice also generates, using her own randomness, the input {xi}i�=j of other play-
ers uniformly at random conditioned on

⊗
i�=j xi = g1. Then Alice and Bob run

the s-player protocol, in which Bob simulates player j with input xj := g2, and
Alice simulates all other players and the coordinator. The message sent in this
protocol is just the message sent between the coordinator and player j in Πs.

It is not hard to see that (x1, . . . , xs) ∼ νs. It follows from a symmetrization
argument like the proof [19, Theorem 1.1] that E[cost(Π ′)] ≤ cost(Πs)/s, where
the expectation is taken over the public coins. The conclusion follows from taking
the infimum over Πs.

Theorem 4. Suppose that f has a uniformizing family, then Rs,pub
δ (f) ≥

δsRpub
2|I(f)|δ(f).

Proof. Pick ν to be the sub-uniform distribution in the preceding lemma. By
fixing the public coins and a Markov bound, one can construct a two-player
deterministic protocol Π ′′ such that cost(Π ′′) ≤ (1/δ) cost(Πs)/s and Π ′′ suc-
ceeds with probability at least 1− 2δ when the input is distributed as ν. Hence
Dν

2δ(f) ≤ (1/δ) cost(Πs)/s. It then follows from Theorem 3 that Rpub
2|I(f)|δ(f) ≤

(1/δ) cost(Πs)/s. Taking infimum over Πs, we obtain that Rpub
2|I(f)|δ(f) ≤ (1/δ) ·

Dνs
δ (f)/s ≤ (1/δ)Rs,pub

δ (f)/s. �	
The following are immediate corollaries of the theorem above applied to our

previous Example 2 and 4. We leave the results of Example 1 and 3 for later
sections.

Corollary 2. Rs,pub
1/12 (Hamk,k+2) = Ω(sRpub

1/3(Hamk,k+2)) = Ω(sk).

Corollary 3. Rs,pub
1/12 (Cyclen) = Ω(sn).

4 The IP Problem

Let p be a prime. Sun et al. considered a variant of the IP problem, denoted
by IP

′′
n, in which Alice has x ∈ Fn

p and Bob y ∈ (F ∗
p )

n, and showed that

Rpub
1/3 (IP

′′
n) = Ω(n log p) [26]. Via a simple reduction, we show that

Lemma 2. When p ≥ p0 for some constant p0, R
pub
1/3(IP

′
n) = Ω(n log p).
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Proof. For an input of IP′′, Alice can send the indices of the zero coordinates to
Bob using n bits; on the remaining coordinates, Alice and Bob have an instance of
IP

′ of size at most n. Hence n+Rpub
1/3 (IP

′
n) ≥ Rpub

1/3 (IP
′′
n), whence the conclusion

follows. �	

It is clear, by Yao’s principle, that Rpub
δ (IPn) ≥ Rpub

δ (IP′
n). Now, as an im-

mediate corollary of Theorem 4, we have

Theorem 5. Rs,pub
1/12 (IPn) = Ω(sn log p).

Proof. Let p0 be as in Lemma 2. It follows from Lemma 2 and Theorem 4 that
Rs,pub

1/12 (IP) ≥ Rs,pub
1/12 (IP′) = Ω(sRpub

1/3 (IP
′)) = Ω(sn log p). When p < p0, the

result is due to Braverman et al. in [3], who prove an Ω(sn) lower bound for IP
over the integers with the promise that the inner product is 0 or 1. Note that
this implies an Ω(sn log p) lower bound for computing IP over Fp as well, since
p < p0 is a fixed constant. �	

5 The Rank Problem

We shall use the Fourier witness method to prove a lower bound on Rank
′
n,n−1.

We then use this result for Rankn,n−1 to obtain lower bounds for the other
problems. We review some basics of the Fourier witness method in Section 5.1
then give the proof of the lower bound in Section 5.2.

5.1 Fourier Witness Method

Fourier Analysis. For prime p, let Fp be the finite field of order p. We define
the Fourier transformation on the group (Fn

p ,+).

Definition 2 (Fourier transform). Let f : FN
p → R be a function. Then, the

Fourier coefficient of f , denoted by f̂ , is also a FN
p → R function, defined as

f̂(s) = p−N
∑

x∈FN
p
ω−〈s,x〉f(x), where ω = e2πi/p.

Fact 6. f = pN
((̂

f̂
)∗)∗

.

Approximate Norm and Dual Norm. The �p norm of a vector v ∈ Rn is

defined by ‖v‖p := (
∑n

i=1 |vi|p)
1/p

and the �∞ norm by ‖v‖∞ := maxni=1 |vi|. The
trace norm of an n×n matrix F , denoted by ‖F‖tr, is defined as ‖F‖tr :=

∑
i σi,

where σ1, · · · , σn are the singular values of F .
The matrix rank and some matrix norms can give lower bounds for deter-

ministic communication complexity. For randomized lower bounds, we need the
notions of approximate rank and norms.

Definition 3 (approximate norm). Let ρ : RX /→ R be an arbitrary norm
and f : X /→ R a partial sign function. The ε-approximate ρ norm of f , denoted
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by ρε(f), is defined as ρε(f) = infφ ρ(φ), where the infimum is taken over all
functions φ : X /→ R that satisfy

φ(x) ∈

⎧⎪⎨⎪⎩
[1− ε, 1 + ε] if f(x) = 1;

[−1− ε,−1 + ε] if f(x) = −1;
[−1− ε, 1 + ε] if f(x) is undefined.

The following lemma shows that the approximate trace norm gives lower
bounds on quantum communication complexity, as well as on randomized pro-
tocols with public coins. The following lemma is a result in [12] combined with
Neumann’s argument for converting a public-coin protocol into a private-coin
one.

Lemma 3. For δ > 0 such that 1/(1− 2ε) ≤ 1 + δ, it holds that

Rpub
δ (f) ≥ Ω

(
log

(‖F‖εtr)2
size(F )

)
−O

(
logn+ log

1

δ

)
.

The approximate norms are minimization problems. We will consider the dual
problems, which are maximization problems.

Definition 4. Let ρ be an arbitrary norm on Rn. The dual norm of ρ, denoted
by ρ∗, is defined as ρ∗(v) = supu:ρ(u)≤1〈v, u〉.

The following lemma characterizes the approximate norm as a maximization
problem so that we can prove lower bounds more easily.

Lemma 4 ([23]). Let f be a partial sign function and ρ an arbitrary norm.
Then

ρε(f) = sup
ψ �=0

〈f, ψ · dom(f)〉 − ‖ψ · dom(f)‖1 − ε‖ψ‖1
ρ∗(ψ)

, ε > 0.

where

dom(f)(x) =

{
1 if f(x) is defined,

0 otherwise,

dom(f)(x) = 1− dom(f)(x), and (ψ · ϕ)(x) = ψ(x)ϕ(x).

We call a feasible solution in the dual problem the witness of the original
problem. In particular, in Lemma 4, the function ψ is the witness. Any ψ gives
a lower bound for ρε(f). It is difficult to find a useful witness. The first choice
that comes to mind is to choose ψ = f ·dom(f), because it makes 〈f, ψ ·dom(f)〉
large and ‖dom(f)‖1 small. This is the discrepancy method. We use a different

choice: ψ = ̂(
f · dom(f)

)
. We call it the Fourier witness method, introduced in

[25], but used here for partial functions.

Definition 5 (approximate Fourier p-norm). Let f : FN
p /→ R be a function

and p ≥ 1. The Fourier p-norm of f , denoted by ‖f̂‖p, is the p-norm of f̂ . Fur-
thermore, if f is a sign function, the approximate Fourier p-norm of f , denoted
by ‖f̂‖εp, is the approximate ‖̂·‖p norm of f .
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Fact 7. The dual norm of ‖ · ‖1 is ‖ · ‖∞. The dual norm of ‖̂·‖1 is pN ‖̂·‖∞.

The Fourier coefficients of a plus composed function are related to the singular
values of the associated matrix, as shown by the following lemma, whose proof
is omitted. Applied to approximate trace norm, it also builds a bridge between
the approximate trace norm and the approximate Fourier �1-norm for a plus
composed function. Similar results and additional background can be found in
[12,25].

Lemma 5. Suppose that g : FN
p /→ R is a function, and f is a plus-composed

function f(x, y) = g(x + y). Let F be the associated matrix of f . Then the
singular values of F are pN times the modulus of the Fourier coefficients of g,
i.e. σF = pN · |ĝ|, where σF are the singular values of F and |ĝ|(s) = |ĝ(s)|. As
a consequence, ‖F‖εtr = pN · ‖ĝ‖ε1.

5.2 Rankn,n−1

For a matrix x ∈ Fn×n
p , we define θ(x) = 1 if x is of full rank and θ(x) = 0

otherwise. We shall use θ as the witness in the proof of Rank
′
n,n−1. The same

function θ has been used to prove a communication complexity lower bound for
the matrix singularity problem in [25].

Theorem 8. Rpub
1/10(Rankn,n−1) = Ω(n2 log p).

Proof. Suppose that Π is a public-coin protocol for Rank
′
n,n−1 with error prob-

ability ≤ 1/10. Then Alice and Bob can build a public-coin protocol Π ′ as
follows. They use the public coins to choose a random matrix r and run Π on
input (x − r, y + r). It is easy to see that Π ′ has error probability ≤ 1/10 and
cost(Π ′) = cost(Π). Observe that the distribution of Π ′(x, y) is identical to the
that of Π ′(a, b) whenever x+ y = a+ b.

Define the partial sign function g(x) = 1 if rank(x) = n, g(x) = −1 if
rank(x) = n − 1, and g(x) is undefined otherwise. Let f(x, y) be the expected
output of Π ′(x, y). Then f is a plus-composed function. By the correctness of
Π , we know that f(x, y) = g(x+ y) whenever g(x+ y) is defined. We claim that
‖g‖ε1 = Ω(pn(n−3)/2) for ε = 1/4, following Lemma 4 (applied with witness θ as
in the paragraph before the theorem statement) and Fact 7. See the full version
for details. Finally, it follows from Lemma 3 that

Rpub
1/10(f) = Ω

(
log

‖F‖1/4tr√
size(F )

)
−O(log n) = Ω

(
log

pn
2‖ĝ‖ε1√
size(F )

)
−O(log n)

= Ω

(
log

pn
2 · 0.4pn(n−3)/2

pn2

)
−O(log n) = Ω(n2 log p). �	

The lower bound for the multi-playerRank problem is an immediate corollary
of Theorem 4.

Corollary 4. Rs,pub
1/40 (Rankn,n−1) = Ω(sRpub

1/10(Rankn,n−1)) = Ω(sn2 log p).
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By padding zeros outside the top-left k × k submatrix, we obtain a lower
bound for Rankk,k−1.

Corollary 5. Rpub
1/10(Rankk,k−1) = Ω(k2 log p).

5.3 Linear Algebra Problems

Problem 1 ( Inverse). Alice and Bob hold two n× n matrices x and y over Fp,
respectively. We promise that x+y is invertible over Fp. They want to determine
if the top-left entry of (x + y)−1 is zero (output −1) or non-zero (output 1).

Problem 2 (LinSolve). Alice and Bob hold two n × n matrices x and y over
Fp, respectively. We promise that x+ y is invertible over Fp. b is a parameter of
this problem. t is the vector of variables of the linear system (x+ y)t = b. They
want to determine if the first coordinate of t is zero.

Theorem 9. Rpub
1/20(Inverse) = Ω(n2 log p) for p ≥ 3.

Proof. We reduce Rank to Inverse. Let A = x + y and Ã be the lower-right
(n− 1)× (n− 1) block of A. Then A−1

11 = 0 iff rank(Ã) < n− 1.
Now, suppose that A is an (n−1)×(n−1)matrix and rank(A) ∈ {n−1, n−2}.

We augment A to A1 by appending a random column. With probability 1− 1/p
it holds that rank(A1) = n−1 when rank(A) = n−2. Now we augment A1 to A2

by appending a random row. With probability 1−1/p it holds that rank(A2) = n
when rank(A1) = n− 1.

Run a protocol for Inverse on A2. We denote the communication complexity
of the protocol by c(n). When rank(A) = n − 1, if the error probability of the
protocol is at most 1/20, then it outputs 1 with probability α ≤ 1

20

(
1− 1

p

)
+ 1

p ,

while when rank(A) = n− 2 it outputs 1 with probability β ≥ 19
20

(
1− 1

p

)2
. Then

β − α ≥ 19
20

(
1 − 1

p

)2 − 1
20

(
1 − 1

p

)
− 1

p ≥
1
18 , p ≥ 3, which implies that Θ(1)

independent repetitions allow us to solve Rank on (n − 1) × (n − 1) matrices,
i.e., to distinguish rank(A) = n− 1 from rank(A) = n− 2, with error probability
≤ 1/20 and communication complexity Θ(c(n)) = Ω((n − 1)2 log p). Therefore
c(n) = Ω((n− 1)2 log p) = Ω(n2 log p). �	

Theorem 10. Rpub
1/20(Inverse) = Ω(n2) for p = 2.

Proof. As before, we augment A to A2. Here we further randomize A2 by
multiplying a random invertible matrix on both sides of A2, that is, we form
B = G1A2G2 where G1, G2 are uniform over n × n non-singular matrices over
Fp. It is clear that rank(B) = rank(A2), and B is uniformly distributed over the
n× n matrices with the same rank.

Run a protocol for Inverse on B. Suppose that it outputs zero with probabil-
ity p0 when the input matrix has rank n−1. This probability can be calculated by
Alice and Bob individually with no communication cost. When rank(A) = n−1,
it outputs 1 with probability α = 1

20

(
1− 1

p

)
+ p0

p = 1
40+

p0

2 , while when rank(A) =
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n − 2 it outputs 1 with probability β ≥ 19
20

(
1 − 1

q

)2
+ p0 · 2

p

(
1 − 1

p

)
= 19

80 + p0

2 .

Then, α− β ≥ 17
80 . The rest follows as in the proof for p ≥ 3. �	

Now we reduce Inverse to LinSolveb.

Theorem 11. Rpub
1/20(LinSolveb) = Ω(n2 log p) for b �= 0,

Proof. We prove it by a reduction from Inverse. Take an instance (x, y)
from Inverse. Since b �= 0, there exists an invertible matrix Q such that
Qb = (1, 0, 0, · · · , 0)T. Alice and Bob agree on the same Q, e.g. the minimal
Q in alphabetical order. Then they run the protocol of LinSolve on input
(Q−1x,Q−1y, b). Then t = (Q−1x+Q−1y)−1b = (x+ y)−1QQ−1(1, 0, · · · , 0)T =
(x+ y)−1(1, 0, · · · , 0)T and thus t1 = ((x+ y)−1)11. �	
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Abstract. This paper presents constant-time andnear-constant-timedis-
tributed algorithms for a variety of problems in the congested clique model.
We show how to compute a 3-ruling set in expectedO(log log log n) rounds
and using this, we obtain a constant-approximation to metric facility lo-
cation, also in expected O(log log log n) rounds. In addition, assuming an
input metric space of constant doubling dimension, we obtain constant-
round algorithms to compute constant-factor approximations to the mini-
mum spanning tree and the metric facility location problems. These results
significantly improve on the running time of the fastest known algorithms
for these problems in the congested clique setting.

1 Introduction

The CONGEST model is a synchronous, message-passing model of distributed
computation in which the amount of information that a node can transmit along
an incident communication link in one round is restricted to O(log n) bits, where
n is the size of the network [21]. As the name suggests, the CONGEST model
focuses on congestion as an obstacle to distributed computation. In this paper,
we focus on the design of distributed algorithms in the CONGEST model on a
clique communication network; we call this the congested clique model. In the
congested clique model, all information is nearby, i.e., at most one hop away,
and so any difficulty in solving a problem is due to congestion alone.

Let H = (V,EH) denote the underlying clique communication network. In
general, the input to the problems we consider consists of a |V | × |V | matrix M
of edge-attributes and a length-|V | vector of node attributes. M represents edge
weights (or distances, or costs) and it is initially distributed among the nodes
in V in such a way that each node v ∈ V knows the corresponding row and
column of M . In one typical example, M could simply be the adjacency matrix
of a spanning subgraph G = (V,E) of H ; in this setting, each node v ∈ V
initially knows all the edges of G incident on it. A number of classical problems
in distributed computing, e.g., maximal independent set (MIS), vertex coloring,
edge coloring, maximal matching, shortest paths, etc., are well-defined in this
setting. However, the difficulty of proving lower bounds in the congested clique
model [7] means that it is not clear how quickly one should be able to solve any
� This work is supported in part by National Science Foundation grant CCF-1318166.
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of these problems in this model. Note that the input G can be quite dense (e.g.,
have Θ(n2) edges) and therefore any reasonably fast algorithm for the problem
will have to be “truly” distributed in the sense that it cannot simply rely on
shipping off the problem description to a single node for local computation. In
this setting, the algorithm of Berns et al. [3,2] that computes a 2-ruling set of G
in expected-O(log logn) rounds is worth mentioning. (A t-ruling set is defined
to be an independent set I ⊆ V such that every node in V is at most t hops in G
from some node in I.) In another important class of problems that we study, the
input matrix M represents a metric space (V, d); thus each node v ∈ V initially
has knowledge of distances d(v, w) for all w ∈ V . Nodes then need to collaborate
to solve a problem such as minimum spanning tree (MST) or metric facility
location (MFL) that are defined on the input metric space. In this setting, the
deterministic MST algorithm of Lotker et al. [18] running in O(log logn) rounds
is worth mentioning.

Thus far the congested clique model has mainly served the theoretical pur-
pose of helping us understand the role of congestion as an obstacle to distributed
computation. However, recent papers [14,12] have made connections between
congested clique algorithms and algorithms in popular systems of parallel com-
puting such as MapReduce [6] and graph processing systems such as Pregel [19],
thus providing a practical motivation for the development of fast algorithms on
the congested clique.

1.1 Main Results

In this paper we present several constant-time or near-constant-time algorithms
for fundamental problems in the congested clique setting.

– First, we present an algorithm that computes a 3-ruling set of G in expected
O(log log logn) rounds, significantly improving the running time of the 2-
ruling set algorithm of Berns et al. [3,2].

– Via a reduction presented in Berns et al. [3,2], this implies an expected
O(log log logn)-round algorithm for computing an O(1)-approximation for
MFL. Again, this significantly improves on the running time of the fastest
known algorithm for this problem.

Distributed algorithms that run in O(log logn) rounds are typically analyzed
by showing a doubly-exponential rate of progress; such progress, for example, is
achieved if the number of nodes that have “successfully finished” grows by squar-
ing after each iteration. The congested clique algorithms for MST due to Lotker
et al. [18] and the above-mentioned MFL algorithm due to Berns et al. [3,2]
are both examples of such phenomena. Our algorithm with triply-logarithmic
running time, involves new techniques that seem applicable to congested clique
algorithms in general. Our result raises the distinct possibility that other prob-
lems, e.g., MST, can also be solved in O(log log logn) rounds on a congested
clique. In fact, our next set of results represents progress in this direction.
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– We show how to solve the MIS problem on a congested clique in constant
rounds on an input graph Gr induced by the metric space (V, d) in which
every pair of nodes at distance at most r (for any r ≥ 0) are connected by
an edge. This result has two implications.

– First, given a metric space (V, d) of constant doubling dimension, we show
that a constant-approximation to the MST problem on this metric space can
be obtained in constant rounds on a congested clique setting.

– An additional implication of the aforementioned MIS result is that it leads
to a constant -round constant-approximation to MFL in metric spaces of
constant doubling dimension on a congested clique.

In order to achieve our results, we use a variety of techniques that balance
bandwidth constraints with the need to make rapid progress. We believe that
our techniques will have independent utility in any distributed setting in which
congestion is a bottleneck.

1.2 Technical Preliminaries

Congested Clique Model. The underlying communication network is a clique
H = (V,EH) of size n = |V |. Computation proceeds in synchronous rounds and
in each round a node (i) receives all messages sent to it in the previous round, (ii)
performs unlimited local computation, and then (iii) sends a, possibly different,
message of size O(log n) to each of the other nodes in the network. We assume
that nodes have distinct IDs that can each be represented in O(log n) bits.

MST and MFL problems. We assume that the input to the MST problem is
a metric space (V, d). Initially, each node v ∈ V knows distances d(v, w) to all
nodes w ∈ V . When the algorithm ends, all nodes in V are required to know
a spanning tree T of V of minimum weight. (Note that here we take d(u, v) to
be the “weight” of edge {u, v}.) The input to MFL consists of a metric space
(V, d) along with facility opening costs fv associated with each node v ∈ V . The
goal is to find a subset F ⊆ V of nodes to open as facilities so as to minimize
the facility opening costs plus connection costs, i.e.,

∑
v∈F fv +

∑
u∈V D(u, F ),

where D(u, F ) := minv∈F d(u, v) is the connection cost of node u. Initially, each
node v ∈ V knows facility opening cost fv and distances d(v, w) for all w ∈ V .
Facility location is a well-studied problem in operations research [1,4,9] that
arises in contexts such as locating hospitals in a city or locating distribution
centers in a region. More recently, the facility location problem has been used as
an abstraction for the problem of locating resources in a wireless network [10,20].

t-ruling set problem. A t-ruling set of a graph G = (V,E) is an independent
set I ⊆ V such that every vertex in G is at most t hops from some vertex in
I. A t-ruling set, for constant t, is a natural generalization of an MIS and can
stand as a proxy for an MIS in many instances. The input to the t-ruling set
problem on a congested clique H = (V,EH) is a spanning subgraph G = (V,E)
of the underlying communication network H . Each node v ∈ V is initially aware
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of all its neighbors in G. At the end of the t-ruling set algorithm, every node is
required to know the identities of all nodes in the computed t-ruling set.

Metric spaces, doubling dimension, and growth-bounded graphs. If M = (V, d)
is a metric space then we use BM (v, r) to denote the set of points w ∈ V such
that d(v, w) ≤ r. We call BM (v, r) the ball of radius r centered at v. A metric
space M = (V, d) has doubling dimension ρ if for any v ∈ V and r ≥ 0, BM (v, r)
is contained in the union of at most 2ρ balls BM (u, r/2), u ∈ V . In this paper,
we work with metric spaces with constant doubling dimension, i.e., ρ = O(1).
Note that constant-dimensional Euclidean metric spaces are natural examples
of metric spaces with constant doubling dimension. In distributed computing
literature, metric spaces of constant doubling dimension have been investigated
in the context of wireless networks [5,15]. For a graph G = (V,E) and a node v ∈
V , let BG(v, r) denote the set of all vertices u ∈ V that are at most r hops from v.
A graphG = (V,E) is said to have bounded growth (or said to be growth-bounded)
if the size of any independent set in any ball BG(v, r), v ∈ V , r ≥ 0, is bounded
by O(rc) for some constant c. For any metric space (V, d) and r ≥ 0, the graph
Gr = (V,Er), where Er = {{u, v} ∈ d(u, v) ≤ r} is called a distance-threshold
graph. It is easy to see that if (V, d) has constant doubling dimension then a
distance-threshold graph Gr, for any r ≥ 0, is growth-bounded; this fact will
play an important role in our algorithms. Distance-threshold graphs and more
generally, growth-bounded graphs have attracted attention in the distributed
computing community as flexible models of wireless networks [15]. Schneider
and Wattenhofer [22] present a deterministic algorithm, running in O(log∗ n)
rounds, for computing an MIS on a growth-bounded graph.

Lenzen’s routing protocol. A key algorithmic tool that allows us to design
constant- and near-constant-time round algorithms is a recent deterministic
routing protocol by Lenzen [16] that disseminates a large volume of informa-
tion on a congested clique in constant rounds. The specific routing problem,
called an Information Distribution Task, solved by Lenzen’s protocol is the fol-
lowing. Each node i ∈ V is given a set of n′ ≤ n messages, each of size O(log n),
{m1

i ,m
2
i , . . . ,m

n′

i }, with destinations d(mj
i ) ∈ V , j ∈ [n′]. Messages are globally

lexicographically ordered by their source i, destination d(mj
i ), and j. Each node

is also the destination of at most n messages. Lenzen’s routing protocol solves
the Information Distribution Task in O(1) rounds.

2 3-Ruling Sets in O(log log logn) Rounds

In this section, we show how nodes in V can use the underlying clique commu-
nication network H to compute, in expected-O(log log logn) rounds, a 3-ruling
set of an arbitrary spanning subgraph G of H . At a high level, our 3-ruling set
algorithm can be viewed as having three steps. In the first step, the graph is
decomposed into O(log log n) degree-based classes and at the end of this step
every node knows the class it belongs to. In the next subsection, we describe
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this degree-decomposition step and show that it runs in expected O(log log logn)
rounds. In the second step, each vertex v of the given graph G joins a set S in-
dependently with probability pv, where pv depends on v’s class as defined in the
degree-decomposition step. This vertex-selection step yields a set S that will be
shown to have two properties: (i) the expected number of edges in the induced
subgraph G[S] is O(n · poly(logn)); and (ii) with high probability, every vertex
in G is either in S or has a neighbor in S. Given the degree-decomposition, the
vertex-selection step is elementary and requires no communication. In the third
step, we use the 2-ruling set algorithm of Berns et al. [3,2]. We show that, on
an n-node graph with O(n · poly(log n)) edges, this algorithm runs in expected-
O(log log logn) rounds. We will refer to this algorithm from [3,2] as the 2-ruling
set algorithm. Putting these three steps together yields a 3-ruling set algorithm
that runs in O(log log logn) rounds in expectation.

2.1 Degree-Decomposition Step

Let G = (V,E) be an arbitrary graph. For k = 0, 1, 2, . . ., let Dk = n1/2k .
The Dk’s will serve as degree thresholds and will lead to a vertex partition.
Let k∗ = �log logn�. Note that 1 < Dk∗ ≤ 2. Let V0 = V , G0 = G, and
U1 = {v ∈ V0 | degreeG0

(v) ∈ [D1, D0)}. For 1 ≤ k < k∗, let

Vk = Vk−1 \Uk, Gk = G[Vk], Uk+1 = {v ∈ Vk | degreeGk
(v) ∈ [Dk+1, Dk)}

Let Vk∗ = Vk∗−1 \ Uk∗ , Gk∗ = G[Vk∗ ], and Uk∗+1 = Vk∗ . See Figure 1 for
an illustration of this decomposition. Let NG(v) denote the set of neighbors of
vertex v in graph G. Here are some easy observations:

(i) For 0 ≤ k ≤ k∗, Δ(Gk) < Dk.
(ii) For 1 ≤ k ≤ k∗ + 1, if v ∈ Uk then |NG(v) ∩ Vk−1| < Dk−1.
(iii) For 1 ≤ k ≤ k∗ +1, if v ∈ Uk then |NG(v)∩Uj | < Dj for j = 1, 2, . . . k− 1.

Now we describe algorithm to compute this degree-decomposition; in partic-
ular, we precisely describe how each node v computes an index k(v) ∈ [k∗ + 1]
such that v ∈ Uk(v). Below, we first describe at a high level a 2-phase approach
that we use to compute the index k(v) for each vertex v.

Lazy phase: Let t = �1+log log logn�. The sets U1, U2, . . . , Ut are identified in
a leisurely manner, one-by-one, in O(log log logn) rounds. At the end of this
phase each vertex v ∈ ∪t

i=1Ui knows the index k(v) ∈ [t] such that v ∈ Uk(v).
Speedy phase: The set of remaining vertices, namely Vt, induces a graph Gt

whose maximum degree is less than

Dt ≤ n1/21+log log log n

= n1/(2 log logn).

This upper bound on the maximum degree helps us compute the index values
k(v) for the remaining vertices at a faster rate. We first show that each vertex
v in Gt can acquire knowledge of the graph induced by the ball BGt(v, k

∗) in
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[n1/2, n)[n1/4, n1/2)[0, 2) [2, 4)

U1U2Uk∗Uk∗+1

Vk∗

Vk∗−1

V1

V0

. . . . . .

......

Fig. 1. Degree-Decomposition Step. U1 is the set of all nodes in G with degrees in
the range [n1/2, n) and V1 is the remaining nodes. U2 is the set of all nodes in V1

with degrees in G[V1] belonging to the range [n1/4, n1/2). The decomposition continues
in this manner until all nodes belong to some Uk. We use k∗ to denote �log log n�.
Assuming that log log n = k∗, we see that U∗

k is the set of nodes that have degree in
G[Vk∗−1] in the range [2, 4). Note that a node v that belongs to Uk+1 could have degree
in G that is much larger than Dk = n1/2k .

O(log log logn) rounds via a fast ball-growing algorithm. (Recall that k∗ =
�log logn�.) We then show that G[BGt(v, k

∗)] contains enough information
for v to determine k(v) ∈ [k∗+1] via local computation. Therefore, after each
vertex v ∈ Vt acquires complete knowledge of the radius-k∗ ball centered at
it, it can locally compute index k(v) and proceed to the vertex-selection step.

The Lazy-phase is straightforward and due to space restrictions we skip further
discussion of this phase. We now present the Speedy-phase algorithm executed
by vertex v. Note that the Speedy-phase algorithm is only executed at vertices v
whose index k(v) has not been established during the Lazy-phase algorithm. In
other words, the Speedy-phase algorithm is only executed at vertices v in Gt, the
graph induced by vertices not in ∪t

j=1Uj . The key idea of the Speedy-phase al-
gorithm is that once each node v in Gt has acquired knowledge of Gt[BGt(v, r)],
then in constant rounds of communication, each node v can “double” its knowl-
edge, i.e., acquire knowledge of Gt[BGt(v, 2r)]. This is done by each node v
sending knowledge of Gt[BGt(v, r)] to all nodes in BGt(v, r); the key is to estab-
lish that this volume of communication can be achieved on a congested clique in
constant rounds. This idea has appeared in a slightly different context in [17].

The next two lemmas (whose proofs appear in the full version of the paper
[13]) establish the running time and correctness of the Speedy-phase algorithm.

Lemma 1. The Speedy-phase algorithm above runs in O(log log logn) rounds
in the congested-clique model and when this algorithm completes execution, each
vertex v in Gt knows G[BGt(v, k

∗)].
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Algorithm 1. Speedy-phase algorithm at vertex v

1. // Growing the ball BGt(v, k
∗)

2. Each node sends a list of all of its neighbors in Gt to each of its neighbors (in
Gt) // After which each v ∈ Vt knows G[BGt (v, 1)]

3. for i← 0 to �log log log n� − 1 do
4. Send a description of G[BGt (v, 2

i)] to all nodes in BGt(v, 2
i)

5. Construct G[BGt(v, 2
i+1)] from G[BGt (u, 2

i)] received from all u ∈
BGt(v, 2

i)
6. Locally compute k(v) ∈ [k∗ + 1] such that v ∈ Uk(v)

Lemma 2. For any graph H and a vertex v in H, suppose that v knows the
graph induced by BH(v, k∗). Then v can locally compute the index k(v) ∈ [k∗+1]
such that v ∈ Uk(v).

2.2 Vertex-Selection Step

As mentioned earlier, the vertex-selection step randomly and independently sam-
ples nodes in G, with each node v sampled with a probability pv that depends
on the class Uk(v) it belongs to. Specifically, if v belongs to Uk then v is indepen-
dently selected with probability min(2 logn/Dk, 1). Let S be the set of vertices
that are selected. Let e(S) denote the set of edges in the induced graph G[S].

Lemma 3. E[|e(S)|] = O(n · log2 n · log logn).

Proof. Consider an arbitrary vertex v ∈ V and let k, 1 ≤ k ≤ k∗ + 1 be such
that v ∈ Uk. We will show that the expected number of edges between v and
nodes in ∪j≤kUj is less than 4k · log2 n.

In the graph G, node v has fewer than Dk−1 neighbors in Uk. Thus, if 1 ≤
k ≤ k∗, the expected number of edges in e(S) between v and nodes in Uk is at
most

2 logn

Dk
·

∑
u∈NG(v)∩Uk

2 logn

Dk
<

4 log2 n ·Dk−1

D2
k

= 4 log2 n.

If k = k∗ + 1, the number of edges between v and other nodes in Uk∗+1 is at
most 1.

In the graph G, node v has fewer than Dj neighbors in Uj , for j < k. Thus,
if 1 ≤ k ≤ k∗, the expected number of edges in e(S) between v and nodes in Uj ,
j < k, is at most

2 logn

Dk
·

∑
u∈NG(v)∩Uj

2 logn

Dj
<

4 log2 n

Dk
≤ 4 log2 n.

If k = k∗ +1, the expected number of edges in e(S) between v and nodes in Uj ,
j < k, is

1 ·
∑

u∈NG(v)∩Uj

2 logn

Dj
< 2 logn.
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Hence, summing over j, the expected total number of edges in e(S) between
v and ∪j≤kUj is less than 4k · log2 n. Using the fact that k ≤ 1 + log logn, we
see that the expected total number of edges in e(S) between v and ∪j≤kUj is
O(log2 n · log logn). The result follows.

We end our analysis with the following claim whose (straightforward) proof
appears in the full version of the paper [13].

Lemma 4. For any v ∈ V , Pr(v is in S or v has a neighbor in S) ≥ 1− 1/n2.

2.3 Putting It All Together

Now that we have a set S that induces a subgraph with O(n ·poly(log n)) edges,
we rely on a 2-ruling set algorithm due to Berns et al. [3,2] to further sparsify
G[S]. This 2-ruling set algorithm runs in expected-O(log logn) rounds in general,
but it is not too hard to show the following lemma (proof appears in full paper
[13]) that is relevant when the number of edges in the input graph are bounded.

Lemma 5. Given an n-vertex graph G with O(n ·poly(log n)) edges the 2-ruling
set algorithm of Berns et al. [3,2] computes a 2-ruling set of G in expected-
O(log log logn) rounds.

We now combine the algorithm for degree-decomposition step algorithm, the
vertex-selection step algorithm, and the 2-ruling set algorithm in order to obtain
a 3-ruling set algorithm that runs in O(log log logn) rounds in expectation. Our
final 3-ruling set algorithm is described below.

Algorithm 2. 3-Ruling Set Algorithm

1. Each node v ∈ V uses the Lazy-phase and Speedy-phase algorithms to determine
the index k(v) ∈ [k∗ + 1] such that v ∈ Uk(v)

2. Run the vertex-selection step to compute S
3. I ← 2-RulingSet(G[S])

3 MIS in Growth Bounded Graphs in Constant Rounds

Given a metric space (V, d) with constant doubling dimension, we show in this
section how to compute an MIS of a distance-threshold graph Gr = (V,Er), for
any real r ≥ 0, in a constant number of rounds on a congested clique.

3.1 Simulation of the Schneider-Wattenhofer MIS Algorithm

Before we describe our MIS algorithm, we describe an algorithmic tool that will
prove quite useful. We know that Gr is growth-bounded and in particular the size
of a largest independent set in a ball BGr(v, r) for any v ∈ V is O(rρ), where ρ is
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the doubling dimension of (V, d). Schneider and Wattenhofer [22] present a de-
terministic O(log∗ n)-round algorithm to compute an MIS for growth-bounded
graphs in the CONGEST model. Suppose that f is a constant such that the
Schneider-Wattenhofer algorithms runs in at most f log∗ n rounds (note that f
depends on ρ). We can simulate the Schneider-Wattenhofer algorithm in the con-
gested clique model by (i) having each node v ∈ V grow a ball of radius f log∗ n,
i.e., gather a description of the induced graph G[BGr (v, f log∗ n)] and then (ii)
having each node v locally simulate the Schneider-Wattenhofer algorithm using
the description of G[BGr (v, f log∗ n)]. Note that since the Schneider-Wattenhofer
algorithm takes at most f log∗ n rounds, it suffices for each node v ∈ V to know
the entire topology of G[BGr (v, f log∗ n)] to determine if it should join the MIS.
The “ball growing” step mentioned above can be implemented by using Lenzen’s
routing protocol as follows, provided Δ (the maximum degree of Gr) is not too
large. Each node v can describe its neighborhood using at most Δ messages of
size O(log n) each. Node v aims to send each of these Δ messages to every node
w such that d(v, w) ≤ r · f log∗ n. In other words, v aims to send messages to all
nodes in BM (v, r ·f log∗ n). Since BGr (v, f log∗ n) ⊆ BM (v, r ·f log∗ n), it follows
that the messages sent by v are received by all nodes in BGr(v, f log∗ n). We now
bound the size of BM (v, r · f log∗ n) as follows. Since M has doubling dimension
ρ, the size of any MIS in BM (v, r ·f log∗ n) is O((log∗ n)ρ) and hence total num-
ber of nodes in BM (v, r · f log∗ n) is O(Δ · (log∗ n)ρ). Therefore every node v
has O((log∗ n)ρ ·Δ2) messages to send, each of size O(log n). Every node is the
receiver of at most O((log∗ n)ρΔ2) messages by similar arguments. Therefore,
if Δ = O(

√
n/(log∗ n)ρ/2), we can use Lenzen’s routing protocol to route these

messages in O(1) time. We refer this simulation of the Schneider-Wattenhofer
algorithm [22] as Algorithm SW-MIS. The following theorem summarizes this
simulation result.

Theorem 1. If Δ(Gr) = O(
√
n/(log∗ n)ρ/2) then Algorithm SW-MIS com-

putes an MIS of Gr in O(1) rounds on a congested clique.

3.2 Constant-Round MIS Algorithm

Our MIS algorithm consists of 4 phases. Next we describe, at a high level, what
each phase accomplishes.

Phase 1: We compute vertex-subset P ⊆ V such that (i) every vertex in V is
at most one hop away from some vertex in P and (ii) Gr[P ] has maximum
degree bounded above by c ·

√
n, for some constant c > 0.

Algorithm ReduceDegree is the name we give to the algorithm that imple-
ments Phase 1. The algorithm consists of arbitrarily partitioning the vertex-
set of Gr into

√
n groups of size (roughly)

√
n each and then separately and

in parallel computing an MIS of each part. The algorithm simply returns the
union of these MIS sets.

Phase 2: We process the graph Gr[P ] and compute two subsets W and Q of P
such that (i) every vertex in P of degree at least c ·n1/4 is either in W or has
a neighbor in W and (ii) Q ⊆W is an independent set such that every vertex
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Algorithm 3. LowDimensionalMIS

Input: Gr = (V,Er)
Output: A maximal independent set I ⊆ V of Gr

1. P ← ReduceDegree(Gr) // Phase 1
2. (W,Q)← SampleAndPrune(Gr, P ) // Phase 2
3. V ′ ← V \ (W ∪N(W )); R← SW-MIS(Gr, V

′) // Phase 3
4. S ← Q ∪R; I ← RulingToMIS(S) // Phase 4
5. return I

in W is at most 2 hops from some vertex in Q. Thus, if we delete W and all
neighbors of vertices in W what remains is a graph of maximum degree less
than c · n1/4. Let V ′ denote the set P \ (W ∪ N(W )). Thus, at the end of
Phase 2, Q is a 3-ruling set of Gr[W ∪N(W )] and Δ(Gr[V

′]) < c · n1/4.
Phase 3: We compute an MIS R of the graph Gr [V

′] by simply calling SW-

MIS.
Phase 4: Since Q is a 3-ruling set of Gr[W ∪N(W )] and R is an MIS of Gr[V

′],
we see that Q∪R is a 3-ruling set of Gr[P ] and thus a 4-ruling set of Gr. In
the final phase, we start with the 4-ruling set S := Q ∪ R and expand this
into an MIS I of Gr.
While going from a constant-ruling set to an MIS seems as hard as computing
an MIS from scratch on general graphs, on growth-bounded graphs, this is
much more easy. For example, Gfeller and Vicari [11] convert a 3-ruling set
into an MIS in O(log∗ n) rounds. Algorithm MISToRuling, which implements
Phase 4, uses a similar approach of constructing a cluster-graph of constant
maximum degree and then vertex-coloring it so as to obtain a “schedule”
using which we can process the clusters. We take advantage of the congested
model to complete all this in constant rounds.

Phase 2 is randomized and runs in constant rounds w.h.p. The remaining phases
are deterministic and run in constant rounds each. Algorithm LowDimen-

sionalMIS summarizes our algorithm. We now describe Phase 2 in more de-
tail; the remaining phases and their analyses appears in the full version of the
paper [13].

3.3 Phase 2: Sample and Prune

Algorithm SampleAndPrune implements Phase 2 of our MIS algorithm. It
takes the induced subgraph Gr [P ] as input and starts by computing a set
W ⊆ P using a simple random sampling approach. Specifically, for each i =
1, 2, . . . , �2 · logn�, each vertex in P simply adds itself to a set Wi independently,
with probability 1/n1/4. We start by stating a useful property of W . (Proof of
this lemma appears in the full version of the paper [13].)

Lemma 6. Every node u with degree at least n1/4 in Gr[P ] has a neighbor in
W with probability at least 1− 1

n2 .
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Algorithm 4. SampleAndPrune (Phase 2)

Input: (Gr, P )
Output: (W,Q), W ⊆ P such that {v ∈ P | degreeGr [P ](v) ≥ n1/4} ⊆ W ∪N(W );

independent set Q ⊆W such that Q is a 2-ruling set of Gr[W ].
1. for all v ∈ P in parallel do
2. Vertex v ∈ P adds itself to Wi with probability 1/n1/4 for i = 1, 2, . . . , �2 ·

log n�.
3. W ← ∪2 log n�

i=1 Wi

4. for all i← 1 to �2 log n� in parallel do
5. Send Gr[Wi] to a vertex wi, where wi is the vertex of rank i in the sequence

of vertices in V sorted by increasing ID
6. Vertex wi executes Xi ← LocalMIS(Gr[Wi])

7. Q← SW-MIS(Gr[∪2 log n�
i=1 Xi])

8. return (W,Q)

After using random sampling to compute W , Algorithm SampleAndPrune

then “prunes” W in constant rounds to construct a subset Q ⊆ W such that Q
is a 2-ruling set of W . In the rest of this subsection we prove that Algorithm
SampleAndPrune does behave as claimed here.

Lemma 7. The number of edges in Gr[Wi] is O(n) w.h.p., for each i = 1, 2, . . . ,
�2 logn�.

Proof. We first bound the size of the set Wi and the maximum degree of Gr[Wi]
for any i = 1, 2, . . . , �2 logn�. Observe that E[|Wi|] = n3/4 and since nodes
join Wi independently, an application of Chernoff’s bound [8] yields Pr(|Wi| ≤
6n3/4) ≥ 1− 1

n2 . To bound Δ(Gr [Wi]) we use the fact that degree of any node in
Gr[P ] is at most

√
n and therefore the expected degree of any node in Gr[Wi] is at

most n1/4. Another application of Chernoff’s bound yields Pr(degreeGr[Wi](v) ≤
6n1/4) ≥ 1 − 1

n2 for each node v. Using the union bound over all nodes v ∈ Wi

yields that with probability at least 1 − 1
n every node in Gr[Wi] has degree at

most 6n1/4. Hence, with high probability, the number of edges in G[Wi] is at
most 36n.

We end the analysis of Phase 2 by stating two lemmas (proofs appear in the full
version [13]) that establish that Algorithm SampleAndPrune runs on constant
number of rounds.

Lemma 8. The set X := ∪�2 log n�
i=1 Xi ⊆ P is computed in constant rounds

w.h.p. in Lines 4-6 of Algorithm SampleAndPrune. Furthermore, Every vertex
in W is at most one hop away from some vertex in X.

Lemma 9. W.h.p. it takes constant number of rounds to compute Q. Further-
more, Q is a 2-ruling set of Gr[W ].

Remark: By diving into the details of the communication patterns of this MIS
algorithm, it is possible to show that multiple instances (e.g., O(log n) instances)
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of this MIS algorithm, on graphs Gr, for different values of r can be executed
in parallel. Details appear in the full version of the paper [13]. This will become
useful for the MST algorithm described next.

4 Constant-Approximation to MST in Constant Rounds

For a metric space (V, d), define a metric graph G = (V,E) as the clique on
set V with each edge {u, v} having weight d(u, v). In this section we present a
constant-round algorithm for computing a constant-factor approximation of an
MST of given metric graph G = (V,E) with constant doubling dimension. We
start by showing how to “sparsify” G and construct a spanning subgraph Ĝ =
(V, Ê), Ê ⊆ E, such that wt(MST (Ĝ)) = O(wt(MST (G))). Thus computing an
MST on Ĝ yields an O(1)-approximation to an MST on G. The sparsification is
achieved via the construction of a collection of maximal independent sets (MIS)
in parallel on different distance-threshold subgraphs of G. Thus we have reduced
the problem of constructing a constant-approximation of an MST on the metric
graph G to two problems: (i) the MIS problem on distance-threshold graphs
and (ii) the problem of computing an MST of a sparse graph Ĝ. Using the fact
that the underlying metric space (V, d) has constant doubling dimension, we
show that Ĝ has linear (in |V |) number of edges. As a result, problem (ii) can
be easily solved in constant number of rounds. In Section 3, we have shown
how to compute an MIS of a distance-threshold graph in a constant doubling
dimensional space on a congested clique in constant number of rounds. In fact,
due to the rather “light-weight” bandwidth usage of our MIS algorithm, we can
run all of the requisite MIS computations in parallel in constant rounds.

4.1 MST Algorithm

We now present our algorithm in detail. We partition the edge set E of the
metric graph into two subsets E
 (light edges) and Eh (heavy edges) as follows.
Let dm = max {d(u, v) | {u, v} ∈ E} denote the diameter of the metric space 1.
Define E
 =

{
{u, v} | d(u, v) ≤ dm/n3

}
and Eh = E \ E
. We deal with these

two subsets E
 and Eh separately.
First consider the set of light edges E
 and note that G[E
] may have sev-

eral components. We would like to select an edge set Ê
 such that (i) any
pair of vertices that are in the same connected component in G[E
] are also in
the same connected component in G[Ê
], and (ii) wt(Ê
) = O(wt(MST (G))).
(Note that one can define Ê
 = E
 to have these two properties but we want
to “sparsify” E
, ideally we would like to have |Ê
| = O(n) and we show this
for metric with constant doubling dimension.) The algorithm for selecting Ê
 is
as follows. Let S be an MIS of the distance-threshold graph Gr, where r =
dm/n2. (This MIS computation is not on graph induced by E
, notice the
1 If the size of the encoding of distances is more than O(log n) bits then it is suffices

to know only most-significant log n-bits of encoding of dm to act as “proxy” for dm
which will only increase the approximation factor by a constant.
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Algorithm 5. MST-Approximation

Input: A metric graph G = (V,E) on metric space (V, d)
Output: A tree T̂ such that wt(T̂ ) = O (wt (MST (G)))
1. dm = max{{u, v} | {u, v} ∈ E}
2. E� ←

{
{u, v} | d(u, v) ≤ dm

n3

}
// Processing light edges

3. S ← ComputeMIS(G[E0]) where E0 ←
{
{u, v} | d(u, v) ≤ dm

n2

}
4. Ê� ←

{
{u, v} | u ∈ S and d(u, v) ≤ 2·dm

n2

}
5. Eh ←

{
{u, v} | d(u, v) > dm

n3

}
// Processing heavy edges

6. h←
⌈

3 log n
log c1

⌉
; r0 ← dm

ch1
7. for i = 1 to h in parallel do
8. ri ← (c1)

i · r0
9. Ei ← {{u, v} | d(u, v) ≤ ri}

10. Vi ←ComputeMIS(G[Ei])
11. Êi ← {{u, v} | u, v ∈ Vi and d(u, v) ≤ c2 · ri}
12. Êh ← ∪h

i=1Êi; Ê ← Ê� ∪ Êh

13. return MST-Sparse(G[Ê])

r. This is done to obtain certain properties of Ê
 described above.) Define
Ê
 =

{
{u, v} | u ∈ S and d(u, v) ≤ 2 · dm/n2

}
. Note that Ê
 may not be a subset

of E
.
Now we consider the set Eh of heavy edges. Let c1 > 1 be a constant. Let h

be the smallest positive integer such that ch1 ≥ n3. Observe that h =
⌈
3 logn
log c1

⌉
.

Let r0 = dm/ch1 (note that for any heavy edge {u, v}, d(u, v) > r0) and let
ri = c1 · ri−1, for i > 0. We construct Êh in layers as follows. Let V0 = V and Vi

for 0 < i ≤ h is an MIS of the subgraph G[Ei] where Ei = {{u, v} | d(u, v) ≤ ri}.
Let c2 > c1 + 2 be a constant. Define Êi, the edge set at the layer i as: Êi =
{{u, v} | u, v ∈ Vi and d(u, v) ≤ c2 · ri}. We define Êh = ∪h

i=1Êi and Ê = Êh ∪
Ê
. A key feature of our algorithm is that a layer Êi does not depend on other
layers and therefore these layers can be constructed in parallel. We then call
an as-yet-unspecified algorithm called MST-Sparse that quickly computes an
exact MST of Ĝ = G[Ê] in the congested clique model.

In the analysis that follows, we separately analyze the processing of light edges
and heavy edges. We first show the constant-approximation property of Ĝ which
doesn’t require metric to be of constant doubling dimension. Later we show if
the underlying metric has constant doubling dimension then Algorithm 5 runs
in constant rounds w.h.p..

4.2 Constant-Approximation Property

Let T be an MST of graph G = (V,E). Let T̂ be a MST of the graph Ĝ = (V, Ê).
We now prove that wt(T̂ ) = O(wt(T )). First we claim that the connectivity that
edges in E
 (i.e., the light edges) provide is preserved by the edges selected into
Ê
 (Lemma 10) and the total weight of these selected edges is not too high
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(Lemma 11). Later we make a similar claim for heavy edges (Lemma 12). Proofs
of these lemmas appear in the full version of the paper [13].

Lemma 10. For any vertices s and t in V , if there is a s-t path in G[E
] then
there exists an s-t path in G[Ê
].

Lemma 11. wt(Ê
) = O(wt(T )).

Consider an edge {u, v} ∈ E(T ). Let C(u) and C(v) be the components con-
taining u and v respectively in the graph T \ {u, v}.

Lemma 12. If {u, v} ∈ E(T ) ∩ Eh then there exists an edge {u′, v′} ∈ Ê such
that (i) d(u′, v′) ≤ c2 · d(u, v) and (ii) u′ ∈ C(u) and v′ ∈ C(v).

This lemma implies that for every cut (X,Y ) of G and an MST edge {u, v} that
crosses the cut, there is an edge {u′, v′} in Ĝ also crossing cut (X,Y ) with weight
within a constant factor of the weight of {u, v}. The following result follows from
this observation and properties of Ê
 proved earlier.

Theorem 2. Algorithm 5 computes a spanning tree T̂ of G such that wt(T̂ ) =
O (wt (MST (G))).

4.3 Constant Running Time

The result of the previous subsection does not require that the underlying met-
ric space (V, d) have constant doubling dimension. Now we assume that (V, d)
has constant doubling dimension and in this setting we show that Algorithm
MST-Approximation can be implemented in constant rounds. Even though
the algorithm is described in a “sequential” style in Algorithm 5, it is easy to
verify that most of the steps can be easily implemented in constant rounds in
the congested clique model. However, to finish the analysis we need to show: (i)
that ComputeMIS executes in constant rounds, (ii) that the h = O(log n) calls
to ComputeMIS in Line 10 can be executed in parallel in constant rounds, and
(iii) that MST-Sparse in Line 13 can be implemented in constant rounds. We
showed (i) in the previous section and for (ii) please refer to the full version [13].
In the following, we show (iii) by simply showing that Ĝ has linear number of
edges.

We first claim that |Ê
| = O(n) in Lemma 13 and then argue about heavy
edges. Proof of this lemma appears in the full version of the paper [13].

Lemma 13. |Ê
| = O(n).

Now we show |Êh | = O(n). We first state in the following lemma two useful
properties of vertex-neighborhoods in the graph induced by Êi. The proof of
this lemma appears in the full version of the paper [13].

Lemma 14. For each u ∈ Vi, (i) |Ni(u)| ≤ c3 where c3 = c2
O(ρ) and (ii)

Ni(u) ∪ {u} induces a clique in G[Ej ] for all i > 0 and j ≥ i + δ where δ =⌈
log 2c2
log c1

⌉
.
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The implication of the above result is that |Êi| is linear in size. Since we use
O(log n) layers in the algorithm, it immediately follows that |Êh | is O(n log n).
However, part (ii) of the above result implies that only one of the nodes in Ni(u)
will be present in Vj , j ≥ i + δ since Vj is an independent set of G[Ej ]. This
helps us show the sharper bound of |Êh | = O(n) in the following.

Without loss of generality assume that h is a multiple of δ (if not, add at most
δ − 1 empty layers Êh+1, Êh+2, . . . to ensure that this is the case). Let

β(j) =

jδ⋃
i=(j−1)δ+1

Êi for j = 1, 2, . . . ,
h

δ

be a partition of the layers Êi into bands of δ consecutive layers. Let Êodd =
∪j:oddβ(j) and Êeven = ∪j:evenβ(j).

Lemma 15. |Êodd| = O(n), |Êeven| = O(n) and therefore |Ê| = O(n).

Proof. We prove the claim for Êodd. The proof is essentially the same for Êeven.
We aim to prove the following claim by induction on k (for odd k): for some
constant C > 0, ∣∣∣∣∣∣

⋃
j:odd≥k

β(j)

∣∣∣∣∣∣ ≤ C ·

∣∣∣∣∣∣
⋃

j:odd≥k

V (j)

∣∣∣∣∣∣ , (1)

where V (j) is the set of vertices such that every vertex in V (j) has some incident
edge in β(j). Setting k = 1 in the above inequality, we see that |Êodd| = |∪j:odd≥k

β(j)| = O(n). To prove the base case, let k′ be the largest odd integer less than or
equal to h/δ. Then, ∪j:odd≥k′β(j) = β(k′) and ∪j:odd≥k′V (j) = V (k′). Consider a
vertex v ∈ V (k′). By Lemma 14, there are at most c3 edges incident on v from any
layer. There are δ layers in β(k′) and therefore there are at most c3δ edges from
β(k′) incident on any vertex v ∈ V (k′). Hence, |β(k′)| ≤ c3δ|V (k′)|. Therefore,
for any constant C ≥ c3δ, it is the case that | ∪j≥k′ β(j)| ≤ C · | ∪j≥k′ V (j)|.

Taking (1) to be the inductive hypothesis, let us now consider | ∪j≥k−2 β(j)|.
Then,∣∣∣∣∣∣

⋃
j:odd≥k−2

β(j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

⋃
j:odd≥k

β(j)

∣∣∣∣∣∣+ |β(k− 2)| ≤ C ·

∣∣∣∣∣∣
⋃

j:odd≥k

V (j)

∣∣∣∣∣∣+ c3δ · |V (k− 2)|.

(2)
The second inequality is obtained by applying the inductive hypothesis and the
inequality |β(k− 2)| ≤ c3δ|V (k− 2)|. By Lemma 14, at most half the vertices in
V (k−2) appear in ∪j≥kV (k). Therefore, |V (k−2)\ (∪j≥kV (j))| ≥ |V (k−2)|/2.
Hence,∣∣∣∣∣∣

⋃
j:odd≥k−2

β(j)

∣∣∣∣∣∣ ≤ C ·

∣∣∣∣∣∣
⋃

j:odd≥k

V (j)

∣∣∣∣∣∣ + 2c3δ ·

∣∣∣∣∣∣V (k − 2) \ (
⋃

j:odd≥k

V (j))

∣∣∣∣∣∣ .
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Picking C ≥ 2c3δ, we then see that∣∣∣∣∣∣
⋃

j:odd≥k−2

β(j)

∣∣∣∣∣∣ ≤ C ·

⎛⎝∣∣∣∣∣∣
⋃

j:odd≥k

V (j)

∣∣∣∣∣∣ +
∣∣∣∣∣∣V (k − 2) \

⎛⎝ ⋃
j:odd≥k

V (j)

⎞⎠∣∣∣∣∣∣
⎞⎠

= C ·

∣∣∣∣∣∣
⋃

j:odd≥k−2

V (j)

∣∣∣∣∣∣ .
The result follows by induction.

5 Constant-Approximation to MFL

Berns et al. [3,2] showed how to compute a constant-factor approximation to
MFL in expected O(log logn) rounds. (The algorithm presented in [2] runs in
expected O(log logn · log∗ n) rounds, but this was subsequently improved to
expected O(log logn) in [3].) Analysis in [3,2] shows that if a t-ruling set of a
distance threshold graph can be computed in T rounds on the congested clique,
then it is possible to obtain an O(t)-approximation to MLF in O(T ) rounds. In
[3] it is shown how to compute a 2-ruling set in expected O(log logn) rounds on
a This leads to a constant-factor approximation to MFL in expected O(log logn)
rounds. The 3-ruling set algorithm and the MIS algorithm in the present paper
can replace the slower 2-ruling set and this yields the following result.

Theorem 3. There exists a distributed algorithm that computes a constant-
approximation to the metric facility location problem (w.h.p.) in the congested-
clique model and which has an expected running time of O(log log logn) rounds.
Additionally, if the input metric space has constant doubling dimension then a
constant-approximation can be computed in constant rounds (w.h.p.)
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1 Introduction

State machine replication is a common approach for building fault-tolerant ser-
vices. A Replicated State Machine (RSM) typically uses a consensus protocol
such as Paxos [1] to decide on the order of updates and thus keep replicas con-
sistent. Using Paxos, the RSM can continue to process new requests, as long as
more than half of the replicas remain operational. If this bound is violated, how-
ever, the current RSM is forced to stop making progress indefinitely. To avoid
scenarios in which the number of failures exceeds the bound, it is beneficial to
immediately instantiate failure handling, if this can be done without causing a
significant disruption to request execution.

This can be done by reconfiguration, which is a general method to replace
one set of replicas with another. Classical reconfiguration relies on the RSM to
decide on a reconfiguration command [2]. For this, the old configuration must
have a majority of operational replicas and a single correct leader. The latter
can only be guaranteed if the replicas are sufficiently synchronized.

In this paper, we present Replacement [3], a reconfiguration algorithm spe-
cialized for replacing a faulty replica with a new one. Also Replacement requires
a majority of operational replicas. However, different from traditional reconfigu-
ration techniques, failure handling with Replacement does not rely on consensus.
Thus, by using Replacement, faulty replicas can be replaced even during times of
asynchrony, e.g. when clocks are not synchronized and the network experiences
unpredictable delays, or when multiple replicas are competing for leadership.
This is useful, since replacing slow or overloaded replicas can restore synchrony
and replaced replicas can no longer compete for leadership.

In [4] we showed that reconfiguration without consensus is possible. However,
the algorithm presented in [4] (ARec), has to stop the state machine during
reconfiguration. Replacement, our new method, includes minor adjustments to
the Paxos algorithm that allow the RSM to make progress, while replicas disagree
on the current configuration. It thus avoids the increased client latency and
temporary unavailability, caused by ARec.

2 Contribution

Replacement is similar to the round change in Paxos. A replacement request,
specifying an old replica and its replacements, is propagated to all replicas, which

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 531–532, 2014.
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then send Promise messages to the new replica. The new replica can determine
a correct state and start running Paxos, after collecting a quorum of promises.
The following ideas are key to Replacement.

New state only for the new replica. To ensure that no different values
can get chosen before and after the replacement, we guarantee that a value,
accepted by a majority before replacement, is still accepted by a majority after
replacement. For this, it is enough if the new replica stores any possibly accepted
value. Therefore, in Replacement, only the new replica needs to wait for promises,
while the other replicas can continue to run Paxos.

Vector Timestamps. In Replacement, replicas use a vector clock to times-
tamp the current configuration. By attaching this vector clock to messages, we
can detect and discard messages from replaced replicas. Thus Replacement can
allow replicas, that are not replaced, to continue running Paxos in the same
round. This is different from other reconfiguration methods [4,5] which enforce a
round change in Paxos, and thus discard all messages from the previous round.

Combining Replacements. Every replacement has a unique timestamp and
if two concurrent replacements are issued for the same replica, the one with the
higher timestamp will be executed. However, if two concurrent replacements are
issued for different replicas, both replacements will be executed, possibly in dif-
ferent orders. Thus, replacements for different replicas can be issued by different
agents, without the risk that some replacement is lost due to concurrency with
another, unrelated replacement.

Since replacements for different replicas are executed concurrently without any
order or priority, concurrent replacements can block each other. We solve this
with simple coordination among the replacing processes, which is only necessary
if a majority of the replicas are replaced concurrently.

Evaluation. Our evaluation shows that using ARec causes longer repair times
and temporary unavailability, compared to classical reconfiguration. Replace-
ment performs on par with classical reconfiguration in a synchronous setting,
but also allows failure handling in times of asynchrony.

References

1. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

2. Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT
News 41(1), 63–73 (2010)

3. Jehl, L., Meling, H.: Towards fast and efficient failure handling for paxos state
machines. In: 2013 IEEE 33rd International Conference on Distributed Computing
Systems Workshops (ICDCSW), pp. 98–102 (2013)

4. Jehl, L., Meling, H.: Asynchronous Reconfiguration for Paxos State Machines. In:
Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS,
vol. 8314, pp. 119–133. Springer, Heidelberg (2014)

5. Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication.
In: PODC, pp. 312–313 (2009)



Brief Announcement: The Power

of Scheduling-Aware Synchronization�

Panagiota Fatourou1 and Nikolaos D. Kallimanis2

1 FORTH-ICS & University of Crete, Greece
faturu@csd.uoc.gr

2 FORTH-ICS, Greece
nkallima@ics.forth.gr

We present a new combining-based synchronization technique, called Hydra1, that
enables batching, on a single node, of the synchronization requests initiated by
threads running on the same core. The technique results in highly-increased com-
bining degree (which is the average number of requests that each combiner serves),
and significantly reduces the number of expensive synchronization primitives (like
CAS, Swap, Fetch&Add, etc.) performed.We prove that the performance power of
Hydra is tremendous when employed in an environment supporting cheap context
switching, like user-level threads. Hydra outperforms by far all previous state-of-
the-art synchronization algorithms.We experimentally show that the throughput
of Hydra is higher than that of CC-Synch, a state-of-the-art (blocking) synchro-
nization protocol presented in PPoPP ’12, by more than an order of magnitude.
Hydra’s throughput is surprisingly close to the ideal and this is achieved without
increasing the average latency in serving each request.

We also study a simple variant of P-Sim [2], called PSimX, with highly up-
graded performance; PSimX is wait-free. The performance of PSimX, albeit lower
than that of Hydra, is also close to the ideal. By employing user-level threads in
other synchronization protocols, the exhibited performance advantage is much
lower than that of Hydra and PSimX. Based on PSimX, it is easy to implement
useful wait-free primitives (e.g. multi-word CAS) at a surprisingly low cost.

Based on Hydra and PSimX, we implement and experimentally evaluate imple-
mentations of concurrent queues and stacks. These implementations outperform
by far all current state-of-the-art concurrent queue and stack implementations,
respectively. Although the current versions of Hydra and PSimX have been tested
in an environment supporting user-level threads, they can also run on top of any
threading library, preemptive or not (including kernel threads).

Protocol Description. Hydra maintains a linked list of nodes. Each node of
this list stores announced requests of active threads running on the same core
c. The first thread p among those running on c, that wants to apply a request,

� This work has been supported by the ARISTEIA Action of the Operational Pro-
gramme Education and Lifelong Learning which is co-funded by the European Social
Fund (ESF) and National Resources through the GreenVM project.

1 Lernaean Hydra was an ancient monster of Greek mythology that possessed many
heads. In Hydra, a processing core (the body) possesses a lot of user threads (the
heads).

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 533–535, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



534 P. Fatourou and N.D. Kallimanis

Alg throughput
Variant’s
throughput

speedup

CC-Synch 4.18 4.60 1.10
DSM-Synch 4.10 4.58 1.12

P-Sim 3.90 23.2 5.94
Lock-Free 2.00 1.87 0.94

CLH 1.58 1.7 1.08
FC 2.99 5.51 1.84

OyamaAlg 1.72 2.8 1.63

tries to store a pointer to a node nd in an array A. Other threads running on c
may simultaneously compete on the same position of A, so CAS is used.

If p successfully stores nd in A, it records its request in nd, initiates a recording
period by informing the other threads running on c that they can start recording
requests in nd, and calls Yield. To apply a request, some other thread executing
on c, discovers that a recording period is active and records its request in nd.
Then, it calls Yield until some combiner serves its request.

Fair scheduling results in the reactivation of p at some later point. Then, p
ends the current recording period, executes a Swap to append nd in the shared
list, and decides whether it should become a combiner. If p does not become a
combiner, it repeatedly calls Yield until a combiner either serves its request or
informs p that it is the new combiner. Otherwise, it first serves its own request
and then traverses the list and serves the requests recorded in the list nodes,
in order, until either it has traversed all elements of the list or it has served up
to some constant number of requests. Finally, p informs the process owning the
next to traverse node in the list that it is the new combiner.

Performance Evaluation. We evaluated Hydra and PSimX in a 64-core ma-
chine consisting of four AMD Opteron 6272 processors (Interlagos). For our
experiments, we consider the Fetch&Multiply benchmark used in [1,2]. The fig-
ure presents the throughput for the original versions of the evaluated algorithms
and their variants where the best number of user level threads per core was em-
ployed for each algorithm; all algorithms other than P-Sim and flat-combining
(FC) do not exhibit any serious performance gains when employing user level
threads. We experimentally compare Hydra with CC-Synch [1], P-Sim [2], flat-
combining (Hendler et. al, SPAA’10), OyamaAlg (Oyama et. al, PDSIA’99), a
blocking implementation based on (CLH or MCS) spin-locks, and a simple lock-
free implementation. Hydra outperforms CC-Synch by a factor of up to 11 without
sacrificing the good latency ensured by CC-Synch. The performance advantages
of Hydra over all other algorithms are even higher.

Although the current versions of Hydra and PSimX employ user-level threads,
they can also run on top of any threading library, preemptive or not. Hydra and
PSimX are linearizable. The full paper is provided in [3].
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Reducer Capacity. An important parameter to be considered in MapReduce
algorithms is the “reducer capacity.” A reducer is an application of the reduce
function to a single key and its associated list of values. The reducer capacity is
an upper bound on the sum of the sizes of the values that are assigned to the
reducer. For example, we may choose the reducer capacity to be the size of the
main memory of the processors on which the reducers run. We assume that all
the reducers have an identical capacity, denoted by q.

Motivation and Examples. We demonstrate a new aspect of the reducer
capacity in the scope of several special cases. One useful special case is where
an output depends on exactly two inputs. We present two examples where each
output depends on exactly two inputs and define two problems that are based
on these examples.

Similarity-join. Similarity-join is used to find the similarity between any two
inputs, e.g., Web pages or documents. A set of m inputs (e.g., Web pages) WP =
{wp1, wp2, . . . , wpm}, a similarity function sim(x, y), and a similarity threshold
t are given, and each pair of inputs 〈wpx, wpy〉 corresponds to one output such
that sim(wpx, wpy) ≥ t. It is necessary to compare all pairs of inputs when the
similarity measure is sufficiently complex that shortcuts like locality-sensitive
hashing are not available. Therefore, it is mandatory to compare every two inputs
(Web pages) of the given input set (WP).

Skew join of two relations X(A,B) and Y (B,C). The join of relations X(A,B)
and Y (B,C), where the joining attribute is B, provides the output tuples 〈a, b, c〉,
where (a, b) is in X and (b, c) is in Y . One or both of the relations X and Y

� More details appear in the technical report 14-05, Department of Computer
Science, Ben-Gurion University of the Negev, Israel, 2014. This work was
partially supported by the project Handling Uncertainty in Data Intensive
Applications, co-financed by the European Union (European Social Fund) and
Greek national funds, through the Operational Program “Education and Lifelong
Learning,” under the program THALES, the Rita Altura Trust Chair in Computer
Sciences, Lynne and William Frankel Center for Computer Sciences, Israel Science
Foundation (grant 428/11), the Israeli Internet Association, and the Ministry
of Science and Technology, Infrastructure Research in the Field of Advanced
Computing and Cyber Security.
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may have a large number of tuples with the same B-value. A value of the joining
attribute B that occurs many times is known as a heavy hitter. In skew join of
X(A,B) and Y (B,C), all the tuples of both the relations with the same heavy
hitter should appear together to provide the output tuples.

Problem Statement. We define two problems where exactly two inputs are
required for computing an output, as follows: (i) All-to-All problem. In the
all-to-all (A2A) problem, a set of inputs is given, and each pair of inputs
corresponds to one output. Computing common friends on a social networking
site and similarity join are examples. (ii) X-to-Y problem. In the X-to-Y (X2Y )
problem, two disjoint sets X and Y are given, and each pair of elements 〈xi, yj〉,
where xi ∈ X, yj ∈ Y, ∀i, j, of the sets X and Y corresponds to one output. Skew
join and outer product or tensor product are examples.

The communication cost, i.e., the total amount of data transmitted from the
map phase to the reduce phase, is a significant factor in the performance of
a MapReduce algorithm. The communication cost comes with tradeoff in the
degree of parallelism however. Higher parallelism requires more reducers (hence,
of smaller reducer capacity), and hence a larger communication cost (because
the copies of the given inputs are required to be assigned to more reducers). A
substantial level of parallelism can be achieved with fewer reducers, and hence,
yield a smaller communication cost. Thus, we focus on minimizing the total
number of reducers, for a given reducer capacity q. A smaller number of reducers
results in a smaller communication cost.

Tradeoffs. The following tradeoffs appear in MapReduce algorithms and in
particular in our setting: (i) a tradeoff between the reducer capacity and the total
number of reducers, (ii) a tradeoff between the reducer capacity and parallelism,
and (iii) a tradeoff between the reducer capacity and the communication cost.

Mapping Schema. A mapping schema is an assignment of the set of inputs to
some given reducers under the following two constraints: (i) a reducer is assigned
inputs whose sum of the sizes is less than or equal to the reducer capacity, and
(ii) for each output, we must assign the corresponding inputs to at least one
reducer in common. The following two problems are proved to be NP-compete:

The A2A Mapping Schema Problem. An instance of the A2A mapping
schema problem consists of a set of m inputs whose input size set is W =
{w1, w2, . . . , wm} and a set of z reducers of capacity q. A solution to the A2A
mapping schema problem assigns every pair of inputs to at least one reducer in
common, without exceeding q at any reducer.

The X2Y Mapping Schema Problem. An instance of the X2Y mapping
schema problem consists of two disjoint sets X and Y and a set of z reducers of
capacity q. The inputs of the set X are of sizes w1, w2, . . . , wm, and the inputs
of the set Y are of sizes w′

1, w
′
2, . . . , w

′
n. A solution to the X2Y mapping schema

problem assigns every two inputs, the first from one set, X , and the second from
the other set, Y , to at least one reducer in common, without exceeding q at any
reducer.
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Distributed Transactional Memory Model. We consider transactional
memory implementations in distributed networked systems, where we provide
several performance bounds and impossibility results. A network is modeled as
a weighted graph G and each transaction resides at a node and requires one or
more shared objects for read or write. We focus on the data-flow model where
objects are mobile and the time for an object to traverse an edge is equal to the
weight of the edge. In order to guarantee consistency, an object can have only
one writable copy in the network at any moment of time. A transaction which
is about to execute requires that all requested objects are available at its node.

An execution schedule specifies which transactions execute at any moment of
time. The schedule also determines the network paths that the objects will follow
while moving from one transaction node to another. We evaluate an execution
schedule with two performance metrics: communication cost, which is the total
distance traversed by all the objects, and execution time, which is the total time
to execute all transactions. For simplicity, we assume that once a transaction
has obtained all requested objects its actual computation time is instantaneous,
which implies that the execution time for a set of transactions depends only on
the edge traversal times of the requested objects along the followed paths.

Most of the previous works on distributed transactional memory focused on
analyzing problem instances with only one shared object. Herlihy and Sun [1]
provide a distributed directory approach and the first formal bounds for low
doubling dimension metrics. Sharma et al. [3] generalize their approach for gen-
eral network topologies. Zhang et al. [4] examine the special case of the work-
conserving model with multiple objects and the relation to object TSP tours.

Contributions. We give a comprehensive set of bounds for problem instances
where transactions require multiple objects. We assume batch problems where
all transactions and their requested objects are known before execution starts.
We provide offline schedules for the transactions that have near optimal com-
munication cost. We also provide non-trivial bounds for the execution time, and
explore trade-offs between communication cost and execution time. We continue
with a description of our detailed contributions.

Communication cost. We first observe that the problem of minimizing the
communication cost is NP-hard with a reduction from the graph TSP problem.

� This work is supported by the National Science Foundation grant CCF-1320835.
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We then give an upper bound for the communication cost. We use a univer-
sal TSP tour to schedule the transactions. A universal TSP tour [2] defines a
traversal order for the network nodes so that any subsequence of nodes is also
an approximate TSP tour for the respective nodes. By executing the transac-
tions in the order according to the universal TSP tour we guarantee that each
object follows an approximate TSP tour of the nodes with the transactions
that request the object. The overall schedule has communication cost within
O(log4 n/ log logn) factor from optimal, where n is the number of nodes. We
obtain better bounds for planar graphs and networks with low doubling metrics.

Execution time. The problem of optimizing the execution time is NP-hard,
and it is also hard to approximate it within any factor smaller than the number
of transactions (reduction from vertex-coloring). We give an O(Δ) approxima-
tion algorithm for the execution time, where Δ is the maximum number of
conflicts between transactions. This bound is obtained with a greedy coloring of
a weighted conflict graph of transactions.

An interesting question is whether there are efficient schedules with execution
time close to the optimal TSP tours of the objects. We answer this question to
the negative, namely, there is a problem instance where each shortest object walk
has length O(n5/6), while any execution schedule requires time Ω(n). The same
instance has O(log n) objects per transaction and Δ = O(n2/3 logn); thus, the
Ω(n) execution time does not follow trivially from other problem parameters.
This problem instance demonstrates a significant asymptotic gap between the
objects’ optimal TSP tour lengths and the execution time.

Time and communication trade-offs. We give a problem instance where it is
impossible to simultaneously optimize execution time and communication cost.
In this problem instance a lower bound for the execution time is Ω(n2/3) and
a lower bound for the communication cost is Ω(n). We provide two schedules,
one with optimal execution time O(n2/3), and another schedule with optimal
communication cost O(n). We observe that the first schedule has sub-optimal
communication cost, while the second schedule has sub-optimal execution time.
In fact, any schedule that achieves optimal execution time must have suboptimal
communication cost Ω(n4/3). Furthermore, any schedule with optimal commu-
nication cost must have suboptimal execution time Ω(n).
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Since in the Transactional Memory (TM) abstraction transactional code can
contain any operation (rather than just reads and writes), greater attention must
be paid to the state of shared variables at any given time. Thus strong safety
properties are important in TM, such as opacity [2], virtual world consistency [3],
or TMS1/2 [1]. They regulate what values can be read, even by transactions that
abort. In comparison to these, properties like serializability allow inconsistent
views, so they are relatively weak. However, strong properties virtually preclude
early release as a technique for optimizing TM. Early release is a mechanism that
allows transactions to read from other transactions, even if the latter are still
live. This can increase parallelism, and it is useful in high contention (see e.g.,
[4]). Thus, we introduce last-use opacity, a safety property that relaxes opacity.

Opacity consists of three core guarantees: serializability, preservation of real-
time order, and consistency. We concentrate on the latter, which stipulates that
non-local read operations (i.e. those that read values written by other transac-
tions than the current one) must only read values from committed or commit-
pending transactions. Last-use opacity relaxes this consistency criterion to only
provide last-use consistency [7] and recoverability. Then, a transaction can read
from another live transaction, if the latter will no longer access the variable in
question. Plus, transactions must commit or abort in the order in which they
access shared variables. These conditions are defined as follows:

Definition 1 (Commit-pending Equivalence). Transaction Ti in history H
is commit-pending–equivalent with respect to variable x if (a) Ti is live, and
(b) there is a read or write operation op on x in H�Ti, s.t. for any history Hc

for which H is a prefix (Hc � H �H �) op is the last read or write on x in Hc�Ti.

Definition 2 (Last-use Consistent Operation). Given a history H, a trans-
action Ti and a read operation opr � r�x�v on variable x returning v in sub-
history H�Ti, we say opr is last-use–consistent as follows: (a) If opr is local
then the latest write operation on x preceding opr writes value v to x; (b) If opr

is non-local then either v � 0 or there is a non-local write operation opw on
variable x writing v in H�Tk (k � i) where Tk is committed, commit-pending, or
commit-pending–equivalent with respect to x.

Definition 3 (Recoverable Last-use Consistency). History H is recover-
able last-use–consistent if (a) every read operation in H�Ti, for every transaction

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 540–541, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Brief Announcement: Relaxing Opacity in Pessimistic Transactional Memory 541

Ti in H is last-use–consistent, and (b) for every pair of transactions Ti, Tj such
that i � j and Tj reads from or writes after Ti, then Ti aborts or commits before
Tj aborts or commit, and if Ti aborts, then Tj also aborts.

Relaxing consistency necessarily leads to some inconsistent views to be ac-
cepted. Hence, while last-use opacity prevents overwriting (releasing x and writ-
ing to it afterwards), it does not prevent zombie transactions—ones that view
inconsistent state and are forced to abort. This happens if transaction Ti reads
from Tj which, for whatever reason, later aborts. Even if Ti eventually aborts,
it operates on stale data and, therefore, can behave unexpectedly. However, this
can be rendered harmless by, e.g. sandboxing [5], or enforcing invariants.

On the other hand, using last-use opacity yields performance benefits, espe-
cially in high contention. In Fig. 1 we compare two variants of the same dis-
tributed TM [6]: last-use–opaque LSVA and opaque OSVA. In all benchmarks
LSVA is able to process transactions faster, due to its ability to release early.
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Fig. 1. Percentage improvement relative to a lock-based implementation
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Transactional memory (TM) is becoming an increasingly central concept in parallel
programming. Recently, Intel introduced the TSX extensions to the x86 architecture,
which include RTM: an off-the-shelf hardware that supports hardware transactional
memory. However, there are several reasons for a developer to avoid using hardware
transactional memory. First, HTM is only available for some of the computers in the
market. Thus, a code that relies on HTM only suits a fraction of the available computers.
Second, RTM transactions are “best effort” and are not guaranteed to succeed. Thus, to
work with HTM, a fall-back path must also be provided, in case transactions repeatedly
fail. Namely, developing software using HTM requires three code bases: one based on
transactions, a second one for platforms that do not support HTM, and a third code base
to handle transaction failures.

We propose a new programming discipline for highly-concurrent linearizable objects
that takes advantage of HTM when it is available, and still performs reasonably (around
X0.6) when it is not available. We suggest designing data structures using an opera-
tion similar to the well-known MCAS(Multi-word Compare And Swap) operation. The
MCAS operation executes atomically on several shared memory addresses. Each ad-
dress is associated with an expected-value and a new-value. An execution of MCAS
succeeds and returns true iff the data in all the addresses is equal to the expected value.
In such a case, the data in each address is replaced with the new value. If any of the
specified addresses contains data that is different from the expected value, then false is
returned and the data in the shared memory remains unchanged. MCAS execution is
not supported by common hardware, but there exists an algorithm that implements this
operation using standard single-word CASes [4]. Alternatively, MCAS can be easily
implemented using transactional memory or by locks.

We propose an extended interface of MCAS called MCMS (Multiple Compare Mul-
tiple Swap), in which we also allow addresses to be compared without being swapped.
The extension may seem redundant, because, in effect, comparing an address without
swapping it is identical to a regular MCAS in which this address’ expected value equals
its new value. However, when implementing the MCMS using transactional memory, it
is ill-advised to write a new (identical) value to replace an old one, since this may cause
unnecessary transaction aborts.

In order to study the usability of the MCMS operation, we designed two algorithms
that use it. One for the linked-list data structure, and one for the binary search tree. The
MCMS tree is almost a straightforward MCMS-based version of the lock-free binary

 This work was supported by the United States - Israel Binational Science Foundation (BSF)
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search tree by Ellen et al. [1]. But interestingly, attempting to design a linked-list that
exploits the MCMS operation yielded a slightly new algorithm that turns out very effi-
cient also when used with locks. The main idea is to mark a deleted node in a different
and useful manner. Instead of using a mark on the reference (like Harris [3]), or using
a mark on the reference and additionally a backlink (like Fomitchev and Ruppert [2]),
or using a separate mark field (like the lazy linked-list [5]), we mark a node deleted
by setting its pointer to be a back-link, referencing the previous node in the list. This
approach works excellently with transactions, but can also be used with locks. In fact, a
lock-based version of this new algorithm outperforms all known linked-list implemen-
tations.

We present three simple fall-back alternatives to enable progress in case RTM exe-
cutions repeatedly fail. The simplest way is to use locks, in a similar manner to lock-
elision. The second approach is to use CAS-based MCMS ([4]) as a fall-back. The third
alternative is a copying scheme, where a new copy of the data structure is created upon
demand to guarantee progress. Both the linked-list and tree algorithm outperform their
lock-free alternatives when using either a lock-based fall-back path or a copying fall-
back path. The list algorithm performs up to X1.8 faster than Harris’s linked-list, and
the tree algorithm performs up to X1.2 faster than the tree of Ellen et al. A fall-back
path that relies on an MCMS fall-back path is at times a bit faster (up to X1.1) and at
times a bit slower than the lock-free alternatives, depending on the specific benchmark
and configuration.

Another important advantage of programming with MCMS is that the resulting al-
gorithms are considerably simpler to design and debug compared to standard lock-free
algorithms that build on the CAS operation. The stronger MCMS operation allows lock-
free algorithms to be designed without requiring complicated “helping” operations typ-
ically of lock-free algorithms.
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1 Introduction

A labeling scheme is a method of distributing the information about the struc-
ture of a graph among its vertices by assigning short labels, such that a selected
function on pairs of vertices can be computed using only their labels. In their
seminal paper, Kannan et al. [1] introduced adjacency labeling schemes for trees
using at most 2 logn bits for each of the functions adjacency, siblings and ances-
try. Alstrup, Bille and Rauhe [2] established a lower bound of logn + log logn
for the functions siblings, connectivity and ancestry along with a matching up-
per bound for the first two. For adjacency, a logn + O(log∗ n) labeling scheme
was presented in [3]. A logn + O(log logn) labeling scheme for ancestry was
established only recently by Fraigniaud and Korman [4].

Cohen, Kaplan and Milo [5] considered dynamic labeling schemes, where the
encoder receives n leaf insertions and assigns unique labels that must remain
unchanged throughout the labeling process. In this context, they showed a
tight bound of Θ(n) bits for any dynamic ancestry labeling scheme. In light
of this lower bound, Korman, Peleg and Rodeh [6] introduced dynamic labeling
schemes, where node re-label is permitted and performed by message passing.
In this model they are able to maintain a compact labeling scheme for ancestry,
while keeping the number of messages small. Additional results in this setting
include conversion methods for static labeling schemes [7], as well as specialized
distance [7] and routing [8] labeling schemes.

2 Our Contributions

In the full version [9] we first stress the importance of the lower bound achieved
by Cohen et al. [5] by showing that it extends to routing, NCA, and distance.
In contrast, we observe that for the dynamic setting, we can achieve efficient
labeling schemes for the functions adjacency, sibling, and connectivity without
the need of relabeling. More precisely, we observe that the original 2 logn adja-
cency labeling scheme due to Kannan et al. [1] is in fact suitable for the dynamic
setting. Moreover, the original labeling scheme also supports sibling queries and
a slightly modified scheme is shown to work for connectivity. Our findings re-
veal an exponential gap between ancestry and the functions mentioned for the
dynamic setting.
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We then present various families of insertion sequences for which labels of size
2 logn are required for each of the functions. This suggest that in the dynamic
setting the original labeling schemes are in fact optimal, and contrast the static
case, where adjacency labeling schemes requires strictly fewer bits than both
sibling and connectivity. We prove the lower bound by showing a family of n
insertion sequences that requires O(n2) distinct labels, as illustrated in Fig. 1.

Many other graph families enjoy (static) adjacency labeling schemes of size
O(log n). Among those, we mention graphs with bounded arboricity, graphs of
bounded treewidth and interval graphs. We show simple lower bounds of Ω(n)
for dynamic adjacency labeling schemes for those families.

Multi-functional labeling schemes. In this context, we show the following results.
First, we prove that 3 logn bits are necessary and sufficient for any dynamic
labeling scheme supporting adjacency and connectivity. Interestingly, the same
gap appears in the static setting where we prove that logn + 2 log logn bits
are sufficient and necessary for any unique labeling scheme supporting both
connectivity and siblings/ancestry, in contrast to logn + log logn [2] for each
function individually.
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Fig. 1. The lower bound construction for adjacency dynamic labeling schemes. The
red nodes are the ones that must be labeled with distinct labels.
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Data replication is essential to ensure reliability, availability and fault-tolerance
of massive distributed applications over large scale systems such as the Inter-
net. However, these systems are prone to partitioning, which by Brewer’s CAP
theorem [1] makes it impossible to use a strong consistency criterion like atom-
icity. Eventual consistency [2] guaranties that all replicas eventually converge to
a common state when the participants stop updating. However, eventual consis-
tency fails to fully specify shared objects and requires additional non-intuitive
and error-prone distributed specification techniques, that must take into account
all possible concurrent histories of updates to specify this common state [3]. This
approach, that can lead to specifications as complicated as the implementations
themselves, is limited by a more serious issue. The concurrent specification of
objects uses the notion of concurrent events. In message-passing systems, two
events are concurrent if they are enforced by different processes and each process
enforced its event before it received the notification message from the other pro-
cess. In other words, the notion of concurrency depends on the implementation
of the object, not on its specification. Consequently, the final user may not know
if two events are concurrent without explicitly tracking the messages exchanged
by the processes. A specification should be independent of the system on which
it is implemented.

We believe that an object should be totally specified by two facets: its abstract
data type, that characterizes its sequential executions, and a consistency crite-
rion, that defines how it is supposed to behave in a distributed environment. Not
only sequential specification helps repeal the problem of intention, it also allows
to use the well studied and understood notions of languages and automata. This
makes possible to apply all the tools developed for sequential systems, from their
simple definition using structures and classes to the most advanced techniques
like model checking and formal verification.

Eventual consistency (EC) imposes no constraint on the convergent state, that
very few depends on the sequential specification. For example, an implementa-
tion that ignores all the updates is eventually consistent, as all replicas converge
to the initial state. We propose update consistency (UC), a new consistency cri-
terion in which the convergent state must be obtained by a total ordering of the
updates that contains the sequential order of each process. Another equivalent
way to approach it is that, if the number of updates is finite, it is possible to
remove a finite number of queries such that the remaining history is sequentially
consistent. Unlike Fig. 1a, Fig. 1b presents an eventually consistent history, as
both processes read {1, 2} once they have converged. However, it is not update
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Fig. 1. Three histories for a set of integers, with different consistency criteria. An event
labeled ω is repeated infinitely often.

consistent: in any linearization of the updates, a deletion must appear as the
last update, so this history cannot converge to state {1, 2}. State {1} is possible
because the updates can be done in the order I(2),D(1), I(1),D(2), so Fig. 1c, is
update consistent. As update consistency is strictly stronger than eventual con-
sistency, an update consistent object can always be used instead of its eventually
consistent counterpart.

We can prove that update consistency is universal, in the sense that every ob-
ject has an update consistent implementation in a partitionable system, where
any number of crashes are allowed. The principle is to build a total order on the
updates on which all the participants agree, and then to rewrite the history a
posteriori so that every replica of the object eventually reaches the state corre-
sponding to the common sequential history. Any strategy to build the total order
on the updates would work. For example, this order can be built from a times-
tamp made of a Lamport’s clock [4] and the id of the process that performed
it. The genericity of the proposed algorithm is very important because it may
give a substitute to composability. Composability is an important property of
consistency criteria because it allows to program in a modular way, but it is very
difficult to achieve for consistency criteria. A same algorithm that pilots several
objects during a same execution allows this execution to be update consistent.
This universality result allows to imagine automatic compilation techniques that
compose specifications instead of implementations.
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Abstract. Transactional Memory (TM) implementations guaranteeing
disjoint-access parallelism (DAP) are desirable on multi-core architec-
tures because they can exploit low-level parallelism. In this paper we look
for a breach in the wall of existing impossibility results on DAP TMs, by
identifying the strongest consistency and liveness guarantees that a DAP
TM can ensure while maximizing efficiency in read-dominated workloads.
Along the path of designing this protocol, we report two impossibility
results related to ensuring real-time order in a DAP TM.

Keywords: Transactional Memory, Disjoint-Access Parallelism, Real-
Time Order.

1 Overview of the Achieved Results

Aproperty that is deemed as crucial for the scalability of a TM is its ability to avoid
any contention on shared objects, also called base objects, among transactions that
access disjoint data sets – disjoint-access parallelism (orDAP) [1]. Also, sincemany
real-world workloads are often read-dominated, another aspect with strong im-
pact on performance of TM algorithms is optimizing the processing of read-only
transactions. In this sense, twomain properties are regarded as particularly impor-
tant for read-only transactions: wait-freedom, i.e. transactions are never blocked
or aborted (WFRO), and invisible reads, i.e. read operations never update any
datum or base object (IRO). We succinctly denote their union as WFIRO.

Given the set of impossibility results related to implementing TM algorithms
that guarantee different variants of the DAP property, as well as alternative
consistency and liveness criteria [1,2,3], in this paper we find a breach in this
wall of impossibility results, seeking an answer to the following question: what
are the strongest consistency and liveness guarantees that a TM can ensure
while remaining scalable — by ensuring DAP — and maximizing efficiency in
read-dominated workloads — by having WFIRO? Our search space considers the
Cartesian product of the consistency criteria specified by Adya’s hierarchy [4]
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and of a set of liveness properties that comprises both TM-specific criteria [5],
as well as classical progress criteria, i.e. obstruction-, lock- and wait-freedom.

Along the path that leads us to answer the above question, we also prove two
novel impossibility results. If one selects any consistency criterion that ensures
Real Time Order (RTO), i.e. by ensuring that transactions appear as executed
without reversing the partial order defined by non-concurrent transactions, and
independently of the isolation guarantees for concurrent transactions, it is im-
possible to ensure also WFRO, obstruction-free update transactions and the
weakest form of DAP [1]. Further, even assuming weakly progressive update
transactions [5], we are still faced with an impossibility result if we want IRO.

These results highlight the necessity of relaxing RTO to implement a scalable
TM that maximizes the efficiency of read-only transactions by jointly guaran-
teeing DAP and WFIRO. This leads us to introduce a weaker variant of RTO,
named Witnessable Real Time Order (WRTO), which demands that the RTO is
enforced only among transactions exhibiting (transitive) data conflicts.

By adopting WRTO, we design a WFIRO TM that guarantees the strongest
variant of DAP [2], strong progressiveness [5] and a consistency criterion whose
semantics is very close to those provided by popular safety properties for TM,
such as Opacity. This consistency criterion, known as Extended Update Serial-
izability (EUS) [4,6] guarantees the serializability of the history of committed
update transactions. Further, EUS ensures that all transactions (also transac-
tions that eventually abort) observe a snapshot producible by some equivalent
serialization of the history of (committed) update transactions.
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Abstract. Combining a number of transactions into a single atomic
transaction is an important transactional memory (TM) feature sup-
ported by many software TM (STM) implementations. This composi-
tion, however, typically results in long transactions with an increased
contention probability.

In consistency oblivious programming (COP), the read-only prefix of
a data structure operation is performed outside of a TM transactional
context. The operation is then completed by using a transaction that
verifies the prefix output and performs updates. In STM, this strategy
effectively reduces much of the overhead and potential contention.

In this work we emphasize the importance of transaction-suspension,
which enables performing non-transactional memory accesses inside a
transaction. Suspension not only simplifies the use of COP, but also
enables the composition of a sequence of COP-based operations into
a single transaction. We add transaction-suspension support to GCC-
TM, and integrate COP into TM applications. We also support TM-Safe
memory reclamation in transactions with COP operations, by adding
privatization before a transaction abort to the GCC-TM library.

Introduction. Consistency Oblivious Programming (COP) [2], is a program-
ming methodology for improving a TM-based data structure performance. In
COP, the read-only prefix (ROP) of a data structure operation is performed in
a non-transactional context. The operation is then completed by using a trans-
action that verifies the ROP output and performs updates. COP-based data
structures effectively reduce much of the TM instrumentation overhead and po-
tential contention.

The ROP may observe inconsistent states, and must avoid crashing as a result.
It is the responsibility of the programmer to keep the ROP from hitting infinite
loops or uninitialized pointers. Another type of crash may be caused by an
ROP code segment that accesses a memory location after it was released by a
concurrent transaction. To prevent this scenario we modified the privatization
algorithm in the STM.

A useful feature supported by many STM implementations is transactions
composability, the ability to combine a number of transactional atomic blocks
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to be executed in a single transaction. This fosters the use of TM-based data
structures, and facilitates the creation of non-trivial atomic transactions that
access different data structures.

In this paper, we introduce a methodology that uses GCC-TM, the GNU
C Compiler (GCC) [1] STM implementation, to support efficient and natu-
ral composition of COP operations. Our methodology is based on transaction-
suspension, which enables executing non-transactional, non-instrumented in-
structions inside a transactional block. In order to support a suspension of a
transaction in GCC-TM, we mark functions with the TM-Pure attribute1 [4],
that omits the instrumentation of these functions when called from transactions.
We apply our methodology to the linked list and red-black tree, that are part
of the data-structures library which is used by the STAMP applications. Our
results show that this mechanism reduces 80% of the aborts caused by conflicts.

COP Composing Using Suspended Transactions. When using transaction-
suspension, a COP operation, OP, embedded in a transaction T, goes through
the following steps:

Tstart →Any code→Tsuspend →OProp →Tresume →OPverify→OPupdates →Any

code→Tend

OPverify should verify the validity of the data gathered during the ROP code.
This code is executed locally and must be concise, so that it does not introduce
additional overhead.

In addition, note thatOProp can be executed several times in non-transactional,
suspendedmode, and only if verification failure persists, it should fallback to trans-
actional mode. If the transactional execution of the ROP, i.e., the fallback, aborts,
the transaction naturally aborts.

The only way to compose COP operations without transaction-suspension, is
the one proposed by [5], i.e., execute all ROP parts of the composed operations
before starting the transaction, then, inside the transaction, verify their output
and complete the transactions updates. This method allows composition only if
an operation is not writing data that may later be accessed by another COP
operation in the same transaction.

Safe Memory Reclamation. Two important functions that are TM-Safe [4],
i.e., can be executed inside a transaction, are malloc and free. These functions
are made safe by privatization. If transaction T wrote to memory, then before it
commits, it waits for the termination of the transactions that started before its
commit [3]. As a side effect of privatization, in case T detaches some memory
block from a data structure and successfully commits, then T can free that block.

On the other hand, if T allocates some block of memory,M , and then aborts, it
can free M without privatization. The reason is that the pointer to the tentative
memory block is not exposed to other transactions.

1 A function that is marked with the TM-Pure attribute is executed as a non-
transactional code block. The TM-Pure attribute is supported by the GCC-TM
implementation.
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This is violated when COP is involved. If the non-transactional ROP code
block traverses the data structure, it may acquire a pointer to a newly allocated
memory block, and upon an abort of T and freeing M , the ROP may try to
access unmapped memory. To prevent this scenario, we added privatization to
writing transactions that are about to perform rollback. If a transaction is a
read-only transaction, it can free its tentative memory blocks unconditionally.
If, however, the transaction updated some memory location, it has to perform
privatization as if it was successfully committed. Our evaluation showed that
this privatization has a negligible impact on performance.

With the suspended mode, and rollback privatization, malloc and free become
also COP safe. The reason is that memory is not recycled as long as there is
a transaction in progress, and the COP operations are always encapsulated in
transactions. One restriction is that allocation cannot take place in a ROP,
because, in case the validation fails, the allocated memory will not be freed, as
we do not abort the transaction in this case. However, as the ROP code typically
avoids from writing to memory, it does not need to allocate or free memory.
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Motivation and Approach: Monitors are a prevalent programming technique
for thread synchronization in shared-memory parallel programs. The current
design of monitors uses the wait/notification mechanism that blocks threads
from executing without exclusive access to critical sections. We explore the idea
of allowing non-blocking executions of monitor methods to improve the collective
worker thread throughput and cache-locality in multi-threaded programs.

Our proposed framework, called ActiveMonitor, uses the concept of futures
[1,2] to provide non-blocking monitors by creating: (i) an executor for every
monitor object (similar to remote-core-locking [3]), and (ii) tasks — equivalent
to monitor methods — that are submitted to the executors. Our framework
handles these steps automatically. The framework allows the programmer to use
the keyword ‘nonblocking’ in signatures of monitor methods to make their exe-
cution non-blocking. Non-blocking methods return a future reference, which can
be used to retrieve the result of method invocation. We re-interpret linearizabil-
ity in this context, and enforce two rules to guarantee correctness: (a) all the
tasks submitted to one monitor executor are processed in FIFO order. (b) tasks
corresponding to a worker thread’s invocations of methods on different monitors
are processed in program order (of the worker thread). See [4] for details.

Evaluation: We present the performance evaluation of our approach for two
monitor-based problems in Java. In our benchmark, each worker (thread) per-
forms 512000 operations on shared data protected by monitors. We vary the
number of workers from 2 to 24 on a 24-way machine, and measure the time
required for all the workers to complete their operations.

1. Bounded-Buffer Problem: Every producer’s put invocation is non-blocking,
and every consumer’s take is blocking. Items are plain objects. We also compare
runtimes of Java’s ArrayBlockingQueue based implementation (denoted by ABQ).
We collect runtimes by varying: (a) number of workers for a fixed buffer-size
(=4). (b) buffer-size for fixed number of producers/consumers (=16 each). (c)
limit on non-blocking tasks allowed for fixed buffer-size (=4), and 16 producers
and consumers each. Fig. 1 shows the results of these three experiments. Across
all results, we use these legends for implementation techniques: LK: Java Reen-
trant locks, AS: AutoSynch [5], AM: ActiveMonitor (this paper).
2. Sorted Linked-List Problem: Worker threads insert or remove, with equal

� Supported in part by NSF Grants CNS-1346245, CNS-1115808, and Cullen Trust.
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Fig. 1. Runtimes (mean values across 25 runs) for bounded-buffer

probability, random integer values on a pre-populated linked-list of integers that
is sorted in non-decreasing order. Both insert and remove operations are non-
blocking. Each worker thread also performs some local operations outside the
critical section (CS) between successive updates to the list. We collect the
runtimes by varying: (a) number of workers, keeping local operations outside
CS/worker fixed at 250. (b) number of workers as well as number of local oper-
ations outside CS. The results of these two experiments are shown in Fig. 2.

See [4] for extended evaluation on other monitor problems, details of CPU and
memory consumption, and comparison with other implementation techniques.
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Abstract. In the dynamic network model, the communication graph is
assumed to be connected in every round but is otherwise arbitrary. We
consider the related setting of p-partitioned dynamic networks, in which
the communication graph in each round consists of at most p connected
components. We explore the problem of k-agreement in this model for
k ≥ p. We show that if the number of processes is unknown then it
is impossible to achieve k-agreement for any k and any p ≥ 2. Given
an upper bound N on the number of processes, we provide algorithms
achieving k-agreement in p(N−p−1)+1 rounds for k = p and in O(N/ε)
rounds for k = �(1 + ε)p�.

Keywords: distributed algorithms, dynamic networks, agreement, par-
titioned networks.

Dynamic graphs are a model for distributed algorithms which were introduced
by Kuhn, Lynch and Oshman [1]. In this paper we explore the capabilities and
limitations of a modification to the dynamic graph model addressing additional
challenges arising in wireless communication.

In the dynamic graph model, the network is assumed merely to be connected
in each round, with no additional assumptions about consistency from round to
round. We weaken this assumption further, allowing the network to consist of
more than one connected component. Formally,

Definition 1. A dynamic graph G = (V,E) is said to be p-partitioned if at each
round t, it consists of at most p connected components.

Processes communicate in synchronous rounds using local broadcast. The edges
in each round are chosen by an adaptive adversary.

In this setting, many of the problems previously considered in the dynamic
network model cannot be solved. In particular, tasks such as token dissemina-
tion, leader election and consensus which cannot be solved in partitioned static
networks clearly are also impossible in partitioned dynamic networks. We con-
sider the problem of k-agreement for constant k, which can be solved in static
p-partitioned networks as long as k ≥ p. The conditions for k-agreement are the
following:

1. Agreement: All decision values are in W, where W is a subset of the initial
values with |W | = k.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 555–556, 2014.
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2. Validity: Any decision value is the initial value of some process.
3. Termination: All processes eventually decide.

We show that k-agreement is not possible in the setting of p-partitioned
dynamic networks if the number of processes is unknown, but that it can be
achieved for any k ≥ p given an upper bound on the number of processes. Our
results are qualitatively different from the case of ordinary dynamic networks,
for which there are known consensus protocols which do not assume knowledge
of the size of the network [2].

Theorem 1. For all p ≥ 2, k ≥ 1 there is no algorithm which will solve k-
agreement on p-partitioned dynamic graphs given no information about the size
of the network.

Theorem 2. For any p ≥ 1, we can solve p-agreement in p(N − p − 1) + 1
rounds on any p-partitioned dynamic graph, where N is a known upper bound
on the number of vertices.

Theorem 3. For any ε > 0, p ≥ 1, we can solve �(1+ε)p�-agreement in O(N/ε)
rounds on any p-partitioned dynamic graph, where N is a known upper bound
on the number of vertices.

Our results apply to both undirected and directed graphs. More details and
the complete proofs can be found in [3].

It would be interesting to consider whether it is possible to achieve agreement
in fewer rounds in a p-partitioned dynamic network. Our algorithms solve �(1 +
ε)p�-agreement in O(N/ε) rounds and p-agreement in p(N−p−1)+1 rounds. It is
unclear whether this dependence on p is intrinsic or whether p-agreement can be
achieved in O(N) rounds regardless of p. It would also be interesting to explore
whether p-agreement can be achieved in fewer rounds with high probability
against a nonadaptive adversary.

We have shown that it remains possible to solve nontrivial problems under
the weaker assumption that the network at each round consists of at most p
connected components. It remains open what additional problems can be solved
in this model.

Acknowledgments. We would like to thank Mohsen Ghaffari and Nancy Lynch
for helpful discussions. This material is based upon work supported in part by
the National Science Foundation Graduate Research Fellowship under Grant No.
1122374.
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Abstract. We examine a generic class of simple distributed balls-into-
bins algorithms and compute accurate estimates of the remaining balls
and the load distribution after each round. Each algorithm is classified
by (i) the load that bins accept in a given round and (ii) the number
of messages each ball sends in a given round. Our algorithms employ a
novel ranking mechanism resulting in notable improvements. Simulations
independently verify our results and their high accuracy.

1 Problem and Algorithm

Consider a distributed system of n anonymous balls and n anonymous bins,
each having access to (perfect) randomization. Communication proceeds in syn-
chronous rounds, each of which consists of the following steps.
1. Balls perform computations and send messages to bins.
2. Bins receive them, perform computations, and respond to received messages.
3. Each ball may commit to a bin, inform it, and terminate.
The main goals are to minimize the maximal number of balls committing to the
same bin, the number of rounds, and the number of messages. This fundamental
load balancing task has a wide range of applications, cf. [5].

Today, we understand the asymptotics of this problem very well [3,4,6]. How-
ever, lower and upper bounds have in common that they are not very pre-
cise. Arguably, with running time bounds like, e.g., Θ(log logn/ log log logn) or
log∗ n + O(1), the involved constants are essential. In this work, we provide a
simple, yet accurate analysis of a general class of algorithms. We introduce a
novel ranking mechanism, resulting in superior performance.

Concretely, in each round i ∈ N, the following steps are executed.
1. Each ball sends Mi ∈ N messages to uniformly independently random (u.i.r.)

bins. These messages carry ranks 1, . . . ,Mi.
2. A bin of current load � responds to (up to) Li− � balls, where smaller ranks

are preferred. Ties are broken by choosing u.i.r.
3. Each ball that receives a response commits to the responding bin to which

it sent the message of smallest rank.
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2 Techniques and Results

Applying Chernoff’s bound, it is not hard to show that the number of bins with
a given load and the number of remaining balls are strongly concentrated around
the expected values. With high probability, the error resulting from assuming
that these expected values are matched exactly is hence negligible. Using this
argument (and the union bound) repeatedly, we can infer that it suffices to
compute expected values, approximating the true distribution by expected val-
ues. We complement the derived analytical results by simulations, confirming
that the deviations are indeed very small. Moreover, we use the simulations to
compare to other algorithms from the literature.

Table 1. Evaluated specific scenarios (analytical and simulation results match)

goal rounds max. load messages exp. fraction of balls left L M

small load 3 2 < 5.5n < 6 · 10−7 (2, 2, 2) (2, 5, 5)

few rounds 2 3 < 5.5n < 6 · 10−10 (2, 3) (2, 5)

few messages 3 3 < 3.5n < 5 · 10−8 (2, 3, 3) (1, 2, 2)

safe termination 3 3 < 3.85n < 6 · 10−19 (2, 2, 3) (1, 4, 5)

Our simulations also show that the proposed algorithms compare favorably
with all previous ones from the literature. The full paper, comprising a discussion
of related work, the derivation of the analytical bounds, and details on the
simulation results, is available on arxiv [2]. The used code can be found online [1].

Acknowledgements. Christoph Lenzen has been supported by the Deutsche
Forschungsgemeinschaft (DFG, reference number Le 3107/1-1).
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Abstract. We study algorithms and lower bounds for k-selection and
sorting in the signal-to-interference-plus-noise-ratio (SINR) model. For
the problem of finding the k-th smallest value in the network, we pro-
vide a O(log2 n) algorithm based on the aggregation trees presented
in [2]. We argue that any algorithm using this approach has runtime
Ω(log2 n/ log log n). We show that sorting can be done in time Θ(n) .

1 Model and Preliminaries

In the SINR model [1,5] we consider a set V := {v1, v2, . . . , vn} of n := |V | nodes
in the Euclidean plane. Each node v ∈ V has a unique ID idv ∈ {1, . . . , n} and
is given an arbitrary input value xv ∈ [W ] for some W ∈ O(poly(n)). Time is
slotted into discrete time steps of equal length and every node wakes up at the
same time. Local computation does not count towards the complexity-measure
as we are interested in communication complexity. Communication bandwidth is
limited, only one message containing Θ(1) values from [n] and Θ(1) values from
[W ] can be sent/received by a node in a single time step. In each time step, each
node v ∈ V can choose an arbitrary transmission power Pv ≥ 0. A message sent
by a node s is received by node r if Pr = 0 and the received SINR at r exceeds a

constant threshold β > 1, i.e., the SINR condition Ps/d(s,r)
α

∑
s′∈V \{s} Ps′/d(s

′,r)α+N ≥ β

is satisfied. Here, α > 2 is the constant path-loss exponent and N ≥ 0 is the
ambient noise. The positions of the nodes, their IDs, n and W are known to all
nodes. A probabilistic event A happens with high probability if Pr[A] ≥ 1− 1/n.

2 Algorithms and Lower Bounds

We start with a sketch of an algorithm for k-selection (finding the k-th smallest
value in the network). We use the construction of a minimum-latency aggregation
schedule (MLAS) presented in Section 7.1 in [2], which is based on the fact that
in our model Ω(n) links of a minimum spanning tree of V can be scheduled in a

� Part of this work has been done at ETH Zurich. At MIT the author is supported
by the following grants: AFOSR Contract Number FA9550-13-1-0042, NSF Award
0939370-CCF, NSF Award CCF-1217506, NSF Award number CCF-AF-0937274.
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single time step. While the tree in [2] is stated to be directed towards the root,
we can also obtain such a tree with bidirectional links using the bidirectional
version of the amenability in [2]. Using these trees and a canonically derived link
scheduling technique we call level schedule we show how to shrink O(log n) times
the range in [W ] that contains the kth-largest element by a constant factor, each
time using O(log n) time steps to find a new range.

Theorem 1. The k-selection problem can be solved in O(log2 n) time steps on
an aggregation tree with a level schedule.

Algorithm and proof of this theorem can be found in [3]. It has been shown in
[2] that any distributive aggregation function can be computed in O(log n) time
steps in the SINR model with an MLAS. A matching lower bound [2] extends
to k-selection, as finding the minimum is a special case of k-selection (i.e., k-
selection with k = 1). Thus we could still hope for a quadratic speedup. However,
this (if it is possible) requires new techniques since we show that by using a level
schedule this can not be achieved.

Theorem 2. The number of time steps required to solve the k-selection problem
w.h.p. in an aggregation tree with a level schedule is in Ω(log2 n/ log logn).

The formal proof can be found in [3]. The theorem is proved with two reduc-
tions. First, solving the k-selection problem cannot be harder than solving the
k-selection problem w.r.t. a subset of V . Second, it can be shown that in every
MLAS aggregation tree as constructed in [2], there exist two disjoint subsets
of V of size Ω(

√
n) with the property that sending a message from one set to

the other requires Ω(log n/ log logn) time steps. Any algorithm that solves the
k-selection problem on an aggregation tree with a level schedule can therefore be
used to build an algorithm that is Ω(log n/ log logn) times faster in the setting
of the two-party k-selection problem (see [4]). This combined with a lower bound
of Ω(log n) for the two-party k-selection problem [4] proofs Theorem 2.

Finally we study sorting. We say that data in a network is sorted when each
node v ∈ V knows the idv-th smallest input value in the network. An O(n)
algorithm and the full proof of Theorem 3 can be found in [3].

Theorem 3. Assume α > 0. Every (possibly randomized) algorithm in the
SINR model for sorting has runtime Ω(n) in the worst case.

Acknowledgements: We like to thank Magnus Halldórsson.
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2. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: Proc. 23rd
SODA 2012, pp. 516–526 (2012)



k-Selection and Sorting in the SINR Model 561

3. Kohler, S.: New algorithms for fundamental problems in wireless networks. Master’s
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Abstract. We present an algorithm to 3/2-approximate the diameter of
a network in time O(

√
n log n+D) in the CONGEST model. We achieve

this by combining results of [2,6] with ideas from [7]. This solution is
a factor

√
log n faster than the one achieved in [4] and uses a different

approach. Our different approach is of interest as we show how to ex-
tend it to compute a (3/2 + ε)-approximation to the diameter in time
O(

√
(n/(Dε)) log n+D). This essentially matches the Ω(

√
(n/D)ε+D)

lower bound for (3/2− ε)-approximating the diameter [1].

1 Model and Basic Definitions

The CONGEST model [5] is a message passing model with limited bandwidth.
We are interested in the number of communication rounds required by a dis-
tributed algorithm to solve a problem in the CONGEST model. Thus we neglect
internal computations subsequently. We denote the number |V | of nodes of a
network by n. The (hop-)distance of nodes u and v in G is denoted by d(u, v). A
k-dominating set for a graph G is a subset DOM of vertices with the property
that for every v ∈ V there is a node u ∈ DOM at distance of at most k to
v. The diameter D := maxu,v∈V d(u, v) of a graph G is the maximum distance
between any two nodes of the graph.

� Corresponding author. Part of this work has been done at ETH Zurich. Work
at MIT supported by grants: AFOSR Contract Number FA9550-13-1-0042, NSF
Award 0939370-CCF, NSF Award CCF-1217506, NSF Award number CCF-AF-
0937274.

�� Supported in part by grants from the Israel Science Foundation, the United-States
- Israel Binational Science Foundation and the Israel Ministry of Science.
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2 Results

Theorem 1. Algorithm 1 computes a 3/2-approximation of the diameter w.h.p.
in O(

√
n logn+D) time.

We present Algorithm 1 which is inspired by [7] and can be implemented in a
distributed way. Details of this implementation and a proof of Theorem 1 will
appear in a journal version that merges [2] and [6]. Here, Ck(w) denotes the
set of k closest vertices to w visited by a (partial) breadth first search (BFS)
starting in w that stops after visiting k nodes (ties are broken arbitrarily, e.g.
by lexicographical order in the tree’s topology).

Algorithm 1. Computes a 3/2-approximation to the diameter of G

1: each node v joins set S with probability
√

log(n)/n;
2: compute a BFS from each node in S;
3: for every v ∈ V , compute pS(v) := the closest node in S to v;
4: w := argmaxv∈V d(v, pS(v));
5: compute a BFS tree from w as well as Cs(w);
6: for every v ∈ Cs(w), compute a BFS tree from v;
7: return the maximum depth of any BFS tree that was computed;

Theorem 2. For any 0 < ε ≤ 1/3, a (3/2 + ε)-approximation of the diameter

can be computed w.h.p. in O
(√

n/(Dε) logn+D
)
time.

Details of the algorithm and a proof of Theorem 2 will appear in a journal ver-
sion that merges [2] and [6]. We only sketch the main insight, which is to modify
Algorithm 1 by using ideas of an algorithm to (1+ ε)-approximate the diameter
presented in [2]. First we obtain a 2-approximation D′ of D by computing the
depth of a BFS from the node with smallest ID. Next we compute a Θ(εD′)-
dominating set DOM of size O(n/(εD′)) using [3]. Now we execute Algorithm
1 restricted to the nodes in DOM, where 1) nodes join S with a probability√
log(n)/|DOM| instead of

√
log(n)/n, and 2) nodes not in DOM implicitly

participate in the algorithm (mainly by forwarding messages). Executing Algo-
rithm 1 on this Θ(εD′)-dominating set affects the approximation ratio only by
Θ(ε). This reduction of the number of vertices to O(n/(εD′)) yields the speedup.
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Abstract. We present a general roadmap for the design of space-optimal
polynomial-time silent self-stabilizing spanning tree constructions. Our
roadmap is based on sequential greedy algorithms inspired from the de-
sign of proof-labeling schemes.

Context and Objective.One desirable property for a self-stabilizing algorithm
is to be silent, that is, to keep the individual state of each process unchanged once
a legal state has been reached. Silentness is a desirable property as it guaran-
tees that self-stabilization does not burden the system with extra traffic between
processes whenever the system is in a legal state. Designing silent algorithms is
difficult because one must insure that the processes are able to collectively decide
locally of the legality of a global state of the system, based solely on their own
individual states, and on the individual states of their neighbors. This difficulty
becomes prominent when one takes into account an important complexity mea-
sure for self-stabilizing algorithms: space complexity. Keeping the memory space
limited at each process reduces the potential corruption of the memory, and en-
ables to maintain several redundant copies of variables (e.g., for fault-tolerance)
without hurting the efficiency of the system.

Our objective is to compute some spanning tree T of G. Typically, the tree T
is rooted at some node r, and it is distributedly encoded at each node v by the
identify of v’s parent p(v) in T . (The root r has p(r) = ⊥). We are interested in
all kinds of spanning trees, but will mostly focus our attention to two specific
kinds of spanning trees: minimum-weight spanning trees (MST), and minimum-
degree spanning trees (MDST). Constructing MSTs is a classical problem in the
distributed computing setting. In the case of MDSTs, we aim at designing an
algorithm which, for any given (connected) graph G, constructs a spanning tree
T of G whose degree is minimum among all spanning trees of G. Our interest in
MDSTs is motivated by resolving issues arising in the design of MAC protocols
for sensor networks under the 802.15.4 specification. It is also worth pointing
out that MDSTs arise in many other contexts, including electrical circuits, com-
munication networks, as well as in many other areas. Since Hamiltonian-path

is NP-hard, we actually slightly relax our task, by focussing on the construction
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of spanning trees whose degree is within +1 from the minimum degree opt of
any spanning tree in the given graph.

It is known that, for every task with a proof-labeling scheme on k-bit labels,
there is a silent self-stabilizing algorithm for that task using registers on O(k +
logn) bits in n-node networks [2]. However, the convergence time of the generic
algorithm in [2] may be exponential.

Our Results. We present a general roadmap for the design of space-optimal
polynomial-time silent self-stabilizing constructions of spanning trees optimizing
different kinds of criteria, under the state model1. Following our roadmap, we
were able to design space-optimal algorithms for both MST and MDST con-
structions. Our MST algorithm uses registers of size O(log2 n) bits in n-node
networks, which is known to be optimal. While there exists more compact MST
algorithms, these algorithms designed for minimizing the size of the memory
are not silent. Our MDST algorithm is an additive approximation algorithm.
It returns a spanning tree with degree at most opt + 1. It uses registers of
O(log n) bits, which is know to be optimal. It exponentially improves the pre-
vious best known (opt + 1)-approximation algorithm, which is not silent, yet
is using Ω(n log n) bits of memory per node, and is converging in the same
number of rounds. Both our algorithms converge in a number of rounds poly-
nomial in n, and perform polynomial-time computation at each node. In fact,
our MDST algorithm constructs a special kind of trees, named FR-trees after
Fürer and Raghavachari. Indeed, we show that verifying whether a given tree
is an arbitrary trees of degree ≤ opt + 1 cannot be done in polynomial time,
unless NP = co-NP. Instead, we show that there is a proof-labeling scheme for
FR-trees using labels on O(log n) bits.

Our roadmap relies on a collection of ingredients. The first ingredient is the
design of sequential greedy algorithms guided by proof-labeling schemes. The sec-
ond ingredient is a redundant proof-labeling scheme for spanning trees, enabling
the design of silent loop-free self-stabilizing algorithms for permuting tree edges
with non-tree edges. The third ingredient is the design of a silent algorithm for
the construction of the O(log n)-bit label informative-labeling scheme for nearest
common ancestor (NCA) from the literature, in order to identify the fundamen-
tal cycles. The two latter ingredients are used for implementing the sequential
algorithms of the first ingredient in a distributed silent self-stabilizing manner.

More details are available in [1,2].
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Consider a network of n parties, where there is a private and authenticated com-
munication channel between every pair of parties. In anonymous broadcast, one or
more of the parties want to anonymously sendmessages to all parties. This problem
is used in many applications such as anonymous communication, private informa-
tion retrieval, distributed auctions, and multi-party computation. To the best of
our knowledge, known techniques for solving this problem either scale poorly with
n or are vulnerable to jamming attacks [2,4], collisions [9], or traffic analysis [3].

We propose a decentralized algorithm for anonymous broadcast whose commu-
nication and computation scale linearly (up to a polylogarithmic factor) with the
number of parties and is not vulnerable to jamming, collision, and traffic analy-
sis. Our protocol is information-theoretically secure, does not require any trusted
party, and is load-balanced. The protocol can tolerate up to a (1/6 − ε) fraction
statically-scheduledByzantine parties, for somepositive constant ε.We assume the
communication is synchronous, and we do not require reliable broadcast channels.

Similar to DC-Nets [2,4,9], we useMulti-Party Computation (MPC) for achiev-
ing anonymity with traffic analysis resistance. In MPC, a set of n parties, each
having a secret input, compute a known function over their inputs without reveal-
ing the inputs to any party. In DC-Nets, all parties participate in a multi-party
sum protocol with a zero input except one that participates with an input equal
to a message it wants to broadcast. At the end, the sum result, which is equal
to the nonzero input, is revealed to all parties anonymously.

Unlike DC-Nets, we let parties participate in a multi-party shuffling protocol,
where the parties collaborate with each other to randomly shuffle their inputs.
To achieve scalability, we perform local communications and computations in
logarithmic-size groups of parties called quorums, where we ensure that the
fraction of dishonest parties in each quorum is guaranteed not to exceed a certain
value. We create a set of quorums using the polylogarithmic Byzantine agreement
protocol of Braud-Santoni et al. [1]. We prove the following theorem in [7].

Theorem. For any ε > 0, there exists an unconditionally-secure n-party protocol
tolerating t < (1/6− ε)n dishonest parties such that, with high probability, each
honest party sends its message to all parties anonymously. The protocol has
O(log n) rounds of communication and requires each party to send Õ(1) bits and
compute Õ(1) operations for delivering one anonymous bit.

Protocol Overview. To perform multi-party shuffling, we assign to each mes-
sage a uniform random value, and then obliviously sort the messages according
to the random values. We implement this in a decentralized fashion by evaluating
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the sorting circuit of [6] over secret-shared1 inputs. A sorting circuit consists of
comparator gates each with two inputs and two outputs, where the outputs are
determined by comparing the inputs. Our protocol first builds a set of quorums
in a one-time setup phase and then, assigns each comparator to a quorum that is
responsible for computing the functionality of the comparator over secret-shared
values using the secure comparison protocol of [8]. Then, the circuit is evaluated
level-by-level, passing the outputs of one level as the inputs to the next level.
Once the local computation is finished in each quorum, the result is forwarded
to the next quorum via one-to-one communication with parties of the next quo-
rum. Finally, at the highest level, the shuffled messages are reconstructed and
sent back to all parties via a binary tree structure.

When forwarding a secret-shared value from one quorum to another, we need
to ensure that no coalition of dishonest parties from the quorums involved can
learn anything about the secret value. To this end, we first generate a random
polynomial that passes through the origin, and then add it to the polynomial that
corresponds to the shared secret. The result is a new polynomial that represents
the same secret but with fresh random coefficients (see [7] for a formal definition).

One issue with the shuffling-via-sorting technique described above is that if the
random values are not distinct, then the resulting distribution can deviate from
the uniform distribution. In [7], we show that by choosing the random values from
a sufficiently large domain, we can prevent such collisions with high probability.
Namely, we prove that a domain of sizeΩ(kn2 logn) elements guaranteesa uniform
random shuffle with probability 1− 1/nk, for any constant k > 0.
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Nowadays, mobile users frequently ask Location-Based Services (LBS) to find
points of interest near them, to receive information about traffic along their
route, or to receive customized advertising. Unfortunately, shared location data
can be used by others (e.g., providers and governments) for precise surveillance
and hence, compromising user privacy. As far as we know, current privacy-
preserving LBS protocols have at least one of the following drawbacks: (1) as-
sumption of trusted third parties [2,6], (2) vulnerability to global attacks such as
traffic analysis [5,6], (3) inaccurate query results due to spatial cloaking [2,5,6],
and (4) insecurity against malicious behaviors [2,5,6].

In this paper, we propose an efficient protocol for privacy-preserving LBS that
is secure against malicious attacks as well as global attacks. Our protocol scales
well with the number of clients and is load-balanced. Load-balancing is crucial
since mobile devices usually have very limited resources. Moreover, unlike the
majority of previous work which rely on centralized trusted servers, our con-
struction is fully-decentralized. Our protocol provides polylogarithmic per-client
communication and computation costs with respect to the number of clients and
achieves the highest location accuracy by avoiding location cloaking.

Theorem. [1] Consider n clients in a fully-connected synchronous network with
private channels, where each client has a locational query to send to a server.
There exists an n-party cryptographic protocol tolerating up to t < (1/6 − ε)n
malicious clients such that, with high probability, each honest client sends its
query to the server anonymously. The protocol requires each client to send Õ(1)
bits and compute Õ(1) operations in O(log n) rounds of communication.

Protocol Overview. Consider n parties P1, P2, ..., Pn each having a locational
query xi, for all i ∈ [n]. The parties want to anonymously send their queries to
a location-based server and receive the query results back. Our high-level idea
is to perform a multi-party shuffling among all clients ensuring that their inputs
remain private, and no adversary can trace the messages to their corresponding
senders. To this end, we adopt and implement the distributed shuffling tech-
nique of [7] with cryptographic assumptions for achieving location privacy. This
protocol first builds a set of quorums1 in a one-time setup phase, and then uses
the quorums in an online phase for shuffling client queries: a uniform random
value is assigned to each message, and then the messages are sorted obliviously
according to the random values using a sorting circuit [7]. Figure 1 (left) depicts

1 A quorum is a group of O(log n) parties, where the fraction of malicious parties in
each quorum is guaranteed not to exceed a certain value.
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Fig. 1. Our architecture (left) and our simulation results (right)

our protocol architecture based on the algorithm of [7]. Each circle depicts a
quorum of mobile users who connect to their local base station. Once the lo-
cal computation is finished in each quorum, the result is forwarded to the next
quorum via one-to-one communication with clients of the next quorum. Finally,
at the highest level, the shuffled queries are reconstructed and sent to the LBS.
Once the queries are processed, the server broadcasts the results to the parties
(see [1] for a precise protocol description).

To study the feasibility of our scheme and compare it to previous work, we
implemented a simulation of our protocol and two other protocols [3,4] that can
be used for shuffling n queries randomly in a similar setting. As far as we know,
these protocols have the best scalability with respect to the network size among
other works. Figure 1 (right) shows the simulation results obtained for various
network sizes between 25 and 220 (between 32 and about 1 million). We observe
that our protocol performs significantly better than others (see [1] for a complete
simulation setup and discussion on the results).
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