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Preface

Since Selye defined stress in 1936, the field saw an exponential growth of research
on the many facets of its effects. We are delighted to present this book that brings
together some of the world leading experts on the neurobiology of stress at the pre-
clinical and clinical level. Stress is such an over-used word that it is at times difficult
to define its core features. When is an environment stressful? What does a stressful
environment do to the brain and to the body? What are the biological mechanisms
by which a stressor affects us? Why some environmental conditions are stressful for
some individuals and not others? How does stress contributes to the onset and the
progression of mental disorders? How do the effects of stress change over the life-
time of an individual? These are just some of the overarching questions that this
book attempts to address, thanks to the contribution of 14 different chapters that
cover a variety of topics.

In broad terms, the chapters can be grouped in three main streams. In the first
stream, and over five chapters, this book present the biological pathways that are
regulated by stress and that mediate the effects of stress on the brain and on the
body, eventually affecting mental and physical health. These chapters cover brain-
relevant mechanisms, ranging from “neurotransmitter systems” to “neuropeptides”
to “neurogenesis and neuroplasticity”. Moreover, they expand into mechanisms that
are relevant to both the brain and the body, such as the “immune system” and the
“hypothalamic–pituitary–adrenal axis” (HPA). In “Neuronal-Glial Mechanisms
of Exercise-Evoked Stress Robustness”, Dr. Monika Fleshner (University of
Colorado, USA) and colleagues described an aspect of the interaction of stress, the
immune system and behaviour. Their team presents a novel hypothesis on the role
of exercise in promoting stress robustness through neuronal-glial mechanisms.
Stress robustness incorporates resistance to stress and stress resilience. In “The
Interface of Stress and the HPA Axis in Behavioural Phenotypes of Mental Illness”,
Dr. Carmine M. Pariante and Dr. David Baumeister from King’s College London as
well as Dr. Stafford Lightman (University of Bristol, UK) described the interface of
stress and the HPA in behavioural phenotypes of mental illness. They elaborated on
the clinical and molecular role of the neuroendocrine stress system in depressive,
psychotic and post-traumatic stress disorders. In “Adult Hippocampal Neurogenesis
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in Depression: Behavioral Implications and Regulation by the Stress System”,
Dr. Chistoph Anacker (McGill University, Canada) addressed the interaction of
stress, neurogenesis, neuroplasticity and behaviour. He reviewed some of the
existing evidence for stress-and antidepressant-induced changes in adult hippo-
campal neurogenesis and their effects on depression and anxiety. In “Impact of
Stress on Prefrontal Glutamatergic, Monoaminergic and Cannabinoid Systems”,
Dr. M. Danet Lapiz-Bluhm (University of Texas Health Science Center at San
Antonio, USA) presented a concise review of the effects of stress and glucocorti-
coids on the glutamatergic, monoaminergic and cannabinoid signalling pathways
modulating the prefrontal cortex. In “Interaction of Stress, Corticotropin-Releasing
Factor, Arginine Vasopressin and Behaviour”, Dr. Eleonore Beurel and Dr. Charles
Nemeroff from the University of Miami (USA) focused on two peptidergic systems,
i.e, corticotrophin releasing factor (CRF) and arginine vasopressin (AVP), on their
roles in regulating stress response. Drugs that antagonize CRF and AVP receptors
may have potential as a therapy for depression.

In the second stream, the emphasis is on psychological mechanisms that both
mediate and modify the effects of stress, covering topics such as “cognition and
emotional processing”, the effects during “pregnancy and postnatal period” or
“aging”, and the important issue of “resilience”. Across all chapters, the emphasis is
on understanding the complex relationship between stress and behaviour, in all
circumstances, leading sometimes to normal and sometimes to abnormal behav-
ioural outcomes.

In “Long-lasting Consequences of Early Life Stress on Brain Structure, Emotion
and Cognition”, Dr. Harm Krugers (University of Amsterdam, Netherlands) and
Dr. Marian Joëls (University Medical Center Utrecht, Netherlands) reviewed how
early postnatal adversity determine the structure and function of the hippocampus,
amygdala and the prefrontal cortex. These areas are crucial for the normal cognitive
and emotional development. Along the same line, in “Mechanisms Linking In
Utero Stress to Altered Offspring Behaviour”, Dr. Theresia Mina and Dr. Rebecca
Reynolds from the Queen’s Medical Research Institute (Edinburgh, UK) high-
lighted the link between maternal in utero stressors on adverse behavioural out-
comes of the offspring including poorer cognitive function as well as behavioural
and emotional problems.

The succeeding chapters focus on the effects of stress on different psychiatric
disorders. A team from Lundbeck Research USA and Denmark led by Dr. Connie
Sanchez posed the question in “Does Stress Elicit Depression?”, Dr. Helle Sickmann,
Dr. Yan Li, Dr. Arne Mork, Dr. Connie Sanchez, and Dr. Maria Gulinello critically
reviewed clinical and pre-clinical findings that may explain how stress can cause
depression. Dr. M. Danet Lapiz-Bluhm and Dr. Alan Peterson, Director of STRONG
STAR (South Texas Research Organizational Network Guiding Studies on Trauma
and Resilience) PTSD Consortium, and both from the University of Texas Health
Science Center at San Antonio (USA) reviewed the “Neurobehavioral Mechanisms
of Traumatic Stress in Posttraumatic Stress Disorder”. They reviewed the neurobi-
ology of the effects of traumatic stress in the development of PTSD, specifically on
mechanisms that are involved in fear conditioning and fear extinction. Dr. David
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Baldwin and Dr. Hesham Yousry Elnazer from the University of Southampton (UK)
addressed the role of stress in the development of anxiety disorders in “Investigation
of Cortisol Levels in Patients with Anxiety Disorders: A Structured Review”. Spe-
cifically, they reviewed HPA function across panic disorder, generalized anxiety
disorder, specific phobias and social anxiety disorder.

In “Stress, Schizophrenia and Bipolar Disorder”, a team from the University of
New South Wales (Australia) and Schizophrenia Research Institute in Sydney
(Australia) headed by Dr. Melissa Green reviewed the role of stress in the devel-
opment of schizophrenia and bipolar disorder. They (Dr. Melissa Green, Dr. Leah
Girshkin, Dr. Nina Teroganova and Dr. Yann Quidé) highlighted on how epigenetic
studies of the effects of early life stress on gene expression may hold promise for
unravelling the interaction between genes and environment to inform the ‘stress-
vulnerability’ model of psychosis.

In “Stress, Substance Abuse, and Addiction”, Drs. Charles Mathias and
Dr. Donald Dougherty from the University of Texas Health Science Center at San
Antonio (USA) in collaboration with Dr. Tiffany Duffing and Dr. Stefanie Greiner
from Fielding Graduate University (USA) addressed the role of stress in substance
abuse and addiction. They reviewed the developmental and biological processes
involved in the relationship of stress exposure and substance use initiation, sub-
stance use maintenance and relapse, and response to substance abuse treatment.
Special emphasis was given to describing the various stress-related mechanisms
involved in substance use and abuse, highlighting the differences between each of
these phases of drug use and drawing upon current research to make suggestions for
treatments of substance use disorder (SUD) patients.

Dr. Mak Daulatzai (University of Melbourne, Australia) addressed the role of
stress, depression and aging in cognitive decline and Alzheimer’s disease in “Role
of Stress, Depression, and Aging in Cognitive Decline and Alzheimer’s Disease”.
He highlighted the role of gut systemic inflammation towards the development of
neuroinflammation, which may subsequently upregulate hippocampal formation of
amyloid beta and neurofibrillary tangles, synaptic and neuronal degeneration, gray
matter volume atrophy, and progressive cognitive decline.

Last, but certainly not least, “Role of Stress, Depression, and Aging in Cognitive
Decline and Alzheimer’s Disease” addressed the issue on psychological resiliency
to stress. Dr. Alan Peterson, Dr. Tabatha Blount and Dr. Donald McGreary from the
University of Texas Health Science Center at San Antonio (USA) described how
research on psychological resiliency is at its infancy and is limited by a number of
factors including: (1) the broad use of the term resiliency; (2) the lack of stan-
dardized definitions of resiliency; (3) a primary focus on descriptive, assessment,
and measurement studies; (4) relatively few randomized controlled trials to evaluate
the efficacy of resiliency enhancement programs; and (5) methodological challenges
inherent in conducting applied resiliency research. More studies are needed to better
understand the behavioural neurobiology of stress and psychological resiliency.
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To both the novice and the expert, this book will provide the reader “one-stop”
resource on the most current body of knowledge and advances on the neurobiology
of the pervasive effects of stress on various neurobiological systems and its role in
the development of various stress-related disorder and resilience.

London, UK Carmine M. Pariante
San Antonio, USA M. Danet Lapiz-Bluhm
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Neuronal-Glial Mechanisms
of Exercise-Evoked
Stress Robustness

Monika Fleshner, Benjamin N. Greenwood and Raz Yirmiya

Abstract Stress robustness by definition, incorporates both stress resistance
(organisms endure greater stressor intensity or duration before suffering negative
consequences) and stress resilience (organisms recover faster after suffering neg-
ative consequences). Factors that influence stress robustness include the nature of
the stressor, (i.e., controllability, intensity, chronicity) and features of the organism
(i.e., age, genetics, sex, and physical activity status). Here we present a novel
hypothesis for how physically active versus sedentary living promotes stress
robustness in the face of intense uncontrollable stress. Advances in neurobiology
have established microglia as an active player in the regulation of synaptic
activity, and recent work has revealed mechanisms for modulating glial function,
including cross talk between neurons and glia. This chapter presents supporting
evidence that the physical activity status of an organism may modulate stress-
evoked neuronal-glial responses by changing the CX3CL1-CX3CR1 axis. Spe-
cifically, we propose that sedentary animals respond to an intense acute uncon-
trollable stressor with excessive serotonin (5-HT) and noradrenergic (NE) activity
and/or prolonged down-regulation of the CX3CL1-CX3CR1 axis resulting in
activation and proliferation of hippocampal microglia in the absence of pathogenic
signals and consequent hippocampal-dependent memory deficits and reduced
neurogenesis. In contrast, physically active animals respond to the same stressor
with constrained 5-HT and NE activity and rapidly recovering CX3CL1-CX3CR1
axis responses resulting in the quieting of microglia, and protection from negative
cognitive and neurobiological effects of stress.
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Abbreviations

ADR Adrenergic
bADR Beta Adrenergic Receptor
BDNF Brain Derived Neurotrophic Factor
CX3CL1 CX3C Chemokine or Fractalkine
CX3CR1 CX3C Chemokine 1 Receptor or Fractalkine receptor
5-HT Serotonin
IL-1b Interleukin-1beta
NE Norepinephrine
TNFa Tumor Necrosis Factor Alpha
US Uncontrollable stressor
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1 Neuronal-Glia Consequences of Intense Uncontrollable
Stressor (US) Exposure

The acute stress response is a highly adaptive cascade of physiological changes
designed to facilitate behavioral escape and promote survival. If the stress
response is excessive or prolonged, however, it can produce negative cognitive and
affective consequences. Intense uncontrollable stressors (US) are especially
capable of evoking excessive and prolonged stress responses and to result in
negative consequences in some organisms. The neurobiological consequences of
US in sedentary (stress vulnerable) organisms, for example, include sensitization
of the brain raphe serotonergic (5-HT) system (Maier and Watkins 2005; Rozeske
et al. 2011); excessive activation of locus coeruleus noradrenergic system
(Greenwood et al. 2003; Weiss et al. 1994); increases in hippocampal
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inflammatory proteins (particularly interleukin-1beta, IL-1b, (Frank et al. 2007;
Nguyen et al. 1998; O’Connor et al. 2003; Yirmiya and Goshen 2011); increases in
hippocampal microglia proliferation (Bian et al. 2012) and activation (Frank et al.
2007); decreases in neuronal CX3C receptor R1 (CXC3R1) mRNA in dorsal raphe
(Fig. 3); decreases in hippocampal neurogenesis (Bland et al. 2006); and decreases
in plasticity-associated markers (i.e., brain derived neurotrophic factor, BDNF,
(Greenwood et al. 2007; Zoladz et al. 2011). Importantly, these neural changes
play a role in specific negative, cognitive, affective, and behavioral consequences
of stress. For example, sensitized 5-HT produced by US interferes with the ability
to escape subsequent threats (reviewed in (Greenwood and Fleshner 2008; Maier
and Watkins 2005); whereas hippocampal IL-1b, perhaps via IL-1b-induced
reductions in BDNF and neurogenesis, mediates US-evoked deficits in hippo-
campal-dependent learning and memory processes (Ekdahl 2012; Ekdahl et al.
2009; Kempermann and Neumann 2003; Leuner and Gould 2010; Maier et al.
1999). Dr. Raz Yirmiya and his research group have reported that exposure of
mice to US activates microglia and elevates brain inflammatory cytokines, and
these changes at least partially underlie the negative effects of stressor exposure on
hippocampal dependent memory functioning and neurogenesis [reviewed in
(Yirmiya and Goshen 2011)].

1.1 Mechanisms for Stress-Evoked Inflammatory/Destructive
Microglia Activation and Hippocampal BDNF
Downregulation: 5-HT and NE

Microglia both facilitate growth/repair and orchestrate inflammation/destruction
(Tremblay et al. 2011). Recent evidence, for example, demonstrates that activated
growth/repair microglia are essential during normal neural development (Ekdahl
2012; Paolicelli et al. 2011; Schafer et al. 2012) and may play a role in adult
plasticity changes during learning, memory formation and neurogenesis (Ekdahl
et al. 2009; Tremblay and Majewska 2011; Williamson et al. 2011; Yirmiya and
Goshen 2011). In fact, there is some evidence to suggest that physical activity may
promote the growth/repair microglia phenotype (Vukovic et al. 2012; Ziv et al.
2006) and that depletion of microglia can prevent some of the beneficial effects of
exercise on learning and memory (Maggi et al. 2011). In contrast, after exposure to
an acute uncontrollable stressor, inflammatory/destructive microglia can release
inflammatory mediators that contribute to the negative, cognitive, affective, and
neurogenic consequences of stress. Cross talk between neurons and microglia plays
a dynamic role in microglia signaling, and are targets for how physical activity
prevents damaging microglia activation and promotes stress robustness. This
chapter focuses on two mechanisms of neuronal-microglia cross talk, stress-evoked
5-HT/NE, and the CX3CL1 (neuronal expressed)-CX3CR1 (glial expressed) axis.
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Recent evidence suggests that both 5-HT and NE receptors are expressed on
microglia (Pocock and Kettenmann 2007) and that these neurotransmitters can
modulate microglia activity. For example, activation of 5-HT receptors on
microglia, specifically the 5-HT2 subgroup, rapidly promotes microglia motility
(Krabbe et al. 2012) and decreases hippocampal BDNF (Duman 1998; Vaidya
et al. 1997, 1999); whereas activation of the beta adrenergic receptor (bADR)
mediates hippocampal proinflammatory cytokine increases after US (Johnson et al.
2005). 5-HT and NE modulate glia function via transmitter ‘‘volume transmission’’
that allows neurotransmitters to diffuse into the extracellular space and interact
with receptors on adjacent glia (Pocock and Kettenmann 2007), rather than via
classical synaptic input. Figure 1 confirms that hippocampal injection of a drug
that binds 5-HT2 receptors (DOI) reduces hippocampal BDNF mRNA.

2 Stress Robustness Produced by Physical Activity:
Protection of Memory

Regular physical activity promotes stress robustness; whereas the lack of physical
activity or a sedentary life style promotes stress vulnerability (the degree to which
an organism succumbs to stressful influences) in humans and other mammals. The
mechanisms for how differences in physical activity status contribute to changes in
stress robustness remain unknown.

Fig. 1 Activation of 5-HT2R reduces BDNF mRNA in the hippocampus. Adult, male, F344 rats
(n = 3–4/group) were implanted with bilateral cannulae targeted to the dentate gyrus (DG) of the
hippocampus. Following at least 7 days of recovery, rats received an intra-DG microinjection of
saline into one hemisphere and the mixed 5-HT2A/2C receptor (5-HT2R) agonist DOI (0.2 ll;
16 nmol) into the alternate hemisphere in a counterbalanced manner. Rats were sacrificed 2 h
after injection and BDNF mRNA was quantified with in situ hybridization. a Relative BDNF
mRNA levels throughout the hippocampal subfields. DOI reduced BDNF mRNA compared to
saline injection. Representative coronal slices showing BDNF mRNA labeling after saline and
DOI injections are shown in (b) and (c), respectively. Injection sites mark the location of the
injector tips

4 M. Fleshner et al.



An example of stress robustness produced by physical activity is displayed in
Fig. 2. Sedentary (stress vulnerable) rats exposed to US (60 uncontrollable foot-
shocks) display a clear disruption in hippocampal-dependent contextual memory
tested after 24 h (Fig. 2a). Rats allowed 6 weeks of prior wheel running are
protected from the stress effect (Fig. 2b). Thus, physical activity promotes a stress
robust phenotype such that US no longer produces memory disruptions.

2.1 Mechanisms for Stress Robustness Produced by Physical
Activity: 5-HT and NE Constraint

Dr. Fleshner and her research group have been studying stress robustness pro-
duced by physical activity for more than a decade. Her group has evidence that
6 weeks of wheel running prevents sensitization of 5-HT neurons in the dorsal
raphe nucleus produced by US [reviewed in (Greenwood and Fleshner 2008,
2011)], and constrains activation of locus coeruleus noradrenergic cells during
exposure to US in rats (Fleshner 2005; Greenwood et al. 2003). Given that

Fig. 2 Wheel running prevents memory impairment produced by uncontrollable stress (US).
Adult, male F344 rats (N = 8/group) either remained sedentary or were allowed 6 weeks of
voluntary access to running wheels prior to stressor exposure. Rats were handled (No Stress), or
were exposed to a conditioning chamber for 5 min prior to exposure to either 2 foot shocks
(0.6 mA, 1 s duration, 1 min ITI), or US consisting of 60 foot shocks (0.6 mA, 5 s duration,
1 min variable ITI). The next day, rats were placed back into the conditioning chambers and
memory for the context where stress occurred was assessed using freezing. a Non stressed rats
displayed no freezing behavior. Memory of the context where stress occurred was strong in
sedentary rats following 2 foot shocks, as revealed by high levels of freezing. In contrast, rats
exposed to US demonstrated 50 % less freezing, indicative of impaired memory for the context.
Rats exposed to US have even greater freezing in a generalization context (not shown);
suggesting the reduced freezing observed in the stressor context represents a memory failure and
not a freezing impairment, per se. b Relative to sedentary rats, physically active rats exposed to
US retain a strong memory of the stressor context

Neuronal-Glial Mechanisms of Exercise-Evoked Stress Robustness 5



physically active rats respond to US with constrained 5-HT and NE responses,
and that these neurotransmitters can stimulate proinflammatory cytokine increa-
ses and BDNF decreases, it is interesting to note that although we have not yet
tested the hippocampus, we have preliminary data that exposure to US upregu-
lates mRNA expression of the proinflammatory cytokines tumor necrosis factor
alpha (TNFa) and IL-1b in the dorsal raphe of sedentary (stress vulnerable)
organisms but not in physically active (stress robust) rats. In addition, we have
also reported (Greenwood et al. 2007) that US reduces hippocampal BDNF in
sedentary (stress vulnerable) rats but not physically active rats (stress robust).
Given that, BDNF is required for consolidation of hippocampal-dependent
memory (Alonso et al. 2002a, b; Tyler et al. 2002), a reduction in this plasticity-
related molecule could be critical for the hippocampal-dependent memory dis-
turbances produced by US. And finally, although the mechanisms for stressor-
and pathogen-evoked cytokine release are not interchangeable (Campeau et al.
2010; Campisi et al. 2012; Maslanik et al. 2012), it is interesting to note that
wheel running was recently reported to reduce hippocampal microglia activation,
brain proinflammatory cytokine responses, and BDNF reductions after peripheral
bacterial challenge in older rats (Barrientos et al. 2011) lending additional sup-
port to our hypothesis that regular physical activity may quiet stressor-evoked
hippocampal microglia activation, and protect against BDNF down-regulation
and reduced neurogenesis.

3 The CX3CL1-CX3CR1 Axis Promotes Microglia
Quiescence and the Neuroprotective Phenotype

The chemokine CX3CL1 (fractalkine) is constitutively expressed in a transmem-
brane form on neurons and is released after metalloproteinase-mediated cleavage
(Lauro et al. 2010). It has been suggested that CXCL1 helps to keep microglia in
relative quiescence and to promote their neuroprotective phenotype (Mizuno et al.
2003). The effects of CXCL1 are mediated by binding to CX3CR1, which in the
brain is exclusively expressed by microglia (Cardona et al. 2006; Jung et al. 2000).
Homozygous mice with the CX3CR1-GFP mutation have a functional deletion
of the microglial CX3CR1 (Jung et al. 2000). There is evidence that these
CX3CR1-/- mice have microglial responses that are dysregulated, resulting in
neurotoxicity and exacerbated neuronal cell loss in models of infection (peripheral
LPS injections), Parkinson disease (Pabon et al. 2011), and Amyotrophic Lateral
Sclerosis (Cardona et al. 2006). The CX3CL1-CX3CR1 axis is also involved in
physiological processes, including modulation of hippocampal neurogenesis
(Bachstetter et al. 2011; Maggi et al. 2011; Rogers et al. 2011). Interestingly, the
aging brain responds to stressors and pathogens with exaggerated and prolonged
microglia activation and inflammatory cytokines responses (Vukovic et al. 2012;
Wynne et al. 2009); and recent evidence suggests that down-regulation of the
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CX3CL1-CX3CR1 axis plays a major role in this effect (Bachstetter et al. 2011;
Wynne et al. 2010).

3.1 Mechanism for Stress Robustness Produced by Physical
Activity: CX3CL1-CX3CR1 Axis Modulation

In addition to constrained stress-evoked 5-HT and NE, physical activity may quiet
stressor-evoked microglia activation by modulating the CX3CL1-CX3CR1 axis
(D’Haese et al. 2012). We have preliminary data that exposure to US produces a
persistent down-regulation of mRNA expression of CX3CR1 in the dorsal raphe of
sedentary (stress vulnerable) organisms but not physically active (stress robust)
rats. There is evidence that disruptions of the CX3CL1-CX3CR1 axis using
genetic (CX3CR+/- or CX3CR1-/- mice) and pharmacological (CX3CR1
blocking Ig) approaches impairs in a graded fashion (with greater disruptions
reported in knockouts than knockdowns) hippocampal neurogenesis and hippo-
campal-dependent (contextual fear conditioning) memory; and that exaggerated
levels of IL-1b may directly contribute to these effects (Bachstetter et al. 2011;
Rogers et al. 2011). Figure 3 reveals that exposure to US reduced CX3CR1 mRNA
immediately after stressor exposure in all rats (p \ 0.001), and mRNA levels
remained reduced 2 h after stressor termination in the sedentary (p \ 0.05) but not
physical active rats. Interestingly, CX3CL1 mRNA expression was not changed by
stress (not shown); however, this does not rule out a change in ligand concen-
trations. A lack of an effect on CX3CL1 mRNA is a common finding since
secreted CXCL1 protein concentrations are primarily modulated post-transcrip-
tionally by protein kinase C (Hatori et al. 2002). There were also no changes in
other neuronalglia regulatory molecules (i.e., CD200, CD200R1), suggesting that
physical activity may selectively modulate the CX3CL1-CX3CR1 axis. This
improved rate of recovery could be a molecular signature of stress resilience.

Thus, we hypothesize that exposure to US in sedentary animals down regulates
the CX3CL1-CX3CR1 axis, increases microglia motility (mediated by 5-HT;
(Krabbe et al. 2012)), decreases BDNF (mediated by 5-HT (Duman 1998; Vaidya
et al. 1997, 1999), Fig. 1), and stimulates excessive pro-inflammatory cytokine
release (mediated by NE, (Johnson et al. 2005)) in the hippocampus and other
areas of the stress circuit (i.e., dorsal raphe). These microglia responses can disrupt
learning and memory processes and inhibit adaptive organismal behavioral per-
formance to stress such as active coping in response to future stressful events and
hippocampal-dependent learning and memory processes, by impairing neurogen-
esis and the expression of plasticity-associated molecules (e.g., BDNF). In con-
trast, physically active animals exposed to US are protected from excessive 5-HT
and NE responses, proinflammatory cytokines responses/release, and more rapidly
restore the CX3CL1-CX3CR1 axis and thus resist the negative neurobiological
and behavioral effects.
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4 Conclusions

Clearly, regular physical activity changes the way our brain responds to stressors.
The types of changes produced by regular physical activity are widespread and
include adaptations in neurogenesis, growth factors, and neurotransmitter systems.

Fig. 3 Uncontrollable stress (US) reduces mRNA expression of CX3CR1. Rats (n = 8/group)
lived with mobile (Physically Active) or locked (Sedentary) running wheels. After 6 weeks, rats
were exposed to US and sacrificed immediately or 2 h after stressor termination. The dorsal raphe
nucleus (DRN) was laser captured and mRNA expression was measured using Affymatrix gene
array. The results were that US reduced CX3CR1 mRNA expression and that physically active
rats recovered faster than sedentary rats

Fig. 4 A schematic of our working hypothesis for a neuronal-glal mechanisms for stress
resistance produced by exercise
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Only in the past few years have neurobiologists fully appreciated the dynamic
interactions between neuron and microglia. This work suggests that the changes in
neuronal-glia cross talk should be added to the growing list of brain adaptations
produced by exercise. Figure 4 depicts our current hypothesis. We propose that
sedentary animals respond to an intense acute uncontrollable stressor with
excessive serotonin (5-HT) and noradrenergic (NE) activity and/or prolonged
downregulation of the CX3CL1-CX3CR1 axis resulting in activation and prolif-
eration of hippocampal microglia in the absence of pathogenic signals and con-
sequent hippocampal-dependent memory deficits and reduced neurogenesis. In
contrast, physically active animals respond to the same stressor with constrained 5-
HT and NE activity and rapidly recovering CX3CL1-CX3CR1 axis responses
resulting in the quieting of microglia and protection from negative cognitive and
neurobiological effects of stress.
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The Interface of Stress and the HPA Axis
in Behavioural Phenotypes of Mental Illness

David Baumeister, Stafford L. Lightman and Carmine M. Pariante

Abstract Abnormalities of hypothalamic-pituitary-adrenal (HPA) axis function are
one of the most consistent biological findings across several mental disorders, but
many of the mechanisms underlying this abnormality as well as the potential con-
tribution to behavioural phenotypes remain only partially understood. Interestingly,
evidence suggests a U-curve, with dysregulation of the HPA axis towards both hyper-
or hypoactivity manifesting as a risk to mental wellbeing. This review will elaborate
on both the clinical and molecular role of the neuroendocrine stress system in
depressive, psychotic and post-traumatic stress disorders and present some of the
most recent findings that have shed light on the complex interface between envi-
ronmental stressors, molecular mechanisms and clinical presentation. Crucially,
plasticity of the HPA axis confers both vulnerability to adverse events, particularly so
in early developmental stages, as well as hope for the treatment of mental disorder, as
evidenced by changes in HPA functioning associated with remission of symptoms.
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1 Overview of HPA Axis Functioning

Activity of the HPA axis, the neuroendocrine stress system, is governed by the
secretion of corticotrophin-releasing factor (CRF) and vasopressin (AVP) from the
hypothalamus, which in turn activate the secretion of adrenocorticotrophic hor-
mone (ACTH) from the pituitary. This finally stimulates the secretion of gluco-
corticoids (cortisol in humans and corticosterone in rodents) from the adrenal
cortex, which then interact with their cognate receptors in multiple target tissues.
Glucocorticoids have widespread regulatory roles as part of the stress response,
both in peripheral functions such as immunity and metabolism as well as in the
central nervous system (CNS). In the CNS, glucocorticoids moderate neuronal
survival, neurogenesis, long-term potentiation and dendritic growth as well as
atrophy in complex anatomical structures extensively implicated in psychopa-
thology, particularly the hippocampus and amygdala [reviewed in Herbert et al.
(2006)]. Notably, the HPA axis is embedded in bidirectional relationships to other
allosteric systems that have been implicated in psychopathology, such as the
inflammatory (Dantzer et al. 2008) and monoaminergic systems (Gotlib et al.
2008), and thus some of the behavioural effects of HPA functioning may be
mediated by interaction with these systems.

In the HPA axis, glucocorticoids are responsible for feedback inhibition both on
CRF and AVP from the hypothalamus and directly on secretion of ACTH from
pituitary corticotropes. Endogenous glucocorticoids regulate release of CRF in the
paraventricular nucleus and ACTH in the pituitary via activation of their cognate
receptors—the glucocorticoid receptor (GR) and the mineralocorticoid receptor
(MR). MR has a high affinity for endogenous glucocorticoids, whilst the GR has a
lower affinity, suggesting the GR is more important in the regulation of the stress
response, i.e. an acute elevation in glucocorticoids, whereas the high affinity of the
MR tends to be tonically activated at most times of the day. The assertion that the
GR modulates HPA function during stress is supported by research utilising the
GR-selective synthetic glucocorticoid dexamethasone as a pharmacological chal-
lenge—which, in healthy individuals, is associated with a reduction in cortisol
levels for up to 24 h, demonstrating GR mediated negative feedback within the
HPA axis. Recent research also suggests MR can regulate fast feedback inhibition
(Atkinson et al. 2008).

14 D. Baumeister et al.



2 HPA Function in Unipolar and Bipolar Depression

Considering its role at the interface between stress and brain function, it is perhaps
not surprising that the HPA axis has been found abnormal in many psychiatric
disorders, albeit with idiosyncratic presentation. In depression, it appears clinical
abnormalities of HPA function are, at least in part, related to reduced feedback
inhibition by endogenous glucocorticoids, leading to hyperactivity of the axis
[reviewed in Pariante (2006)]. Indicative of this hyperactivity, a significant per-
centage of depressed patients have increased levels of cortisol in the saliva, plasma
and urine, and increased size (as well as activity) of the pituitary and adrenal
glands [Reviewed in Nemeroff and Vale (2005)]. Recent research developments
have utilised hair cortisol as a long-term measure of HPA functioning, and have
confirmed elevated cortisol hair levels in depression, suggesting persistent HPA
hyperactivity [reviewed in Staufenbiel et al. (2013)]. Depressed patients also show
an increased HPA response to psychosocial stressors (Pariante and Lightman
2008) and are more likely to report daily events as stressful (Bylsma et al. 2011).
Depression is also associated with an elevated cortisol response to awakening, a
phenomenon that persists even after recovery (Bhagwagar et al. 2003, 2005;
Vreeburg et al. 2009). Further, recent evidence suggests that unaffected individuals
with a parental history of depression show a similarly augmented cortisol awak-
ening response (Vreeburg et al. 2010). Interestingly, individuals at risk for
depression show elevated waking cortisol levels similar to depressed patients, but
their HPA axes recover more rapidly from psychosocial stress exposure (Dienes
et al. 2012). This hyperactivity is likely to relate to impaired functioning of GR,
reducing the ability of the HPA axis to feedback and inhibit its own activity.
Studies have shown changes in both function and expression of GR in patients in
major depression: non-suppression of cortisol secretion following administration
of dexamethasone; impaired GR function in peripheral blood mononuclear cells
isolated and cultivated in vitro, or in peripheral cells examined in vivo using
metabolic or vascular indices; and reduced GR expression in neuropathological
studies of post-mortem human brains [reviewed in (Pariante 2006; Pariante and
Lightman 2008; Pariante and Miller 2001)].

Interestingly, evidence not only suggests idiosyncratic HPA activity depending
on clinical status, but also variations depending on clinical subtypes. A recent
review spanning four decades of HPA research found that whilst depression was
generally associated with increased cortisol and ACTH but not CRH levels,
individual subtypes differed: atypical depression was associated with a third of a
standard deviation (SD) lower, melancholic depression a quarter of an SD higher,
and psychotic depression nearly half an SD higher cortisol levels (Stetler and
Miller 2011). Interestingly, it appears that melancholic depression is associated
with greater cortisol awakening response and diurnal cortisol slope, whereas
atypical depression appears to be more closely linked to elevation of inflammatory
as well as metabolic markers (Lamers et al. 2012).
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Similar to depression, bipolar disorder is associated with blunted response to
dexamethasone challenge (Daban et al. 2005) and there is evidence of elevated
baseline cortisol levels both during manic and depressive phases (Duffy et al.
2012). Bipolar patients also show an enhanced cortisol awakening response
(Deshauer et al. 2003), and there is some evidence suggesting altered HPA
function in the offspring of bipolar parents (Ellenbogen et al. 2010). Elevated hair
cortisol has also been reported bipolar patients, but only when age of onset was
older than 30 (Manenschijn et al. 2012). Moreover, manic episodes appear to be
preceded by elevations of both cortisol and ACTH, suggesting relevance to the
pathogenesis of bipolar disorder, rather than altered HPA functioning being a relict
of depressive symptoms. In line with this, evidence obtained from post-mortem
investigation of GR expression showed increased expression in both amygdalar
neurons and astrocytes for unipolar, but not bipolar depressed patients or healthy
controls (Wang et al. 2013).

3 HPA Function in Psychosis

The HPA axis has also been shown to be functionally altered in psychosis, with a
high degree of similarities to depressive disorders: first episode psychosis patients
show elevated baseline levels of HPA activity as well as blunted response to
dexamethasone challenge in the context of elevated diurnal cortisol levels, the
latter of which appears to be normalised by antipsychotic medications, as well as
potentially enlarged size of the pituitary gland (Borges et al. 2013). A recent meta-
analysis showed an increased pituitary volume of non-significant magnitude in first
episode psychosis as well as a significant increase in individuals at ultra-high risk
of psychosis who transitioned (Nordholm et al. 2013) and further evidence has
shown similar pituitary volume elevations in non-affected relatives of patients with
schizophrenia (Mondelli et al. 2008). Interestingly, patients who received medi-
cation had significantly larger pituitary glands compared to drug-naïve patients,
possibly due to the effects of antipsychotics on prolactin production. Clinical high
risk for psychosis in medication-free individuals is also associated with elevated
basal salivary cortisol (Sugranyes et al. 2012).

Unlike depressed patients however, first episode patients show a significantly
lower awakening cortisol response when compared to healthy controls (Mondelli
et al. 2010). Interestingly, blunted cortisol response to awakening in schizophrenia
patients predicts worse cognitive functioning (Aas et al. 2010), and is positively
correlated with and predicted by the severity of positive symptoms in schizo-
phrenia patients (Belvederi Murri et al. 2011). Schizophrenia patients further show
a tendency towards attenuated cortisol response to psychosocial stress, however in
the context of increased activity of the sympathetic nervous system as indicated by
elevated heart rate and blood pressure (Brenner et al. 2009) and individuals at
ultra-high risk for psychosis exhibit a significantly attenuated cortisol response to
psychosocial stress compared to healthy controls (Brenner et al. 2009; Pruessner

16 D. Baumeister et al.



et al. 2013). Patients with psychosis also show a greater emotional reactivity to
daily life stress (Myin-Germeys et al. 2005). Interestingly however, Pruessner
et al. (2013) found that lower cortisol output in response to psychosocial stress in
patients with psychosis is correlated with higher levels of self-reported stress
during the preceding year.

4 HPA Function in PTSD

Perhaps the most mixed findings on HPA function have been obtained in indi-
viduals with post-traumatic stress disorder (PTSD). A meta-analysis on both basal
as well as dynamic HPA functioning found no differences in PTSD patients,
trauma-exposed (TE) and non-exposed (NE) individuals in terms of basal cortisol
levels, consistent across saliva, urine and plasma sampling, although reductions in
baseline cortisol have been reported in individual studies (Klaassens et al. 2011).
Whilst exposure to trauma in adulthood had no significant overall impact on basal
cortisol levels it was associated with enhanced cortisol suppression in response to
dexamethasone. Conversely, some studies on hair cortisol in PTSD have reported
elevated cortisol levels (Steudte et al. 2011; Luo et al. 2012), whilst others have
not (Steudte et al. 2013), potentially due to the different kinds of trauma exposure
in the respective samples.

Interestingly, evidence reviewed by de Kloet et al. (2006) showed that whilst
PTSD is associated with enhanced inhibitory feedback in response to dexameth-
asone challenge, indicative of increased functioning of the GR, individuals with
PTSD show augmented cortisol responses to psychosocial stress tests. In line with
these findings, de Kloet et al. (2012) recently reported that cognitive challenge was
rated as more stressful by and led to elevated ACTH but not noradrenaline
responses in PTSD patients, but research utilising dexamethasone challenge found
opposing effects, i.e., enhanced suppression of ACTH (Yehuda et al. 2004; Golier
et al. 2006).

A recent meta-analysis comparing PTSD to PTSD comorbid with depression
(PTSD + MDD) showed further interesting subtleties in differential HPA func-
tion: PTSD, PTSD + MDD and TE groups exhibited attenuated morning cortisol
compared to NE groups, but whilst PTSD and TE groups showed similar patterns
in afternoon cortisol levels, comorbid depression was associated with significant
elevations compared to NE controls (Morris et al. 2012). Furthermore, PTSD,
PTSD + MDD and TE groups all showed augmented cortisol suppression in
response to dexamethasone, with no significant effect size differences between the
groups. Interestingly, these findings were observed in the context of overall
diminished daily output of cortisol in PTSD and PTSD + MDD patients but not
TE individuals. However, some of this evidence remains mixed, as there have also
been reports of elevated afternoon cortisol levels in patients with PTSD in another
meta-analysis (Miller et al. 2007) (Table 1).
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5 The Impact of Stress in Early Life

Evidence over the last decades has provided evidence suggesting that HPA axis
dysfunction is not a simple consequence or an epiphenomenon of mental disorder,
but on the contrary it is a risk factor predisposing to the development of psy-
chopathological behaviour, brought about by early life experiences programming
molecular changes as well as by biological vulnerability to stress. Perhaps the most
striking development in this field has been the realisation that abnormal func-
tioning of the HPA axis may reflect a susceptibility that can be programmed
through early life events—starting even as early as in prenatal development
[reviewed in (Cottrell and Seckl 2009)]. Clinical studies have shown that women
who are sexually or physically abused in childhood exhibit a markedly enhanced
activation of the HPA axis as adults. Even if not currently depressed they exhibit
enhanced ACTH and heart rate responses when exposed to psychosocial stress;
and if they are currently depressed they exhibit the largest increase in ACTH
secretion and heart rate, as well as a very large increases in cortisol secretion
(Heim and Nemeroff 2002). Moreover, research using dexamethasone has also
found persistent HPA axis hyperactivity in men with early life trauma (Heim et al.
2008). Notably however, evidence on associations of childhood trauma with
awakening cortisol response has been inconsistent, with reports of both augmen-
tation and attenuation of the awakening cortisol response (Lu et al. 2013; Mangold
et al. 2010).

Research attempting to establish associations of HPA functioning profiles with
psychopathological behaviours needs to control for the mediating effects of
childhood trauma, as childhood trauma itself has been shown to be associated with
a variety of adult mental disorder, including depression, bipolar disorder, psychosis
and PTSD (Putnam et al. 2013; Varese et al. 2012; Subica 2013; Edwards et al.
2003). Interestingly, a recent study demonstrated that when participants meeting

Table 1 Cortisol characteristics associated with disorders and adversity-exposure

Cortisol measure Depression Bipolar
Disorder

Psychosis PTSD Childhood
adversity

Adulthood
adversity

Awakening response : : ; ; Mixed
evidence

la

Afternoon : : : = – :
Daily output : : : ;b : :
Hair : :c – Mixed

evidence
; –

Post-DST : : : ; : ;
Post-psychosocial

stress test
: ? ;b : ; –

a Context-dependent increases or decreases
b Tendency
c Only when onset-age \30
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criteria for MDD were matched to healthy controls with no lifetime history of
depression based on age, sex and experience of childhood adversity, using the
dexamethasone/CRH test failed to distinguish depressed from non-depressed
participants (Carpenter et al. 2009). Conversely, depressed individuals with a
history of childhood trauma, as opposed to depressed patients without this type of
early experience, show decreased cortisol hair levels (Hinkelmann et al. 2013).

One of the most frequently proposed mechanisms through which early life
experiences may impact on the HPA axis is epigenetic programming. Indeed, there
is evidence for greater methylation of the GR in hippocampal regions of suicide
completers who had been subjected to childhood abuse compared to suicide
completers without a history of childhood trauma (McGowan et al. 2009). Simi-
larly, Tyrka et al. (2012) recently reported that a history of childhood adversity in
healthy adults was associated with increased methylation of a promoter region of
the GR gene in leukocyte DNA. Moreover, this methylation was associated with
an attenuated response to the dexamethasone/CRH test. In line with this evidence,
childhood trauma induces demethylation of glucocorticoid response elements of
the gene coding for the GR-associated heat shock protein FKBP5, which normally
inhibits the ability of the ligand to bind cytosolic GR and subsequently translocate
to the cell nucleus, where it can increase FKBP5 transcription which in turn
reduces GR activity. Individuals with a functional polymorphism of this gene are
at greater risk of PTSD, depression and suicide (Klengel et al. 2012). Interestingly,
polymorphisms of the FKBP5 gene associated with greater expression of the
chaperone protein are also associated with prolonged elevation of cortisol levels
following psychosocial stress exposure (Ising et al. 2008). Although most research
has focused on the effects of early life events on programming changes in the HPA
axis itself concentrating on epigenetic modifications of glucocorticoid receptor
genes, it is important to emphasise that there are many other closely related
systems that may be susceptible to programming. For example, a recent study
showed increased methylation of the serotonin transporter gene (SERT) in bullied
children when compared to their discordant mono-zygotic co-twins, which was
associated with blunted cortisol response to the TSST (Ouellet-Morin et al. 2012).

6 The HPA-Stress Interface in Late Adolescence
and Adulthood

The 3-hit model of vulnerability and resilience recently proposed by Daskalakis
et al. (2013) suggests that the interaction of genetic predisposition with early life
experience sets the course of neuroendocrine alterations in neural development via
epigenetic programming towards an adult phenotype vulnerable to environmental
stressors. Indeed, stressful life events in adulthood such as trauma or exposure to
chronic stress may precipitate the onset of a range of disorders and can facilitate
relapse in existing disorders (Melchior et al. 2007; Stilo et al. 2012; Bebbington
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et al. 1993; Francis et al. 2012; Lethbridge and Allen 2008). Interestingly, the type
of stress one is exposed to appears to be associated with differential patterns of
HPA response and subsequent vulnerability to specific psychopathological syn-
dromes. There is evidence that the immediate response of the HPA axis to trauma
(i.e. within 24 h of exposure) can predict the development of PTSD: several
studies suggest that lower cortisol levels in the peritraumatic period are associated
with a higher risk of subsequent PTSD, and there is evidence of enhanced cortisol
suppression in response to dexamethasone in trauma-exposed individuals who go
on to develop PTSD (Morris and Rao 2013). Furthermore, PTSD-specific HPA
functioning in the form of diminished morning but elevated afternoon cortisol
levels within a week of exposure are also linked with the subsequent development
of the disorder (Aardal-Eriksson et al. 2001).

Marin et al. (2007) assessed life stress and HPA functioning in healthy women
between the ages of 15 and 19, and found that exposure to episodic stressors in the
context of high chronic stress led to increased cortisol release, both upon awakening
and overall daily output, as well as reduced GR mRNA. However, exposure to
episodic stressors in the context of low chronic stress led to decreased cortisol
release and enhanced GR mRNA. In the context of medium chronic stress, the level
of exposure to episodic events had no impact on either cortisol or GR levels. A meta-
analysis by Miller et al. (2007) further showed that idiosyncratic stress signatures
can differentially impact on HPA function: for example, the awakening cortisol
response increases in response to significant stressors that pose a threat to the social
self, but decreases when the stressor poses threat to physical integrity, involves a loss
and/or is perceived as uncontrollable. Similarly, some stressor types only impact on
certain HPA measures but not others, e.g. whilst stressors that pose a threat to the
social self appear to increase afternoon cortisol levels, they do not impact on overall
daily cortisol output or response to dexamethasone challenge.

7 Conclusion

The findings discussed in the present review show that specific HPA axis profiles
appear to be characteristic of different disorders and syndromes. The high degree
of neuroplasticity during early developmental stages acts as a window of sensi-
tivity, allowing childhood adversity to convey vulnerability to mental illness in
later life, which, even in the absence of the development of psychopathological
behaviours, is associated with highly complex effects on measures of HPA func-
tion. Taken together, HPA axis dysfunction in mental disorders as described above
may not be the consequence of these ailments per se, but rather the manifestation
of persistent neurobiological abnormalities that predispose to their development
dependent on specific combinations and characteristics of idiosyncratic stress
exposure. As such, on-going disruption of HPA homeostasis, be it towards hyper-
or hypoactivity, can have adverse impacts on mental and physical wellbeing. Due
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to its unique position at the interface between biological systems and adversity, the
HPA axis not only presents as one of the most interesting examples of molecular
interplay of the individual with their environment over the course of a lifetime, but
also as one of the most challenging areas of mental health research.

Acknowledgments This work was supported by the grant ‘‘Persistent Fatigue Induced by
Interferon-alpha: A New Immunological Model for Chronic Fatigue Syndrome’’ from the
Medical Research Council (UK) MR/J002739/1. Additional support has been offered by the
Commission of European Communities Seventh Framework Programme (Collaborative Project
Grant Agreement no. 22963, Mood Inflame); by the National Institute for Health Research
Mental Health Biomedical Research Centre in Mental Health at South London and Maudsley
NHS Foundation Trust and King’s College London; by a grant from the Psychiatry Research
Trust, UK (McGregor 97); by Janssen Parmaceutica NV/Janssen Pharmaceutical Companies of
Johnson & Johnson; and by the Institute of Psychiatry at Kings College London.

References

Aardal-Eriksson E, Eriksson TE, Thorell LH (2001) Salivary cortisol, posttraumatic stress
symptoms, and general health in the acute phase and during 9-month follow-up. Biol
Psychiatry 50(12):986–993

Aas M, Dazzan P, Mondelli V, Toulopoulou T, Reichenberg A, Di Forti M et al (2010) Abnormal
cortisol awakening response predicts worse cognitive function in patients with first-episode
psychosis. Psychol Med 41(3):463–476

Atkinson HC, Wood SA, Castrique ES, Kershaw YM, Wiles CC, Lightman SL (2008)
Corticosteroids mediate fast feedback of the rat hypothalamic-pituitary-adrenal axis via the
mineralocorticoid receptor. Am J Physiol Endocrinol Metab 294(6):E1011–E1022

Bebbington P, Wilkins S, Jones P, Foerster A, Murray R, Toone B et al (1993) Life events and
psychosis. Initial results from the Camberwell collaborative psychosis study. Br J Psychiatry
162:72–79

Belvederi Murri M, Pariante CM, Dazzan P, Hepgul N, Papadopoulos AS, Zunszain P et al
(2011) Hypothalamic-pituitary-adrenal axis and clinical symptoms in first-episode psychosis.
Psychoneuroendocrinology 37(5):629–644

Bhagwagar Z, Hafizi S, Cowen PJ (2003) Increase in concentration of waking salivary cortisol in
recovered patients with depression. Am J Psychiatry 160(10):1890–1891

Bhagwagar Z, Hafizi S, Cowen PJ (2005) Increased salivary cortisol after waking in depression.
Psychopharmacology 182(1):54–57

Borges S, Gayer-Anderson C, Mondelli V (2013) A systematic review of the activity of the
hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology
38(5):603–611

Brenner K, Liu A, Laplante DP, Lupien S, Pruessner JC, Ciampi A et al (2009) Cortisol response
to a psychosocial stressor in schizophrenia: blunted, delayed, or normal? Psychoneuroendo-
crinology 34(6):859–868

Bylsma LM, Taylor-Clift A, Rottenberg J (2011) Emotional reactivity to daily events in major
and minor depression. J Abnorm Psychol 120(1):155–167

Carpenter LL, Ross NS, Tyrka AR, Anderson GM, Kelly M, Price LH (2009) Dex/CRH test
cortisol response in outpatients with major depression and matched healthy controls.
Psychoneuroendocrinology 34(8):1208–1213

Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult
disease. Front Behav Neurosci 3:19

The Interface of Stress and the HPA Axis in Behavioural Phenotypes 21



Daban C, Vieta E, Mackin P, Young AH (2005) Hypothalamic-pituitary-adrenal axis and bipolar
disorder. Psychiatr Clin North Am 28(2):469–480

Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to
sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci
9(1):46–56

Daskalakis NP, Bagot RC, Parker KJ, Vinkers CH, de Kloet ER (2013) The three-hit concept of
vulnerability and resilience: toward understanding adaptation to early-life adversity outcome.
Psychoneuroendocrinology 38(9):1858–1873

de Kloet CS, Vermetten E, Geuze E, Kavelaars A, Heijnen CJ, Westenberg HG (2006)
Assessment of HPA axis function in posttraumatic stress disorder: pharmacological and
non-pharmacological challenge tests, a review. J Psychiatr Res 40(6):550–567

de Kloet CS, Vermetten E, Rademaker AR, Geuze E, Westenberg HG (2012) Neuroendocrine
and immune responses to a cognitive stress challenge in veterans with and without PTSD.
Eur J Psychotraumatol 3

Deshauer D, Duffy A, Alda M, Grof E, Albuquerque J, Grof P (2003) The cortisol awakening
response in bipolar illness: a pilot study. Can J Psychiatry 48(7):462–466

Dienes KA, Hazel NA, Hammen CL (2012) Cortisol secretion in depressed, and at-risk adults.
Psychoneuroendocrinology 38(6):927–940

Duffy A, Lewitzka U, Doucette S, Andreazza A, Grof P (2012) Biological indicators of illness
risk in offspring of bipolar parents: targeting the hypothalamic-pituitary-adrenal axis and
immune system. Early Interv Psychiatry 6(2):128–137

Edwards VJ, Holden GW, Felitti VJ et al (2003) Relationship between multiple forms of
childhood maltreatment and adult mental health in community respondents: results from the
adverse childhood experiences study. Am J Psychiatry 160:1453–1460

Ellenbogen MA, Santo JB, Linnen AM, Walker CD, Hodgins S (2010) High cortisol levels in the
offspring of parents with bipolar disorder during two weeks of daily sampling. Bipolar Disord
12(1):77–86

Francis JL, Moitra E, Dyck I, Keller MB (2012) The impact of stressful life events on relapse of
generalized anxiety disorder. Depress Anxiety 29(5):386–391

Golier JA, Legge J, Yehuda R (2006) The ACTH response to dexamethasone in Persian Gulf War
veterans. Ann NY Acad Sci 1071:448–453

Gotlib IH, Joorman J, Minor KL, Hallmayer J (2008) HPA axis reactivity: a mechanism
underlying the associations among. 5-HTTLPR, stress, and depression. Biol Psychiatry
63(9):847–851

Heim C, Nemeroff CB (2002) Neurobiology of early life stress: clinical studies. Semin Clin
Neuropsychiatry 7(2):147–159

Heim C, Mletzko T, Purselle D, Musselman DL, Nemeroff CB (2008) The dexamethasone/
corticotropin-releasing factor test in men with major depression: role of childhood trauma.
Biol Psychiatry 63(4):398–405

Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL et al (2006) Do
corticosteroids damage the brain? J Neuroendocrinol 18(6):393–411

Hinkelmann K, Muhtz C, Dettenborn L, Agorastos A, Wingenfeld K, Spitzer C et al (2013)
Association between childhood trauma and low hair cortisol in depressed patients and healthy
control subjects. Biol Psychiatry 74(9):e15–e17

Ising M, Depping AM, Siebertz A, Lucae S, Unschuld PG, Kloiber S et al (2008) Polymorphisms
in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur
J Neurosci 28(2):389–398

Klaassens ER, Giltay EJ, Cuijpers P, van Veen T, Zitman FG (2011) Adulthood trauma and HPA-
axis functioning in healthy subjects and PTSD patients: a meta-analysis. Psychoneuroendo-
crinology 37(3):317–331

Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM et al (2012) Allele-
specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat
Neurosci 16(1):33–41

22 D. Baumeister et al.



Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW (2012)
Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome
in melancholic versus atypical depression. Mol Psychiatry 18(6):692–699

Lethbridge R, Allen NB (2008) Mood induced cognitive and emotional reactivity, life stress, and
the prediction of depressive relapse. Behav Res Ther 46(10):1142–1150

Lu S, Gao W, Wei Z, Wu W, Liao M, Ding Y et al (2013) Reduced cingulate gyrus volume
associated with enhanced cortisol awakening response in young healthy adults reporting
childhood trauma. PLoS ONE 8(7):e69350

Luo H, Hu X, Liu X, Ma X, Guo W, Qiu C et al (2012) Hair cortisol level as a biomarker for
altered hypothalamic-pituitary-adrenal activity in female adolescents with posttraumatic stress
disorder after the 2008 Wenchuan earthquake. Biol Psychiatry 72(1):65–69

Manenschijn L, Spijker AT, Koper JW, Jetten AM, Giltay EJ, Haffmans J et al (2012) Long-term
cortisol in bipolar disorder: associations with age of onset and psychiatric co-morbidity.
Psychoneuroendocrinology 37(12):1960–1968

Mangold D, Wand G, Javors M, Mintz J (2010) Acculturation, childhood trauma and the cortisol
awakening response in Mexican-American adults. Horm Behav 58(4):637–646

Marin TJ, Martin TM, Blackwell E, Stetler C, Miller GE (2007) Differentiating the impact of
episodic and chronic stressors on hypothalamic-pituitary-adrenocortical axis regulation in
young women. Health Psychol 26(4):447–455

McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M et al (2009) Epigenetic
regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat
Neurosci 12(3):342–348

Melchior M, Caspi A, Milne BJ, Danese A, Poulton R, Moffitt TE (2007) Work stress precipitates
depression and anxiety in young, working women and men. Psychol Med 37(8):1119–1129

Miller GE, Chen E, Zhou ES (2007) If it goes up, must it come down? Chronic stress and the
hypothalamic-pituitary-adrenocortical axis in humans. Psychol Bull 133(1):25–45

Mondelli V, Dazzan P, Gabilondo A, Tournikioti K, Walshe M, Marshall N et al (2008) Pituitary
volume in unaffected relatives of patients with schizophrenia and bipolar disorder.
Psychoneuroendocrinology 33(7):1004–1012

Mondelli V, Dazzan P, Hepgul N, Di Forti M, Aas M, D’Albenzio A et al (2010) Abnormal
cortisol levels during the day and cortisol awakening response in first-episode psychosis: the
role of stress and of antipsychotic treatment. Schizophr Res 116(2–3):234–242

Morris MC, Rao U (2013) Psychobiology of PTSD in the acute aftermath of trauma: integrating
research on coping, HPA function and sympathetic nervous system activity. Asian J Psychiatr
6(1):3–21

Morris MC, Compas BE, Garber J (2012) Relations among posttraumatic stress disorder,
comorbid major depression, and HPA function: a systematic review and meta-analysis. Clin
Psychol Rev 32(4):301–315

Myin-Germeys I, Delespaul P, van Os J (2005) Behavioural sensitization to daily life stress in
psychosis. Psychol Med 35(5):733–741

Nemeroff CB, Vale WW (2005) The neurobiology of depression: inroads to treatment and new
drug discovery. J Clin Psychiatry 66(Suppl 7):5–13

Nordholm D, Krogh J, Mondelli V, Dazzan P, Pariante C, Nordentoft M (2013) Pituitary gland
volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis
and healthy controls: a systematic review and meta-analysis. Psychoneuroendocrinology
38(11):2394–2404

Ouellet-Morin I, Wong CC, Danese A, Pariante CM, Papadopoulos AS, Mill J et al (2012)
Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying
victimization and blunted cortisol response to stress in childhood: a longitudinal study of
discordant monozygotic twins. Psychol Med 43(9):1813–1823

Pariante CM (2006) The glucocorticoid receptor: part of the solution or part of the problem? J
Psychopharmacol 20(4 Suppl):79–84

Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new
developments. Trends Neurosci 31(9):464–468

The Interface of Stress and the HPA Axis in Behavioural Phenotypes 23



Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to
pathophysiology and treatment. Biol Psychiatry 49(5):391–404

Pruessner M, Bechard-Evans L, Boekestyn L, Iyer SN, Pruessner JC, Malla AK (2013)
Attenuated cortisol response to acute psychosocial stress in individuals at ultra-high risk for
psychosis. Schizophr Res 146(1–3):79–86

Putnam KT, Harris WW, Putnam FW (2013) Synergistic childhood adversities and complex adult
psychopathology. J Trauma Stress 26(4):435–442

Staufenbiel SM, Penninx BW, Spijker AT, Elzinga BM, van Rossum EF (2013) Hair cortisol,
stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinol-
ogy 38(8):1220–1235

Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a
quantitative summary of four decades of research. Psychosom Med 73(2):114–126

Steudte S, Kolassa IT, Stalder T, Pfeiffer A, Kirschbaum C, Elbert T (2011) Increased cortisol
concentrations in hair of severely traumatized Ugandan individuals with PTSD. Psychoneu-
roendocrinology 36(8):1193–1200

Steudte S, Kirschbaum C, Gao W, Alexander N, Schonfeld S, Hoyer J et al (2013) Hair cortisol as
a biomarker of traumatization in healthy individuals and posttraumatic stress disorder
patients. Biol Psychiatry 74(9):639–646

Stilo SA, Di Forti M, Mondelli V, Falcone AM, Russo M, O’Connor J et al (2012) Social
disadvantage: cause or consequence of impending psychosis? Schizophr Bull 39(6):1288–1295

Subica AM (2013) Psychiatric and physical sequelae of childhood physical and sexual abuse
and forced sexual trauma among individuals with serious mental illness. J Trauma Stress
26(5):588–596

Sugranyes G, Thompson JL, Corcoran CM (2012) HPA-axis function, symptoms, and medication
exposure in youths at clinical high risk for psychosis. J Psychiatr Res 46(11):1389–1393

Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL (2012) Childhood adversity and
epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in
healthy adults. PLoS ONE 7(1):e30148

Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W et al (2012) Childhood
adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and
cross-sectional cohort studies. Schizophr Bull 38(4):661–671

Vreeburg SA, Hoogendijk WJ, van Pelt J, Derijk RH, Verhagen JC, van Dyck R et al (2009)
Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a
large cohort study. Arch Gen Psychiatry 66(6):617–626

Vreeburg SA, Hartman CA, Hoogendijk WJ, van Dyck R, Zitman FG, Ormel J et al (2010)
Parental history of depression or anxiety and the cortisol awakening response. Br J Psychiatry
197(3):180–185

Wang Q, Verweij EW, Krugers HJ, Joels M, Swaab DF, Lucassen PJ (2013) Distribution of the
glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain
Struct Funct. doi:10.1016/j.neuroscience.2013.05.043

Yehuda R, Golier JA, Halligan SL, Meaney M, Bierer LM (2004) The ACTH response to
dexamethasone in PTSD. Am J Psychiatry 161(8):1397–1403

24 D. Baumeister et al.

http://dx.doi.org/10.1016/j.neuroscience.2013.05.043


Adult Hippocampal Neurogenesis
in Depression: Behavioral Implications
and Regulation by the Stress System

Christoph Anacker

Abstract Adult hippocampal neurogenesis, the birth of new neurons in the den-
tate gyrus of the adult brain, can be regulated by stress and antidepressant treat-
ment, and has consistently been implicated in the behavioral neurobiology of
stress-related disorders, especially depression and anxiety. A reciprocal relation-
ship between hippocampal neurogenesis and the hypothalamus–pituitary–adrenal
(HPA) axis has recently been suggested, which may play a crucial role in the
development and in the resolution of depressive symptoms. This chapter will
review some of the existing evidence for stress- and antidepressant-induced
changes in adult hippocampal neurogenesis, and critically evaluate the behavioral
effects of these changes for depression and anxiety. The potential role of neuro-
genesis as a neurobiological mechanism for sustained remission from depressive
symptoms will be discussed, integrating existing data from clinical studies, animal
work, and cellular models. The effect of glucocorticoid hormones and the gluco-
corticoid receptor (GR) will thereby be evaluated as a central mechanism by which
stress and antidepressant may exert their opposing effects on neurogenesis, and
ultimately, on mood and behavior.
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1 Introduction

Already the psychologist William James (1842–1910) hypothesized that the ability
of human behavior to adapt to the environment may require plastic psychological
mechanisms that depend on ‘‘[…] the possession of a structure weak enough to
yield to an influence, but strong enough not to yield all at once […]’’ (reviewed in
Pascual-Leone et al. 2005). Today we have a much clearer understanding of what
comprises this ‘‘structure,’’ and we have access to a multitude of neurobiological
data, demonstrating the enormous capacity of the brain to constantly adapt, rewire,
and develop in a tightly controlled manner from early life into adulthood. One of
the perhaps most fascinating forms of neuroplasticity is the ability of the adult
brain to not only modify connections of existing cells, but to also constantly
generate completely new neurons in defined regions of the brain. Over recent
years, our appreciation of this phenomenon of ‘‘neurogenesis’’ in the adult brain,
and for its role in many important brain functions, has steadily grown. Central to
this review, neurogenesis in the adult hippocampus has been extensively studied
for its implications in the pathophysiology and treatment of neuropsychiatric
disorders. This chapter will therefore discuss the interactions of stress and neu-
rogenesis in the adult brain, and review existing evidence for the behavioral effects
of adult hippocampal neurogenesis in stress-related psychopathologies, particu-
larly depression and anxiety.

2 Plasticity Through New Brain Cells: Neurogenesis
in the Adult Hippocampus

The long-held dogma that the formation of new neurons is confined to prepubertal
development and absent in the adult brain was based on views of many distinguished
scientists at the time, including Ramon y Cajal, who had observed that the anatomical
structure of the mammalian brain was composed of individual neurons that remained
stable in their microscopic appearance (Ramon y Cajal 1928). Technical advances,
including the development of tritiated thymidine [H3]-autoradiography and electron
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microscopy, later on enabled visualization and characterization of dividing cells and
their progeny, which led to the discovery of newborn neurons in the subventricular
zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hip-
pocampal dentate gyrus (Altman and Das 1965; Kaplan and Hinds 1977).

In a pivotal study in 1998, Eriksson and colleagues discovered that adult
neurogenesis is not only confined to the brain of lower species, but indeed also
occurs in the adult brain of humans. Using postmortem brain tissue of cancer
patients, who had received injections of the synthetic nucleotide 5-bromo-deox-
yuridine (BrdU) in order to stage their tumor growth, the study revealed BrdU
incorporation not only into the growing tumor tissue, but also into proliferating
neural progenitor cells in the SVZ of the lateral ventricles and in the SGZ of the
hippocampal dentate gyrus. Moreover, some of these BrdU labeled cells were
shown to develop into neurons, demonstrating for the first time that neurogenesis
indeed also occurs in the adult human brain (Eriksson et al. 1998).

Although several studies have now confirmed these findings and demonstrated
continuous cell birth in the adult hippocampus, the functional relevance of neu-
rogenesis in humans has been the subject of intense debate. Points of criticism
have thereby mainly been the slow rate of neurogenesis and the small number of
newborn neurons, as many of these cells die shortly after birth (Goritz and Frisen
2012). These findings had raised the question whether such few new neurons may
at all be relevant to human brain function, or rather represent an evolutionary
remnant that may only have functional implications in rodents (Rakic 1985).
Spalding and colleagues recently addressed this issue, by making use of the
radioactive carbon isotope, 14C, to date the birth of new neurons in the human
brain. They have taken advantage of the 1955–1963 aboveground nuclear bomb
tests during the cold war, which had caused an elevation of atmospheric 14C that
got incorporated into plants and subsequently made its way through the food chain
into the human body. The defined period of elevated atmospheric 14C before the
Partial Nuclear Test Ban Treaty in 1963 was therefore used to retrospectively
birth-date proliferating cells that had incorporated 14C into the DNA during
mitosis. Using this method, the study demonstrated that in contrast to earlier
estimations, the number of adult-born neurons in the human hippocampus is in fact
much higher, and that indeed as many as 700 new neurons are being added to the
human hippocampus every day (Spalding et al. 2013).

But if these newborn neurons are indeed so abundant in the adult hippocampus,
what is their purpose for brain function and behavior? Although direct evidence for
a behavioral role of neurogenesis in humans is still missing, the study by Spalding
and colleagues suggests that the extent of neurogenesis in the human brain is
indeed comparable to that in mice and rats, species in which essential effects of
neurogenesis for the regulation of mood and behavior have consistently been
demonstrated. Some of this evidence for the role of hippocampal neurogenesis on
mood and behavior in rodents will therefore be discussed in the following section.
I will first review the effects of stress on adult hippocampal neurogenesis and then
delineate specifically which behaviors have been shown to be dependent on such
changes in neurogenesis.
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3 Regulation of Adult Hippocampal Neurogenesis
by Stress

The capacity of the adult hippocampus to generate new neurons has spurred
interest in how this process may be regulated by environmental influences. Con-
sidering evidence for hippocampal volume changes in depressed patients (Sheline
et al. 1996) and atrophy of hippocampal neurons during stress (Watanabe et al.
1992; Woolley et al. 1990), neurogenesis gained significant attention as a potential
mediator for stress effects on the hippocampus. One of the first studies reporting an
effect of psychosocial stress on neurogenesis had demonstrated that tree shrews
that are socially defeated once by a dominant male, develop a reduction in new-
born hippocampal neurons as a result of this acute stress exposure (Gould et al.
1997). Moreover, a one-time exposure to the stressful stimulus of predator odors
reduces cell proliferation in the developing dentate gyrus of newborn rat pups
(Tanapat et al. 1998). Such acute stress-induced reductions in neurogenesis also
extend to various paradigms of chronic stress. For example, unpredictable chronic
mild stress (UCMS), an experimental paradigm that uses a sequence of alternating
environmental stressors over a period of 4–8 weeks, causes a reduction in the
number of proliferating hippocampal progenitor cells and newborn neurons in
rodents (Santarelli et al. 2003; Surget et al. 2008, 2011; Tanti et al. 2012). At the
same time, UCMS causes anhedonia, as well as despair- and anxiety-like behavior,
which are commonly interpreted as a depression-like phenotype in rodents
(Willner 2005).

In addition to UCMS, prenatal stress also causes lifelong reductions in hippo-
campal cell proliferation, in the total number of hippocampal granule neurons, and
in the overall volume of the hippocampus (Coe et al. 2003; Lemaire et al. 2000). In
line with these detrimental effects of prenatal stress on neurogenesis, early life
adversity, modeled by daily maternal separation during the first 2 weeks of life,
causes a reduction in hippocampal progenitor cell proliferation and neuronal
development in the adult offspring (Mirescu et al. 2004). These findings are par-
ticularly relevant for the role of early mother-infant interactions in regulating
neurogenesis and behavior later in adulthood. Using cross fostering of mice pups
to dams of two different mouse strains with inherent differences in maternal care,
Koehl and colleagues demonstrated that mice raised by dams with higher levels of
maternal care show increased levels of newborn neurons as adults (Koehl et al.
2012). This finding is striking, considering that maternal care crucially determines
neuroendocrine function and stress reactivity in the offspring, and poses the
question whether changes in adult hippocampal neurogenesis may indeed mediate
these effects of maternal care on stress susceptibility later in life (Caldji et al.
2000; Liu et al. 2000; Weaver et al. 2006).

Consistent with the effects of environmental and early-life stress models,
chronic psychosocial stress also inhibits hippocampal neurogenesis and thereby
induces depression-like behavior (Lehmann et al. 2013). These effects of social
stress have also been demonstrated in nonhuman primates, in which social
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isolation causes a complex behavioral phenotype of anhedonia and subordination,
which is accompanied by a reduction in neurogenesis and reversible by antide-
pressant treatment (Perera et al. 2011).

Interestingly, on an anatomical level, chronic stress-induced reductions in
hippocampal neurogenesis are most prominent in the ventral pole of the hippo-
campus (Tanti et al. 2012; Lehmann et al. 2013). This finding is indeed striking,
considering that the ventral hippocampus, as opposed to the dorsal hippocampus,
forms neuronal connections to the hypothalamus and the amygdala, two important
structures for neuroendocrine function and mood regulation. Accordingly, lesions
of the ventral, but not the dorsal hippocampus, alter emotional behavior and stress
responses (Henke 1990), and optogenetic activation of newborn neurons in the
ventral hippocampus reduces anxiety, while their activation in the dorsal hippo-
campus regulates learning and memory (Kheirbek et al. 2013). Regulation of
neurogenesis by stress specifically in the ventral hippocampus therefore further
supports a role for neurogenesis in the control of neural networks that are crucial
for mood regulation.

But what are the mechanisms that drive these above-described stress-induced
changes in adult neurogenesis and behavior? Several molecular signaling systems
have been proposed, including (but not limited to) stress-induced elevations in
glutamate and subsequent NMDA receptor activation (Cameron et al. 1995; Gould
et al. 1997), increased levels of proinflammatory cytokines (Zunszain et al. 2011,
2012), reduced neurotrophic factors, such as brain-derived neurotrophic factor,
BDNF, (Duman 2004) and hyperactivity of the hypothalamus–pituitary–adrenal
(HPA) axis, which causes increased glucocorticoid hormone levels and activation
of the glucocorticoid receptor (GR) (Anacker et al. 2011a; Pariante and Lightman
2008). While all these signaling mechanisms likely play important parts in the
trajectory to depression, the interest in glucocorticoid effects on neurogenesis has
recently gained momentum, in light of evidence for a reciprocal interaction of
HPA axis abnormalities and hippocampal neurogenesis that may potentially
underlie the development and relapse of depression and anxiety. This chapter will
therefore focus primarily on these interactions of the HPA axis and neurogenesis,
and discuss how glucocorticoid hormones may regulate neurogenesis and thereby
ultimately affect mood and behavior.

4 The HPA Axis and Neurogenesis Regulation

The HPA axis is a major part of the neuroendocrine system, which regulates the
body’s response to stress. The HPA axis is primarily regulated by the hippo-
campus, which controls the release of corticotrophin releasing hormone (CRH) and
arginine-vasopressin (AVP) from the paraventricular nucleus (PVN) of the
hypothalamus upon exposure to stress. CRH then induces the synthesis of adre-
nocorticotrophic hormone (ACTH) from the anterior pituitary gland, which in turn
stimulates the production of glucocorticoids (cortisol in humans and corticosterone
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in rodents) in the adrenal cortex, and their release into the blood stream. Stress
causes an impairment of this tightly regulated system, subsequently resulting in
increased release of CRH from the PVN, increased synthesis of ACTH, and
enhanced release of glucocorticoids (Anacker et al. 2011a; Holsboer et al. 1984).

Glucocorticoid hormones predominantly bind to two different steroid receptors:
the type I, or mineralocorticoid receptor (MR), and the type II, or GR (Holsboer
2000). Glucocorticoids have multiple functions in almost every tissue of the
human body, including regulation of energy metabolism, immune functions,
sexuality, and mood. They can also exert negative feedback inhibition of the HPA
axis, by activating both MR and GR in the hippocampus, the PVN and the anterior
pituitary, thereby maintaining low glucocorticoid levels under normal physiolog-
ical conditions (Anacker et al. 2011a; Jacobson and Sapolsky 1991; Sapolsky et al.
1985). However, upon exposure to chronic stress, this MR- and GR-mediated
negative feedback loop is impaired, resulting in constant HPA axis hyperactivity,
increased pituitary and adrenal gland volume, and chronically high levels of
glucocorticoids (Meaney et al. 1995; Nemeroff et al. 1992; Pariante 2006; Pariante
and Miller 2001; Sapolsky et al. 1985; Anacker and Pariante 2012b).

Around 80 % of severely depressed patients exhibit such chronic hyperactivity
of the HPA axis (Anacker et al. 2011a; Juruena et al. 2006; Young et al. 1991), and
this phenomenon can also be modeled by rodent studies, which have shown HPA
axis abnormalities and increased glucocorticoid levels upon exposure to unpre-
dictable chronic mild stress, early life stress or chronic social stress (Lehmann
et al. 2013; Surget et al. 2008, 2011). Indeed, it is this persistent increase in
glucocorticoid hormones that critically contributes to the reduction in neurogenesis
and to the development of a depression-like phenotype. For example, chronic
treatment with the rodent glucocorticoid, corticosterone, reduces neurogenesis and
induces both depression- and anxiety-like behavior that is reversible by antide-
pressant treatment (David et al. 2009; Murray et al. 2008). These detrimental
effects on neurogenesis are predominantly mediated by the GR, as brief treatment
with the GR antagonist, RU486, counteracts the decrease in neurogenesis upon
glucocorticoid treatment and stress in rodents (Hu et al. 2012; Mayer et al. 2006;
Oomen et al. 2007). Moreover, treatment with high concentrations of the human
glucocorticoid, cortisol, reduces cell proliferation, and neuronal differentiation of
human hippocampal progenitor cells in vitro, an effect that is dependent on GR-
induced expression of serum- and glucocorticoid-regulated kinase 1 (SGK1)
(Anacker et al. 2013a, b).

This role of the GR as a crucial mediator for stress effects on neurogenesis and
behavior is further supported by a number of transgenic mouse studies. Mice with
a 50 % gene dose reduction of the GR in the entire body (GR+/- mice) exhibit
depressive behavior and decreased hippocampal neurogenesis, most likely because
glucocorticoid levels are increased in these mice as a result of impairments in GR-
mediated feedback regulation of the HPA axis (Kronenberg et al. 2009).
Accordingly, GR deletion in the entire central nervous system (GRNesCre mice)
causes HPA axis hyperactivity and increased glucocorticoid levels, again, likely
caused by disrupted GR-mediated feedback inhibition on the hypothalamus and
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forebrain. Interestingly, elevated glucocorticoid levels do not impair hippocampal
neurogenesis or precipitate depressive behavior in this model in which the GR is
deleted in all cells of the entire central nervous system (Gass et al. 2000; Tronche
et al. 1999). Although these findings may appear contradictory at first sight, it has
also been shown that GR deletion only in mature forebrain neurons (using
GRCamKIIaCre mice) increases glucocorticoid levels and indeed impairs adult hip-
pocampal neurogenesis and precipitates depressive behavior (Boyle et al. 2005,
2006). It is noteworthy, that the latter GR deletion in mature forebrain neurons
spares the GR in stem cells and in newborn neurons of the hippocampus, sug-
gesting that glucocorticoid-induced activation of the GR in hippocampal stem cells
and their progeny may account for the reduction in neurogenesis and the sub-
sequent development of depressive behavior in situations of stress and hypercor-
tisolemia. This is supported by a recent study, which has shown that lentiviral-
mediated knockdown of the GR, specifically in newborn cells of the hippocampus,
accelerates their neuronal differentiation, dendritic arborization, and migration into
the molecular layer of the dentate gyrus. While this GR knockdown in newborn
neurons impairs hippocampus-dependent memory consolidation (Fitzsimons et al.
2013), the role of the GR in adult hippocampal stem cells and their progeny as a
mediator for stress effects on depression remains elusive.

Taken together, the above-described studies suggest that GR activation in the
hypothalamus, pituitary, and in mature neurons of the hippocampus, is important
to regulate HPA axis feedback inhibition and glucocorticoid levels, while GR
activation specifically in newborn neurons may be detrimental for neurogenesis
and thereby possibly contribute to the development of depressive symptoms under
chronic stress. However, the effects of glucocorticoids on neurogenesis and
behavior are even more complex. For example, Lehman and colleagues have used
two powerful paradigms that both stimulate glucocorticoid secretion, but have
opposing effects on neurogenesis: chronic social defeat stress and environmental
enrichment. While glucocorticoids released during social defeat precipitate
depressive behavior by decreasing neurogenesis, glucocorticoids released during
environmental enrichment are in fact responsible for counteracting depressive
behavior by enhancing neurogenesis (Lehmann et al. 2013). These findings are
striking, as they demonstrate that glucocorticoids can have differential effects,
depending on which environmental stimulus precipitates their release. This is in
line with the emerging view that glucocorticoids may increase neurogenesis when
the underlying stress has hedonic value, as it is also the case after mating or after
physical exercise (Brown et al. 2003; Leuner et al. 2010; van Praag et al. 1999).
The concurrent regulation of protective factors, such as oxytocin or dopamine,
may be part of the mechanism that increases neurogenesis in the presence of high
glucocorticoid levels under eustress conditions (Hoglinger et al. 2004; Leuner
et al. 2012). This is further supported by data showing that one and the same GR
can exert opposing effects on gene transcription depending on which protein–
protein interactions are induced by the combination of activating stimuli (Diamond
et al. 1992; Kappeler and Meaney 2010). It will therefore be important for future
studies to take into consideration that the function of the GR is indeed highly
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complex, and experimental investigations of stress-induced impairments in neu-
rogenesis and behavior will need to thoroughly scrutinize the molecular regulation
of the GR in defined brain regions and cell populations, in order to fully capture
the molecular and neurobiological pathways that ultimately contribute to the
pathophysiology of depression.

5 Neurogenesis-Dependent Effects of Stress

As discussed above, a multitude of studies have demonstrated consistent
glucocorticoid-mediated effects of stress on hippocampal neurogenesis. However,
the causal relationship between reduced neurogenesis and the development of
anxiety and depression has long been controversial. Indeed, rodent studies
investigating a functional role of neurogenesis for mood and behavior have shown
that reducing neurogenesis by focal X-ray irradiation of the hippocampus or by
treatment with the cytostatic drug, methylazoxymethanol (MAM), do not induce
depression-like behaviors per se (Bessa et al. 2009; David et al. 2009; Santarelli
et al. 2003; Surget et al. 2008). These findings had initially suggested that, a
reduction in neurogenesis by itself might not primarily be involved in precipitating
behavioral abnormalities. However, it is noteworthy that depleting neurogenesis
with MAM treatment increases the latency to feed in the novelty suppressed
feeding test. In this test, MAM-treated, neurogenesis-deficient rats show a greater
latency to feed in a novel environment, such as an open field arena, indicating a
higher level of anxiety and approach-avoidance behavior in rats in which neuro-
genesis in not intact (Bessa et al. 2009). These findings may therefore point toward
a potential role for neurogenesis primarily in the behavioral domain of anxiety,
rather than in depression. Accordingly, Revest and colleagues demonstrated that
neurogenesis-deficient mice are characterized by increased fear. Using overex-
pression of the proapoptotic gene Bax in adult hippocampal neurons to ablate
neurogenesis, the authors found that neurogenesis-deficient mice escaped faster
into a protective cylinder when exposed to a predator, indicating a particular
involvement of neurogenesis for fear-related behaviors (Revest et al. 2009).

Recent work has further expanded on these findings, by examining the role of
neurogenesis specifically as a mediator for the behavioral response to stress.
Snyder and colleagues used transgenic mice in which neurogenesis can be spe-
cifically ablated during adulthood (GFAP-TK mice). Using this transgenic
approach, the authors demonstrated that acute restraint stress causes higher levels
of anxiety in neurogenesis-deficient mice as compared to mice in which neuro-
genesis is still intact, pointing toward a potential role for neurogenesis as a
‘‘buffer’’ for the behavioral response to stress. Interestingly, in contrast to the data
from the above-described earlier studies, the paper by Snyder et al. also showed
that total ablation of neurogenesis did indeed precipitate behavioral despair and
anhedonia, even under baseline conditions when mice were not exposed to any
stress (Snyder et al. 2011).
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Importantly, neurogenesis may be particularly relevant for achieving sustained
spontaneous remission from depressive symptoms: While rats with intact neuro-
genesis recover from stress-induced depressive symptoms within 4 weeks after a
6-week UCMS period, neurogenesis-ablation by MAM treatment prevents this
spontaneous recovery from depression-like behavior (Mateus-Pinheiro et al. 2013).
When comparing these rodent findings with clinical studies, it is interesting to note
that remission from depressive symptoms in patients has been associated with a
normalization of HPA axis hyperactivity after antidepressant treatment. Indeed,
depressed patients that continue to show HPA axis hyperactivity after treatment are
less likely to achieve remission and are at higher risk for relapse (Appelhof et al.
2006; Zobel et al. 2001). This is particularly striking, considering the preclinical
evidence for neurogenesis as a crucial component of HPA axis regulation. Spe-
cifically, neurogenesis-deficient mice show a more pronounced glucocorticoid
surge after acute stress when compared with mice in which neurogenesis is intact
(Schloesser et al. 2009; Snyder et al. 2011). However, whether a stress-induced,
partial reduction in neurogenesis can be responsible for the development of
depressive behavior and for impairments in spontaneous remission, to the same
extent as the aforementioned complete ablation of neurogenesis affects these
behaviors, still remains to be elucidated. Nevertheless, these findings may suggest
that neurogenesis disturbances impair hippocampal inhibitory control over the HPA
axis, subsequently contributing to persistent HPA axis hyperactivity, which in turn
further reduces hippocampal neurogenesis through chronic elevations in gluco-
corticoid hormones. This may set into motion a vicious cycle of increased gluco-
corticoids and reduced neurogenesis, ultimately leading to sustained anxiety and
depression-like behavior and a higher risk for relapse (Anacker and Pariante 2012a,
b). Counteracting these deeply manifested impairments in adult neurogenesis may
therefore be a promising strategy for future antidepressant treatments to restore
plastic disturbances in the hippocampal-neuroendocrine circuitry, which may be
particularly necessary to confer long-term remission from anxiety and depression.

6 Regulation of Adult Hippocampal Neurogenesis
by Antidepressants

If, as outlined above, adult hippocampal neurogenesis mediates stress-induced
impairments in HPA axis function and behavior, do antidepressants exert their
behavioral effects by increasing neurogenesis? In the first study to ever examine the
effects of chronic antidepressant treatment on hippocampal neurogenesis, Malberg
and colleagues found that different pharmacological classes of antidepressant drugs,
as well as electroconvulsive shocks, all increase progenitor cell proliferation in the
rat dentate gyrus by *20–50 % (Malberg et al. 2000). The study also reported that
75 % of these adult-born cells develop into neurons, while only 13 % become glia
(Malberg et al. 2000). A large number of rodent studies has now replicated these
findings, and demonstrated that the stress- and glucocorticoid-induced reduction in
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neurogenesis is reversed by a broad range of pharmacologically different antide-
pressants and experimental conditions (e.g., (Banasr et al. 2006; Dagyte et al. 2010;
David et al. 2009; Egeland et al. 2010; Surget et al. 2008, 2011). Furthermore, the
effects of antidepressants to increase neurogenesis have also been observed in adult
bonnet monkeys (Perera et al. 2007, 2011), in human postmortem brain tissue of
depressed patients (Boldrini et al. 2009, 2012), and in vitro, in antidepressant-treated
human hippocampal progenitor cells (Anacker et al. 2011b).

It is particularly noteworthy that, in line with neurogenesis-dependent regulation
of HPA axis function, the antidepressant-induced increase in hippocampal neuro-
genesis is indeed crucial to restore hippocampal inhibitory control over the HPA
axis and to normalize glucocorticoid levels after chronic stress in rodents (Surget
et al. 2011). These findings therefore indicate that antidepressants may ameliorate
the detrimental effects of stress on HPA axis function and mood by restoring adult
hippocampal neurogenesis. Interestingly, while antidepressants counteract the
stress- and glucocorticoid-induced reduction in neurogenesis, their pro-neurogenic
effect is at the same time dependent on the presence of glucocorticoids: For
example, SSRIs increase neurogenesis only upon cotreatment with glucocorticoids
in mice and in human hippocampal progenitor cells (Anacker et al. 2011b; David
et al. 2009). In addition, in adrenalectomized rats, in which corticosterone con-
centrations have been surgically clamped at low levels, fluoxetine does no longer
increase hippocampal neurogenesis (Huang and Herbert 2006). Interestingly, this
effect is also observed when corticosterone concentrations are clamped at constant
high levels, suggesting that the circadian rhythm of the HPA axis may be relevant
for the SSRI-induced stimulation of neurogenesis (Huang and Herbert 2006).

In line with neurogenesis and HPA axis interactions, antidepressants have been
shown to regulate the function of the GR both in vivo and in vitro (Anacker et al.
2011a, b; Pariante et al. 1997, 2001). However, in contrast to glucocorticoids, anti-
depressants activate the GR by inducing cyclic adenosine monophosphate (cAMP)
and protein kinase A (PKA)-dependent phosphorylation of the receptor, which
causes GR binding to the DNA and activates a GR-dependent set of downstream
target genes that is different from the gene expression profile induced by glucocor-
ticoid hormones (Anacker et al. 2011b; Guidotti et al. 2013; Miller et al. 2002).
Importantly, this cAMP/PKA-dependent activation of the GR is a crucial mechanism
for the antidepressant-induced increase in proliferation and neuronal differentiation
of human hippocampal progenitor cells (Anacker et al. 2011b), and may therefore be
a molecular mediator around which stress and antidepressants exert their opposing
effects on gene transcription, hippocampal neurogenesis, and ultimately, behavior.

7 Neurogenesis-Dependent Effects of Antidepressants

In a groundbreaking study in 2003, Santarelli and colleagues demonstrated that
some of the above-described behavioral effects of antidepressants are indeed
dependent on neurogenesis. While antidepressants counteracted stress-induced
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behavioral symptoms in control mice, mice in which neurogenesis was depleted by
focal X-ray irradiation of the hippocampus failed to respond to treatment with
either fluoxetine or imipramine, demonstrating that neurogenesis is indeed nec-
essary for the behavioral response to pharmacologically different antidepressants
(Santarelli et al. 2003). Moreover, the necessity of adult hippocampal neurogenesis
for the therapeutic action of antidepressants has also been demonstrated in non-
human primates, in which no behavioral effects of fluoxetine are observed when
neurogenesis is abolished by X-ray irradiation, extending the necessity of hippo-
campal neurogenesis for mediating the behavioral effects of antidepressants also
into higher mammals (Perera et al. 2011).

Despite this aforementioned evidence, conflicting data exist, showing that only
some behavioral effects of antidepressants are dependent on neurogenesis. For
example, even when neurogenesis is ablated, fluoxetine reduces the immobility in
the forced swim test, a test in which mice show freezing behavior when placed in a
water basin, and in the novelty-induced hypophagia test, a test in which mice
consume less sweet milk when placed in a foreign cage (Bessa et al. 2009; Holick
et al. 2008). These findings therefore suggest that some antidepressant effects on
behavior may indeed be completely independent of antidepressant-induced neu-
rogenesis. However, neurogenesis-deficient mice consistently fail to improve upon
antidepressant treatment in the novelty-suppressed feeding test, suggesting that
antidepressants may have both neurogenesis-dependent and -independent effects
on mood and behavior (David et al. 2009).

Interestingly, pharmacological compounds that target the HPA axis, such as
CRH antagonists, increase neurogenesis and ameliorate depressive behavior, but
the behavioral effect of these compounds is still observed when neurogenesis is
depleted (Surget et al. 2008), further supporting the notion that normalizing HPA
axis hyperactivity may be a promising therapeutic strategy to increase neurogen-
esis and to overcome depressive symptoms.

A further criticism for a direct behavioral effect of neurogenesis emerged
recently, when an elegant study showed that enhancing neurogenesis by genetic
ablation of the proapoptotic gene, Bax, does not recapitulate any antidepressant-
like behavioral response (Sahay et al. 2011). However, the study investigated the
effects of enhancing neurogenesis under baseline conditions, when the animal is
not challenged by chronic stress. In the light of some of the above-described
studies, which have shown that hippocampal neurogenesis may be particularly
important for eliciting behavioral effects only under conditions of stress (Anacker
et al. 2011b; Snyder et al. 2011; Surget et al. 2011), it will be crucial to explore
‘‘stress’’ as the critical link between neurogenesis and antidepressant action, and to
examine whether increasing neurogenesis may indeed confer antidepressant effects
by counteracting stress-induced behavioral abnormalities. Although the study by
Sahay and colleagues did not address such neurogenesis-stress interactions, it did
reveal an important new function for neurogenesis in the adult hippocampus: Mice
in which neurogenesis was increased were more capable of distinguishing a fear-
associated situation from a similar situation that does not actually pose a potential
threat, a phenomenon called ‘‘pattern separation’’ (Sahay et al. 2011). Such
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neurogenesis-dependent regulation of pattern separation may be a particularly
relevant element of the aforementioned vicious cycle of HPA axis hyperactivity
and neurogenesis reduction in depression: ambiguous environmental cues may be
evaluated as threatening or as generally negative when neurogenesis is reduced,
leading to stress responses and HPA axis activation even when no actual threat is
present. This exaggerated stress reactivity may thus increase glucocorticoid levels
and further impair hippocampal neurogenesis, ultimately leading to sustained
anxiety and depression-like behavior. This may indeed contribute to the devel-
opment of the above-hypothesized ‘‘vicious cycle’’ of reduced neurogenesis and
impaired neuroendocrine function, and may represent yet another aspect of how
changes in neurogenesis may cause long-term disturbances in stress reactivity and
mood (Anacker and Pariante 2012a, b; Sahay et al. 2011). Accordingly, increasing
neurogenesis by antidepressant treatment may improve the cognitive ability to
separate such ambiguous cues and thereby help to overcome prolonged heightened
sensitivity to developing stressful responses and associated psychological
disturbances.

8 Adult Hippocampal Neurogenesis in Depression:
Evidence from Human Studies

While rodent studies and cellular models are powerful, widely used tools to
investigate the molecular regulators and behavioral implications of hippocampal
neurogenesis upon stress, less evidence exists for changes in neurogenesis in
depressed patients. The first study that had investigated neurogenesis in hippo-
campal postmortem brain tissue of depressed patients had found no differences in
the number of proliferating neural progenitor cells in the anterior hippocampus of
medicated depressed patients (corresponding to the ventral hippocampus in
rodents) (Reif et al. 2006). A second study investigated both, the number of
proliferating progenitor cells and the total number of stem cells in postmortem
brain tissue of depressed patients with and without antidepressant treatment
(Boldrini et al. 2009). The strength of this latter study lay in the availability of
toxicological data from blood and urine samples, which allowed to screen whether
all medicated patients did indeed take their prescribed medication, and permitted
exclusion of subjects with substance abuse. Although the study found that
depressed patients have around 50 % less proliferating hippocampal stem cells
than healthy controls, this effect did not reach significance in their sample of seven
controls and five unmedicated depressed patients. However, depressed patients
who had received antidepressant treatment showed a strong increase in cell pro-
liferation and in the total number of neural stem cells in the hippocampus when
compared to depressed patients without antidepressant treatment as well as
unmedicated healthy controls. Interestingly, these antidepressant-induced changes
in neurogenesis were more pronounced in the anterior part of the dentate gyrus,
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which, as described before, is particularly involved in mood and neuroendocrine
regulation (Boldrini et al. 2009, 2012). Interestingly, in contrast to the afore-
mentioned studies that investigated changes in neurogenesis in patients ranging
from 17 to 62 years of age, elderly depressed patients with an average age of
68 years and known disturbances in HPA axis function, exhibit a significant
reduction in total hippocampal stem cell number but no regulation by previous
antidepressant treatment (Lucassen et al. 2010).

Taken together, although conflicting data exists, some studies have pointed
toward changes in adult hippocampal neurogenesis in the brain of depressed and
antidepressant-treated patients. In order to clearly address to what extent adult
hippocampal neurogenesis may be involved in depression pathophysiology and
antidepressant treatment response, future studies, using larger sample sizes and
controlling for patients’ medical history, pharmacological treatment, and age, may
help to disentangle some of the neurobiological pathways that may lead to dis-
parate results in post-mortem brain studies.

9 Neurogenesis and Mood Regulation: Evolutionary
Adaptation Gone Awry?

When discussing the implications of neurogenesis for behavior in situations of
stress and in depression, the question arises why such a neurobiological pathway to
mental illness exists at all in any organism, and why not every individual has
biologically evolved to be resistant to the seemingly detrimental effects of stress
on behavior. Glasper and colleagues previously discussed this question and sug-
gested that, from an evolutionary point of view, aversive and possibly life-
threatening situations may reduce hippocampal neurogenesis in order to prepare an
individual to cope with similar situations effectively in the future. Although
neurogenesis-dependent induction of anxiety and fear may initially appear dis-
advantageous or even harmful to an individual, these behavioral alterations can
also be considered adaptive, as they serve the purpose to maximize chances for
survival in a threatening environment in which withdrawal and social avoidance
are necessary to reduce exposure to predators and to live cautiously with limited
resources in a confined but safe environment. Conversely, an individual living in
an enriched environment with minimal exposure to predators and other life-
threatening situations, does not require such a behavioral strategy in order to
survive, but can instead make use of existing opportunities in its safe environment,
thereby maximizing health and mating success through increased food intake and
social- and sexual interactions (Glasper et al. 2012). Changes in hippocampal
neurogenesis and behavior may therefore serve the purpose to maximize the
individual’s contribution to the gene pool by making best use of all available
resources in order to extend the lifespan of an individual and its progeny.
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However, the neurobiological mechanisms mediating these environment-
behavior interactions in rodents may have been maintained throughout evolution
and may still exist in humans. It is therefore important to regard a reduction in
neurogenesis not simply as a ‘‘malfunction’’ of the brain, but instead, as an adaptive
mechanism, which, from an evolutionary point of view, may have the specific
purpose to modulate behavior according to the environment. Considering how
dramatically environmental ‘‘threats’’ have changed in modern society, the same
adaptive mechanisms that served to maximize survival, may nowadays induce
behaviors that do not reflect the appropriate behavioral response to the environ-
mental situation, thus leading to pathological effects, and ultimately, mental illness.

10 Conclusion and Outlook

It has become evident over recent years that adult hippocampal neurogenesis is
indeed a crucial mechanism in the behavioral neurobiology of stress-related dis-
orders, particularly depression and anxiety. In William James’ words, neurogen-
esis in the adult hippocampus appears to form part of a neurobiological network
that is ‘‘weak enough to yield to an influence,’’ and to convert environmental
signals into behavioral responses, while at the same time being tightly controlled
on the cellular and molecular level, ensuring that this structure is ‘‘strong enough
not to yield all at once.’’ This tight regulation provides a neurobiological safeguard
for the behavioral response to detrimental environmental signals and specifically
buffers stress effects on the brain. A considerable amount of animal research on the
implications of neurogenesis for mood and behavior has shown that neurogenesis
is important for both, the pathogenesis of depressive- and anxiety-like states, as
well as the behavioral response to antidepressant treatment. These behavioral
effects in rodents indeed appear to be important also for human patients, as
postmortem brain studies in depressed patients and in vitro studies on human
hippocampal stem cells have shown similar changes in neurogenesis as in
chronically stressed rodents. The challenge for future research will lie in identi-
fying relevant molecular mediators that can be targeted in order to reverse
reductions in neurogenesis or to prevent the occurrence of neurogenesis abnor-
malities under conditions of stress. Finding such mechanisms may have great
potential to lead to improved antidepressant treatment therapies that are aimed at
normalizing HPA axis abnormalities, and ultimately, at achieving long-term
remission from depression.
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Impact of Stress on Prefrontal
Glutamatergic, Monoaminergic
and Cannabinoid Systems

M.Danet Lapiz-Bluhm

Abstract Stress has been shown to have marked and divergent effects on learning
and memory which involves specific brain regions, such as spatial and declarative
memory involving the hippocampus, memory of emotional arousing experiences
and fear involving the amygdala, and executive functions and fear extinction
involving the prefrontal cortex or the PFC. Response to stress involves a coordi-
nated activation of a constellation of physiological systems including the activa-
tion of the hypothalamic-pituitary-adrenal (HPA) axis and other modulatory
neurotransmitters and signaling systems. This paper presents a concise review of
the effects of stress and glucocorticoids on the glutamatergic and monoaminergic
(including noradrenergic, dopaminergic, and serotonergic systems) neurotrans-
mitter systems as well as endocannabinoid signaling. Because of the breadth of the
scope of this topic, the review is limited to the effects of stress on these brain
systems on the prefrontal cortex, and where relevant, the hippocampus and the
amygdala.
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1 Introduction

Stress is a nonspecific response of the body to any demand placed on it (Selye
1936). A stressor therefore is an event or experience that threatens the ability of
the individual to adapt and cope. The brain is the central organ responsible for the
adaptation to stress. It perceives and determines what is threatening, and orches-
trates the behavioral and physiological response to the stressor (McEwen and
Gianaros 2011). The stress response involves a coordinated activation of a con-
stellation of physiological systems: an autonomic response and a neuroendocrine
response (Hill and Tasker 2012). The autonomic response involves stimulation of
the sympathetic motor and hormonal outputs via descending neural circuits orig-
inating in hypothalamic preautonomic control centers. The neuroendocrine stress
response is mediated by activation of the hypothalamic-pituitary-adrenal (HPA)
axis. This response results in an increase of circulating corticosteroids and corti-
costeroid coordination of activity in multiple target organ systems (Pecoraro et al.
2006).

The general nature of the connectivity of the HPA axis is well-known and an
overview is discussed in another chapter of this book (Baumeister et al. 2014).
Exposure to a stressor causes the activation of neural inputs to corticotrophin-
releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus
(PVN) to release CRH and vasopressin from axonal terminals into the pituitary
portal circulation. Subsequently, CRH and vasopressin stimulate cells of the
anterior pituitary to produce and release adrenocorticotrophic hormone (ACTH)
into the systemic circulation. Circulating ACTH then stimulates the synthesis and
secretion of corticosteroids from the cortex of the adrenal glands. Systemic cor-
ticosteroids then elicit both rapid and protracted actions in target tissues and
organs, including the brain (Pecoraro et al. 2006; Tasker and Herman 2011).

The HPA axis is under negative feedback control by circulating glucocorticoids
(Hill and Tasker 2012). This glucocorticoid feedback regulation of the HPA axis
can occur directly at the level of the hypothalamus (Evanson et al. 2010) and
pituitary (Russell et al. 2010), as well as at upstream limbic structures, such as the
hippocampus (Sapolsky et al. 1984; Furay et al. 2008), paraventricular thalamus
(Jaferi et al. 2003; Jaferi and Bhatnagar 2006), and prefrontal cortex (Hill et al.
2011; Radley and Sawchenko 2011). Outputs from the prefrontal cortex (PFC) and
hippocampus/subiculum comprise excitatory projections from principal neurons
that transit to the paraventricular nucleus, and reverse their signal via inhibitory
relays in the bed nucleus of the stria terminalis (BNST) and peri-paraventricular
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hypothalamic regions (Radley and Sawchenko 2011; Ulrich-Lai and Herman
2009). The direct negative feedback actions of glucocorticoids in the PVN and
pituitary are inhibitory (Evanson et al. 2010). Interestingly, the involvement of
higher limbic structures in the negative glucocorticoid feedback control of the
HPA axis appears to be specific response to psychological stressors, and not
physiological stressors (Furay et al. 2008).

Stress has been shown to have marked diverse effects on learning and memory
which involves specific brain regions (Diamond et al. 2007; Lupien 2009), such as
spatial and declarative memory involving the hippocampus, memory of emotional
arousing experiences and fear involving the amygdala, and executive functions
and fear extinction involving the prefrontal cortex or the PFC. The prefrontal
cortex is essential for behavioral adaptation. It is responsible for the inhibition of
inappropriate actions and flexible regulation of behavior that enables a proper
response to the changes in the environment (Milad et al. 2006; Milad and Quirk
2002).

This chapter aims to address the effects of stress and glucocorticoids on the
glutamatergic, monoaminergic (i.e., noradrenergic, dopaminergic, and serotoner-
gic), and cannabinoid systems, with emphasis on the prefrontal cortex. In some
instances, effects on other regions such as the hippocampus and amygdala are also
mentioned.

2 The Effects of Stress on the Glutamatergic System

Glutamate is the major excitatory neurotransmitter in the brain. A detailed review
on the glutamatergic neurotransmission in the nervous system is available else-
where (Niciu et al. 2013) and will not be discussed here. Glutamate is a key
intermediary metabolite in the detoxification of ammonia and a building block in
the synthesis of peptides and proteins. Glutamate is present at extremely high
concentrations within the cells of the central nervous system. Tight regulatory
processes are in place to limit extracellular levels and modulate receptor activity
that ensure optimal neurotransmission and prevent against potential excitotoxicity
(Niciu et al. 2013). De novo neuronal glutamate is synthesized from glucose via
the Krebs cycle and the transamination of a-oxoglutarate (Erecinska and Silver
1990). It can also be recycled through the glutamate-glutamine cycle. Exocyto-
toxic vesicular release of glutamate underlies the vast majority of excitatory
neurotransmission in the brain. This is a strictly regulated process in which the
synaptic vesicles that store glutamate merge and then fuse with the presynaptic
membrane in response to stimulation. In glutamatergic synapses, presynaptic
terminals are normally associated with specialized postsynaptic dendritic spines.
Glutamatergic synapses serve as excitatory relay stations between presynaptic
nerve terminals and postsynaptic dendritic spines (axo-dendritic synapses) or
adjacent nerve endings (axo-axonal synapses) (Niciu et al. 2013).
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The core presynaptic machinery for glutamate release is SNARE (soluble
N-ethylmaleimide)-sensitive fusion protein attachment protein receptor complex
(Lang and Jahn 2008; Sudhof and Rothman 2009). The SNARE complex is formed
by the interaction of two synaptic membrane proteins (syntaxin-1 or syntaxin-2
and SNAP-25) and a vesicular protein (synaptobrevin-1 or synaptobrevin-2). It is
thought to mediate the fusion of synaptic vesicles with the presynaptic membrane
(Sudhof and Rothman 2009).

Glutamate exerts its action through activation of ionotropic and metabotropic
glutamate receptors. Three classes of ionotropic glutamate receptors have been
identified and named based on their agonist selectivity: N-methyl-D-aspartate
(NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)
and kainate receptors. Ionotropic glutamate receptors form tetrameric complexes
of individual/heteromeric subunits. Metabotropic glutamate receptors exert their
effects via the recruitment and activation of intracellular trimeric G proteins and
downstream signal transduction pathways. There are currently eight metabotropic
glutamate receptors identified: mGluR1–8 receptors (Kim et al. 2008).

Glutamate regulates synaptic transmission and plasticity by activating ionotro-
pic glutamate (AMPA and NMDA) and metabotropic glutamate receptors
(mGluR1–8). The number and stability of these receptors at the synaptic membrane
determine excitatory synaptic efficacy of these receptors. Several mechanisms may
control the surface expression of NMDA receptors (NMDARs) and AMPA
receptors (AMPARs). As reviewed by Popoli et al. (2011), these mechanisms
include PDZ (PDZ-95/Discs-large/ZO-1) domain-mediated interactions between
channel subunits and synaptic scaffolding proteins, clathrin-dependent endocytosis
regulated by phosphorylation and motor protein-based transport along microtubule
or actin cytoskeletons. The Rab family small GTPases, which function as key
regulators for all stages of membrane traffic, is involved in the internalization,
recycling, and spine delivery of NMDARs and AMPARs. The synthesis and deg-
radation of postsynaptic glutamate receptors are dynamically regulated. Glutamate
is cleared from the extracellular space via high-affinity excitatory amino acid
transporters (EAATs), which are located on neighboring glial cells (EAAT1–2) and
on neurons (EAAT3–5) (O’Shea 2002). In glial cells, glutamate is converted into
glutamine by glutamine synthetase. Glutamine is then transported back into the
glutamatergic neuron, where it is hydrolyzed into glutamate by glutaminase
(Erecinska and Silver 1990). Uptake by EAATs is the primary mechanism through
which the action of extracellular glutamate is terminated.

Depending on the type, intensity, and duration of the stressor, stress can have
either plasticity-enhancing effects that are associated with improved cognition and
function or noxious effects that are associated with impaired function. Studies have
elucidated how stress-induced changes in various aspects of glutamate neuro-
transmission are causally linked to each other and to the glucocorticoid responses
to stress. A review (Popoli et al. 2011) provides an in-depth investigation of the
nature of the response of the glutamatergic system in response to acute and chronic
stress.

48 M.D. Lapiz-Bluhm



Acute stress have been shown to have the general effect of increasing gluta-
matergic neurotransmission in the PFC and other regions associated with memory,
learning, and affect, by inducing both genomic and nongenomic changes at various
sites within the glutamatergic synapse (Popoli et al. 2011). Mineralocorticoid or
glucocorticoid receptor-mediated effects increase the presynaptic release of glu-
tamate. At the postsynaptic site, acute stress seems to increase the surface
expression and density of ionotropic glutamate receptors, resulting in synaptic
potentiation, with the mechanism and timing of these effects varying between
brain regions.

Acute stress affects glutamate clearance and metabolism through an increased
expression of EAAT2 and possibly other glutamate transporters, matching the
increased synaptic release of glutamate following acute stress exposure. These
changes could possibly contribute to the adaptive stress response on cognitive
functions, where moderate acute stress facilitates classical conditioning (Shors
et al. 1992), associative learning (Beylin and Shors 2003) and working memory
(Yuen et al. 2009).

On the other hand, chronic stress exposure seems to have different effects on the
glutamate synapse. Chronic stress has been shown to cause prolonged periods of
stimulated glutamate release following acute stress exposure, at least in the hip-
pocampus. This elevated synaptic glutamate activity has been associated with
changes in the surface expression of AMPA receptor and NMDA receptor subunits
and decreased transmission efficiency and potentially impaired synaptic plasticity.
Rodent studies suggest that the PFC may be specifically sensitive to the chronic
stress-induced effects on postsynaptic receptor function. Chronic stress has also
been shown to have effects on glial cell morphology, metabolism, and function in
the PFC and possibly also the hippocampus. These long-lasting chronic stress-
induced changes in glutamatergic transmission may be linked to the impairments
in spatial and contextual memory performance and attentional control (Liston et al.
2006; McEwen 1999) and the impaired synaptic plasticity in the hippocampus—
PFC connection that have been observed in rats after chronic stress (Cerqueira
et al. 2007). The decreased ability to clear extracellular glutamate as a result of
impaired glial cell uptake and metabolism, combined with stress-induced changes
in glutamate release and glutamate receptor function, could provide a patho-
physiological mechanism leading to many of the structural changes observed in
brain regions of individuals with stress-associated psychiatric disorders, such as
mood and anxiety disorders (Popoli et al. 2011).

3 The Effects of Stress on the Noradrenergic System

The noradrenergic (NAergic) system in the brain is considered to play an important
role in attention, sleep and wakefulness, learning and memory, emotion, repro-
duction, and central responses to stress (Berridge and Waterhouse 2003; Sara 2009).
The locus coeruleus (LC), a pontine nucleus located near the pontomesencephalic
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junction, is the largest group of NAergic neurons in the central nervous system
(Samuels and Szabadi 2008). There are seven distinctive clusters of NAergic cell
bodies (A1–A7), which projects extensively to widespread areas of the brain and
spinal cord. Through its action upon corticotrophin-releasing factor neurons in the
paraventricular nucleus (PVN) of the hypothalamus (Pacak and Palkovits 2001; Itoi
et al. 2004), the NAergic system is able to influence the hypothalamic-pituitary-
adrenal stress axis. The NAergic afferents to the paraventricular nucleus originate
mainly from the medullary NAergic nuclei and reach the PVN via the ventral
NAergic bundle.

The effects of noradrenaline are mediated via two main receptor categories:
a-andb-adrenoceptors (Pertovaara2013;RuffoloandHieble1994).a-Adrenoceptors
are classified into subtypes a1A, a1B, a1D, a2A, a2B, and a2C. b-adrenoceptors are
classified into subtypes b1, b2, and b3. In general, guanine nucleotide-binding
regulatory proteins (G proteins) mediate the actions of adrenoceptors. a2-
Adrenoceptors decrease intracellular adenylcyclase activity through Gi or directly
modify activity of ion channels, such as the Na+/H+ antiport, Ca2+ channels, or K+

channels (Summers and McMartin 1993). b-Adrenoceptors increase adenylcyclase
activity through Gs. a1-Adrenoceptors are coupled to phospholipase C through
Gq or they are coupled directly to Ca2+ influx (Summers and McMartin 1993).
Adrenoceptors located on the catecholaminergic neurons are considered autore-
ceptors. a2-Adrenergic autoreceptors located in the somatodendritic area inhibit
impulse discharge of adrenergic neurons and those on axon terminals inhibit the
release of the adrenergic neurotransmitter. Adrenoceptors located on nonadren-
ergic target cells are heteroreceptors that have varying effects depending on the
target cell and the subtype of the adrenoceptor.

Research has documented the relationship between stress and locus coeruleus
activation. Earlier studies have shown that exposure to stressful stimuli was
associated with robust activation of the locus coeruleus in cats (Rasmussen et al.
1986a, b). Exposure to stressors was also associated with markedly increased
tyrosine hydroxylase transcripts (Chang et al. 2000) and expression of c-fos, an
immediate early gene product (Pirnik et al. 2004) in the locus coeruleus. Inter-
estingly, the stress-induced tyrosine hydroxylase gene expression was influenced
by the levels of circulating glucocorticoid (Makino et al. 2002).

Further research is needed to clarify the nature of the neural substrates involved
in the stress-induced locus coeruleus activation. Corticotrophin-releasing factor
(CRF)-containing neuronal system may participate in this activation (Itoi and
Sugimoto 2010). The locus coeruleus receives CRF-immunoreactive afferents.
Direct application of CRF to the locus coeruleus has been shown to activate the
firing of these neurons (Jedema and Grace 2004). Handling stress-induced nor-
adrenaline release in the prefrontal cortex was inhibited by a CRF receptor
antagonist CP-154,526, and an NMDA receptor antagonist CPP, whereas it was
potentiated by idazoxan, an alpha-2-adrenergic antagonist (Kawahara et al. 2000).
These results suggest that CRF and glutamate may mediate the handling stress-
induced prefrontal activation and the alpha-2-adrenergic receptors may inhibit it.
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The role of the locus coeruleus in fear and anxiety was first suggested in the
1970s following studies which showed that electrical stimulation of the locus
coeruleus resulted in particular behaviors that were observed in fearful or threat-
ening situations in the wild (Redmond et al. 1976). Subsequent studies in rats
involved the examination of whether ablation of the locus coeruleus elicits
behaviors comparable with those seen in monkeys. However, chemical ablation of
the locus coeruleus in rats using the neurotoxin 6-hydroxydipamine (6-OHDA),
resulting in depletion of noradrenaline, failed to show any signs of impairment in
learning and performance of fear-motivated tasks (Mason and Fibiger 1979). The
noradrenaline depleted rats were slower in habituating to novelty. These rats were
also more reluctant to leave a familiar place and took longer to consume the food
pellets in an unfamiliar place. These data suggest increase in fear following the
lesion. This is opposite to the predictions of the fear and anxiety hypothesis
derived from the monkey studies (Itoi and Sugimoto 2010). A similar increase in
‘neophobia’ (i.e., fear in response to novelty) was also observed in subsequent
studies from other laboratories (Harro et al. 1995; Lapiz et al. 2001). The dis-
crepancy between the result from monkey and rat studies is yet to be explained,
although this could be attributed to species differences.

Studies have supported for the functional involvement of the locus coeruleus in
the regulation of the HPA stress axis. 6-OHDA lesion of the locus coeruleus
attenuated the plasma ACTH and corticosterone responses induced by acute-
restraint stress, suggesting the partial involvement of the locus coeruleus in HPA
regulation (Ziegler et al. 1999). On the other hand, inhibition of the locus coe-
ruleus by local infusion of muscimol, a GABAergic agonist, reduced c-fos
expression induced by foot shock in the LC, paraventricular nucleus, amygdaloid
nuclei, and cingulate cortex (Passerin et al. 2000). These studies support for the
role of the LC in positively regulating the HPA stress axis.

Radley et al. (2008) reported that ablation of NAergic inputs to this medial
prefrontal cortex resulted in the attenuation of stress-induced c-fos and CRF mRNA
expression in the paraventricular nucleus, while the stress-induced c-fos in the
medial prefrontal cortex was enhanced. These authors concluded that the norad-
renergic inputs originating from the LC to the medial prefrontal cortex maybe
inhibitory in nature and thus disinhibitory to the putative gamma-aminobutyric acid
or GABAergic inputs to the paraventricular nucleus, leading to the activation of the
HPA output.

4 Effects of Stress on the Dopaminergic System

The brain dopaminergic (DAergic) system consists of projections originating from
brain areas that synthesize dopamine (DA) for distribution to four axonal path-
ways, namely, (1) nigrostriatal; (2) mesolimbic; (3) mesocortical; and (4) tuber-
oinfundibular pathways. These pathways have distinct connections and functions,
as per review by Vallone et al. (2000). Projections constituting the nigrostriatal
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pathway arise from dopamine-synthesizing neurons of the midbrain nucleus, the
substantia nigra compacta (SNc) which innervates the dorsal striatum (caudate-
putamen). The nigrostriatal pathway is involved in the control of movement and its
degeneration causes Parkinson’s disease. The mesocortical pathway arises from
the ventral tegmental area (VTA) and innervates different regions of the frontal
cortex. This pathway seems involved in some aspects of learning and memory
(Taghzouti et al. 1991). The mesolimbic pathway originates from the midbrain
ventral tegmental area and innervates the ventral striatum (nucleus accumbens),
the olfactory tubercle, and parts of the limbic system. It has been implicated in
influencing motivated behavior. The tuberoinfundibular pathway arises from cells
of the periventricular and arcuate nuclei of the hypothalamus, and is involved in
the control of milk production from mammary glands (Doppler 1994).

Dopamine exerts its action by binding to specific membrane receptors. These
receptors belong to the family of seven transmembrane domain G protein-coupled
receptors. Five distinct dopamine receptors have been isolated, characterized, and
subdivided into two subfamilies on the basis of their biochemical and pharma-
cological properties: D1- and D2-like. The D1-like subfamily comprises D1 and D
receptors. The D2-like includes D2-, D3-, and D4- receptors.

The mesocorticolimbic DA system regulates mood, emotional responses, and
incentive-based behavior (Doyon et al. 2013; Grace et al. 2007; Schultz 2007).
Neurons in the ventral tegmental area (VTA) are the primary source of the mes-
ocorticolimbic DA system. Those neurons project to many cortical and forebrain
limbic structures, including the nucleus accumbens, ventral pallidum, amygdala,
and the medial prefrontal cortex. The mesocorticolimbic DA system are affected
by stress and glucocorticoids released in response to stress. The following section
will describe the effects of acute and chronic stress on the dopaminergic system.

Acute stress has been shown to trigger dopamine release in the brain. In
humans, dopamine release occurs in the prefrontal cortex in response to psycho-
logical stress (Nagano-Saito et al. 2013), in parallel with decreased working
memory-related and reward-related prefrontal activation (Ossewaarde et al. 2011;
Qin et al. 2009) and impaired working memory performance in males (Schoofs
et al. 2013). This suggests that increased prefrontal dopamine secretion may
impair, rather than facilitate, prefrontal function during stress. Dopamine release
can also occur in the striatum in response to acute psychosocial stress and after
stress in the presence of amphetamine (Burghardt et al. 2012; Pruessner et al.
2004; Wand et al. 2007). This stress-induced dopamine increase is positively
correlated with the magnitude of salivary cortisol response (Pruessner et al. 2004).
It should be noted that the immediate stress-induced dopamine secretion may be
influenced not only by glucocorticoids, but also by inputs from brain circuitry
evaluating stressors (Joels and Baram 2009; Ulrich-Lai and Herman 2009).

Chronic stress has long-lasting, deleterious effects on dopamine function and
dopamine-related behaviors. Previous studies examined the effects of chronic
stress using experimental paradigms in rodents such as social defeat (repeated
exposure to a dominant aggressor), isolation, restraint, or exposure to aversive
odors or environments (Sinclair et al. 2014). Chronic social defeat in adolescent
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rats induced long-term dopamine-related changes in the PFC in adulthood, such as
decreased basal dopamine levels, decreased DA receptor 2 expression, increased
DAT binding, increased monoamine oxidase A (MAOA) gene expression, and
increased monoamine oxidase A promoter histone acetylation (Marquez et al.
2013; Watt et al. 2009). These rats also exhibited abnormal behavior, such as
increased aggression and anxiety-like behaviors (Marquez et al. 2013).

Chronic social defeat in adolescent rats also altered responses to amphetamine,
resulting in increased locomotion, decreased corticosterone secretion, decreased
medial PFC dopamine levels, increased nucleus accumbens core dopamine levels,
and impaired DA receptor 2 downregulation in the nucleus accumbens core (Burke
et al. 2010, 2011, 2013). Hence, chronic stress may detrimentally impact the
developmental trajectory of dopaminergic circuits, leading to long-term molecular
and behavioral maladaptation.

The mechanisms underlying the effects of chronic stress on dopaminergic
neurotransmission are not fully understood. However, research suggests that stress
may induce changes in neuronal morphology in the PFC, potentially impacting
available target sites for incoming dopamine afferents. Interestingly, these effects
may be modulated also by sex hormones. For example, 7 days of chronic restraint
stress (between PND51 and 58 in males and between PND55 and 62 in females)
had gender-specific effects on apical dendritic length of pyramidal neurons in
layers II–III in the medial PFC (Garrett and Wellman 2009). Males displayed
decreased apical dendritic length after stress, while females displayed increased
apical dendritic length which can be ameliorated by ovariectomy and restored by
ovariectomy combined with estrogen replacement (Garrett and Wellman 2009).

The effects of chronic stress on dopamine neurotransmission may also arise
from control of dopamine-related gene transcription by glucocorticoid receptor in
key brain regions. For example, monoamine oxidase A is a glucocorticoid receptor
target gene whose expression is rapidly increased by glucocorticoid administration
in the adolescent rat hippocampus (Morsink et al. 2006) and is persistently
increased, following adolescent chronic stress, in the adult rat PFC (Marquez et al.
2013).

Glucocorticoid receptors within dopamine-responsive neurons in dopamine
neuron projection areas mediate the effects of stress on dopamine signaling and
cognition in young adult rats (Sinclair et al. 2014). Administration of the gluco-
corticoid receptor (GR) antagonist RU38486 into the prefrontal cortex, but not the
VTA, has been shown to attenuate acute stress-induced dopamine efflux in the
prefrontal cortex, which is associated with impairment in working memory
impairment in rats (Butts et al. 2011). Similar findings were found in mice, where
selective ablation of glucocorticoid receptors in dopamine-responsive neurons of
the striatum, nucleus accumbens, and cortex (layers V and VI only) diminished the
stress-induced increase in dopamine release in the nucleus accumbens (Barik et al.
2013). Further, this manipulation also abolished the effects of chronic stress on
social behaviors and eliminated stress-induced increases in dopamine neuron firing
in the ventral tegmental area (Barik et al. 2013). Interestingly, these effects were
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not shown when the glucocorticoid receptors in dopamine neurons of the sub-
stantia nigra and ventral tegmental area were ablated (Barik et al. 2013).

These data support the important role of the glutamatergic system in the body’s
response to stress, both acute and chronic stressors.

5 Effects of Stress on the Serotonergic System

The brain serotonergic systems control diverse physiologic and behavioral func-
tions including motor control, appetite, sleep-wake cycles, as well as emotional
behavior and emotional states (Hale et al. 2012). Majority of the serotonin (5-HT)
producing forebrain-projecting neurons are contained in the subregions of the
dorsal raphe nucleus and median raphe nucleus. These nuclei have been shown to
differentially respond to stress-related stimuli. Comprehensive descriptive reviews
of the midbrain and pontine serotonergic systems are available elsewhere (Hale
et al. 2012; Lowry et al. 2008) and therefore will not be discussed here.

5-HT exerts its biological activity through interaction with different receptors,
currently classified into 7 groups on the basis of their structure, transduction
mechanism, and pharmacological profile (Varnas et al. 2004; Stasi et al. 2014):
5-HT1–7. 5-HT1,2,4,5,6,7 receptors are coupled to G proteins, while the 5-HT3

receptor is coupled to an ion channel. The class of 5-HT1 receptors (Pazos et al.
1987a, b) is heterogeneous and includes several subtypes, such as 5-HT1A, 5-HT1B,
5-HT1C, 5-HT1E, 5-HT1F, and 5-HT1-like. All 5-HT1 receptor subtypes consist of a
single peptide of variable length (from 374 to 421 amino acids), and they share at
least 60 % homology in their transmembrane domains. 5-HT1A receptors have a
wide distribution in several brain regions involved in the modulation of emotions,
such as the hippocampus, septum, dorsal raphe nuclei, and amygdala (Pazos et al.
1987a, b), where they act mainly as inhibitory somatodendritic autoreceptors.
However, at limbic level, particularly in the hippocampus, 5-HT1A receptors are
located postsynaptically, and here, their activation results in hyperpolarization of
somatodendritic neuronal membrane. These receptors have been found also in the
neocortex and the gelatinous substance of the spinal cord, which are involved in
the regulation of proprioceptive and integrative functions (Pazos et al. 1987a, b).

5-HT1B receptors are predominantly distributed in the striatum of basal ganglia
and the prefrontal cortex, where they act as autoreceptors. The 5-HT1C subtype is
similar in structure and transduction mechanism to receptors of the 5-HT2 family,
and for this reason, it has been renamed 5-HT2C. 5-HT1D receptors display a high
degree of homology with 5-HT1B receptors, but they are expressed with lower
density. They inhibit neurotransmitter release (Tepper et al. 2002). The highest
5-HT1D receptor densities are found in the raphe nuclei.

The highest densities of 5-HT1E receptor sites have been found in the caudate
and putamen (Lowther et al. 1992). 5-HT1F receptors have been identified in the
CNS, particularly in the neocortex, where they might contribute to the integration
of information associated with limbic functions. 5-HT1-like receptors are located
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in the CNS and intracranial vessels, where they inhibit noradrenaline release from
sympathetic nerves and vascular smooth muscle cell contraction. 5-HT1P receptors
are expressed in the gastrointestinal or GI tract.

There are three known receptor subtypes of 5-HT2 receptor family: 5-HT2A,
5-HT2B, and 5-HT2C. These receptor subtypes are expressed predominantly in
peripheral tissues, such as the stomach, intestine, heart, and kidney. In the CNS,
they are found in the cerebellum, lateral septum, hypothalamus, and middle part of
the amygdala. 5-HT2A and 5-HT2C receptors are known to mediate the neuro-
chemical and behavioral effects of psychostimulants (Bubar and Cunningham
2006). 5-HT2C receptors are predominantly expressed in epithelial cells of the
choroid plexus, cerebral cortex, hippocampus, amygdala, some components of
basal ganglia, substantia nigra, substantia innominata, and ventromedial hypo-
thalamus (Pasqualetti et al. 1999).

5-HT3 receptors belong to the ion-channel-linked receptor superfamily, which
includes nicotinic, cholinergic, and gamma-aminobutyric acid (GABA) A recep-
tors. They are located in the hippocampus, dorsal motor nucleus of the solitary
tract and area postrema. At the CNS level, they are involved in the regulation of
emetic responses to various stimuli, including anticancer chemotherapy. The
activation of 5-HT3 receptors elicits central effects comparable to those observed
after administration of antipsychotic and anxiolytic drugs, due to their ability to
modulate the release of other neurotransmitters, such as dopamine, GABA, sub-
stance P and acetylcholine (Thompson and Lummis 2007).

5-HT4 receptors are localized in the central nervous system, where it has been
suggested they play a role in enhancing memory (Marchetti et al. 2000). 5-HT5A

receptors are distributed predominantly in the cortex, hippocampus, hypothalamus,
amygdala, and cerebellum. Depending on their localization, 5-HT5A receptors are
involved in the regulation of several functions, such as the control of affective
states, sensory perception, learning, memory, and neuroendocrine functions (Oliver
et al. 2000). 5-HT5B receptors are expressed in mice but not in humans.

5-HT6 receptors are located in the striatum, amygdala, nucleus accumbens,
olfactory tubercle and cortex (Marazziti et al. 2013). Many antipsychotic drugs
(clozapine, olanzapine, and quetiapine) and antidepressants (clomipramine, ami-
triptyline, and nortriptyline) act as high-affinity antagonists of 5-HT6 receptors.
5-HT7 receptors are distributed in the limbic system and thalamocortical regions,
where they are involved in the modulation of affective states. They are also
expressed in smooth muscle cells of peripheral vessels and intestine, where they
mediate muscle relaxation (Thomas and Hagan 2004).

Studies suggested that 5-HT1A autoreceptors are an important determinant of
basal and stress-induced activity of different subpopulations of serotonergic neu-
rons. 5-HT1A receptor autoinhibition is an important determinant of regional dif-
ferences in serotonergic neurotransmission. Acute subcutaneous administration of
fluoxetine (30 mg/kg) in rats increases extracellular serotonin concentrations in the
medial prefrontal cortex, but not the dorsal lateral prefrontal cortex (Beyer and
Cremers 2008). However, following pretreatment with the 5-HT1A antagonist,
WAY-100635, fluoxetine administration induces a significant, two-fold increase in
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extracellular serotonin concentrations within the dorsal lateral prefrontal cortex.
Further, it potentiated fluoxetine-induced increases in extracellular serotonin
concentrations in the medial prefrontal cortex.

The synaptic excitatory and inhibitory inputs to subpopulations of serotonergic
neurons, together with 5-HT1A autoreceptor activity, are clearly important deter-
minants of regional differences in basal and stress-induced serotonergic neuro-
transmission. Other factors are also important, including (1) regional differences in
the density of serotonergic nerve terminals, (2) regional differences in tryptophan
hydroxylase expression or its activity, (3) regional differences in the density of the
presynaptic serotonin transporter at nerve terminals, (4) regional differences in
postsynaptic serotonin transporters, such as the corticosterone-sensitive organic
cation transporter 3 (OCT3) (Gasser et al. 2006, 2009), and (5) regional differences
in the rate of serotonin metabolism (Guptan et al. 1997).

Serotonergic neurons fire at a regular frequency of 3 spikes/second during
active waking (Jacobs and Fornal 1999; Sakai and Crochet 2001; Asan et al. 2013).
In anesthetized rats, spiking frequencies of 10–14 spikes/10 s were noted in
serotonergic dorsal raphe neurons with male rats displaying significantly higher
frequencies than freely cycling or ovariectomized female rats (Klink et al. 2002).
The regular activity pattern results in a steady serotonergic transmission in target
structures including the amygdala during active wakefulness. Further, the steady
synaptic concentration of serotonin and a sustained activation of the postsynaptic
5-HT receptors in the target regions may enable active, goal-directed motor and
cognitive functions, including response to stress (Klink et al. 2002).

Stress affects the prefrontal serotonergic system. For example, a stressful
experience such as restraint in mice induces a time-dependent increase of 5-HT
output in the medial prefrontal cortex (Pascucci et al. 2009; Reznikov et al. 2009).
The effects of restraint stress were not limited to the prefrontal cortex. It has also
been shown to increase GABA output in the basolateral amygdala of the mice
(Pascucci et al. 2009; Reznikov et al. 2009). These studies highlighted the major
role of medial prefrontal cortex and amygdala in stress-related behaviors (Ando-
lina et al. 2013; Wellman et al. 2007). The medial prefrontal cortex may have a
critical role in regulating amygdala-mediated arousal in response to emotionally
salient stimuli. Its serotonergic innervation represents a potential molecular
mechanism through which the medial prefrontal cortex modulates corticolimbic
circuitry. Andolina et al. (2013) proposed that 5-HT transmission in the medial
prefrontal cortex may engage the GABAergic transmission in basolateral amyg-
dala in stressful situations in order to determine coping outcomes. Through
modulation of GABA in the amygdala prefrontal cortical 5-HT, behavioral
responses to stressful experiences are maintained such as sustaining immobility in
the forced swimming paradigm that models depressive-like outcomes in rodents
(Ebner et al. 2005, 2008; Singewald et al. 2011).
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6 Effects of Stress on the Cannabinoid System

First discovered as the biochemical target of delta9-tetrahydrocannabinol (THC),
the endocannabinoid system is a lipid signaling system that exerts modulatory
actions in both central and peripheral tissues (Pertwee 2008). Two G protein-
coupled cannabinoid receptors with distinct patterns of distribution have been
characterized: CB1 and CB2 receptors (Matsuda et al. 1990, 1992; Munro et al.
1993). The CB1 receptors are widely expressed throughout the brain and in
many peripheral cell types, glands, and organ systems (Herkenham et al. 1991;
Bellocchio et al. 2008). The CB2 receptors are traditionally viewed as distributed
in the periphery particularly on organs involved in the immune response, such as
leukocytes and the spleen (Atwood and Mackie 2010; Patel et al. 2010). However,
there is emerging evidence for the expression of CB2 receptors in the brain (Xi
et al. 2011; van Sickle et al. 2005).

In the brain, the CB1 receptor is predominantly expressed on axon terminals of
a variety of neuronal populations, including glutamatergic, GABAergic, and
monoaminergic neurons (Miederer et al. 2013). CB1 receptor signaling suppresses
neurotransmitter release into the synapse through suppression of adenylate cyclase
activity and calcium influx into the axon terminal. Two endogenous ligands
activate the CB1 receptor (also termed as endocannabinoids): N-arachidonoy-
lethanolamine (anandamide; AEA) (Devane et al. 1992) and 2-arachidonoyl-
glycerol (2-AG) (Sugiura and Waku 2000; Sugiura et al. 2006). These ligands are
arachidonate-derived signaling lipids synthesized in the postsynaptic membrane.
They are released retrogradely to activate CB1 receptors located in the presynaptic
site (Carlson et al. 2002; Wilson and Nicoll 2002). Endocannabinoids are
metabolized by specific enzymatic pathways. Fatty acid amide hydrolase (FAAH)
is the primary catabolic enzyme of AEA and hydrolyzes AEA into ethanolamine
and arachidonic acid (Deutsch et al. 2002; Ueda et al. 2002). 2-AG is primarily
metabolized by monoacylglyceride lipase (MAG lipase) to form glycerol and
arachidonic acid (Dinh et al. 2002; Ueda et al. 2002). AEA represents a ‘‘tonic’’
signal that gates and regulates transmitter release under steady-state conditions,
while 2-AG represents a ‘‘phasic’’ signal that is activated during sustained neu-
ronal depolarization and is involved in many forms of synaptic plasticity (Gorzalka
et al. 2008; Hill and Tasker 2012).

The endocannabinoid system is widely distributed throughout the corticolimbic
and hypothalamic circuitry that regulates activation of the HPA axis (Hill et al.
2010; Gorzalka et al. 2008). The predominant effects of endocannabinoid signaling
are to constrain activation of the HPA axis, although it has been found to also
regulate both excitatory and inhibitory transmitter release. Research has identified
site-specific roles, and divergent functions of AEA and 2-AG, with respect to HPA
axis regulation in the context of basal function, activation in response to stress,
and termination during the HPA recovery phase. The roles of the cannabinoid
system on stress response have been previously reviewed (Hill and Tasker 2012a;
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Hill et al. 2010; Gorzalka et al. 2008; Gorzalka and Hill 2011). A brief synthesis of
the literature is presented in the succeeding section.

Under steady-state conditions, the endocannabinoid tone constrains the acti-
vation of the HPA axis. However, disruption of this tone causes an increase in
HPA axis outflow. For example, acute treatment with a CB1 receptor antagonist to
an unstressed rodent increased circulating levels of ACTH and corticosterone in a
dose-dependent manner during the nadir of the diurnal cycle (Corchero et al. 1999;
Wade et al. 2006). This tonic suppression of HPA axis activity may be centrally
mediated. The HPA stimulating effects of can be replicated by intracerebroven-
tricular administration of CB1 receptor antagonist (Corchero et al. 1999).

There is evidence that the tonic regulation of the HPA axis by endocannabi-
noids occurs at an extrahypothalamic site that communicates with the paraven-
tricular nucleus (Hill and Tasker 2012a). For example, there seems to be an
endocannabinoid tone within the basolateral amygdala that tonically gates exci-
tation of this structure. The disruption of CB1 receptor function in this region
increases its intrinsic excitability. Administration of a CB1 receptor antagonist in
the basolateral nucleus of the amygdala increases HPA axis activity in nonstressed
animals (Ganon-Elazar and Akirav 2009; Hill et al. 2009), which in turn activates
the paraventricular nucleus resulting in an increase in HPA activity. Hence, AEA
signaling within the basolateral amygdala may be the ‘‘distal gatekeeper’’ of basal
HPA axis activity (Hill and Tasker 2012a).

While AEA signaling within the basolateral amygdala may be the ‘‘gatekeeper’’
of HPA axis activity, natural activation of the HPA axis in response to stress results
in a rapid loss of this AEA signal in this region. This modification of AEA signaling
following stress exposure facilitates the neuroendocrine response to stress. Spe-
cifically, exposure to stress resulted in a reduction in the tissue content of AEA in
the amygdala (Rademacher et al. 2008), possibly through a rapid induction of
FAAH-mediated AEA hydrolysis (Hill and Tasker 2012a). The magnitude of the
decline in AEA content within the amygdala negatively correlated with the extent
of HPA axis activation. The larger reductions in amygdala AEA levels in response
to stress were associated with greater increases in corticosterone secretion. Fur-
thermore, local administration of a FAAH inhibitor in the basolateral amygdala, but
not in the central or medial nuclei, attenuated stress-induced activation of the HPA
axis. These data indicated that AEA hydrolysis in the basolateral amygdala in
response to stress contributes to activation of the HPA axis (Hill and Tasker 2012a).

There is evidence that the endocannabinoid activity contributes to the feedback
inhibition of the HPA axis through a nongenomic glucocorticoid mechanism.
Endocannabinoids mediate fast feedback inhibition of the HPA axis by gluco-
corticoid receptors within the paraventricular nucleus through a mechanism by
which glucocorticoids induce endocannabinoid mobilization to suppress excitatory
input to corticotrophic neurons. CB1 receptor knock-out mice exhibited a larger
peak ACTH and corticosterone response following acute stress, suggesting that a
loss of CB1 receptors reduces the fast feedback inhibition and increases the
magnitude and duration of the HPA axis response to acute stress (Hill et al. 2011;
Barna et al. 2004; Haller et al. 2004; Uriguen et al. 2004; Aso et al. 2008).
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Endocannabinoids are also involved in the glucocorticoid feedback inhibition
of the HPA axis outside of the paraventricular nucleus, possibly within the pre-
frontal cortex and hippocampus. Glucocorticoid receptors are abundantly expres-
sed in both these regions (Radley and Sawchenko 2011; Diorio et al. 1993;
Herman and Mueller 2006). The prefrontal cortex and hippocampus suppress HPA
axis activity through activation of glutamatergic projection neurons to inhibitory
relays to the paraventricular nucleus within the bed nucleus of the stria terminalis
(Radley and Sawchenko 2011). Glucocorticoids facilitate neuronal activity within
the medial prefrontal cortex (Hill et al. 2011; Yuen et al. 2009) and hippocampus
(Karst et al. 2005) to suppress HPA axis activity and terminate the stress response.
In the prefrontal cortex, a clear role of endocannabinoid signaling in the gluco-
corticoid-mediated negative feedback inhibition of the HPA axis has been dem-
onstrated. Specifically, exposure to stress was found to increase 2-AG content, but
not AEA, within the prefrontal cortex in a glucocorticoid-dependent manner (Hill
et al. 2011). This ability of glucocorticoids to increase endocannabinoid content
was not rapid and involved genomic actions, as it was blocked by the classical
intracellular glucocorticoid receptor antagonist RU-486 (Hill et al. 2011). The
ability of endocannabinoids in the prefrontal cortex to contribute to the termination
of the stress response appears to be due to modulation of local excitability (Hill
and Tasker 2012a). CB1 receptors were found on GABAergic terminals clustered
around pyramidal neurons in the prefrontal cortex, and bath application of corti-
costerone to prefrontal cortical slices resulted in a CB1 receptor-dependent
reduction of inhibitory tone in these cells (Hill et al. 2011).

These data demonstrate that endocannabinoids play an important role in glu-
cocorticoid-mediated negative feedback. The endocannabinoid system appears to
represent one of the synaptic workhorses of glucocorticoids, bridging postsynaptic
effects of glucocorticoids to presynaptic regulation of excitability within a given
circuit (Hill et al. 2009; Tasker and Herman 2011).

7 Conclusion

Stress response involves a constellation of physiological responses that promote
adaptation with the efficient turning on and off of the response. The activation of
the HPA results on the release of glucocorticoids which subsequently influences
other brain neurotransmitter and signaling systems including, but not limited, to
the prefrontal cortex, amygdala, and hypothalamus. The interactions of these
systems with the HPA axis are both complex, and in some instances, reciprocal.
They play an integral in the changing expression of the HPA response to a con-
tinually changing and often challenging environment. The plasticity of these
systems may play an adaptive or maladaptive role in the induction of stress-related
pathologies. Further research is needed to fully understand the interactions of these
brain neurotransmitter systems and the HPA axis.
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Interaction of Stress,
Corticotropin-Releasing Factor,
Arginine Vasopressin and Behaviour

Eléonore Beurel and Charles B. Nemeroff

Abstract Stress mediates the activation of a variety of systems ranging from
inflammatory to behavioral responses. In this review we focus on two neuropeptide
systems, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and
their roles in regulating stress responses. Both peptides have been demonstrated to
be involved in anxiogenic and depressive effects, actions mediated in part through
their regulation of the hypothalamic-pituitary-adrenal axis and the release of
adrenocorticotropic hormone. Because of the depressive effects of CRF and AVP,
drugs modifying the stress-associated detrimental actions of CRF and AVP are
under development, particularly drugs antagonizing CRF and AVP receptors for
therapy in depression.

Keywords Stress � Corticotropin-releasing factor � Arginine vasopressin �
Behaviour
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1 Stress and Its Consequences on Behaviour

Although stress is now considered a common component of life in modern soci-
eties (Joels and Baram 2009), its definition remains somewhat vague. Stress is
generally considered to involve external challenges to the organism, which can
include psychogenic stressors that may be actual or potential adverse situations, as
well as physical stressors (e.g. immune challenge, hypovolemia or cold exposure)
(Dayas et al. 2001; Pacak and Palkovits 2001). Although these disparate stressors
activate different brain circuits, adaptive responses to these stressors often include
similar mediators. In the short term, the organism tends to adapt to the stress to
maintain homeostasis, for example by eliminating the challenge or by avoidance
(McEwen 1998, 2007). Over time, maintaining physiological stability becomes
more difficult. It is now well-established that exposure to extraordinary levels of
stress, chronic stress or repeated exposures to stress can markedly increase
vulnerability to serious mental illness, and cardiovascular disorders (Rosengren
et al. 2004).

This subject is a vast one with entire volumes and meeting proceedings dedi-
cated to it. Instead of trying to cover stress neurobiology in any comprehensive
manner, we focus on two neuropeptide systems, corticotropin-releasing factor
(CRF) and arginine vasopressin (AVP). Nevertheless, it is important to note that
two major systems have long been known to play prominent roles in mediating the
stress response: the hypothalamic-pituitary-adrenal (HPA) axis (Herman and
Cullinan 1997) and the sympatho-adrenal-medullary system. Thus, hypothalamic
and extra-hypothalamic CRF is the preeminent example of a stress-related neu-
ropeptide system that promotes withdrawal and attenuates appetitive behaviors,
while there is evidence that neuopeptide Y (NPY) exerts the opposite effect. CRF
is thought to mediate the acute stress response in cooperation with AVP (Gillies
et al. 1982; Jaferi and Bhatnagar 2007; Lightman 2008; Ma et al. 1997; van Gaalen
et al. 2002). The latter appears to be contributing to the long term stress response
which likely leads to depression (Dinan and Scott 2005). It is important to note in
any discussion of stress that different individuals encounter different magnitudes of
stress exposures and the perception of stress varies significantly from individual to
individual. Two divergent hypotheses have been proposed to explain the variable
outcomes of stress in different individuals (Nederhof and Schmidt 2012). The first
one states that stress exposure early in life increases the risk of vulnerability to
detrimental stress responses later in life (McEwen 1998; Heim et al. 2008). In
contrast, the second hypothesis focuses on resilience, suggesting that repeated
exposures to adverse situations during development can be beneficial by
promoting resilience even if the environment remains aversive (Schmidt 2011).
Most studies in laboratory animals have focused on vulnerability rather than
resilience (Veenema et al. 2008; Zobel et al. 2000) and have been interpreted
from the point of view that the molecular modifications that ensue in response to
stress result from changes in vulnerability. This is at least in part due to the
difficulty of distinguishing resilient animals from controls (Schmidt et al. 2010;
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Stedenfeld et al. 2011). However, resilience mechanisms are now the focus of
considerable investigation (Bilbo et al. 2008; Champagne et al. 2008) because they
represent an innovative approach to both understanding pathophysiology as well as
drug development for a range of stress-related syndromes.

Many behaviors that are assessed in rodents in response to stress have been
interpreted to resemble symptoms exhibited by patients with post-traumatic stress
disorder (PTSD) or major depressive disorder (MDD). Although emotional and
psychological stress are difficult to evaluate in rodents, a variety of stressors have
been shown to induce ‘‘depressive-like behavior’’. These behaviors include loss of
enjoyment (anhedonia), loss of motivation, sleep disturbances, deficient sociability
skills, anxiety, changes in appetitive behavior, or cognitive deficits, which have all
been associated with prolonged stress exposure. For example, anhedonia, learned
helplessness, and sociability deficiencies in animal models have been induced by a
variety of stressors, such as chronic restraint stress, in which rodents are immo-
bilized repeatedly for hours in a tube, the learned helplessness paradigm, where
rodents receive inescapable footshock, the chronic social defeat paradigm, where
rodents are repeatedly exposed to aggression by dominant animals, or chronic
unpredictable stress, where rodents receive different (heterotypic) stressors every
day. A number of neurobiological consequences of chronic stress have been
observed including dysregulation of the HPA axis, reduced hippocampal neuro-
genesis and reduction of brain-derived neurotrophic factor (BDNF), which is
required for synaptogenesis (Maras and Baram 2012). The composition of the
microbiota of the gut is also affected by the HPA axis through the release of stress
hormones and the sympatho-adrenal medullary system (Collins et al. 2012; Dinan
and Cryan 2012). The microbiota is a major regulator of the immune system and
the immune system has now been unequivocally shown to be altered in patients
with mood disorders. Indeed, administration of a low dose of the inflammatory
stimulant lipopolysaccharide (LPS) is sufficient to induce sickness behavior, which
shares many characteristics with human major depressive behavior. We review
here the involvement of the HPA and the sympatho-adrenal system in stress related
disorders.

2 HPA Axis

Activation of the HPA axis in response to stress results in widespread hormonal,
neurochemical and physiological alterations (Herman and Cullinan 1997). Acti-
vation of the HPA axis is mediated by the release of neuropeptides, including CRF
and vasopressin into the hypothalamo-hypophyseal portal system, which stimu-
lates the release from the anterior pituitary of adrenocorticotropic hormone
(ACTH). ACTH in turn promotes the synthesis and secretion of glucocorticoids
from the adrenal cortex (Aguilera 1994; Antoni 1986a). Thus, glucocorticoids
(cortisol in humans, and corticosterone in most rodents) are released upon acti-
vation of the HPA axis. Glucocorticoid receptors or mineralocorticoid receptors,
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both of which are activated by glucocorticoids, are expressed in several brain
regions (e.g. prefrontal cortex, amygdala, hippocampus and other limbic and
midbrain structures). They are steroid receptors that function as transcription
factors that regulate cell function even after acute stress is terminated. The mag-
nitude, type, and duration of the stress are important in determining the HPA axis
response. The HPA axis has been most scrutinized in PTSD and MDD. Thus,
elevated plasma glucocorticoid concentrations have been observed in patients with
MDD, particularly those with more severe and/or psychotic symptoms; in contrast
a small population of MDD patients show reduced levels of glucocorticoids, which
seems to be associated with milder symptoms (Stetler and Miller 2011). In PTSD,
in contrast, a tendency for lower levels of glucocorticoids has been reported, but
these findings are also mixed (Meewisse et al. 2007). These discordant findings are
undoubtedly in part due to the confounding effects of child abuse and neglect on
HPA axis activity in adulthood (Heim et al. 2008). This concatenation of findings
renders difficult a comprehensive understanding of the role of glucocorticoids in
the development of stress-related disorders. It is important to note the broad effects
on the brain of glucocorticoids, which are released peripherally in response to
stress, which contrasts with the local release of neurotransmitters and neuropep-
tides that provide a more restricted synaptic modulation. Thus, increased cere-
brospinal fluid (CSF) levels of the neuropeptide CRF seem to correlate more
closely than do glucocorticoid levels with stress-related disorders (Heim et al.
2000, 2008; Yehuda et al. 2005).

2.1 Corticotropin-Releasing Factor System

Corticotropin-Releasing Factor (CRF), a 41 amino acids peptide was discovered in
1981, and since then three related ligands and two receptors have been identified.
The canonical role of CRF is to initiate the endocrine response to stress by
releasing ACTH from the anterior pituitary. This neuropeptide is released from
cell bodies within the hypothalamic paraventricular nucleus (PVN) to activate the
HPA axis (Korosi and Baram 2008), but neurons express CRF in several extra-
hypothalamic brain regions (amygdala, cerebrocortical areas, septum, hippocam-
pus) where they play a key role in the autonomic, immune and behavioral effects
of stress (Chen et al. 2000, 2001, 2004; Korosi and Baram 2008; Sawchenko et al.
1993). CRF is also expressed in the periphery (blood vessels, skin, lung, testes,
ovaries or placenta). Its three related ligands, urocortin 1, urocortin 2 (stresscopin-
related peptide) and urocortin 3 (stresscopin) are also expressed both in the
periphery and in the brain. Although urocortin 1 and urocortin 2 share a hypo-
thalamic distribution with CRF, urocortin 3 seems to have minimal overlapping
expression with CRF (Hauger et al. 2003). CRF and urocortin 1 both bind pref-
erentially to CRF-R1 receptors, whereas urocortins 1, 2 and 3 bind to CRF-R2
receptors with a high affinity. CRF-R1 is expressed mainly in the brain (Swanson
et al. 1983), while CRF-R2 is expressed mainly in the periphery. CRF-R1 and
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CRF-R2 have 70 % amino-acid sequence homology, but diverge greatly in their
N-terminal sequences and belong to the class B1 of 7-transmembrane G-protein
coupled receptors. CRF receptors also regulate a diverse group of other intracel-
lular signaling pathways that involve intracellular effectors such as cAMP and an
array of protein kinases. This allows them to exert unique roles in the integration
of homeostatic mechanisms. It is thought that CRF-R1 principally mediates the
stress response. The CRF system is also regulated by a CRF-binding protein
(CRFBP), which is highly conserved and present in the circulation as a 37 kDa
glycoprotein that binds CRF and related peptides, reducing their availability.

Thus, the CRF system has a multitude of physiological functions, all related to
the orchestration of the stress response. CRF stimulates ACTH synthesis and
release in the pituitary, thus controlling the HPA axis, but also activates the
noradrenergic and sympathetic systems. Locally, CRF regulates adrenal steroi-
dogenesis and catecholamine synthesis in the adrenal gland. In addition, CRF acts
in limbic areas in modulating alertness and fear, and appetite and libido, all
dysregulated in depressive disorders. Direct regional brain-specific injections of
CRF in rodents promotes anxiety, reduces slow wave sleep, is associated with
psychomotor alterations (less time spent in the center of an open field) (Sutton
et al. 1982), increased grooming and anhedonia (Dunn et al. 1987; Heinrichs et al.
1991), enhanced novelty-suppressed feeding (Britton et al. 1982), decreased
appetite and libido, and decreased exploratory behavior (Berridge and Dunn 1989).
These effects of CRF are not mediated by HPA axis activation. This was confirmed
using transgenic mouse models where CRF was either knocked out (Muller et al.
2003; Smith et al. 1998; Timpl et al. 1998) or overexpressed, and by using
selective CRF receptor antagonists (Steckler and Holsboer 1999).

The role of the CRF system in depression has been supported by clinical studies
showing that depressed patients have higher CSF concentrations of CRF
(Nemeroff et al. 1984), and depressed patients who died by suicide exhibit
increased expression of CRF mRNA in the hypothalamus and PFC (Austin et al.
2003; Merali et al. 2004; Nemeroff et al. 1988; Raadsheer et al. 1994) as well as a
reduction in CRF receptor binding density (Owens et al. 1991) and CRF receptor
mRNA expression (Merali et al. 2004). Moreover, CSF concentrations of CRF are
reduced by electroconvulsive therapy (Nemeroff et al. 1991) and antidepressant
treatments (De Bellis et al. 1993; Heuser et al. 1998; Veith et al. 1993). Early
relapse of depression is also associated with elevated concentrations of CSF CRF
(Banki et al. 1992). Altogether, these findings as well as the neuroendocrine data
clearly suggest an overactive CRF/CRF-R1 system in depressed patients (Merali
et al. 2004; Nemeroff et al. 1988).

These findings supported the development of CRF receptor antagonists as a new
therapeutic strategy for depression (Grigoriadis 2005). Small molecule inhibitors
of CRF-R1 have been developed as potential therapies (Holsboer and Ising 2008),
because CRF has a 15 times higher affinity for CRF-R1, than CRF-R2. Some CRF-
R1 antagonists have been tested clinically, and although there is some evidence for
anti-anxiety and antidepressant effects in a few studies without evidence of adverse
effects (Ising et al. 2007; Kunzel et al. 2003; Nickel et al. 2003; Zobel et al. 2000),
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the results of the randomized controlled studies have been very disappointing (for
review Brothers et al. 2012, Koshimizu et al. 2012). Unfortunately none of the
studies enriched their studies with patients who hypersecreted CRF.

2.2 Arginine Vasopressin System

(AVP) and oxytocin are cyclic nonapeptides. There are two major AVP systems in
the brain: one responsible for AVP-dependent actions on blood pressure and water
conservation, comprising the magnocellular neurons in the paraventricular (PVN)
and supraoptic nuclei secreting AVP and oxytocin into the peripheral circulation
from the posterior pituitary. The second is responsible for the regulation of the
HPA axis via the PVN secreting AVP into the hypothalamo-hypophyseal portal
circulation (Aguilera and Rabadan-Diehl 2000; Antoni 1993). AVP-expressing
neurons in the amygdala also influence memory and behavior (Alescio-Lautier
et al. 2000; Caffe et al. 1987), and in the suprachiasmatic nucleus, AVP regulates
circadian rhythms (Arima et al. 2002; Kalsbeek et al. 2010; Li et al. 2009). The
actions of AVP are mediated through two main G-protein coupled receptors: V1
receptors (V1a and V1b) are coupled to phospholipase C, which increases intra-
cellular Ca2+ and protein kinase C activity (Jard et al. 1987), and V2 receptors are
coupled to the adenylyl cyclase/protein kinase A pathway to regulate water
homeostasis in the kidney (Frank and Landgraf 2008). The mitogen activated
protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and the
phosphatidylinositol 3 kinase (PI3 K)/Akt pathways are also regulated by AVP
during neuronal development and survival, synaptic plasticity and memory for-
mation (Chen and Aguilera 2010; Chen et al. 2008, 2009; de Wied et al. 1993). In
addition to protecting neurons against apoptosis, AVP inhibits the production of
the pro-inflammatory cytokines interleukin-1 and tumor necrosis factor-a in
astrocytes, therefore providing another mechanism to protect neurons (Zhao and
Brinton 2004).

Using a variety of experimental approaches, it has been clearly shown that AVP
is anxiogenic (Neumann and Landgraf 2012). These approaches include central or
peripheral administration of V1 receptor antagonists, siRNA, knockout mice, and
adenoviral overexpression of V1 receptors (Landgraf 2006; Mak et al. 2012;
Pitkow et al. 2001; Ring 2005; Ryckmans 2010; Simon et al. 2008). Hyperactivity
of the AVP system shifts behavior towards hyper-anxiety and passive coping.
Indeed, some of the untoward consequences of early-life stress appear to be
mediated by AVP (Murgatroyd et al. 2010; Veenema et al. 2006).

Because of the close association of anxiety and depression, AVP has been
suggested to mediate both conditions. CNS AVP circuits also promote depressive
behavior in rats, and these effects are blocked by the administration of antide-
pressants (Keck et al. 2003). In postmortem tissue of depressed patients, an
increase in mRNA expression of AVP and V1 receptors was observed, as well as
an increase in the number of PVN neurons expressing AVP (Bao and Swaab 2010;
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Wang et al. 2008). It is also important to note that AVP augments the effects of
CRF on ACTH release from the anterior pituitary, thereby increasing HPA axis
activity (Holsboer et al. 1984). Thus, this may contribute to the hypercortisolemia
observed in depression. These anxiogenic and fear effects are thought to act upon a
specific population of neurons in the central amygdala in rats (Huber et al. 2005).
Intranasal injection of AVP modulates neurons in the prefrontal cortex-amygdala
regions, which are thought to mediate threat perception, social behavior, anxiety,
and fear processing (Zink et al. 2010).

AVP also regulates affiliative behaviors (Winslow et al. 1993), in particular
paternal behaviors in voles, such as crouching over and contacting or grooming
pups (Wang et al. 1994). AVP is important in a variety of species for partner
preference and pair bonding (Donaldson and Young 2008; Lim and Young 2004)
and is thought to influence social memory in males (Ferguson et al. 2002; Lim and
Young 2004). AVP also promotes inter-male aggression (Caldwell et al. 2008) and
maternal aggression (Bosch and Neumann 2010).

Intranasal administration of AVP has been shown in men to facilitate the
encoding of facial identification (Guastella et al. 2010), to have sex-specific
influences on social communication, in particular regarding aggression (Thompson
et al. 2006). As in animals, AVP promotes stress responses in humans, increasing
the cortisol response to social stressors (Shalev et al. 2011). However, the
mechanism whereby AVP affects human behaviors remains unknown (McCall and
Singer 2012).

Therefore, targeting the AVP system may open new therapeutic avenues. For
example, there is an antagonist of V1 receptors (SSR149415) that has shown
anxiolytic, antidepressant and anti-stress effects (Griebel et al. 2002; Hodgson
et al. 2007; Iijima and Chaki 2007; Litvin et al. 2011; Overstreet and Griebel 2005;
Shimazaki et al. 2006; Simon et al. 2008; Stemmelin et al. 2005; Urani et al.
2011). Unfortunately, the clinical trials in depression have been unsuccessful (for
review Brothers et al. 2012, Koshimizu et al. 2012). However, SSR149415 also
binds the oxytocin receptor (OXTR) (selectivity ratio of 3.2 V1b/OXTR) (Antoni
1986b; Chadio and Antoni 1989; Griffante et al. 2005; Samson and Schell 1995),
which explains certain of the effects of this antagonist; oxytocin is known to
antagonize the effects of AVP in anxiety and depression (Neumann and Landgraf
2012). Other V1b receptor antagonists are currently under study. The subjacent
strategy is to promote the oxytocin system, which has been shown to exert
opposite actions of AVP in anxiety and depression by modulating different neu-
ronal circuitry. Although in development, no lipophilic oxytocin receptor agonists
have yet to be developed.
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Long-lasting Consequences of Early Life
Stress on Brain Structure, Emotion
and Cognition

Harm J. Krugers and Marian Joëls

Abstract During the perinatal period, the brain undergoes substantial structural
changes, synaptic rearrangements, and development of neuronal circuits which
ultimately determine brain function and behavior. Environmental factors—such as
exposure to adverse experiences—have major impact on brain function and
structure during this sensitive period. These alterations can be long-lasting, and
have been implicated in psychopathology such as cognitive decline and emotional
dysfunction. Here we briefly review how early postnatal adversity determines
structure and function of the hippocampus, amygdala, and prefrontal cortex (PFC)
areas, which are crucial for proper cognitive and emotional function.
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1 Introduction

Several studies provide evidence that the early postnatal period is a sensitive
period for proper development of neuronal function and programming of behavior
(Hackman et al. 2010). This postnatal context in which individuals develop is
dependent on many social and economic factors and several studies indicate that
this socioeconomic status is associated with brain development and cognitive
function (Hackman et al. 2010). For example, the socioeconomic context in which
brain development occurs has been correlated with effects on language and
executive function (Hackman et al. 2010; Noble et al. 2007; Farah et al. 2006;
Kishiyama et al. 2009).

During the early postnatal period, individuals are particularly dependent on
parental care, which is important for cognitive development in human offspring
(Hackman et al. 2010; Baram et al. 2012). For example, higher quality of maternal
care has been associated with the development of more secure attachment styles
later in life (De Wolff and van IJzendoorn 1997; Egeland and Farber 1984; Sroufe
2005; Belsky and Fearon 2002; Egeland et al. 1983; Baram et al. 2012). At the
more extreme end, childhood emotional maltreatment has been associated with a
profound and lasting negative impact on behavioral and emotional functioning
(Van Harmelen et al. 2010; Teicher et al. 2006) and enhanced risk to develop
depressive and anxiety disorders in later life (e.g., Kendler et al. 2000; Van
Harmelen et al. 2010). Also, institutionalized children demonstrate high rates of
psychiatric symptoms, (Ellis et al. 2004).

An important question that remains to be addressed is what the neurobiological
correlates of altered cognitive and emotional sensitivity are in individuals reporting
early life adversity. At the structural level, emotional maltreatment has been
associated with reductions of medial prefrontal cortex (PFC) volume (Van
Harmelen et al. 2010), decreased hippocampal volume (Rao et al. 2010; Teicher
et al. 2012; Carballedo et al. 2013), and increased amygdala volume in children
which were raised by mothers suffering from depression (Lupien et al. 2011). At the
functional level, lower social economic status, maternal deprivation and institu-
tionalization has been correlated with altered activity in the PFC and amygdala
activity during regulation of negative emotion (Kim et al. 2013; Gee et al. 2013;
Cohen et al. 2013). In addition, maltreatment during childhood has been associated
with altered hippocampal-subgenual and amygdala-subgenual resting-state func-
tional connectivity (Herringa et al. 2013). Moreover, emotional maltreatment is
associated with enhanced amygdala activity (Van Harmelen et al. 2013).

Taken together, these studies in human subjects suggest that early life adversity
is associated with long-lasting changes in brain structure and brain function. Given
the important role of the medial PFC, amygdala, and hippocampus in the regu-
lation of cognitive function and emotional behavior, this might provide an
important link to increased emotional sensitivity and decreased higher cognitive
function in individuals reporting early life adversity. While the link with disease is
unique for humans and emphasizes the relevance of the problem, these studies so
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far have been highly correlational. In addition, these studies cannot give insight
into the mechanism by which stress during early life alters cognitive performance
and emotional memory formation later on. Animal studies are highly relevant to
get a better understanding of the mechanisms that underlie these effects. In this
brief review we will discuss animal studies describing how early postnatal
adversity regulates neuronal structure, neuronal function, as well as cognition and
emotional behavior.

2 Early Life Experience and Stress-Responsiveness

Many rodent models which are used to study the effects of adverse early life
experiences focus on varying the amount of maternal care during the first week(s)
after birth. Pioneering studies by Seymour Levine have demonstrated that changes
in the early postnatal environment can have lasting consequences for stress-
responsiveness (e.g., Weinberg and Levine 1977; Wiener and Levine 1978, 1983).
During this period, the presence of the dam is crucial for controlling activity of the
hypothalamus pituitary adrenal (HPA-axis) (De Kloet et al. 1988; Stanton et al.
1988; Levine 1994; Schmidt et al. 2002). From approximately postnatal day
(PND) 3 to PND 14 rodent pups show a reduced activity of the HPA-axis in
response to mild to moderate stressors (Stress HypoResponsive Period (SHRP);
Sapolsky and Meaney 1986; Rosenfeld et al. 1992; Schmidt et al. 2002). Dis-
ruption of the early life environment and the SHRP by separating pups from the
dam has substantial and long-lasting endocrine and behavioral consequences.

For example, brief periods of handling during the early postnatal period in rats
has lasting neuroendocrine consequences. In these experiments, pups which were
exposed to early handling (EH) were repeatedly picked up by an experimenter and
isolated in a small compartment for several minutes, while non-handled (NH) pups
were left undisturbed. As a consequence of this mild procedure, EH rats were more
active, more explorative, and showed lower glucocorticoid responses to stressors
(Pryce and Feldon 2003; Meaney et al. 1988). EH animals may have increased
negative feedback sensitivity when compared to NH animals since hypothalamic
CRH mRNA levels are lower while glucocorticoid receptor (GR) levels are
enhanced (Meaney et al. 1988).

Alterations in HPA-axis activity can also be observed after a single 24 h sep-
aration (Maternal Separation, MS) of pups from the dam. Single 24 h MS at PND
3 results in increased basal corticosterone levels in young (3 months) rats but this
effect does not maintain into adulthood (Workel et al. 2001; Lehmann et al. 2002).

In contrast to single 24 h MS, repeated MS for 3–6 h MS has been shown to
affect HPA-axis responses into adulthood, (e.g., Plotsky and Meaney 1993).

It is important to note that studies on the effects of handling and MS on stress-
responsiveness do involve a role of maternal care. For example, handling of pups
results in overall increased levels of maternal licking and grooming of the pups by
the mother (Liu et al. 1997). Similar effects are seen with MS: while the dam and
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pups are separated during MS, the dam displays enhanced attention to the pups
upon reunion (Oomen et al. 2009). Pioneering work from the group of Michael
Meaney has examined in detail the effects of natural variations in maternal care on
stress-responsiveness. They classified mothers as high licking/grooming-arched
back nursing (High LG-ABN) or low licking/grooming-arched back nursing (Low
LG-ABN) (Liu et al. 1997) and reported that the amount of maternal care has
profound effects on the development of the HPA-axis. As adults, offspring reared
by High LG-ABN mothers show significantly reduced levels of plasma ACTH and
corticosterone in response to restraint stress compared to offspring raised by Low
LG-ABN mothers, while basal ACTH and corticosterone are unaffected (Liu et al.
1997). The reduced HPA-response to stress correlated with the amount of maternal
care, such that higher levels of licking and grooming were correlated with lower
HPA-axis responsiveness after restraint stress. In addition, CRH mRNA levels
were lower in offspring of High LG-ABN mothers when compared to Low LG-
ABN offspring, whereas GRmRNA levels are higher in offspring of High LG-ABN
mothers when compared to Low LG-ABN offspring (Liu et al. 1997). Importantly,
these effects could be reversed by cross-fostering animals thereby demonstrating
that the effects on stress-responsiveness are mediated by variations in maternal
care. In agreement, fragmented maternal care, resulting from unpredictable and
erratic interaction between the dam and pups as a consequence of chronic early life
stress has substantial but temporal impact on HPA-axis activity in rats (Brunson
et al. 2005) and mice (Rice et al. 2008).

Not only between but also within litters there are substantial differences in the
amount of licking and grooming received among the offspring (see Fig. 1a; Van
Hasselt et al. 2012a). In general, male pups receive more maternal care than
females. In agreement with the between-litter studies, individual levels of maternal
care within litters also correlate with the expression of GRs (Van Hasselt et al.
2012a, b, c).

In conclusion, rodent models have demonstrated that the early postnatal period
is a sensitive period for the development of HPA-axis responsiveness.

3 Early Life Adversity and Cognitive and Emotional
Function

Early life experience has profound impact on cognitive and emotional function,
including anxiety like behavior. For instance, rats subjected to maternal separation
respond more anxiously to novelty, as measured by reduced feeding in a novel
environment and reduced activity in an open field (Aisa et al. 2007; Macrí et al. 2004).

Maternal care too has profound effects on anxiety like behavior. High LG
offspring shows reduced anxiety when compared to Low LG offspring (Caldji et al.
1998, 2000; Weaver et al. 2006). Also animals which are exposed to fragmented
maternal care display enhanced anxiety like behavior (Ter Horst, unpublished
observations).
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Early life adversity also enhances emotional memory formation. Contextual
fear conditioning was found to be enhanced in animals exposed to 24 h MS at PND
3 (Oomen et al. 2010) as well as in Low compared to High LG-ABN animals
(Champagne et al. 2008). Moreover, MS enhanced cued-fear conditioning (Oomen
et al. 2010). These studies are in agreement with human studies reporting that
emotional responsiveness is enhanced in individuals with a history of negative
early life experience (Hackman et al. 2010; Van Harmelen et al. 2010, 2013).

While emotional responses are enhanced after exposure to negative early life
experience, spatial memory performance and executive function are generally
hampered by early life adversity. Exposure to MS, fragmental maternal care, and
Low (compared to High) LG-ABN have been associated with impaired Morris
Water Maze learning (Aisa et al. 2007; Brunson et al. 2005; Oomen et al. 2010;
Liu et al. 2000) and object recognition (Bredy et al. 2003; Rice et al. 2008). MS
also hampers PFC-dependent cognitive function by impairing deficits in temporal
memory and cognitive flexibility (Lejeune et al. 2013; Baudin et al. 2012). In
addition, individual levels in maternal care received early in life were reported to
correlate with adult decision making in the rat Iowa Gambling task (Van Hasselt
et al. 2012c).

4 Early Life Adversity and Neuronal Structure

While animal studies show that early adversity determines emotional respon-
siveness, relatively little is known about how it affects structure and function of the
amygdala. Twenty-four hours of MS does not affect dendritic complexity in the
amygdala (Krugers et al. 2012). This contrasts to the effect of chronic early life
stress experienced during the entire first postnatal week (caused by drastically
limiting the nesting material) which increases dendritic length in the basolateral
amygdala (Krugers et al. unpublished observations).

Adverse early experiences substantially affect hippocampal structure in adult-
hood. Exposure to MS, chronic early life stress, and Low (as opposed to High)
levels of LG-ABN have been associated with reduced dendritic complexity, spine

b Fig. 1 The amount of maternal care during the first postnatal week affects adult synaptic
plasticity in the hippocampus. a The amount of licking-grooming (LG) received by individual
pups within a litter varies considerably. The y-axis indicates the time during which individual pups
were licked or groomed by the dam, as a percentage of the timeslots during which scoring took
place. Each square represents one male pup, each triangle a female pup and each column
represents one litter. The horizontal stripes indicate the average amount of care bestowed by the
dam on her litter. From Van Hasselt et al. 2012a. b CA1 hippocampal synaptic potentiation is
enhanced in the adult litters from High LG-ABN animals when compared to Low LG-ABN
animals. Mid-LG-ABN animals displays average levels of synaptic potentiation (adapted from
Champagne et al. 2008). c The degree of synaptic potentiation in the dentate gyrus of adult rats
also correlates with the percentage LG received during the first postnatal week when determined at
the level of individual animals, examining within-litter variation. From Van Hasselt et al. 2012a
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number, and markers of synaptic function in various hippocampal subfields
(Brunson et al. 2005; Oomen et al. 2010; Champagne et al. 2008; Bagot et al.
2009; Liu et al. 2000). In addition, early life adversity also hampered structural
development of the PFC. For instance, repeated neonatal MS in rodents was
reported to alter dendritic morphology and spine density in PFC pyramidal neurons
(Bock et al. 2005; Monroy et al. 2010; Pascual and Zamora-León 2007).

5 Early Life Adversity and Synaptic Function

Early life adversity not only determines behavior and neuronal structure, but also
synaptic function and synaptic plasticity, two critical endpoints for learning and
memory (Neves et al. 2008; Kessels and Malinow 2009). Various studies have
reported that experiencing MS or chronic early life stress hampers hippocampal
synaptic plasticity (Brunson et al. 2005; Oomen et al. 2010). Likewise, long-term
potentiation (LTP) can easily be induced in the CA1 area and dentate gyrus in
High but not in Low LG-ABN offspring (Champagne et al. 2008; Bagot et al.
2009, 2012), even at the level of individual rats (Fig. 1). Interestingly, NMDA
currents are enhanced in offspring of low LG-ABN animals (Bagot et al. 2012),
which is in line with altered NMDA receptor composition in maternally deprived
animals (Rodenas-Ruano et al. 2012). Surprisingly, application of an NMDA
receptor antagonist enabled synaptic plasticity in offspring of low LG-ABN ani-
mals, suggesting that the enhanced NMDA receptor function in the hippocampus
may underlie the reduced ability to elicit LTP in Low LG-ABN offspring (Bagot
et al. 2012).

Importantly, maternal care also determines the sensitivity of synapses for stress
hormones. Synaptic plasticity in the CA1 or dentate gyrus of Low LG-ABN
animals was found to be facilitated by application of high levels of corticosterone
and/or noradrenaline to hippocampal slices (Champagne et al. 2008; Bagot et al.
2009, 2012). This indicates that synapses of low LG-ABN animals do have the
ability to express synaptic plasticity and that the sensitivity of synapses is deter-
mined by variations in postnatal maternal care. Similar effects have been found
after maternal deprivation (Oomen et al. 2010). These observations may indicate
that low levels of postnatal maternal care and MS render synapses more efficient
under stressful conditions.

6 Discussion

Several studies in humans suggest that negative early life experiences program
brain function and behavior into adulthood (for reviews see Hackman et al. 2010;
Baram et al. 2012). While such studies are extremely valuable, they are not trivial
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since they require longitudinal studies over decades. Moreover, control over the
environment in these studies is not possible, for obvious reasons, and genetic
effects might be an important confounding factor (Korosi et al. 2012).

Also, one should also be cautious in generalizing effects of early life adversity
since different studies examine various types of early life adversity (e.g., low
socioeconomic status; sexual abuse; emotional maltreatment).

Animal studies have the advantage to make more conclusive correlations
between early experience and lasting effects on brain structure and behavior.
Moreover, they allow detailed analysis of the underlying molecular and cellular
mechanisms. In general, animal studies confirm observations in humans that early
life adversity hampers hippocampus-dependent and executive function (Kim et al.
2013; Herringa et al. 2013; Liu et al. 2000; Brunson et al. 2005; Oomen et al.
2010), while emotional responsiveness and emotional memory formation are
enhanced (Van Harmelen et al. 2013; Oomen et al. 2010; Champagne et al. 2008).

These studies have also revealed that early life adversity programs activity of
the HPA-axis via epigenetic mechanisms (Weaver et al. 2004). In particular,
expression of the GR appears to be regulated by maternal care via epigenetic
modification, not only in animals (Weaver et al. 2004; Van Hasselt et al. 2012a)
but also in humans (Suderman et al. 2012; McGowan et al. 2009). In addition,
epigenetic regulation of the FK506 binding protein 5 gene (an important regulator
of the stress hormone system) mediates the interaction between gene and child-
hood trauma (Klengel et al. 2013; Touma et al. 2011). Interestingly, interference
with epigenetic modification can normalize the effects of maternal care on
behavior (Weaver et al. 2006). Much research has focused on the role of GRs in
mediating the long-lasting effects of early life adversity and maternal care.
However, other factors may be as important as well. For example, the effects of
early life stress during the first postnatal week on neuronal function and neuronal
structure are absent in CRH1 knockout mice (Wang et al. 2011, 2013).

Finally, the effects of early life events on brain function, behavior, and adap-
tation might be context dependent. Individuals exposed to early life adversity
might be hampered in performance when exposed to nonstressful conditions but
may actually be programmed to adapt well when exposed to stressful conditions
(Champagne et al. 2009; Nederhof and Schmidt 2012).

These considerations raise a number of relevant questions that will be important
to address in animals in the near future:

(1) How does early life experience determine synaptic function and the sensitivity
of synapses for stress hormones?

(2) Is the regulation of glutamatergic synapses (and their sensitivity) relevant for
behavioral adaptation?

(3) Is exposure to early life adversity always maladaptive, and if maladaptive,
what are resilience factors?
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Mechanisms Linking In Utero Stress
to Altered Offspring Behaviour
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Abstract Development in utero is recognised as a determinant of health in later
life, a concept known as early life ‘programming’. Several studies in humans have
now shown a link between in utero stressors of maternal stress, anxiety and
depression and adverse behavioural outcomes for the offspring including poorer
cognitive function and behavioural and emotional problems. These behaviours are
observed from the very early neonatal period and appear to persist through to
adulthood. Underlying mechanisms are not known but overexposure of the
developing foetus to glucocorticoids has been proposed. Dysregulation of the
maternal and offspring hypothalamic–pituitary–adrenal (HPA) axis has been
proposed as a mechanism linking in utero stress with offspring behavioural out-
comes. Studies suggest that altered circulating levels of maternal cortisol during
pregnancy and/or changes in placental gene expression or methylation, which
result in increased glucocorticoid transfer to the developing foetus, are linked to
changes in offspring behaviour and in activity of the offspring HPA axis. Further
understanding of the underlying pathways and identification of any gestation of
vulnerability are needed to help design interventions to reduce in utero stress and
improve behavioural outcomes in the offspring.
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1 Introduction

The early life environment is recognised to be a key time determining the tra-
jectory of future health. Numerous epidemiological studies have shown associa-
tions between low birthweight, a marker of an adverse intrauterine environment
and subsequent cardiometabolic disease, mental health problems, cognitive decline
and other disorders including osteoporosis. This concept is termed ‘early life
programming’ or the ‘developmental origins of health and disease’ (Barker 1995;
Godfrey et al. 2010). The developing foetus is thought to respond to insults in
utero with changes in structure, physiology and metabolism which may be initially
beneficial, but in later life become maladaptive and predispose to disease.
Experimental studies using animal models and translational studies in humans
have been carried out to identify possible programming factors and to investigate
underlying mechanisms. Maternal mood disorders including ‘stress’, anxiety and
depression have been identified as important factors leading to in utero stress and
which are linked to adverse outcomes in the offspring (Cottrell and Seckl 2009).
Indeed the World Health Organisation has now highlighted the importance of
maternal mental health for well-being of not only the mother, but also her children
(http://www.who.int/mental_health/prevention/suicide/MaternalMH/en/).

The child-bearing years are the time that women are most vulnerable to mood
disorders. For example, major depressive disorder occurs in 8–13 % of women
during pregnancy (Gavin et al. 2005). Accompanying depressive symptoms do not
abate during pregnancy and there is a further peak in symptoms in the post-partum
period. The most replicated finding in studies investigating the effects of in utero
stress on offspring outcomes is of an association between maternal stress and

94 T. H. Mina and R. M. Reynolds

http://www.who.int/mental_health/prevention/suicide/MaternalMH/en/


anxiety with preterm birth, shorter gestational age and low birthweight. The evi-
dence supporting these observations has been reviewed in detail elsewhere (for
reviews see e.g. Huizink et al. 2004; Mulder et al. 2002; Talge et al. 2007). There
is also increasing evidence supporting a link between in utero stress and altered
foetal behaviours in utero including increased foetal heart rate and motility
assessed using ultrasound and foetal heart rate monitoring (for review see Van den
Bergh et al. 2005b). In this review, we focus on the evidence from human studies
linking in utero stress secondary to maternal stress, anxiety and/or depressive
symptoms in pregnancy with offspring behaviour from the early neonatal period
onwards. In particular, we examine the emerging studies that have started to
dissect potential underlying mechanisms underlying the links between in utero
stress and altered offspring behaviour.

2 Literature Search Strategy

For this narrative review, we carried out a literature search using Pubmed to identify
studies linking in utero stress with offspring behaviour. We carried out searches with
key MESH terms including: ‘maternal anxiety depression offspring behaviour’;
‘maternal glucocorticoid offspring behaviour’; ‘cortisol pregnancy’; ‘maternal
anxiety depression epigenetics’; ‘placenta offspring behaviour’; ‘placenta anxiety
depression’; ‘umbilical cord behaviour’ and ‘umbilical anxiety depression’. Titles
and abstracts were reviewed and those papers which appeared to meet the pre-set
inclusion criteria were selected. We included human studies only. We excluded
studies without assessments of maternal mood during pregnancy and also studies
investigating the effect of maternal alcoholism, substance abuse, and smoking.
Finally, we excluded studies which focused on the effect of stress on obstetric
complications, labour and delivery, and birth outcomes and also studies reporting
outcomes in twins. The searches also generated a collection of review papers, from
which additional relevant studies were identified from reviewing the reference lists.
The final literature searches were carried out on 1st December 2013.

3 Definitions of In Utero Stress

The term ‘in utero stress’ covers several overlapping and related concepts. Stressors
that have been shown to be related to adverse outcomes for the offspring include
studies of women with a range of maternal mood disorders from clinically diag-
nosed mental health disorders such as depression (Pawlby et al. 2011) to experi-
encing symptoms of anxiety and/or depression during pregnancy (reviewed in Nast
et al. 2013). Studies also include women involved in natural disasters (e.g. major
hurricanes (Kinney et al. 2008), the Canadian Ice Storms (Laplante et al. 2004)
or wars (Yehuda et al. 2005; Van Os and Selten 1998; Kleinhaus et al. 2013),
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women who have experienced a major life event during pregnancy such as
bereavement (Khashan et al. 2008), to those experiencing less severe stressors in
pregnancy such as work stress (Mozurkewich et al. 2000), or pregnancy-specific
and day-to-day hassles (Huizink et al. 2003). A recent systematic review examined
the methods applied to assess maternal psychosocial stress during pregnancy in
studies which looked at associations with biobehavioural outcomes in the offspring
(Nast et al. 2013). Of the 115 identified publications that assessed psychosocial
stress using validated methods, there were 43 different instruments which the
authors then categorised into assessing one of seven categories: anxiety, depression,
daily hassles, aspects of psychological symptomatology (not related to anxiety and
depression), life events, specific socio-environmental stressors and stress related to
pregnancy and parenting. The authors highlighted that the diverse nature of the
stressors and the differences in methods of assessment hamper the comparability of
stress research results. For this review, we have considered studies defining in utero
stress as maternal stress, anxiety and/or depression.

4 In Utero Stress and Offspring Behaviour

Several studies have now examined the link between maternal stress, anxiety and/
or depression and offspring behaviours as a neonate, child, adolescent and young
adult. In addition to the previously highlighted problems of studies using different
assessments of maternal mood (Nast et al. 2013), there are also several different
methods of assessment of infant behaviours. For example, assessment may be
carried out by an independent assessor using established rating scales or record-
ings, or by reporting from either the parent (usually the mother) or a teacher.
Nevertheless, despite variations in methodology, the overall findings are consistent
with neurodevelopmental and behavioural problems in offspring exposed to in
utero stress (reviewed in Van den Bergh et al. 2005b), notably with changes in
regulatory and emotional behaviours and in cognitive development. Strikingly, the
links between in utero stress and altered behaviour are observable from the very
early neonatal period, findings that are consistent with a ‘programmed’ effect.
Even as early as 3–5 days old, infants of mothers with more ‘total distress’,
assessed by combination of a number of validated scales, have more problems
with regulatory behaviours (e.g. in alertness and attention) measured using the
Brazelton Neonatal Behaviour Assessment scale (Rieger et al. 2004). Likewise,
lower scores on this scale have been observed in offspring of anxious mothers at
3 weeks of age (Brouwers et al. 2001). Newborns aged 4–14 days of stressed
mothers also score less well on neurological examination (Lou et al. 1994) while
maternal depression is associated with poorer newborn scores for orientation and
reflexes (Lundy et al. 1999). There are also changes in emotional behaviours as
infants of mothers with high antenatal state and trait anxiety show high activity
levels at age 2–4 days, cry more at 1 week of age and have a difficult temperament
at 10 weeks (Van den Bergh 1990).
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Several changes in behaviours are observed in the first 2 years of life in infants
exposed to in utero stress. Babies of mothers with high scores of negative life changes
during pregnancy exhibit more crying/fussing at 3 and 6 months than infants born to
mothers with low negative change scores (Wurmser et al. 2006). Depressed mothers
report their babies to be less relaxed, more emotional and more fussy at 3–5 months,
behaviours which are associated with poorer maternal interaction with the infant
(Field et al. 1985). Maternal depression and anxiety are also related to higher infant
negative behavioural reactivity at 4 months (Davis et al. 2004).

A large study of 10,323 children showed an association between higher prenatal
anxiety and offspring sleeping difficulties at 18 and 30 weeks (O’Connor et al.
2007) whilst another large study including 2,724 children showed that anxiety
during pregnancy was associated with poorer neuromotor development at
4 months (Van Batenburg-Eddes et al. 2009). Maternal prenatal anxiety has also
been associated with poorer infant temperament between 4 and 8 months (Vaughn
et al. 1987) whilst pregnancy-specific anxiety in mid-pregnancy predicted lower
mental and motor developmental scores at 8 months (Buitelaar et al. 2003). In the
latter study pregnancy-specific anxiety explained 7 % of the variance of test-
affectivity and goal-directedness. Importantly, different types of in utero stress
appear to be related to different infant outcomes. For example, infant attention
regulation problems at 3 and 8 months were associated with higher maternal
perceived stress at 15–17 weeks but not with daily hassles (Huizink 2002; Huizink
et al. 2003). Further understanding of these pathways may be useful to guide
therapies for maternal stress during pregnancy.

The effects of in utero stress on offspring behaviour persist into childhood,
with associations between maternal anxiety and/or depression and behavioural
and emotional problems reported in children at 4 and 6–7 years (O’Connor et al.
2002, 2003) and with more attention deficit hyperactivity disorder (ADHD)
symptoms at 7–9 years (Rodriguez and Bohlin 2004; Van den Bergh and
Marcoen 2004). Maternal pregnancy-specific anxiety is associated with poorer
executive function by the child at 6–9 years (Buss et al. 2011). Maternal prenatal
stress also appears to affect other aspects of child development such as vul-
nerability to bullying (Lereya and Wolke 2013), although teasing out pre-and
post-natal influences is challenging. One study has suggested that maternal
depression has a wider impact on different types of child maladjustment than
maternal anxiety, the latter appearing to be more specific to internalising diffi-
culties in the child (Barker et al. 2011) and this may have implications for
targeting mental health care in pregnancy. Consistent with this, whilst maternal
antenatal depression associates with depression in adolescence (Pawlby et al.
2009), maternal symptoms of anxiety do not predict adolescent psychopathology
once maternal depression is taken into account (Hay et al. 2008). Other
behavioural changes reported in adolescents of anxious mothers include
increased impulsivity (Van den Bergh et al. 2005a) and an increased risk of
anxiety (Davis and Sandman 2012), though neither of these studies included
adjustment for maternal depression.
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Few studies examining the influence of in utero stress on offspring behaviours
have extended observations to adulthood. A very recent study with data from
more than 4,500 parents and their children showed that antenatal depression was
an independent risk factor for depression in the offspring at aged 18 years
(Pearson et al. 2013). Offspring were 1.28 times (95 % CI, 1.08–1.51, p = 0.003)
more likely to have depression at aged 18 years for each standard deviation
increase in maternal depression score antenatally, independent of later post-par-
tum maternal depression. These findings suggest persisting effects of an in utero
insult on offspring behaviour, highlighting the need to understand more about the
potential underlying pathways and whether there are gestations of increased
vulnerability.

The evidence described above is thus strongly supportive of an association
between in utero stress and altered offspring behaviours. However, in human
studies it is harder to establish whether the relationship is causal and it is very hard
to distinguish between in utero stressors and post-natal environmental and/or
genetic influences. This is particularly relevant for studies of maternal mood as, for
example, antenatal depression is a major risk factor for post-partum depression.
Therefore, many studies control for as many confounding factors as possible,
including maternal psychological state at the time of infant assessment, to try and
account for any post-partum influences. Another approach has been to examine
behaviour in children born after in vitro fertilisation who are either genetically
related or unrelated to the mother (Rice et al. 2010). Using this paradigm in a
follow-up study of nearly 800 children, maternal stress in pregnancy was associ-
ated with child symptoms of conduct disorder and ADHD. Of note, the conduct
disorder occurred in children who were unrelated to their mothers, suggesting the
association with in utero stress was independent of genetic factors and so
supportive of an environmental influence. In contrast, ADHD also occurred in
children who were related to the mothers. Further studies are needed to disentangle
genetic from environmental influences.

5 Mechanisms Linking In Utero Stress with Offspring
Behavioural Outcomes

Several mechanisms have been proposed to explain the link between in utero stress
and adverse offspring behaviours (See Fig. 1). Overexposure of the developing
foetus to glucocorticoids has been proposed as one of the key mechanism linking
an adverse intrauterine environment with adverse offspring outcomes including
behavioural outcomes (Cottrell and Seckl 2009; Reynolds 2013). The hypotha-
lamic–pituitary–adrenal (HPA) axis is one of the major hormonal systems
underlying the normal ‘stress’ response and mood disorders are often attributed to
altered HPA axis activity (Gotlib et al. 2008). Therefore, dysregulation of the
maternal HPA axis and/or offspring HPA axis is a key candidate pathway linking
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in utero stress with offspring behavioural outcomes. Moreover, the developing
brain of the infant is particularly susceptible to the adverse effects of glucocorti-
coids (McEwen 1999). Human brain development begins early in gestation, with
key genes involved in neurodevelopmental processes expressed in the early
embryonic period and continuing during foetal and infant development (Kang
et al. 2011). Foetal glucocorticoid overexposure is thought to arise either from
increased availability of glucocorticoids in the maternal circulation, or from
increased transfer of glucocorticoids to the foetus via the placenta. In addition, in
utero stressors may effect blood supply to the foetal/placental unit and have direct
or indirect effects on offspring brain development (Fig. 1).

Fig. 1 Potential sites for examining mechanisms underlying the link between in utero stress and
offspring behaviour. Cartoon shows the sites within the maternal-placental-foetal unit that have
been studied to understand the mechanisms linking in utero stress with offspring behaviour. There
may be additional post-natal influences. Sites include (1) Foetal brain via Magnetic Resonance
Imaging (MRI). (2) Foetal heart, foetal movement. (3) Metabolites in amniotic fluid via
amniocentesis. (4) Umbilical cord (artery and vein) pulsatility index, cord blood. (5) Umbilical
blood flow, resistance index. (6) Placental blood flow, placental tissue (including studies on
metabolites, genetics and epigenetics, gene expression and protein abundance). (7) Uterine
pulsatility index. (8) Hormones and metabolites in maternal peripheral blood
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6 Changes in Circulating Levels of Maternal Hormones
During Pregnancy

Cortisol is secreted by the adrenal gland under regulation of the HPA axis in
response to both physiological and psychological stress. Cortisol secretion follows
a diurnal pattern with levels peaking in the morning, prior to activity, and
declining through the day. Circadian secretion of ACTH (adrenocorticotrophic
hormone) from the pituitary is stimulated by the action of CRH (corticotropin
releasing hormone) and AVP (vasopressin) from the parvicellular neurons of the
hypothalamus under control of the suprachiasmatic nucleus of the hypothalamus.
This diurnal cycle of cortisol release can be interrupted by stressors, which cause a
premature secretory burst of glucocorticoids. In pregnancy, the activity of the
maternal HPA axis undergoes significant changes. (Lindsay and Nieman 2005).
Cortisol levels rise dramatically, peaking in the third trimester at three times non-
pregnant levels (Jung et al. 2011). This is partly due to placental release of large
quantities of CRH into the maternal blood stream from the early second trimester
(Campbell et al. 1987); this stimulates the maternal pituitary to secrete ACTH,
with consequent increase in maternal cortisol levels (Goland et al. 1994). Placental
CRH also acts directly on the maternal adrenal to stimulate cortisol secretion and
maternal cortisol can also stimulate placental production of CRH, thus further
increasing cortisol levels. Corticosteroid binding globulin (CBG) levels also rise
during pregnancy under the influence of oestrogen stimulation and bind some of
the available cortisol, yet there are also progressive rises in 24 h urinary free
cortisol and plasma free cortisol, the latter increasing by 1.6 fold by the third
trimester (Jung et al. 2011). Despite the increasing circulating levels of cortisol,
the diurnal pattern of cortisol secretion is maintained (Entringer et al. 2011).
However, as pregnancy progresses, the normal physiological responses to stress-
ors, and the cortisol awakening response, a marker of basal HPA activity, are
attenuated (Lindsay and Nieman 2005). These dramatic changes in HPA axis
activity, and the fact that pregnancy induces other changes that may alter HPA axis
activity, such as changes in the immune system and in levels of progesterone
(Robinson and Klein 2012), mean that the associations between cortisol levels and
mood described in the non-pregnant state may not be the same in pregnancy.

There is some evidence that the maternal HPA axis is dysregulated in preg-
nancies associated with maternal depression. Maternal depression during preg-
nancy has been associated with elevated mid-pregnancy corticotrophin releasing
hormone (Rich-Edwards et al. 2008; O’Keane et al. 2011) and cortisol levels
(Field et al. 2006, 2008), with altered diurnal pattern of cortisol secretion in the
second trimester (O’Keane et al. 2011; O’Connor et al. 2013b), and with increased
urinary cortisol at the middle to end of the third trimester (27–35 weeks) (Lundy
et al. 1999). Evidence is less clear when examining the relationship between
maternal anxiety and/or symptoms of stress and changes in the maternal HPA axis.
Several studies show that stress and anxiety levels assessed by questionnaire do
not necessarily correlate with maternal cortisol levels (Voegtline et al. 2012;
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Harville et al. 2009). This is likely to be related to differences in study design, such
as the gestation of sample collection for cortisol analysis. The type of maternal
stressor also appears to influence the cortisol response in pregnancy. For example,
a history of prior major stress (child abuse) increases the cortisol awakening
response during pregnancy (Bublitz and Stroud 2012) whilst experience of chronic
stressful life events during early pregnancy has been associated with blunted peak
salivary cortisol levels in the morning (Obel et al. 2005).

7 Maternal HPA Axis and Offspring Behaviour

Despite the relative lack of correlation between maternal mood and measurements
of cortisol in pregnancy, a number of studies have examined the relationship
between maternal HPA axis activity and behavioural changes in her offspring. The
majority of these studies have used salivary samples to measure free cortisol
during pregnancy as samples can be collected at home, i.e. in normal living
conditions, without the stress of a clinic visit. The most robust studies include
samples collected over 2 days to allow an average cortisol level to be calculated.
Salivary cortisol measurements are typically used to examine the cortisol awak-
ening response, or include measurements throughout the day, in a ‘day curve’, to
examine the diurnal rhythm of cortisol secretion. Other investigators have mea-
sured cortisol in amniotic fluid. While this may represent cortisol secreted from the
maternal circulation and/or from foetal urine, cortisol levels in amniotic fluid
generally correlate with maternal serum cortisol levels at the time of sampling
(Sarkar et al. 2007) and are thus thought to represent a marker of foetal gluco-
corticoid overexposure. Only a handful of studies have linked maternal urine or
serum cortisol measurements with offspring outcomes. Results of studies assessing
the maternal HPA axis and offspring behavioural outcomes are summarised in
Table 1. The most consistent findings showing significant associations between
cortisol measurements and offspring behaviour are with studies with measurements
of morning cortisol levels. Higher maternal morning cortisol concentrations in
saliva have been associated with altered infant behaviour in the first year of life
including negative infant temperament (De Weerth et al. 2003; Davis et al. 2007)
as well as poorer infant cognitive development as assessed by mental and motor
development (Buitelaar et al. 2003) and less habituation to repeated stress (De
Weerth et al. 2013). The finding of poorer infant cognitive development with
greater glucocorticoid exposure was also observed in a study measuring cortisol in
amniotic fluid (Bergman et al. 2010b). In contrast, no associations were found
between cortisol in amniotic fluid and infant fear reactivity (Bergman et al. 2010a)
or between the maternal salivary cortisol awakening response and emotional
regulation (Bolten et al. 2013). There is some evidence that the relationship of
higher morning cortisol levels and offspring behaviour persists to childhood with
higher maternal cortisol levels during pregnancy associating with higher anxiety in
childhood (Davis and Sandman 2012). Children with anxiety ratings within the
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borderline/clinically significant range were twice as likely to have been exposed to
higher maternal cortisol levels compared to children with ratings in the normal
range (odds ratio 2.1, 95 % confidence interval 1.1–3.9, p \ 0.05). Most of these
studies have included adjustment for several important confounding factors such
as social class and many also include adjustment for current maternal psycho-
logical status in an attempt to distinguish between in utero and postnatal effects.
Some studies have found that the relationship between higher cortisol levels and
altered offspring behaviour is only seen with cortisol levels measured in late
gestation (Buitelaar et al. 2003; Davis et al. 2007) suggesting there may be a
window of susceptibility at which the developing foetus is most vulnerable to high
cortisol levels. However, others have shown no gestation-specific effects (Davis
and Sandman 2012) and more research is needed.

8 In Utero Stress and Infant HPA Axis Activity

There is increasing evidence that offspring exposed to in utero stress have altered
activity of their own HPA axis (See Table 2). Infants of mothers with symptoms of
depression have been noted to have higher urinary cortisol within the first week of
life, consistent with overall increased HPA axis activity (Lundy et al. 1999).
Several studies have measured cortisol in infant saliva to avoid invasive sample
collection. The diurnal pattern of cortisol secretion appears to be altered in chil-
dren exposed to in utero stress with high morning cortisol levels and then flattening
of the day curve (Van den Bergh et al. 2008). The responsiveness of the HPA axis
is also altered in relation to maternal mood with increased salivary cortisol
response to separation/union stress (O’Connor et al. 2013a) in infants of mothers
who were anxious in pregnancy. Intriguingly, the cortisol responses to stress
appear to vary according to infant age and also according to the type of stressor
with increased or decreased responsivity depending on age and stressor (Tollenaar
et al. 2011). Likewise when cortisol responses were assessed in adolescence using
a laboratory stress test (carbon dioxide inhalation), there was a blunted response in
the children exposed to prenatal stress (Vedhara et al. 2012) suggesting that earlier
observed increased responsiveness of the HPA axis may change over time.

Increased foetal glucocorticoid exposure has been suggested as a mechanism
linking in utero stress with altered infant HPA axis activity. It is known that
increased glucocorticoid exposure alters the set-point of the offspring HPA axis.
Maternal and foetal/newborn cortisol levels are correlated (Gitau et al. 2004;
Smith et al. 2011) and maternal cortisol levels are associated with reactivity of the
newborn HPA axis as demonstrated by a study showing correlations between
higher maternal cortisol levels in mid-late gestation and increased cortisol
response in the newborn to the stress of a heel prick test (Davis et al. 2011). Higher
maternal cortisol levels are also associated by increased cortisol responses
in young childhood including responses to the physical stress of vaccination
(Gutteling et al. 2004), or the psychological stress of the first day at school
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(Gutteling et al. 2005). The changes in offspring HPA axis activity associated with
glucocorticoid overexposure in utero may persist into adult life as low birth weight
is associated with higher fasting cortisol levels (Phillips et al. 1998, 2000; Van
Montfoort et al. 2005) and with activation of the HPA axis (Reynolds et al. 2001,
2005). Increased HPA axis activity has also been reported in 6–11 year olds born
at term but who were exposed to antenatal glucocorticoids in utero (Alexander
et al. 2012).

9 Changes in Placental Growth, Gene Expression
and Epigenetic Modification in Association with In Utero
Stress

The placenta is located at the interface between mother and foetus and is the key
conduit of nutrient supply for the developing foetus. The placenta is capable of
responding to changes in the maternal environment with a range of structural and
functional adaptations (Lewis et al. 2006). Preliminary data suggests changes in
placental growth and development can occur in response to maternal mood from
early in pregnancy. For example, a very small study including only 18 women
showed a correlation between maternal depressive symptoms and first trimester
serum levels of vascular endothelial growth factor (VEGF), soluble fms-like
tyrosine kinase 1 (sFlt-1) and placental growth factor, biomarkers of placental
development (Fowles et al. 2011). Evidence that maternal mood is associated with
altered placental growth also comes from a large study (N = 78,017) of singleton
pregnancies which demonstrated an association between maternal life stress and
increased placental weight at birth (Tegethoff et al. 2010). Emotional symptoms
were not related to placental weight. Underlying mechanisms are unknown but are
likely to include changes in growth factors within the placenta and altered blood
supply with attendant changes in oxygen and nutrient supply. For example, a
very small study suggested maternal stress may influence placental DEPTOR
(DEP-domain containing and mTOR (mammalian target of rapamycin)-interacting
protein), which may act as nutrient sensor in placenta (Mparmpakas et al. 2012),
whilst another demonstrated that intrusive thought and emotional distress were
associated with reduced foetoplacental blood flow in the third trimester (Helbig
et al. 2013). Much more work is needed to understand the mechanisms linking
maternal mood to placental development and growth.

A number of studies have started to examine whether in utero stress is associated
with changes in placental gene expression with focus on a series of candidate genes
involved in glucocorticoid metabolism and serotonin transfer. The placental enzyme
11-beta hydroxysteroid dehydrogenase type 2 (HSD2) metabolises 80–90 % of
active maternal cortisol to inactive cortisone, protecting the foetus from excess
glucocorticoid exposure (Edwards et al. 1993). Other key players in regulating
glucocorticoid action, including glucocorticoid and mineralocorticoid receptors
(NR3C1 and NR3C2, respectively) and 11-beta hydroxysteroid dehydrogenase
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type 1 (HSD1), which catalyses the regeneration of active glucocorticoids, are
expressed in placental tissue (Murphy et al. 2006). The serotonin receptor (SLC6A4)
mediates placental uptake of serotonin and the placenta is also able to synthesise
serotonin from maternal tryptophan precursors (Bonnin et al. 2011). As with the
studies examining maternal stress and offspring outcomes, there are variations in the
methods used to assess in utero stress, e.g. retrospective/prospective data collection,
use of different scales, etc., which means comparison of studies may not be
straightforward. In addition, other factors such as mode of delivery, timing between
delivery and placental biopsy may lead to differences in outcomes between studies.

O’Donnell et al. collected placental samples from 56 women at the time of
elective caesarean section (O’Donnell et al. 2012). Symptoms of maternal anxiety
and depression were assessed on the morning prior to the caesarean section using
the Spielberger state and trait anxiety scale. This scale has been validated in
pregnancy (Gunning et al. 2010) and extensively used to assess mood. They found
increased anxiety on both scales (i.e. ‘state’ indicating anxiety at the time of the
questionnaire and ‘trait’ indicating general levels of mood) was associated with
down-regulation of HSD2 mRNA in the placenta. Decreased enzyme activity was
confirmed in a smaller subset of the samples. The finding of decreased HSD2
mRNA coupled with decreased enzyme activity would potentially allow increased
glucocorticoid exposure to the foetus in women with anxiety symptoms. In con-
trast, maternal depressive symptoms were not associated with any significant
changes in placental HSD2 expression in this study (O’Donnell et al. 2012) or in a
larger study (Ponder et al. 2011). However, the history of depression during
pregnancy in both of these studies was obtained retrospectively, either through
review of delivery and/or antenatal health records (Ponder et al. 2011) which may
be subject to recall-bias or by questionnaire at time of elective caesarean section
which may be highly influenced by the current situation (O’Donnell et al. 2012).

In addition to studies on genes regulating foetal glucocorticoid exposure, there
has been interest in other signalling pathways including monoamines, such as
serotonin as mood disorders are commonly attributed to disordered signalling in
these pathways (Ressler and Nemeroff 2000). Extensive studies in animal models
have demonstrated the important role of serotonin in foetal neurodevelopment
(Velasquez et al. 2013). Studies in pregnant women diagnosed with mood disor-
ders, or receiving treatment with selective serotonin reuptake inhibitors (SSRIs),
are also consistent with a key role for serotonin pathways in foetal development
(Oberlander 2012; Olivier et al. 2013), with effects persisting at least to childhood.
The serotonin and glucocorticoid signalling systems also interact, with glucocor-
ticoids regulating serotonin synthesis, transport, re-uptake and neuronal receptor
expression, whilst serotonin controls glucocorticoid and mineralocorticoid receptor
expression in the central nervous system (Wyrwoll and Holmes 2012). Recent data
suggest maternal depression may influence placental 5-hydroxytriptamine (5-HT).
mRNA levels of SLC6A4, the transmembrane serotonin transporter were increased
in placentas from women with untreated mood disorders and from women treated
with SSRIs, compared to controls (Ponder et al. 2011). A major mechanisms for

Mechanisms Linking In Utero Stress to Altered Offspring Behaviour 111



removing 5HT is its metabolism into inactive 5-hydroxyindoleacetic acid by the
enzyme monoamine oxidase A (MAO-A). This enzyme is present in the placenta
(Zhang et al. 2010) and located in the syncytiotrophoblast (Blakeley et al. 2013)
and maternal depression is associated with reduced MAO-A expression in term
‘placenta’ (Blakeley et al. 2013).

Mechanisms leading to the changes in placental gene expression in response to
in utero stress are unknown but there has been much interest in whether epigenetic
modifications (i.e. alterations in gene function in the absence of changes in the
DNA sequence) could be an underlying mechanism. These epigenetic modifica-
tions include DNA methylation, post-translational modification of histones and
non-coding RNAs. DNA methylation has been most studied in the context of early
life programming. There is increasing evidence to suggest that DNA methylation
is influenced by environmental cues (Jaenisch and Bird 2003) and thus can link in
utero stress with permanent changes in the epigenome and life-long phenotypic
consequences (Weaver et al. 2004).

A number of studies have started to investigate whether maternal mood in
pregnancy influences foetal DNA methylation. A study of 82 women showed that
prenatal exposure to maternal depression was associated with decreased methyl-
ation in umbilical cord leukocytes of the SLC6A4 gene (Devlin et al. 2010). In
contrast, another small study including infants of depressed mothers treated with a
serotonin reuptake inhibitor antidepressant (n = 33), infants of depressed mothers
who were not treated (n = 13) and infants of normal control mothers (n = 36)
found that maternal depression/anxiety in the third trimester was associated with
increased methylation at the exon 1F promoter of the human GR gene (NR3C1) in
cord blood (Oberlander et al. 2008). Variation in DNA methylation in cord blood
at this and other loci of the NR3C1 gene was also associated with maternal
emotional well-being (particularly anxiety) in another small study of 83 women
(Hompes et al. 2013). Another study used a genome-wide approach to examine
methylation patterns of [27,000 CpG sites across the genome in umbilical cord
blood-derived DNA from the offspring of women undergoing treatment for a mood
disorder during the neonatal period (n = 201) (Schroeder et al. 2012). There was
no association between neonatal umbilical cord blood DNA methylation and
maternal psychiatric diagnosis or clinically significant depressive symptoms. The
largest study to date investigating maternal mood and offspring early life param-
eters included 508 infants whose mothers had completed a validated depression
questionnaire. DNA methylation in cord blood at the regulatory sequence of the
imprinted gene MEG3 differed significantly by maternal mood. Compared with
infants of women without depressed mood, infants born to women with severe
depressed mood had a 2.4 % higher methylation at the MEG3 DMR. There were
no associations of maternal mood with the other imprinted genes studied including
methylation of IGF2 and the linked gene H19 (Liu et al. 2012). There is some
evidence that DNA methylation may be altered by antidepressant therapy. A study
of 436 newborns in cord blood/placenta found a race-dependent change in
methylation of the H19 DMRs in those whose mothers used antidepressant drugs
during pregnancy (Soubry et al. 2011). Likewise, exposure to an antidepressant
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medication was associated with differential methylation of CpG sites in
TNFRSF21 and CHRNA2 (Schroeder et al. 2012). TNFRSF21 is also known as
death receptor 6 (DR6) and is expressed in developing neurons and is involved in
refinement of neuronal connections during development. CHRNA2 is a broadly
expressed subunit of nicotinic acetylcholine receptors and has been linked to
neurocognitive functioning. In this study, the average difference in methylation for
both CpG sites was less than 3 % between each group which may be of ques-
tionable clinical relevance.

10 Changes in Placental Growth, Gene Expression
and Epigenetic Modification in Association
with Offspring Behaviour

So are the changes in placental growth, gene expression and epigenetic modifi-
cations associated with altered offspring behaviour? There is some evidence that
the growth of the placenta is associated with subsequent behavioural problems in
the offspring. In the North Finland birth cohort 1986, placental weight and surface
area was recorded and then the children (n = 8101) were assessed at 8 years for
ADHD symptoms, probable psychiatric disturbance, antisocial disorder and neu-
rotic disorder, and were assessed again at 16 years (n = 6607) for ADHD
symptoms (Khalife et al. 2013). There was a positive association between pla-
cental size (placental weight, surface area and placental-to-birth weight ratio) and
mental health problems in boys. Increased placental size was linked to overall
probable psychiatric disturbance at age 8 years (OR 1.14, [95 % CI 1.04–1.25]),
antisocial behaviour at age 8 years (OR 1.14 [95 % CI 1.03–1.27]) and ADHD
symptoms (inattention-hyperactivity) at 16 years (OR 1.19 [95 % CI 1.02–1.38]),
after adjusting for known confounders. This finding contrasts with another study
including 4,976 participants in the North Finland birth cohort 1966 where small
placental weight was associated with schizotypal traits in women at 31 years of
age (Lahti et al. 2009). More work is needed to understand how the placenta
responds to an in utero stress, either through diminished growth (Lahti et al. 2009)
or by increasing growth as a compensatory mechanism to an adverse maternal
environment as speculated by Khalife et al.

Although no studies have examined whether changes in placental gene
expression are associated with later offspring behaviour, supportive evidence that
changes in levels of placental HSD2 associate with altered offspring behaviour
comes from observations of decreased verbal and visuo-spatial abilities and nar-
rative memory in the 8-year-old children of women who consumed large quantities
of liquorice during pregnancy (Räikkönen et al. 2009). Liquorice contains gly-
cyrrhizin, an HSD inhibitor, and so these children are potentially exposed to more
glucocorticoids in utero. Liquorice exposure is also associated with significant
increases in externalising symptoms, attention, rule breaking and aggression
problems with notably a 2.26 fold increase in attention deficit hyperactivity
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disorder (Räikkönen et al. 2009). In addition, there is some evidence linking DNA
methylation changes at birth with neonatal stress responses and behaviour. A small
study linked increased methylation at the NR3C1 promoter in cord blood of
neonates to increased response to stress (Oberlander et al. 2008). In another study
increased placental HSD2 methylation was associated with altered newborn
behaviour with reduced scores of quality of movement using the NICU Network
Neurobehavioural Scales (Marsit et al. 2012). The same researchers have subse-
quently shown that infants of mothers who were depressed during pregnancy and
had greater methylation of placental NR3C1 CpG2 had poorer self-regulation,
more hypotonia and more lethargy that whose mothers were not depressed
(Conradt et al. 2013). Infants whose mothers were more anxious during pregnancy
and had greater methylation of placental HSD2 CpG4 were more hypotonic
compared with infants of mothers who were not anxious during pregnancy. These
results are intriguing but do suggest the possibility of identifying biomarkers of
future risk at birth by identifying epigenetic modifications in placenta.

11 In Utero Stress and Structural Changes in the Offspring
Brain

Abnormalities identified in the brain using magnetic resonance imaging (MRI)
correlate with a variety of neurological disorders including schizophrenia, autism,
anxiety, depression and attention deficit hyperactivity disorder (Broyd et al. 2009;
Philip et al. 2012). Recently, investigators have started to examine whether in
utero stress is also associated with alterations in brain development using MRI.
The relation between maternal antenatal depression and neural development in
newborns (Rifkin-Graboi et al. 2013) was examined using a prospective birth
cohort study (Growing up in Singapore Towards Healthy Outcomes [GUSTO]).
The investigators focused on changes in the amygdala, a brain region that is
important for emotional memory processing and regulates a variety of emotions
including fear, depression and anxiety. They used structural MRI to examine the
size of the amygdala, and diffusion tensor imaging (DTI) to derive fractional
anisotropy and axial diffusivity, measures for characterising the microstructure of
the amygdala in 157 newborns aged 6–14 days. Maternal depression was assessed
at 26 weeks gestation using the Edinburgh Postnatal Depression Scale. The main
finding was that there were changes in the neonatal microstructure (significantly
lower fractional anisotropy and axial diffusivity but not volume) of the right
amygdala in infants of mothers who had higher scores on the depression scale
compared with lower scores. Underlying mechanisms are unknown, but in another
study higher maternal cortisol levels measured in earlier but not later gestation
were associated with a larger right amygdala volume measured by MRI in girls at
age 7 years, but not in boys (Buss et al. 2012). The magnitude of effect was
substantial, with a 1 SD increase in maternal cortisol being associated with an
approximately 6.4 % increase in the size of the right amygdala. The higher
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maternal cortisol levels in early gestation were associated with more affective
problems in girls, and this association was mediated in part by amygdala volume.
New imaging techniques with 3 Tesla magnetic resonance imaging (3T MRI)
(Anblagan et al. 2013) may allow measurement of brain volume and sulcal
determination in the developing foetus in utero.

12 Can We Intervene to Improve Offspring Outcomes?

The strength of the association between in utero stress and adverse offspring
behaviours implies that any intervention that could reduce in utero stress could
have huge clinical implications for improving health in the offspring. A number of
studies have started to look at ways to alter maternal behaviour during pregnancy.
For example, deficiencies of key micronutrients such as folate, vitamin B12,
calcium, iron, selenium, zinc and n - 3 fatty acids have been associated with low
maternal mood in pregnancy (reviewed in Leung and Kaplan 2009), but to date
dietary interventions, at least in the post-partum period, have been inconclusive in
preventing post-partum depression (Miller et al. 2013). Cognitive behavioural
therapy has been shown to be effective in improving maternal mood postnatally
(O’Mahen et al. 2013) but this approach has not been tested during pregnancy. One
of the largest studies with longest follow-up of the offspring suggesting that
behavioural interventions in the mother are effective in improving offspring
behaviour comes from follow-up studies from the Nurse Family Partnership ran-
domised controlled trial (Olds et al. 1998; Olds 2002, 2008) Trained nurses visited
single, poor, deprived mothers during pregnancy and in the first 2 years of the
babies’ life and gave the women advice about diet, health and education. The
follow-up studies have shown a number of benefits for the offspring including
better vocabulary at age 6 years (Olds et al. 2004), reading performance and maths
test results at age 9 years (Olds et al. 2007), less substance abuse at 12 years (Olds
et al. 2010) and less criminal behaviour at age 19 years (Eckenrode et al. 2011).
Whilst the intervention was not specifically designed to target maternal mood or
stress, these women were clearly from a group known to be at high risk of stress
and this study does suggest that teaching the women about coping strategies and
life skills and the supportive environment created had long-lasting beneficial
effects on offspring behaviour.

13 Conclusion

An accumulating body of evidence supports a link between in utero stress and
adverse offspring behaviours. Alterations in the activity of the maternal HPA axis
and/or function of the placenta resulting in foetal glucocorticoid overexposure is a
plausible underlying mechanism but more research is needed to understand the
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pathological pathways and to identify the gestation at which any intervention to
prevent in utero stress may be most effective. Lifestyle and behavioural inter-
ventions to mothers during pregnancy have been shown to be effective at
improving offspring behavioural outcomes, at least in deprived mothers, and more
research is needed to design interventions that will be effective across a range of in
utero stressors. The accumulating evidence of a link between in utero stress and
adverse offspring behaviour suggests that health care professionals should be
aware that maternal mental health can potentially impact on the health of both the
mother and her child.
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Does Stress Elicit Depression? Evidence
From Clinical and Preclinical Studies

Helle M. Sickmann, Yan Li, Arne Mørk, Connie Sanchez
and Maria Gulinello

Abstract Exposure to stressful situations may induce or deteriorate an already
existing depression. Stress-related depression can be elicited at an adolescent/adult
age but evidence also shows that early adverse experiences even at the fetal stage
may predispose the offspring for later development of depression. The hypothal-
amus–pituitary–adrenal axis (HPA-axis) plays a key role in regulating the stress
response and dysregulation in the system has been linked to depression both
in humans and in animal models. This chapter critically reviews clinical and
preclinical findings that may explain how stress can cause depression, including
HPA-axis changes and alterations beyond the HPA-axis. As stress does not elicit
depression in the majority of the population, this motivated research to focus
on understanding the biology underlying resilient versus sensitive subjects. Animal
models of depression have contributed to a deeper understanding of these mech-
anisms. Findings from these models will be presented.
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1 Introduction

Stressful events may provoke depressive symptoms or exacerbate an already
existing depression. It is currently under debate whether affective illness results
from the negative effects of stressors, or rather if the differential physiological and
cognitive processes that underlie depression cause dysfunctional response to
stressors, or some combination of the two. While it is clear that the risk of
depression is correlated with increased incidence and duration of stressors, the
majority of persons undergoing traumatic and stressful events do not develop
depression and, furthermore, no specific trauma or set of stressors can adequately
account for the majority of instances of depression. Here, we review and discuss
the current clinical and preclinical evidence relating to the disease biology
underlying stress and its relationship to depression. Furthermore, we will also
review evidence that questions the link between stress and depression.

2 The Stress System

A normal stress response involves a switch from basal activity to a stress reactivity
phase in which plasma and brain stress hormones increase. This is followed by a
stress recovery phase in which stress hormones return to baseline levels following
the removal of the stimulus (McEwen 1998) primarily via direct negative feedback
but also potentially via various other peptides that have all been related to
depression (Dubrovsky 2000; Swaab et al. 2005).
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Glucocorticoids and their nuclear receptors have become almost synonymous
with stress and clearly play an important role in regulation of stress outcomes.
However, the stress response is more complex, involving layers of regulation and
crosstalk between different systems. The most rapid physiological responses to
stressors involve activation of the sympathetic nervous system and the release of
adrenaline which mediate sympathomimetic changes such as cardiovascular
changes and pupil dilation. This is followed by activation of the hypothalamic–
pituitary–adrenal axis (HPA-axis) which is the most common operationally
defined outcome of stress. In response to stress, the paraventricular nucleus
(PVN) of the hypothalamus secretes corticotropin-releasing factor (CRF), which

Fig. 1 Simplified summary of the stress response network. Both the HPA-axis system and other
effectors are involved in stress response, inducing various physical and affective changes. Not
included in the diagram are feedback controls occurring on various levels of this network
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stimulates the synthesis and release of adrenocorticotropin (ACTH) from the
anterior pituitary. ACTH then stimulates the synthesis and release of glucocorti-
coids (primarily cortisol in humans and corticosterone in rodents) from the adrenal
cortex [Fig. 1; (Nestler et al. 2002; McEwen 1998; Aguilera et al. 2008)].

Even at this early level of regulation to the stress response, there may be critical
differences between the response to acute and chronic stressors that may have
implications for the susceptibility to the negative effects of stressors. During acute
stress CRF and vasopressin (released from the supraoptic nuclei of the hypothala-
mus) seem to induce the release of ACTH from the anterior pituitary in a synergistic
manner but during repeated stress there is evidence of a switch from CRF-ergic to
vasopressinergic drive of the PVN (Aguilera et al. 2008; Lightman 2008) [however
see (Chen et al. 2008; Bergström et al. 2008)]. Vasopressin deficient rats show
reduced depression-like behavior, though these have normal basal and stress-
induced corticosterone levels (Mlynarik et al. 2007). Vasopressin is also one of the
peptide hormones important in regulation of social behavior, and may thus be
important in this aspect of depression (Litvin et al. 2011; Egashira et al. 2007).

The activity of the HPA-axis is controlled by several other brain regions,
including the hippocampus, which exerts an inhibitory influence on hypothalamic
CRF-containing neurons, and the amygdala, that appears to have an excitatory
influence (McEwen 2000; Sapolsky 2000; Nestler et al. 2002). High levels of
glucocorticoids are normally self-limiting, as these exert negative feedback, via
regulation of the hypothalamus and hippocampus.

There are two types of intracellular nuclear receptors mediating the effects of
circulating glucocorticoids,—the mineralocorticoid receptor (MR, type I) and
the glucocorticoid receptor (GR, type II) (McEwen 2000; de Kloet et al. 1999).
The MR has equal affinity (high) for mineralocorticoids (e.g., aldosterone) and
glucocorticoids and is thought to be critical in regulating activity during low
glucocorticoid levels, such as circadian variation. The GR is a low-affinity
receptor, and appears to be involved in the modulation of actions during high
levels of glucocorticoids and in the negative feedback response (Heuser et al.
1994). Glucocorticoids also have rapid effects via interaction with membrane
bound receptors (french-Mullen 1995; Towle and Sze 1983).

In addition to glucocorticoids, stressors reliably alter numerous other factors
that should also be considered an integral part of the stress response. These include
catecholamines, growth hormone, prolactin, various peptides, progesterone, tes-
tosterone, and thyroid hormones, the levels of which are reliably altered in
response to stressors (Torner and Neumann 2002; Wuttke et al. 1987; Kant et al.
1987). The role of several of these ‘‘forgotten’’ stress hormones and peptides has
been inadequately studied, despite the fact that these can profoundly affect mood.
Progesterone levels, for example, are increased within 5 min of a stressful stimuli
in both sexes and is primarily of adrenal origin (Deis et al. 1989). Progestins can
also bind to both the MR and the GR (Myles and Funder 1996; Quinkler et al.
2002). Furthermore, estrogens regulate cortisol binding proteins which can, in
turn, affect cortisol levels (Swaab et al. 2005). Cortisol levels can also be regulated
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by other steroid hormones, such as estrogens and androgens, in other ways.
Gonadal steroid hormones receptors are present in CRH containing neurons in the
PVN (Swaab et al. 2005) and the CRH promoter contains both androgen and
estrogen response elements (Vamvakopoulos and Chrousos 1993; Bao et al. 2005).
It is thus not surprising that estrogens may regulate susceptibility to depression-
like outcomes after stressors (Li et al. 2010a). Elucidating the crosstalk between
these hormones and the glucocorticoids may help close some of the gaps in our
understanding of depression and may be useful to parse out some of the apparently
idiosyncratic symptoms of depression, such as weight gain, sleep disruption, and
changes in appetite in addition to sex differences in the response to stressors and in
the susceptibility to depression.

3 The Stress System and Depression: Is There a Link?

The evidence for a relationship between stress and depression comes mainly from
two lines of research: first, the observation that exposure to stressful events is
correlated with the incidence of depression and second, the evidence of HPA-axis
dysregulation in a subset of depressed patients. There are elsewhere excellent
reviews detailing the evidence and history of the stress-induced depression
hypothesis (Holsboer 2000, 2001; van Praag 2004; Kendler et al. 1999; Kessler
1997; Stetler and Miller 2011).

3.1 Stressors and Risk of Depression

Numerous studies suggest that exposure to stressful life events is a major correlate
with depression (Schmidt et al. 2010b; Kendler et al. 1999; Tao et al. 2011; Brown
et al. 1987; Strauss et al. 2011; Liu and Alloy 2010) and for subsequent HPA-axis
dysfunction (Nemeroff et al. 1984; Frodl et al. 2010; Risch et al. 2009). Long-term
exposure to particularly uncontrollable and unpredictable life stressors is often said
to be a major factor in the development of depression (Kessler 1997; Kendler et al.
1999). Stressors are associated with the onset, symptom severity, and relapse of
depressive disorders (Kendler et al. 1999; Lewinsohn et al. 1999; Hammen et al.
1992; Burke et al. 2005). However, there are several limitations of this proposed
relationship. While some studies report changes in basal or stimulated stress
responses in depressed patients, others have failed to replicate some of these
phenomena (Croes et al. 1993). In many cases stressful events do not elicit
depressive episodes and conversely, many episodes of depression occur in the
absence of considerable life stress (Bonanno 2004).

In fact, the relationship between stress and depression is primarily based on
correlational data, thus there are alternative explanations that do not infer stress as
a causal factor in depression. These include the proposal that higher numbers of
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stressful events occur as the result of depression (Hamilton et al. 2013;
Lyubomirsky et al. 1998). There may also be an increased propensity in depressed
patients to perceive and report events as stressful (Hammen 1991; Lyubomirsky
et al. 1998; Hamilton et al. 2013; Power et al. 2013). A prolonged physiological
response to stressors evident in depression (Siegle et al. 2001) in concert with
activation in brain areas (such as the amygdala) responsible for encoding emo-
tional features would be consistent with this possibility. Thus, although there
seems to be a link between stress and depression, stress is neither necessary nor
sufficient to cause depression in the majority of the population.

3.2 HPA-Axis Dysregulation in Depression

The dysregulation of the HPA-axis evident in depressed patients is one foundation
of the stress-depression hypothesis. Deregulated HPA-axis function can include
altered basal HPA activity (Halbreich et al. 1985), altered negative feedback
mechanisms in the HPA-axis, such as dexamethasone nonsuppression, and/or
hyper-reactivity of the stress response (see Fig. 2).

Some studies indicate that depressed patients have elevated basal cortisol levels
(Halbreich et al. 1985; Young et al. 1994), but other studies have reported no effect
(Burke et al. 2005). Generally, when more specific inclusion criteria are used (i.e.,
diagnostic groups, hospitalization status, age), higher numbers of depressed indi-
viduals with greater median cortisol levels compared to nondepressed individuals
are reported. Moreover, a recent meta-analysis demonstrated that HPA-axis
activity may vary between diagnostic groups as patients with psychotic and
melancholic depression are more likely to display HPA-axis hyperactivity (Stetler
and Miller 2011), substantiating the hypothesis that some individuals may be
susceptible to HPA-axis dysregulation during depression.

Alternatively to basal stress hyperactivity, failure of negative feedback may
result also from exposure to chronic stress and can be evident in depressed
patients. Administration of low doses of the exogenous steroid, dexamethasone,
normally inhibits endogenous cortisol secretion, but in depressed patients dexa-
methasone fails to lower endogenous cortisol (a.k.a. dexamethasone nonsuppres-
sion). However, dexamethasone nonsuppression occurs in less than half of
depressed subjects (Rubin et al. 1987; Holsboer et al. 1980). Other assays for
HPA-axis negative feedback (combined dexamethasone/CRH test) may increase
the sensitivity for detecting failure of negative feedback in depressed patients. In
studies where this test was employed, as many as 90 % of depressed patients had
some failure of feedback when the subjects were also grouped into different age
ranges (Heuser et al. 1994; Watson et al. 2006). It should also be noted that about
30 % of subjects without depression also exhibit dexamethasone nonsuppression
(Silver 1986).

It has also been suggested that the acute stress response may be hyperactive in
depressed subjects (Schmidt et al. 2010b; Nestler et al. 2002; Trestman et al. 1991).
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Higher than normal activation of the HPA-axis occurs in a subset of patients, is
ameliorated by antidepressant treatment and is significantly lower during remission
(Trestman et al. 1991; Holsboer 2001). Roughly half of the patients exhibit some
evidence of HPA-axis hyperactivity, though not all necessarily in exactly the same
measures (Nestler et al. 2002). However, it should be noted that hypercortisolemia
is not specific to depression, but is also found in other psychiatric disorders.

Although many studies report some type of HPA-axis hyperactivity in
depression, there are also conflicting studies. For example, there is evidence that
the stress response may be blunted in depression and depressed patients may have
lower cortisol and decreased CRF levels in response to a stressor (Brindle et al.
2013; Burke et al. 2005; Geracioti et al. 1992). Cortisol response to stressful
stimuli can also be ‘‘flatter’’ in depressed patients (Young et al. 2000; Trestman
et al. 1991). This would not be inconsistent with the blunted affective response to

Fig. 2 HPA-axis dysfunction in depression. Using plasma glucocorticoid levels as an example
we here illustrate the several types of abnormal stress responses displayed in subsets of depressed
patients. a Some patients may have increased basal cortisol levels. b A prolonged elevation of the
hormone levels after the cessation of stressful stimuli may result from a failure of feedback
inhibition. c Some patients may have higher stress hormone levels during exposure to stressful
stimuli. d Finally, a blunted response to stressors is also evident in some patients, though this can
be confounded by circadian dysregulation and/or higher basal responses. (McEwen 2000; Kehne
and Cain 2010; Young et al. 2000)
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both aversive and appetitive stimuli evident in depressed patients. Other factors
known to affect HPA-axis measurements include age and gender, depression
subtype and/or diagnosis, and depression severity (Burke et al. 2005; Maes et al.
1994), complicating interpretation of the studies. Furthermore, although increased
reactivity of the HPA-axis is evident for some people at high-risk for depression
(Schmidt et al. 2010b), studies such as the Munich Vulnerability Study indicate
that only about 20 % of healthy people who have a high familial risk of depression
display abnormal dexamethasone suppression (Holsboer 2000). Furthermore,
stress hyperactivity is more likely to be a feature of hospitalization status (Maes
et al. 1994) than of depression per se, highlighting the variability in the association
of HPA-axis measures with the risk of depression (Kendler et al. 2002, 2006).

Pharmacotherapies reducing stress hormone levels can be associated with a
biologically well-defined subset of depressed patients—particularly those with
adrenal disorders. Inhibitors of glucocorticoid synthesis, such as ketoconazole,
metyrapone, and aminogluthetimide have shown antidepressant activity in patients
with Cushing’s syndrome (Reus and Wolkowitz 2001). There have also been
attempts to reduce HPA activity in patients without a concomitant adrenal disease
via inhibition of the CRF receptor. Despite promising results from the first CRF1
receptor antagonist trial in depressed patients, subsequent trials yielded negative
results (Griebel and Holsboer 2012).

4 Stress-Based Animal Models of Depression

Stress can be modeled in animals by exogenous stress hormone administration or
by exposing animals to aversive stimuli (e.g., restrainers, shock), and these are
among the most commonly used models for inducing depression-like behavior in
rodents. While these procedures often result in many characteristics similar to
depression (Casarotto and Andreatini 2007; Moreau et al. 1992; Forbes et al. 1996)
they also often result in contradictory results see Table 1. Chronic corticosterone
administration, for example, does not always impair HPA-axis function (Young
1995) and can sometimes even reduce depression-like behavior (Xu et al. 2011).
Animal models can be used to examine causal relationships between stressors and
the development of depression-related outcomes and also to clarify the mecha-
nisms of the HPA-axis dysfunction that may be evident in depressed patients.

Animal models of stress-induced depression include prenatal and early post-
natal stress, social stressors (isolation, subordination and defeat), the application of
single stressors (e.g., restraint, shock) and long-term administration of a combi-
nation of various unpredictable stressors, known as uncontrollable chronic stress or
chronic mild stress (CMS). These models of chronic stress generally simulate
aspects of the core symptoms of depression, including behavioral despair in the
forced swim (FST) and learned helplessness tests, social withdrawal in a variety of
social tests and anhedonia in the saccharin (or sucrose) preference test, operant
tasks, and self-stimulation (Blanchard et al. 2001; Koolhaas et al. 1997; Willner
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and Mitchell 2002; Nestler et al. 2002; Strekalova et al. 2004; Strekalova and
Steinbusch 2010). It should be noted that the depression-like behaviors resulting
from stress exposure are variable (Willner 2005; Strekalova et al. 2004; Strekalova
and Steinbusch 2010) and while there may be a mean difference between stressed
and control groups, this is typically due to increased depression-like behaviors in a
subset of the animals (see Fig. 3). For an excellent review on stress-based animal
models [see (Willner et al. 2013)].

4.1 Chronic Single Stress Models of Depression in Adult
Animals

Among the single stressors used to investigate the relationship between chronic
stress and depression, social stressors are increasingly being investigated, and the
most commonly used social stressors include social defeat and social isolation.
Social defeat is induced in rodents by repeated exposure to a dominant conspecific
(as in the resident-intruder paradigm) (Blanchard et al. 2001; Dadomo et al. 2011;
Razzoli et al. 2011b; Albonetti and Farabollini 1994). This paradigm is based on
the fact that adult male rodents will establish a territory and the resident will attack

Fig. 3 Variability of stress-induced outcomes in rodents assays of depression-like behavior.
Exposure to chronic stress tends to induce anhedonia (less preference for sweetened water) a,
increase immobility in the forced swim test b and reduce social interaction c. However, typically
only a subset of animals display negative outcomes and the performances of the same animal in
different tasks may not be related, i.e., animal having most severe anhedonia may not be the one
that display significant immobility. It should also be noted that several studies have failed to find
significant effects. Figures are reprinted with permission—a and b from (Strekalova and
Steinbusch 2010) and c from (Krishnan et al. 2007)
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or threaten unfamiliar males intruding in its home cage (Mitchell and Fletcher
1993; Kemble 1993; Koolhaas et al. 2013). Allowing the resident to threaten the
intruder repeatedly produces defeated subjects, which elicits depression-like
behavior (Carnevali et al. 2012; Hammack et al. 2012; Iio et al. 2011; Razzoli
et al. 2009; Bhatnagar and Vining 2003) much as in humans (Björkqvist 2001),
however see (van der Staay et al. 2008; Paul et al. 2011; Blanchard et al. 1995;
Koolhaas et al. 1997). Social isolation can also cause negative behavioral
outcomes, but it is unclear if they reliably do so in the current accepted assays of
depression-like behavior in rodents. Some studies indicate an increase in behav-
ioral despair, social impairment, and impaired hedonic responses (Carnevali et al.
2012; Grippo et al. 2007; Martin and Brown 2010), however, others rather dem-
onstrate anxiety-like or OCD-like deficits (Kim and Kirkpatrick 1996; Thorsell
et al. 2006).

Chronic restraint is also a common way of inducing stress and examining the
relationship between stress and depression-like behavior in rodents. Typically,
repeated restraint causes anxiety-, despair-, and depression-like behaviors, alters
sleep and alters glucocorticoid receptor expression (Chiba et al. 2012; Hammack
et al. 2012; Hayase 2011; Suvrathan et al. 2010; Wood et al. 2008; Hegde et al.
2008), some of which can be replicated by chronic, sustained corticosterone
administration (Gregus et al. 2005). However, the extent and nature of the behav-
ioral outcomes are, highly variable. Furthermore, the exact nature of the HPA-axis
response is dependent on the brain region, sex, age, and the time after stressor
cessation at which the specific molecular target is assessed.

4.2 Multiple Chronic Stressors in Adult Animals

Chronic mild stress (CMS) is one of the most commonly used rodent models of
depression. CMS consists of the application of a combination of various stressful
stimuli over a long period of time (generally several weeks), including circadian
disruption, food and/or water restriction, aversive cage conditions, social stress,
intermittent strong/aversive stimuli, changes in room temperature, electrical shock,
forced exposure to an elevated platform, and forced swimming among others
(Castro et al. 2012; Baker et al. 2006; Casarotto and Andreatini 2007; Dalla et al.
2005; D’Aquila et al. 1994; Lin et al. 2002; Matthews et al. 1995; Moreau et al.
1992; Gregus et al. 2005; Wu and Wang 2010; Strekalova and Steinbusch 2010).
CMS generally results in a subset of animals which display anhedonia in the sac-
charin/sucrose preference test or intra cranial self-stimulation (Lin et al. 2002;
Willner et al. 1992), or immobility in the forced swim and/or tail suspension tests or
social deficits. This is consistent with other stress models, such as chronic social
stress, that also result in about half the subjects with depression-like behavior while
the other half remain resistant (Krishnan et al. 2007). This circumstance is also
similar to clinical stress literature in which only a subset of subjects are affected.
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In addition to the fact that there is a subset of vulnerable subjects in studies that
find negative effects of stressors on subsequent behavior, in some cases exposure to
stressors can also have positive behavioral outcomes such as increasing hedonic
behavior (Barr et al. 2000) and reducing behavioral despair (Platt and Stone 1982;
Brotto et al. 2001; Xu et al. 2011). This highlights the relevance of adopting a
‘‘screen versus mean’’ approach wherein subjects with a known behavioral outcome
after stress are compared to subjects who do not show a depressive phenotype to
these stimuli, as it is evident that the question is not truly how does stress cause
depression, but in whom does stress cause depression (Ducottet and Belzung 2005;
Castro et al. 2012; Strekalova and Steinbusch 2010; Krishnan et al. 2007).

The hypotheses of a chronically deregulated HPA-axis as the cause of depression-
like behavior following stressful events are not unequivocally supported by pre-
clinical studies. For example, when mice are subjected to chronic social stress only
about half of the animals demonstrated depression-like behavior, whereas both
resistant and susceptible mice showed increased corticosterone response to acute
stressors compared to unstressed control mice (Krishnan et al. 2007). Also, although
male rats most robustly show depression-like outcomes (lower body weight and
robust anhedonia) compared to females, there is no difference in corticosterone levels
in males undergoing CMS compared to controls, while females undergoing CMS did
have higher levels of corticosterone than controls (Dalla et al. 2005). Thus, there is no
clear-cut relation between depression-like behavior and HPA-axis response in
numerous studies that have looked at these multiple measures in the same subjects.
Thus, other factors than the absolute corticosterone, GR, and MR levels may regulate
the susceptibility to stress-induced depression in rodents. For reviews with different
points of view see (Hill et al. 2012; Willner 2005; Wiborg 2013) and Psychophar-
macology vol. 134, issue 4.

Consistent with this view, the assessment of GR expression, negative feedback,
and other HPA-axis measures in animal models of stress-induced depression has
likewise resulted in variable and equivocal data. Clearly, the role of the GR and
GR levels are a function of brain region, so we will focus on the hippocampus here
(see Table 1). Several studies have reported downregulation of GR after chronic
stress (Zheng et al. 2006; Xu et al. 2006; Kim et al. 1999; Herman et al. 1995; Yau
et al. 2001). Other studies however, failed to find any effect of chronic stress on
hippocampal GR expression levels (Lopez et al. 1998; van Riel et al. 2003).
Chronic corticosterone administration does not always impair negative feedback
(Young 1995). Results are also conflicting with respect to CRF. Predictably, mice
lacking CRF receptors show a marked impairment of HPA response to stressors
but have either no behavioral outcomes or possibly an anxiety-like phenotype
(Kormos and Gaszner 2013; Muglia et al. 1995; Weninger et al. 1999), indicating
that none of the core symptoms of depression are observed when manipulating this
aspect of the HPA-axis. On the other hand, rodents overexpressing CRF have
blunted stress responses (Yu et al. 2008) and reduced depression-like behavior
(Regev et al. 2011; Kormos and Gaszner 2013), which is not consistent with the
idea that a higher stress reactivity would lead to depression-like behavior. Finally,
CRF antagonists show reliably antidepressant-like effects only when endogenous
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CRF levels are high (Griebel et al. 2002; Maciag et al. 2002; Nielsen et al. 2004;
Okuyama et al. 1999; Zorrilla et al. 2002). This latter observation may explain the
inadequate outcome in CRF receptor 1 antagonist trials in mixed populations of
depressed patients (Griebel and Holsboer 2012).

4.3 Early Life Stress

It has become increasingly evident that detrimental early life experiences, including
prenatal stress, can permanently alter physiology and behavior and increase the risk
of psychiatric disorders (Davis and Sandman 2012; Khashan et al. 2008). Children
born to women who were stressed while pregnant are prone to depression (Kleinhaus
et al. 2013; Van den Bergh et al. 2008). The transgenerational changes in depression
risk after exposure to prenatal stress are not limited to severe trauma but also occur
after exposure to milder stressors (Huizink et al. 2003). Prospective studies have
shown that children up to 10 years old may suffer from sleep problems, reduced
cognitive performance, and increased fearfulness as a consequence of exposure to
prenatal stress (Austin et al. 2005; Bergman et al. 2007). However, exposure to early
postnatal stress also increases the risk for developing depression (Nemeroff 2004;
Mullen et al. 1996) and many studies of prenatal stress do not address the
confounding effects of postnatal stress exposure. Animal studies are useful models in
this field, as the environment and stress intensity can be better controlled and/or
systematically manipulated. Prenatally stressed offspring may be derived by
maternal exposure to the same type of stressor repeatedly (e.g., restraint stress) or to
multiple types of stressors (CMS). Maternal separation is a widely used model for
studying effects of early postnatal stress.

Animals exposed to pre- or early postnatal stress show depression-like
behavioral changes including behavioral despair in the FST, diminished pleasure-
seeking, greater acquisition of learned helplessness behavior, and increased REM
sleep and sleep fragmentation (Abdul Aziz et al. 2012; Brunton and Russell 2010;
Morley-Fletcher et al. 2003; Keshet and Weinstock 1995; Secoli and Teixeira
1998; Dugovic et al. 1999). Similar to adult stress models, depressive-like
behavior after exposure to early life stress varies between studies. In some studies
pre- or early postnatal stress did not impair behavior or did so in just one sex
(Brunton and Russell 2010; Van den Hove et al. 2013). Different stress paradigms
(timing, duration, degree and types of stressors) and age and strain of the animals
when used for testing may explain some of the inconsistencies across studies.
Similar to studies in humans, it is difficult to exclude the impact of differences in
postnatal maternal care. Cross-fostering studies, where prenatally stressed pups
were raised by nonstressed mothers, address these issues and indeed it has been
indicated that maternal care is affected by exposure to stress during gestation
(Anisman et al. 1998; Del Cerro et al. 2010) and that maternal behavior impacts
offspring behavior (Uchida et al. 2010; Anisman et al. 1998).
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There are various mechanisms by which the fetal brain may be impacted by
early life stress. Studies have indicated that maternal stress may restrict the blood
flow to the fetus (Teixeira et al. 1999) thus reducing nutrient availability and
compromise cell development. Glucocorticoids are important for proper brain
development, however, exposure to chronically increased levels may increase the
risk of diseases later in life (Harris and Seckl 2011). Some studies indicate that
maternal corticosterone may be transported through the placenta (Weinstock 2005)
however, others suggest that factors other than glucocorticoids are mediating the
effects of prenatal stress (Salomon et al. 2011). This is not surprising in light of the
fact that the placenta contains ‘‘barriers’’ to the effects of fluctuating maternal
glucocorticoids, including enzymes and protein chaperones (Harris and Seckl
2011) and indicate that a complex interplay of mechanisms are involved in
determining the actual outcome of stress exposure in utero. Despite these com-
plexities, there are intriguing reports of epigenetic changes (e.g., DNA methylation
or histone modifications) that may contribute to the underlying effects of early life
stress (Monteleone et al. 2013; Szyf 2013; Anisman et al. 1998). For instance,
methylation changes were observed in genes involved in synapse formation in the
hippocampus after exposure to prenatal stress (Monteleone et al. 2013). Also, there
are methylation changes in the DNA coding for CRF and GR in male offspring
following exposure to prenatal stress (Mueller and Bale 2008; Szyf 2013) similar
to methylation changes in the GR genes evident in human studies (Radtke et al.
2011).

5 Beyond the HPA-Axis: How Might Stress Cause
Depression?

5.1 Mechanisms of Stress and Depression in Humans

There are several theories beyond the HPA-axis as to how stressors may induce
depression which are not mutually exclusive. These include increased cell death,
reduced neurogenesis, and other forms of reduced structural plasticity and neu-
rotrophic activity (Zunszain et al. 2011). There is understandably little human data,
most of which is derived from either postmortem analysis or from imaging
technologies (i.e., MRI).

The neurodegeneration hypothesis is essentially based on two lines of reasoning.
First, depressed patients may have smaller hippocampal volumes (Frodl et al. 2002)
and this may be restored by remission in depressive state and antidepressant
treatment (Detanico et al. 2009; Henn et al. 2004). Stressors may also reduce
hippocampal volume indicating a mechanism by which stress could elicit depres-
sion. Human postmortem studies tend to indicate that there may be decreased cell
numbers in specific brain regions (Fuchs et al. 2004).

The neurogenesis hypothesis of major depression suggests that stress-induced
decreases of neurogenesis may underlie the long-term decreases in hippocampal
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volume (Jacobs 2002). While the hypothesis is appealing, the support is inconsistent
(Hanson et al. 2011). Intriguing evidence indicates that activation of GR induces
pro-apoptotic pathways in the hippocampus whereas activation of MR induces anti-
apoptotic pathways, particularly by changing the ratio of proapoptotic molecules,
such as Bax, relative to the anti-apoptotic molecules Bcl-2 or Bcl-x(L) (Almeida
et al. 2000), but these are not consistent with the putative antidepressant effects of the
MR antagonist, spironolactone as shown in animal studies (Wu et al. 2013).

The neurotrophin hypothesis of depression proposes that chronic stress asso-
ciated with depression decreases neurotrophins. This hypothesis is based on the
observation that antidepressants tend to increase neurotrophic factors (Duman and
Monteggia 2006; Hodes et al. 2010) although this may be related to the efficacy of
antidepressants rather than correlated to depression per se (Adachi et al. 2008;
Greenwood et al. 2007; Ibarguen-Vargas et al. 2009; Marais et al. 2009).

Though often quoted, not all studies are consistent with data linking decreased
hippocampal volume to depression. A recent study suggests different short- and
long-term effects of negative life stressors on hippocampal volumes in older adults
(Zannas et al. 2013). Furthermore, increased cell death has not been replicated in
studies with exogenous steroid administration (Lucassen et al. 2001a; Muller et al.
2001; Swaab et al. 2005). In addition, dexamethasone suppressors and non-
suppressors do not have different hippocampal volume (Axelson et al. 1993).
Finally, PTSD patients also have smaller hippocampal volume demonstrating that
changes in volume is not specific to depression (Yehuda et al. 1995),

The focus on the hippocampus is also of arguable utility as other brain regions
such as amygdala and prefrontal cortex are also involved in depression-like
symptoms. Although some human postmortem studies indicate neurodegeneration
in specific brain regions (Fuchs et al. 2004) the association between neurode-
generation as a result of glucocorticoid signaling is not robustly supported by
studies in humans (Swaab et al. 2005).

5.2 Mechanisms of Stress and Depression in Animal Models

Animal models can more clearly elucidate the role of neurodegeneration, neuro-
genesis, and neurotrophic factors that may accompany depression-like behavior.
Chronic stress models that induce depression-like behavior are also typically
accompanied by decreased neurogenesis in rodents (Fuchs et al. 2004). This
decreased cell proliferation is ameliorated by antidepressants, but is not neces-
sarily related to improvement in depression-like behavior (Jayatissa et al. 2008,
2009; Henn and Vollmayr 2004).

It has been suggested that chronic stress may induce depression by increasing
cell death and/or by reducing structural plasticity, such as retraction or simplifi-
cation of dendritic arbors (Lee et al. 2002; Swaab et al. 2005). In support of such
ideas, chronic stress or chronic administration of corticosterone causes a loss of
pyramidal neurons in the hippocampus, reduced dendritic branching, and reactive
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glial cell proliferation (Sapolsky 1999; Lee et al. 2002; Haynes et al. 2001).
Chronic stress in rodents is also accompanied by increased markers of apoptosis
(Fuchs et al. 2004), though these markers are not always indicative of actually
decreased cell number as the aforementioned data have not always been replicated
(Fuchs et al. 2004; Vollmann-Honsdorf et al. 1997; Lucassen et al. 2001b).

5.3 Susceptibility and Resistance to Depression

Results from humans and animal models indicate that stress may induce depres-
sion but only in a susceptible population. Recent studies comparing depression-
resistant and depression-susceptible subjects exposed to the same stressors eluci-
date the mechanisms that may underlie susceptibility to depression. Gene-profiling
studies demonstrate that behavioral resistance to stress-induced mood dysfunction
is an active neurobiological process that is not simply the absence of vulnerability
(Krishnan et al. 2007). Resistance likely depends on an increased degree of
molecular plasticity. For example, a considerably larger number of genes related to
synaptic plasticity are regulated in resistant subgroups compared to susceptible
groups who underwent the same exposure to chronic stress. This is consistent with
psychological studies that suggest that coping is an active process. The link
between susceptibility to depression and reduced degree of plasticity is supported
by several lines of evidence—first, stressors that induce mood dysfunction also
impair cognitive function, structural plasticity, and long-term potentiation (LTP, a
form of neuronal plasticity), and second, the primary factors differentiating
resistant and susceptible subjects arguably fall into the global category of plas-
ticity-related moieties.

If active plasticity in response to stress were to be a critical factor distinguishing
susceptible from resistant subjects, one would predict that stressors that induce
depression should also modulate cognition (Gourley et al. 2008a) and LTP, as is
indeed the case in the amygdala (Kulisch and Albrecht 2013) and the hippocampus
(Kim et al. 2006). Similarly to depression-like outcomes, LTP deficits following
stress only occur in rats unable to control their stress exposure (Shors et al. 1989).
In this context, it is noteworthy that antidepressant drugs and treatments that
restore normal emotional behavior also restore cognitive deficits and improve the
reduced LTP found in animals with depression-like behavior (Cui et al. 2006; Kim
et al. 2006; Marais et al. 2009). Thus, the mechanism of plasticity underlying
cognition may not be dissimilar to the mechanisms which underlie coping and
stress resistance.

The mechanisms of shared cognitive and emotional vulnerability include many
plasticity-related targets. Among these are neurotropic factors, the best studied of
which in this context is brain-derived neurotrophic factor (BDNF). BDNF is
increased in the hippocampus, nucleus accumbens, and ventral tegmental area of
resistant animals. BDNF levels are associated with cognitive function, immobility in
the FST, and anhedonia demonstrated after chronic corticosterone administration
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(Gourley et al. 2008a; Bergström et al. 2008). In humans, BDNF levels are reduced in
plasma and postmortem brain tissue of depressed patients (Castren and Rantamaki
2008). In stress-induced depression models BDNF is also mostly reported to be
decreased (Berry et al. 2012; De Vry et al. 2012; Duric and McCarson 2005; Maniam
and Morris 2010), and thus in line with human studies. Deletion of BDNF renders
female, but not male mice, more susceptible to stress-induced depression-like
behavior (Autry et al. 2009; Ibarguen-Vargas et al. 2009; Monteggia et al. 2007),
supporting that neurotropic factors may be important in determining resilience.
Furthermore, the efficacy of antidepressant treatments may be related to activation of
the BDNF receptor, TrkB (Saarelainen et al. 2003; Castren and Rantamaki 2010;
Rantamaki et al. 2007; Razzoli et al. 2011c). It should be noted however, that direct
brain administration of BDNF can produce anxiety-like behavior (Casarotto et al.
2012), so it is not a simple case of more is better.

In addition to growth factors and their downstream pathways, other factors
regulating neuronal function and plasticity may also play a role in stress-induced
susceptibility to depression, including synaptic proteins, neuronal receptors, and
ion channels and second messenger systems. Expression of neuronal cell adhesion
molecules is influenced by stressors, regulates synaptic structure, and influences
negative behavioral outcomes of stressors (Sandi 2004; Aonurm-Helm et al. 2008).
Expression of specific potassium channels in association with increased firing in
the ventral tegmental area differentiates susceptible from resistant animals
(Krishnan et al. 2007). Other second messengers, such as calcium-sensitive
adenylyl cyclase, may also be common pathways mediating the effects of sus-
ceptibility to stressors on depression, cognition, and plasticity (Krishnan et al.
2008; Razzoli et al. 2010). These avenues not only elucidate new molecular targets
by which to manipulate the response to stressors, but also may be related to the
specific behavioral profiles that are evident in stress-susceptible subjects (Padilla
et al. 2010; Krishnan et al. 2007; Castro et al. 2012; Aonurm-Helm et al. 2008).

6 Summary and Future Perspectives

Whereas it is a commonly held and plausible belief that stress can lead to negative
behavioral sequalae, including depression, results from humans and animals rather
support that this is likely to be the case only in a susceptible subset of subjects.
Susceptibility to stress-related depression is determined by a complex system of
interacting factors, including many hormones, peptides, neurosteroids, and growth
factors. Elucidating the active coping and plasticity mechanisms that underlie
susceptibility to stressors is necessary to prevent negative behavioral outcomes of
stress exposure and can lead to development of rational pharmacological treat-
ments founded on an understanding of the disease biology.
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Neurobehavioral Mechanisms
of Traumatic Stress in Post-traumatic
Stress Disorder

M. Danet Lapiz-Bluhm and Alan L. Peterson

Abstract Post-traumatic stress disorder (PTSD) is a debilitating psychiatric
disorder that develops following trauma exposure. It is characterized by four
symptom clusters: intrusion, avoidance, negative alteration in cognitions and mood,
and alterations in arousal and reactivity. Several risk factors have been associated
with PTSD, including trauma type and severity, gender and sexual orientation, race
and ethnicity, cognitive reserve, pretrauma psychopathology, familial psychiatric
history, and genetics. Great strides have been made in understanding the neuro-
biology of PTSD through animal models and human imaging studies. Most of the
animal models have face validity, but they have limitations in the generalization to
the human model of PTSD. Newer animal models, such as the ‘‘CBC’’ model, have
better validity for PTSD, which takes into account the different components of its
diagnostic criteria. To date, fear conditioning and fear extinction animal models
have provided support for the hypothesis that PTSD is a dysregulation of the
processes related to fear regulation and, especially, fear extinction. More research
is needed to further understand these processes as they relate not only to PTSD but
also to resilience. Further, this research could be instrumental in the development of
novel effective treatments for PTSD.
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1 Introduction

Post-traumatic stress disorder (PTSD) is a debilitating psychiatric disorder that
develops following exposure to a significantly threatening and/or horrifying event
(American Psychiatric Association 2013). These traumatic events may include
natural disasters (e.g., tsunamis, earthquakes, and tornadoes), accidents (e.g.,
vehicle and airplane crashes), military combat, victimization, or abuse such as
physical and sexual assault, armed robbery, and torture (Gates et al. 2012;
Punamaki et al. 2010; Harrison and Kinner 1998; Hoge et al. 2004). The newly
revised fifth edition of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) by the American Psychiatric Association has classified PTSD not as an
anxiety disorder as in previous versions but as part of a separate category of
trauma and stress-related disorders (American Psychiatric Association 2013).

PTSD is characterized by the presence of a certain number of symptoms—
lasting for at least 1 month following a traumatic event—from each of the four
designated symptom clusters: intrusion; avoidance; negative alteration in cogni-
tions and mood; and alterations in arousal and reactivity (American Psychiatric
Association 2013). Intrusion symptoms are reminiscent of the re-experiencing
symptoms from the DSM-IV, which include involuntary intrusive memories,
nightmares, flashbacks, distress, or marked physiological reactivity after exposure
to trauma-related stimuli. Avoidance symptoms include evasion of external
reminders and distressing thoughts or feelings related to the trauma. Symptoms
associated with negative alterations in cognition and mood include the inability to
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recall key features of the trauma, persistent and distorted negative beliefs,
persistent negative trauma-related emotions, alienation, and the inability to
experience positive emotions. Alterations in arousal and reactivity include
symptoms of hypervigilance, exaggerated startle response, problems with sleep
and concentration, irritable and aggressive behaviors, and reckless or destructive
behaviors. The diagnosis of PTSD requires that these symptoms cause significant
impairment of the person’s life, disrupting both the functional and social aspects of
daily activities. Thus, PTSD is a highly debilitating psychiatric disorder that
impacts the individual and others (e.g., the individual’s family, workplace, and
social circle). Not surprisingly, PTSD is also associated with several adverse
outcomes through its course, including breakdown of social and familial rela-
tionships, lower quality of life, work-related impairment, and medical illness
(Marshall et al. 2001; Resnick and Rosenheck 2008).

With these considerations, it is important to understand the neurobiological
mechanisms that contribute to the development of PTSD following exposure to
traumatic stress. Although several studies have been performed, the etiopathology
of PTSD remains unclear. Various hypotheses have been put forward, including
one which posits that PTSD is a failure to recover from a traumatic experience due
to the inability to extinguish fear and anxiety associated with conditioned sensory
cues (Institute of Medicine 2012). This chapter reviews the traumatic stress-
induced neurobehavioral mechanisms associated with the development of PTSD,
as evidenced by studies using animal models and neuroimaging in humans. It also
reviews briefly the history of PTSD and the risk factors associated with the dis-
order, with emphasis on more recent genetic studies.

2 A Brief History of PTSD

Compared to other psychiatric disorders, the history of PTSD as a fully concep-
tualized mental health disorder is relatively young. Although post-traumatic stress
symptoms have been identified in writings that date back over 2,500 years (Crocq
and Crocq 2000), PTSD was not formally codified by the American Psychiatric
Association as a mental health disorder until 1980. In the nineteenth century,
soldiers fighting the American Civil War were diagnosed with nostalgia or
melancholia, characterized by lethargy, withdrawal, and excessive emotionality
(Birmes et al. 2003). Other diagnoses included exhaustion, effort syndrome, and
heart-related conditions, such as irritable heart, soldier’s heart, and cardiac
muscular exhaustion (Birmes et al. 2003). During World War I, combat veterans
were diagnosed with shell shock and disordered action of the heart (Jones 2006).
Symptoms for shell shock included fatigue, memory loss, difficulty sleeping,
nightmares, and poor concentration. Vietnam War veterans suffering from chronic
psychological problems that resulted in social and occupational dysfunction were
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diagnosed with combat fatigue (Institute of Medicine 2007). Large-scale studies to
examine combat-related issues of Vietnam veterans contributed to the formal
recognition of PTSD as a distinct mental health disorder.

3 Trajectory of Trauma-Related Disorders and PTSD

Following exposure to a traumatic stressor—which may include an event which an
individual experienced directly, witnessed, or learned about that threatened death or
injury to themselves or another—an individual may have a wide range of reactions.
The development and progression of symptoms following the traumatic event
exposure determine the classification of the trauma response, which may range
from normal to acute stress disorder (ASD) and PTSD (see Fig. 1). ASD is char-
acterized by clinically significant dissociative symptoms (such as numbing and
detachment or amnesia), trauma re-experiencing, situation avoidance, and
increased arousal with significant functional impairment lasting more than 2 days
but \1 month after the trauma (American Psychiatric Association 2013). If the
symptoms are experienced for more than 1 month and meet full diagnostic criteria
as stated above, PTSD can be classified as acute, chronic, or delayed onset
(American Psychiatric Association 2000; Institute of Medicine 2012). In acute
PTSD, symptoms develop immediately or soon after experiencing a traumatic event
and persist longer than 1 month but \3 months. In chronic PTSD, the symptom
duration is longer than 3 months. In delayed onset PTSD, a person does not express
symptoms for months (C6 months) or even years after the traumatic event. If a
person does not meet the full diagnostic criteria for PTSD, or if the symptoms are
not in the correct distribution as per required number of symptoms, the condition is
considered partial or subthreshold PTSD (Institute of Medicine 2012).

PTSD may remit with time, with the largest remission reported during the first
12 months after diagnosis (Institute of Medicine 2012). Treatment with cognitive
behavioral therapies significantly improves remission rates. A randomized con-
trolled trial of female sexual assault victims with PTSD by Resick and colleagues
found that 80 % of participants treated with cognitive processing therapy or

TRAUMA

2 DAYS 6 MONTHS3 MONTHS1 MONTH

CHRONIC 
PTSD

ACUTE 
PTSD

ACUTE STRESS
DISORDER (ASD)

DELAYED 
ONSET
PTSD

Fig. 1 Classification of stress and trauma-related disorders as characterized by presence of
required symptoms as a time-dependent function following exposure to traumatic stress: acute
stress disorder (ASD) (symptoms [2 days but \1 month), acute PTSD (symptoms [1 month
but \3 months), chronic PTSD (symptoms C3 months), and delayed onset PTSD (symptom
onset C6 months)
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prolonged exposure therapy no longer met the criteria for PTSD at post-treatment
and at the 9-month follow-up (Resick et al. 2002). Long-term follow-up of this
cohort conducted 5–10 years after the completion of treatment indicated that these
patients remained in remission (Resick et al. 2012). However, most individuals
with PTSD do not receive any treatment, and only a small percentage of those who
do receive treatment are given an evidence-based treatment (Foa et al. 2013).
Approximately one-third of PTSD cases do not remit, even after many years of
treatment. Chronic PTSD has been found to be most strongly associated with men
who reported combat as their worst trauma (Prigerson et al. 2001), history of
childhood trauma and alcohol abuse or dependence (Zlotnick et al. 1999), and
exposure to ongoing stressors and other traumatic events throughout life (Galea
et al. 2008).

PTSD has been shown to co-occur with other psychiatric disorders such as
depressive disorders, substance dependence, panic disorder, agoraphobia, gen-
eralized anxiety disorder, social phobia, bipolar disorder, and somatization
(American Psychiatric Association 2013). These disorders can precede or present
simultaneously with PTSD (Institute of Medicine 2012). They may also resolve
before, after, or simultaneously with PTSD. A New Zealand birth cohort study
showed that 93.5 % of those meeting the criteria for lifetime prevalence of PTSD
at age 26 had also previously met the criteria for diagnosis of another mental
health disorder such as major depression, anxiety disorder, conduct disorder,
marijuana dependence, or alcohol dependence (Scherrer et al. 2008). There is also
an association between PTSD and suicide ideation, attempts, and completions
(Marshall et al. 2001). An increased number of PTSD symptoms were associated
with a linear increase in current suicide ideation. Among individuals with chronic
PTSD attending a clinic, 38.3 % reported to have suicide ideation, while 9.6 %
reported to have had a suicide attempt (Marshall et al. 2001).

4 Epidemiology of PTSD

According to the DSM-5 (American Psychiatric Association 2013), the projected
lifetime risk of PTSD at age 75 in the United States is 8.7 %, using the previous
DSM-IV-TR criteria. National surveys conducted at different time periods have
estimated the overall lifetime prevalence of PTSD among individuals 18 years and
older. The 1990–1992 United States National Comorbidity Survey (NCS), con-
ducted to examine the distribution of and factors associated with psychiatric dis-
orders, reported a lifetime overall prevalence of 7.8 % for PTSD (Kessler et al.
1995). The NCS Replication (NCS-R), conducted 10 years after the original sur-
vey, estimated the overall prevalence of PTSD to be 6.8 % (Kessler et al. 2005). In
2004–2005, the National Epidemiologic Survey on Alcohol and Related Condi-
tions estimated the lifetime prevalence of PTSD to be 7.3 % overall (Roberts et al.
2011). Estimates of lifetime PTSD prevalence in United States service members

Neurobehavioral Mechanisms of Traumatic Stress 165



deployed to Operation Enduring Freedom (OEF) and Operation Iraqi Freedom
(OIF) are two or three times higher compared to the general population (Institute
of Medicine 2012). Current PTSD prevalence estimates in OEF and OIF service
members range from 13 to 20 %, depending on the assessment measures used
(Hoge et al. 2004; Seal et al. 2007; Vasterling et al. 2010). Worldwide, the esti-
mates for lifetime prevalence of PTSD range from a low of 0.3 % in China to
6.1 % in New Zealand (Kessler et al. 2008). However, the statistics reported from
various countries may not be directly comparable due to methodological differ-
ences in survey administration and sampling strategies.

5 Risk Factors for the Development of PTSD

Studies have found associations of factors in the development of PTSD, including
trauma type and severity, gender and sexual orientation, race and ethnicity, cog-
nitive reserve, pretrauma psychopathology, familial psychiatric history, and
genetics.

The type and severity of the trauma are primary determinants of the development
of PTSD (Institute of Medicine 2012). Most of the risk-factor differences found in
various subgroupings in epidemiological studies can be best explained by differ-
ences in trauma type and severity. Higher risk of PTSD has been associated with
traumas that involve physical injuries (either penetrating or assault), perception of
the trauma as a true threat to one’s life, and major losses (Holbrook et al. 2001; Ozer
et al. 2003). Increased risk of PTSD has also been associated with lack or loss of
social support after the traumatic event and ongoing life stress, including loss of
employment, financial strain, and disability (Ozer et al. 2003; Brewin et al. 2000a).

Gender and sexual orientation are also considered risk factors for PTSD. In the
original NCS, the prevalence of PTSD was twice as high in women as in men
(Kessler et al. 1995). The NCS-R estimated that women were 2.7 times more likely
to develop PTSD than men (Harvard Medical School 2007). These gender dif-
ferences are thought to be explained primarily by differences in trauma exposure,
such as sexual assault, which is much more likely to occur in females. Although
men were more likely to report having experienced traumatic events over their
lifetime, women with PTSD were more likely to develop more comorbid psy-
chiatric disorders (Seedat et al. 2005), experience PTSD symptoms longer than
men (Chilcoat and Breslau 1998a), and more likely to report poorer quality of life
(Holbrook et al. 2001; Seedat et al. 2005). Sexual minorities have been reported to
have a higher risk of PTSD compared to a heterosexual reference group (Roberts
et al. 2010). However, sexual minorities have also been reported to have earlier
and greater exposure to violence and traumatic events (Roberts et al. 2010).

Race and ethnicity may be risk factors for PTSD, although the evidence is
inconsistent (Institute of Medicine 2012). The 2004–2005 National Epidemiologic
Survey on Alcohol and Related Conditions survey showed that the risk of PTSD is
significantly higher in blacks and lower in Asians than in whites (Roberts et al. 2011).

166 M. D. Lapiz-Bluhm and A. L. Peterson



In a sample of survivors of physical trauma, Hispanic whites were more likely to
report PTSD and with greater symptom severity compared to non-Hispanic whites
(Marshall et al. 2009). They also reported more symptoms related to cognitive and
sensory perception, such as hypervigilance and emotional reactivity.

Cognitive reserve is considered to be an important etiologic factor in the
development of PTSD (Institute of Medicine 2012; Barnett et al. 2006). Intelli-
gence quotient or IQ is a marker of cognitive reserve. IQ has been shown to be
inversely related to the risk of PTSD and other psychiatric disorders (Batty et al.
2005). Breslau and colleagues reported that children who had an IQ [115 at
6-years old had decreased conditional risk of PTSD after trauma exposure (Breslau
et al. 2006). It has also been reported that IQ assessed at age 5 was inversely
associated with the risk of developing PTSD at age 32 (Koenen et al. 2007).

The evidence to support the association between family psychiatric history and
PTSD is inconsistent. Parental mental health disorders were associated with
increased risk of PTSD, even after controlling for previous traumatic events
(Bromet et al. 1998). Maternal depression was also associated with increased risk
of PTSD (Koenen et al. 2007). Statistically significant associations between PTSD
and family psychiatric history of depression, anxiety, and psychosis have also been
reported (Breslau et al. 1991). However, a meta-analysis of risk factors for PTSD
did not find this association to be significant (Brewin et al. 2000a, b).

PTSD may have a genetic component. Recent genetic studies showed that rela-
tives of probands (persons serving as index cases in genetic investigations of fam-
ilies) who had PTSD had higher risk of the disorder than relatives of similarly
trauma-exposed controls who did not develop PTSD (Institute of Medicine 2012).
Twin studies of male Vietnam veterans established a genetic influence of about
30 % for the vulnerability of PTSD, even after genetic influences on trauma
exposure are accounted for (True et al. 1993). Another twin study among young
women reported PTSD vulnerability at 7.2 % (Sartor et al. 2011). Twin and family
studies also provided evidence that most of the genes that affect the risk of PTSD
also influence the risk of other psychiatric disorders, including major depression,
generalized anxiety disorder, and substance abuse, and vice versa (Institute of
Medicine 2012). Genetic variation in PTSD can be accounted for by the genetic
influences of generalized anxiety disorder and panic disorder symptoms, alcohol and
drug dependence (Xian et al. 2000), and nicotine dependence (Koenen et al. 2005).

The psychopathology of the individual prior to the trauma has also been
implicated as a risk for developing PTSD, with increased risks-associated exter-
nalizing and anxiety problems. Children rated as having externalizing problems
above the normal range at age 6 were more likely to develop PTSD than children
who were rated as normal externalizers (Breslau et al. 2006; Breslau 2006).
Children diagnosed with anxiety disorder at age 6 were more likely to develop
PTSD than a young adult (Breslau 2006; Breslau et al. 2006). Likewise, children
who were categorized as highly anxious or having depressive mood at first grade
were also at higher risk of PTSD at age 15 when exposed to traumatic events
compared to their peers who did not have these psychologic symptoms (Storr et al.
2007). Children with difficult temperaments, fewer friends, or antisocial behaviors
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were more likely to develop PTSD than their peers who did not have these
characteristics (Koenen et al. 2007).

Exposure to prior trauma has been implicated in PTSD. A meta-analysis of nine
studies suggests that childhood abuse is a risk factor for PTSD (Brewin et al.
2000b). Women who experienced physical abuse during childhood had a higher
risk of lifetime PTSD (Ozer et al. 2003). Persons who experienced a traumatic
event before the target stressor reported higher levels of PTSD symptoms than
those who did not, especially among individuals who experienced noncombat
interpersonal violence (Ozer et al. 2003). However, more recent studies have
shown that it is not the prior trauma experience per se, but the development of
PTSD symptoms in response to a prior trauma that increased the risk of PTSD after
a later trauma (Breslau et al. 2008; Breslau and Peterson 2010).

PTSD can affect people at any age (Institute of Medicine 2012). However, the
1990–1992 United States NCS reported the lowest prevalence for PTSD was in
men 15–24-years old and in women 45–54-years old at 2.8 and 8.7 %, respectively
(Kessler et al. 1995). The NCS Replication done 10 years later showed that the
lowest lifetime prevalence of PTSD at 2.8 % was with individuals who are
59-years old and over (Harvard Medical School 2007). In addition, the reported
highest lifetime and 12-month prevalence rates of PTSD were with 45–59-years
old at 9.2 and 5.3 %, respectively. The prevalence estimates of PTSD by age
groups may be confounded by historical events, such as wars (Vietnam, Iraq, and
Afghanistan) or major natural disasters.

Drug and alcohol use and dependence are associated with PTSD. In the NCS,
individuals with PTSD were twice as likely to have substance abuse disorder
(Kessler et al. 1995). Likewise, Chilcoat and Breslau reported that individuals with
a history of PTSD were four times more likely to have drug use or dependence
(Chilcoat and Breslau 1998b). They suggested that the association between sub-
stance abuse and PTSD may be related to self-medication. Individuals exposed to
trauma initiate the use of drugs and other psychoactive substances to help them
cope with PTSD symptoms (Brown and Wolfe 1994; Khantzian 1985). Active
PTSD also increased the risk of smoking, independent of one’s genetic make-up
(Koenen et al. 2006). Further, preexisting nicotine dependence increased the risk
of PTSD in male veterans (Koenen et al. 2005).

6 Neurobiological Basis for PTSD

Several neurobiological systems have been implicated in the pathologic and pro-
tective responses to stress and development of PTSD, including the sympathetic
nervous system, the hypothalamic–pituitary–adrenal (HPA) axis, serotonin system,
opiate system, and sex steroidal system (Institute of Medicine 2007, 2012). Other
chapters in this book discuss the changes in these systems in response to stress. Here
we will look at the role of these neurobiological systems in PTSD as studied using
advances in molecular genetics, animal models, and human neuroimaging studies.
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7 Genetic Studies on PTSD

Advances in molecular genetics have contributed to the body of knowledge on
PTSD. Studies have progressed from genotype–phenotype associations to the
identification of epigenetic signatures associated with the disorder (Uddin et al.
2010, 2011). They have also examined how individual differences in epigenetic
programming may modify the risk of PTSD in association with trauma exposure
(Koenen et al. 2011). One approach examines variation in polymorphisms to
identify specific genetic variants that may be associated with increased risk or
resilience (Amstadter et al. 2009b). Although this approach could potentially
provide useful knowledge on the etiology of PTSD, it offers limited interpretation
of the research findings or determination of functional genetic variants (Amstadter
et al. 2009b). This section provides an overview, but not a comprehensive review,
of candidate genes for PTSD using this approach.

Table 1 shows a summary of some of the candidate genes for PTSD. This is by
no means exhaustive but offers information about the diversity of candidate genes
that modulate dopaminergic, serotonergic, HPA axis, noradrenergic, and neuro-
trophic systems. The current evidence for a specific genetic variant that increases
vulnerability or resilience to PTSD is not robust (Institute of Medicine 2012). The
associations between specific genetic variants and PTSD lack consistency. This
may be due to small sample size and differences between studies that are not
consistently accounted for, i.e., modification of genetic variants by environmental
factors (Institute of Medicine 2012).

Genetic effects may be modified by the environment through molecular
mechanisms such as deoxyribonucleic acid (DNA) methylation (Bernstein et al.
2007). DNA methylation alters transcriptional activity of the loci through chemical
modifications that regulate DNA accessibility. Increased methylation in specific
gene regions (i.e., promoter region) is associated with reduced transcriptional
activity and therefore reduced gene expression. For example, individuals with
PTSD were distinguished by methylation profiles that suggest upregulation of
immune system-related genes and downregulation of genes involved in neuro-
genesis and the startle response (Uddin et al. 2010). Upregulation of these genes
was associated with higher concentrations of biomarkers for immune system
reactivity of these patients, i.e., increased cytomegalovirus, interleukin-2, inter-
leukin-4, and tumor necrosis factor-alpha (Uddin et al. 2010). Koenen and col-
leagues showed that methylation of the gene that encodes the serotonin transporter
(SLC6A4) modified the effects of traumatic events on the development of PTSD
when the SLC6A4 genotype was controlled for (Koenen et al. 2011). Lower
methylation levels were observed in individuals who experienced more traumatic
events and were therefore of higher risk of PTSD. Hence, gene-specific methyl-
ation patterns may be associated with increased risk of and resilience to PTSD
(Koenen et al. 2011). However, these PTSD-associated epigenetic differences were
not shown to be associated with downstream differences in gene expression.
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Microarray-based studies have assessed gene expression changes in ribonucleic
acid (RNA) derived from peripheral blood mononuclear cells or whole blood.
A study of whole-blood-derived genes of individuals affected and not affected by
the September 11, 2001, New York City attack showed a differential expression in
16 genes (Yehuda et al. 2009). Several of these genes are involved in signal
transduction, brain and immune cell function, and HPA axis activity. Interestingly,
the largest difference in expression was the gene for mannosidase, alpha, class 2C,
member 1 (MAN2C1). MAN2C1 distinguished between those who have and those
who do not have PTSD on the basis of gene expression (Yehuda et al. 2009; Uddin
et al. 2011) and methylation (Uddin et al. 2011).

These studies suggest that genotype, methylation, and gene expression are
promising areas of research to help understand the etiology of PTSD. To date,
there is a lack of robust definitive findings on any single gene or gene system in the
etiology of PTSD. More studies incorporating perhaps all three genetic approaches
and perhaps even genome-wide association studies will help further the under-
standing of PTSD.

8 Animal Models of PTSD

Since it is unethical to subject humans to traumatic events to study the conse-
quences of such exposure, experimental studies on trauma are limited to animal
models. Animal models include the earlier trauma/stress-based models, mecha-
nism-based models, and the more recent ‘‘chronic plus acute prolonged stress’’
(CAPS) and ‘‘cut-off behavioral criteria’’ (CBC) model of PTSD.

8.1 Trauma or Stress-Based Models

Trauma or stress-based animal models are based on exposure to a traumatic or
stressful event. Extremely stressful experiences aimed at engendering a sense of
threat and helplessness in the animal are used, with focus on the intensity and type
of experience. Others have combined intensity with an attempt to design an
ethologically valid experience, i.e., one that an animal might encounter in its
natural environment. For example, rodents are exposed to fear-provoking and
stressful predator stimuli (cat, cat odor, fox odor, or trimethylthiazoline, a syn-
thetic compound isolated from fox feces). These stimuli have been shown to
produce long-lasting behavioral and physiological responses. These paradigms, in
which adult rodents are exposed to feline predators for 5–10 min in a closed
environment (i.e., inescapable exposure), have been validated (Adamec 1997; File
et al. 1993; Blanchard et al. 1998; Griebel et al. 1995). Predator stress has eco-
logical validity in that it mimics brief intense threatening experiences with lasting
affective consequences (Adamec et al. 2006a, b). The predator stress paradigm has
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proven to be effective in inducing the expected range of behavioral and physio-
logical responses (Adamec et al. 2006a, b, 2007). These responses include
freezing, avoidance, increased secretion of stress hormones, and changes in
transmission from the hippocampus via the ventral angular bundle to the baso-
lateral amygdala and from the central amygdala to the lateral column of the
periaqueductal gray (Adamec et al. 2006b, 2007; Apfelbach et al. 2005; File et al.
1993; Roseboom et al. 2007; Mazor et al. 2009; Sullivan and Gratton 1998;
Kozlovsky et al. 2008; Takahashi et al. 2005). The plasticity of these neurobio-
logical pathways is associated with aversive learning. The potency of predator
stimuli is comparable with that of a variety of paradigms in which the threat is
more tangible and immediate. These include paradigms based on inescapable pain
or electric shock, swimming and near-drowning, a small raised platform, and even
direct proximity to a kitten or a cat (separated by a mesh divide or a solid divide
with an opening large enough for the rodent to slip through).

8.2 Mechanism-Based Models: Enhanced Fear Conditioning
and Impaired Fear Extinction

Other animal models of PTSD consider potential neurobiological mechanisms that
might underlie post-traumatic stress. These models involve behavioral protocols
that mimic the activation of such mechanisms. One key aspect considered is that
exposure to stress alone does not sufficiently explain the persistence of psycho-
logic and biologic fear responses long after the trauma exposure. This led some to
suggest that fear conditioning may underlie the phenomenon of PTSD (Yehuda
and LeDoux 2007).

Fear conditioning is an adaptive and evolutionary advantageous response to
traumatic events (Morrison and Ressler 2013). Following stress or trauma expo-
sure, the normal fear responses involve the consolidation and manifestation of fear
memories in fearful situations and also the suppression and extinction of fear
behaviors in safe situations. The extinction of fear memories involves the gradual
decline in fear responses upon repeated presentations of the fearful cue in non-
threatening situations. When the processes involved in fear regulation become
dysregulated, sensitization and overgeneralizations can take place. Dysregulated
fear responses characterize PTSD and most anxiety disorders. Hence, models of
fear response have been used to understand the neurobiology of PTSD.

The neural mechanisms involved in the acquisition and extinction of learned
fear responses have been studied using the classical Pavlovian fear-conditioning
paradigms in animal models (Morrison and Ressler 2013). In this paradigm, a
conditioned stimulus (CS; e.g., a light or tone that is initially inoffensive) is paired
with an aversive unconditioned stimulus (US; such as a mild foot shock). After
several CS–US pairings, the subject exhibits a conditioned response (CR) to
presentation of the CS (tone or light). In rodent models, the conditioned fear

Neurobehavioral Mechanisms of Traumatic Stress 173



responses are measured with freezing (complete lack of bodily movements except
those involved in respiration) and fear-potentiated startle response (increase in
acoustically elicited startle response).

Extinction of learned fear is manipulated through the repeated or prolonged
exposure of the previously fear-conditioned organism to the CS (tone or light) in
the absence of the aversive US (shock). The repeated or prolonged exposures result
in fear extinction and the gradual decline in the CR (Myers and Davis 2007). The
diminished CRs following extinction training are often not permanent and are
subject to reinstatement, renewal, and spontaneous recovery. Renewal consists of
re-emergence of the extinguished CR when animals are exposed to the CS in a
novel context. Spontaneous recovery refers to the reappearance of the extinguished
CRs after enough time has passed following extinction training. Reinstatement
occurs when the extinguished fear response is triggered and reappears upon
exposure to the US after the organism has undergone extinction training.

Although several brain regions are involved in fear processing and fear-related
behaviors, the key brain regions include the hippocampus, amygdala, and pre-
frontal cortex or PFC (Morrison and Ressler 2013). Other regions involved are the
parahippocampal gyrus, orbitofrontal cortex, sensorimotor cortex, the thalamus,
and anterior cingulate cortex. The activation of the amygdala is the hallmark of all
fear-related disorders. Increased amygdala activation has been shown during the
presentation of fearful faces and fearful cues as well as during fear acquisition and
expression (Hamilton et al. 2012). Individuals diagnosed with PTSD or other fear-
related disorders exhibit hyperactive amygdala activity compared to normal
subjects.

The amygdala consists of the basolateral complex (lateral, basal, and accessory
basal nuclei) and the central nuclei (CeA). The basolateral amygdala (BLA) is
critical in the acquisition, expression, and extinction of fear (Fanselow and
LeDoux 1999). In the context of the classical conditioning paradigm, multimodal
sensory information from thalamic and sensory cortical areas (auditory, visual,
somatosensory cortex, etc.) specific to the CS project to the lateral nucleus of the
amygdala (LA) (LeDoux et al. 1990; Campeau and Davis 1995). Also, information
specific to the US is relayed to the LA from somatosensory thalamic and cortical
areas and the periaqueductal gray (Lanuza et al. 2004). The LA is thus considered
as a critical site for synaptic plasticity and Hebbian learning that occurs during
paired presentations of the CS and US during fear learning (Pape and Pare 2010;
Sah et al. 2008). The CeA has primarily been regarded as the fear output structure
that sends projections to brain regions, which activate a host of downstream
behavioral fear responses and symptoms. Long-term potentiation (LTP) and syn-
aptic plasticity at any point along this circuit contribute to alterations in pathways
that underlie the fear response (Sah et al. 2008; Pape and Pare 2010).

Several brain regions, including the PFC and hippocampus, modulate the
activity of the amygdala. In the context of fear-conditioning models, the PFC is
considered to provide inhibitory control to the amygdala, although some prefrontal
regions appear to be positively correlated with amygdala activation and others are
negative correlated. The infralimbic (IL) cortex (ventromedial PFC in humans) is
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required for fear extinction but not fear acquisition. The prelimbic (PL) cortex
(considered to be homologous to the dorsal cingulate cortex in humans) is required
for fear acquisition but not extinction (Sierra-Mercado et al. 2011). The hippo-
campus also modulates amygdala activity. In the context of fear learning and
memory, the hippocampus is crucial for the regulation and discrimination of
contextual learning and extinction (Heldt et al. 2007; Knight et al. 2004).

In PTSD, Morrison and Ressler proposed that fear memories of a traumatic
event may become overgeneralized and difficult to extinguish, leading to the
development of PTSD symptoms (Morrison and Ressler 2013). In terms of clas-
sical Pavlovian fear conditioning, intrusion symptoms may result from a trauma-
related cue that triggers a painful emotional and/or physiological response, in
addition to concomitant nightmares and flashbacks. The avoidance symptom
cluster may be thought of as a type of operant conditioning, in which the avoidance
of reminders of the trauma in and of itself becomes a reinforcing process
(Morrison and Ressler 2013). The negative alterations in cognition and mood may
reflect the dysregulation of the prefrontal–amygdala circuitry. Finally, the symp-
toms associated with arousal and reactivity may result from the activation of
central and autonomic nervous system processes that lead to behaviors such as
being easily startled or having trouble sleeping (Morrison and Ressler 2013).

8.3 More Current Animal Models

While fear conditioning and extinction could explain some of the symptoms of
PTSD, these models have also been shown to be insufficient to produce the PTSD
phenotype (Pitman et al. 2012). Newer animal models have now attempted to
incorporate construct validity by capitalizing on the increasing understanding of the
pathophysiology of PTSD. These models include predator exposure, exposure to
single prolonged stress (SPS), and exposure to foot shock with additional stressors.
These models have used one or more ‘‘PTSD-specific’’ endpoints, such as abnormal
fear learning, exaggerated acoustic startle response and startle habituation,
enhanced glucocorticoid signaling and negative feedback inhibition, and an
exaggerated autonomic nervous system (Matar et al. 2013). An example of these
animal models is the ‘‘CAPS’’ for rats (Green et al. 2011; Roth et al. 2012). The
CAPS is used to model some of the stressful events that can lead to PTSD in
humans. The paradigm consisted of chronic intermittent cold stress (4 �C, 6 h/day,
14 days) followed on day 15 by a single session of sequential acute stressors such as
social defeat, immobilization, and cold swim (Green et al. 2011). The CAPS model
has been shown to enhance acute fear responses and impair extinction of condi-
tioned fear, and to reduce expression of glucocorticoid receptors in the medial
prefrontal cortex (Green et al. 2011). Behaviorally, the CAPS treatment was shown
to decrease active burying behavior and increase immobility in the shock probe
defensive burying test. CAPS-treated rats displayed increased latency to feed in the
novelty-suppressed feeding test. Further, CAPS treatment reduced HPA response to
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a subsequent acute immobilization stress. Taken together, this validated CAPS
treatment as a rat model for PTSD as its effects resembles many aspects of human
PTSD: impaired fear extinction, shifted behavior from active to more passive
strategy, increased anxiety, and altered HPA reactivity (Roth et al. 2012).

To model a vulnerability factor that may produce stable changes in central
stress response system in PTSD, Green and colleagues utilized the prenatal stress
model prior to CAPS treatment (Green et al. 2011). Prenatal stress elevated basal
corticosterone decreased GR protein levels in the hippocampus and prefrontal
cortex, and decreased tyrosine hydroxylase mRNA expression in noradrenergic
neurons in the dorsal pons. Rats exposed to prenatal stress and CAPS showed
attenuated extinction of cue-conditioned fear. Thus, prenatal stress may induce
vulnerability to subsequent adult stress (Green et al. 2011), thereby increasing risk
for the development of PTSD.

Most animal studies tend to report the results of the entire exposed population
versus control populations without distinction, even though individual subjects
display a variable range of response to stress paradigms. This has often been
considered problematic for behavioral models, where significant response to stress
exposure is expected. However, Matar and colleagues highlighted that the heter-
ogeneity in animal responses may actually confirm the validity of animal studies,
since humans do not clearly respond homogenously to potentially traumatic
experience (Matar et al. 2013). Subsequently, they validated a ‘‘cut-off behavioral
criteria’’ or CBC model in the rat, which uses the predator scent stressor (15-min
exposure to cat urine) as the threatening stimuli. For a trauma reminder, the rat was
exposed to unused cat litter, no less than 8 days after the initial stress exposure.
They used the elevated plus maze and acoustic startle response paradigms to
measure anxiety-like, fearful, avoidant, and hypervigilant/hyperalert behaviors, all
of which parallel aspects of traumatic stress-induced behaviour in humans (Adamec
1997; File et al. 1993). According to the behavioral response in the elevated plus
maze and acoustic startle, rats were subsequently classified as having extreme
behavioral response (EBR), partial behavioral response (PBR), or minimal
behavioral response (MBR). Data were then analyzed according to the CBC
response classification. The prevalence rates of rats with EBR and MBR were
comparable with the PTSD data in the human population, where 15–35 % meets the
full criteria for PTSD, while 20–30 % displays a partial or sub-symptomatic clinical
picture (Breslau et al. 1999). The prevalence of the EBR tapered with time to about
25 % at day 7, remained stable until day 30, and then tapered down to 15 % at day
90, comparable to the trajectory of trauma response and PTSD (see Fig. 1).

The CBC model found associations between EBR, MBR, and PBR behavior
patterns and biomolecular, physiological, and morphological consequences of
traumatic stress. The detailed description of these effects is available elsewhere
(Matar et al. 2013). Briefly, the behavioral classification correlated with HPA axis
(corticosterone, dehydroepiandrosterone, and its derivative dehydroepiandroster-
one sulfate levels), autonomic nervous system (heart and heart rate variability),
and immune system activation (Cohen 2003; Kozlovsky et al. 2009). The EBR was
characterized by significantly more disturbances on all measures, whereas MBR
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rats displayed almost none. In addition, EBR was associated with a distinct pattern
of long-term and persistent downregulation of brain-derived neurotrophic factor
(BDNF; mRNA and protein levels) and synaptophysin; it was also associated with
upregulation of glucocorticoid receptor (GR) protein levels and tyrosine kinase
receptor mRNA in the CA1 region of the hippocampus (Kozlovsky et al. 2009).
EBR was also associated with significant downregulation of growth-associated
protein 43, signal-regulated kinase–mitogen-activated protein kinase (ERK1/2)
and phosphor-ERK1/2, p-38 and phosphor-38 in the hippocampus. There was
association with an upregulation of post-synaptic density-95 in the same region.
These studies suggest a relationship between the type of behavioral response and
the expression of key intracellular and intercellular biomolecules associated with
neuromodulation, synaptic plasticity, and receptor systems. These data support the
validity of the CBC as an animal model for PTSD (Fig. 2).

Fig. 2 Genetic and environmental factors contribute to the individual’s response to exposure to
traumatic stress. Following stress or trauma exposure, the normal fear responses involve the
consolidation and manifestation of fear memories in fearful situations and also the suppression and
extinction of fear behaviors in safe situations. The extinction of fear memories involves the gradual
decline in fear responses upon repeated presentations of the fearful cue in the nonthreatening
situation. Dysregulated fear regulation may result in the overconsolidation of fear and impaired
extinction of fear memories, resulting in sensitization to fear cues and overgeneralizations. This
mechanism has been hypothesized to contribute to the development of PTSD. Figure adapted from
Morrison and Ressler (2013), with permission and with modifications
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9 Human Imaging Studies on PTSD

Studies on PTSD involving human subjects seem to support the hypothesis that
PTSD develops from a dysfunction in fear learning and extinction. As discussed,
the key brain region involved in fear learning and extinction in humans is the
amygdala. The amygdala, in turn, receives input from other brain regions,
including the lateral and medial prefrontal cortex, hippocampus, and insula.
Neuroimaging studies have contributed greatly to the understanding of the
involvement of these regions in PTSD. These studies included resting activity
using positron emission tomography, structural magnetic resonance imaging
(MRI) studies, and functional MRI studies of patients performing a variety of
emotional tasks or viewing emotional stimuli. This section reports an overview,
but not a comprehensive review, of some of the results from imaging studies.

Some imaging studies on PTSD used symptom provocation, where patients are
reminded of traumatic events while their brains are being scanned. The brain scans
are then analyzed for decreases and increases in blood flow in particular brain
regions. Patients with PTSD exposed to reminders of traumatic events had
decreased blood flow in the medial frontal gyrus (Bremner et al. 1999; Shin et al.
2004). The blood flow to the medial prefrontal gyrus was inversely correlated with
changes in amygdala blood flow. There was a positive correlation between
changes in amygdala blood flow and symptom severity and a negative correlation
between changes in medial frontal gyrus blood flow and symptom severity (Shin
et al. 2004). Subjects with PTSD who viewed fearful faces during functional MRI
had heightened amygdala activity (Shin et al. 2004) and diminished ventromedial
prefrontal cortex activity (Shin et al. 2005). PTSD patients were reported to have
impaired function of the ventromedial prefrontal cortex and amygdala in response
to presentation of nontrauma-related stressful cues (Gold et al. 2011; Phan et al.
2006). In addition, PTSD patients who underwent cognitive tasks were reported to
have abnormal resting state and functional reactivation in the rostral and more
dorsal areas of the anterior cingulate cortex (Shin and Handwerger 2009; Shin
et al. 2005). Other studies have reported the involvement of the insula, a brain
region involved in interoception, and monitoring of internal states that predict
autonomic responses to fear. Patients with PTSD were found to have exaggerated
insula activation in a number of different paradigms, including responses to pre-
sentation of fearful faces, painful stimuli, and traumatic memories (Simmons et al.
2008; Strigo et al. 2010). These results have provided relevant information about
the neural circuitry associated with PTSD.

9.1 Systems Involved in the Extinction of Fear Responses

Several biologic systems play a role in the extinction of fear responses. These
systems will not be discussed here, as a review is available elsewhere (Morrison
and Ressler 2013). This section will discuss advances in novel systems currently
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explored as potential target systems for the development of newer treatments for
PTSD, i.e., the glutamatergic N-methyl-D-aspartate (NMDA) receptor and the
BDNF–tyrosine kinase B (TrkB)-induced signaling pathways.

10 NMDA Receptor and Amygdala-Dependent Learning

NMDA receptors are highly expressed in the amygdala and are important for fear
learning. Fear learning requires NMDA receptor activation. In turn, learning is
blocked by NMDA antagonists. For example, studies have shown that systemic
and direct administrations of NMDA antagonists to the BLA before fear extinction
training block the extinction of fear and fear-potentiated started (Falls et al. 1992).

The NMDA partial agonist D-cycloserine (DCS) activates the NMDA receptor
glycine/serine modulatory site, resulting in increased calcium influx upon gluta-
mate binding. Systemic or direct infusion of DCS into the amygdala prior to or
immediately following extinction training facilitates the extinction of fear-poten-
tiated (Walker et al. 2002). DCS-facilitated extinction is more resistant to rein-
statement and also generalizes the inhibition of fear. Since DCS was previously
approved by the Food and Drug Administration (FDA) for tuberculosis, it has been
tested in exposure psychotherapy in human subjects. DCS has been shown to
enhance exposure-based psychotherapy for a number of phobia and fear-related
disorders (Norberg et al. 2012) and may also be useful for PTSD. In fact, a recent
randomized controlled trial showed that DCS-facilitated virtual reality exposure
(VRE) resulted in significantly earlier and greater improvement in PTSD symp-
toms as well as greater improvements in depression, anger, expression, and sleep
(Difede et al. 2014). However, positive results were not found in a recent ran-
domized, double-blind, placebo-controlled trial to determine whether DCS aug-
ments exposure therapy for PTSD in veterans returning from Iraq and Afghanistan
(Litz et al. 2012). The results indicated that veterans in the exposure therapy plus
DCS condition experienced significantly less symptom reduction than those in the
exposure therapy plus placebo condition over the course of the treatment. These
results suggest additional research is needed.

11 BDNF and Fear Learning

Neurotrophins are a class of proteins that serve as survival factors for central
nervous system neurons. BDNF is a neurotrophin that plays a role in the limbic
system by regulating synaptic plasticity, memory processes, and behavior (An-
gelucci et al. 2014). BDNF and its intracellular kinase-activating receptor TrkB
have been implicated in the neurobiological mechanisms underlying the clinical
manifestations of PTSD, especially those related to synaptic efficacy and neural
plasticity. BDNF and its action at the TrkB receptor plays a significant role in both
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the acquisition and extinction of fear learning in both human and animal models
(Andero et al. 2012; Andero and Ressler 2012).

There are few studies of BDNF levels in patients with PTSD, with contrasting
results. Bonne and colleagues reported that the BDNF levels of the cerebrospinal
fluid of female civilians with PTSD are comparable with healthy controls (Bonne
et al. 2011), although the sample size was small and patients had moderate PTSD
severity. Another study reported patients with PTSD or ASD have significantly
higher serum BDNF compared to healthy controls (Hauck et al. 2010). On the
other hand, drug-naïve PTSD patients (without comorbid psychiatric symptoms)
have significantly lower BDNF levels compared to healthy controls (Dell’Osso
et al. 2009). Lower serum BDNF levels were also found in individuals who were
exposed to trauma and developed PTSD, compared to individuals who were
exposed to trauma but did not develop PTSD (Angelucci et al. 2014).

A single nucleotide polymorphism (SNP) of the BDNF gene has also been
implicated in PTSD. The Val66Met SNP is an SNP in the proregion of BDNF that
consists of a Met substitution for Val at position 66. It has been implicated in
several psychiatric disorders including depression, schizophrenia and PTSD
(Frielingsdorf et al. 2010). There is evidence to suggest that this polymorphism
may disrupt BDNF signaling and, in turn, affect emotional learning and memory.
Individuals with the Val66Met SNP release less BDNF, have decreased hippo-
campal volume, and exhibit deficits in declarative memory and fear extinction
(Bueller et al. 2006; Soliman et al. 2010).

Animal models support these findings. Mice with the knock-in allele of the
human BDNF Val66Met allele display reduced hippocampal dendritic arboriza-
tion, decreased hippocampal volume, and impaired long-term potentiation as well
as deficits in declarative memory and decreased fear extinction (Bueller et al.
2006; Frielingsdorf et al. 2010; Soliman et al. 2010; Ninan et al. 2010). Data from
rodent models have also demonstrated that BDNF-TrkB signaling is necessary for
the acquisition of fear conditioning and consolidation of fear extinction in the
amygdala, hippocampus, and PFC (Chhatwal et al. 2006; Rattiner et al. 2004).
BDNF plays distinct roles in different regions of PFC. Direct BDNF infusion in the
IL region enhances fear extinction (Peters et al. 2010). In contrast, BDNF deletion,
by injecting Cre recombinase expressing lentivirus into the brain of floxed BDNF
transgenic mice, in the PL region of the PFC results in deficits in fear acquisition
but does not affect fear extinction. The BDNF deletion-induced fear acquisition
deficits in the PL may be rescued by the administration of 7,8-dihydroxyflavone
(7,8-DHF), a small molecule compound that activated the TrkB receptor, thus
mimicking the actions of endogenous BDNF. Systemic administration of a single
dose of 7,8-DHF has been found to activate TrkB receptors in the amygdala and
also enhance the acquisition and extinction of fear in mice (Andero et al. 2012).
7,8-DHF also rescues the extinction deficit present in a mouse model of stress
(Andero et al. 2012; Andero and Ressler 2012). These data suggest that small
molecule agonists and antagonist that target the BDNF-TrkB signaling pathway
may provide novel approaches in the enhancement of extinction and possible
treatment of fear-related disorders, including PTSD.
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12 Conclusion

PTSD is a debilitating psychiatric disorder that is prevalent in the general popu-
lation, with adult lifetime prevalence rate estimated at 8.7 % (American Psychi-
atric Association 2013). This rate is much increased in military and veteran
populations that have been exposed to many more traumatic and severe events.
Some factors have been identified to be associated with the risk of developing
PTSD, such as trauma type and severity, gender and sexual orientation, race and
ethnicity, lower IQ, prior trauma exposure and pretrauma psychopathology,
familial psychiatric history, and genetics. The recently published DSM-5 has
classified PTSD as a trauma and stress-related disorder which is characterized by
intrusion symptoms, avoidance, negative alteration in cognitions and mood, and
alterations in arousal and reactivity for at least 1 month following exposure to
trauma (American Psychiatric Association 2013). Studies using animal models and
human imaging have contributed much to the understanding of the neurobiology of
PTSD. However, there is still much to be learned and understood in terms of the
etiopathology of the disorder. Through animal and human studies, correlations
have been found between a stressor or a risk factor and PTSD symptoms. While
the knowledge gained so far has been important, causal studies are needed that
would firmly implicate the identified neurobiological mechanisms in PTSD or
resilience. These studies are unfortunately lacking because they will require
invasive and risky procedures that cannot be ethically undertaken in humans.
Therefore, animal models on learning and stress systems that consider the diag-
nostic criteria of PTSD need to be developed.

Current evidence indicates that the development of PTSD may be influenced by
genetic variation as well as environmental factors. The nature of the genes–
environment interactions needs to be studied in order to understand how these
factors contribute to the onset and severity of PTSD. Data from these studies
would have important implications for PTSD prevention and treatment. Another
important area of science is the identification of biomarkers and a brain imaging
model for the diagnosis of PTSD to help reduce the dependence on self-reported
symptoms. The identification of biomarkers also has the potential to inform the
development of treatment strategies as well as tools to assess treatment success.
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Investigation of Cortisol Levels in Patients
with Anxiety Disorders: A Structured
Review

Hesham Yousry Elnazer and David S. Baldwin

Abstract Anxiety disorders are common and distressing medical conditions,
which typically arise in adolescence or early adult life. They can persist for many
years, reducing quality of life, limiting academic and occupational achievement,
and being responsible for considerable economic pressures. Although a range of
psychological and pharmacological treatments are available, their success is often
limited, and many patients remain troubled by significant symptom-related dis-
ability for long periods. The detailed pathophysiology of each anxiety disorder is
not established, and novel treatments that are based solely on current under-
standing of conventional neurotransmitter function are unlikely to be substantially
more effective or better tolerated than current treatments. Investigations of
hypothalamo-pituitary axis function across panic disorder, generalized anxiety
disorder, specific phobias and social anxiety disorder have produced intriguing
findings but not revealed a consistent pattern of endocrine disturbance, perhaps
reflecting differences in methodology and the nature and size of the clinical
samples. There is a persistent need for large, prospective studies using standard-
ized methods for investigation and data analysis (164 words).
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1 Background

Anxiety disorders are common, usually have an early onset, typically run a chronic
or relapsing course, cause substantial personal distress, impair social and occu-
pational function, reduce quality of life and impose a substantial personal and
societal burden. Unfortunately the effectiveness of pharmacological and psycho-
logical treatment interventions for patients with anxiety disorders in real-world
clinical practice is often disappointing. Advances in genetics, imaging genetics,
psychoneuroimmunology and psychophysiology have all deepened understanding
of the causes of anxiety disorders, but it remains hard to attribute particular psy-
chopathological states to specific neuropsychobiological substrates. Despite
advances in investigation of the biological, environmental and temperamental
mediators of resilience to traumatic adversity, on an individual level it is difficult
to predict who will become troubled by anxiety symptoms (Baldwin et al. 2010).
Steadily growing awareness of the importance of disturbances of the hypothalamo-
pituitary adrenal (HPA) axis in the pathophysiology and potentially in the treat-
ment of mood disorders and psychosis (Pariante 2009) has naturally encouraged
parallel investigations into the role of neuroendocrine disturbances in the origin,
investigation and treatment of anxiety disorders, and this area of enquiry is the
focus of this chapter.

2 Method for the Literature Review

We searched all titles listed in ‘Pub Med’ up to March 2013, for all anxiety
disorders, excluding obsessive-compulsive disorder (OCD) and post-traumatic
stress disorder (PTSD), being mindful of changes in the categorization of the latter
two conditions within DSM-5 (American Psychiatric Association 2013); however,
papers which examined cortisol and in which OCD or PTSD were co-morbid with
an anxiety disorder were included. The terms glucocorticoid, cortisol and
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hypercortisolism were used, combined with each disorder to compile separate lists
for each condition. For generalized anxiety disorder (GAD) we included the terms
GAD, generalized and GAD; for phobic disorders, we used the terms phobia,
social phobia, simple phobia and specific phobia. A combined list was generated
and duplications were eliminated; all letters, and papers that were not available in
English, were eliminated. The search terms were as follows: agoraphobia (with or
without a history of panic disorder) with glucocorticoids, cortisol, hypercortisol-
ism; generalized anxiety disorder or GAD with glucocorticoids, cortisol, hyper-
cortisolism; panic disorder with glucocorticoids, cortisol, hypercortisolism; phobic
disorders, phobia, social phobia, simple phobia, specific phobia, with glucocorti-
coids cortisol and hypercortisolism.

3 Panic Disorder and Agoraphobia

Evaluation of cortisol levels has encompassed investigations of urinary, salivary
and plasma cortisol levels, non-suppression following dexamethasone adminis-
tration, and cortisol response to psychological and pharmacological challenges. In
an early investigation, no significant differences in mean urinary free cortisol or
plasma 3-methoxy-4-hydroxyphenethyleneglycol (MHPG) were found between
patients with panic disorder (n = 12) or healthy controls (Uhde et al. 1988).
Significant group differences in urinary free cortisol between patients with panic
disorder (n = 65) and healthy controls were reported in a larger investigation, but
only in the sub-group of patients with more marked depressive symptoms or
agoraphobic avoidance (Kathol et al. 1988); an extension of this study demon-
strating that elevated urinary cortisol was less marked than that in depressed
patients (Kathol et al. 1989). In patients with panic disorder (n = 66), coexisting
depression and agoraphobia were found to be associated with significantly ele-
vated urinary free cortisol levels when compared to healthy controls; these levels
decrease during treatment with the benzodiazepines alprazolam or diazepam
(Lopez et al. 1990). Nocturnal levels of urinary cortisol, epinephrine and norepi-
nephrine were found to be persistently elevated in patients with panic disorder
(n = 16) (Bandelow et al. 1997), though not to decline following successful
treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine,
exercise or relaxation (Wedekind et al. 2008) (Table 1).

Plasma cortisol (and growth hormone) levels were found to be elevated in
patients with ‘panic anxiety’ compared to those in healthy controls (Nesse et al.
1984). Another comparative study found that plasma cortisol levels were not
significantly different between patients with panic disorder (n = 10) and healthy
controls (Villacres et al. 1987). Both total and free plasma levels, and salivary
levels of cortisol were found to be elevated in patients with panic disorder
(n = 47) compared to healthy controls (Wedekind et al. 2000). In further inves-
tigations, salivary cortisol levels taken during a panic attack were found to
decrease 24 h later in patients with panic disorder (n = 25) (Bandelow et al.
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Table 1 Investigations of cortisol in panic disorder

Urinary cortisol levels
Uhde et al. 1988 No significant differences in mean urinary cortisol or plasma MHPG
Kathol et al. 1988 Elevation of urinary free cortisol in patients with more marked

depression or agoraphobia
Kathol et al. 1989 Elevation of urinary cortisol less marked than in depressed patients
Lopez et al. 1990 Elevated urinary free cortisol levels decline during benzodiazepine

treatment
Bandelow et al. 1997 Elevation of nocturnal cortisol levels, persisting SSRI treatment,

exercise or relaxation
Plasma, salivary and hair cortisol levels
Nesse et al. 1984 Elevation of cortisol and growth hormone levels
Villacres et al. 1987 No difference in levels
Wedekind et al. 2000 Elevation of total and free plasma (and salivary) cortisol levels
Bandelow et al. 2000a Decline in salivary cortisol levels following a panic attack
Bandelow et al. 2000b Daytime salivary cortisol levels correlated to symptom severity
Staufenbiel et al. 2013 Evidence of low levels of cortisol in panic disorder and GAD
ACTH and cortisol levels
Roy-Byrne et al. 1986 Elevation of cortisol and ACTH, diminished response to CRH
Brambilla et al. 1992 Elevation of ACTH levels, ACTH response to CRH disturbed
Curtis et al. 1997 No significant difference in ACTH and cortisol response to CRH

challenge
Erhardt et al. 2006 No significant difference in CRH challenge following dexamethasone

administration
Petrowski et al. 2012 Diminished cortisol (but not ACTH) response to CRH challenge
Kellner et al. 2004 No significant difference in reduction of cortisol levels following

metyrapone administration
Fava et al. 1989 Higher ratio of DHEA to cortisol, declining during benzodiazepine and

placebo treatment
Den Boer and

Westenberg 1990
No reduction in plasma cortisol levels with successful SSRI treatment

Abelson and Curtis
1996a

Increased nocturnal cortisol levels

Abelson et al. 1996 Reduction in hypercortisolaemia with successful alprazolam treatment
Abelson and Curtis

1996b
Baseline cortisol levels predictive of symptom-related disability

2 years later
Herran et al. 2005 Decline in cortisol levels with successful SSRI treatment
Dexamethasone non-suppression
Sheehan et al. 1983 Non-suppression in 11.8 % of patients
Lieberman et al. 1983 Non-suppression in none of 10 patients
Whiteford and Evans

1984
Less non-suppression in panic patients (29 %) than depressed patients

(64 %)
Judd et al. 1987 Non-suppression in 29 % of patients (not significantly greater than in

controls)

(continued)
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Table 1 (continued)
Cottraux and Claustrat

1984
Greater non-suppression with co-morbid depression or family history of

depressive disorders
Peterson et al. 1985 Non-suppression independent of depressive symptom severity
Faludi et al. 1986 Non-suppression significantly less frequent (16.7 %) than in depressed

patients (56.7 %)
Goldstein et al. 1987 Non-suppression significantly less frequent than in depressed patients
Grunhaus et al. 1987 Co-morbid panic disorder does not affect chance of non-suppression in

depressed patients
Westberg et al. 1991 Non-suppression more common in patients with co-morbid

agoraphobia
Carson et al. 1988 Dexamethasone distribution may be altered in panic disorder
Coryell et al. 1985 Reduction in non-suppression with successful treatment
Bridges et al. 1986 Persistent non-suppression predictive of relapse following withdrawal

of treatment
Coryell and Noyes 1988 Baseline non-suppression not predictive of response to alprazolam
Coryell et al. 1989,

1991
Baseline non-suppression predictive of relapse following response to

benzodiazepines
Vreeburg et al. 2010 No significant difference in non-suppression compared to controls
Psychological challenge
Woods et al. 1987 No decrease in cortisol or MHPG levels with exposure to feared

situations
Stones et al. 1999 No decline in salivary cortisol levels following detailed personal

assessment
Siegmund et al. 2011 No increase in plasma cortisol or ACTH during in vivo exposure
Garcia-Leal et al. 2005 No increase in salivary cortisol levels during simulated public speaking

task
Petrowski et al. 2013 Reduced cortisol response following Trier Social Stress Test (TSST)
Petrowski et al. 2010 Cortisol response in TSST not influenced by depression or cortisol

awakening response
Relationship between cortisol and 5-HT
Westenberg et al. 1989 No significant difference in response to 5-HTP
Van Vliet et al. 1996 Enhanced cortisol response following 5-HTP administration is only

transient
Schruers et al. 2002 No evidence of enhanced cortisol response following 5-HTP

administration
Targum and Marshall

1989
Significantly greater increase in cortisol and prolactin levels following

fenfluramine challenge
Targum 1990 Significantly greater increase in cortisol and prolactin levels following

fenfluramine challenge
Judd et al. 1994 No significant difference in cortisol response to fenfluramine challenge
Charney et al. 1987b No significant difference in cortisol, growth hormone or prolactin

response to mCPP challenge
Germine et al. 1994 No significant difference in cortisol response to mCPP challenge
Kahn et al. 1988 Exaggerated response to mCPP challenge, compared to controls and

depressed patients

(continued)
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Table 1 (continued)
Wetzler et al. 1996 No significant difference in cortisol response to mCPP challenge
Van der Wee et al. 2004 No difference in cortisol response to mCPP challenge
Lesch et al. 1992 Reduction in hypothermic and ACTH/cortisol to ipsapirone challenge
Broocks et al. 2000 Reduction in hypothermic and ACTH/cortisol to ipsapirone challenge
Broocks et al. 2002 Enhanced response to ipsapirone challenge, particularly in smokers
Broocks et al. 2003 Hypothermic response to ipsapirone challenge corrected with

clomipramine treatment
Cortisol and adrenergic function
Stein et al. 1988 No difference in decline in cortisol level after clonidine (alpha-2

adrenergic agonist) challenge
Brambilla et al. 1992 Altered cortisol response following clonidine challenge
Coplan et al. 1997 Increased MHPG volatility following clonidine challenge, lessening

with SSRI treatment
Charney et al. 1987a Increased cortisol and MHGP following yohimbine (alpha-2 adrenergic

antagonist) challenge
Lactate infusion
Liebowitz et al. 1985 No consistent increase in cortisol or epinephrine levels
Levin et al. 1987 No increase in ACTH or cortisol in association with panic attacks
Hollander et al. 1989 Elevated cortisol at baseline predictive of panic attacks following

lactate infusion
Coplan et al. 1998 Elevated cortisol at baseline predictive of panic attacks following

infusion of saline
Targum 1990 Infusion accompanied by increase in cortisol in panic disorder and

depression plus panic
Seier et al. 1997 No increase in cortisol levels
Ströhle et al. 1998 No increase in cortisol levels with either lactate or flumazenil
Peskind et al. 1998 Panic attacks induced by hypertonic solutions
Kellner et al. 1998 Enhanced release of ANP exerts inhibitory role on ACTH and cortisol

release
Cholecystokinin challenge
Abelson et al. 1991,

1994
No difference in neuroendocrine response to pentagastrin challenge

Kellner et al. 1997 Prior administration of clonidine enhances response to CCK challenge
Shlik et al. 1997 Successful SSRI treatment reduces anxiety but not endocrine response

to CCK-4 challenge
Ströhle et al. 2000 ACTH levels following challenge greater in those experiencing panic

attacks
Wiedemann et al. 2001 ANP reduces likelihood of panic following administration of CCK-4
Abelson et al. 2005 Cognitive intervention diminishes ACTH and cortisol response to

pentagastrin challenge
Carbon dioxide challenge
Sinha et al. 1999 Reduction in cortisol levels following CO2 challenge
Van Duinen et al. 2004 No difference in cortisol response to CO2 challenge
Belgorodsky et al. 2005 Pre-challenge metyrapone reduces cortisol levels but does not affect

anxiety response
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2000a) and daytime salivary cortisol levels were correlated with symptom severity
(Bandelow et al. 2000b).

In an early investigation, levels of cortisol and adrenocorticotrophin (ACTH)
were found to be elevated in patients with panic disorder (n = 30), but the ACTH
and cortisol response following challenge with corticotrophin releasing hormone
(CRH) was diminished compared to healthy controls (Roy-Byrne et al. 1986).
Another study found that baseline plasma ACTH levels were elevated, and the
ACTH response to stimulation with CRH disturbed in patients with panic disorder
(n = 17) compared to healthy controls (Brambilla et al. 1992). However, another
investigation found no significant difference between patients with panic disorder
and healthy controls in the ACTH and cortisol response to CRH challenge (Curtis
et al. 1997). A third investigation, involving CRH challenge with dexamethasone
administration found no difference between patients with panic disorder (n = 30)
and depressed patients (Erhardt et al. 2006); and a fourth suggested that the plasma
cortisol response, but not the ACTH response, to CRH stimulation was decreased
(Petrowski et al. 2012). Administration of the cortisol synthesis inhibitor metyr-
apone reduced ACTH and cortisol both in patients with panic disorder (n = 14)
and healthy controls, but with no difference between groups (Kellner et al. 2004).
The ratio of dihydroepiandrosterone (DHEA) to cortisol, which is considered a
measure of adrenal cortical activity, was found to be significantly higher in
patients with panic disorder (n = 24) than in depressed patients or healthy controls
and, in female patients, to decrease during treatment with alprazolam, clonazepam
or placebo (Fava et al. 1989). An early investigation found that successful treat-
ment of patients with panic disorder with the SSRI fluvoxamine was not associated
with a reduction in plasma levels of cortisol (Den Boer and Westenberg 1990);
however, a reduction in cortisol levels has been reported to be associated with
successful treatment with other SSRIs (Herran et al. 2005).

In an early study, non-suppression following dexamethasone administration was
found in 11.8 % of patients experiencing panic attacks (Sheehan et al. 1983); in a
second, none of ten patients with panic disorder showed non-suppression compared
to 9 of 22 patients with depressive disorders (Lieberman et al. 1983). In a third
investigation, non-suppression was found in 29 % of patients with agoraphobia,
compared to 64 % of depressed patients, and 12 % of healthy controls (Whiteford
and Evans 1984). A similar proportion of patients with panic disorder showing non-
suppression (29 %) was seen in another early study, but non-suppression was not
significantly more prevalent than in healthy controls (9.5 %) (Judd et al. 1987).
Another investigation found that 20 % of patients with agoraphobia and panic
attacks were ‘non-suppressors’, the likelihood being greater in patients with
co-morbid depression or a family history of depressive disorders (Cottraux and
Claustrat 1984). In another study, non-suppression following dexamethasone
administration was found in 12.4 % of patients with agoraphobia (n = 97), inde-
pendent of depressive symptom severity (Peterson et al. 1985). In a comparative
study, non-suppression was significantly less common (16.7 %) among patients
with panic disorder (n = 30) than in patients with major depressive episodes
(56.7 %) (Faludi et al. 1986). Similar findings were reported in another comparative
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study involving patients with panic disorder (n = 24), depressed patients and
healthy controls (Goldstein et al. 1987). Dexamethasone non-suppression was
similarly prevalent in depressed patients, with or without co-morbid panic disorder
(Grunhaus et al. 1987). Non-suppression was more common in panic disorder
patients with agoraphobia (28 %) than in those without agoraphobia (Westberg
et al. 1991). It should be noted that the distribution of dexamethasone itself may be
altered in patients with panic disorder, with significantly lower levels being
achieved following administration of a standard dose (Carson et al. 1988).

Successful treatment of patients with agoraphobia with panic attacks was
associated with ‘escape’ from dexamethasone non-suppression (Coryell et al.
1985). Another study found the response to treatment with benzodiazepine anx-
iolytics or placebo was not associated with change in response to dexamethasone
challenge: but persistent non-suppression despite successful treatment was pre-
dictive of relapse in symptoms, following the withdrawal of treatment (Bridges
et al. 1986). A further investigation found that dexamethasone non-suppression at
baseline was not predictive of response to treatment with alprazolam (Coryell and
Noyes 1988), but in another investigation baseline dexamethasone non-suppres-
sion was predictive of relapse following successful treatment of patients with panic
disorder (n = 82) with alprazolam, diazepam or placebo (Coryell et al. 1989;
Coryell et al. 1991). In a series of studies, in which patients with panic disorder
(n = 20) were found to have evidence of increased nocturnal cortisol levels
compared to healthy controls (Abelson and Curtis 1996a), subsequent successful
treatment with alprazolam was associated with a reduction in hypercortisolaemia
(Abelson et al. 1996), and at 2-year follow-up, mean 24-h cortisol levels at
baseline, prior to alprazolam treatment, were predictive of greater symptom-
related disability (Abelson and Curtis, 1996b).

There have been many investigations of the cortisol response to psychological
and pharmacological challenge. An early investigation found that exposure to
feared situations was associated with increased reported fear, but not with
increases in plasma cortisol or MHPG in patients with agoraphobia (n = 18)
(Woods et al. 1987). Detailed psychometric and physiological assessment of
patients with panic disorder (n = 24) was associated with a failure of salivary
cortisol levels to decline, in contrast to the diminution seen in healthy controls
(Stones et al. 1999). A more recent study involving repeated in vivo exposure to
phobic situations (‘flooding’) found this therapeutic challenge was not associated
with increases in plasma cortisol or ACTH levels; patients with lower responses
having the least benefit from treatment (Siegmund et al. 2011). A simulated public
speaking task engendered anxiety but did not increase salivary cortisol levels in
either remitted (n = 16) or symptomatic (n = 18) patients with panic disorder
(Garcia-Leal et al. 2005). Challenge through the Trier Social Stress Test (TSST)
was associated with significantly lower increases in plasma and salivary cortisol in
patients with panic disorder (n = 27) than in healthy controls (Petrowski et al.
2013), regardless of the presence of depressive symptoms and a normal cortisol
awakening response (Petrowski et al. 2010).
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There have been many investigations on the effects of cortisol on experimental
alterations of 5-hdroxytryptamine (5-HT, serotonin) levels and receptor function.
Patients with panic disorder (n = 7) did not differ markedly from healthy controls
in either the cortisol or beta-endorphin response, following administration of the
5-HT precursor 5-hydroxytryptophan (5-HTP) (Westenberg et al. 1989); an
enhanced cortisol response being seen only transiently at the highest 5-HTP
dosage (van Vliet et al. 1996). The lack of an enhanced cortisol response (assessed
with salivary cortisol levels) to 5-HTP challenge was confirmed in a subsequent
investigation (n = 24) (Schruers et al. 2002). Challenge with the 5-HT releasing
agent fenfluramine elicited both a significantly greater panic response, and greater
increases in prolactin and cortisol levels in patients with panic disorder than in
depressed patients or healthy controls (Targum and Marshall 1989 [n = 9];
Targum 1990 [n = 17]). However, in another investigation involving fenfluramine
challenge, there were no significant differences in the cortisol response between
patients with panic disorder (n = 16) and healthy controls (Judd et al. 1994).

Administration of the non-selective 5-HT2B and 5-HT2C agonist meta-
chlorophenylpiperazine (mCPP) appeared no more likely to cause panic attacks in
patients with panic disorder than in healthy controls, with no significant differ-
ences between groups in cortisol, growth hormone or prolactin responses (Charney
et al. 1987a). No significant differences between patients with panic disorder
(n = 27) and controls in the cortisol response were seen in another study involving
intravenous mCPP infusion (Germine et al. 1994). Another study found evidence
of an exaggerated response to mCPP challenge, when patients with panic disorder
(n = 15) were compared to depressed patients and healthy controls, with a positive
correlation between cortisol response and anxiety level (Kahn et al. 1988); but a
further investigation found no differences between patients and controls in the
cortisol response to mCPP challenge (Wetzler et al. 1996).

Administration of the 5-HT1A agonist ipsapirone was found to result in a
diminution of the hypothermic and ACTH/cortisol response in patients with panic
disorder (n = 14), compared to healthy controls, suggesting that 5-HT1A receptor-
related serotonergic dysfunction may be a factor in the pathophysiology of panic
disorder (Lesch et al. 1992). A diminution of the cortisol response and hypo-
thermic response was also seem following ipsapirone challenge in patients with
panic disorder (n = 40) compared to healthy controls, in a study in which
administration of mCPP was associated with a trend towards a greater increase in
cortisol levels, together suggesting opposite changes in the responsiveness of
5-HT1A and 5-HT2C receptors (Broocks et al. 2000). However, in another inves-
tigation in patients with panic disorder (n = 39), plasma cortisol levels rose sig-
nificantly in response to challenge with ipsapirone, this increase being particularly
marked in smokers (Broocks et al. 2002), the hypothermic response to ipsapirone
challenge being reduced with successful treatment with clomipramine (Broocks
et al. 2003). However, although rapid intravenous administration of mCPP induced
panic attacks significantly more frequently in patients with panic disorder (n = 10)
than healthy controls, there were no differences between groups in the neuroen-
docrine response (van der Wee et al. 2004).
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Plasma cortisol levels have been found to increase during challenge of healthy
volunteers with air ‘enriched’ with 35 % carbon dioxide (CO2), a common chal-
lenge test for inducing panic attacks in patients with panic disorder (Sasaki et al.
1996; van Duinen et al. 2005; Hood et al. 2006). However patients may not differ
from controls in the cortisol response to CO2 challenge, despite marked differences
between groups in the induction of anxiety symptoms (van Duinen et al. 2004,
2007); indeed in one investigation, cortisol levels decreased significantly following
CO2 challenge (Sinha et al. 1999). Furthermore, administration of the cortisol
synthesis inhibitor metyrapone prior to CO2 challenge reduces cortisol levels prior
to challenge, but does not affect the anxiety response (Belgorodsky et al. 2005).

Caffeine administration was associated with a significantly greater increase in
anxiety and nervousness in patients with panic disorder and agoraphobia (n = 21)
compared to healthy controls, but with no difference between groups in change in
plasma levels of cortisol or MHPG (Charney et al. 1985). Challenge with the alpha
2-adrenergic receptor agonist clonidine has been used as an investigational tool for
evaluating norepinephrine function in panic disorder. The cortisol response to
challenge with clonidine differed between patients with panic disorder (n = 12)
and controls (Brambilla et al. 1995). However in another study, the decline in
cortisol levels following challenge with clonidine did not differ significantly
between patients with panic disorder (n = 10), patients with mood disorders or
healthy controls (Stein et al. 1988). In another investigation involving clonidine
challenge before and after treatment with the SSRI fluoxetine, which demonstrated
significantly increased ‘volatility’ (i.e. within-subject oscillatory activity) of
plasma MHPG levels in patients with panic disorder (n = 17) compared to healthy
controls at baseline, successful treatment was accompanied by a reduction in
volatility to levels seen in controls (Coplan et al. 1997). By contrast, induction of
panic attacks through challenge with yohimbine, an alpha 2-adrenergic receptor
antagonist, was characterized by increases in both cortisol and MHPG (Charney
et al. 1987b).

Hyperventilation, a common feature of panic attacks, can lead to an increase in
serum lactate levels (Maddock et al. 1991) and infusion of sodium lactate is often
used as an anxiogenic challenge, both in healthy volunteers and in patients with
anxiety disorders. Induction of panic through intravenous sodium lactate infusion
in a mixed sample of patients with panic disorder or agoraphobia with panic
(n = 43) was not consistently associated with increases in plasma cortisol or
epinephrine levels (Liebowitz et al. 1985). In addition, neither ACTH nor cortisol
increased with lactate-induced panic attacks in patients with panic disorder and
agoraphobia (Levin et al. 1987). However, in another study the presence of ele-
vated plasma cortisol level at baseline was found to be predictive of late panic
attacks following lactate infusion, in a mixed sample of patients with panic dis-
order or agoraphobia with panic attacks (n = 103) (Hollander et al. 1989). Ele-
vated cortisol levels (along with higher reported fear and evidence of
hyperventilation) at baseline were predictive of a greater likelihood of experi-
encing panic during placebo with placebo-controlled lactate infusion studies
(Coplan et al. 1998). In another study, lactate infusion was accompanied by an
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increase in cortisol levels in patients with panic disorder (n = 17) and in patients
with major depression and panic attacks (n = 12), but not in depressed patients
without panic attacks (n = 27) or healthy controls (Targum 1990). A further
investigation found no evidence that lactate infusion enhanced the cortisol
response in either patients or healthy controls (Seier et al. 1997), nor did infusion
of lactate or the GABAA receptor antagonist flumazenil in patients with panic
disorder (n = 10) (Ströhle et al. 1998). The lack of consistent evidence for an
enhanced cortisol response following lactate infusion has led to speculations that
panic attacks may result from infusion of hypertonic solutions (being seen with
hypertonic saline as well as sodium lactate) (Peskind et al. 1998), with enhanced
release of atrial natiuretic peptide (ANP) exerting an inhibitory role on ACTH and
cortisol release (Kellner et al. 1998). Furthermore, ANP may have anxiolytic
effects, as prior administration of ANP reduces the likelihood of experiencing
panic following administration of CCK-4 (Wiedemann et al. 2001).

Intravenous infusion with cholecystokinin tetrapeptide (CCK-4) can induce
panic attacks in patients with panic disorder in a dose-dependent manner (van
Megen et al. 1996). Early investigations suggested that neuroendocrine responses
to induction of panic through intravenous infusion of pentagastrin (a cholecysto-
kinin-B receptor agonist) did not differ between patients with panic disorder
(n = 10) and healthy controls (Abelson et al. 1991, 1994). However, in another
investigation of patients with panic disorder (n = 24), ACTH levels were signif-
icantly higher in patients experiencing panic attacks than in those without attacks;
and even patients without attacks had brief but mild increases in ACTH levels
(Ströhle et al. 2000). The ACTH and cortisol response to pentagastrin challenge
can be reduced by prior cognitive intervention, both in patients with panic disorder
and healthy controls (Abelson et al. 2005); and can be enhanced through prior
administration of clonidine (Kellner et al. 1997). Successful treatment of patients
(n = 8) with the SSRI citalopram has been found to reduce the panic response, but
not the cortisol, prolactin or growth response, to challenge with CCK-4 delivered
as bolus injection (Shlik et al. 1997). Other intravenous challenge tests include
infusion of physostigmine and insulin. A small study of intravenous infusion of
physostigmine found that patients with panic disorder (n = 9) did not differ from
controls in anxiety symptoms or cortisol response (Rapaport et al. 1991), whereas
administration of an intravenous insulin bolus was associated with an attenuated
cortisol (and growth hormone and prolactin) response in patients with panic dis-
order compared to healthy controls (Jezova et al. 2010).

4 Generalized Anxiety Disorder

Similar to endeavours in panic disorder, evaluation of the influence of cortisol in
GAD has included investigations of plasma and salivary cortisol, dexamethasone
non-suppression, and cortisol response to psychological and pharmacological
challenge. As with major depression, GAD appears common among patients with a
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primary diagnosis of Cushing’s disease, defined as Cushing’s syndrome associated
with an ACTH-secreting pituitary microadenoma, and characterized by hypercor-
tisolism (Loosen et al. 1992). Successful treatment of Cushing’s syndrome by
correction of hypercortisolism is associated with a gradual reduction in the presence
of mood and anxiety disorders (Dorn et al. 1997). However, investigations of
hypothalamo-pituitary adrenal axis function among patients with GAD have pro-
duced variable findings, with no consistent evidence of hypercortisolism. In an
early study, significant diurnal changes in plasma cortisol levels were reported in a
small sample (n = 13) of patients with GAD (Hoehn-Saric et al. 1991). A current or
lifetime history of GAD or phobic disorder (but not post-traumatic syndromes) was
found to be associated with a pattern of up-regulated diurnal cortisol secretion in a
large population study in elderly individuals (Chaudieu et al. 2008). Both GAD
(n = 12) and major depression (n = 8) were characterized by a failure of the
pattern of cortisol-induced serotonin uptake in lymphocytes, seen in matched
healthy controls (n = 8) (Tafet et al. 2001). However, a comparison of morning
plasma cortisol and DHEA sulphate levels in the Vietnam-era US army veterans
with GAD, major depression or co-morbid depression and GAD, found that
depressed and co-morbid patients, but not patients with GAD alone, had evidence
of hypocortisolism (Phillips et al. 2011) (Table 2).

Recent investigations have been focused on salivary cortisol levels and con-
centrations of cortisol in hair. An investigation involving serial saliva sampling
found the cortisol awakening response to be less elevated in patients with GAD
than in patients with panic disorder, with neither group showing more dexa-
methasone non-suppression than in matched controls (Vreeburg et al. 2010).
A lower cortisol awakening response was seen in individuals with GAD, drawn
from a large population-based study of older people (aged 65 years and above)
(Hek et al. 2013). A small case–control study in pre-pubescent children found no
difference in bedtime salivary cortisol levels between ‘anxious patients’ (with a
primary diagnosis of GAD) and healthy controls (Alfano et al. 2013). In a case–
control study of cortisol concentrations in hair, which may provide a reflection of
cortisol levels over time, there were significantly lower levels among patients with
GAD (n = 15) than in age- and gender-matched controls (Steudte et al. 2011).
This observation is supported by the findings of a recent meta-analysis of hair
cortisol and stress exposure, which found evidence of hypocortisolism in both
GAD and panic disorder (Staufenbiel et al. 2013).

An early investigation involving the dexamethasone suppression test (using a
minimum cortisol value of 5 mcg/dl to indicate non-suppression) found no sig-
nificant group differences between medication-free patients with GAD (n = 26),
panic disorder (n = 22), agoraphobia with panic attacks (n = 13), or ‘primary
affective disorder’ (n = 60) (Avery et al. 1985). A subsequent investigation in 79
patients with GAD found a non-suppression rate of 27 %, similar to that reported
in patients with major depression, but greater than the previously reported rate in
panic disorder, the presence of non-suppression being independent of depressive
symptom severity (Schweizer et al. 1986). Non-suppression in the dexamethasone
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Table 2 Investigations of cortisol in generalized anxiety disorder

Plasma, salivary and hair cortisol levels
Hoehn-Saric et al.

1991
Significant diurnal changes in plasma cortisol levels

Chaudieu et al.
2008

Up-regulated diurnal cortisol secretion in elderly individuals with current or
past GAD

Tafet et al. 2001 Abnormal cortisol-induced lymphocyte serotonin uptake similar to that seen
in depression

Phillips et al. 2011 Co-morbid depression and GAD associated with hypocortisolism
Vreeburg et al.

2010
Lesser elevation of cortisol awakening response than in depressed patients

Hek et al. 2013 Lower cortisol awakening response in older individuals with GAD
Alfano et al. 2013 No significant difference in bedtime salivary cortisol levels in pre-pubescent

children
Steudte et al. 2011 Lower cortisol levels in hair than in controls
Staufenbiel et al.

2013
Evidence of low levels of cortisol in GAD and panic disorder

Dexamethasone non-suppression
Avery et al. 1985 No evidence of increased non-suppression compared to controls
Schweizer et al.

1986
Non-suppression rate of 27 %, presence independent of depressive symptom

severity
Schittecatte et al.

1995
Non-suppression rate similar in GAD and major depression

Vreeburg et al.
2010

No significant difference in non-suppression compared to controls

Psychological and pharmacological challenge
Roy-Byrne et al.

1991
Reduction in cortisol levels following IV diazepam administration

Gerra et al. 2000 No differences in cortisol or ACTH levels in adolescents in GAD after
psychological challenge

Rosnick et al.
2013

Lowering of salivary cortisol levels following detailed psychological
assessment

Seddon et al. 2011 No change in cortisol levels after inhalation of 7.5 % CO2

Cohn et al. 1986 Buspirone administration lowers anxiety but has no effect on cortisol levels
Klein et al. 1995 No reduction in plasma cortisol levels with alprazolam treatment
Pomara et al. 2005 Diazepam administration reduces cortisol levels in GAD and healthy

controls
Lenze et al. 2011 Reduction in elevated cortisol levels associated with greater reduction in

symptom severity
Lenze et al. 2012 Reduction in elevated cortisol levels associated with greater improvement in

memory
Tiller et al. 1988 Successful psychological treatment converts previous dexamethasone non-

suppression
Tafet et al. 2005 Successful cognitive therapy accompanied by decline in plasma cortisol

levels
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test was found to have little value in distinguishing between patients with GAD
(n = 15) or major depression (n = 15), in an investigation of the suppression of
rapid eye movement sleep by clonidine administration in depressed patients and
healthy controls (Schittecatte et al. 1995).

It is uncertain whether change in cortisol levels, or dexamethasone non-
suppression, is predictive of the response to experimental pharmacological or
psychological challenge. In a mixed group of patients with GAD (n = 8) or panic
disorder (n = 13), challenge by intravenous diazepam administration was asso-
ciated with a reduction in cortisol levels (but increase in levels of growth hormone
and ACTH) (Roy-Byrne et al. 1991). A case–control study involving psycholog-
ical challenge in adolescents with GAD (n = 20) found no significant changes in
cortisol or ACTH during challenge in either cases or controls, in contrast to
increases seen in norepinephrine, growth hormone and testosterone (Gerra et al.
2000). A case–control study in older individuals with GAD (n = 69) found that
their participation in detailed neuropsychological assessment was associated with a
lowering of salivary cortisol levels (Rosnick et al. 2013). In a small study (n = 12)
inhalation of air enriched with 7.5 % carbon dioxide was associated with increased
subjective anxiety and with autonomic responses seen in heightened anxiety, but
not with a change in cortisol levels (Seddon et al. 2011).

Despite early contrary findings, it seems possible that change in cortisol levels
and in other indices of HPA function are altered during the response to pharma-
cological or psychological treatment. A placebo-controlled study of the 5-HT1A

partial agonist buspirone in 23 patients with GAD, which found that buspirone was
effective in reducing anxiety symptom severity, found no association with change
in plasma levels of cortisol (or prolactin or growth hormone) (Cohn et al. 1986). In
a mixed group of patients with GAD (n = 35) or panic disorder (n = 36), treat-
ment with alprazolam was associated with a reduction in plasma cortisol levels in
only the panic disorder group, the group with GAD having a reduction in plasma
epinephrine levels (Klein et al. 1995). However, a case–control study of the effects
of acute challenge and subsequent prolonged administration of diazepam in
individuals with GAD found it was associated with a reduction in plasma cortisol
levels, particularly in elderly patients, in both cases and controls (Pomara et al.
2005). In addition, in a placebo-controlled study of treatment with the SSRI es-
citalopram in elderly patients with GAD, reduction in previously elevated cortisol
levels was associated with a more marked reduction in symptom severity (Lenze
et al. 2011), and with improvements in measures of immediate and delayed
memory (Lenze et al. 2012). Furthermore, in an investigation which found a 27 %
rate of non-suppression among 30 patients with GAD, successful psychological
treatment was associated with ‘conversion’ to suppression, though post-treatment
concentrations remained significantly lower in the initial non-suppressors (Tiller
et al. 1988). Finally, a controlled investigation of cognitive therapy in 24 patients
with GAD found that successful treatment was accompanied by a significant
decline in plasma cortisol levels (Tafet et al. 2005).
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5 Specific (Simple) Phobia

There have been comparatively few investigations of cortisol levels in individuals
with specific phobia ‘at rest’. In children and adolescents with major depressive
disorder, co-morbidity with phobic disorders or panic disorder was associated with
an absence of the elevated cortisol levels that were seen in depressed patients
without co-morbidity (Herbert et al. 1996). Another investigation in children and
adolescents with varying anxiety disorders (n = 99) found no difference between
the disorders in salivary cortisol or diurnal cortisol rhythm (Kallen et al. 2008).
Compared to pregnant but healthy controls, pregnant women with blood-injection
phobia (n = 110) showed evidence of higher cortisol output, but no difference in
diurnal cortisol rhythm (Lilliecruz et al. 2011).

A series of investigations have suggested that experimental exposure of indi-
viduals with specific phobia to a feared object or situation is associated with an
enhanced cortisol response, but again not all evidence is consistent. An early
investigation of cortisol, electrodermal activity and subjective distress in a mixed
sample (n = 12) of individuals with blood-injection phobia or animal phobia
found that experimental exposure to pictorial images of feared objects (but not
exposure to neutral objects) elicited cortisol excretion (Fredrikson et al. 1985).
Cortisol levels (and levels of epinephrine, norepinephrine, growth hormone and
insulin) were also found to rise during therapeutic in vivo exposure to feared
animals in a small sample (n = 10) of women with various animal phobias (Nesse
et al. 1985). Cortisol levels were found to increase during exposure therapy in two
patients with height phobia (Abelson and Curtis 1989). Although baseline cortisol
levels did not differ between groups, a significantly greater increase in cortisol
levels was reported immediately before, during and immediately after a driving
task in individuals with driving phobia, when compared to healthy controls (Alpers
et al. 2003). But not all evidence is supportive, few differences being seen in an
investigation in women with spider phobia (n = 46) and healthy control women,
when challenged with neutral or feared images (Knopf and Possel 2009), nor in an
investigation in individuals with spider phobia (n = 16), in whom cortisol levels
did not increase following presentation of the feared stimulus despite increases in
self-reported fear (Van Duinen et al. 2010) (Table 3).

Investigations of the interaction between cortisol exposure and the effectiveness
of exposure therapy have produced intriguing findings. In a placebo-controlled
study, cortisol administration an hour prior to experimental exposure to feared
social situations or animals was found to significantly reduce stimulus-induced
self-reported fear (but not to reduce more general non-phobic anxiety) (Soravia
et al. 2006). In patients with specific phobia, social phobia and PTSD, prior cor-
tisol administration was also associated with reduced stimulus-induced fear, both
immediately after exposure and 2 days later (de Quervain and Margraf 2008). In a
placebo-controlled study in individuals (n = 40) with height phobia, cortisol
administration prior to virtual reality therapeutic exposure was found to signifi-
cantly reduce both reported fear and the degree of exposure-induced increased skin
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conductance (de Quervain et al. 2011). Intensive therapeutic in vivo exposure in
military personnel (n = 46) with protective mask phobia (a form of simple phobia)
was associated with a reduction in salivary cortisol levels, this reduction not being
seen in controls from emergency responder services (Brand et al. 2011).

6 Social Anxiety Disorder (Social Phobia)

Compared to panic disorder and GAD, there have been relatively few investiga-
tions of cortisol in patients with social phobia. Although a prospective study in a
community sample (n = 238) found that elevated afternoon salivary cortisol levels
in early childhood were predictive of subsequent social phobia in adolescence
(Essex et al. 2010), a series of investigations have suggested that cortisol levels are
not elevated in patients with social phobia in the ‘resting’ or unchallenged state.
An early investigation found no significant differences in urinary cortisol levels
between patients with social phobia (n = 10) and healthy controls (Potts et al.
1991): this finding being replicated in an analysis of 24-h urinary cortisol levels,
which also found no evidence of dexamethasone non-suppression in a larger group
(n = 64) of patients with social phobia (Uhde et al. 1994). No significant

Table 3 Investigations of cortisol in specific (simple) phobia

Herbert et al. 1996 Co-morbid phobic disorders associated with lower likelihood of
hypercortisolism

Kellner et al. 1998 No difference from other anxiety disorders in salivary cortisol or diurnal
cortisol rhythm

Lilliecreutz et al.
2011

Blood-injection phobia in pregnant women associated with
hypercortisolism

Fredrikson et al.
1985

Exposure to pictorial images of feared objects elicits rise in cortisol levels

Nesse et al. 1985 Cortisol levels rise during in vivo exposure to feared animals
Abelson and Curtis

1989
Cortisol levels rise during exposure therapy for height phobia

Alpers et al. 2003 Greater increase in cortisol levels before, during and after driving task in
driving phobia

Knopf and Possel
2009

No differences in cortisol levels following exposure to feared or neutral
images

Van Duinen et al.
2010

Increased fear following presentation of feared stimuli not accompanied by
increase in cortisol

Soravia et al. 2006 Cortisol administration prior to exposure to feared situations reduces
stimulus-induced fear

De Quervain et al.
2008

Cortisol administration associated with reduction in stimulus-induced fear

De Quervain et al.
2011

Cortisol administration reduces fear and exposure-induced increased skin
conductance

Brand et al. 2011 Reduction in cortisol levels with in vivo exposure in protective mask phobia
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differences were found between patients with social phobia (n = 26) and healthy
controls, in plasma levels of cortisol, pregnenalone or DHEA (Laufer et al. 2005).
Although patients with social phobia (n = 43) differed from healthy controls in
salivary alpha-amylase (a marker of sympathetic autonomic nervous system
activity), there were no differences in salivary cortisol levels (van Veen et al.
2008). A case–control study of men with social phobia (n = 12) found that sali-
vary cortisol levels were significantly lower than in healthy controls, with strong
negative correlations between cortisol levels and 5-HT1A binding in the amygdala,
hippocampus and retrosplenial cortex (Lanzenberger et al. 2010).

Investigations of the response to psychological challenge have produced rea-
sonably consistent findings. An early study found that challenge through the Trier
Social Stress Test (TSST) was associated with a significant elevation in salivary
cortisol levels in adolescent girls with social phobia (n = 27), but no more so than
in healthy controls (Martel et al. 1999). By contrast, a public speaking task (but not
physical exercise) was associated with a significantly greater increase in salivary
cortisol in patients with social phobia (n = 18) compared to healthy controls
(Furlan et al. 2001). Performance of a public speaking task was associated with a
significantly greater increase in salivary cortisol in children with social phobia
(n = 25) compared to healthy controls (van West et al. 2008). In addition, per-
formance in a social approach-avoidance task and challenge through the TSST was
associated with a significantly greater increase in salivary cortisol in patients with
social phobia (n = 18) compared to healthy controls and patients with PTSD
(Roelofs et al. 2009). However, in children with social phobia (n = 41) under-
going challenge with the TSST, the increase in salivary cortisol was not signifi-
cantly greater than in healthy controls (Krämer et al. 2012). In a functional
imaging study involving a public speaking task in patients with social phobia
(n = 12), the increase in salivary cortisol levels was associated with increased
regional cerebral blood flow in the hypothalamus (especially the mamillary bodies)
but decreased flow in the medial prefrontal cortex (Ahs et al. 2006) (Table 4).

Pharmacological challenge tests and pharmacological treatment studies suggest
a complex interaction between cortisol and serotonin in patients with social
phobia. An early investigation found no correlation between plasma cortisol level
and the degree of improvement during treatment with the SSRI fluvoxamine in
patients with social phobia (DeVane et al. 1999). In a placebo-controlled case–
control study in generalized social phobia (n = 21), single dose pharmacological
challenge with fenfluramine was associated with a significantly augmented cortisol
response, compared to that seen in healthy volunteers (Tancer et al. 1994). Single
dose pharmacological challenge with mCPP was associated with a trend towards a
greater cortisol response in patients with social phobia (n = 18) than in controls or
in patients with OCD (Hollander et al. 1998), but in a further investigation
involving mCPP challenge, the cortisol response was not significantly different
between patients with social phobia (n = 7) and healthy controls (van Veen et al.
2007). An investigation involving placebo-controlled single dose intravenous
administration of the SSRI citalopram found no difference in plasma cortisol or
prolactin responses, between patients with social phobia (n = 18) and healthy

Investigation of Cortisol Levels in Patients 207



controls (Shlik et al. 2004). Following successful SSRI treatment of patients
(n = 18) with social phobia, dual pharmacological and psychological challenge—
through placebo-controlled transient tryptophan depletion and performance in a
public speaking task—was accompanied by significantly increased salivary amy-
lase activity, but not by an increase in cortisol, suggesting hyper-responsivity of
the autonomic nervous system but not the HPA (van Veen et al. 2009).

As in patients with simple phobia, cortisol administration significantly reduced
self-reported fear prior to, during and after a social-evaluative stress task (Soravia
et al. 2006). Cortisol administration prior to a reaction time task enhanced the
processing of social stimuli and enhanced event-related potential amplitudes

Table 4 Investigations of cortisol in social anxiety disorder (social phobia)

Essex et al. 2010 Elevated afternoon salivary cortisol level in childhood predicts social
phobia in adolescence

Potts et al. 1991 No difference in urinary cortisol levels
Uhde et al. 1994 No difference in 24-h cortisol levels and no evidence of dexamethasone

non-suppression
Laufer et al. 2005 No difference in levels of cortisol, pregnenalone or DHEA
Van Veen et al. 2008 No difference in salivary cortisol levels despite difference in salivary

alpha-amylase
Lanzenberger et al.

2010
Significantly lower cortisol levels and negative correlations with 5-HT1A

binding
Martel et al. 1999 No significant difference in elevation of cortisol levels following TSST
Furlan et al. 2001 Enhancement of increase in salivary cortisol levels following public

speaking task
Van West et al. 2008 Enhancement of increase in salivary cortisol levels following public

speaking task
Roelofs et al. 2009 Greater increase in salivary cortisol levels with psychological task

following TSST challenge
Ahs et al. 2006 Increase in salivary cortisol levels associated with increased blood flow in

hypothalamus
Krämer et al. 2012 No significant difference in rise in salivary cortisol level following TSST
DeVane et al. 1994 No correlation between cortisol level and degree of improvement with

SSRI treatment
Tancer et al. 1994 Augmentation of cortisol response following fenfluramine challenge
Hollander et al. 1998 Trend towards enhancement of cortisol response following mCPP

challenge
Van Veen et al. 2007 No significant difference in cortisol response following mCPP challenge
Shlik et al. 2004 No significant difference in cortisol response to citalopram challenge
Van Veen et al. 2009 No increase in cortisol level following acute tryptophan depletion and

public speaking task
Soravia et al. 2006 Cortisol administration reduces fear before, during and after social-

evaluative stress task
Van Peer et al. 2009,

2010
Cortisol administration enhances processing of social stimuli and event-

related amplitudes
Katzman et al. 2004 No difference in cortisol response following CCK-4 challenge
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(particularly angry faces, when compared to neutral and happy faces) in patients
with social phobia (n = 20), in a manner influenced by symptom severity and
motivational context (van Peer et al. 2009, 2010). Pharmacological challenge with
intravenous CCK-4, found no differences in the ACTH, cortisol, growth hormone
or prolactin response between patients with social anxiety disorder (n = 12) or
obsessive-compulsive disorder or healthy controls (Katzman et al. 2004).

7 Summary

Although findings are inconsistent, panic disorder appears to be characterized by an
elevation of urinary cortisol levels, by a decline in cortisol levels with successful
pharmacological treatment, and by non-suppression following dexamethasone
administration in a proportion greater than in healthy controls but less than that in
depressed patients. There is much uncertainty about whether it is characterized by
elevated plasma cortisol levels, whether cortisol levels fall following psychological
challenge, and whether the anxiety response to panicogenic challenges is accom-
panied by changes in endocrine function. GAD appears to be characterized by a
decline in cortisol levels with successful psychological or pharmacological treat-
ment; it is uncertain whether it is also characterized by elevated cortisol levels prior
to treatment, and by whether dexamethasone non-suppression is more common than
in healthy controls. Specific phobia appears characterized by cortisol levels which
rise during experimental exposure to feared objects or situations, but which decline
with successful exposure therapy; social anxiety disorder is possibly characterized
by cortisol levels that rise during psychological challenge.

Compared to the extensive literature on HPA axis function in patients with
depressive illness, the evidence base relating to HPA axis function in patients with
the principal anxiety disorders is limited; the number of investigations in panic
disorder and GAD is reasonably extensive, but there have been rather few studies in
specific (simple) phobia and social anxiety disorder (social phobia). However, it is
clear that there is no unifying disturbance of HPA axis function across these anxiety
disorders; furthermore, within each disorder, the findings of investigations using
similar methodology have often produced inconsistent findings. These apparent
disparities in results from studies of similar design are possibly influenced by the
small sample size that is typical of most investigations, and by variations in the nature
of the clinical sample. Achieving greater consensus on study objectives, the detailed
characterization of patient groups, the methodological protocols for investigation
and the preferred mode of statistical analysis would be an important step forward in
further evaluations of HPA function in anxiety disorders (Baldwin et al. 2013).
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Stress, Schizophrenia and Bipolar
Disorder

Melissa J. Green, Leah Girshkin, Nina Teroganova and Yann Quidé

Abstract The role of stress in precipitating psychotic episodes in schizophrenia
and bipolar disorder has long been acknowledged. However, the neurobiological
mechanism/s of this association have remained elusive. Current neurodevelop-
mental models of psychosis implicate early dysfunction in biological systems
regulating hypothalamic–pituitary–adrenal axis and immune function, with long-
term effects on the development of the brain networks responsible for higher order
cognitive processes and stress reactivity in later life. There is also increasing
evidence of childhood trauma in psychosis, and its impact on the development of
brain systems regulating stress. These findings are emerging in the context of a
new era of epigenetic methods facilitating the study of environmental effects on
gene expression. The evidence is thus converging: exposure to stress at critical
periods in life may be an important factor in the development of the brain dys-
function that represents psychosis vulnerability, rather than merely interacting
with an independent ‘biological vulnerability’ to manifest in psychosis.
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1 The ‘Stress-Vulnerability’ Model of Psychosis

Schizophrenia and bipolar disorder are severe neuropsychiatric disorders that
share some symptoms and cognitive deficits, and are likely caused by the inter-
action of multiple biological and environmental factors. Heritability estimates for
both disorders approximate 80 % (van Winkel et al. 2008b; Sullivan et al. 2003;
McGuffin et al. 2003), suggesting a strong genetic component that is not neces-
sarily expressed with complete penetrance. In the largest genetic epidemiology
study of heritability patterns to date, it was shown that the biological relatives of
both schizophrenia and bipolar disorder had increased risk for both disorders,
with an estimated 30–40 % shared genetic risk factors, and 3–6 % shared envi-
ronmental risk factors (Lichtenstein et al. 2009). Notably, this evidence has
emerged within an era of unparalleled genomic advances implicating common
genetic loci in the development of the traditionally distinct ‘non-affective’ and
‘affective’ psychoses (Moskvina et al. 2009; O’Donovan et al. 2008; Craddock
et al. 2005).

However, there remains a high level of interest in elucidating the undoubtedly
complex effects of environmental stressors acting in concert with biological vul-
nerability for psychosis. Understanding how stress impacts the brain—its devel-
opment and daily functioning—thus remains key to understanding the aetiology of
psychosis. The treatment of stress-related features of illness will likely prove vital
in preventing relapse in established cases, and may also assist in averting the onset
of frank psychosis in vulnerable individuals.

Clinically, schizophrenia manifests in an episodic, and often deteriorating,
course of illness. The overt expression illness includes phases in which the hall-
mark ‘positive’ symptoms of psychosis predominate (e.g. delusions, hallucinations
and disorganisaton of thought and behaviour), while persistent ‘negative’ symp-
toms (impaired motivation and affect, social withdrawal, poverty of speech and
impaired cognition) commonly increase over the course of illness, culminating in
long-term disabling interpersonal and functional impairments (Liddle 1987). The
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diagnosis of schizophrenia is confined to patients who experience remittent
symptoms for a minimum of 6 months, with at least 1 month of persistent psy-
chosis (APA 2013). Somewhat artificially, schizophrenia has been distinguished
from schizoaffective disorder by the presence of significant mood symptoms,
interspersed with periods of psychotic symptoms that account for a significant
proportion of illness, and which occur also during periods without mood symptoms
(APA 2013).

In contrast, bipolar disorder has been primarily understood as a mood disorder
characterised by a (similarly) episodic course of illness that includes chronic and
recurring episodes of mania (elated mood) and depression (low mood), inter-
spersed by ‘euthymic’ periods in which the individual is neither affected by
extremely high or low moods (Manji et al. 2003). Mania includes feelings of
elation, irritability, impulsive behaviour, decreased need for sleep and can mimic a
schizophrenia-like psychosis in severe cases (Manji et al. 2003; Berk et al. 2007).
While mania and psychosis technically do not equate, psychotic symptoms (such
as delusions) frequently occurs during mood episodes, with 20–50 % of patients
with acute bipolar mania displaying symptoms of psychosis (Pope and Lipinski
1978). Despite many clinical and neurocognitive features in common (Tamminga
et al. 2013; Hill et al. 2013), these mood and psychotic disorders remain as distinct
categories of illness in the current DSM-V, with growing acknowledgement of the
unequivocal evidence for shared genetic vulnerability and environmental factors
contributing to their development.

1.1 Stress and the Development of Psychosis

Typically, overt psychotic symptoms emerge in late adolescence or early adult-
hood (Kessler et al. 2007) and often the onset of the first (and subsequent) psy-
chotic episode/s can be linked to a significant life stressor (Canton and Fraccon
1985). Retrospective studies show that patients with schizophrenia tend to expe-
rience increased numbers of life events, especially before the onset of an acute
episode (Bebbington et al. 1993; Canton and Fraccon 1985). Exposure to ‘life
events’ may increase response to stress and predispose to subsequent reactions on
later exposures (van Winkel et al. 2008b). Prospective studies of life events and
psychosis reveal that, while the number of life events experienced by individual at
high risk of psychosis are not particularly elevated, these individuals feel they do
not cope with the stressors as well and report greater distress than controls (Mason
et al. 2004; Phillips et al. 2006). Stress and inadequate social support have also
been shown to predict recurrence in bipolar disorder (Cohen et al. 2004).

This accumulation of evidence might suggest that a core feature of psychosis
may involve an aberrant neurobiological response to stress. At the same time,
neurodevelopmental models assert the likely impact of early life stress on the
developing brain, with accumulating evidence implicating the effect of early life
exposures to numerous kinds of environmental insult during pre- or post-natal
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periods, and/or during childhood or adolescence (Demjaha et al. 2012; Murray
et al. 2004). These models highlight both similarities and distinctions in the
neurodevelopmental trajectories of schizophrenia and bipolar disorder, that nev-
ertheless point toward aberrant development of stress-related brain circuitry in the
aetiology of both ‘affective’ and ‘non-affective’ forms of psychosis.

2 Neurobiology of Stress

The primary stress response system of the brain involves components of the
hypothalamic–pituitary–adrenal (HPA) axis, which function together with multiple
bodily systems to enable individual adaptation to the stressful/environmental sit-
uation (McEwen and Seeman 1999). After exposure to a stressor, release of
serotonin from the amygdala stimulates the secretion of corticotropin-releasing
hormone (CRH) and vasopressin through the medial parvocellular portion of the
paraventricular nucleus (PVN) of the hypothalamus, which in turn stimulates the
production of adrenocorticotropic hormone (ACTH) from the anterior pituitary
gland (Jacobson and Sapolsky 1991; Munck et al. 1984; Sapolsky et al. 1986).
ACTH acts on the adrenal cortices, stimulating the production of glucocorticoids,
such as cortisol. Glucocorticoids in turn regulate their own release directly by
action on both the hypothalamus (CRH) and pituitary gland (ACTH) via negative
feedback cycles.

Within this system, cortisol is primarily involved in driving the stress response.
It binds to glucocorticoid receptors (GR) to both induce and restrain the stress
response. These receptors are expressed throughout the brain with concentrated
expression in the PVN, hippocampal area and dentate gyrus, amygdala and lateral
septum and prefrontal cortex (PFC) (Pillai et al. 2012). Mineralocorticoid recep-
tors (MR), expressed only in the hippocampus and the lateral septum, have a ten-
fold greater affinity for cortisol and are primarily active at basal level and
important in modulating the circadian pulsatile rhythm of cortisol (Deuschle et al.
1998; Heuser et al. 2000).

Chronic exposure to glucocorticoids results in significant changes in neuro-
physiology (Belanoff et al. 2001), through genomic and non-genomic pathways,
[see (Joels et al. 2012) for review] in brain regions which plays an important role
in memory and cognition (Eichenbaum et al. 1992; Herman et al. 2005). Elevated
levels of glucocorticoids or cumulative exposure can lead to hippocampal
degeneration (McEwen and Sapolsky 1995; Sapolsky et al. 1986). The hippo-
campus plays an important role in explicit memory, and the interaction between
glucocorticoids and the hippocampus may explain its effect on cognition (Belanoff
et al. 2001). Indeed, longitudinal study of associations between childhood cogni-
tive performance and later cortisol levels in adulthood have shown that lower
cognitive ability in childhood predicted lower morning levels of cortisol and a
blunted cortisol awakening response later in life (Power et al. 2008). Prefrontal
cortex and amygdala housing of substantial corticosteroid receptors may similarly
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account for variability in cognitive domains; executive function, working memory
and emotion regulation (McCormick et al. 2007; Wingenfeld et al. 2011).

Both abnormally high and low cortisol levels, reflecting aberrant HPA function,
have been linked with early life stressors including severe childhood abuse, and
post-institutionalisation (Doom et al. 2013; Quevedo et al. 2012), with recent
evidence of heightened cortisol levels in adult schizophrenia participants with a
history of childhood trauma (Braehler et al. 2005). In accordance with the diathesis
stress model, evidence also suggests there may be an ability in healthy individuals
to ‘bounce back’ from childhood trauma, confirmed by an attenuated Dexameth-
asone/CRH response in individuals exposed to early trauma (Klaassens 2010).

3 Levels of Cortisol in Schizophrenia and Bipolar Disorder

Cortisol levels have been found to be higher in chronic sufferers of schizophrenia
compared to healthy controls, irrespective of age (Muck-Seler et al. 2004). Sim-
ilarly, higher cortisol levels are evident in bipolar disorder in the morning and
afternoon, relative to healthy controls (Gallagher et al. 2007). Possible explana-
tions of these results come from evidence incorporating symptom severity and
disease progression. One study found that first-episode psychosis participants’
reduction in cortisol over a 12-week period was directly related to improvements
in depressive, negative and positive psychotic symptoms (Garner et al. 2011).
Similarly, a longitudinal study found that adolescents followed for 4 years from
the onset of prodrome to psychosis demonstrated a pronounced increase in cortisol
secretion over the course of the study period (Walker et al. 2010).

Several studies have also shown that repeated administration of corticosteroids
to participants initially free of psychiatric illness results in approximately 25 % of
individuals meeting diagnostic criteria for mania (Brown et al. 2002; Bolanos et al.
2004; Naber et al. 1996); in addition, those with a greater number of episodes
demonstrated more dysfunctional cortisol patterns than those with relatively less
severe bipolar disorder. These studies suggest similar relationships to those in
schizophrenia where illness stage, and symptom severity, may be moderators of
cortisol dysfunction.

One important factor that may contribute to elevated cortisol levels in psychotic
disorders is psychotropic medication. A recent meta-analysis also shows that,
while medicated schizophrenia patients had elevated cortisol compared to healthy
controls, the cortisol levels of patients that were medication-free were greater still
(Girshkin et al. 2014). This meta-analysis also found no increase in cortisol level in
first-episode medication-naïve participants compared to healthy controls, consis-
tent with reports of normal pituitary volume in first-episode participants before
after antipsychotic treatment (Gruner et al. 2012). These findings in first-episode
samples suggest that antipsychotic medication may have less impact on cortisol
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levels in the early stage of illness. Other studies have identified an increase in
cortisol from baseline after a 12-day period of withdrawal from psychotropic
treatment (Naber et al. 1985; Albus et al. 1985). Unlike antipsychotics, mood
stabilisers, including lithium carbonate, have been shown to increase cortisol
levels in a dose dependent manner (Platman and Fieve 1968; Bschor et al. 2011;
Eroglu et al. 1979).

The manipulation of cortisol levels via the administration of glucocorticoid
antagonists provides interesting results at odds with the growing list of similarities
among schizophrenia and bipolar disorder: in a series of elegant investigations
using mifepristone (a glucocorticoid antagonist), both schizophrenia and bipolar
disorder individuals demonstrated a rise in cortisol and decrease in brain-derived
neurotrophic factor (BDNF) in response to administration, compared to controls;
however, it was only the schizophrenia participants whose changes in cortisol were
associated with peripheral BDNF levels (Mackin et al. 2007). Another study by
this group found that, following administration of mifepristone, the cortisol
awakening response of bipolar disorder participants increased from baseline, and
predicted improvement in spatial working memory over the course of treatment
(Watson et al. 2012; Young et al. 2004). There was no similar effect of mifepri-
stone on cognition in schizophrenia, despite the effects of mifepristone in
increasing plasma levels of cortisol in schizophrenia (Gallagher et al. 2005).
Together, these investigations implicate differential neurobiological mechanisms
underlying the aberrant stress responses reflected in their abnormal heightened
cortisol levels. Further work is clearly required to disentangle the similarities from
differences with respect to abnormal HPA function in the psychotic and mood
disorders.

The biological mechanisms of elevated cortisol levels in schizophrenia and
bipolar disorder may be associated with the predisposition to psychosis, envi-
ronmental effects or an interaction of the two (Wang et al. 2011; Aina 2013;
Perroud et al. 2011). Predisposing genetic factors may include common variants on
single nucleotide polymorphisms (SNPs) in genes associated with cortisol
metabolism (SRD5A2) (Steen et al. 2010), the regulation of cortisol (glucocorti-
coid receptor, NR3C1) (Schatzberg et al. 2014), dopamine catabolism (catechol-o-
methyltransfease COMT; dopamine D4 receptor gene (DRD4) (Jabbi et al. 2007),
inhibitory neurotransmittors (GABA a6 receptor subunit gene; GABRA6) (Uhart
et al. 2004) and stress-vulnerability (serotonin transporter-linked polymorphic
region; 5-HTTLPR) (Miller et al. 2013). Similarly, environmental factors such as
substance abuse (Lopez-Larson et al. 2011; Gavrieli et al. 2011), sleep deprivation
(Spiegel et al. 1999), dietary changes (Cheng and Li 2012), lower socioeconomic
status (Rudolph et al. 2014) and a lower level of education (Karlamangla et al.
2013) may contribute to the increased cortisol. While it remains unclear whether
elevated cortisol levels are a risk factor for these disorders or a consequence of
onset, recent studies suggest that it may be an interaction of the two (Wang et al.
2011; Aina 2013; Perroud et al. 2011).

Notably, the meta-analysis by Girshkin et al. (2014) revealed a positive rela-
tionship between duration of illness and cortisol levels in schizophrenia; that is, the
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magnitude of increase in cortisol level in established schizophrenia was greater
than that for first-episode psychosis, relative to healthy controls. Increasing cor-
tisol with illness chronicity may be accounted for by several factors such as an
inability to habituate to stimuli that, therefore, are perceived as salient (potentially
threatening), and therefore tax the HPA system (Kirschbaum et al. 1995; Braun-
stein-Bercovitz et al. 2001). This constant experience of events perceived to be
salient may create lasting neural changes resulting hypersensitivity to external
stimuli (J. Wang et al. 2005; Tognin et al. 2012; Zimmermann et al. 2011;
McEwen 2000; Rao et al. 1989; Starkman et al. 1992; Lupien et al. 1998; Tessner
et al. 2007; McGowan et al. 2009), which over time, may amass to a state of
extreme sensitivity to both internal and externally driven stress (De Kloet et al.
1998; Holsboer 2000). The heightened levels of cortisol in bipolar disorder and
schizophrenia not seen in earlier stages of illness may thus be due to a lack of
accumulated stressful experiences, in combination with the effects of continued
medication.

4 Inflammation and Stress

Stress-mediated immune activation is well known to affect HPA axis function, and
can result in chronic inflammation capable of altering neural networks and brain
morphology (van Winkel et al. 2008b; McEwen 2007). Notably, one of the most
commonly implicated genetic markers of schizophrenia is in the Major Histo-
compatibility Complex (MHC) locus, which encodes more than 400 genes critical
to immune functions (Corvin and Morris 2014); MHC-mediated immune mole-
cules are highly expressed in neurons and regulate key aspects of brain develop-
ment (McAllister 2014).

Inflammation has been linked to psychosis (Bergink et al. 2014), as well as
depression, mania and cognitive impairment (Laan et al. 2009; Wadee et al. 2002;
Larson and Dunn 2001). Interestingly, monocyte genomic profiling of mRNA has
shown that inflammatory markers in bipolar disorder were overlapping with almost
all those associated with schizophrenia (Drexhage et al. 2010). Positron Emission
Tomography (PET) imaging studies in schizophrenia patients experiencing psy-
chosis have also identified an increase of activated microglia in the hippocampus,
suggesting focal neuroinflammation of this region of the brain (Doorduin et al. 2009).

The immunosuppressive and anti-inflammatory actions of antipsychotic drugs
such as chlorpromazine suggest that inflammation has a role in altering central
nervous system (CNS) function (Drzyzga et al. 2006). Similarly, antidepressants
such as imipramine work by suppressing pro-inflammatory responses (cytokine
production) and increasing BDNF (Sairanen et al. 2005; Kenis and Maes 2002). In
healthy individuals pro-inflammatory cytokines modulate apoptotic and neuro-
trophic processes as well as prevent morphological brain changes (de Vries et al.
1997). However, evidence for immune dysregulation in schizophrenia and bipolar
disorder suggests that inflammatory mechanisms shift from being neuroprotective
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to neurotoxic (Potvin et al. 2008; Kapczinski et al. 2011). As interactions between
immune, gene and neural networks are complex, it remains unclear to what extent
the pro-inflammatory response might contribute to the neuropathology of psy-
chosis; however, a number of interesting models are emerging as new evidence
shapes our understanding of these relationships (Girgis et al. 2014; Corvin and
Morris 2014; Bergink et al. 2014).

4.1 Pro-Inflammatory Markers in Schizophrenia and Bipolar
Disorder

Cytokines are pro-inflammatory markers which accompany immune responses to
stress and have diverse roles in immunomodulation and cellular function (Kunze
et al. 2013). Elevated levels of cytokines are evident in the peripheral blood of
schizophrenia and bipolar disorder patients, relative to healthy controls (Kunze
et al. 2013; Kim et al. 2007). Specifically, increased levels of serum interleukin
(IL)-1, IL-2, IL6 and tumour necrosis factor-alpha (TNF-a) have been found in
schizophrenia (Potvin et al. 2008; Theodoropoulou et al. 2001), and elevated
plasma cytokine levels of IL-2, IL-4, IL-6, IL-8 and TNF-a are also evident in
bipolar disorder (Brietzke et al. 2011; O’Brien et al. 2006).

Chronically elevated levels of cytokines can cause increased oxidative stress
and alter neuronal function (Brietzke et al. 2011; Schafers and Sorkin 2008), and
may also contribute to the grey matter loss seen in schizophrenia and bipolar
disorder (Viviani et al. 2004). Pro-inflammatory cytokines can also stimulate
excess secretion of corticotrophin-releasing hormone, which has an inverse rela-
tionship with the adaptive stress response (Sauvage and Steckler 2001). Thus,
long-term increase in cytokines can further exacerbate the molecular changes
associated with stress-induced HPA dysfunction.

In a balanced immune system, cytokines provide neurotrophic support to
neurons and play a role in learning and memory via their effect on the hippo-
campus (Wilson et al. 2002). However, in bipolar disorder, cytokines have been
shown to be positively correlated with symptom severity during active manic and
depressive episodes (Kim et al. 2007; O’Brien et al. 2006) and with paranoid–
hallucinatory symptoms in schizophrenia (Muller et al. 1999). As such, altered
levels of cytokines implicate inflammatory processes in the pathophysiology of
schizophrenia and bipolar disorder. The timing of inflammation (particularly
whether before or after the onset of illness), and the precise effects on the brain are
yet to be fully explicated. Perhaps not surprisingly, on the basis of the current
evidence, preliminary studies of the use of common anti-inflammatory pharma-
cological agents to improve psychotic symptoms show promise as adjunct treat-
ments for schizophrenia (Sommer et al. 2014).
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5 Early Life Stress and Psychosis

Childhood trauma and other types of adversity are now well established as sig-
nificant risk factors for the development of several mental disorders, including
schizophrenia and bipolar disorder (Janssen et al. 2004; Kessler et al. 2010; Read
and Bentall 2010; Cutajar et al. 2010; Etain et al. 2010; Hyun et al. 2000; Read
et al. 2005; Matheson et al. 2013; Varese et al. 2012; Schafer and Fisher 2011).
Childhood adversity refers to a number of experiences in the early stages of life
including maltreatment (encompassing physical, sexual or emotional abuse and
various forms of neglect), parental loss or divorce, parental substance abuse and
poverty (Rosenberg et al. 2007). While sexual abuse has been reported as a sig-
nificant risk factor for psychosis alone (Cutajar et al. 2010), a recent meta-analysis
shows no evidence that any particular type of trauma is a stronger predictor of
psychosis than the others (Varese et al. 2012). However, one recent study reports
higher rates of emotional neglect in psychotic patients, with higher rates of
physical abuse and neglect differentiating individuals with schizophrenia from
those with bipolar disorder (Larsson et al. 2013).

A recent review of the neurobiological and clinical features of maltreatment
across a variety of mental disorders concludes that sufficient evidence points
towards the utility of examining subtypes of cross-disorder clinical cases who
share a history of childhood trauma, as a phenotypic specialisation of environ-
mental adversity, or ‘ecophenotype’ (Teicher and Samson 2013). For example,
neuroimaging studies of maltreated individuals within various clinical categories
included in this review, report alterations in the size and integrity of the corpus
callosum, hippocampus, cerebellum, and primary sensory cortices; as well as in
sub-cortical region including the striatum/basal ganglia; and neocortical regions
including the anterior cingulate cortex (ACC), the orbitofrontal cortex and the
dorsolateral prefrontal cortex. More recently, Teicher et al. (2013) showed that
maltreatment was associated with decreased connectivity among regions involved
in emotion regulation and in theory of mind skills (left ACC, right medial frontal
gyrus, right occipital pole and left temporal pole), and enhanced centrality among
regions involved in emotion perception, self-referential thinking, self-awareness
[right superior temporal gyrus (STG), right anterior insula] (Craig 2009). These
regions are commonly implicated in the neuropathology of both schizophrenia and
bipolar disorder, such that further examination of the effects of stress on these
brain systems is warranted.

Only few studies have investigated brain abnormalities associated with child-
hood adversity in psychotic disorders. In individuals with first-episode of psy-
chosis, exposure to childhood trauma has been associated with worse cognitive
function and smaller amygdala (Aas et al. 2012), or decreased hippocampal vol-
ume (Hoy et al. 2012). Sexual abuse has been specifically associated with reduced
(total) grey matter volume in psychotic patients compared to healthy participants
(Sheffield et al. 2013), whereas, in line with Carrion et al. (2001), psychotic cases
with a history of childhood trauma showed bilateral reduction of the PFC relative

Stress, Schizophrenia and Bipolar Disorder 225



to cases without trauma history. Results of a functional neuroimaging investigation
of the effects of childhood adversity on brain networks for working memory, in a
combined sample of patients with schizophrenia and bipolar disorder, demonstrate
failure to deactivate the posterior cingulate cortex (PCC) in patients with a history
of severe childhood trauma; in contrast, psychotic patients without a history of
childhood trauma show aberrant brain activation of the visuo-motor/attentional
network (pre-post central gyrus, cuneus/visual areas) (Quidé et al. 2014). Inter-
estingly, Quidé et al. also demonstrated the effects of childhood trauma on brain
regions involved in salience and threat detection (amygdala, thalamus), as well as
directed attention (amygdala, cuneus/lingual gyrus), and emotion regulation
(amygdala, thalamus, superior temporal gyrus). Findings from neuroimaging
studies thus converge with the implications of neurobiological investigations
(reviewed above), in both suggesting that long-term changes in brain systems
responsible for salience and threat detection may coincide with chronic HPA axis
dysregulation. Determining the primary antecedent of these mechanisms requires
further investigation of psychotic samples with due diligence in relation to the
characterization of pre-term birth complications and early adverse life events.

6 Genetic Interactions with Early Traumatic Experiences

Several investigations have recently examined the effects of trauma in the context
of common genetic variation, as reviewed by van Winkel et al. (2013). Study of
the additive interaction of genes and trauma demonstrate worse cognitive func-
tioning in first-episode patients with a history of physical childhood trauma
(neglect or abuse) carrying the short-version of the serotonin transporter (5-
HTTLPR) gene (Aas et al. 2012); in addition, four studies have shown increased
symptoms in psychotic individuals homozygous for the Met allele of the COMT
Val158Met genotype in response to daily stress or in those with a history of
childhood trauma (van Winkel et al. 2008a; Collip et al. 2011; Peerbooms et al.
2012; Green et al. 2014). These and other emerging studies of epigenetic processes
highlight the likely interaction of genetic variations with traumatic experiences
that may be also affected by epigenetic processes.

Epigenetic mechanisms refer to functionally relevant modifications to the
genome that do not involve changes in nucleotide sequence; in contrast to
examinations of stable DNA sequences, epigenetic processes are highly dynamic
and can be modified by environmental factors (Weaver 2007). While the epige-
netic mechanisms influencing the expression of genes in the human brain are yet to
be fully understood, a series of elegant studies in rodents have shown methylation
changes to sites of DNA in association with maternal rearing behaviours; these
studies also demonstrated the ongoing genetic heritability, and potential revers-
ibility, of epigenetically determined brain changes set in motion by early social
experiences (Weaver et al. 2004, 2007).
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A growing number of investigations of DNA methylation in humans have
demonstrated epigenetic regulation of genes relevant to the function of the HPA
axis, in the context of childhood trauma (Uher and Weaver 2014). For example, a
recent study demonstrates increased risk of developing stress-related psychiatric
disorders in association with allele-specific, childhood trauma-dependent DNA
demethylation in the FK506 binding site protein 5 (FKBP5) gene, known to
regulate glucocorticoid response functions (Klengel et al. 2013); in this study
demethylation at this site was also associated with stress-dependent gene tran-
scription alterations, leading to long-term dysregulation of the HPA system and a
global effect on the function of immune cells and brain areas associated with stress
regulation. Another earlier study showed aberrant methylation of a neuron-specific
glucocorticoid receptor (NR3C1) promoter in the human brain, in association with
childhood trauma (McGowan et al. 2009). Notably, increased methylation of this
site has also been recently associated with the number and severity of childhood
maltreatment (sexual, physical, emotional) in patients with bipolar disorder (Per-
roud et al. 2014). Evidence for aberrant DNA methylation patterns in schizo-
phrenia patients have been reported for genes implicated in molecular genetic and
neurobiological investigations of this disorder (Wockner et al. 2014). Interestingly,
there has also been recent demonstration of common genomic sites of hypome-
thylation among twins with bipolar disorder and schizophrenia (Dempster et al.
2013); although this study did not examine associations with childhood trauma,
their results imply common biological features of schizophrenia and bipolar dis-
order that likely result from common environmental effects on existing neuro-
biological vulnerabilities. These studies converge to suggest a crucial role of
epigenetic mechanisms in modulating neurocognitive development that will be
important for our understanding and treatment of psychotic disorders (Champagne
et al. 2009).

7 Summary and Conclusions

Current neurodevelopmental models of psychosis implicate early dysfunction in
biological systems regulating hypothalamic–pituitary–adrenal axis and immune
function, with long-term effects on the development of the brain networks
responsible for higher order cognitive processes and stress reactivity in later life.
There is also increasing evidence of childhood trauma in psychosis, and its impact
on the development of brain systems regulating stress, at the same time as new
epigenetic methods facilitating the study of environmental effects on gene
expression. The evidence is converging to suggest that exposure to stress at critical
periods in life may be a critical factor in the development of the brain dysfunction
that represents psychosis vulnerability, rather than stress merely precipitating the
expression of an independent ‘biological vulnerability’ to psychosis.
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Abstract Experiencing stressful life events is reciprocally associated with sub-
stance use and abuse. The nature of these relationships varies based on the age of
stress exposure and stage of substance use involvement. This chapter reviews the
developmental and biological processes involved in the relationship of stress
exposure and substance use initiation, substance use maintenance and relapse, and
response to substance abuse treatment. Special emphasis is given to describing the
various stress-related mechanisms involved in substance use and abuse, high-
lighting the differences between each of these phases of drug use and drawing
upon current research to make suggestions for treatments of substance use disorder
(SUD) patients. Stress is inherent to the experience of life and, in many situations,
unavoidable. Through ongoing research and treatment development, there is the
potential to modify the relationship of stress with ongoing substance use and
abuse.
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1 Stress, Substance Abuse, and Addiction

Phenotypic expression of genetic vulnerability to substance abuse disorders (SUD)
is likely triggered by stressful events and environments. Stress during early
development (including prenatal development) leads to epigenetic and anatomical
changes in the brain that increase vulnerability to addiction and influence how
children process subsequent stressful stimuli. These early developmental stressors
have the potential to compound future stress exposure and are reported more often
among drug using adolescents, compared to their nondrug using peers. Later,
adolescent stress exposure is also independently linked to an increased likelihood
of adolescent drug use as well as a younger age onset of substance use. Those who
initiate substance use during adolescence further increase their risk for adult
substance use disorder. The risk of substance use among adults is associated not
only with current stress and substance use exposure, but is also affected by
accumulated lifetime stress and prior substance use. Looking at the larger picture,
stress at any point in the life span has the potential to independently or collectively
modify various internal mechanisms such as the stress or reward systems, thereby
increasing the risk of substance abuse. Continuous substance use leads to adap-
tations of neurochemistry and anatomy similar to the alternations created by stress.
Each of these life span factors of stress and substance use plays a role in substance
use initiation, addiction, and relapse (which then impacts treatment outcomes).
This chapter will describe the various stress-related mechanisms involved in
substance use and abuse, highlighting the differences between each of these phases
of drug use and drawing upon current research to make suggestions for treatments
of substance use disorder (SUD) patients.

Prior to the evaluation of the relationship between stress and substance abuse,
there are certain elements and limitations of the laboratory model which require
acknowledgement. Animal models of initiation, addiction, and relapse have
allowed researchers to examine the physiological and behavioral aspects of stress
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and addiction in a controlled laboratory setting by utilizing strictly controlled
experimental design. Stress in animal models is applied in species-specific ways
by applying aversive stimuli such as footpad shocks or tail pulls (Schramm-Sapyta
et al. 2009), or creating situations of isolation or social defeat (Neisewander et al.
2012). Drug craving and seeking is modeled with conditioned place preference
methods, in which drugs are administered at one location in the cage (Schramm-
Sapyta et al. 2009) and animals which explore the drug administration area after
receiving stressors are considered to be seeking the drugs in response to stress.
Researchers have also utilized animal models to learn about aversive effects of
drugs and how those effects impact future use and abuse of substances (Schramm-
Sapyta et al. 2009).

The absence of human social stressors is both a benefit to the methodology and
a limitation to the applicability of such studies, yet reviewers believe that animal
models of isolation or competition can still provide relevant information on the
social influences on drug abuse (Neisewander et al. 2012). Most animal studies do
not allow 24-h availability for self-administration and they limit the dosage that
animal subjects can administer, which does not lend itself to generalization for
human addiction models (Koob and Kreek 2007). However, the physiology of
stress and addiction in humans does appear to be quite similar to stress and
addiction in primates (Schwandt et al. 2007) and other mammals (Briand and
Blendy 2010; Schramm-Sapyta et al. 2009). One of the unique strengths of some
preclinical studies is the relatively short life cycle of rodents, which allows for
more rapid tests of stress and substance use interaction than may be conducted in
humans. This difference facilitates a more rapid, advanced understanding of the
mechanisms involved in adolescent drug initiation, abuse, and addiction (Sch-
ramm-Sapyta et al. 2009).

Studying human stress and pathophysiology of addiction in the laboratory is also
challenging for several reasons. Addicted individuals’ mental state typically
includes increased levels of anxiety and negative emotions (Sinha 2008a). It is often
difficult to disentangle which stress symptoms are products of substance use, prior
history of accumulated stress, or even effects of study participation. Stress symptoms
are expressed during active use, in the early stages of drug abstinence, and during
acute withdrawal, making it especially difficult to isolate stress effects from phys-
iological changes accompanying addiction (Sinha 2008a). While clinical studies
consistently identify significant variations in stress levels, response to stress stimuli,
and the affects of substance abuse, exactly which individual factor or combination of
factors proceeds or causes the other has not been consistently established.

2 Substance Use Initiation

This section will examine the role of stress in substance use initiation through a
review of relevant and current preclinical and clinical studies. Animal subjects
continue to effectively demonstrate the behaviors associated with stress and either
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seeking out of rewards or avoiding aversive stimuli via substance use. Stress in
early developmental stages is thought to result in genetic alterations and is shown
to influence the age at which adolescents first engage insubstance use, which is
then predictive of addiction in adulthood (Fig. 1). Finally, dysregulation of the
hypothalamic–pituitary–adrenal (HPA) axis has been implicated in substance use
initiation.

2.1 Early Developmental Stressors

Prenatal Stress. Evidence from preclinical and clinical research shows that early
life stress predisposes individuals to be at higher risk of developing substance
abuse and other psychological disorders later in life. Research with C57BL/6 J
mice (Campbell et al. 2009) has shown that early environmental trauma results in
heavy alcohol consumption. Adult mice that were subjected to prenatal stress
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(PNS) consumed more alcohol during learning trials than mice that were not
exposed to PNS. PNS mice were hyperresponsive to stress after birth, as well as
had greater reactivity to novel stimuli and psychomotor stimulants (Campbell et al.
2009). This parallels research with children whose mothers experienced stressors
during pregnancy. These children have an increased risk for neuropsychiatric
disorders, including substance abuse disorders (Campbell et al. 2009).

Early Childhood Stress. Stress in early development can also increase drug self-
administration (Becker et al. 2011). In ethanol self-administration experiments
(Becker et al. 2011), mice exposed to early social isolation, between weaning and
adulthood, had greater ethanol intake than group-housed mice. Social isolation
during adulthood, however, did not increase ethanol intake compared to group-
housed mice. In addition to isolation, chronic variable stress caused greater ethanol
intake, but did not increase the ethanol intake any more in the mice that were
isolated early in life.

Several studies (Anda et al. 2002; Verona and Sachs-Ericsson 2005) identify
early life stress as a risk for adult substance dependence, independent of genetic
factors. The cumulative number of stressors, timing, severity, and frequency of the
early life stressors are all thought to contribute to increased risk for alcoholism and
drug dependence (Enoch 2011). Although not every child that experiences early
life stress develops a substance use disorder, the combination of genetic predis-
position and early life stress can lead to early onset of substance use (Enoch 2011).
The specific physiological mechanisms involved in this relationship are discussed
later.

Adolescent Stress. Animal models show that adolescents can be more vulner-
able to drug addiction than adults due to the reinforcing and aversive qualities of
drugs that differ in adolescence compared to adult subjects (Schramm-Sapyta et al.
2009). In humans, early substance use often leads to either future adult substance
use or a perpetuating cycle where stressful experiences, coupled with an inability
to positively respond, lead to an increased risk of substance abuse (Enoch 2011).
McCarty et al. 2012) report that youth experiencing stressful events by the sixth
grade are at a significantly greater risk of initiating substances by the end of the
eighth grade. A rare longitudinal study (Englund et al. 2008) illustrated the pro-
spective risks of early life stressors by following low-income subjects from birth to
28 years. They concluded that adult alcohol abuse may be the result of a com-
bination of stressful events in childhood and early adolescence that lead to
externalizing behaviors among males, including binge drinking. For girls, inter-
estingly, high achievers at age 12 had more likelihood of being heavy drinkers at
age 23 compared to their non-high-achieving counterparts (Englund et al. 2008).
Schmid et al. (2009) examined the potential role of the dopamine transporter gene
(DAT1) in adolescent drug use and adult addiction. They found that early onset of
smoking or drinking moderated the effect ofDAT1on adult alcoholism; those with
theDAT1VTNR 10r allele who initiated drinking and smoking before age 15 were
most likely to be heavy drinkers as adults.
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2.2 Genes and Epigenetic Processes Involved in Substance
Use Initiation

In the classic vulnerability-stress model for psychological disorders and stress-
related medical conditions, genetic predispositions were seen as vulnerabilities to
substance abuse or other psychological disorders, and added environmental
stressors were believed to interact with genetic predisposition to create influence.
However, more recent research (Nestler 2011) has supported the notion that stress
can actually alter genetic expressions and can affect neurodevelopment (Campbell
et al. 2009) by altering brain anatomy and activity (Koob and Kreek 2007). For
example, animals exposed to prenatal stress showed long-term changes in the
dopamine and glutamate within the limbic system, leading researchers to suggest
that this plays a role in the willingness to self-administer large doses of drugs
(Campbell et al. 2009). Rhesus monkeys reared with three age-matched peers
rather than a mother for the first 6 months of life experienced morphological brain
changes (e.g., enlarged cerebellar vermis, dorsomedial prefrontal cortex, and
dorsal anterior cingulate cortex) relative to mother-reared monkeys after (Spinelli
et al. 2009). These stress-induced changes in brain structure may be utilize the
high concentrations of glucocorticoid activity; previous research has reported that
early life stress can lower the level of glucocoriticoid receptor nRNA expression
and lowered glucocorticoid feedback sensitivity (Enoch 2011).

Severe childhood stressors and cumulative adversity through development
initiate epigenetic adaptations via enzymes that can affect how relaxed or con-
densed a segment of chromatin is wrapped around a section of DNA (Nestler
2011). The environment can influence the ‘‘writers and erasers’’ (Nestler 2011, p.
78) of the epigenetic code, thereby causing alterations in stress and reward path-
ways that facilitate emotional distress susceptibility and influence the reinforcing
elements of addictive substances (Sinha 2009). There is also an apparent similarity
between exposure to stress and exposure to drugs in long-term changes in gene
expression and activation of transcription factors for genes strongly associated
with both drug addiction and stress (Briand and Blendy 2010). For example, acute
stress exposure of various kinds (forced swim, footshock, restraint) leads to
increases in cAMP response element-binding (CREB) protein (Briand and Blendy
2010). CREB protein regulates the transcription of target genes such as cortico-
tropin-releasing factor (CRF), brain-derived neurotrophic factor (BDNF), and
dynorphin, which are involved in stress and addiction. Chronic stress has been
shown to inhibit CREB function (Briand and Blendy 2010); leading to decreases of
CREB in the hippocampus, striatum, and frontal cortex, which likely indicates
compensation to the chronic stress.

It is possible that a less active sympathetic nervous system may serve as a
biomarker for future substance use disorders (Brenner and Beauchaine 2011). The
altered mesolimbic dopamine function transforms the overall operation of the
reward system and is thought to alter the way the body responds to various
rewards, including those associated with substance use (Brenner and Beauchaine
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2011). More specifically, reduced pre-ejection period reactivity to incentives is
associated with increased risk of future alcohol use (Brenner and Beauchaine
2011). Theserecent developments inunderstanding the epigenetic impacts of stress
support the view that stress is vulnerability in the development of SUDs, and
suggest that stress may create biological vulnerabilities to SUDs.

2.3 Stress Response System and Substance Use Initiation

Stress, and the subsequent activation of the stress response system, is a known risk
factor for drug addiction and relapse (Enoch 2011; McCarty et al. 2012; Sapolsky
et al. 2000; Sinha 2001, 2008b, 2011; Sinha et al. 2005). It is apparent that each
person who experiences stress does not engage in drug use nor develop a substance
use disorder. However, recurrent or constant activation of the system leads to
maladaptive changes which result in increased risk for physiological and psy-
chological problems (Sapolsky et al. 2000). These increased vulnerabilities are
then further compounded by other substance use risk factors. One primary area of
research regarding the stress response system involves how stress and substance
use, present and past, initiate and affect HPA axis activity.

Although the majority of the current literature appears to evaluate how HPA
axis activity is involved in the relationship between stress and substance abuse or
addiction (described in a subsequent section), there is a growing body of research
evaluating the connection in regards to substance initiation. It has been established
that one way in which the human body naturally responds to stress is by activating
the HPA axis through the secretion of the corticotropin-releasing hormone (CRH)
(Goeders 2003). This activation of this stress response system then modifies sal-
ivary cortisol secretion levels (Sapolsky et al. 2000) and is commonly utilized to
measure stress response changes of the HPA axis (Fox et al. 2006; Junghanns et al.
2007). In addition to measuring variations in the HPA axis as a method for bio-
logical markers or predictors, knowledge of this information can also open doors
to evaluating why there are different cortisol responses to different drugs and what
other factors are involved in this biological adaptation. Aside from immediate
changes in cortisol levels due to stress, there are also adaptations in basal HPA axis
from stress exposure. For instance, preclinical studies have shown that the quality
of maternal care, to include physical and emotional interaction, experienced by
offspring during early development influences future HPA axis stress responsivity
as well as increase drug self-administration (see review in Enoch 2011). This
research indicates a cumulative response to stress where current stress not only has
the potential to create adaptations, but prior and recurring stress impacts the way in
which the body responds to and adapts to stress and therefore creates a vulnera-
bility to maladaptive behaviors, including substance abuse.

Clinical studies have further substantiated the connection between stress, HPA
axis activity, and substance use. The first step in demonstrating this relationship in
humans is evident in the variations in HPA axis activity, as measured by cortisol
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levels, upon stress exposure. Although there is still not a consensus on whether
these cortisol levels are diminished (Carpenter et al. 2009) or elevated (Tarullo and
Gunnar 2006; Preussner et al. 2004) with stress exposure, it is evident that cortisol
levels are significantly different from controls who have not experienced prior
psychosocial stressors. For example, children who experience maltreatment,
compared to those who have not, have elevated basal cortisol levels as children
and then lower cortisol levels as adults (Tarullo and Gunnar 2006). In a more
recent longitudinal study, nonstress morning cortisol levels were measured from
childhood to adulthood in individuals who had experienced confirmed familial
sexual abuse (Trickett et al. 2010). This study also demonstrated that individuals
who had experienced childhood stress had attenuated cortisol levels during ado-
lescents and lower cortisol levels during adulthood, compared to controls. Since
cortisol levels are associated with many health concerns and dysfunction in other
areas (Sapolsky et al. 2000), these stress-induced cortisol level adaptations are
important in conceptualizing the stress/substance abuse process as a continuing
cycle. While these studies specifically evaluated the putative connection between
childhood stress and disrupted basal cortisol levels, they also further verified the
fact that stress, particularly early childhood stress, not only affects HPA axis
activity at the time of stress exposure, but potentially creates aversive adaptations
which could lead to vulnerabilities in adulthood. Furthermore, since HPA axis
activity and stress response have been shown to vary as a function of family history
of alcoholism (Dai et al. 2007); it is possible that these HPA axis changes also
impact future offspring.

In addition to the HPA axis related vulnerabilities for substance use initiation, it
is suspected that HPA axis functioning may serve as a predictor for age of onset of
drug use (Evans et al. 2011). In a study evaluating over 2,000 adolescents,
researchers discovered that cortisol levels at the onset of and during social stress
exposure significantly explained the variance in age of onset of alcohol use (Evans
et al. 2011). This expanded previous research which demonstrated that early onset
cannabis users had significantly lower morning cortisol levels, compared to non-
users (Huizink et al. 2006). Additionally, the differences in morning cortisol levels
may substantiate a widely known hypothesis which suggests drug using individ-
uals are seeking to restore ‘‘normal’’ biological levels through the use of sub-
stances (discussed in Maintenance and Relapse).

More research in this area is necessary to confirm the association between HPA
axis dysfunction and substance abuse, and further explore the mechanisms
involved in this dynamic interplay of the stress response system and prolonged
substance use. While this research has certainly facilitated the identification of
personalized responses to drugs and stress experiences, the individualized way in
which mechanisms interact and affect each other has inhibited consistent research
replication. More specifically, it is difficult to demonstrate clear relationships
between one factor and the next when the very nature of individualistic and drug-
specific responses is a seemingly endless list of potential interactive relationships.
What is more clear is that the next step in furthering our understanding of stress
and substance abuse may lie in our ability to pinpoint exactly which factors,
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environmental and biological, moderate stress system adaptations, and how this
knowledge can be implemented into treatment to produce more positive outcomes
(discussed further in Treatment). Employing programs which incorporate known
predictors, as well as potential factors that interfere with or reverse maladaptive
changes in the stress response system, may be the key to effective substance abuse
prevention programs.

3 Substance Use Maintenance and Relapse

In this section, we will address the neurochemical and neuroanatomical changes
that accompany the transition from substance abuse to addiction and relapse and
how stress affects this process. We also return to the theme of early life stressors,
mentioning research that links early life stress to drug addiction and relapse. The
research examining addiction and early life stress lends support to the theory that
early life stress alters important neuroanatomy and neurochemistry that may change
the rewarding and aversive effects of drugs, thereby altering the individual’s vul-
nerability to addiction. We also discuss how adaptations of the stress response
system specifically affect, and are impacted by, the cycle of addiction andrelapse.

3.1 Neurochemical and Neuroanatomical Mechanisms

In the transition from occasional use or limited access to compulsive use of drugs,
animal models show a dysregulation of brain reward pathways (Koob and Kreek
2007). Despite the common finding that aversive events trigger dopamine release,
it also appears that acute stress or aversive stimuli can also inhibit dopamine
release (Ungless et al. 2010). When the aversive stimulus such as foot shock is
removed, the dopamine neurons fire, which supports the concept that the offset of
an aversive event can then release dopamine (Ungless et al. 2010). Glucocorticoids
also sensitize the reward pathways as a result of HPA axis activation from both
stress and drug use (Uhart and Wand 2009).

Large increases in adrenocorticotropic hormone (ACTH) and corticosterone
during cocaine administration in rat models have been reported. Additionally,
tobacco smokers experiencing stress also show elevated ACTH and HPA axis
reactivity in addition to tobacco craving (McKee et al. 2011). Researchers have
also shown that stress reduces the ability of smokers to resist smoking. Acute
withdrawal states reactivate the HPA axis (Koob and Kreek 2007). Escalation in
drug intake produces activation of the CRF in the extended amygdala (outside the
hypothalamus). This is supported by functional magnetic resonance imaging
(fMRI) studies that show stress and drug exposure both activate the mesolimbic
and mesocortical dopamine projection areas (Briand and Blendy 2010). Chronic
stress affects the dorsolateral striatum-dependent habit system, which thereby may
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accelerate the transition from initially goal-directed, involuntary drug use to more
dependent and compulsive drug-seeking and taking behaviors (Schwabe et al.
2011). Schwabe et al. (2011) argue that stress or stress hormones may promote or
induce the transition from voluntary drug use to dependence or abuse. Rats pre-
treated with corticosterone seek cocaine, and cocaine is also observed to increase
levels of ACTH and corticosterone (Goeders 1997). The role of adrenocorticos-
teroids in cocaine reinforcement is further supported in findings which showed that
adrenalectomized rats did not self-administer any cocaine (Uhart and Wand 2009),
yet this effect could be reversed by administering corticosterone.

Uhart and Wand (2009) discuss stress and vulnerability to drug addiction in
terms of allostatic load. When an individual lives with chronic stress, allostasis, or
‘‘the process of maintaining apparent reward function stability through changes in
reward and stress system neurocircuitry that are maladaptive’’ (Uhart and Wand
2009, p. 44), becomes more difficult and the allostatic load increases. An over-
capacity allostatic load results in overexposure to glucocorticoids, other stress
peptides, and proinflammatory cytokines (Uhart and Wand 2009).

Stress also causes a downregulation of neuropeptides designed to assist in stress
management. For example, neuropeptide Y (NPY) is known to have anxiolytic
properties, which regulate the stress response (Witt et al. 2011; Xu et al. 2012).
NPY plasma levels are predicted by genetic variations, and patients with stress
disorders have suppressed plasma NPY levels (Xu et al. 2012). In a study
examining stress, NPY and risk for substance abuse relapse (which is related to
managing stressful stimuli), Xu and colleagues (2012) characterized abstinent
substance-dependent (SD) patients and healthy controls on NPY diplotypes (HH:
high expression; HLLL: intermediate to low expression). All subjects were
exposed to stress and subsequently presented with alcohol/drug cues and neutral
relaxing cues via individualized guided imagery. Results from this 90-day pro-
spective study showed that HH subjects and SD subjects showed lower stress-
induced NPY. Additionally, lower NPY levels predicted higher number of days
and greater quantities of drug use posttreatment (Xu et al. 2012).

In summary, stress contributes to the transition from substance abuse to
addiction by altering neurochemical pathways that are critical in producing and
regulating the stress response. It is possible that an interaction between the
downregulation of neuropeptides such as NPY, increased production of cortico-
steroids, and dysregulation of the dopaminergic pathways contribute to the tran-
sition from impulse-control issues of substance abuse to the compulsive drug-
seeking behaviors seen in addiction.

3.2 Early Life Stressors

Animal models have shown that early life stressors alter behavioral responses to
psychomotor stimulants, which is likely due to changes in the dopamine and
glutamate systems within the limbic structures (Campbell et al. 2009). Prenatal
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stress is believed to decrease sensitivity to alcohol, which is correlated with
alcoholism vulnerability (Campbell et al. 2009). Maternal deprivation (MD) in
early childhood is believed to alter the reward system significantly enough that one
24-h episode of MD is shown to produce physiological changes similar to
depression and anxiety, increasing the time it takes for adolescent mice to meet
acquisition criteria for cocaine self-administration (Martini and Valverde 2012).

Early stress has been shown to influence addiction and relapse as well as
initiation of substance use in humans. For example, family history predicted
relapse in a study examining four types of psychological disorders and prognoses
(Milne et al. 2009). The authors suggested that knowledge of family drug use could
be informative when determining prognosis for the addicted individual. Having a
drug-addicted parent predicts poor parenting due to increased chance of drug abuse
by the adult child of the addicted parent (Locke and Newcomb 2004). However, in
other research, the childhood stress of abuse predicted drug use and other exter-
nalizing behaviors above and beyond parental history of substance abuse (Verona
and Sachs-Ericsson 2005). In a retrospective study, Anda et al. (2002) found that
individuals who reported parental alcohol abuse were more likely to acknowledge
problems with alcohol abuse themselves. In addition, the potential to have nine
other risk factors (examples include mentally ill, suicidal, or criminal behavior in
parents) was higher in the respondents who reported parental alcohol abuse during
their childhood (Anda et al. 2002). Further, early stress influences brain devel-
opment. Individuals who experience childhood maltreatment and subsequent
alcohol abuse beginning in adolescence have been shown to have lower hippo-
campal volume, which is associated with longer duration of drinking
(Enoch 2011).

3.3 Stress Response System and Substance Use Maintenance
and Relapse

Stress is related to fewer percent days of abstinence, lower rates of complete
abstinence, a significantly shorter time to relapse, and more drinks consumed upon
relapse (Breese et al. 2005; Higley et al. 2011; McKee et al. 2011). It has also been
reported as the primary reason for relapse among previously abstinent substance
users (Sinha 2008a) and is also indicated in provoking subjective drug cravings
(Sinha 2011). While overcoming stress can build upon an individual’s perceived
and actual accomplishments and overall resilience, chronic or uncontrollable stress
may lead to maladaptive behaviors as well as potentially instigate adaptations of
behavioral, cognitive, and physiological systems (Sinha 2008a; Uhart and Wand
2009). More specifically, these changes affect glucocorticoid gene expression,
serotonin function, mesolimbic dopamine transmission, and other stress-related
systems which contribute to the differences in an individual’s stress response
process (Sinha 2009). As previously mentioned, there is also evidence to suggest
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that specific genes involved in the stress response system may contribute to a
genetic predisposition for substance dependence (Clarke et al. 2012). These bio-
logical adaptations are hypothesized to be a product of the interaction of continued
stress, individualgenetic susceptibility, history andseverity of drug dependence,
baseline stress levels, the type ofstressor experienced, the duration for which the
stress is experienced, and potentially additional undiscovered elements (Sinha
2008a, b, 2011). It is this perpetuating system of adverse adaptations which is
thought to disrupt the HPA axis and emotion regulatory mechanism, inhibit the
regulation and normalizing of the stress response system, and thereby prevent the
homeostasis necessary for healthy living. Stress has the potential to affect future
coping, current and future biological responses, and ultimately affect drug main-
tenance and relapse. It is this interactive, cyclic relationship which makes
understanding all of the involved predictors and mechanisms of stress and sub-
stance use especially difficult to distinguish.

Although it has become quite obvious that stress is involved in the transition
between various phases of drug addiction, whether stress actually causes contin-
uous drug use is not as clear. Preclinical studies have demonstrated that various
forms of stress are associated with increased drug self-administration. For
instance, Higley et al. 1991) found that rhesus monkeys exposed to peer-rearing
consumed significantly more alcohol than their mother-reared peers. Social iso-
lation of the mother-reared monkeys during adulthood was later associated with
more alcohol intake. Further, Kosten and Kehoe 2010) reported that neonatal
isolation was significantly associated with continued self-administration of drugs.

Clinical studies have corroborated, albeit inconsistently, the relationship
between stress and increased or continued substance use. While Pratt and
Davidson (2009) did not find an association between stress and induced or greater
drinking in alcohol-dependent individuals, Clarke et al. (2012) found a significant
association between levels of alcohol consumption and activation of the stress
response system upon acute stress exposure. Furthermore, Thomas et al. (2011)
found that alcohol-dependent individuals exposed to a psychosocial stressor were
twice as likely to drink all of the alcohol available when compared to nonstressed
controls. This study furthered prior research which demonstrated that alcoholics,
but not social drinkers, consumed greater amounts of alcohol after engaging in
laboratory social stress exposure scenarios (Miller et al. 1974). Research exam-
ining possible neurochemical and/or functional differences in the brains of alcohol-
dependent and social drinkers, while engaged in stressful situations, would help
further our understanding of the progression from initiation to maintenance stages.
For example, it would be helpful to evaluate potential biological differences
between social drinkers and alcohol-dependent drinkers while also examining
variations that correspond with the environment in which drinking typically occurs
(i.e., social situations versus alone). Another area of potential stress system
research could investigate whether social drinkers’ NPY levels are higher and
whether their glucocorticoid levels are more stable than alcohol-dependent
subjects.
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A great deal of research has examined the interactive relationship between the
HPA axis and substance abuse and relapse. Pre -clinical studies have shown that
dysregulation of the HPA axis, as a result of stress, have a specific influence on
drug self-administration (Goeders 2003). The measurement of corticosterone, a
substance typically released as a final step in the HPA axis activation, is one
method which has been utilized in preclinical studies to demonstrate the impact of
the HPA axis and stress on substance use. For instance, when corticosterone was
injected, rats became more sensitive to cocaine doses (Goeders 2003). When
another study attempted to regulate the HPA axis with a corticosterone synthesis
inhibitor, drug acquisition decreased (Campbell and Carroll 2001). Further, rats
completely cease self-administration of cocaine following bilateral adrenalectomy
(Goeders and Guerin 1996). These preclinical studies illustrate one potential
mechanism of stress and substance use and highlight the critical impact a dys-
regulated HPA axis has on drug use behaviors.

In addition to the HPA axis being evaluated as a predictor of substance use,
researchers have also been investigating the bidirectional effects of different drugs
on HPA axis regulation. For instance, exposure to stress and the use of various
stimulants has been associated with decreased (Gerra et al. 2003), increased (Sinha
et al. 2000; King et al. 2010), and no change in (Harris et al. 2005) salivary cortisol
levels as a function of the type of stimulant ingested. More recent research has
replicated this dysfunctional HPA axis activity in relation to alcohol, cocaine, and
nicotine relapse outcomes (see review in Sinha 2011). This growing body of
research regarding HPA activity and changes helps substantiate the individual
nature in which people will respond to stress as well as the heterogeneity of
substances abused. Additional research has even indicated that relapse risk is not
necessarily exclusively associated to provoked (i.e., stressed) HPA axis activity;
rather, cortisolresponse to corticotropin (also known as adrenal sensitivity) at
morning resting levels is also significantly associated with relapse risk (Sinha et al.
2011). This suggests that the HPA axis dysfunction is occurring across situations
rather than solely disrupted during stress exposure. The variable reactions of the
HPA axis suggests that exposure to stress interacts with individual differences in
biological response and it is likely that these responses are dependent on numerous
individualized environmental and biological factors. Furthermore, since HPA axis
activity during a resting state is also predictive of relapse, it lends additional
support to the idea that there is more at play than current stress exposure.

Taken together, research shows that not only does the function of the HPA axis
affect the ability to cope with stress and substance use, but substance use also
independently affects the function of the HPA axis. In other words, research
corroborates the notion that stress can increase risk for substance use just as
substance use increases risk for stress. Unfortunately, all of the mechanisms
involved in the relationship between HPA axis activity, stress, and substance use
are not clear. However, there are two primary hypotheses which attempt to explain
the link between HPA axis dysfunction and continued substance use. First is the
widely recognized self-medication hypothesis which posits that substance abusers
are actually attempting to reduce or eliminate negative symptoms such as anxiety
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or depression or integrate some perceived control into their life (Goeders 2003;
Khantzian 1997). The second hypothesis of drug addiction proposes that an
individual continues to seek out substances in an attempt to produce an internal
state of arousal which would then counter the established HPA axis hypoactivity
(Goeders 2003; Majewska 2002).

3.4 Reward Pathways and Substance Use Maintenance and
Relapse

Although it is consistently recognized that stress increases dopamine release, the
various effects that stress has on different dopamine neurons and at different phases
is less known (Ungless et al. 2010). However, it appears from several studies that
the mesolimbic dopamine system becomes downregulated between acquisition and
addiction, and that stress-induced changes in glucocorticoid activity may be
responsible for this downregulation (Uhart and Wand 2008). Rodent models show
that movement from acquisition to maintenance in cocaine use results in brain
reward dysfunction, evidenced by elevated reward thresholds and decreased
dopamine signaling (Koob and Kreek 2007). To complicate matters further, the
downregulation of the mesolimbic reward system is often accompanied by nega-
tive affect induced by the increased allostatic load (Uhart and Wand 2008).

Specific areas of the limbic system are involved in stress and reward processes.
The central amygdala projects to the bed nucleus of the stria terminalis (BNST)
which is involved in drug reward modulation by stress (Briand and Blendy 2010).
The BNST projects to the ventral tegmental area (VTA), thereby activating the
mesolimbic and mesocortical dopamine pathways (Briand and Blendy 2010).
Several compoundsare known to enactchanges in these areas when stress and drug
areinduced (Briand and Blendy 2010). The cAMP response element-binding
protein (CREB) is involved in stress response, drug exposure, and reinstatement of
drug reward (Kreibich et al. 2009) as shown in forced swim studies. This form of
stress increases CREB in the nucleus accumbens, amygdala, dentate gyrus, and the
neocortex (Briand and Blendy 2010). Abusive drug use also increases CREB in
reward pathway areas (Briand and Blendy 2010). Brain-derived neurotrophic
factor (BDNF) is identified as a potential downstream target of CREB and
exposure to stress alters the BDNF mRNA and protein levels in the brain (Briand
and Blendy 2010), either increasing or decreasing depending upon the type of
stress and the brain region. Decreases in BDNF appear to increase anxiety
behaviors and lead to increased vulnerability to stressors (Advani et al. 2009). As
mentioned previously, the neuropeptide CRF is involved in mediating autonomic,
neuroendocrine, and behavioral responses to stress. Increased stress leads to
increased CRF, and drugs of abuse cause changes in CRF activity and how CRF
mediates drug seeking and reward (Briand and Blendy 2010).
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3.5 Gender

Research evaluating the impact of gender on stress-related aspects of substance use
is not as robust as the more commonly recognized substance use gender differ-
ences. More specifically, it is clear that there are gender sensitive differences
involved in the age of onset, motivations for drug use, progression to addiction,
and substance abuse treatment outcomes (Brady and Randall1999; Chen and
Jacobson 2012; Randall et al. 1999). It is also thought that gender-specific hor-
mones are at least partially responsible for these differences (Fox et al. 2013;
Wetherington 2007) and that sex chromosomes may also have a strong influence
(Becker et al. 2007). So while it has been established that there are diverse, gender-
specific responses to substance use, it also is plausible that these responses interact
with the gender effects in stress responsivity. For instance, Kosten et al. (2005)
have conducted numerous animal studies which have demonstrated that early life
stress, specifically neonatal isolation, shapes neurodevelopment and future stress
response. In this case, gender was significantly associated with differences in stress
sensitivity and the development of context-induced and unconditioned fear.
Female rats presented with enhanced responses and higher foot shock sensitivity,
context-induced fear, as well as a greater overall unconditioned fear. Neonatal
isolation is not only thought to modify gender- specific aversive learning but is
also hypothesized to affect neuronal reorganization in a gender-sensitive manner
(Kosten et al. 2005).

Clinical studies have further supported the impact of gender on stress and
substance use by investigating gender differences among stress-exposed drug-
using populations. It has been demonstrated that cocaine-dependent women
exposed to stress manipulations reported higher stress, nervousness, and pain
ratings. When compared to men, women also endured the physical stress activity
for less time than men (Back et al. 2005). Further, differences in the reinforcing
effects of stress, neural activations, and reactions to drug and stress cues have been
associated with gender (Potenza et al. 2012). In another study, women, but not
men, who experienced childhood abuse, demonstrated an increased risk for drug
relapse (Hyman et al. 2008). These gender sensitive variations indicate greater
subjective stress reactivity for women and suggest that stress exposure may be
perceived and experienced differently among drug-dependent men and women.

Gender also moderates drug craving and stress arousal in guided imagery
studies and clinical settings. In a study where both men and women received
progesterone, only women reported decreased negative emotion with increased
relaxed mood (Fox et al. 2013). However in the same study, cue-induced cravings,
cortisol responses, and inhibitory control did not show significant gender sensi-
tivity (Fox et al. 2013). So, while it is clear that some stress and substance use
mechanisms may operate in a gender sensitive manner, research still lacks a
comprehensive explanation for how these differences will vary. There is also a
lack of clear answers to the gender-specific stress mechanisms involved in initi-
ating drug use and drug dependence. Based on the present research, and gaps in
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what we still do not know, it is critical to acknowledge that gender does not serve
as a universal predictive factor for SUD or relapse. More research is necessary in
order to broaden our understanding of these deviations as well as facilitate the
creation and implementation of appropriate gender- specific clinical treatments.

3.6 Stress-Related Predictors of Relapse

In addition to the putative mechanisms involved in substance abuse relapse, there
are several specific, stress-related factors which have been identified as predictors
of, or at least strongly associated with, relapse. While some associations such as
psychopathology (Dodge et al. 2005; Greenfield et al. 1998), experiencing stress or
cues (Breese et al. 2005; Coffey et al. 2010; McKee et al. 2011; Sinha et al. 2000,
2011), cravings (Epstein et al. 2010; Higley et al. 2011; Rohsenow and Monti
1999; Sinha et al. 2011), and gender (Hyman et al. 2008; Potenza et al. 2012) have
been consistently supported by both clinical and preclinical research (Koob 2008;
Liu and Weiss 2002), there are also additional factors associated with relapse that
are not as widely known or consistently researched. For instance, an upregulation
of the HPA axis (at baseline, resting, and with cue exposure) of individuals
abstaining from cocaine, alcohol, opiates, and nicotine has been shown to be
associated with relapse (Sinha 2011). Blunted stress- and cue-induced cortisol
levels among alcoholics and nicotine abstainers are also predictive of relapse
(Adinoff et al. 2005; Al’absi et al. 2005; Breese et al. 2005; Junghanns et al. 2003;
Sinha et al. 2001, 2011). These studies combined suggest that screening for HPA
axis reactivity upon treatment admission may be helpful in identifying those at
higher risk for relapse. Additionally, a higher morning serum BDNF level has also
shown to be predictive of cocaine relapse (D’Sa et al. 2011). Preclinical studies
have also evaluated the involvement of BDNF and found an association to drug
reinstatement (Schoenbaum et al. 2007). There has even been an association
established through neuroimaging studies exploring gray matter and neurological
activity. These studies have shown that lower BDNF volumes in multiple areas of
the brain, to include the amygdala, are significantly associated with relapse, in
some cases predicting time to relapse (Wrase et al. 2008; Sinha 2011). Increased
activity in certain areas of the cingulate cortex has also been associated with
relapse risk (Li and Sinha 2008). While it is not practical to suggest the integration
of neuroimaging, or even HPA axis screening, intotreatment admission in order to
determine relapse risk, these studies do help highlight neural andbiological
adaptations that occur in relation to stress and prolonged substance use. As Sinha
(2011) pointed out, a continuation and furthering of these types of studies may be
the key to establishing a relapse risk biological profile capable of being utilized in
clinical settings.

Despite the current research which establishes relationships between stress,
substance abuse, and additional predictors, the mechanisms that underlie these
relationships are still relatively vague and inconclusive. Furthermore, the literature

252 T. M. Duffing et al.



has yet to adequately establish practical recommendations for how to incorporate
these known relationships into substance abuse treatment and relapse prevention
interventions. One caveat to this disparity is the relatively recent move to effec-
tively treat patients with co-occurring mental health and substance abuse disorders.
The following section will discuss research and the current state of knowledge
regarding stress-related risks, predictors, and diagnosis associated with substance
abuse treatment.

4 Treatment

Since stress alters brain chemistry and function during addiction and relapse, stress
reduction techniques may be critical in substance abuse treatment: by reversing the
effects of stress and thereby raising the likelihood of long-term abstinence. For
example, preclinical research utilizes environmental enrichment (Solinas et al.
2010) to show that certain environmental conditions, such as larger housing and
the inclusion of toys or other stimulating objects in the cages can have beneficial
effects (Rawas et al. 2009). Environmental enrichment is shown to function in
opposition to stress, and can bring about long-term changes that prevent drug
addiction by changing the structure and function of key areas involved in stress
and stress regulation. For example, mice raised in enriched environments have
been shown to be less sensitive to the reinforcing aspects of cocaine (Solinas et al.
2009) and heroin (Rawas et al. 2009) than mice raised in standard environments.
Solinas et al. (2010) proposed that environmental enrichment can also play a role
in transforming the brain back to preaddicted states of hippocampal fitness and to
repair disrupted learning and memory functions that can then decrease the like-
lihood of relapse. It may be hypothesized, for example, that environmental
enrichment may help to raise levels of NPY in the amygdala and related cortical
areas, which would then assist the addicted individual in coping with stress by
minimizing the stress response in the brain and lowering craving. One limitation in
this line of research is that studies seem to focus on the effects of environmental
enrichment during early developmental periods on later potential for addiction. For
instance, environmental enrichment can diminish cocaine self-administration
among animals exposed to cocaine (Solinas et al. 2008). While early positive
environments and experiences can serve as buffers for adolescents and adults who
abuse drugs (Solinas et al. 2009), enriching the environment of a drug-addicted
individual could be important in avoiding relapse (Solinas et al. 2008). Therefore,
this type of research may expand our understanding of the value of enriched
environments as well as increase the efficacy of treatment and relapse prevention
among humans.

Clinical studies robustly demonstrate that stress negatively impacts substance
abuse treatment outcomes (Higley et al. 2011; Rooke et al. 2011; Sinha 2001,
2011; Sinha et al. 2011; Sinha and Jastreboff 2013; Tate et al. 2006, 2008).
Emotional and physiological stressors, usually produced as a result of psychosocial
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experiences or hardships, are generally the most recognized forms of stress. They
are typically associated as interfering with an abusers ability to obtain and sustain
drug abstinence (Fox et al. 2013b; Sinha 2008a, b). In addition to these types of
stressors, research also recognizes the impact of environmental stimuli or cues,
historically associated with the drug of choice, as also having the potential to
create an internal state of stress (Fox et al. 2013b; Goeders 2003). Given the
potential for stress to arise from drug or environment cues as well as psychosocial
influences and impact relapse (Higley et al. 2011; McKee et al. 2011), it seems
obvious that successful treatment modalities and interventions would need to not
only address the actual substance use and anticipated cycle, but also incorporate
services which help moderate the other factors creating stress. For instance, if the
stress is a product of additional psychopathology or other psychosocial influences,
successful treatment must address the dual diagnosis and/or other psychosocial
needs in order to advance both objectives—increasing remission success and
decreasing additional symptomology. Overall, studies with outcome measures for
both stress (regardless of how this is defined) and substance use are relatively
scarce and those which do demonstrate at least moderate promise lack consistent
replication. However, there is a growing body of research evaluating the impact of
and appropriate treatment for co-occurring disorders—an indirect representation of
the relationship between stress and substance abuse. Nevertheless, it is generally
known that stress has negative implications for relapse. How these specific risks
can be mitigated or incorporated into treatment program development is strikingly
indistinguishable.

4.1 Predictors of Treatment Outcome

There are numerous stress-related elements which have been significantly asso-
ciated with substance abuse treatment outcomes. The most obvious elements to
consider include those discussed in the relapse predictors section (i.e., chronic
stress exposure and psychopathology). However, research has also specifically
evaluated factors associated with successful treatment outcomes. While some of
these factors cannot be controlled, knowledge of the predictors can help clinicians
properly screen substance abuse patients and help in the development of indi-
vidualized treatment programs which incorporate research-supported stress man-
agement interventions. For instance, Higley et al. (2011) demonstrated that the
level of stress-induced cravings recorded during treatment were associated with
time to relapse, increased use during relapse, and less time of overall abstinence.
The increased cravings levels of those with poor outcomes suggest that some
individuals may be more prone to enhanced physiological responses and maintain
a unique biological vulnerability to relapse. This association indicates that treat-
ment programs which distinguish the clients with the highest craving responses
may be more informed and equipped to incorporate high-risk interventions or
relapse prevention measures. Looking at this relationship in another way and
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acknowledging that stress promotes drug cravings (Breese et al. 2005; Sinha et al.
2000), prioritizing stress management skills during treatment could also reduce
experienced cravings and therefore may moderate relapse rates, although more
research is needed to investigate these potential outcomes.

Another possible biological marker to treatment outcomes is the reactivity of
the HPA axis. Higher salivary cortisol levels have been predictive of residential
treatment program dropout (Daughters et al. 2009). While attempting to manage
cortisol levels, by decreasing perceived stress and therefore stress responsivity, is
one potential treatment objective, measuring cortisol levels as part of a screening
process could also be useful in determining the dropout risk. In addition to
increased craving response and cortisol levels, avoidant coping style, a lack of
overall coping, self-efficacy, less education, and more frequent exposure to other
substance users have also been indicated in unsuccessful treatment outcomes
(Demirbas et al. 2012; Laurent et al. 1997; Rooke et al. 2011). Other studies
suggest that self-reported social exclusion, personal control, and social regulation
all affect a person’sperceived level of stress, which inreturn further degrades that
person’s physical and mental health and potentiallyincreases the risk for relapse
(Cole et al. 2011). Treatments that target this perceived stress through the teaching
of coping skills and psychoeducation, regarding the impact of powerlessness, may
be more equipped to mitigate the detrimental cycle of stress and relapse. Taking
these studies together, it seems that treatment programs which have knowledge of
and incorporate established treatment outcome vulnerabilities may be more
equipped to develop relevant treatment programs to facilitate successful treatment
completion.

4.2 Treatment Modalities

Cognitive-Behavioral Therapy (CBT) and CBT-oriented interventions have
become the standard for treating SUDs (see reviews in Dutra et al. 2008; Hayes
et al. 2011; McHugh et al. 2010). A meta-analysis of 34 randomized controlled
trials on the effectiveness of CBT for drug abuse and dependence found an overall
moderate effect size (d = 0.45) with CBT and a contingency management inter-
vention combination showing the highest effect sizes (d = 1.02) (Dutra et al. 2008;
McHugh et al. 2010). While each intervention does not work equally well across
diagnostic combinations, CBT has shown a relatively strong ability to reduce
overall stress and substance use (Brewer et al. 2009; Drake et al. 2004; Sannibale
et al. 2013). Although there is not much discussion or research on thedirecttreat-
ment of stress, the apparent consensus is that substance abuse treatment cannot
produce long-term positive outcomes without addressing compounding stress-
related factors such as psychopathology and ongoing psychosocial needs (e.g.,
homelessness or unhealthy interpersonal relationships). The teaching and imple-
mentation of CBT interventions such as Relapse Prevention (RP), Motivational
Interviewing (MI), case management, and skills training of coping, communication,
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and mindfulness are just a few examples of the potential to concurrently address
stress and substance use (Dutra et al. 2008; McHugh et al. 2010). With the use of
these interventions, stress may be reduced indirectly as a mechanism of (a) reduced
cue reactivity, cravings and substance use, as well as (b) increased distress tolerance
or emotion regulation through appropriate skill implementation. Furthermore, the
implementation of learned skills such as healthy coping have the additional
potential to directly reduce stress in that skills can help moderate stress as well as
facilitate the avoidance of situations most likely to lead to stress. Research is clear
that CBT and CBT-oriented interventions are effective at treating SUD; whether
they are treating stress directly or indirectly is less obvious.

4.3 Co-occurring/Integrated Treatment

Co-occurring treatment, which concurrently addresses both substance use disor-
ders and mental health disorders, is becoming the gold standard for treating dual
diagnosis. While initial studies were inconsistent on the benefit of combining
mental health and substance abuse treatment (see review in Drake et al. 1998) and
some researchers still advise caution (Conrod and Stewart 2005; Torchalla et al.
2012), the majority of the research solidifies the idea that providing comprehen-
sive, concurrent, and multidisciplinary services to those struggling with dual
diagnosis is the most effective treatment option available to date (Cleminshaw
et al. 2005; Drake et al. 1998, 2008; Durell et al. 1993). The efficacy of co-
occurring treatment has become particularly salient with co-occurring posttrau-
matic stress disorder and substance dependence (McGovern et al. 2011; Mills et al.
2013). Since the mainstream acknowledgement of co-occurring treatment,
researchers have begun to distinguish comprehensive integrated treatment (IT) as
the ideal form of co-occurring treatment (Drake et al. 1998, 2004). Comprehensive
IT typically refers to a coordinated, concurrent effort of mental health and sub-
stance abuse providers to provide motivational interventions, assertive outreach,
intensive case management, individual counseling, and family interventions for
ideally 18 months or longer (Drake et al. 1998). It is thought that it is this all-
inclusive, long-term approach which facilitates treatment engagement, social
support, and a true dual-diagnosis focus which not only leads to a reduction in
substance use and mental health symptomology, but also extends substance use
remission (Drake et al. 1998). Another potential strength of co-occurring treatment
is the apparent compatibility to interweave diagnosis-specific CBT interventions
into both the substance abuse and mental health treatment objectives.

It is clear that a perfect treatment of stress and substance abuse has not been
established. While CBT, CBT-oriented interventions, and comprehensive inte-
grated treatment certainly show promise and are moving in a more positive
direction, there is still more to be discovered. For instance, Hein et al. (2012)
highlighted the importance of client-modulated treatment dosage in ensuring that
treatment services are given a true opportunity to produce desired outcomes. It is
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also clear that screening for treatment risk and incorporating relevant preventative
measures can help reduce treatment dropout risk (Choi et al. 2013). This may be
the most important component to facilitating successful treatment outcomes, since
those which drop out of treatment do not receive all of the elements thought to
facilitate symptom reduction and drug use remission. Even among methods which
have shown initial positive indications, consistent replication is lacking. Research
investigating the relationship and involved mechanisms of stress and substance
abuse have certainly helped progress the overall understanding of these two
interactive factors; the critical next step is determining how to incorporate this
information into practical, evidenced-based treatment programs.

5 Conclusions

Chronic and acute stress exposure leads to maladaptive epigenetic and physio-
logical changes that each has the potential, individually and cooperatively, to
increase the vulnerability for substance use initiation, addiction, and relapse. While
chronic stress has the potential to collectively increase substance abuse risks, acute
stress exposure during each phase of life can also independently increase these
vulnerabilities. Current research suggests that adaptations to numerous stress-
related neurological mechanisms, such as the stress response and reward pathway
systems, play an integral role in the transition from occasional to compulsive drug
behaviors. These changes then produce unique responses, which then create further
individualized risks for future stress and substance abuse. While there is ample
evidence regarding a relationship between stress and substance abuse, it is not clear
exactly what scenarios or combinations of stress and other factors (to include
gender) will produce precisely which outcomes. The causal relationships between
stress or substance use have not been established and it is possible that the direction
of these effects may be reciprocal. It is likely that there are numerous other factors
and systems involved in the stress by substance use/abuse interaction that are yet to
be identified or adequately substantiated. The mechanisms that underlie these
known vulnerabilities are even less clear. Despite the lack of understanding sur-
rounding how all of these systems interact and affect each other, co-occurring and
integrated treatments have shown initial success in acknowledging and incorpo-
rating some of these known vulnerabilities with specific CBT interventions. Even
so, there are still vast risks factors associated with relapse and treatment outcomes
which have not been consistently integrated into empirically based treatments.

The association between stress and substance abuse and addiction has been the
focus of a great amount of research in the last two decades; however, there is still a
need for further research in order to expand our overall knowledge and develop
relevant clinical applications. There are several themes described in thischapter
that could benefit from future research. First,there is great potential to expand
our understanding of the identified life spanvariations in the relationship between
stress and substance abuse through prospective studies that could look at the
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interaction of stress and substance abuse over time and across developmental
transitions (i.e., early development, adolescence, adulthood). An examination of
the impact of stress and substance abuse in specific life stages could help clarify
the divergent mechanisms involved during each phase of life. These future studies
could also help clarify the impact of genetics and the difference between stress
exposure during one developmental phase and the compounding effect of early
development stress with adolescent or adult stress. Another area that warrants
greater attention is how to successfully integrate known risk factors for relapse and
treatment outcome into practical, empirically based treatment programs. While
knowledge of these vulnerabilities is certainly insightful in our broad under-
standing of the relationship between stress and substance abuse, the lack of
practical and research-based treatment applications has prevented some of the risk
factors from being clinically exploited. Finally, although there is a growing body
of research demonstrating the success of comprehensive integrated treatment,
clinical treatment-centered research has not adequately incorporated the factors
shown in preclinical studies to enhance treatment outcomes. For example, one
potential direction for incorporating enriched environments into research is to
integrate measures which assess for housing satisfaction, community or family
involvement, and regular participation in stimulating activities. An awareness of
how an enriched environment impacts treatment outcomes could alter the way we
envision and develop future residential and community treatment programs.
Finally, stress is inherent to life and, in many situations, unavoidable. Through
ongoing research and treatment development, there is the potential to modify the
relationship of stress with ongoing substance use and abuse.
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Role of Stress, Depression, and Aging
in Cognitive Decline and Alzheimer’s
Disease

Mak Adam Daulatzai

Abstract Late-onset Alzheimer’s disease (AD) is a chronic neurodegenerative
disorder and the most common cause of progressive cognitive dysfunction and
dementia. Despite considerable progress in elucidating the molecular pathology of
this disease, we are not yet close to unraveling its etiopathogenesis. A battery of
neurotoxic modifiers may underpin neurocognitive pathology via deleterious het-
erogeneous pathologic impact in brain regions, including the hippocampus. Three
important neurotoxic factors being addressed here include aging, stress, and
depression. Unraveling “upstream pathologies” due to these disparate neurotoxic
entities, vis-à-vis cognitive impairment involving hippocampal dysfunction, is of
paramount importance. Persistent systemic inflammation triggers and sustains
neuroinflammation. The latter targets several brain regions including the hippo-
campus causing upregulation of amyloid beta and neurofibrillary tangles, synaptic
and neuronal degeneration, gray matter volume atrophy, and progressive cognitive
decline. However, what is the fundamental source of this peripheral inflammation in
aging, stress, and depression? This chapter highlights and delineates the inflam-
matory involvement—i.e., from its inception from gut to systemic inflammation to
neuroinflammation. It highlights an upregulated cascade in which gut-microbiota-
related dysbiosis generates lipopolysaccharides (LPS), which enhances inflamma-
tion and gut’s leakiness, and through a Web of interactions, it induces stress and
depression. This may increase neuronal dysfunction and apoptosis, promote
learning and memory impairment, and enhance vulnerability to cognitive decline.
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1 Introduction

The number of individuals 65 year and older is projected to exceed 71.5 million in
the year 2030 (Ferri et al. 2005). This would lead to a dramatic increase in the
number of individuals suffering from aging-related diseases including Alzheimer’s
disease (AD). AD is a chronic neurodegenerative disorder marked by a progressive
loss of memory and cognitive function. About 6 % of the elderly will develop AD,
while about 94 % of aging seniors will have to cope and live with some memory
and cognitive dysfunction. The dementia cases will nearly double every 20 years,
costing about 65.7 million in 2030 and 115.4 million in 2050 (Ferri et al. 2005). It is
essential, therefore, that we understand the etiopathogenesis mechanism(s) under-
lying aging-related decline in memory/cognition. This would aid in developing
appropriate therapeutic strategies to retard and ameliorate cognitive impairment.

Mental health disorders, including depression, are on an increase globally.
Lifestyle and environmental changes may be responsible in driving the increased
prevalence (WHO 2009). Numerous factors are implicated to underpin the epidemic
increase in mental health disorders (Reynolds et al. 1999; Wium-Andersen et al.
2012). These may include, but are not limited to, socioeconomic changes, altera-
tions in dietary habits, chronic alcohol consumption in excess, sedentary lifestyle,
paucity of adequate sunlight exposure, decrease in social support, and loneliness
(Iannotti and Wang 2013; Nousen et al. 2013; Peterson et al. 2013). These factors
may be responsible for upregulating stress and the development of depression.

The gastrointestinal (GI) commensal microbiota and the human host have an
intimate, bidirectional interaction that is symbiotic in health. Such mutually bene-
ficial interactions between the gut microbiota and the host influence GI physiology
and systemic immunity, defense against pathogens, intestinal sensorimotor func-
tion, GI secretion, mucosal barrier function, detoxification of xenobiotics, energy
harvest, general anabolism, and behavior. Thus, the GI microbiota influences the
host’s homeostasis through modulation of gene expression and immunological,
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physiological, and psychological functions. Conversely, the host modulates the
composition and activity of its gut microbiome. In an array of physiological per-
turbations of the host, there is an alteration in the quality and quantity of the gut
microbiota, generally referred to as dysbiosis. The dysbiotic gut microbiome thus
has the propensity to trigger and exacerbate a number of disease states.

In recent years, we have become aware of several heterogeneous conditions, as
consequences of intestinal dysbiotic microbiota; some of these include Guillain-
Barré disease, seronegative spondyloarthropathies, non-celiac gluten sensitivity,
irritable bowel syndrome, inflammatory diseases of gut, diabetes mellitus (DM2),
and obesity. This pathogenic interconnection has led to substantial research on gut
and its resident microbiota (Amin et al. 2007, 2008, 2009; Cani et al. 2012; Everard
and Cani 2013; Forsythe and Kunze 2013; Vindigni et al. 2013). Further, the
neuropsychological consequences owing to alterations in gut microbiota have been
amply emphasized. Indeed, accumulating evidence supports that the gut microbiota
impacts brain chemistry, activates neural pathways, and consequently has an
influence on behavior/mental disorders (Konturek et al. 2011; Dinan and Cryan
2013; Foster and McVey Neufeld 2013; Park et al. 2013).

This chapter aims to delineate the upstream neurotoxic risk factors, interrelate
these to aging, stress, and depression, and comment as to how these may underpin
synaptic neuronal injury and dysfunction, leading to neurocognitive impairment.
A range of neurotoxic insults impacts different brain regions including the hippo-
campus (Rossler et al. 2002; West et al. 1994, 2000). There is a vast literature on
various aspects of the hippocampal pathology in a host of conditions, including
aging, stress, depression, and AD. Selected facets of hippocampal pathophysiology,
caused by selected neurotoxic factors, will be highlighted.

2 Neurotoxic Modifiers: Aging, Stress, and Depression

2.1 Aging: The Old Bag of Tricks

Age-related changes occur in several body systems and their contributions to
various diseases are well documented. Several studies have explored the neurotoxic
effect of age in inducing the neuropathological and clinical manifestation of cog-
nitive dysfunction in the elderly (Hof 1997; Sarkar and Fisher 2006; Small 2001).
In particular, inflammation and oxidative damage are characteristic features of
neuropathology in age-associated diseases (Burke and Barnes 2006; Wilson et al.
2006; Daulatzai 2010a, 2012a, d, 2013a, b). With increasing age, the hippocampus
undergoes early changes and long-term potentiation (LTP) function declines (Abe
et al. 1999; Jacobson et al. 2013). Various studies have highlighted structural and
functional alterations in the hippocampal network in aging. These alterations have
been correlated with memory dysfunction (Craik and Simon 1980), including
spatial memory and navigation (Newman and Kaszniak 2000), contextual source
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memory (Henkel et al. 1998), and recollection (Jennings and Jacoby 1997; Robitsek
et al. 2008). Recent electrophysiological data have shed light on some of the
possible neural mechanisms responsible for memory decline in the aged rodent
hippocampus (Wilson et al. 2006). The hippocampus undergoes structural,
inflammatory, atrophic, and electrophysiological changes during aging (Cerbai
et al. 2012; Liu et al. 2012). The number of CA1 neurons decreases, which also
shows a high level of cellular loss in aged rats (Cerbai et al. 2012). This would
necessarily lead to a functional imbalance in the dentate gyrus (DG) and CA1–CA3
of the hippocampus (Wilson et al. 2006).

Functional and structural neuroimaging evidence has repeatedly demonstrated
that the hippocampal volume, hippocampal activation, and neurocognitive perfor-
mance are correlated; indeed, they may predict cognitive performance in old age
and disease states (Jack et al. 2000a, b; Mormino et al. 2009; Rabinovici and Jagust
2009). Such structure–function correlative studies in the brain were mostly cross-
sectional comparisons. However, a recent interesting study on hippocampus eval-
uated intra-individual fMRI signal and change in memory performance over two
decades. The results found a positive relationship between activation change in the
hippocampus and change in memory performance, thus validating the correlation
between reduced hippocampal activation and declining memory performance
(Persson et al. 2012).

Ultrahigh-resolution microstructural diffusion tensor imaging (msDTI) work
showed changes in diffusion properties within hippocampal subfield gray matter in
aging (Yassa et al. 2011). A correlation has been emphasized between the DG and
CA3 functional rigidity and the same regions’ fractional anisotropy (i.e., directional
diffusion). Directional diffusion in gray matter is taken as an index of dendritic
integrity (Jespersen et al. 2007; Yassa et al. 2010). Therefore, structural dendritic
changes in the DG and CA3 regions are selectively vulnerable to the aging process
and may therefore promote cognitive impairments (Yassa et al. 2011). Worse
performance in total recall in elderly without dementia was strongly associated with
a decrease in hippocampal volume (Reitz et al. 2009). This was shown to be due to
a functional imbalance in the hippocampal DG and CA3 network.

Subjects without hypertension, diabetes mellitus, or hyperlipidemia underwent
T2-weighted MRI brain screening. The prevalence of hippocampal atrophy and
white matter lesions increased significantly with age, as did cerebral microbleeds
(Chowdhury et al. 2011). Cerebral amyloid angiopathy was considered to underlie
age-related brain changes (Chowdhury et al. 2011). Several studies have confirmed
that the hippocampus shrinks with age (West 1993; Allen et al. 2005; Greenberg
et al. 2008; Jernigan et al. 2001; Mu et al. 1999; Raz et al. 2004; Scahill et al. 2003;
Schuff et al. 1999; Walhovd et al. 2005, 2011). Further, evaluations of the hip-
pocampus in humans have shown that the DG is indeed quite vulnerable to aging
(Mueller et al. 2008; Varela-Nallar et al. 2010). Similarly, non-human primates
(Gazzaley et al. 1996; Small et al. 2002, 2004) and rodents (Small et al. 2004;
Moreno et al. 2007) have also shown the DG vulnerability to aging (Chawla and
Barnes 2007; Varela-Nallar et al. 2010). A significant relationship exists between
the development of AD and premorbid hippocampal volume. Compared with 46 %

268 M.A. Daulatzai



of those whose hippocampal volumes were in the lowest range, only 15 % of
subjects with normal hippocampal volume developed AD (Jack et al. 1999).
Individuals with mild or moderate AD show significantly greater gray matter loss
(mean global rates) in the medial temporal lobe (Fox et al. 2001). MRI studies have
provided evidence that a decrease in the volume of the hippocampus is linked to
memory decline which may range from encoding new memories to retrieval of
preexisting memories (Jespersen et al. 2007; Kramer et al. 2007; Reitz et al. 2009;
Yassa et al. 2011).

Recent studies in aged rodents provide evidence for molecular and synaptic
changes in the entorhinal cortex (ERC), where the perforant path (PP) commences
(Stranahan et al. 2010) and in the hippocampus (Geinisman et al. 1992). One of the
primary targets of PP input is the DG. Indeed, there is substantial documentation
that DG also shows vulnerability to the aging process (West 1993; Gazzaley et al.
1996; Small et al. 2002; Moreno et al. 2007; Penner et al. 2010). Electrophysio-
logically recorded presynaptic potential at the PP-DG synapse (Barnes et al. 2000;
Dieguez and Barea-Rodriguez 2004), as well as excitatory postsynaptic potentials
(EPSPs) in the DG, shows reductions in aged rats (Barnes 1979; Barnes and
McNaughton 1980; Barnes et al. 2000). This clearly suggests that physiological
changes in the PP, DG, and CA3 may cause a reduction in dendritic integrity
(Jespersen et al. 2007; Yassa et al. 2010), thus contributing to the hippocampal
functional deficits. The PP degradation and a loss of functional connectivity
between the ERC and DG may promote the age-related memory decline (Yassa
et al. 2011). Finally, age-related alterations in both presynaptic and postsynaptic
potentiation mechanisms in the aged rats reflect substantial changes in neuronal
signal processing capabilities and local circuit function in the hippocampus; these
may be pivotal in exacerbating poor spatial memory acquisition, retention, and
eventual global cognitive dysfunction (Deupree et al. 1993).

2.2 Stress

Stress affects all humans. Selye (1936) defines stress as an acute threat to the
homeostasis. It may be physical—therefore real or perceived—therefore psycho-
logical. However, these are triggered by events within or without of organism.
Importantly, stress may evoke adaptive responses in order to maintain the internal
milieu and thus ensure homeostasis and survival (Alfonso et al. 2006; Arnsten
2009; Heine et al. 2005; Kasselman et al. 2007).

Psychological stress is known to play an important role in functional GI dis-
orders (FGID), e.g., irritable bowel syndrome (IBS) and non-celiac gluten sensi-
tivity, by precipitating exacerbation of symptoms. Stress affects visceral sensory
function in humans. Studies in experimental animals suggest that stress-induced
visceral hypersensitivity is centrally mediated by endogenous corticotropin-
releasing factor (CRF) and involvement of structures of the emotion pathway, e.g.,
the amygdale (Mönnikes et al. 2001). CRF-signaling pathways contribute in the
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endocrine, behavioral, and visceral responses to stress. Chronic psychological
stress, however, results in reduced host defense, initiates intestinal inflammation,
and alterations in gut physiology (Caso et al. 2008; Konturek et al. 2011). Further,
endogenous CRF release, low-grade inflammation, ultrastructural epithelial
abnormalities, and altered microbiome–host interactions causing dysbiosis and
greater microbial translocation may play a significant role in mediating gut epi-
thelial abnormalities as well as small and large intestine dysfunctions (Gareau et al.
2008; Zhang et al. 2009a, b; Maes 2008; Maes et al. 2011).

Acute or chronic stress can have deleterious effects on the brain and cognition in
humans and animals (Guenzel et al. 2013; Hinwood et al. 2012; Holmes and
Wellman, 2009; Margarinos et al.1996; Mika et al., 2012). Chronic stress is a risk
factor for the development of cognitive dysfunction in animals and humans (Vander
Weele et al. 2013; Yun et al. 2010; Bondi et al. 2008). Stress is quite common in
AD patients, and the impact of stress on hippocampus-dependent declarative
memory processes is well characterized (de Quervain et al. 2003; Grigoryan et al.
2013). In a 12-year follow-up, 38 % elderly developed mild cognitive impairment
(MCI), with the risk of MCI increased by about 2 % for each one unit increase on
the stress scale. Higher level of chronic psychological distress has been shown to
increase the incidence of MCI (Wilson et al. 2007).

2.2.1 Stress, Glucocorticoid, and Hippocampus

Stress causes the release of glucocorticoid hormones, which are implicated in
hippocampal neurogenesis. Studies have confirmed the effect of glucocorticoids on
retrieval of hippocampus-dependent spatial memory (Roozendaal et al. 2003;
Anacker et al. 2013). Glucocorticoids (GCs) in stress could enhance neuronal injury
and promote learning and memory impairments. Indeed, high concentrations of
cortisol (100 μM) decreased proliferation and neuronal differentiation into MAP2-
positive neurons (Anacker and Pariante et al. 2012). There is a compelling evidence
that neurons extending from the CA1 region of the hippocampus and from the
subiculum project to the prefrontal cortex (PFC); this is referred to as the hippo-
campal–prefrontal (H-PFC) pathway. This pathway is critically involved in aspects
of cognition related to executive function and to emotional regulation. Stress dis-
order displays structural and functional coupling anomalies within the H-PFC cir-
cuit. Considering that such a disorder involves varying degrees of cognitive
impairment and emotional dysregulation, dysfunctional H-PFC pathway might play
an important role in pathophysiology of cognition (Godsil et al. 2013). The GCs
response to stressful stimuli is regulated by the hypothalamic–pituitary–adrenal
(HPA) axis, which triggers the adrenal cortex to release GCs (cortisol in primates
and corticosterone in mice and rats). Epidemiological evidence further supports a
role for stress as a risk factor for AD because elderly individuals prone to psy-
chological distress are more likely to develop the disorder than age-matched, non-
stressed individuals (Wilson et al. 2005). Rodent and primates studies suggest that
chronic exposure to elevated GCs has neurotoxic effects and lowers the threshold
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for hippocampal neuronal degeneration and loss (Uno et al. 1989; Sapolsky et al.
1990). There is ample evidence implicating HPA axis dysfunction in AD, reflected
by markedly elevated basal level of circulating cortisol (Swanwick et al. 1998) and
a failure of cortisol suppression after dexamethasone challenge (Nasman et al.
1995). Also, plasma levels of cortisol—the stress hormone—are correlated with the
rate of dementia progression in patients with AD (Csernansky et al. 2006).

An altered response of the HPA system occurs in patients with AD, and these
alterations may increase GCs levels (Hatzinger et al. 1995). At present, the mech-
anism by which increased HPA axis activity could accelerate the AD process is
unknown (Jeong et al. 2006); however, impairment in declarative memory in stress
may be related to a disturbance of medial temporal lobe function—possibly due to
reduced blood flow (de Quervain et al. 2003). Another possible contributing factor to
the development of cognitive deficits in stress is the impact of stress on synaptic
plasticity. Interestingly, the molecular correlate of stress in the transgenic mice
(3 × Tg-AD mice) was found to be an altered ratio of Aβ42/40 in both cortex and the
hippocampus (Grigoryan et al. 2013). During chronic psychosocial stress (6-week
stress period), these mice displayed increased levels of Aβ oligomers, intraneuronal
Aβ, and decreased brain-derived neurotrophic factor (BDNF) levels, relative
to controls (Rothman et al. 2012). Chronic stress also increases the expression of
β1-integrin (CD29), a protein implicated in microglial ramification. This involve-
ment may represent an important pathobiological mechanism through which
microglia mediate the behavioral effects of chronic psychological stress (Hinwood
et al. 2013).

Glucocorticoids affect the activity of transactive response DNA-binding protein-
43 (TDP-43). TDP-43 is an RNA and DNA-binding protein involved in tran-
scriptional repression, RNA splicing, and RNA metabolism during the stress
response (Wilson et al. 2011). The accumulation of TDP-43 and its 25 kDa
C-terminal fragment (TDP-25) is a hallmark of several neurodegenerative disorders.
In a recent investigation, transgenic mice were utilized that overexpress TDP-25
(Caccamo et al. 2013). GCs increased the levels of soluble TDP-25 and exacerbated
cognitive deficits. The neurotoxic action of TDP-25 potentiated by GCs increased
the neurotoxic pathology via oxidative damage. Further, altering the brain’s redox
state, i.e., restoring ratio of reduced to oxidized glutathione, blocked the gluco-
corticoid-TDP-25-related deleterious effects (Caccamo et al. 2013).

TDP-43 has been linked to the pathogenesis of frontotemporal lobar degenera-
tion (FTLD), amyotrophic lateral sclerosis (ALS), and AD (Kadocura et al. 2009;
Caccamo et al. 2013). TDP-43 pathology also occurs in aging (Wilson et al. 2013),
as well as in AD patients with hippocampal sclerosis (Wilson et al. 2011). Hip-
pocampal sclerosis is characterized by selective neuronal loss in CA1 region of the
hippocampus. TDP-43-immunoreactive neuronal inclusions have been documented
in 20–30 % of AD brains (Kadocura et al. 2009). In contrast, TDP-43 pathology is
infrequent (3 % or less) in neurologically normal elderly.

These findings suggest that glucocorticoid elevations in response to chronic
stress may mediate hippocampal and neocortical damage, which may play an
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important role in AD pathogenesis (Gould et al. 1992; Mayer et al. 2006; David
et al. 2009; Anacker et al. 2011a, b, 2013).

2.3 Stress-Related Depression

The interactions between chronic stress and the molecular, cellular, and behavioral
alterations may promote the development of depression (Kendler et al. 1999; Caspi
et al. 2003). Indeed, stress can lead to hippocampal atrophy similar to that noted in
depression (Sapolsky 2000). Further, chronic stress recapitulates many behavioral
characteristics of depression that respond to antidepressants (Willner 2005). Hence,
the pathophysiology of depression is intimately intertwined with stress (Zhang et al.
2012), while the latter also has an effect on the mechanisms of neuroplasticity
(Shors et al. 1989; McEwen 1999, 2002).

Stress affects neuronal signaling involving several heterogeneous pathways that
impact synaptic plasticity (Belliveau et al. 1990). Chronic stress has been shown to
increase the MAPK phosphorylation (Pardon et al. 2005; Lee et al. 2006). Acute
stress leads to the phosphorylation of both MAPK and CaMKII (Ahmed et al. 2006)
as does the acute glucocorticoid treatment (Revest et al. 2005). These processes
may have a critical impact on long-term potentiation (LTP) of the hippocampus
(Yang et al. 2004). Several acute and chronic stressor paradigms have shown an
increase in phosphorylation of CREB in the hippocampus (Pardon et al. 2005;
Ahmed et al. 2006; Nair et al. 2007), consistent with an alteration in signaling
pathways and synaptic activity. Both acute stress and chronic stress influence
neuroplasticity and lead to reductions in hippocampal BDNF mRNA levels (Nibuya
et al. 1995, 1999; Smith et al. 1995; Russo-Neustadt et al. 2001; Rasmusson et al.
2002; Franklin and Perrot-Sinal 2006), as does glucocorticoid (Smith et al. 1995;
Schaaf et al. 2000). The expression in the cell adhesion molecule (CAM) NCAM is
critical for LTP (Muller et al. 1996). Further, neuronal activity regulates the
expression of NCAM at the synapse and this expression is required for the
induction of synaptic plasticity (Kim et al. 2006, 2007).

Chronic stress associated with glucocorticoid increase can lead to neuronal
atrophy, notably affecting dendrites in both the medial prefrontal cortex (mPFC)
and the hippocampus. Further, stress also enhances extracellular glutamate in
various brain regions including the PFC (Bagley and Moghaddam 1997). Of note is
the correlation between an increase in glucocorticoid and an increase in glutamate.
For example, glucocorticoid excess increases glutamate release in the hippocampal
CA1 region (Venero and Borrell 1999) and in the CA3 following chronic stress
(Lowy et al. 1993). Several studies show that excess glutamatergic synapse may
contribute to cell damage and cell death (Sapolsky 2000, 2003). Interestingly,
glutamate antagonists attenuate and block the deleterious effects of glucocorticoid
increase on dendrites in the hippocampus (Magariños and McEwen 1995). An
increase in expression of the glial glutamate transporter (GLT-1) occurs due to
excess glucocorticoid exposure (Zschocke et al. 2005; Autry et al. 2006).

272 M.A. Daulatzai



Consequently, GLT-1 may promote increased reuptake of excess extracellular
glutamate in persistent stress; this may result in variable pathology including
atrophy of the apical dendrites in hippocampal CA3 pyramidal neurons (Magariños
and McEwen 1995). Chronic stress-induced excess in extrasynaptic glutamate may
exert an imbalance between extrasynaptic and synaptic NMDA receptors and
perturb the mechanisms of synaptic plasticity, neuronal homeostasis, and viability
(Guzowski et al. 1999; Guzowski et al. 2000; Guzowski et al. 2001; Hardingham
et al. 2002; Hardingham and Bading 2003; Pittenger et al. 2007).

Neuronal cell death is the final pathological consequence of many CNS diseases,
including AD. Hence, neuronal death is an important characteristic pathology of
AD. Apoptosis is a variety of cell death that is involved in diverse physiological and
pathological processes, including AD (Yang et al. 2008). Therefore, the effects of
stress-level glucocorticoids were investigated on neuronal apoptosis in the hippo-
campus and neocortex. Histological examination showed that dexamethasone
treatment induced degeneration of neurons in the hippocampus (CA1, CA3) and
cortex (Haynes et al. 2001; Yang et al. 2008). The neuronal cell body became short
and deeply stained with dye. Nuclear staining with Hoechst 33,258 showed nuclear
condensation and fragmentation in dead cells.

Significant evidence indicates that mitochondria mediate oxidative stress. Oxi-
dative stress has profound effect on cellular viability and damage in a range of
different pathologies (Wang et al. 2013a, b; Rodríguez-Martínez et al. 2013).
Mitochondria have been found to be essential in controlling at least certain apop-
tosis pathways (Green and Reed 1998). The mechanisms by which they exert this
function include release of caspase(s) activators as cytochrome c and apoptosis-
inducing factor (Liu et al. 1996), and disruption of electron transport and oxidative
phosphorylation (Adachi et al. 1997; Garcia-Ruiz et al. 1997). Cytochrome c has
been reported to be released from mitochondria into the cytosol of many cell types
undergoing apoptosis (Kluck et al. 1997; Kong et al. 2013). Once in the cytosol,
cytochrome c presumably binds to Apaf-1 and procaspase-9 and forms a functional
apoptosome. Various stimuli that induce apoptosis lead to the release of cytochrome
c from mitochondria, which then play a key role in a common pathway of activation
of caspases (Mancini et al. 1998; Mulugeta et al. 2007). Indeed, cytosolic cyto-
chrome c can bind Apaf-1 and subsequently trigger the sequential activation of
caspase-9 and caspase-3 (Mancini et al. 1998). Activation of caspase-3 has been
shown to be a key step in the execution process of apoptosis, and its inhibition can
block apoptotic cell death. Activated caspases cleave a variety of target proteins,
thereby disabling important cellular processes via breaking down structural com-
ponents and eventually causing cell death (Thornberry et al. 1997). Numerous
studies have also documented the activation of caspases in the AD brain as well as
the cleavage of critical cellular proteins (Rohn et al. 2001; Su et al. 2002). These
studies suggest that it is the caspase-mediated cleavage of important cellular pro-
teins, per se, that may be important for driving the apoptotic pathology in AD.
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2.3.1 Late-Life Depression

Depression is a highly prevalent mental health problem in the elderly, and it is
associated with cognitive deficits (Smits et al. 2012). Depression represents an
important psychiatric comorbidity in AD. It has a profound negative impact on
memory and cognition in seniors, and AD patients (Baba 2010; Baba et al. 2012;
Castrén 2013; Nihonmatsu-Kikuchi et al. 2013). For example, elevated memory
complaints correlated significantly with depression (Fischer et al. 2010). In 2,160
community-dwelling Medicare recipients, (aged 65 years or older), an association
existed between depression and mild cognitive impairment (MCI), suggesting that
depression accompanies cognitive impairment (Richard et al. 2013).

The pathogenesis of depression is not fully known; however, studies suggest a
hippocampal involvement. The hippocampus is a highly stress-sensitive brain region
and has been implicated in the pathogenesis of major depressive disorder (MDD)
(Kessler 1997; Thomas et al. 2007; McKinnon et al. 2009). In the hippocampus,
diverse inhibitory circuits differentially control physiologically relevant network
activities (Mendez et al. 2012). Patients with MDD were most impaired on measures
of the hippocampus-dependent memory (Zakzanis et al. 1998). Compared with
healthy controls, MDD patients show smaller volume of the hippocampus (Kempton
et al. 2011; Lee et al. 2011; MacQueen and Frodl 2011). Meta-analyses of magnetic
resonance imaging studies concluded that the hippocampus is smaller bilaterally in
people with MDD (compared with age- and sex-matched controls) (Campbell et al.
2004; Videbech and Ravnkilde 2004). An aggregate meta-analysis has confirmed
that the MDD patients indeed possess smaller left and right hippocampus volumes
than controls (McKinnon et al. 2009). Interestingly, a correlation has been reported
between the total number of depressive episodes and decreased hippocampus vol-
ume (Videbech and Ravnkilde 2004). Additionally, smaller hippocampus volumes
are linked to a number of stigmata including the severity of depression (Vakili et al.
2000; Saylam et al. 2006), age at the onset of depression (Hickie et al. 2005; Taylor
et al. 2005; Janssen et al. 2007), non-responsiveness to treatment (Vakili et al. 2000;
Hsieh et al. 2002; Frodl et al. 2004), illness burden (Sheline et al. 1996, 1999;
MacQueen et al. 2003; MacMaster and Kusumakar 2004), level of anxiety (Rusch
et al. 2001), and polymorphisms in the serotonin transporter gene 5-HTTLPR
(Taylor et al. 2005) as well as the BDNF gene (at position 66—Val66Met) (Frodl
et al. 2007). However, duration of illness (>2 years) or more than 1 episode of illness
may also impact the hippocampus volume adversely (Sheline et al. 1999; McKinnon
et al. 2009). Not unexpectedly, hippocampal volume is significantly smaller in MDD
patients during depressive episodes than during remission (Kempton et al. 2011).

Increasing severity of depression enhances the severity of psychopathological
and neurological impairments, and even mild levels of depression can produce
significant functional impairment in AD. Epidemiological studies suggest that
depression may increase the risk of AD. In this regard, studies have found higher
serum Aβ40/Aβ42 ratio in depression, compared with the controls (Baba 2010;
Baba et al. 2012). Importantly, the serum Aβ40/Aβ42 ratio was negatively corre-
lated with the age of onset of MDD (Namekawa et al. 2013). There is evidence that
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neuroplasticity is impaired in depression (Batsikadze et al. 2013; Player et al. 2013).
Thus, it is not surprising that depressive symptoms have been associated with an
increased risk of dementia (Dal Forno et al. 2005; Hermida et al. 2012; Fuhrer et al.
2003) and possible reductions in regional cerebral glucose metabolism (rCMRglu)
in the hippocampus (Kennedy et al. 2001; Videbech et al. 2002; Davies et al. 2003).
An eight-year follow-up showed that higher depressive symptoms were correlated
with longitudinal cerebral blood flow (rCBF) decreases in temporal regions (Dotson
et al. 2009). This may conceivably impact the hippocampal volume loss.

3 Discussion

3.1 Aging and Neurodegeneration

Age is the greatest risk factor for AD, and the most common cause of dementia in
the elderly is AD. An estimated 13 and 45 % of Americans over age 65 and 85,
respectively, suffer from AD (Alzheimer’s Association 2012). A plethora of factors
may lead to AD including aging, stress, and depression among others (Daulatzai
2013a, b; Jack et al. 2002).

An evaluation of cognitive dysfunction in neurodegenerative disorders must
commence with the anatomical–physiological correlates and cellular and molecular
mechanisms underlying normal cognition (Fjell et al. 2013; Giannakopoulos et al.
1996; Gonzales et al. 1995). The structure implicated in learning and memory is the
hippocampus. This neocortical structure represents one of the most extensively
studied region of the brain Price et al. 2001. This section focuses on the dysfunction
and pathophysiological alterations of the hippocampus due to neurotoxic insults,
including aging.

The hippocampal formation, a structure crucial for learning and memory, is
particularly vulnerable to the aging process in several species (Small et al. 2004).
Transient hypoperfusion targets the CA1 subregion and causes hippocampal-
dependent memory deficits. Owing to inter-connectivity between the hippocampal
subregions, dysfunction in one subregion affects physiologic functions in other
hippocampal subregions (Barnes 1994), thus affecting the entire circuit. Sporadic
AD is an age-related disorder; aging affects hippocampal performance by impairing
normal neuronal physiology via synaptic dysfunction. Accumulating evidence has
provided support to the feed-forward model that encompasses pernicious associa-
tion between stress, aging, diabetes, insulin resistance, dysglycemia, sleep apnea,
obesity, hypertension, and inflammation—all promoting hippocampal dysfunction.
These have been implicated in AD pathogenesis (Peila et al. 2002; Row 2007; Yaffe
et al. 2011; Umegaki 2012; Daulatzai 2010a, 2012a, d, 2013a, b).
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3.2 Depression: Prodromal to AD

Epidemiological studies point out that depression increases the risk of AD. Since
depressive symptoms in old age are found to be associated with AD risk, the question
is whether depression is an independent risk factor for AD or an early clinical sign of
AD pathogenesis. To answer this, older Catholic nuns, priests, and brothers were
clinically evaluated annually, and their brain autopsied at death. Many members of
the clergy are known to indulge in chronic alcohol intake (Vander Velt and McAll-
ister 1962; Anderson et al. 2004). On the basis of linear regression, depressive
symptoms were related to cognitive dysfunction proximate to death (Wilson et al.
2003). Importantly, the association of depressive symptoms with clinical AD and
cognitive impairment appeared to be independent of cortical amyloid plaques and
neurofibrillary tangles (Wilson et al. 2003). However, there is documented associa-
tion of upregulated generation of amyloid beta (Aβ) with depression also (see below).

Patients with depression are usually characterized clinically by some cognitive
impairments (Hollon et al. 2005; Jarrett et al. 2013). The well-documented mech-
anism that might juxtapose depression with AD is the amyloid beta (Aβ) patho-
physiology, among others (Tran et al. 2011; Nihonmatsu-Kikuchi et al. 2013).
Several studies have documented upregulated Aβ metabolism in depression. Higher
plasma Aβ40/42 ratio in late-onset depression suggests this to be prodromal
manifestation of AD (Baba 2010; Baba et al. 2012; Namekawa et al. 2013). Even
younger subjects with depression show pathological plasma Aβ40/42 ratio (Baba
2010; Baba et al. 2012; Namekawa et al. 2013). It needs to be emphasized that
quantitated CSF levels of these measures were similar in patients with major
depression or AD (Hock et al. 1998).

3.2.1 Depression and Inflammation

Inflammation is a physiological process to overcome harmful stimuli and repairs
tissues. However, when chronic, inflammation can impart deleterious consequences
in terms of morbidity and mortality. Age-related changes in the immune system
reflect immunosenescence.

Aging is a pro-inflammatory state. Accompanied with increased secretion of pro-
inflammatory cytokines, older age represents a state of subacute chronic inflammation.
Older subjects generally possess elevated levels of tumor necrosis factor (TNF-α),
interleukin1 (IL-1β), IL-6, andC-reactiveprotein (CRP) (Pedersenet al. 2000;Schram
et al. 2007;Mooijaart et al. 2013;Michaud et al. 2013).There seems tobe a relationship
between inflammation and oxidative stress pathways and depressive disorder (Nunes
et al. 2013). This potential pathophysiological mechanism may involve increased
levels of pro-inflammatory cytokines, increased acute-phase proteins, increased oxi-
dative stress, and decreased levels of antioxidants, thus reflecting a possible mecha-
nistic framework underpinning depressive disorder (Nunes et al. 2013).
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3.3 Gut Dysbiosis, Depression, and Cognitive Decline

The human gut contains *1,000 different bacterial species with 99 % belonging to
about 40 species (Neish 2009). The bacterial density increases progressively along
the small bowel with a predominance of gram-negative aerobes and some obligate
anaerobes (Zoetendal et al. 2006). GI enteric microbiome plays cardinal roles in
physiological, nutritional, and immunological status of the host. Indeed, the com-
position and function of the gut microbiota has an impact on obesity and promote
systemic inflammation and metabolic endotoxemia (Kopelman 2000; Clarke et al.
2012; Shen et al. 2013). Age affects the gut microbiota with a decrease in beneficial
organisms such as anaerobes and bifidobacteria and an increase in enterobacteria
(Woodmansey 2007; Guigoz et al. 2008; Hildebrandt et al. 2009; Jumpertz et al.
2011). Further, microbiota and microbiota-induced barrier dysfunction are modu-
lated by various factors including age (Tran and Greenwood-Van Meerveld 2013),
alcohol (Mutlu et al. 2009, 2012), fat consumption (Kopelman 2000; Jumpertz et al.
2011; de Wit et al. 2012), non-steroidal anti-inflammatories (NSAIDs) (Aabakken
and Osnes 1989; Aabakken 1999), macronutrients such as protein (Tiihonen et al.
2010; Björklund et al. 2012), and indeed proinflammatory cytokines IFN-γ, IL-1β,
and IL-6 (Al-Sadi et al. 2009; Daulatzai 2014a, b).

Endogenous LPS is a component of gram-negative bacterial cell walls and is
continuously produced by the death of intestinal gram-negative bacteria; this sig-
nificant proinflammatory effector then migrates into intestinal capillaries (Camilleri
et al. 2012; Neal et al. 2006). It is the active component of this endotoxin that binds
to LPS-binding protein (LBP), CD14, TLR4, and lymphocyte antigen 96, among
other receptors. LPS infusion in mice resulted in increased fasting levels of glucose
and insulin, as well as weight gain; the effects of this treatment on total body fat,
steatosis, and adipose tissue were similar to those induced by a high-fat diet. The
gut microbiota contributes to body fat deposition in mice (Bäckhed et al. 2004)
since germ-free animals have a lower body fat content than do conventionally
microbiome colonized animals (Bäckhed et al. 2004). Importantly, a 57 % increase
in total body fat results, following the inoculation of germ-free mice with micro-
biota obtained from conventionally colonized adult animals (Bäckhed et al. 2004;
Cani et al. 2007). Concomitant with these changes, macrophage numbers in the
adipose tissue and levels of inflammatory markers increase both systemically and in
the brain (Fig. 1). Hence, gut dysbiosis may be extremely important in upregulating
stress metabolic dyshomeostasis, depression, and cognitive decline. Chronic dys-
biosis in conjunction with inflamed gut may upregulate LPS permeability, increase
in proinflammatory cytokines, systemic inflammation, and neuroinflammation.

Inflammation plays a pivotal role in its early pathology of AD (Engelhart et al.
2004; Griffin 2006; Churchill et al. 2006; Perry et al. 2007; Zhang et al. 2009a, b;
Eikelenboom et al. 2010; 2012; Parachikova et al. 2007; Agostinho et al. 2010;
Hoozemans et al. 2011). Diverse modulatory mechanisms (Daulatzai 2010a, b, 2011,
2012a, b, c, d, 2013a, b), including systemic and neuroinflammation, underpin cog-
nitive decline and the development of AD. Emphasis has been placed on the matrix of
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Fig. 1 Effect of lipopolysaccharide (LPS; 300 μg/kg ip) on IL-1β mRNA level in the
hypothalamus 2 h after the injection. The amounts of IL-1β mRNA are expressed as ratios of
densitometric measurements of the samples to the corresponding GAPDH as an internal standard.
Values are means ±SE (n = 3 rats/group). (Double asterick) P < 0.01 (with permission, Hosoi et al.
2000). Similarly, systemic intraperitoneal injection of IL-β also promotes IL-β mRNA in the brain;
however, subdiaphragmatic vagotomy blocked the IL-1β-induced increase of IL-1β mRNA in the
brain stem and hippocampus (see Hansen et al. 1998)

Fig. 2 Plasma levels of LPS
in healthy controls (21 ± 6 pg/
m, n = 18), AD (61 ± 42
pg/ml, n = 18), and sALS
(43 ± 18 pg/ml, n = 23)
(with permission, Zhang et al.
2009a, b)
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upstream interaction; these disparate key mechanisms/factors may have the “syner-
gistic-additive impact” and promote an array of pathophysiological effects including
memory dysfunction in AD (Bozzao et al. 2001; Daulatzai 2012c, d, 2013a, b).

Neuropathological investigations have revealed a variety of inflammation-related
proteins including LPS, complement factors, acute-phase proteins, and pro-inflam-
matory cytokines in AD brains (Zhang et al. 2009a, b) (Fig. 2). These components of
innate immunity promote crucial pathogenic cascade, involving systemic (Krstic
et al. 2012) and neuroinflammation (Churchill et al. 2006; Perry et al. 2007; Eike-
lenboom et al. 2010), and are implicated in the etiopathogenesis of AD (Engelhart
et al. 2004; Griffin 2006; Parachikovaa et al. 2007; Agostinho et al. 2010; Hooze-
mans et al. 2011; Eikelenboom et al. 2010, 2011, 2012).

Amyloid deposition is implicated in AD pathogenesis (Guo et al. 2002; Lee et al.
2008). Several pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, or TGF-β
can enhance amyloid precursor protein (APP) expression (Hirose et al. 1994;
Buxbaum et al. 1992), upregulate β-secretase mRNA, protein, and enzymatic
activity (Sastre et al. 2003), and thus increase Aβ formation (Blasko et al. 1999; Lee
et al. 2008). A number of studies have confirmed that the systemic inflammation
generated by LPS induces memory impairment (Shaw et al. 2001; Sparkman et al.
2005; Lee et al. 2008). The basis of this memory decline is the relationship between
LPS-induced accumulation of Aβ and neuronal cell death; substantial increase of
apoptotic cells was revealed in the hippocampus of LPS-treated mice (36.2 ± 3.6 %)
relative to the controls (2.1 ± 0.8 %) (Lee et al. 2008). Chronic inflammation is
linked to the onset and progression of AD-related pathologies in the brain, viz.
deposition of Aβ plaques and neurofibrillary tangles (NFT). Peripheral inflammation
was induced by using the bacterial endotoxin LPS in C57BL/6 J mice; hippocampus
from LPS-treated mice contained significantly higher levels of Aβ1-42 (compared
with saline controls) (Gasparini et al. 2004; Kahn et al. 2012), as was the cerebral
cortex (Lee et al. 2008). Interestingly, even a single injection of LPS enhanced levels
of both central and peripheral pro-inflammatory cytokines (Bossù et al. 2012; Kahn
et al. 2012). The Morris water maze and contextual fear conditioning tests revealed
cognitive deficits in LPS-treated mice (Kahn et al. 2012). Similarly, spatial memory
was impaired in the mouse following sustained expression of IL-1β in the hippo-
campus (Moore et al. 2009). There are copious data showing that the pro-inflam-
matory mediators present in AD induce neuropathological cascade related to
increases in Aβ generation (Eikelenboom et al. 1994; Turrin et al. 2001; Lee et al.
2010; Agostinho et al. 2010; Daulatzai 2010a, b, 2011, 2012a, b, c, d, 2013a, b).

Other than AD, substantial studies have also underscored an association between
clinical depression and altered immune function. An increased translocation of gut’s
gram-negative bacterial LPS may be causally related to depression (Maes 2008).
Indeed, depression is associated with inflammatory reaction indicated by increased
production of pro-inflammatory cytokines, viz. IL-1β, IL-6, TNF-alpha, and inter-
feron (IFN)-gamma (Maes et al. 2008; Nunes et al. 2013). Hippocampal neuro-
genesis, i.e., proliferation and differentiation of multipotent neural precursor cells, is
an important source of neurons in adult brain. IL-1β impairs hippocampal neuro-
genesis. The hippocampal precursor cells showed a decrease in serotonergic
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neuronal differentiation in the presence of IL-1β; this effect was both dose dependent
and could be blocked by an IL-1 receptor antagonist (IL-1ra) (Zhang et al. 2013).
Further, following IL-1β treatment, lysate from the cultures of differentiated hip-
pocampal neurons showed low levels of serotonin, Bcl-2, and phosphorylated
extracellular-regulated kinase (pERK) (Zhang et al. 2013). These interactions may
be one of the pathways contributing to the development of depression.

Clinical and experimental evidence document that increased peripheral cytokine
levels and inflammation are associated with depression-like symptoms and neuro-
psychological disturbances in humans (Grigoleit et al. 2011). After endotoxin
administration, the subjects showed a transient significant increase in the levels of
anxiety and depression (Reichenberg et al. 2001). When LPS was given systemi-
cally to mice, it enhanced sickness response, depression-like behaviors, and
expression of the relevant genes (Lawson et al. 2013). Current evidences support
that inflammation and oxidative and nitrogen stress are intertwined, and their sig-
naling mechanisms are important in upregulating depression pathophysiology
(Biesmans et al. 2013; Ferreira Mello et al. 2013; Lawson et al. 2013; van Heesch
et al. 2013). Finally, this insight suggests new therapeutic approaches for pre-
venting/ameliorating depression caused by LPS and proinflammatory cytokine-
induced mechanisms. Recently, vagus nerve stimulation (VNS) in lung disease has
been shown to effectively attenuate the levels of proinflammatory cytokines
including TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid (Chen et al.
2013). VNS also improves cardiac autonomic control and attenuates canine heart
failure (Zhang et al. 2009a, b). VNS may also ameliorate LPS-induced inflamma-
tory cascade via gut-brain axis stimulation. Indeed, such VNS effectiveness was
experimentally tested in LPS-challenged (intraperitoneal injection) mice. The
endotoxin induced intestinal tight junction injury with increased intestinal perme-
ability and leakiness, as expected (Zhou et al. 2013). However, VNS of right
cervical vagus nerve ameliorated the tight junction damage, decreased intestinal
permeability, and reversed the decreased expression of tight junction proteins
occludin and zonula occludens 1 (Zhou et al. 2013). These provide a strong case for
VNS application in stress, depression, MCI, and AD (Christmas et al. 2013; Marras
et al. 2013; Zhou et al. 2013). It should be noted that VNS is approved by the
United States Food and Drug Administration as an adjunctive therapy for treatment-
resistant depression (Groves and Brown 2005).

4 Conclusion

This chapter addressed the pathophysiological–neuromodulatory mechanism related
to the gut dysbiosis which may upregulate gut–brain axis dysfunction—thus trig-
gering depression and cognitive decline and promoting the development of AD.
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Hence, future research must leverage manipulation of the gut microbiome for
therapeutic purposes. Indeed, the treatment modality needs to exploit the known
cascade of dysbiosis, gut leakiness, increased formation of LPS and proinflamma-
tory cytokines, and inflammation. Stimulation of gut–brain axis may be an important
conjoint strategy to overcome gut dysbiosis and gut-induced systemic inflammation,
and attenuate neuroinflammation, depression, and cognitive dysfunction.
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Stress and Psychological Resiliency

Alan L. Peterson, Tabatha H. Blount and Donald D. McGeary

Abstract Over the past decade, there has been an enormous increase in research
and scientific publications targeting psychological resiliency. However, compared
to the research on the neurobiology of stress, resiliency research is in its relative
infancy. Much of the resiliency research has focused on theoretical models and the
conceptualization of psychological resiliency. Resiliency research has been limited
by (1) the broad use of the term resiliency; (2) the lack of standardized definitions
of resiliency; (3) a primary focus on descriptive, assessment, and measurement
studies; (4) relatively few randomized controlled trials to evaluate the efficacy of
resiliency enhancement programs; and (5) methodological challenges inherent in
conducting applied resiliency research. Although many recent programs have been
initiated in attempts to enhance psychological resiliency in targeted populations,
such as military personnel, relatively few randomized controlled trials have been
conducted. Translational research, prospective longitudinal cohort studies, and
clinical intervention trials are needed to better understand the behavioral neuro-
biology of stress and psychological resiliency.
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1 An Overview of Psychological Resiliency

Over the past decade, there has been a tremendous increase in research and sci-
entific publications targeting psychological resiliency (McGeary 2011; Peterson
et al. 2009). The majority of this increased interest and research has been a result
of the ongoing military conflicts in Iraq and Afghanistan. Over the past 12 years,
approximately 2.5 million United States military personnel have been deployed to
the Middle East (Institute of Medicine 2012). Exposure to traumatic events is
almost universal among deployed military service members. The majority of these
military personnel have been exposed to multiple forms of combat-related or
deployment-related stress such as blast explosions accompanied by mutilating
injuries and the death of others, as well as significant risk of personal injury or
death. It has been estimated that 5–17 % of service members returning from
deployments to Iraq and Afghanistan are at significant risk for combat-related
posttraumatic stress disorder (PTSD; Gates et al. 2012; Hoge et al. 2004; Peterson
et al. 2011; Tanielian and Jaycox 2008). The prevalence estimates of PTSD among
service members and veterans vary widely based on the population assessed, the
screening methodology, and the time frame of assessment.

Considering that almost all military personnel are exposed to some form of
combat-related trauma during deployments, those who develop PTSD reflect only
a small percentage of military service members who experience trauma. To state
the converse, 83–95 % of military personnel deployed to a war zone and repeat-
edly exposed to extreme levels of stress and trauma appear to be relatively
resilient. Some of the questions being asked by investigators are, ‘‘What type of
individuals appear to be resilient under stress? What factors influence those who
develop stress-related disorders versus those who remain resilient despite exposure
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to extreme stress? Are there personality, genetic, behavioral, or neurobiological
differences? Are these differences related to nature or nurture? Can these differ-
ences be detected through behavioral or biological assessments? Can resiliency be
enhanced through behavioral or biological interventions?’’

As reviewed by McGeary (2011), resilience has become an increasingly pop-
ular psychological construct to study. The first formal description of resiliency
appeared in the 1970s, and it has been increasingly studied in the medical and
psychological research literature since that time. A keyword MEDLINE search for
the terms ‘‘resiliency’’ or ‘‘resilience’’ or ‘‘hardiness’’ in 2011 returned over 5,000
citations (McGeary 2011). The number of annual scientific manuscript citation
counts related to resiliency in PsychINFO increased over a 10-year period from
130 in 2000 to 679 in 2010 (Britt et al. 2013).

The concept of resiliency has been examined in a number of high-risk groups,
including the following: vulnerable children and adolescents (e.g., Evans et al.
2010; Gomez and McLaren 2006; Jaffee et al. 2007); older adults (e.g., Windle
et al. 2008); military medical personnel (Maguen et al. 2008), police officers (e.g.,
Paton et al. 2008); medical professionals (Gillespie et al. 2007); individuals with
psychological disorders (McLaren et al. 2007); and individuals exposed to trauma
(e.g., Klasen et al. 2010). Moreover, the concept of resilience serves as the key-
stone for many prevention programs and has been used to inform social and public
policy recommendations (e.g., Jenson 2007; Kaminsky et al. 2007). While the
present literature provides interesting and valuable individual findings, a theoret-
ical structure that can unify the literature is wanting. Thus far, increased empirical
attention has resulted in multiple, often inconsistent, conceptualizations of resil-
ience and has not lead to improved understanding of the latent construct. While a
complete review of the literature is beyond the scope of this chapter, some of the
current conceptualizations of psychological resilience are outlined below.

Some of the first studies of psychological resilience were conducted by psy-
chologists interested in vulnerable children raised in high-risk environments (e.g.,
Werner and Smith 1992). Over the past decade, interest in psychological resilience
has been expanded into a wide range of at-risk groups including older adults,
individuals in high-risk professions (e.g., military, law enforcement, emergency
medical personnel), individuals with psychological disorders, and individuals with
trauma exposure (Evans et al. 2010; Gillespie et al. 2007; Gomez and McLaren,
2006; Jaffee et al. 2007; Klasen et al. 2010; Maguen et al. 2008; McLaren et al.
2007; Paton et al. 2008; Windle et al. 2008). The published literature on resiliency
has been used to inform social and public policy (Jenson 2007; Kaminsky et al.
2007). Unfortunately, there is considerable variation in the definition and con-
ceptualization of psychological resilience across studies. This hinders the synthesis
of the scientific literature and limits the translation of research findings into
applied settings.
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2 Definitions of Psychological Resiliency

According to the Merriam-Webster online dictionary (2014), the basic definition of
resilience is ‘‘the ability to become strong, healthy, or successful again after
something bad happens’’ and ‘‘the ability of something to return to its original
shape after it has been pulled, stretched, pressed, or bent.’’ The Merriam-Webster
medical definition of resilience is ‘‘the capability of a strained body to recover its
size and shape after deformation caused especially by compressive stress’’ and ‘‘an
ability to recover from or adjust easily to misfortune or change.’’

In 2011, the RAND Center for Military Health Policy Research published a
comprehensive monograph titled Promoting Psychological Resilience in the U.S.
Military (Meredith et al. 2011). Part of the RAND report examined the definitions
of resilience. Altogether, they found over 100 individual definitions of psycho-
logical resilience across 270 publications. The definitions of resilience were
classified into three broad categories: basic, adaptation, and growth. According to
the RAND report (Meredith et al. 2011, p. 20), basic definitions involve the idea
that psychological resilience is a ‘‘process or capacity that develops over time.’’
The adaption definitions of resiliency ‘‘incorporate the concept of bouncing back’’
after exposure to stress or trauma. The growth definitions of resiliency ‘‘involve
growth after experiencing adversity or trauma.’’ The definitional differences
uncovered in the RAND report are consistent with observations from other
researchers (e.g., Agiabi and Wilson 2005; McGeary 2011). After the completion
of their rigorous review of the definitional literature on resiliency, the RAND
reviewers (Meredith et al. 2011, p. 3) selected the definition by Jenson and Fraser
(2005) as the one thought to best describe the construct of resiliency: ‘‘Resilience
is the capacity to adapt successfully in the presence of risk and adversity.’’

3 Models and Conceptualizations of Psychological
Resiliency

Models of resilience attempt to explain the dynamic relations among factors that
diminish or enhance psychological resilience. The level of complexity varies
considerably in these models (Bates et al. 2010). The compensatory model, risk-
protective model, protective–protective model, and challenge model of psycho-
logical resilience are relatively simple models that examine the interactions
between risk factors and protective factors. These models were originally descri-
bed by developmental psychologists in the 1980s and 1990s to describe the
trajectories and outcomes of high-risk, disadvantaged youth (e.g., Garmezy
et al.1984; Rutter 1985).
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3.1 The Trait Conceptualization of Resiliency

The most straightforward conceptualizations define resilience as individual traits
such as high self-esteem, intelligence, determination, strong coping skills, or
hardiness (Kobassa et al. 1982; Metzl and Morrell 2008). Hardiness has been
shown to be a moderator of stress (Pengilly and Dowd 2000) and is conceptualized
to be a trait that includes three components: control, commitment, and challenge.
When confronted with a stressful life event, hardy individuals (1) believe they can
control or influence the outcome, (2) are committed or dedicated to resolve the
situation, and (3) see stressful life events as challenges and believe that one can
learn and grow from both positive and negative life experiences.

The simplicity of conceptualizing resiliency as a trait allows for greater ease in
conducting research. Moreover, assuming the trait may be amenable to training or
other interventions, this conceptualization has implications for developing resil-
iency enhancement programs for at-risk individuals or populations. Despite these
potential advantages, there are significant limitations with this conceptualization.
First, individual traits are most often considered to be innate characteristics that are
relatively stable over time and difficult to change. Studies that rely on this for-
mulation generally identify the construct as a correlate or predictor variable within
the analyses and not as the criterion variable. Consequently, the results do not
provide the information necessary to advance the field’s understanding of resil-
ience. Furthermore, the conceptualization of resilience as a trait fails to capture the
complex processes involved in resilience as well as the context or system in which
resilience occurs within any given individual (Gillespie et al. 2007; Waller 2001).
Consequently, while these unidimensional, nondynamic definitions can help
answer specific questions associated with individual studies, they fail to provide a
satisfactory model of resilience that can be utilized in a broader context, such as
promoting resilience through education and training programs.

3.2 The Outcome Conceptualization of Resiliency

Resilience has also been conceptualized as either the presence of a positive outcome
(e.g., academic success) or the absence of a negative outcome (e.g., lack of
psychological symptoms) following adversity or trauma (as reviewed by Metzl and
Morrell 2008). For example, in the case of war, resilience may be inferred if a service
member exposed to combat-related trauma does not develop acute stress disorder or
posttraumatic stress symptoms. As with a trait conceptualization, this approach
generates straightforward research designs and provides valuable information on
one important facet of resilience. However, similar to a trait conceptualization of
psychological resilience, outcome conceptualizations also fail to delineate the
dynamic processes that promote or diminish resilience, thereby providing only a
limited snapshot of the construct (Gillespie et al. 2007; Luthar et al. 2000).
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The examination of posttrauma/adversity outcomes alone is insufficient for theory
building or program development.

Efforts have been made to describe the interaction between protective and risk
factors that contribute to positive or negative outcome in high-risk individuals. The
majority of this work was spearheaded in the 1980s and 1990s by developmental
researchers interested in the trajectories and outcomes of high-risk, disadvantaged
youth (e.g., Garmezy et al.1984; Rutter 1985). As discussed by Zimmerman and
Arunkumar (1994), four main theoretical frameworks of resilience emerged from
this literature: the compensatory model, the risk-protective model, the protective–
protective model, and the challenge model. According to the compensatory model,
protective factors have a direct effect on outcome and combine in an additive
manner to determine outcome. In other words, higher levels of a protective factor
are associated with better outcomes. The risk-protective and protective–protective
models emphasize the interaction between risk and protective factors in the pre-
diction of outcome. In the risk-protective model, the protective factor moderates
the relation between risk factor and outcome, whereas, in the protective–protective
model, a second protective factor moderates the relation between an initial pro-
tective factor and the outcome. In the challenge model, a curvilinear relation
occurs between the risk factor and outcome such that lower and higher levels of
the risk factor are associated with poor outcome, whereas a moderate level of the
risk factor is associated with more positive outcomes.

Primarily, these models have been applied to developmental concerns such as
adolescent aggression and victimization (e.g., Hollister-Wagner et al. 2001). For
example, in a recent study on adolescent victimization, Marsh et al. (2009) found
support for the challenge model for both male and female adolescents and for the
compensatory and protective–protective models for adolescent males. However,
research has yet to clarify whether these models apply to military personnel in
combat or deployed settings. Moreover, these models may not fully capture the
systemic and cultural factors that can impact resilience on an individual level.

3.3 Military Demand-Resource Model of Resiliency

Recent progress has been made to incorporate evidence-based factors into models of
resiliency. For example, Bates and colleagues (Bates et al. 2010; Bowles and Bates
2010) proposed the Military Demand-Resource Model as a comprehensive and
integrative model of psychological fitness. In this model, psychological fitness is
described as ‘‘the integration and optimization of mental, emotional, and behavioral
abilities and capacities to optimize performance and strengthen the resilience of
warfighters’’ (Bates et al. 2010, p. 21). According to this model, the effects of
military demands are mediated by internal resources such as awareness, beliefs, and
engagement, as well as external resources such as leadership, unit members, fam-
ilies, training, and support programs that enhance or undermine resilience. The
Military Demand-Resource Model posits that resource loss is more impactful than
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resource gain. It is proposed that resource investment helps mitigate resource loss,
whereas the resource environment can facilitate resource development.

Bates and colleagues highlight the importance of physical fitness training as
part of the military culture and acknowledge the importance of providing sufficient
challenge to push skill development without exceeding resources (Bates et al.
2010; Bowles and Bates 2010). They propose that psychological fitness can be
developed using training principles similar to physical fitness training. A limitation
of the Military Demand-Resource Model is its complexity, which may leave some
to be confused when trying to conceptualize how best to implement the model in
order to enhance military resiliency.

3.4 The Blister-Callus Model of Psychological Resilience

Similar to the physical calluses that form from blisters following physical exertion,
the Blister-Callus Model of Psychological Resiliency (Blount et al. 2012) posits
that psychological resilience develops from repeated and gradually increasing
periods of psychological and physical stress, followed by periods of recovery. The
Blister-Callus Model does not disregard other potential contributors to psycho-
logical resilience, such as genetics, personality factors, or other innate attributes or
characteristics of an individual. However, the model does posit that the primary
contributing factor to psychological resiliency is life events involving exposure to
psychological and physical stress. It also supports physical conditioning programs
such as those that occur as part of basic military training. For most individuals,
repeated and gradually increasing levels of physical training can result in increased
levels of physical fitness. It is believed that the same concept of repeated episodes
of gradually increasing levels of psychological stress followed by periods of
recovery is the key to enhancing psychological resiliency.

4 The Assessment and Measurement of Psychological
Resiliency

The evaluation of interventions and policies designed to promote resilience
requires reliable and valid approaches to assessment and measurement. Windle
et al. (2011) conducted a methodological review of resilience measurement scales
developed for use in general and clinical populations. The authors used eight
electronic abstract databases to identify published journal articles where resilience
was a key focus or was assessed. As a result of this review, 15 resilience measures
were identified. Overall, measures with the best psychometric properties were the
Connor–Davidson Resilience Scale (Connor and Davidson 2003), the Resilience
Scale for Adults (Friborg et al. 2003, 2005) and the Brief Resilience Scale (Smith
et al. 2008).
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4.1 Connor–Davidson Resilience Scale

The Connor–Davidson Resilience Scale (Connor and Davidson 2003) was
developed for clinical practice as a measure of stress coping ability. It includes five
factors (personal competence, trust/tolerance/strengthening effects of stress,
acceptance of change and secure relationships, control, and spiritual influences).
The scale contains 25 items, and respondents indicate their degree of endorsement
on five-point scales ranging from 0 (‘‘not true at all’’) through 4 (‘‘true nearly all
the time’’) of items such as ‘‘Having to cope with stress makes me stronger.’’

4.2 Resilience Scale for Adults

The Resilience Scale for Adults (Friborg et al. 2003, 2005) is a 37-item self-report
measure developed to examine intrapersonal and interpersonal protective factors
that are presumed to facilitate adaptation to psychosocial adversities. It includes
five factors: personal competence, social competence, family coherence, social
support, and personal structure. The measure can be used in clinical and health
psychology as an assessment tool of protective factors important to prevent mal-
adjustment and psychological disorders.

4.3 Brief Resilience Scale

The Brief Resilience Scale (Smith et al. 2008) is a six-item, self-report scale of
resiliency designed as an outcome measure to assess the ability to bounce back or
recover from stress. The authors note that most other measures of resilience have
focused on examining the resources and protective factors that might facilitate a
resilient outcome. The Brief Resilience Scale was developed to have a specific
focus on recovering or bouncing back after stress exposure.

5 Resiliency Research

As noted earlier, the RAND Center for Military Health Policy Research published
a comprehensive monograph in 2011 titled Promoting Psychological Resilience in
the U.S. Military (Meredith et al. 2011). This review of the evidence-informed
scientific literature is arguably the most comprehensive literature review to date on
psychological resilience. Eleven subject-matter experts were contracted to com-
plete this review, and 270 manuscripts published over a 10-year period
(2000–2009) were identified for inclusion. The primary focus of RAND was to
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conduct a systematic review of the scientific literature on psychological resilience
to (1) identify evidence-informed factors that promote psychological resilience,
and (2) assess the strength of the evidence base associated with each factor.
Overall, there was generally very little rigorous research available across the
different resilience factors. Only 11 publications reported results from randomized
controlled trials, the gold-standard design for intervention research.

The review and synthesis yielded 20 evidence-informed factors associated with
resilience. The resilience factors were categorized according to whether they
operated at the individual, family, organization (or unit), or community level. This
framework was used to distinguish intrinsic factors that promote resilience within
an individual from external or environmental resilience factors (e.g., family,
organization, or community). Table 1 provides a summary of evidence-informed
factors that promote resilience according to the RAND report.

5.1 Military Resiliency Programs

Battlemind Training Battlemind is an early intervention resiliency enhancement
program developed at the Walter Reed Army Institute of Research (WRAIR) to
target increasing resiliency in service members returning home from combat
deployments. The basic concept, as described in training materials by the WRAIR
Land Study Team (2006), is that Battlemind skills help service members survive in
combat, but they may cause problems if they are not adapted when service
members get home. The program uses military terminology to normalize and
promote the benefit of these approaches while deployed and how they must be
adapted to effectively survive on the home front. Using the acronym BATTLE-
MIND, the program utilizes a cognitive and skills-building approach to teach 10
specific concepts (WRAIR Land Study Team 2006, p. 2).

Buddies (cohesion) versus Withdrawal
Accountability versus Controlling
Targeted Aggression versus Inappropriate Aggression
Tactical Awareness versus Hypervigilance
Lethally Armed versus ‘‘Locked and Loaded’’ at home
Emotional Control versus Anger/Detachment
Mission Operational Security (OPSEC) versus Secretiveness
Individual Responsibility versus Guilt
Nondefensive (combat) Driving versus Aggressive Driving
Discipline and Ordering versus Conflict

By actively normalizing the difficulties that can occur during the reintegration
period, the program also attempts to decrease the stigma associated with seeking
out treatment for combat-related problems. An example of one of these concepts
(Buddies versus Withdrawal) is provided by the authors to help clarify the
Battlemind concept:
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Table 1 RAND Center for Military Health Policy Research summary of evidence-informed
factors that promote psychological resilience

Individual level
resilience factors

Definition

Positive coping The process of managing taxing circumstances, expending effort to
solve personal and interpersonal problems, and seeking help to
reduce or tolerate stress or conflict, including active/pragmatic,
problem-focused, and spiritual approaches to coping

Positive affect Feeling enthusiastic, active, and alert, including having positive
emotions, optimism, a sense of humor (ability to have humor
under stress or when challenged), hope, and flexibility about
change

Positive thinking Information processing, applying knowledge, and changing
preferences through restructuring, positive reframing, making
sense out of a situation, flexibility, reappraisal, refocusing, having
positive outcome expectations, a positive outlook, and
psychological preparation

Realism Realistic mastery of the possible/having realistic outcome
expectations, self-esteem/self-worth, confidence, self-efficacy,
perceived control/acceptance of what is beyond control or cannot
be changed

Behavioral control The process of monitoring, evaluating, and modifying reactions to
accomplish a goal (i.e., self-regulation, self-management, self-
enhancement)

Physical fitness Bodily ability to function efficiently and effectively in life domains
Altruism Selfless concern for the welfare of others, motivation to help without

reward
Family level resilience

factors
Definition

Emotional ties Emotional bonding among family members, including shared
recreation and leisure time

Communication The exchange of thoughts, opinions, or information, including
problem solving and relationship management

Support Perceiving that comfort is available from (and can be provided to)
others, including emotional, tangible, instrumental, informational,
and spiritual support

Closeness Love, intimacy, and attachment
Nurturing Parenting skills
Adaptability Ease of adapting to changes associated with military life, including

flexible roles within the family
Unit level resilience

factors
Definition

Positive command
climate

Facilitating and fostering intraunit interaction, building pride/support
for the mission, leadership, positive role modeling, and
implementing institutional policies

Teamwork Work coordination among team members, including flexibility
Cohesion Team ability to perform combined actions; bonding together of

members to sustain commitment to each other and the mission

(continued)
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While deployed, no one understands your experience except your buddies who were there
with you. Your life depended on your trust in your buddies. After returning home, you may
prefer to be with your battle buddies rather than with spouse, family, or other friends. You
may assume only those who were there with you in combat can understand you or are
interested in you. You may avoid speaking about yourself to friends and family. Combat
results in bonds with fellow Soldiers that will last a lifetime. Back home, your friends and
family have changed. Re-establishing these bonds takes time and work. Renew relation-
ships at home. Spend individual time with each of your loved ones. Balance time spent
with buddies and family. Provide and accept support from them (Adapted from WRAIR
Land Study Team 2006).

The extant research indicates that Battlemind training is associated with high
acceptability and with improved mental health outcomes in US soldiers returning
from combat deployments. For example, Alder and colleagues (2009) examined
early intervention training in 2,297 soldiers following a 12-month deployment.
Participants were randomized by platoons into either stress education, Battlemind
debriefing, small group Battlemind, or large group Battlemind. In comparison with
the standard stress education, participants in the Battlemind training groups had
fewer depressive symptoms. Battlemind briefing was also superior to stress
education in decreasing PTSD symptoms and sleep problems. Although these
differences are statistically significant at a population level, the actual differences
from a clinical perspective are relatively small. In Canada, Battlemind training has
been incorporated into Third-Location Decompression programs (Zamorski et al.
2012). However, some findings suggest that the Battlemind training may have
limited benefits for non-US military personnel (Mulligan et al. 2012).

Comprehensive Soldier Fitness Program The Comprehensive Soldier Fitness
(CSF) program represents the largest, most ambitious, and most controversial
attempt at resiliency training ever devised or implemented in the United States
military. Described by General George Casey as ‘‘a prevention program that seeks
to enhance psychological resilience among all members of the Army community,’’

Table 1 (continued)
Community level

resilience factors
Definition

Belongingness Integration, friendships; group membership, including participation in
spiritual/faith-based organizations, protocols, ceremonies, social
services, schools, and so on; and implementing institutional
policies

Cohesion The bonds that bring people together in the community, including
shared values and interpersonal belonging

Connectedness The quality and number of connections with other people in the
community; includes connections with a place or people of that
place; aspects include commitment, structure, roles, responsibility,
and communication

Collective efficacy Group members’ perceptions of the ability of the group to work
together

Adapted from Meredith et al. 2011
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CSF is a multi-module resiliency program designed to bolster and enhance various
proposed dimensions of resiliency among US Army Soldiers and their families
(Casey 2011, p. 1). Based on a positive psychology paradigm (Seligman 2011),
CSF modules are designed to improve the health and performance of Soldiers and,
more notably, to decrease the incidence of PTSD after deployment through
comprehensive assessment using the online Soldier Fitness Tracker (Fravell et al.
2011) and training modules delivered through Master Resilience Trainers (Lester
et al. 2011). Lester and colleagues report some of the initial research efforts
designed to assess and describe the effectiveness of CSF. These efforts have
included a longitudinal assessment of training effectiveness, studies of the impact
of CSF module training on more specific resilience variables (e.g., physical,
psychological), and an examination of the influence of CSF on socioeconomic
outcomes (e.g., career progression and retention of active duty).

Research on Comprehensive Soldier Fitness, while ambitious and potentially
fruitful, has not been without some controversy. Some have questioned the value
and ethics of the CSF research program, expressing concern about the large
expenditures required to establish and run CSF (without a priori pilot studies to
better describe the potential impact of this work), as well as ethical concerns about
large-scale CSF research efforts across the Army Soldier population (Eidelson
et al. 2011). Additionally, Smith (2013) has expressed some concern that the
positive psychology focus of CSF (which has shown promise in child and
adolescent populations) may actually work against resiliency aims for deployed
service members confronting trauma. Many have criticized the lack of published
outcomes from the proposed CSF research described by Lester and colleagues
(Steenkamp et al. 2013), and a 2014 PSYCINFO search using the term ‘‘Com-
prehensive Soldier Fitness’’ returns only 14 publications, none of which describe
CSF outcomes. The true value of this ambitious program will only be realized once
CSF program outcomes begin to appear in the extant peer-reviewed research.
Unfortunately, because CSF is not being implemented as a randomized controlled
trial, the ability to evaluate its potential efficacy will be limited.

Total Force Fitness Total Force Fitness is an expanded version of the bio-
psychosocial model (Engel 1977; Peterson et al. 2014) including behavioral,
social, physical, environmental, medical/dental, spiritual, nutritional, and psy-
chological factors related to resiliency. In 2010, Admiral Mike Mullen, then
Chairman of the Joint Chiefs of Staff, described his vision of ‘‘Total Force Fitness’’
for the United States military (Mullen 2010). Characterized as ‘‘dynamic’’ and
focusing on physical and mental ‘‘readiness,’’ Total Force Fitness is described by
Admiral Mullen as an effort to maintain peak physical and mental readiness to
perform despite the constantly fluctuating landscape of challenges that confront
military service members. The eight components of Total Force Fitness are out-
lined in Table 2 (Jonas et al. 2010). Colonel Beverly Land (US Army Medical
Corps) has further explained Total Force Fitness as an ongoing attempt to maxi-
mize the health and well-being of military service members, achievable only
through defining specific ‘‘end states’’ of expected functioning and designing
training that will help service members achieve those end states (Land 2010). As is
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the case for Comprehensive Soldier Fitness, Total Force Fitness was developed
with a specific outcomes assessment plan (Walter et al. 2010), though there have
been no notable peer-reviewed publications detailing the outcomes of Total Force
Fitness as of the writing of this chapter. Indeed, a 2014 PSYCINFO search using
the term ‘‘Total Force Fitness’’ returned only 10 manuscripts, none of which
detailed outcomes of Total Force Fitness implementation efforts.

6 Future Directions

Research on psychological resiliency has increased exponentially over the past
decade. The majority of the research was stimulated by concerns about military
personnel who have been exposed to extreme stress and trauma during

Table 2 Total Force Fitness
model of psychological
resilience

Dimension Description

Behavioral Substance abuse
Hygiene
Risk mitigation

Social Family cohesion
Social support
Task cohesion
Social cohesion

Physical Strength
Endurance
Power
Flexibility
Mobility

Environmental Heat/cold
Altitude
Noise
Air quality

Medical/dental Immunizations
Screening
Prevention

Spiritual Perspective
Core values
Identity, meaning, and purpose
Ethical foundation
Embracing diversity

Nutritional Food quality
Nutrient requirements
Food choices

Psychological Coping
Awareness
Beliefs/appraisals
Decision-making
Engagement

Adapted from Jonas et al. 2010
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deployments to Iraq and Afghanistan. Unfortunately, resiliency research has lag-
ged behind research on the neurobiology of stress, primarily because of the lack of
standardized definitions and randomized controlled trials. Future translational
research should include operational definitions of resiliency, prospective longitu-
dinal cohort studies, and randomized clinical intervention trials.
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