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Abstracts

Magnetic resonance imaging (MRI) is based on the 
magnetic excitation of body tissue and the reception of 
returned electromagnetic signals from the body. Excitation 
induces phase-locked precession of protons with a 
frequency proportional to the strength of the surrounding 
magnetic field as described by the Larmor equation. This 
fact can be exploited for spatial encoding by applying 
magnetic field gradients along spatial dimensions on top 
of the strong static magnetic field of the scanner. The 
obtained frequency-encoded information for each slice is 
accumulated in two-dimensional k space. The k space data 
can be transformed into image space by Fourier analysis.

Functional MRI (fMRI) allows localizing brain function 
since increased local neuronal activity leads to a surpris-
ingly strong increase in local blood flow, which itself results 
in measurable increases in local magnetic field homogene-
ity. Increased local blood flow delivers chemical energy 
(glucose and oxygen) to the neurons. The temporary increase 
and decrease of local blood flow, triggered by increased neu-
ronal activity, is called the hemodynamic response starting 
2–4 s after stimulus onset. Increased local blood flow results 
in an oversupply of oxygenated hemoglobin in the vicinity 
of increased neuronal activity. The oversupply flushes deox-
ygenated hemoglobin from the capillaries and the down-
stream venules. Deoxygenated hemoglobin is paramagnetic 
reducing the homogeneity of the local magnetic field result-
ing in a weaker MRI signal than would be measurable with-
out it. Oxygenated hemoglobin is diamagnetic and does not 
strongly reduce field homogeneity. Since the increased local 
blood flow replaces deoxygenated hemoglobin with oxy-
genated hemoglobin, local field homogeneity increases, 
leading to a stronger MRI signal as compared to a nonacti-
vated state. Measured functional brain images thus reflect 
neuronal activity changes as blood oxygenation level-
dependent (BOLD) contrast.

Functional images are acquired using the fast echo-
planar imaging (EPI) pulse sequence allowing acquisition 
of a 64 × 64 image matrix in less than 100 ms. To sample 
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signal changes over time, a set of slices typically covering 
the whole brain is measured repeatedly. Activation of neu-
rons results in a BOLD signal increase of only about 1–5 % 
and lie buried within strong physical and physiological 
noise fluctuations of similar size. Proper preprocessing 
steps, including 3D motion correction and removal of 
drifts, reduce the effect of artifacts increasing the signal-to-
noise ratio (SNR). In order to reliably detect stimulus-
related effects, proper statistical data analysis is performed. 
In order to estimate response profiles, condition-related 
time course episodes may be averaged in various regions-of-
interest (ROIs). The core statistical tool in fMRI data analy-
sis is the general linear model (GLM) that allows the 
analysis of blocked and event-related experimental designs. 
To run a GLM, a design matrix (model) has to be con-
structed containing reference functions (predictors, model 
time courses) for all effects of interest (conditions) as well 
as confounds. The GLM fits the created model to the data 
independently for each voxel’s data (time course) provid-
ing a set of beta values estimating the effects of each condi-
tion. These beta values are compared with each other using 
contrasts resulting in a statistical value at each voxel. The 
statistical values of all voxels form a three-dimensional sta-
tistical map. To protect against wrongly declaring voxels as 
significant, statistical maps are thresholded properly by 
taking into account the multiple comparison problem. This 
problem is caused by the large number of independently 
performed statistical tests (one for each voxel).

In recent years, parallel imaging techniques have been 
developed, which allow acquiring MRI data simultane-
ously with two or more receiver coils. Parallel imaging 
can be used to increase temporal or spatial resolution. It 
also helps to reduce EPI imaging artifacts, such as geo-
metrical distortions and signal dropouts in regions of dif-
ferent neighboring tissue types.

MRI has not only revolutionized functional brain 
imaging targeting gray matter neuronal activity but also 
enabled insights into the human white matter structure 
using diffusion-weighted magnetic resonance imaging. 
With proper measurement and modeling schemes includ-
ing diffusion tensor imaging (DTI), major long-range 
fiber tracts can be reconstructed using computational trac-
tography providing important information to guide neuro-
surgical procedures potentially reducing the risk of 
lesioning important fiber tracts.

Since its invention in the early 1990s, functional magnetic 
resonance imaging (fMRI) has rapidly assumed a leading 
role among the techniques used to localize brain activity. The 
spatial and temporal resolution provided by state-of-the-art 
MR technology and its non-invasive character, which allows 
multiple studies of the same subject, are some of the main 
advantages of fMRI over the other functional neuroimaging 

techniques that are based on changes in blood flow and corti-
cal metabolism (e.g., positron-emission tomography, PET). 
FMRI is based on the discovery of Ogawa et al. (1990), that 
magnetic resonance imaging (MRI, also called nuclear mag-
netic resonance imaging) can be used in a way that allows 
obtaining signals depending on the level of blood oxygen-
ation. The measured signal is therefore also called “BOLD” 
signal (BOLD = blood oxygenation level-dependent). Since 
locally increased neuronal activity leads to increased local 
blood flow, which again changes local blood oxygenation, 
fMRI allows indirect measurements of neuronal activity 
changes. With appropriate data analysis and visualization 
methods, these BOLD measurements allow drawing conclu-
sions about the localization and dynamics of brain function.

This chapter describes the basic principles and methodol-
ogy of functional and diffusion-weighted MRI. After a descrip-
tion of the physical principles of MRI at a conceptual level, the 
physiology of the blood oxygenation level-dependent (BOLD) 
contrast mechanism is described. The subsequent, major part 
of the chapter provides an introduction to the current strategies 
of statistical image analysis techniques with a focus on the 
analysis of single-subject data because of its relevance for pre-
surgical mapping of human brain function. This is followed by 
a description of functional connectivity focusing on the analy-
sis of resting state fMRI data. Finally, principles of diffusion-
weighted MRI measurements are described including diffusion 
tensor imaging, which is the most common acquisition and 
modeling approach in clinical MRI.

1	 �Physical Principles of MRI

Magnetic resonance imaging allows visualizing both ana-
tomical and functional data of the human brain. This section 
shortly describes the main concepts of the physical princi-
ples of MRI. More detailed descriptions of the physical basis 
of MRI are available in several introductory texts, for exam-
ple, Huettel et al. (2004), Bandettini et al. (2000), Brown and 
Semelka (1999), NessAiver (1997), and Schild (1990).

A typical whole-body MR scanner has a hollow bore 
(tube) about 1  m across. Inside of that bore a cylinder is 
placed containing the primary magnet producing a very 
strong static, homogeneous magnetic field (B0). Today, nearly 
all scanners create the magnetic field with superconducting 
electromagnets whose wires are cooled by cryogens (e.g., 
liquid helium). Most standard clinical scanners used to image 
the human brain possess a magnetic field strength of 1.5 T, 
which is 30,000 times the strength of the Earth’s magnetic 
field (1 T = 10,000 G). In recent years, installation of tomo-
graphs with 3.0 T has become common in major hospitals 
and research centers. In a few research labs, the human brain 
is imaged at ultrahigh fields such as 7 and 9.4 T. At higher 
field strengths it gets increasingly difficult to create a homog-
enous magnetic field, which is necessary for accurate spatial 
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decoding of the raw measurement data. Since homogenous 
fields are easier to create for scanners with small bores, scan-
ners with higher magnetic fields (10–20 T) are currently only 
available for animal use. Besides the main magnet, additional 
coils are located inside the cylinder including shimming 
coils, gradient coils, and a radio frequency (RF) coil. The 
shimming coils are used to shape the magnetic field increas-
ing its homogeneity. The gradient coils are used to temporar-
ily change the magnetic field linearly along any direction 
which is essential for spatial localization (see below). The RF 
coil is used to send radio frequency pulses into the subject.

In a typical brain scanning session, a subject or patient in 
supine position is slowly moved into the scanner bore using a 
maneuverable table. Scanning of anatomical and functional 
images is managed from a terminal in a control room by spec-
ifying slice positions and by running appropriate MRI pulse 
sequences. The control room usually has a window behind the 
computer terminal, which allows looking into the scanner 
room. Before the subject is moved into the scanner, the head 
is placed in a small replaceable coil, called the head coil. This 
coil surrounds the head and is used to send radio frequency 
pulses into the subject as well as to receive electromagnetic 
echoes. When receive-only head coils are used, the radio fre-
quency pulses are provided by the RF coil in the cylinder of 
the scanner. The head coil is an example of a volume coil, 
which is designed such that the sensitive volume (e.g., brain) 
experiences a fairly uniform RF field. Surface coils are 
receive-only RF coils that are placed directly upon the surface 
of the anatomy to be imaged. They provide very high signal-
to-noise in their immediate vicinity, but recorded images suf-
fer from extreme nonuniformity because the obtained signal 
intensity drops rapidly with distance and approaches zero 
about one coil diameter away from the coil. Phased array coils 

are an attempt to combine the positive properties of volume 
and surface coils by combining images from two or more sur-
face coils to produce a single image (see Sect. 1.2.6).

The physical principles of MRI are the same for anatomical 
and functional imaging. What makes functional imaging special 
is described in Sect. 2. The operation of MRI can be described 
in two major themes. The first theme refers to the excitation and 
recording of electromagnetic signals reflecting the properties of 
the measured object. The second theme refers to the construc-
tion of two- and three-dimensional images reflecting how the 
measured object properties vary across space.

1.1	 �Spin Excitation and Signal Reception

Magnetic resonance imaging is based on the magnetic excita-
tion of body tissue and the recording of returned electromag-
netic signals from the body. All nuclei with an odd number of 
protons are magnetically excitable. The atom of choice for 
MRI is 1H, the most common isotope of hydrogen having a 
nucleus with only one proton. Hydrogen protons are ideally 
suited for MRI because they are abundant in human tissue and 
possess particularly favorable magnetic properties. Water is 
the largest source of protons in the body followed by fat. 
Protons have magnetic properties because they possess a spin: 
they rotate like a spin top around their own axes inducing a 
small directed magnetic field. In a normal environment, the 
magnetic fields of the spins in the human body are oriented 
randomly and, thus, cancel each other out. If, however, the 
body of a subject is placed in the strong static magnetic field 
of a MRI tomography (called B0), the spins orient themselves 
in line with that field, either parallel or antiparallel (Fig. 1). 
Since a slightly larger proportion of spins aligns parallel to the 

a b c

Precession

B0

M0

Fig. 1  Spinning protons are little magnets because of the spin property. 
(a) Without an external magnetic field, the directions of the spins are 
randomly distributed. (b) When placed within a large magnetic field, 
the spins align either with the field (parallel) or against the field  
(antiparallel). A slight excess of spins aligns with the external magnetic 

field resulting in a net magnetic field parallel to the external magnetic 
field. (c) A spin is actually not aligning its axis of rotation with the 
external magnetic field as shown in (a) and (b) but rotates around the 
direction of the field. This motion is called precession
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scanner magnetic field, the body gets magnetized. The excess 
number of spins aligned with the external magnetic field is 
proportional to the strength of the external magnetic field and 
is in the order of 1015 spins at 1.5 in a 2 × 2 × 2 mm volume of 
water. The total magnetic field of the excess spins is called 
M0. Just as a spinning top wobbles about its axis, the spinning 
protons wobble, or precess, about the axis of the external B0 
field (Fig.  1c). The precession frequency of the protons 
depends on the strength of the surrounding magnetic field. 
More precisely, the precession frequency ω is directly propor-
tional to the strength of the external magnetic field and is 
defined by the Larmor equation:

	 w g0 0= B 	

The symbol ω0 is known as the precessional, Larmor, or res-
onance frequency. The symbol γ refers to the gyromagnetic 
ratio, which is a constant unique to every atom. For hydro-
gen protons, γ = 42.56 MHz per Tesla. At the magnetic field 
strength of a 3 T scanner, the precession frequency of hydro-
gen protons is thus 128 MHz.

If an applied electromagnetic pulse has the same fre-
quency as the proton’s precession frequency, then the pro-
tons get “excited” by absorbing the transmitted energy. This 
important principle is called resonance and gives the method 
“magnetic resonance imaging” its name. Since the preces-
sion frequency is in the range of radio frequency waves, the 
applied electromagnetic pulse is also called a radio frequency 
(RF) pulse. As an effect of excitation, spins flip from the 
parallel (lower-energy) state to the antiparallel (higher-
energy) state. The RF pulse furthermore lets the excited pro-
tons precess in phase. As a result, the magnetization vector 
M0 moves down toward the x-y plane (Fig. 2). The x-y plane 
is perpendicular to the static magnetic field and is also 
referred to as the transverse plane. The angle, α, of rotation 

toward the x-y plane is a function of the strength and duration 
of the RF pulse. If α = 90°, the magnetization vector is com-
pletely moved into the x-y plane with an equal amount of 
spins aligned parallel and antiparallel (Fig.  2b). Since the 
protons precess in phase, that is, they point in the same direc-
tion within the x-y plane, the magnetic fields of the spins add 
up to form a net magnetic field MXY in the x-y plane. This 
transversal component of the rotating electromagnetic field 
can be measured (received) in the receiver coil (antenna) 
because it induces a detectable current flow.

The established inphase precession is, however, not stable 
after the RF transmitter is turned off. Because of interactions 
between the magnetic fields of the protons, the transverse 
magnetization decays within a few tenth of milliseconds. 
These spin-spin interactions lead to slightly different local 
magnetic field strengths and, thus, to slightly different pre-
cession frequencies leading to phase shifts between the pre-
cessing spins (dephasing). The dephasing process is also 
called transversal relaxation. It progresses initially rapidly 
but slows down over time following an exponential function 
with time constant T2 with values in the range of 30–150 ms. 
Due to magnetic field inhomogeneities in the static magnetic 
field and in physiological tissue, the spins get out of phase 
actually faster than T2, and therefore the measured raw signal 
in the receiver coil, the free induction decay (FID), decays 
with a shorter time constant T2* (Fig. 3):

	 M MXY 0= 2*e
t / T−

	

The fact that local field inhomogeneities lead to different 
precession frequencies increasing the speed of dephasing is 
an important observation for functional MRI because local 
field inhomogeneities also depend on the local physiological 
state, especially the state of local blood oxygenation, which 
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Fig. 2  Spins in the lower energy state can be excited by an 
electromagnetic pulse at the resonance frequency ω0 forcing the spins 
absorbing the transmitted energy to precess in phase. (a) As an effect of 
excitation, the net magnetic field M0 (blue vector) smoothly tips down 
toward the x-y plane. The longitudinal component Mz (green vector) 
decreases over time while the transverse component Mxy (red vector) 

increases. This view assumes that the observer is moving with the 
precessing protons (rotating frame of reference). (b) Viewed from out-
side (laboratory frame of reference), the net magnetization vector 
rotates with angular velocity ω0 given by the Larmor equation. The 
rotating magnetic field in the x-y plane emits radiofrequency waves, 
which can be measured by a receiver coil
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itself depends on the state of local neuronal activity. 
Measurements of changing local magnetic field inhomoge-
neities (T2* parameter), thus, provide indirect measurements 
of local neuronal activity.

The speed of spin dephasing is determined by random 
effects as well as by fixed effects due to magnetic field inho-
mogeneities. The dephasing effect of constant magnetic field 
inhomogeneities can be reversed by the application of a 180° 
RF pulse. A time duration of t = τ is allowed to elapse while 
the spins go out of phase. Then a 180° RF pulse is applied 
flipping the dephased spin vectors about the X′ or Y′ axis in 
the rotating frame of reference. As an effect of the pulse, the 
order of the spins is reversed (Fig.  4). At the echo time 
TE = 2τ, the vectors are back in phase producing a large sig-
nal, the spin echo. This process is similar to a race situation 
in which participants run with different (but constant) speed. 
At time τ they get a signal (“180° pulse”) to turn around and 
go back; assuming they continue in the same speed, they will 
all arrive at the starting line at the same time (2τ).

The amplitude of the obtained spin echo will be smaller 
than the amplitude during the FID because part of the signal 

is inevitably lost due to random spin-spin interactions (T2 
decay). As soon as the spins are all back in phase at the echo 
time, they immediately start to go out of phase again. An 
additional 180° RF pulse will generate a second echo (Fig. 4). 
This process can be continued as long as enough signal is 
available. By setting the time of the 180° pulse, the amplitude 
of the T2 signal can, thus, be assessed at any moment in time.

Besides dephasing, the spins reorient themselves with the 
direction of the strong static magnetic field of the scanner since 
the excited spins slowly go back into low-energy state realign-
ing with the external magnetic field. This reorientation process 
is called longitudinal relaxation and progresses slower as the 
dephasing process. The increase (recovery) of the longitudinal 
component Mz follows an exponential function with time con-
stant T1 with values in the range of 300–2,000 ms:

	
M MZ 0= 1 1− −e t / T( ) 	

Note that the absorbed RF energy is not only released in a way 
that it can be detected outside the body as RF waves but part of 
the energy is given to the surrounding tissue, called the lattice. 

Spin 1

MXY =M0e
–t/T2*

0 1p 2p 3p 4p 5p 6p 7p 8p 9p 10p 11p
x

Spin 2

T2*

Spin 3
Fig. 3  The signal amplitude  
(red curve) of the measured raw 
MR signal, the free induction 
decay (FID), decays exponen-
tially with time constant T2*. The 
raw signal itself is oscillating at 
the resonance frequency (blue 
curve). The signal is lost due to 
dephasing as indicated by the 
phase coherency plots (circles) 
with three representative, 
superimposed spins (see inset). 
The amplitude of the signal at 
any moment in time is deter-
mined by the sum of the spin 
vectors. When the spins are all in 
phase (left side), the maximum 
signal is obtained, that is, the 
vector sum equals M0. When the 
spins are completely out of phase 
(right side), the signal is 
completely lost, that is, the sum 
of the spin vectors equals zero
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The spin-lattice interactions determine the speed of T1 recovery, 
which is unique to every tissue. Tissue-specific T1 and T2 values 
enable MRI to differentiate between different types of tissue 
when using properly designed MRI pulse sequences.

1.2	 �Image Reconstruction

The described principles of magnetic resonance do not 
explain how one can obtain images of the brain. This requires 
attributing components of the signal to those positions in 
space from which they originated. Although not identical for 
all measurement sequences, the principles for localizing 
signal sources typically contain the combined application of 
three fundamental techniques: selective excitation of a slice, 
frequency encoding, and phase encoding. Each of these steps 
allows localizing the source of the signal with respect to one 
spatial dimension. Paul C.  Lauterbur and Peter Mansfield 
were awarded the 2003 Nobel Prize in Medicine for their 
discovery that magnetic field gradients can be used for spa-
tial encoding. The gradient coils of the MRI scanner allow 
adding a magnetic field to the static magnetic field, which 
causes the field strength to vary linearly with distance from 
the center of the magnet. According to the Larmor equation, 
spins on one side are exposed to a higher magnetic field and 

precess faster while spins on the other side are exposed to a 
lower magnetic field and precess slower than spins in the 
center (Fig. 5b).

1.2.1	 �Selective Slice Excitation
A magnetic field gradient is used to select a slice of the 
imaged object (slice selection gradient). Since spins precess 
with different frequencies along a gradient, protons can be 
excited selectively: An applied electromagnetic pulse of a 
certain frequency band will excite only those protons along 
the gradient precessing at the same frequency band. Spins 
outside that range will precess at different frequencies and 
will, thus, not absorb the transmitted RF energy. The 
selectively excited protons are located in a slice oriented per-
pendicular to the gradient direction. A gradient along the 
z-axis will result in an axial slice, a gradient along the x-axis 
in a sagittal slice, and a gradient along the y-axis in a coronal 
slice. Oblique slices can be obtained by applying two or 
three gradients simultaneously. The position and thickness of 
the selected slice depend on the slope of the applied gradient 
and the frequency band of the applied RF pulse. After selec-
tive slice excitation, the measured echo will be restricted to a 
compound signal from the excited protons within the slice. 
For subsequent spatial encoding, the slice selection gradient 
is turned off.

90° 180° 180°
X'

Y'

FID

T2*

T2

TE

Spin echo Spin echo

Fig. 4  The effect of constant magnetic field inhomogeneities can be 
reversed by application of a 180° RF pulse, which flips the dephased 
vectors about the X′ axis. This is indicated in the upper row with three 
spin vectors, one precessing at the resonance frequency (green vector), 
one precessing slightly faster (violet vector), and one precessing 
slightly slower (blue vector) leading to dephasing. The 180° RF pulse 
reverses the order of the spins but not the direction of rotation. The 

faster spin now runs behind catching up over time, while the slower 
spin runs ahead slowly falling back. At time TE (echo time), the 
vectors are back in phase producing a large signal, the spin echo. 
A second 180° RF pulse will generate a second echo (right side). The 
maximum amplitude of the echoes gets smaller over time because sig-
nal is inevitably lost due to random spin-spin interactions (T2 decay, 
red curve)
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Fig. 5  Assume that eight glasses with different amounts of water are 
placed in the MRI scanner along the x-axis and that a single, thick slice 
containing all glasses has been excited. (a) In the absence of any gradi-
ents, all of the excited protons from all glasses are spinning at the same 
frequency. The received signal also oscillates at that frequency and its 
amplitude reflects the sum of excited water protons of all glasses. Since 
all protons precess at the same frequency, the Fourier transform cannot 
be used to identify signals from different spatial positions along the 
x-axis. (b) If a gradient is applied in the x direction, the spins will 

precess at frequencies that depend upon their position along the gradi-
ent. Spatial information is now frequency encoded: The strength of the 
signal at each frequency is directly related to the number of excited 
protons from the respective glass of water. The obtained composite 
time-domain signal is the sum of these frequencies. The Fourier trans-
form can now be used to determine the strength of the signal at each 
frequency. Since frequencies encode different spatial positions, an 
“image” of eight pixels can be formed. The gray values of these pixels 
reflect the relative amount of water in the different glasses

1.2.2	 �Frequency Encoding
While receiving the signal (FID or echo) from the excited 
slice, a magnetic field gradient can be applied along one of 
the two remaining spatial dimensions. This second gradient, 
running along one dimension of the excited slice, is called 
frequency-encoding gradient. Note that this gradient is not 
used to selectively excite protons but to encode a spatial 
dimension for those protons already excited in the slice. 
Due to the applied gradient, the protons within the slice pre-
cess with different frequencies along the respective dimen-
sion allowing differentiating spatial positions in the received 
signal (Fig.  5). The frequency-encoding gradient is also 
called readout gradient since it is tuned on during reception 
of the signal from the protons. The strength of the signal at 
each frequency is directly related to the strength of the sig-
nal at the encoded spatial position. The measured composite 
time-domain signal consists of the sum of all frequency 
responses. The Fourier transform (FT) can be used to get 
from the composite signal the strength of the signal at each 
frequency (amplitude and phase information). Since space 
has been frequency encoded, the FT provides the strength of 
the signal at different spatial positions. The obtained 
frequency-specific information can thus be used to form a 
spatial image (Fig. 5b). In such an image, the gray level is 
used to represent the strength of the signal at each picture 
element (pixel).

1.2.3	 �Phase Encoding
A further encoding step is required in order to be able to also 
separate signal components originating from different posi-
tions along the second dimension in the imaging plane. This 
is achieved by briefly adding another gradient to the static 
magnetic field oriented along the remaining (third) spatial 
dimension before receiving an echo. This third magnetic 
field gradient is called phase-encoding gradient. While the 
frequency-encoding gradient is turned on during reception of 
the signal, the phase-encoding (PE) gradient is turned off just 
before receiving the echo and is, thus, not (permanently) 
changing the frequency at different spatial positions. This is 
necessary since frequency-encoding gradients in two dimen-
sions would result in ambiguous spatial encoding in a similar 
way as the same number (e.g., 6) can be obtained in many 
different ways by the sum of two numbers (e.g., 2 + 4, 3 + 3, 
5 + 1). Prior to readout, the brief duration of the phase-
encoding gradient results in a short moment of different pre-
cession frequencies within each row of the slice. After 
turning off the phase-encoding gradient, the protons within 
each row precess again with the same frequency but they will 
now precess with a systematic phase shift along the positions 
within each row. The amount of phase shift depends on the 
position of a proton along the encoded second image dimen-
sion. Through proper combination of frequency encoding in 
one dimension and phase encoding in the other dimension, 
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all positions within a 2D image can be uniquely encoded 
with a desired resolution. Unfortunately a single application 
of the phase-encoding gradient is not sufficient to encode the 
second image dimension. The process of excitation and 
phase encoding must be repeated many times for a single 
slice. At each repetition, the strength of the phase-encoding 
gradient is slightly changed in order to ultimately obtain a 
complete frequency x phase encoding of the slice.

1.2.4	 �Two-Dimensional k Space
The data obtained from a series of excitation  – recording 
cycles – can be arranged in a two-dimensional space called k 
space. Each row of k space corresponds to the data of one 
excitation – recording cycle with a different phase-encoding 
step. As described above, the echo signal of one line in k 
space contains a frequency-encoded representation of one 
dimension of the selected slice. While the slice selection and 
frequency-encoding gradients are the same from cycle to 
cycle, the slope of the phase-encoding gradient is changed by 

a constant value across cycles and, thus, from line to line in 
k space. The imposed phase shift for a specific proton 
depends on the strength of the phase-encoding gradient and 
on the proton’s position along the second image dimension. 
A series of phase-encoding steps “fills” k space in such a way 
that the second slice dimension ultimately also gets fre-
quency encoded. The k space thus contains two-dimensional 
frequency-encoded information of the slice, which can be 
transformed into two-dimensional image space by applica-
tion of the two-dimensional Fourier transform (2D FT).

1.2.5	 �Echo-Planar Imaging
The described procedure is applied for each slice of a scanned 
volume. A properly specified series of electromagnetic pulses 
allowing to construct one or more 2D images from electro-
magnetic echoes is called an MRI pulse sequence. The most 
often-used sequence for functional MRI is gradient-echo 
echo-planar imaging (GE-EPI). This sequence enables very 
rapid imaging of a slice by performing all phase-encoding 
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Fig. 6  From neural activity to BOLD MRI responses. (a) If a cortical 
region is in baseline mode, neural activity – including synaptic signal 
integration and spike generation – is low (upper part). Cerebral blood 
flow (CBF) is at a basal level. A constant oxygen extraction rate fueling 
neural activity leads to a fixed deoxygenated hemoglobin (Hb) to oxy-
genated hemoglobin (HbO2) ratio in the capillary bed and venules. 
Since Hb is paramagnetic, it distorts the magnetic field. The Hb-related 
magnetic field inhomogeneities lead to rapid dephasing of excited spins 

resulting in a low MRI signal level (lower part). (b) If the cortical 
region is in activated state, synaptic signal integration and spiking activ-
ity increases, leading to an increased oxygen extraction rate (upper 
part). CBF strongly increases delivering oxygen beyond local need, 
which essentially flushes Hb away from the capillary bed (middle part). 
Since HbO2 does not substantially distort the homogeneity of the local 
magnetic field, excited spins dephase slower than in the baseline state 
(lower part) resulting in an enhanced MRI signal (BOLD effect)
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steps after a single 90° excitation pulse. This sequence 
requires switching the readout gradient rapidly on and off to 
fill k space line by line resulting in a series of (e.g., 64) small 
gradient echoes within the duration of a single T2* decay. A 
complete image can thus be obtained in about 50–100 ms as 
opposed to several seconds with standard (functional) imag-
ing sequences. GE-EPI is very sensitive to field inhomogene-
ities influencing the speed of dephasing (T2* contrast). This 
is essential for functional imaging (see below) but also pro-
duces image distortions called susceptibility artifacts, which 
occur especially at tissue boundaries. Running EPI sequences 
requires a high-performance (i.e., expensive) gradient system 
to enable very rapid gradient switching.

1.2.6	 �Parallel Imaging and Parallel Excitation
In the last 15 years, parallel imaging (e.g., Pruessmann et al. 
1999) has become a standard technique that has been intro-
duced with different names by scanner manufacturers such 
as “SENSE,” “IPAT,” or “SMASH.” The basic idea of paral-
lel imaging is the simultaneous acquisition of MRI data with 
at least two (typically 32 or more) receiver coils, each having 
a different spatial sensitivity. During image reconstruction, 
complementary information from the different receiver coils 
can be combined to fill k space in parallel reducing the num-
ber of time-consuming phase-encoding steps. Besides appro-
priate coils (phased array coils), parallel imaging requires 
that MRI scanners are equipped with multiple processing 
channels operating in parallel. Note that parallel imaging 
may be used either to increase temporal resolution when 
using a standard matrix size or to increase spatial resolution 
using a larger matrix with a conventional image acquisition 
time. Using parallel imaging to reduce scan time without 
sacrificing image quality is especially relevant for patient 
scans. Furthermore, parallel imaging may also reduce 
GE-EPI imaging artifacts because it allows acquiring stan-
dard image matrices with shorter echo times; typical EPI 
artifacts, such as signal dropouts in regions of neighboring 
tissue types and geometrical distortions, increase with 
increasing echo times.

In recent years, parallel excitation techniques are gaining 
increasing interest that work by exciting more than one slice 
in parallel: If, for example, eight slices are excited simulta-
neously, a whole-brain scan with 64 slices would be com-
pleted in the same time as eight nonsimultaneously recorded 
slices. In order to enable such powerful “multiband” tech-
niques, an advanced excitation hardware (multiple transmit 
channels) is needed that is not yet standard on most MRI 
scanners. Furthermore, special MRI pulse sequences are 
needed (Moeller et al. 2010; Setsompop et al. 2012). Since 
multiple slices are acquired truly in parallel, imaging time is 
substantially reduced as compared to standard single-slice 
excitation techniques. This is especially beneficial for 
real-time fMRI neurofeedback studies (e.g., Goebel et  al. 
2010) since more time points (albeit temporally correlated) 

can help to calculate more stable feedback values in a given 
time window. Note, however, that the data received from 
multiple slices need to be separated which becomes increas-
ingly difficult with an increasing number of simultaneously 
excited slices. In order to avoid loss in image quality, the 
multiband factor (number of simultaneously excited slices) 
used for neuroscience applications is currently rather low, 
that is, in the range of 2–4.

2	 �Physiological Principles of fMRI

Neuronal activity consumes energy, which is produced by 
chemical processes requiring glucose and oxygen. The vas-
cular system supplies these substances by a complex net-
work of large and small vessels. The arterial part of the 
vascular system transports oxygenated blood through an 
increasingly fine-grained network of blood vessels until it 
reaches the capillary bed where the chemically stored energy 
(oxygen) is transferred to the neurons. If the brain is in rest-
ing state, 30–40 % of the oxygen is extracted from the blood 
in the capillary bed. The venous system transports the less-
oxygenated blood away from the capillary bed. Oxygen is 
transported in the blood via the hemoglobin molecule. If 
hemoglobin carries oxygen, it is called oxygenated hemoglo-
bin (HbO2), while it is called deoxygenated hemoglobin (Hb) 
when it is devoid of oxygen. While the arterial network con-
tains almost only oxygenated hemoglobin, the capillary bed 
and the venous network contain a mixture of oxygenated and 
deoxygenated hemoglobin.

2.1	 �Neurovascular Coupling

A local increase of neuronal activity immediately leads to 
an increased oxygen extraction rate in the capillary bed and, 
thus, in an increase in the relative concentration of deoxy-
genated hemoglobin. This fast response to increased neuro-
nal activity is described as the “initial dip” (Fig. 7). After a 
short time of about 3 s, the increased local neuronal activity 
also leads to a strong increase in  local blood flow. This 
response of the vascular system to the increased energy 
demand is called the hemodynamic response. Recent studies 
indicate that synaptic signal integration (measured by the 
local field potential, LFP) is a better predictor of the strength 
of the hemodynamic response than spiking activity 
(Logothetis et al. 2001; Mathiesen et al. 2000). It thus seems 
likely that the hemodynamic response primarily reflects the 
input and local processing of neuronal information rather 
than the output signals (Logothetis and Wandell 2004). Note 
that it is not yet completely known how the neurons “inform” 
the vascular system about their increased energy demand. 
Important theories about this neurovascular coupling are 
described, among many others, by Fox et al. (1988), Buxton 
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et al. (1998), and Magistretti et al. (1999). It appears likely 
that astrocytes play an important role because these special 
glial cells are massively connected with both neurons and 
the vascular system. The hemodynamic response consists in 
increased local cerebral blood flow (CBF) as well as 
increased cerebral blood volume (CBV), probably as a 
mechanical consequence of increased blood flow. The 
hemodynamic response not only compensates quickly for 
the slightly increased oxygen extraction rate but it is so 
strong that it results in a substantial local oversupply of oxy-
genated hemoglobin (Figs. 6 and 7). Note that it is not yet 
clear why the vascular system responds with a much stron-
ger increase in cerebral blood flow than appears to be neces-
sary. The increased CBV may help to explain the 
poststimulus undershoot (Fig. 7) observed in typical fMRI 
responses (balloon model, Buxton et al. 1998). While CBF 
and oxygen extraction rate may quickly return to baseline, 
the elastic properties of the dilated venules will require 
many seconds until baseline size is reached. In the expanded 
space of the dilated vessels, more deoxygenated hemoglo-

bin will accumulate reducing the MRI signal below the 
pre-stimulus baseline level.

2.2	 �The BOLD Effect

The most common method of functional MRI is based on the 
BOLD effect (Ogawa et al. 1990). This exploits the fact that 
oxygenated hemoglobin has different magnetic properties 
than deoxygenated hemoglobin. More specifically, while 
oxygenated hemoglobin is diamagnetic, deoxygenated 
hemoglobin is paramagnetic altering the local magnetic sus-
ceptibility, creating magnetic field distortions within and 
around the blood vessels in the capillary bed and venules. 
During the hemodynamic response (oversupply phase), the 
oxygenated to deoxygenated hemoglobin ratio increases 
resulting in a more homogeneous local magnetic field. As 
follows from the description in Sect. 1, excited spins dephase 
slower in a more homogeneous magnetic field leading to a 
stronger measured MRI signal in the activated state when 
compared to a resting state (Fig. 6). The BOLD effect, thus, 
measures increased neuronal activity indirectly via a change 
in local magnetic field (in)homogeneity, which is caused by 
an oversupply of oxygenated blood (Fig. 6). Note that these 
field inhomogeneities are only detectable with MRI because 
of the different magnetic properties of oxy- and deoxygen-
ated hemoglobin. The change in the local HbO2/Hb ratio and 
its associated change in magnetic field homogeneity, thus, 
acts as an endogenous marker of neural activity.

2.3	 �The BOLD Hemodynamic Response

The time course of evoked fMRI signals, reflecting the 
BOLD hemodynamic response, is well studied for the pri-
mary visual cortex (V1). After application of a short visual 
stimulus of 100 ms, the observed (positive) signal response 
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starts to rise after 2–3  s (oversupply phase) and reaches a 
maximum level after 5–6  s. About 10  s later, the signal 
reaches again the baseline level. As compared to the neuro-
nal response of about 100  ms duration, the corresponding 
fMRI response is characterized by a delayed, gradual 
response profile extending as long as 20 s. Despite this slug-
gish response, the latency of response onsets appear to reflect 
quite precisely neuronal onset times (Menon and Kim 1999): 
If the left and right visual field are stimulated sequentially 
with a stimulus onset asynchrony of only 100 ms, response 
profiles from the right and left primary visual cortex are sys-
tematically shifted according to the applied temporal offset. 
More generally, the fMRI signal may reflect the flow of 
information processing across different brain areas as a 
sequence of shifted response profiles. Estimates of the tem-
poral resolution with respect to onset delays are more in the 
order of hundreds of milliseconds than in the order of sec-
onds (Formisano and Goebel 2003).

Assuming a linear time invariant (LTI) system, one can 
predict the expected time course of arbitrary long stimulation 
periods from the known response to a short stimulus. The 
response to a very short stimulus is called the impulse 
response function or, in the context of fMRI, the BOLD 
hemodynamic response function (HRF). The output 
(expected fMRI response) of an LTI system is the convolu-
tion of the input time course (e.g., stimulation “box-car” 

time course) with the system’s response to an impulse 
function (Fig. 9). For primary visual cortex (V1), Boynton 
et al. (1996) showed that the measured responses to stimuli 
with varying amplitudes and durations could be indeed pre-
dicted well from the response profile obtained from a short 
visual stimulus. A well-suited function to model the hemo-
dynamic impulse function is the probability density function 
(pdf) of the gamma distribution scaled by parameter A:
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Parameters τ and σ define the onset and dispersion of the 
response peak, respectively. While Boynton et al. (1996) 
used a single gamma function to characterize the impulse 
response function, the sum of two gamma functions (Friston 
et  al. 1998) allows to also capture the undershoot usually 
observed in fMRI responses. The first gamma function typi-
cally peaks 5 s after stimulus onset (τ = 6), while the second 
gamma function peaks 15 s after stimulus onset (τ = 16, see 
Fig. 8). After convolution of a stimulus time course with the 
impulse function (Fig.  9), the calculated time course can 
be directly used as a reference function for statistical data 
analysis (see Sect. 3.3).

Note that the linear system assumption is reasonably valid 
only for stimuli of sufficiently long duration. For a series of 

Neural pathway Hemodynamics

Hemodynamic response function
(i.e. two-gamma function)

Temporal resolution
(e.g TR = 2 s)

Stimulus timing = protocol
(box-car for one condition)

Convolution kernel

Predicted fMRI response after
convolution of box-car with HRF

MR scanner
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Fig. 9  Calculation of expected fMRI signal response for one condition 
of a protocol using convolution. The calculated response depends on 
the chosen model for the BOLD hemodynamic response function 
(HRF), for example, two gamma function (middle part). The expected 

response is obtained by convolution of the box-car time course (left) 
with the chosen HRF. The convolved time course is downsampled to the 
temporal resolution (sampling intervals) of the fMRI measurements 
given by the volume TR value (right)
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short stimuli separated by intervals shorter than 2–4 s, non-
linear interaction effects have to be expected (e.g., Robson 
et al. 1998). Note further that the calculation (convolution) of 
expected time courses requires as input the valid specifica-
tion of the time course of assumed neuronal response pro-
files, which is often not simply a copy of stimulus timing. 
A  simple box-car time course, for example, assumes that 
neurons in a stimulated cortical area are active with constant 
amplitude in prolonged “on” periods. It is, however, well 
known that this assumption is too simplistic for neurons in 
early sensory areas. For higher cortical areas, for example, 
frontal areas involved in working memory, the neuronal 
response profile might differ substantially with respect to 
stimulus timing. Assuming that neuronal responses are cor-
rectly specified, it appears reasonable to use the same hemo-
dynamic response function for all brain regions to predict 
expected BOLD signal time courses since neurovascular 
coupling should be similar in different brain areas. In case 
that it is difficult to specify proper input response profiles, a 
more general approach should be used (e.g., deconvolution 
analysis; see Sect. 3.3).

While fMRI responses clearly reflect the oversupply 
phase of the hemodynamic response, the theoretically 
expected initial dip (Fig. 7) has not been reliably detected in 
standard human fMRI measurements (for animal studies, 
see, e.g., Kim et al. 2000). This component of the idealized 
hemodynamic response is thus not included in the standard 
single or two gamma convolution kernels (Fig. 8). Data anal-
ysis of almost all fMRI studies is therefore based on the sig-
nals coming from the much stronger and sustained positive 
BOLD response.

2.4	 �Limits of Spatial and Temporal 
Resolution

The ultimate spatial and temporal resolution of fMRI is not 
primarily limited by technical constraints but by properties 
of the vascular system. The spatial resolution of the vascular 
system, and hence fMRI, seems to be in the order of 
0.5–1 mm since relevant blood vessels run vertically through 
the cortex in roughly that distance (Duvernoy et al. 1981). 
An achievable resolution of 0.5–1 mm might be just enough 
to resolve cortical columns. A cortical column contains 
thousands of neurons possessing similar response specificity. 
A conventional brain area, such as the fusiform face area, 
could contain a set of cortical columns, each coding a differ-
ent basic (e.g., face) feature. Cortical columns could, thus, 
form the basic building blocks (“alphabet”) of complex rep-
resentations (Fujita et al. 1992). Since neurons within a col-
umn code for roughly the same feature, measuring the brain 
at the level of cortical columns promises to provide a relevant 
level for describing brain functioning. In cat visual cortex, 

for example, orientation columns could be measured with 
fMRI at ultrahigh magnetic fields (4 and 9  T, Kim et  al. 
2000). The observed pattern of active orientation columns 
systematically changed when showing cats gratings of 
different orientations. Using ultrahigh magnetic fields  
(e.g., 7 T), columnar resolution appears to be within reach 
also for human brain imaging (e.g., Cheng et  al. 2001; 
Yacoub et al. 2008; Zimmermann et al. 2011).

Despite the sluggishness of the fMRI signal, it has been 
shown that the obtained responses may reflect timing infor-
mation with very high temporal precision. The signal of the 
left and right visual cortex, for example, reliably reflects 
temporal differences between stimulation of the left and 
right visual field as short as 100 ms (Menon and Kim 1999). 
When properly taking care of different hemodynamic delays 
in different brain areas, the analysis of BOLD onset latencies 
may also be very useful in revealing the sequential order of 
activity across brain areas within trials of complex cognitive 
tasks (fMRI mental chronometry, e.g., Formisano and Goebel 
2003). In order to measure the brain with a temporal resolu-
tion in the order of milliseconds, other methods such as 
electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) must be used. If one succeeds in performing a 
proper combined analysis of EEG/MEG and fMRI data 
(Scherg et al. 1999; Dale and Halgren 2001; Bledowski et al. 
2006), it becomes possible to describe brain function both 
with respect to its topographic distribution as well as with 
respect to its precise timing. While EEG/MEG data and 
fMRI data are conventionally obtained in different sessions, 
it has become possible to measure EEG data directly during 
fMRI recording sessions (e.g., Mulert et al. 2004).

3	 �FMRI Data Analysis

A major goal of functional MRI measurements is the local-
ization of the neural correlates of sensory, motor, and cogni-
tive processes. Another major goal of fMRI studies is the 
detailed characterization of the response profile for known 
regions-of-interest (ROIs) across experimental conditions. In 
this context, the aim of conducted studies is often not to map 
new functional brain regions (whole-brain analysis) but to 
characterize further how known specialized brain areas 
respond to (subtle) differences in experimental conditions 
(ROI-based analysis). Furthermore, it is often of interest to 
estimate the shape of the response and how it varies across 
different conditions and brain areas. Inspection of the shape 
of (averaged) time courses may also help to separate signal 
fluctuations due to measurement artifacts from stimulus-
related hemodynamic responses. In order to obtain fMRI 
data with relatively high temporal resolution, functional time 
series are acquired using fast MR sequences sensitive to 
BOLD contrast. As described above most fMRI experiments 

R. Goebel



25

use the gradient echo EPI sequence, which allows acquisi-
tion of a 64 × 64 matrix in 50–100 ms. A typical functional 
scan of the whole brain with 20–40 slices lasts only 1–2 s on 
state-of-the-art MRI scanners. The data obtained from scan-
ning all slices once at different positions (e.g., 30 slices cov-
ering the whole brain) is subsequently referred to as a 
functional volume or a functional 3D image. The measure-
ment of an uninterrupted series of functional volumes is 
referred to as a run. A run, thus, consists of the repeated mea-
surement of a functional volume and, hence, the repeated 
measurement of the individual slices. The sampling inter-
val – the time until the same brain region is measured again – 
is called volume TR. The volume TR specifies the temporal 
resolution of the functional measurements since all slices 
comprising one functional volume are obtained once during 
that time. Note, however, that the slices of a functional vol-
ume are not recorded simultaneously, which implies that 
data from different regions of the brain are recorded at differ-
ent moments in time (see “Slice Scan Time Correction” in 
Sect.  3.2). During a functional experiment, a subject per-
forms tasks typically involving several experimental condi-
tions. A short experiment can be completed in a single run, 
which typically consists of 100–1,000 functional volumes. 
Assuming a run with 500 volumes each consisting of 30 
slices of 64 × 64 pixels and that two bytes are needed to store 
each pixel, the amount of raw data acquired per run would be 
500 × 30 × 64 × 64 × 2 = 122,880,000 bytes or roughly 
117 MB. In more complex experiments, a subject typically 
performs multiple runs in one scanning session resulting in 
about 500  MB of functional data per subject per session. 
Using fast parallel imaging techniques and/or high-resolution 
scanning (e.g., slices with 128 × 128 pixels) several giga-
bytes (GBs) of raw image space data will be recorded per 
subject.

Given the small amplitude of task-related BOLD signal 
changes of typically 1–5 % and the presence of many con-
founding effects, such as signal drifts and head motion, the 
localization and characterization of brain regions responding 
to experimental conditions of the stimulation protocol is a 
nontrivial task. The major analysis steps of functional and 
associated anatomical data will be described in the following 
paragraphs including spatial and temporal preprocessing, 
statistical data analysis, coregistration of functional and 
anatomical data sets, and spatial normalization. Although 
these essential data analysis steps are performed in a rather 
standardized way in all major software packages, including 
AFNI (http://afni.nimh.nih.gov/afni/), BrainVoyager (http://
www.brainvoyager.com/), FSL (http://www.fmrib.ox.ac.uk/
fsl/), and SPM (http://www.fil.ion.ucl.ac.uk/spm/), there is 
still room for improvements as will be discussed below. For 
the visualization of functional data, high-resolution anatomi-
cal data sets with a resolution of (or close to) 1 mm in all 
three dimensions are often collected in a recording session. 

In most cases, these anatomical volumes are scanned using 
slow T1-weighted MR sequences that are optimized to pro-
duce high-quality images with very good contrast between 
the gray and white matter. In some analysis packages, ana-
tomical data sets do not only serve as a structural reference 
for the visualization of functional information but are often 
also used to improve the functional analysis itself, for exam-
ple, by restricting statistical data analysis to gray matter vox-
els or to analyze topological representations on extracted 
cortex meshes. The preprocessing of high-resolution ana-
tomical data sets and their role in functional data analysis 
will be described in Sect. 3.4. Since some data analysis steps 
depend on the details of the experimental paradigm, the next 
section shortly describes the two most frequently used exper-
imental designs.

3.1	 �Block- and Event-Related Designs

In the first years of fMRI measurements, experimental 
designs were adapted from positron-emission tomography 
(PET) studies. In the typical PET design, several trials (indi-
vidual stimuli, or more generally, cognitive events) were clus-
tered in blocks, each of which contained trials of the same 
condition (Fig. 10). As an example, one block may consist of 
a series of different pictures showing happy faces and another 
block may consist of pictures showing sad faces. The statisti-
cal analysis of such block designs compares the mean activity 
obtained in the different experimental blocks. Block designs 
were necessary in PET studies because of the limited tempo-
ral resolution of this imaging technique requiring about a 
minute to obtain a single whole-brain functional image. Since 
the temporal resolution of fMRI is much higher than PET, it 
has been proposed to use event-related designs (Blamire et al. 
1992; Buckner et  al. 1996; Dale and Buckner 1997). The 
characteristics of these designs (Fig. 10) follow closely those 
used in event-related potential (ERP) studies. In event-related 
designs, individual trials of different conditions are not clus-
tered in blocks but are presented in a random sequence with 
sufficient time between trials to separate successive responses. 
Responses to trials belonging to the same condition are selec-
tively averaged, and the calculated mean responses are statis-
tically compared with each other. While block designs are 
well suited for many experiments, event-related designs offer 
several advantages over block designs, especially for cogni-
tive tasks. An important advantage of event-related designs is 
the possibility to present stimuli in a randomized order 
(Fig. 10) avoiding cognitive adaptation or expectation strate-
gies of the subjects. Such cognitive adaptations are likely to 
occur in block designs since a subject knows what type of 
stimuli to expect within a block after having experienced the 
first few trials. Another important advantage of event-related 
designs is that the response profile for different trial types 
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(and even single trials) can be estimated by event-related 
averaging. Furthermore, event-related designs allow post hoc 
sorting of individual brain responses. One important example 
of post hoc sorting is the separation of brain responses for 
correctly vs. incorrectly performed trials.

The possibilities of event-related fMRI designs are 
comparable to standard behavioral and ERP analyses. Note, 
however, that the hemodynamic response extends over about 
20–30 s (Fig. 8) after presentation of a short stimulus; if only 
the positive BOLD response is considered, the signal extends 
over 10–15 s. The easiest way to conduct event-related fMRI 
designs is to temporally separate individual trials far enough 
to avoid overlapping responses of successive trials. Event-
related designs with long temporal intervals between individ-
ual trials are termed slow event-related designs (Fig. 10). For 
stimuli of duration of 1–2  s, the optimal intertrial interval 
(ITI) for statistical analysis is about 12 s (Bandettini and Cox 
2000; Maus et  al. 2010a). Since it has been shown that the 
fMRI signals of closely spaced trials add up approximately 
linearly (Boynton et  al. 1996; Dale and Buckner 1997, see 
Sect. 2.3), it is also possible to run experiments with inter trial 
intervals of 2–6  s. Designs with short temporal intervals 
between trials are called rapid event-related designs (Fig. 10). 
While the measured response of rapid event-related designs 
will contain a combination of overlapping responses from 
closely spaced trials, condition-specific event-related time 
courses can be isolated using deconvolution analysis. 
Deconvolution analysis works correctly only under the 
assumption of a linear system (see Sect. 3.2) and requires ran-
domized intertrial intervals (“jitter”), which can be easily 
obtained by adding “null” (baseline) trials when trial sequences 
are created for an experiment. Note, however, that single-trial 
analyses are only possible when using a slow event-related 

design. While adding null trials and simple permutations of 
trial types produce already good event sequences for rapid 
event-related designs, statistical power can be maximized by 
using more advanced randomization procedures (Wager and 
Nichols 2003; Maus et  al. 2010b). In general, block- and 
event-related designs can be statistically analyzed using the 
same mathematical principles (see Sect. 3.3.3).

It is important to note that conventional fMRI data does not 
provide an absolute signal of brain activity limiting the quan-
titative interpretation of results. The major part of the signal 
amplitude is related to proton density and T2 tissue contrast 
varying across brain regions within and between subjects. 
Small BOLD-related signal fluctuations, thus, neither have a 
defined origin nor a unit. In light of these considerations, sig-
nal strengths in main experimental conditions cannot be inter-
preted absolutely but have to be assessed relative to the signal 
strength in other main or control conditions within voxels. As 
a general control condition, many fMRI experiments contain 
a baseline (“rest,” “fixation”) condition with “no task” for the 
subject. Such simple control conditions allow analyzing brain 
activity that is common in multiple main conditions that 
would not be detectable when only comparisons between 
main conditions could be performed. More complex experi-
mental (control) conditions differ from the main condition(s) 
only in specific cognitive component allowing isolating brain 
responses specific to that component.

Responses to main conditions are often expressed as per-
cent signal change relative to a baseline condition. 
Furthermore, it is recommended to vary conditions within 
subjects – and even within runs – since the lack of an absolute 
signal level increases variability when comparing effects 
across runs, sessions, or subjects. Some experiments require 
a between subjects design, including comparisons of 
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Slow event-related design, constant ITI
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Volume scans

Fig. 10  In a block design (upper row), trials (events) belonging to the 
same condition are grouped together and are separated by a baseline 
block. In this example, two blocks of two main conditions (green  – 
condition 1, violet  – condition 2) are depicted. In slow event-related 

designs, trials of different conditions appear in randomized order and 
are spaced sufficiently far apart to avoid largely overlapping BOLD 
responses. Optimal intertrial intervals (ITIs) are about 12 s
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responses between different subject groups, for example, 
males vs. females or treatment group vs. control group. Note 
that the BOLD signal measured with conventional fMRI 
may be affected by medications that modify the neurovascu-
lar coupling, for example, by increasing or decreasing base-
line cerebral blood flow (CBF). In order to obtain more 
quantitative evaluation of activation responses, it is, thus, 
recommended for patient studies to combine standard BOLD 
measurements with CBF measurements using arterial spin 
labeling (ASL) techniques (e.g., Buxton et al. 2004).

3.2	 �Basic Analysis Steps

3.2.1	 �Two Views on fMRI Data Sets
In order to better understand different fMRI data analysis 
steps, two different views on the recorded four-dimensional 
data sets are helpful. In one view (Fig. 11a), the 4D data is 

conceptualized as a sequence of functional volumes  
(3D images). This view is very useful to understand spatial 
analysis steps. During 3D motion correction, for example, 
each functional volume of a run is aligned to a selected refer-
ence volume by adjusting rotation and translation parameters. 
The second view focuses on time courses of individual voxels 
(“voxel” = “volume element” analogous to “pixel” = picture 
element). This second view (Fig.  11b) helps to understand 
those preprocessing and statistical procedures, which process 
time courses of individual voxels. Most standard statistical 
analysis procedures including the general linear model 
(GLM) operate in this way. In a GLM analysis, for example, 
the data is processed “voxel-wise” (univariate) by fitting a 
model to the time course of each voxel independently.

3.2.2	 �Preprocessing of Functional Data
In order to reduce artifact and noise-related signal compo-
nents, a series of preprocessing operations is typically per-
formed prior to statistical data analysis. The most essential 
preprocessing steps are (1) head motion detection and cor-
rection, (2) slice scan timing correction, (3) removal of linear 
and nonlinear trends in voxel time courses, and (4) spatial 
and temporal smoothing of the data.

3.2.2.1	 Detection and Correction of Head Motion
The quality of fMRI data is strongly hampered in the pres-
ence of substantial head movements. Data sets are usually 
rejected for further analysis if head motion exceeds 5 mm. 
Although head motion can be corrected in image space, dis-
placements of the head reduce the homogeneity of the mag-
netic field, which is fine-tuned (“shimmed”) prior to 
functional scans for the head position at that time. If head 
movements are small, 3D motion correction is an important 
step to improve data quality for subsequent statistical data 
analysis. Motion correction operates by selecting a functional 
volume of a run (or a volume from another run of the same 
scanning session) as a reference to which all other functional 
volumes are aligned. Most head motion algorithms describe 
head movements by six parameters assessing translation (dis-
placement) and rotation at each time point with respect to the 
reference volume. These six parameters are appropriate to 
characterize motion of rigid bodies, since any spatial dis-
placement of rigid bodies can be described by translation 
along the x-, y-, and z-axes and rotation around these axes. 
The values of these six parameters are estimated iteratively 
by analyzing how a source volume should be translated and 
rotated in order to better align with the reference volume; 
after applying a first estimate of the parameters, the proce-
dure is repeated to improve the “fit” between the transformed 
(motion-corrected) and target (reference) volume. A similar-
ity or error measure quantifies how good the transformed vol-
ume fits the reference volume. An often-used error measure is 
the sum of squared intensity differences at corresponding 
positions in the reference volume and the transformed 
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Fig. 11  During functional MRI measurements, a set of slices, often 
covering the whole brain, is scanned repeatedly over time. Although the 
repeated slice measurements look almost identical, small task-related 
signal fluctuations may occur at different brain regions at different 
moments in time (a). To visualize these subtle fluctuations, the time 
course of any desired brain region (region-of-interest, ROI) may be 
depicted (b). The smallest separate brain region one can select to dis-
play a time course in a two-dimensional image (slice) is called pixel 
(picture element) while the smallest region in a three-dimensional 
“image” is called voxel (volume element)
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volume. The iterative adjustment of the parameter estimates 
stops if no further improvement can be achieved, that is, 
when the error measure reaches a minimum. After the final 
motion parameters have been detected by the iterative proce-
dure, they can be applied to the source volume to produce a 
motion-corrected volume replacing the original volume in the 
output (motion-corrected) data set. For visual inspection, 
fMRI software packages are usually presenting line plots of 
the three translation and three rotation parameters across time 
showing how the estimated values change from volume to 
volume. The obtained parameter time courses may also be 
integrated in subsequent statistical data analysis with the aim 
to remove residual motion artifacts (for details, see Sect. 3.3).

Note that the assumption of a rigid body is not strictly valid 
for fMRI data since the individual slices of a functional vol-
ume are not scanned in parallel. Since abrupt head motions 
may occur at any moment in time, the assumption of a rigid 
body is violated. Imagine, for example, that a subject does not 
move while the first five slices of a functional volume are 
scanned, then moves 2 mm along the y-axis, and then lies still 
until scanning of that volume has been completed. The six 
parameters of a rigid body approach are not sufficient to cap-
ture such “within-volume” motion correctly. Fortunately, head 
movements from volume to volume are typically small and the 
assumption of a moving rigid body is, thus, largely valid.

3.2.2.2	 Slice Scan Time Correction
For statistical analysis, a functional volume is usually consid-
ered as measured at the same time point. Individual slices (or a 
few slices when using state-of-the-art “multiband” sequences) 
of a functional volume are, however, scanned sequentially in 
standard 2D functional (EPI) measurements, that is, each slice 
(or set of slices in multiband sequences) is obtained at a different 
time point within a functional volume measurement. For a func-
tional volume of 30 slices and a volume TR of 3 s, for example, 
the data of the last slice is measured almost 3 s later than the data 
of the first slice. Despite the sluggishness of the hemodynamic 
response (Fig. 8), an imprecise specification of time in the order 
of 3 s will lead to suboptimal statistical analysis, especially in 
event-related designs. It is, thus, desirable to preprocess the data 
in such a way that the resulting processed data appears as if all 
slices of a functional volume were measured at the same moment 
in time. Only then would it be, for example, possible to compare 
and integrate event-related responses from different brain 
regions correctly with respect to temporal parameters such as 
onset latency. In order to correct for different slice scan timings, 
the time series of individual slices are temporally “shifted” to 
match a reference time point, for example, the first or middle 
slice of a functional volume. The appropriate temporal shift of 
the time courses of the other slices is then performed by resam-
pling the original data accordingly. Since this process involves 
sampling at time points that fall between measurement time 
points, the new values need to be estimated by interpolation of 
values from past and future time points (Fig.  12). The most 

often-used interpolation methods are linear, cubic spline, and 
sinc interpolation. Note that the time points of slice scanning 
depend also on the acquisition order specified at the scanner 
console. Besides an ascending or descending order, slices are 
often scanned in an interleaved mode, that is, the odd slice num-
bers are recorded first followed by the even slice numbers. After 
appropriate temporal resampling, all slices within a functional 
volume of the new data set represent the same time point 
(Fig. 12) and can, thus, be statistically analyzed with the same 
hemodynamic response function; if slice scan time correction is 
not performed, hemodynamic response functions should be 
adjusted (shifted) on a per-slice basis.

3.2.2.3	 �Removal of Drifts and Temporal Smoothing 
of Voxel Time Series

Due to physical and physiological noise, voxel time courses 
are often nonstationary exhibiting signal drifts over time. If 
the signal rises or falls with a constant slope from beginning 
to end of a run, the drift is described as a linear trend. If the 
signal level slowly varies over time with a nonconstant slope, 
the drift is described a nonlinear trend. Since drifts describe 
slow signal changes, they can be removed by Fourier analy-
sis using a temporal high-pass filter. The original signal in 
the time domain is transformed in frequency space using the 
Fourier transform (FT). In the frequency-domain drifts can 
be easily removed because low-frequency components, 
underlying drifts, are isolated from higher-frequency compo-
nents reflecting task-related signal changes. After applying a 
high-pass filter in the frequency domain (removing low fre-
quencies), the data is transformed back into the time domain 
by the inverse Fourier transform (Fig. 13). As an alternative 
approach, drifts can be modeled and removed in the time 
domain using appropriate basis sets in a general linear model 
analysis. This approach can be performed either as a prepro-
cessing step or as part of statistical data analysis (for details, 
see Sect. 3.3.3). Removal of drifts is recommended as a pre-
processing step since it is not only relevant for statistical data 
analysis but also for the calculation of event-related time 
courses.

While less important, another temporal preprocessing 
step is temporal smoothing of voxel time courses removing 
high-frequency signal fluctuations, which are considered as 
noise. While this step increases the signal-to-noise ratio, 
temporal smoothing is not recommended when analyzing 
event-related designs since it may distort estimates of tempo-
rally relevant parameters, such as the onset or width of aver-
age event-related responses. Temporal smoothing also 
increases serial correlations between values of successive 
time points that need to be corrected (see Sect. 3.3.3.6).

3.2.2.4	 Spatial Smoothing
To further enhance the signal-to-noise ratio, the data is often 
spatially smoothed by convolution with a 3D Gaussian ker-
nel. In this process, each voxel is replaced by a weighted 
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Fig. 12  During slice scan time correction, slices within each functional 
volume (black rectangles) are “shifted in time” resulting in a new time 
series (violet rectangles) in which all slices of a functional volume are 
virtually measured at the same moment in time. To calculate intensity 
values at time points falling in-between measured time points, past and 

future values have to be integrated typically using sinc or linear 
interpolation. For correct interpolation, the volume TR, slice TR, and 
slice scanning order must be known. (a) Five slices are scanned in 
ascending order. (b) Five slices are scanned in interleaved order

average value calculated across neighboring voxels. The 
shape and width of the Gaussian kernel determines the 
weights used to multiply the values of voxels in the neigh-
borhood, that is, weights decrease with increasing distance 
from the considered voxel; voxels further apart from the cen-
ter will, thus, contribute less to the weighted average than 
voxels close to the center of the considered voxel. Note that 
smoothing reduces the spatial resolution of the data and 
should be therefore applied with care. Many studies, how-
ever, aim to detect regions larger than a few voxels, that is, 
brain areas in the order of 1 cm3 or larger. Under these condi-
tions, spatial smoothing with an appropriate kernel width of 
4–8  mm is useful since it suppresses noise and enhances 
task-related signals. Spatial smoothing also increases the 
extent of activated brain regions, which is exploited in the 
context of group analyses (see Sect. 3.5) facilitating the inte-
gration of signals from corresponding but not perfectly 
aligned brain regions.

From the description and discussion of standard 
preprocessing steps, it should have become clear that there 
are no universally correct criteria to choose preprocessing 
steps and parameters because choices depend to some extent 
on the goal of data analysis. Some steps depend also on the 
experimental design of a study. If, for example, a high-pass 
temporal filter is used with a cutoff point that is too high, 

interesting task-related signal fluctuations could easily be 
removed accidentally from the data.

Besides the described core preprocessing steps, additional 
procedures may be applied. The next sections will describe 
three additional preprocessing steps.

3.2.2.5	 Mean Intensity Adjustment
Besides drifts in individual voxel time courses, the mean 
intensity level averaged across all voxels might exhibit drifts 
over time. These global drifts can be corrected by scaling the 
intensity values of a functional volume in such a way that 
the new mean value is identical to the mean intensity value 
of a reference volume. Mean intensity adjustment is not 
strictly necessary since modern scanners keep a rather con-
stant mean signal level over time. Under this condition, 
mean intensity adjustment may even produce a negative 
effect by reducing true activation effects. If, for example, 
large parts of the brain activate during a main condition as 
compared to a rest condition, the mean signal level is higher 
during active periods, and a mean intensity adjustment step 
will “correct” this. A plot of the mean signal level over time 
might be, however, helpful to identify problems of the scan-
ner quality, especially when such a plot shows “spikes,” that 
is, strong signal decreases (or increases) at isolated time 
points.

Revealing Brain Activity and White Matter Structure Using Functional and Diffusion-Weighted Magnetic Resonance Imaging



30

3.2.2.6	 Motion Correction Within and Across Runs
A scanning session typically consists of a series of runs. In 
such a situation, head movements may not only occur within 
runs but also between runs. A simple approach to align all 
functional volumes of all runs of a scanning session with each 
other consists in specifying the same reference volume for all 
runs. If a session consists, for example, of three runs, all func-
tional volumes could be aligned to the middle volume of the 

second run. Since functional data is often aligned with a 3D 
anatomical data set recorded in the same session, it is recom-
mended to choose a functional volume as a reference, which 
is recorded just before (or after) the anatomical data set. Note, 
however, that across-run motion correction works only if the 
slice positions are specified identically in all runs. If across-
run motion correction is not possible, each run can also be 
individually adjusted to a common 3D anatomical data set.

“Drift” “Signal” “High-frequency
noise”

Fourier transform

Frequency

Low-pass filter

High-pass filter

Band-pass filter

Inverse
Fourier transform

Inverse
Fourier transform

Inverse
Fourier transform

Fig. 13  Principle of temporal filtering using Fourier analysis. The 
time-domain signal can be converted in an equivalent frequency-
domain signal using the Fourier transform (upper row). In this simpli-
fied example, the composite signal (upper row, left) consists only of 
three frequencies representing a drift, signal, and high-frequency noise 

component (upper row, right). In the frequency domain, frequencies 
can be filtered to remove unwanted signal components. The filtered sig-
nal can then be converted back into the time domain using the inverse 
Fourier transform. In the second row, a low-pass filter is applied, in the 
third row a high-pass filter, and in the fourth row a band-pass filter
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3.2.2.7	 Distortion Correction of Functional Images
The BOLD sensitive GE-EPI sequence is used for most 
fMRI studies because of its speed, but it has the disadvantage 
that images suffer from signal dropouts and geometric dis-
tortions, especially in brain regions close to other tissue 
types such as air and liquor (susceptibility artifacts). These 
artifacts can be reduced substantially by using optimized EPI 
sequence parameters (e.g., Weiskopf et al. 2006) and parallel 
imaging techniques (see Sect. 1.3). A complete removal of 
dropouts and geometric distortions is, however, not possible. 
Further improvements may be obtained by distortion correc-
tion routines, which may benefit from special scans measur-
ing magnetic field distortions (e.g., field maps). The 
distortion-corrected images may improve coregistration 
results between functional and anatomical data sets enabling 
a more precise localization of brain function.

3.3	 �Statistical Analysis of Functional Data

Statistical data analysis aims at identifying those brain 
regions exhibiting increased or decreased responses in spe-
cific experimental conditions as compared to other (e.g., con-
trol) conditions. Due to the presence of physiological and 
physical noise fluctuations, observed differences between 
conditions might occur simply by chance. Note that measure-
ments provide only a sample of data, but we are interested in 
true effects in the underlying population. At the level of indi-
vidual functional scans, time points are treated as subjects, 
that is, sample corresponds to the obtained repeated measure-
ments at every TR and “population” refers to the estimated 
but unobservable true condition effects within the subject. In 
multi-subject (group) analyses, sample usually refers to esti-
mated effects obtained in each subject and population refers 
to all people from which the sample of subjects has been 
drawn. Statistical data analysis protects from wrongly accept-
ing effects in small sample data sets by explicitly assessing 
the effect of measurement variability (noise fluctuations) on 
estimated condition effects: If it is very unlikely that an 
observed effect is solely the result of noise fluctuations, it is 
assumed that the observed effect reflects a true difference 
between conditions in the population. In standard single-sub-
ject statistical fMRI analyses, this assessment is usually per-
formed independently for the time course of each voxel 
(univariate analysis). The obtained statistical values, one for 
each voxel, form a three-dimensional statistical map. In more 
complex analyses, each voxel will contain several statistical 
values reflecting estimated effects of multiple conditions. 
Since independent testing at each voxel increases the chance 
to find some voxels with strong differences between condi-
tions simply due to noise fluctuations, further adjustments for 
multiple comparisons need to be made.

3.3.1	 �From Image Subtraction to Statistical 
Comparison

Figure 14 shows two fMRI time courses obtained from two 
different brain areas of an experiment with two conditions, a 
control condition (“Rest”) and a main condition (“Stim”). 
Each condition has been measured several times.1 How can 
we assess whether the response values are higher in the main 
condition than in the control condition? One approach con-
sists in subtracting the mean value of the “Rest” condition, 
X

1
, from the mean value of the “Stim” condition, 

X d X X
2 2 1
that is: = − . Note that in this example, one 

would obtain the same mean values in both conditions and, 
thus, the same difference in cases (a) and (b). Despite the fact 
that the means are identical in both cases, the difference in 
case (b) seems to be more “trustworthy” than the difference 
in case (a) because the measured values exhibit less fluctua-
tions, that is, they vary less in case (b) than in case (a).

Statistical data analysis goes beyond simple subtraction 
by taking into account the amount of variability of the mea-
sured data points. Statistical analysis essentially asks how 
likely it is to obtain a certain effect (e.g., difference of con-
dition means) in a data sample if there is no effect at the 
population level, that is, how likely it is that an observed 
sample effect is solely the result of noise fluctuations. This 
is formalized by the null hypothesis stating that there is no 
effect, for example, no true difference between conditions 
in the population. In the case of comparing the two means 
μ1 and μ2, the null hypothesis can be formulated as H0: μ1 = 
μ2. Assuming the null hypothesis, it can be calculated how 
likely it is that an observed sample effect would have 
occurred simply by chance. This requires knowledge about 
the amount of noise fluctuations (and its distribution), 
which can be estimated from the data. By incorporating the 
number of data points and the variability of measurements, 
statistical data analysis allows to estimate the uncertainty of 
effects (e.g., mean differences) in data samples. If an effect 
is large enough so that it is very unlikely that it has occurred 
simply by chance (e.g., the probability is less than p = 0.05), 
one rejects the null hypothesis and accepts the alternative 
hypothesis stating that there exists a true effect in the popu-
lation. Note that the decision to accept or reject the null 
hypothesis is based on a probability value which has been 
accepted by the scientific community (p < 0.05). Since the 
decision to accept or reject the null hypothesis is based on 
a probability value, a statistical analysis does not prove the 
existence of an effect, it only suggests “to believe in an 
effect” if it is very unlikely that the observed effect has 

1 Note that in a real experiment, one would not just present once the 
control and main condition as in Fig. 14, but several “on-off” cycles; 
with too few repetitions, task-related response could not be distin-
guished from potential low-frequency drifts (see Sect. 3.2.2).
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occurred by chance. Note that a probability of p = 0.05 
means that if we would repeat the experiment 100 times, we 
would accept the alternative hypothesis in about five cases 
even if there would be no real effect in the population. 
Since the chosen probability value thus reflects the likeli-
hood of wrongly rejecting the null hypothesis, it is also 
called error probability. The error probability is also 
referred to as the significance level and denoted with the 
Greek letter α. If one would know that there is no effect in 
the population but one would incorrectly reject the null 
hypothesis in a particular data sample, a “false-positive” 
decision would be made (type 1 error, “false alarm”). Since 
a false-positive error depends on the chosen error probabil-
ity, it is also referred to as alpha error. If one would know 
that there is a true effect in the population but one would 
fail to reject the null hypothesis in a sample, a “false-nega-
tive” decision would be made, that is, one would miss a true 
effect (type 2 error).

3.3.2	 �t-Test and Correlation Analysis
The uncertainty of an effect is estimated by calculating the 
variance of the noise fluctuations from the data. For the case 
of comparing two mean values, the observed difference of 
the means is related to the variability of that difference result-
ing in a t statistic:

	

t
X X

X X

=
−

−

2 1

2 1
σ̂ 	

The numerator contains the calculated mean difference while 
the denominator contains the estimate of the expected vari-
ability, the standard error of the mean difference. Estimation 
of the standard error ŝ X X2 1−  involves pooling of the variances 
obtained within both conditions. Since we observe a high 

variability in case (a) of the example data (Fig. 14), we will 
obtain a small t value. Due to the small variability of the data 
points in (b), we will obtain a larger t value in this case 
(Fig. 14). The higher the t value, the less likely it is that the 
observed mean difference is just the result of noise fluctua-
tions. It is obvious that measurement of many data points 
allows a more robust estimation of this probability than the 
measurement of only a few data points. The error probability 
p can be calculated exactly from the obtained t value using the 
incomplete beta function Ix(a,b) and the number of measured 
data points N:
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If the computed error probability falls below the standard 
value (p < 0.05), the alternative hypothesis is accepted stating 
that the observed mean difference exists in the population 
from which the data points have been drawn (i.e., measured). 
In that case, one also says that the two means differ signifi-
cantly. Assuming that in our example the obtained p value 
falls below 0.05 in case (b) but not in case (a), we would only 
infer for brain area 2 that the “Stim” condition differs signifi-
cantly from the “Rest” condition.

The described mean comparison method is not the ideal 
approach to compare responses between different conditions 
since this approach is unable to capture the gradual rise and 
fall of fMRI responses, for example, when a voxel exhibits a 
strong response to a trial of condition B after having not 
responded strongly to a preceding trial of condition A.  As 
long as the temporal sampling resolution is low (volume TR 
>4 s), the mean of different conditions can be calculated eas-
ily because transitions of expected responses from different 
conditions occur within a single time point (Fig. 15). If the 
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Fig. 14  Principle of statistical data analysis. An experiment with two 
conditions (“Stim” and “Rest”) has been performed. (a) Time course 
obtained in area 1. (b) Time course obtained in area 2. Calculation and 
subtraction of mean 1 (“Rest” condition) from mean 2 (“Stim” condi-
tion) leads to the same result in (a) and (b). In a statistical analysis, the 

estimated effect (mean difference) is related to its uncertainty, which is 
estimated by the variability of the measured values within conditions. 
Since the variance within the two conditions is smaller in (b) than in 
(a), the estimated effect is more likely to correspond to a true difference 
in (b) than in (a)
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temporal resolution is high, the expected fMRI responses 
change gradually from one condition to the next due to the 
sluggishness of the hemodynamic response (Fig. 15, TR = 1 s). 
In this case, time points in the “transitional zone” cannot be 
assigned easily to different conditions. Without special treat-
ment, the mean response can no longer be easily computed 
for each condition. As a consequence, the statistical power to 
detect mean differences may be substantially reduced, espe-
cially for short blocks and events.

This problem does not occur when correlation analysis is 
used since this method allows explicitly incorporating the 
gradual increase and decrease of the expected BOLD signal. 
The predicted ideal (noise-free) time courses in Fig. 15 can 
be used as the reference function in a correlation analysis. At 
each voxel, the time course of the reference function is 
compared with the time course of the measured data from a 
voxel by calculating the correlation coefficient r, indicating 
the strength of covariation:
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Index t runs over time points (t for “time”) identifying pairs 
of temporally corresponding values from the reference (Xt) 

and data (Yt) time courses. In the numerator the mean of the 
reference and data time course is subtracted from the respec-
tive value of each data pair and the two differences are mul-
tiplied. The resulting value is the sum of these cross products, 
which will be high if the two time courses covary, that is, if 
the values of a pair are both above or below their respective 
means in most cases. The term in the denominator normal-
izes the covariation term in the numerator so that the correla-
tion coefficient lies in a range of −1 and +1. A value of +1 
indicates that the reference time course and the data time 
course go up and down in exactly the same way, while a 
value of −1 indicates that the two time courses run in oppo-
site direction (anticorrelation). A correlation value of 0 indi-
cates that the two time courses do not covary, that is, the 
value in one time course cannot be used to predict the cor-
responding value in the other time course.

While the statistical logic is the same in correlation analy-
sis as described for mean comparisons, the null hypothesis 
now corresponds to the statement that the population 
correlation coefficient ρ equals zero (H0: ρ = 0). By includ-
ing the number of data points N, the error probability can be 
computed assessing how likely it is that an observed correla-
tion coefficient would occur solely due to noise fluctuations 
in the signal time course. If this probability falls below 0.05, 
the alternative hypothesis is accepted stating that there is 
indeed significant covariation between the reference function 
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Fig. 15  Calculation of expected fMRI signals for a block- and 
event-related design. The horizontal axis of each plot represents time 
(data points). The vertical axis represents the amplitude of the mod-
eled fMRI response. The blue vertical segments correspond to inter-
vals of a single main stimulation condition; the gray segments 
correspond to a control condition. White curves show predicted 
BOLD responses. The plots in the upper row depict time courses, 
which do not take into account the delayed hemodynamic response 

profile (“box-car”). The white curves in the other plots represent the 
expected time courses after application of a standard hemodynamic 
response function (two gamma function) for a temporal resolution 
(volume TR) of 4  s (middle row) and 1  s (lower row). Correlation 
analysis is able to capture the gradual increase and decrease of 
expected time courses for short TRs while it is impossible to unam-
biguously categorize time points as belonging to stimulation vs. 
baseline conditions in the context of a t test
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and the data time course. Since the reference function is the 
result of a model assuming different response strengths in 
the two conditions (e.g., “Rest” and “Stim”), a significant 
correlation coefficient indicates that the two conditions lead 
indeed to different mean activation levels in the respective 
voxel or brain area. The statistical assessment can be per-
formed also by converting an observed r value into a corre-
sponding t value, t r N r= − −2 1 2/ .

3.3.3	 �The General Linear Model
The described t test for assessing the difference of two mean 
values is a special case of an analysis of a qualitative (cate-
gorical) independent variable. A qualitative variable is 
defined by discrete levels, for example, “stimulus on” vs. 
“stimulus off” or “male” vs. “female.” If a design contains 
more than two levels, a more general method such as analysis 
of variance (ANOVA) need to be used, which can be 
considered as an extension of the t test to more than two lev-
els and to more than one experimental factor. The described 
correlation coefficient on the other hand is suited for the 
analysis of quantitative independent variables. A quantita-
tive variable may be defined by any gradual time course. If 
more than one reference time course has to be considered, 
multiple regression analysis can be used, which can be con-
sidered as an extension of the simple linear correlation anal-
ysis. The general linear model2 (GLM) is mathematically 
identical to a multiple regression analysis but stresses its 
suitability for both multiple qualitative and multiple quanti-
tative variables. The GLM is suited to implement any para-
metric statistical test with one dependent variable, including 
any factorial ANOVA design as well as designs with a mix-
ture of qualitative and quantitative variables (covariance 
analysis, ANCOVA). Because of its flexibility to incorporate 
multiple quantitative and qualitative independent variables, 
the GLM has become the core tool for fMRI data analysis 
after its introduction into the neuroimaging community by 
Friston and colleagues (Friston et al. 1994, 1995). The fol-
lowing sections briefly describe the mathematical back-
ground of the GLM in the context of fMRI data analysis; a 
comprehensive treatment of the GLM can be found in the 
standard statistical literature, for example, Draper and Smith 
(1998) and Kutner et al. (2005).

From the perspective of multiple regression analysis, the 
GLM aims to “explain” or “predict” the variation of a depen-
dent variable in terms of a linear combination (weighted 
sum) of several reference functions. The dependent variable 
corresponds to the observed fMRI time course of a voxel and 
the reference functions correspond to time courses of 
expected (noise-free) fMRI responses for different conditions 

2 In the fMRI literature, the term “general linear model” refers to its 
univariate version where “univariate” refers to the number of dependent 
variables (one). In its general form, the general linear model has been 
defined for multiple dependent variables, that is, it encompasses tests as 
general as multivariate covariance analysis (MANCOVA).

of the experimental paradigm. The reference functions are 
also called predictors, regressors, explanatory variables, 
covariates, or basis functions. A set of specified predictors 
forms the design matrix, also called the model. A predictor 
time course is typically obtained by convolution of a “box-
car” time course with a standard hemodynamic response 
function (Figs. 8 and 15). A box-car time course is usually 
defined by setting values to 1 at time points at which the mod-
eled condition is defined (“on”) and 0 at all other time points.

Each predictor time course Xi gets an associated coefficient 
or beta weight bi that quantifies the contribution of a predictor 
in explaining variance in the voxel time course y. The voxel 
time course y is modeled as the sum of the defined predictors, 
each multiplied with the associated beta weight b. Since this 
linear combination will not perfectly explain the data due to 
noise fluctuations, an error value e is added to the GLM sys-
tem of equations with n data points and p predictors:

	

y b b X b X e

y b b X b X e

y b b X

p p

p p

n n

1 0 1 11 1 1

2 0 1 21 2 2

0 1 1

= + + + +
= + + + +

= +

�
�

� � �
++ + +� b X ep np n 	

The y variable on the left side corresponds to the data, that is, 
the measured time course of a single voxel. Time runs from 
top to bottom, that is, y1 is the measured value at time point 1, 
y2 the measured value at time point 2, and so on. The voxel 
time course (left column) is “explained” by the terms on the 
right side of the equation. The first column on the right side 
corresponds to the first beta weight b0. The corresponding 
predictor time course X0 has a value of 1 for each time point 
and is, thus, also called “constant.” Since multiplication with 
1 does not alter the value of b0, this predictor time course (X0) 
does not explicitly appear in the equation. After estimation 
(see below), the value of b0 typically represents the signal 
level of the baseline condition and is also called intercept. 
While its absolute value is not very informative in the context 
of fMRI data, it is important to include the constant predictor 
in a design matrix since it allows the other predictors to 
model small condition-related fluctuations as increases or 
decreases relative to the baseline signal level. The other pre-
dictors on the right-side model the expected time courses of 
different conditions. For multifactorial designs, predictors 
may be defined coding combinations of condition levels in 
order to estimate main and interaction effects. The beta 
weight of a predictor scales the associated predictor time 
course and reflects the unique contribution of that predictor in 
explaining part of the variance in the voxel time course. 
While the exact interpretation of beta values depends on the 
details of the design matrix, a large positive (negative) beta 
weight typically indicates that the voxel exhibits strong acti-
vation (deactivation) during the modeled experimental condi-
tion relative to baseline. All beta values together characterize 
a voxel’s “preference” for one or more experimental 
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conditions. The last column in the system of equations 
contains error values, also called residuals, prediction errors, 
or noise. These error values quantify the deviation of the 
measured voxel time course from the predicted time course.

The GLM system of equations may be expressed ele-
gantly using matrix notation. For this purpose, the voxel time 
course, the beta values, and the residuals are represented as 
vectors and the set of predictors as a matrix:
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Representing the indicated vectors and matrix with single 
letters, we obtain this simple form of the GLM system of 
equations:

	 y = Xb + e 	

In this notation, the matrix X represents the design matrix 
containing the predictor time courses as column vectors. The 
beta values now appear in a separate vector b. The term Xb 
indicates matrix-vector multiplication. Figure  16 shows a 
graphical representation of the GLM.  Time courses of the 
signal, predictors, and residuals have been arranged in 
column form with time running from top to bottom as in the 
system of equations.

Given the data y and the design matrix X, the GLM fitting 
procedure has to find a set of beta values explaining the data as 
good as possible. The time course values y̆  predicted by the 
model are obtained by the linear combination of the predictors:

	 ŷ Xb= 	

A good fit would be achieved with beta values leading to pre-
dicted values y̆  that are as close as possible to the measured 
values y. By rearranging the system of equations, it is evident 
that a good prediction of the data implies small error values:

	

e y Xb

y y

=

= ^

−
− 	

An intuitive idea would be to find those beta values minimizing 
the sum of error values. Since the error values contain both 
positive and negative values (and because of additional statisti-
cal considerations), the GLM procedure does not estimate beta 
values minimizing the sum of error values but finds those beta 
values minimizing the sum of squared error values:

	
e e y Xb y Xb′ = −( )′ −( ) → min 	

The term eʹe is the vector notation for the sum of squares 

t

N

te
=
∑
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
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1

2 . The apostrophe symbol denotes transposition of a 

Estimate!

b0  x b1  x b2  x

T
im

e

fMRI signal
= data

Design matrix
= model

Residuals
= error

= + + +

Fig. 16  Graphical display of a general linear model. Time is running 
from top to bottom. Left side shows observed voxel time course 
(data). The model (design matrix) consists of three predictors, the 
constant and two main predictors (middle part). Filled green and red 
rectangles depict stimulation time while the white curves depict 
expected BOLD responses. Expected responses are also shown in 

graphical view using a black-to-white color range (right side of each 
predictor plot). Beta values have to be estimated (top) to scale the 
expected responses (predictors) in such a way that their weighted 
sum predicts the data values as good as possible (in the least squares 
sense, see text). Unexplained fluctuations (residuals, error) are 
shown on the right side
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vector (or matrix), that is, a row vector version of e is multi-
plied by a column vector version of e resulting in the sum of 
squared error values et. The optimal beta weights minimizing 
the squared error values (the “least squares estimates”) are 
obtained non-iteratively by the following equation:

	
b X X X y= ′( ) ′−1

	

The term in brackets contains a matrix-matrix multiplication 
of the transposed design matrix X′ and the non-transposed 
design matrix X. This term results in a square matrix with a 
number of rows and columns corresponding to the number of 
predictors. Each cell of the XʹX matrix contains the scalar 
product of two predictor vectors. The scalar product is obtained 
by summing all products of corresponding entries of two vec-
tors corresponding to the (non-mean normalized) calculation 
of covariance. This XʹX matrix, thus, corresponds to the (non-
mean normalized) predictor variance-covariance matrix.

The resulting square matrix is inverted as denoted by the 
“−1” symbol. The resulting matrix (XʹX)−1 plays an essential 
role not only for the calculation of beta values but also for test-
ing the significance of contrasts (see below). The remaining 
term on the right side, Xʹy, evaluates to a vector containing as 
many elements as predictors. Each element of this vector is 
the scalar product (non-mean normalized covariance term) of 
a predictor time course with the observed voxel time course.

An important property of the least squares estimation method 
(following from the independence assumption of the errors, see 
below) is that the variance of the measured time course can be 
decomposed into the sum of the variance of the predicted values 
(model-related variance) and the variance of the residuals:

	
Var = Var +Var^y y e( ) ( ) ( ) 	

Since the variance of the voxel time course is fixed, minimiz-
ing the error variance by least squares corresponds to maxi-
mizing the variance of the values explained by the model. 
The square of the multiple correlation coefficient R provides 
a measure of the proportion of the variance of the data which 
can be explained by a specified model:

	

R =
Var 

Var
=

Var

Var + Var
2

^ ^y
y

y

ŷ e

( )
( )

( )
( ) ( ) 	

The values of the multiple correlation coefficient vary 
between 0 (no variance explained) and 1 (all variance 
explained by the model). A coefficient of R = 0.7, for exam-
ple, corresponds to an explained variance of 49 % (0.7* 0.7). 
An alternative way to calculate the multiple correlation coef-
ficient consists in computing a standard correlation coeffi-
cient between the predicted values and the observed values: 
R r

y y
= ^ . This equation offers another view on the meaning 

of the multiple correlation coefficient quantifying the 
interrelationship (correlation) of the combined set of 
optimally weighted predictor variables with the observed 
time course.

3.3.3.1	 GLM Diagnostics
Note that if the design matrix (model) does not contain all rel-
evant predictors, condition-related increases or decreases in the 
voxel time course will be explained by the error values instead 
of the model. It is, therefore, important that the design matrix is 
constructed with all expected effects, which may also include 
reference functions not related to experimental conditions, for 
example, estimated motion parameters or drift predictors if not 
removed during preprocessing (see Sect. 3.2.2). In case that all 
expected effects are properly modeled, the residuals should 
reflect only “pure” noise fluctuations. If some effects are not 
(correctly) modeled, a plot of the residuals may show low-
frequency fluctuations instead of a stationary noise time course. 
A visualization of the residuals (for selected voxels or regions-
of-interest) is, thus, a good diagnostic to assess whether the 
design matrix has been defined properly.

3.3.3.2	 GLM Significance Tests
The multiple correlation coefficient is an important measure 
of the “goodness of fit” of a GLM. In order to test whether a 
specified model significantly explains variance in a voxel 
time course, a F statistic can be calculated for an R value 
with p−1 degrees of freedom in the numerator and n−p 
degrees of freedom in the denominator:

	

F
R n p

R p
n n p− − =

−( )
−( ) −( )1

2

21 1
,

	

An error probability value p can then be obtained for the cal-
culated F statistics. A high F value (p value <0.05) indicates 
that the experimental conditions as a whole have a significant 
modulatory effect on the data time course (omnibus effect).

While the overall F statistic answers the question whether 
the specified model significantly explains a voxel’s time 
course, it does not allow to asses which individual conditions 
differ significantly from each other. Comparisons between 
conditions can be formulated as contrasts, which are linear 
combinations of beta values corresponding to null hypotheses. 
To test, for example, whether activation in a single condition 1 
deviates significantly from baseline, the null hypothesis would 
be that there is no effect in the population, that is, H0: b1 = 0. To 
test whether activation in condition 1 is significantly different 
from activation in condition 2, the null hypothesis would state 
that the beta values of the two conditions would not differ: H0 
: b1 = b2  or H0 : (+1)b1 + (−1)b2 = 0. To test whether the mean of 
condition 1 and condition 2 differs from condition 3, the fol-
lowing contrast could be specified: H0 : (b1 + b2)/2 = b3  or H0 : 

R. Goebel



37

(+1)b1 + (+1)b2 + (−2)b3 = 0. The values used to multiply the 
respective beta values are often written as a contrast vector c. 
In the latter example,3 the contrast vector would be written as 
c = [+1 + 1 − 2]. Using matrix notation, the linear combination 
defining a contrast can be written as the scalar product of con-
trast vector c and beta vector b. The null hypothesis can then 
be simply described as cʹb = 0. For any number of predictors k, 
such a contrast can be tested with the following t statistic with 
n−p degrees of freedom:

	

t
Var

= ′

( ) ′ ′( )−
c b

e c X X c
1

	

The numerator of this equation contains the described scalar 
product of the contrast and beta vector. The denominator 
defines the standard error of cʹb, that is, the variability of the 
estimate due to noise fluctuations. The standard error depends 
on the variance of the residuals Var(e) as well as on the 
design matrix X. With the known degrees of freedom, a t 
value for a specific contrast can be converted in an error 
probability value p using the equation shown earlier. Note 
that the null hypotheses above were formulated as c’b = 0 
implying a two-sided alternative hypothesis, that is, Ha: 
c’b ≠ 0. For one-sided alternative hypotheses, for example, 
Ha: b1 > b2, the obtained p value from a two-sided test can be 
simply divided by 2 to get the p value for the one-sided test. 
If this p value is smaller than 0.05 and if the t value is posi-
tive (since b1 is assumed to be larger than b2), the null 
hypothesis may be rejected.

3.3.3.3	 Conjunction Analysis
Experimental research questions often lead to specific 
hypotheses, which can best be tested by the conjunction of 
two or more contrasts. As an example, it might be interesting 
to test with contrast c1 whether condition 2 leads to signifi-
cantly higher activity than condition 1 and with contrast c2 
whether condition 3 leads to significantly higher activity 
than condition 2. This question could be tested with the fol-
lowing conjunction contrast:

	
c c1 ∧ = − +[ ]∧ − +[ ]2 1 1 0 0 1 1 . 	

Note that a logical “AND” operation is defined for Boolean 
values (true/false) but that t values associated with individual 
contrasts can assume any real value. An appropriate way to 
implement a logical “AND” operation for conjunctions of 
contrasts with continuous statistical values is to use a mini-

3 Note that the constant term is treated as a confound and it is not 
included in contrast vectors, i.e., it is implicitly assumed that b0 is mul-
tiplied by 0  in all contrasts. To include the constant explicitly, each 
contrast vector must be expanded by one entry at the beginning or end.

mum operation, that is, the significance level of the 
conjunction contrast is identical to the significance level of 
the contrast with the smallest t value: tc1 ∧ c2 = min(tc1,tc2). For 
more details about conjunction testing, see Nichols et  al. 
(2005).

3.3.3.4	 Multicollinear Design Matrices
Multicollinearity exists when predictors of the design 
matrix are highly intercorrelated. To assess multicollinear-
ity, pair-wise correlations between predictors are not suffi-
cient. A better way to detect multicollinearity is to regress 
each predictor variable on all the other predictor variables 
and examine the resulting R2 values. Perfect or total multi-
collinearity occurs when a predictor of the design matrix is 
a linear function of one or more other predictors, that is, 
when predictors are linearly dependent on each other. While 
in this case solutions for the GLM system of equations still 
exist, there is no unique solution for the beta values. From a 
mathematical perspective of the GLM, the square matrix 
XʹX becomes singular, that is, it loses (at least) one dimen-
sion, and is no longer invertible in case that X exhibits per-
fect multicollinearity. Matrix inversion is required to 
calculate the essential term (XʹX)−1 used for computing beta 
values and standard error values (see above). Fortunately, 
special methods, including singular value decomposition 
(SVD), allow obtaining (pseudo-) inverses for singular 
(rank-deficient) matrices. Note, however, that in this case 
the absolute values of beta weights may be difficult to inter-
pret, and statistical hypothesis tests must meet special 
restrictions.

In fMRI design matrices, multicollinearity occurs if all 
conditions are modeled as predictors in the design matrix 
including the baseline (rest, control) condition. Without the 
baseline condition, multicollinearity is avoided and beta 
weights are obtained which are easily interpretable. As an 
example consider the case of two main conditions and a rest 
condition. If we would not include the rest condition (recom-
mended), the design matrix would not be multicollinear and 
the two beta weights b1 and b2 would be interpretable as 
increase or decrease of activity relative to the baseline signal 
level modeled by the constant term (Fig. 17, right). Contrasts 
could be specified to test single beta weights, for example, 
the contrast c = [1  0] would test whether condition 1 leads to 
significant (de)activation. Furthermore, the two main condi-
tions could be compared with the contrast c = [−1  1], which 
would test whether condition 2 leads to significantly more 
activation than condition 1. If the design matrix would 
include a predictor for the rest condition, we would obtain 
perfect multicollinearity and the matrix XʹX would be singu-
lar. Using a pseudo-inverse or SVD approach, we would 
obtain now three beta values (plus the constant), one for the 
rest condition, one for main condition 1, and one for main 
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condition 2. While the values of beta weights might not be 
interpretable, correct inferences of contrasts can be obtained 
if an additional restriction is met, typically that the sum of 
the contrast coefficients equals 0. To test whether main 
condition 1 differs significantly from the rest condition, the 
contrast c = [−1 + 1  0] would now be used. The contrast 
c = [0 − 1 + 1] would be used to test whether condition 2 leads 
to more activation than condition 1.

3.3.3.5	 GLM Assumptions
Given a correct model (design matrix), the standard esti-
mation procedure of the GLM  – ordinary least squares 
(OLS)  – operates correctly only under the following 
assumptions. The population error values ε must have an 
expected value of zero and constant variance at each time 
point i:

	
E ie[ ] = 0 	

	
Var e si[ ] = 2 	

Furthermore, the error values are assumed to be 
uncorrelated:

	 cov ,e ei j for all i j( ) = ≠0 	

To justify the use of t and F distributions in hypothesis tests, 
errors are further assumed to be normally distributed:

	 e si N~ ,0 2( ) 	

In summary, errors are assumed to be normal independent 
and identically distributed (often abbreviated as “normal 
i.i.d.”). Under these assumptions, the solution obtained by 
the least squares method is optimal in the sense that it pro-
vides the most efficient unbiased estimation of the beta val-
ues. While the OLS approach is robust with respect to small 
violations, assumptions should be checked. In the context of 
fMRI measurements, the assumption of uncorrelated error 
values requires special attention.

3.3.3.6	 Correction for Serial Correlations
In fMRI data, one typically observes serial correlations, that 
is, high values are followed more likely by high values than 
low values and vice versa. The assessment of these serial 
correlations is not performed on the original voxel time 
course but on the time course of the residuals since serial 
correlations in the recorded signal are expected to some 

Residuals

Design matrix

Design matrix

Design matrix

Data

Predicted

b0 = 101.9 b0 = 101.6 b0 = 100.2

b1 = 3.4

b2 = 5.5

b1 = 1.8

Fig. 17  Three GLMs fitting the same data with different design 
matrices. Top row shows residuals, second row predicted (green) and 
observed (blue) voxel time course. The design matrix on the left 
contains only one predictor, the constant term. The estimated beta 
weight (b0) scales the constant term to the mean signal level. The 
design matrix in the middle adds a predictor for green main condi-
tion. The estimated beta weights (b0, b1) scale the predictors and the 

weighted sum explains more variance than first model, but residual 
variance is still high. The third model (right) adds a predictor for red 
main condition. The estimated beta weights (b0, b1, b2) scale the pre-
dictors and weighted sum now explains all task-related signal fluc-
tuations. The residuals reflect now only noise. The example 
highlights the importance of modeling all known effects in the 
design matrix
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extent from slow task-related fluctuations. Task-unrelated 
serial correlations most likely occur because data points are 
measured in rapid succession, that is, they are also observed 
when scanning phantoms. Likely sources of temporal corre-
lations are physical and physiological noise components 
such as hardware-related low-frequency drifts, oscillatory 
fluctuations related to respiration and cardiac pulsation, and 
residual head motion artifacts. Serial correlations violate the 
assumption of uncorrelated errors (see section above). 
Fortunately the beta values estimated by the GLM are correct 
estimates (unbiased) even in presence of serial correlations. 
The standard errors of the betas are biased, however, leading 
to “inflated” test statistics, that is, t or F values are higher 
than they should be. This can be explained by considering 
that the presence of serial correlations (serial dependence) 
reduces the true number of independent observations (effec-
tive degrees of freedom) that will, thus, be lower than the 
nominal number of observations. Without correction, the 
degrees of freedom are systematically overestimated leading 
to an underestimation of the error variance resulting in 
inflated statistical values, that is, t or F values are too high. It 
is, thus, necessary to correct for serial correlations in order to 
obtain valid error probabilities. Serial correlations can be 
corrected using several approaches. In pre-whitening 
approaches, autocorrelation is first estimated and removed 
from the data; the pre-whitened data can then be analyzed 
with a standard OLS GLM solution. In pre-coloring 
approaches (e.g., Friston et al. 1995), a strong autocorrela-
tion structure is imposed on the data by temporal smoothing 
and degrees of freedom are adjusted according to the imposed 
(known) autocorrelation. The pre-coloring (temporal 
smoothing) operation acts, however, as a low-pass filter and 
may weaken experimentally induced signals of interest and 
is thus not the preferred method. The pre-whitening approach 
can be expressed in terms of a more powerful estimation pro-
cedure than OLS called generalized least squares (GLS, 
Searle et  al. 1992). As opposed to the OLS method, GLS 
works correctly also in case that error values exhibit correla-
tions or when error variances are not homogeneous. Note, 
however, that this more powerful estimation approach only 
provides correct results in case that the true (population) 
variances and covariances of the error values are known. 
With the known error covariance matrix V, the betas and 
their (co-)variances can be calculated with GLS as follows:

	

b X V X X V y

b X V X

= ′( ) ′

( ) = ′( )

−

−

− −

−
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1
cov 	

With the obtained b values and their covariances, any contrast 
can then be assessed statistically as described above for the 
OLS method. When comparing the GLS solution with the OLS 
solution, it is evident that the inverse of the population error 

covariance matrix V−1 is needed to properly treat the effect of 
covariance of the errors on the parameter estimates (betas and 
their covariances). Note also that when setting V as a diagonal 
matrix (entries outside the main diagonal are zero, i.e., no 
covariation of errors) with equal variance values (all values of 
the main diagonal are the same, e.g., 1), the GLS equation 
reduces to the OLS solution, that is, the V−1 term vanishes.

Since the population covariance matrix of the error values 
V is usually not known, it needs to be estimated from the data 
itself. Since there are too many degrees of freedom (number 
of time points squared: n2), V cannot be estimated for the 
general case of arbitrary covariance matrices. It is, however, 
often possible to estimate V for special cases where only 
some parameters need to be estimated. The two most impor-
tant special cases in the context of fMRI data analysis are the 
treatment of serial correlations (see below) and the treatment 
of unequal variances when integrating data from different 
subjects in the context of mixed-effects group analyses.

A simple pre-whitening procedure was developed (Cochrane 
and Orcutt 1949; Bullmore et al. 1996) independently from the 
GLS approach but can be shown to be identical to a GLS solu-
tion. The procedure assumes that the errors follow a first-order 
autoregressive, or AR(1), process. After calculation of a GLM 
using OLS, the amount of serial correlation a1 is estimated 
using pairs of successive residual values (et, et + 1), that is, the 
residual time course is correlated with itself shifted by one time 
point (lag = 1). In the second step, the estimated serial correla-
tion is removed from the measured voxel time course by calcu-
lating the transformed time course yt

n = yt + 1 − a1 ⋅ yt. The 
superscript “n” indicates the values of the new, adjusted time 
course. The same calculation is also applied to each predictor 
time course resulting in an adjusted design matrix Xn. In the 
third step, the GLM is recomputed using the adjusted voxel 
time course and adjusted design matrix resulting in correct 
standard errors for beta estimates and, thus, correct signifi-
cance levels for contrasts (of course under the assumption that 
the AR(1) model is correct). If autocorrelation is not suffi-
ciently reduced in the new residuals, the procedure can be 
repeated. If performed using the GLS approach, the first step is 
identical to the Cochrane-Orcutt method, that is, OLS is used 
to fit the GLM and the obtained residuals are used to estimate 
the value of the AR(1) term. The adjustment of the time course 
yt and the design matrix described above need, however, not be 
performed explicitly since these adjustments are handled 
implicitly in the next step by using a V−1 term in the GLS equa-
tions that contains values in the off-diagonal elements derived 
from the estimated serial correlation term.

While an AR(1) autocorrelation model substantially 
reduces serial correlations in fMRI data, better results are 
obtained when using an AR(2) model, that is, both first-order 
and second-order autocorrelation terms should be estimated 
and used to construct the error covariance matrix V for GLS 
estimation. Since serial correlations differ across voxels, 
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serial correlation correction should be performed separately 
for each voxel time course as opposed to the (also used) 
estimation of serial correlation values from multiple aver-
aged (neighboring) voxel time courses. An AR(2) serial cor-
relation model applied separately for each voxel time course 
has been recently shown to be the most accurate approach to 
treat serial correlations when compared to other models 
(Lenoski et al. 2008).

3.3.4	 �Creation of Statistical Maps
The statistical analysis steps were described for a single 
voxel’s time course since standard statistical methods are 
performed independently for each voxel (univariate “voxel-
wise” analysis). Since a typical fMRI data set contains sev-
eral hundred thousand voxels, a statistical analysis is 
performed independently hundred thousands of times. 
Running a GLM, for example, results in a set of estimated 
beta values attached to each voxel. A specified contrast c’bv 
will be performed using the same contrast vector c for each 
voxel v, but it will use a voxel’s vector of beta values bv (and 
the voxel’s error term) to obtain voxel-specific t and p values. 
Statistical test results for individual voxels are integrated in a 
3D data set called a statistical map. To visualize a statistical 
map, the obtained values, for example, contrast t values, can 
be shown at the location of each voxel replacing anatomical 
intensity values shown as default. As a further useful condi-
tion, the statistical values are often only shown for those vox-
els exceeding a specified statistical threshold. This allows 
visualizing anatomical information in large parts of the brain 
while statistical information is shown (overlaid) only in 
those regions exhibiting suprathreshold (usually statistically 
significant) signal modulations. While anatomical informa-
tion is normally visualized using a range of gray values, 
suprathreshold statistical test values are typically visualized 
using multiple colors, for example, a red-to-yellow range for 
positive values and a green-to-blue range for negative values. 
With these colors, a positive (negative) t value just passing a 

specified threshold would be colored in red (green), while a 
very high positive (negative) t value would be colored in yel-
low (blue) (Fig. 18).

3.3.5	 �The Multiple Comparison Problem
An important issue in fMRI data analysis is the specifica-
tion of an appropriate threshold for statistical maps. If 
there would be only a single voxel’s data, a conventional 
threshold of p < 0.05 (or p < 0.01) could be used to asses 
significance of an observed effect quantified by an R, t, or 
F statistic. Running the statistical analysis separately for 
each voxel creates, however, a massive multiple compari-
son problem. If a single test is performed, the conventional 
threshold protects from wrongly declaring a voxel as sig-
nificantly modulated (false positive) with a probability of 
p < 0.05 when there is no effect in the population (α error). 
Note that in case that the null hypothesis (no effect) holds, 
an adopted error probability of p = 0.05 implies that if the 
same test would be repeated 100 times, the alternative 
hypothesis would be accepted wrongly on average in five 
cases, that is, we would expect 5 % of false positives. If we 
assume that there is no real effect in any voxel time course, 
running a statistical test spatially in parallel is statistically 
identical to repeating the test 100,000 times at a single 
voxel (each time with new measured data). It is evident 
that this would lead to about 5,000 false positives, that is, 
about 5,000 voxels would be labeled “significant” although 
these voxels would reach the 0.05 threshold purely due to 
chance.

Several methods have been suggested to control this mas-
sive multiple comparison problem. The Bonferroni correc-
tion method is a simple multiple comparison correction that 
controls the α error across all voxels, and it is therefore called 
a family-wise error (FWE) correction approach. The method 
calculates single-voxel threshold values in such a way that an 
error probability of 0.05 is obtained at the global level. With 
N independent tests, this is achieved by using a statistical 

p < 0.05 p < 0.0003 p < 0.000002

No correction FDR corrected Bonferroni correcteda b c

Fig. 18  Comparison of two methods used to solve the multiple 
comparisons problem. A statistical map has been computed compar-
ing responses to faces and houses. Red/yellow colors depict regions 
with larger responses to faces than to houses, while blue regions 
indicate areas with larger responses to houses than to faces. (a) No 
correction for multiple comparisons has been performed. (b) 

Thresholding result when using the false discovery rate approach 
(FDR). (c) Thresholding result when using the Bonferroni method. 
The p values shown on top of each panel have been used to threshold 
the map as provided by the respective method. The FDR method 
shows more voxels as significant because it is less conservative than 
the Bonferroni method
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significance level which is N times smaller than usual. The 
Bonferroni correction can be derived mathematically as fol-
lows. Under the assumption of independent tests, the prob-
ability that all of N performed tests lead to a sub-threshold 
result is (1−p)N and the probability to obtain one or more 
false-positive results is 1−(1−p)N. In order to guarantee a 
family-wise (global) error probability of pFWE = 1 − (1 − p)N, 
the threshold for a single test, p, has to be adjusted as fol-
lows: p = 1 − (1 − pFWE)1/N. For small pFWE values (e.g., 0.05), 
this equation can be approximated by p = pFWE/N. This means 
that to obtain a global error probability of pFWE < 0.05, the 
significance level for a single test is obtained by dividing the 
family-wise error probability by the number of independent 
tests. Given 100,000  voxels, we would obtain an adjusted 
single-voxel threshold of pv = pFWE/N = 0.05/100,000 = 
0.0000005. The Bonferroni correction method ensures that 
we do not declare even a single voxel wrongly as signifi-
cantly activated with an error probability of 0.05. For fMRI 
data, the Bonferroni method would be a valid approach to 
correct the α error if the data at neighboring voxels would 
be truly independent from each other. Neighboring voxels, 
however, show similar response patterns within functionally 

defined brain regions, such as the fusiform face area (FFA). 
In the presence of such spatial correlations, the Bonferroni 
correction method operates too conservative, that is, it cor-
rects the error probability more strongly than necessary. As 
a result of a too strict control of the α error, the sensitivity 
(power) to detect truly active voxels is reduced: Many vox-
els will be labeled as “not significant” although they likely 
reflect true effects. As described earlier, wrongly accepting 
(rejecting) a null (alternative) hypothesis is called type II 
error or β error.

Worsley et  al. (1992) suggested a less conservative 
approach to correct for multiple comparisons taking explic-
itly the observation into account that neighboring voxels are 
not activated independently from each other but are more 
likely to activate together in clusters. In order to incorporate 
spatial neighborhood relationships in the calculation of 
global error probabilities, the method describes a statistical 
map as a Gaussian random field (for details, see Worsley 
et  al. 1992). Unfortunately, application of this correction 
method requires that the fMRI data are spatially smoothed 
substantially reducing one of its most attractive properties, 
namely, the achievable high spatial resolution.
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Fig. 19  Principle of event-related averaging and event-related 
averaging plots from a slow event-related design. (a) The thresholded 
statistical map shows in red/yellow color brain regions responding 
more to faces than to houses and in blue color brain regions respond-
ing more to houses than to faces. The areas demarcated with red and 
green rectangles in the lower panel correspond well to fusiform face 

area (FFA) and parahippocampal place area (PPA), respectively 
(O’Craven and Kanwisher 2000). (b) Time course from FFA (upper 
panel) and event-related averaging plot (lower panel) obtained by 
selectively averaging all responses belonging to the same condition. 
(c) Time course (upper panel) and event-related averaging plot (lower 
panel) from PPA
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Another correction method incorporating the observation 
that neighboring voxels often activate in clusters is based on 
Monte Carlo simulations that generate many random images 
(maps) using the spatial correlation structure of the original 
map; the generated maps are used to calculate the likelihood 
to obtain different sizes of functional clusters by chance for 
specific (less conservative) single-voxel thresholds (Forman 
et  al. 1995). The calculated cluster extent threshold com-
bined with a less strict single-voxel threshold is finally 
applied to the statistical map ensuring that a global error 
probability of p < 0.05 is met. This approach does not require 
spatial smoothing and appears highly appropriate for fMRI 
data. A disadvantage is that the method is quite compute 
intensive and that small functional clusters might not be 
discovered.

While the described multiple comparison correction 
methods aim to control the family-wise error rate, the false 
discovery rate (FDR) approach (Benjamini and Hochberg 
1995) uses a different statistical logic and has been pro-
posed for fMRI analysis by Genovese and colleagues 
(2002). This approach does not control the overall number 
of false-positive voxels but the number of false-positive 
voxels among the subset of voxels labeled as significant. 
Given a specific threshold, suprathreshold voxels are called 
“discovered” voxels or “voxels declared as active.” With a 
specified false discovery rate of q < 0.05, one would accept 
that 5 % of the discovered (suprathreshold) voxels would be 
false positives. Given a desired false discovery rate, the 
FDR algorithm calculates a single-voxel threshold, which 
ensures that the voxels beyond that threshold contain on 
average not more than the specified proportion of false posi-
tives. With a q value of 0.05, this also means that one can 
“trust” 95 % of the suprathreshold (i.e., color-coded) voxels 
since the null hypothesis has been rejected correctly. Since 
the FDR logic relates the number of false positives to the 
amount of truly active voxels, the FDR method adapts to the 
amount of activity in the data: The method is very strict if 
there is not much evoked activity in the data but assumes 
less conservative thresholds if a larger number of voxels 
show task-related effects. In the extreme case that not a sin-
gle voxel is truly active, the calculated single-voxel thresh-
old is identical to the one computed with the Bonferroni 
method. The FDR method appears ideal for fMRI data 
because it does not require spatial smoothing and it detects 
voxels with a high sensitivity (low β error) if there are true 
effects in the data.

Another simple approach to the multiple comparisons 
problem is to reduce the number of tests by using anatomical 
masking. Most correction methods, including Bonferroni 
and FDR, can be combined with this approach since a smaller 
number of tests leads to a less strict control of the α error and 
thus a smaller β error is made as compared to inclusion of all 

voxels. In a simple version of an anatomical mask, an inten-
sity threshold for the basic signal level can be used to remove 
voxels outside the head. The number of voxels can be further 
reduced by masking the brain, for example, after performing 
a brain extraction step. These simple steps typically reduce 
the number of voxels from about 100,000 to about 50,000 
voxels. In a more advanced version (Goebel and Singer 
1999) statistical data analysis may be restricted to gray mat-
ter voxels, which may be identified by standard cortex seg-
mentation procedures (e.g., Kriegeskorte and Goebel 2001). 
This approach not only removes voxels outside the brain but 
also excludes voxels in the white matter and ventricles. Note 
that anatomically informed correction methods do not 
require spatial smoothing of the data and not only reduce the 
multiple comparisons problem but also reduce computation 
time since fewer tests (e.g., GLM calculations) have to be 
performed.

3.3.6	 �Event-Related Averaging
Event-related designs cannot only be used to detect activa-
tion effects but also to estimate the time course of task-
related responses. Visualization of mean response profiles 
can be achieved by averaging all responses of the same con-
dition across corresponding time points with respect to stim-
ulus onset. Averaged (or even single trial) responses can be 
used to characterize the temporal dynamics of brain activity 
within and across brain areas by comparing estimated fea-
tures such as response latency, duration, and amplitude (e.g., 
Kruggel and von Cramon 1999; Formisano and Goebel 
2003). In more complex, temporally extended tasks, 
responses to subprocesses may be identified. In working 
memory paradigms, for example, encoding, delay, and 
response phases of a trial may be separated. Note that event-
related selective averaging works well only for slow event-
related designs. In rapid event-related designs, responses 
from different conditions lead to substantial overlap, and 
event-related averages are often meaningless. In this case, 
deconvolution analysis is recommended (see below).

In order to avoid circularity, event-related averages should 
only be used descriptively if they are selected from signifi-
cant clusters identified from a whole-brain statistical analy-
sis of the same data. Even a merely descriptive analysis 
visualizing averaged condition responses is, however, help-
ful in order to ensure that significant effects are caused by 
“BOLD-like” response shapes and not by, for example, sig-
nal drifts or measurement artifacts. If ROIs are determined 
using independent (localizer) data, event-related averages 
extracted from these regions in a subsequent (main) experi-
ment can be statistically analyzed. For a more general dis-
cussion of ROI vs. whole-brain analyses, see Friston and 
Henson (2006), Friston et al. (2006), Saxe et al. (2006), and 
Frost and Goebel (2013).
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3.3.7	 �Deconvolution Analysis
While standard design matrix construction (convolution of 
box-car with two gamma function) can be used to estimate 
condition amplitudes (beta values) in rapid event-related 
designs, results critically depend on the appropriateness of 
the assumed standard BOLD response shape: Due to vari-
ability in different brain areas within and across subjects, 
a static model of the response shape might lead to non-
optimal fits. Furthermore, the isolated responses to differ-
ent conditions cannot be visualized due to overlap of 
condition responses over time. To model the shape of the 
hemodynamic response more flexibly, multiple basis func-
tions (predictors) may be defined for each condition 
instead of a single predictor. Two often-used additional 
basis functions are derivatives of the two gamma function 
with respect to two of its parameters, delay and dispersion. 
If added to the design matrix for each condition, these 
basis functions allow capturing of small variations in 
response latency and width of the response. Other sets of 
basis functions (i.e., gamma basis set, Fourier basis set) 
are much more flexible, but obtained results are often more 
difficult to interpret. Deconvolution analysis is a general 
approach to estimate condition-related response profiles 
using a flexible and interpretable set of basis functions. It 
can be easily implemented as a GLM by defining an appro-
priate design matrix (Fig. 20) that models each bin after 

stimulus onset by a separate condition predictor (delta or 
“stick” functions). This is also called a finite impulse 
response (FIR) model because it allows estimating any 
response shape evoked by a short stimulus (impulse). In 
order to capture the BOLD response for short events, about 
20 s is typically modeled after stimulus onset. This would 
require, for each condition, 20 predictors in case of a TR 
of 1  s or ten predictors in case of a TR of 2  s (Fig. 20). 
Despite overlapping responses, fitting such a GLM “recov-
ers” the underlying condition-specific response profiles in 
a series of beta values, which appear in plots as if event-
related averages have been computed in a slow event-
related design (Fig. 20). Since each condition is modeled 
by a series of temporally shifted predictors, hypothesis 
tests can be performed that compare response amplitudes 
at different moments in time within and between condi-
tions. Note, however, that the deconvolution analysis 
assumes a linear time invariant system (see Sect. 3.1). In 
order to uniquely estimate the large number of beta values 
from overlapping responses, variable ITIs must be used in 
the experimental design (see Sect. 3.1). The deconvolution 
model is very flexible allowing to capture any response 
shape. This implies that also non-BOLD-like time courses 
will be detected easily since the trial responses are not “fil-
tered” by the ideal BOLD response shape as in conven-
tional analysis.
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Fig. 20  Deconvolution analysis 
of a rapid event-related design. 
Time runs from top to bottom, 
design matrix depicted in 
graphical view. Beta values are 
plotted horizontally at positions 
corresponding to the respective 
predictor. (a) Standard analysis 
with two main predictors 
obtained by convolution of 
stimulus times with standard 
hemodynamic response model 
(two gamma function).  
Beta values can be compared 
with a standard contrast.  
(b) Deconvolution analysis fitting 
the same data. Each condition is 
modeled with ten “stick” 
predictors allowing to estimate 
the time course of condition-
related responses as if stimuli 
were presented in a slow 
event-related design. Beta values 
may be compared within and 
across conditions
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3.4	 �Integration of Anatomical 
and Functional Data

The localization of the neural correlates of sensory, motor, 
and cognitive functions requires a precise relationship 
between voxels in calculated statistical maps with voxels in 
high-resolution anatomical data sets. This is especially 
important in single-subject analyses and, thus, for presurgi-
cal mapping. While it is recommended to also view statisti-
cal maps overlaid on a volume of the functional data itself, 
EPI data sets often do not contain sufficient anatomical detail 
to specify the precise location of an active cluster in a sub-
ject’s brain. 3D renderings of high-resolution anatomical 
data sets may greatly aid in visualizing activated brain 
regions. Advanced visualization requires that a high-
resolution 3D data set is recorded for a subject and that the 
functional data is coregistered to the 3D data set as precisely 
as possible. Anatomical data sets are also important for most 
brain normalization methods, which is a prerequisite of the 
analysis of whole-brain group studies. High-resolution ana-
tomical data sets are typically recorded with T1-weighted 
MRI sequences. A typical structural scan covering the whole 
brain with a resolution of 1 mm in all three dimensions (e.g., 
180 sagittal slices) lasts between 5 and 20 min on current 1.5 
and 3.0 scanners.

3.4.1	 �Visualizing Statistical Maps 
on Anatomical Images

Having identified a statistically significant region in the 
functional data set does not easily allow a precise statement 
about its location in the brain of the subject since the func-
tional data itself does often not contain enough anatomical 
details.4 If anatomical, coplanar images are available, it is 
already helpful to overlay the functional results (thresholded 
statistical maps) on these “in-plane” images. Figure  19a 
shows, for example, a statistical map on a high-resolution, 
coplanar, T2-weighted image. While high-resolution, copla-
nar images improve localization within the recording plane, 
the direction along slices is sampled with low resolution due 
to typical distances between slices of 3–5 mm (slice distance 
= slice thickness + slice gap). Identification of the anatomi-
cal substrate of an activated cluster greatly benefits from 
visualizing functional data over isotropic high-resolution 3D 
data sets. Overlaying or fusing images from functional data 
(MRI, PET, SPECT) with high-resolution anatomical MRI 
data sets is a common visualization method in functional 

4 While functional sequences are T2* weighted, the first functional vol-
ume of a run contains the richest anatomical detail because it is T1 
weighted. Unfortunately, this data set is often thrown away either by the 
scanner directly (during “prep scans”) or by transfer of the data to the 
researcher. We recommend to keep the first functional volume and to 
use it for visualization and coregistration because of its relative richness 
in anatomical details.

imaging. In order to correctly fuse functional and anatomical 
data sets, appropriate coregistration transformations have to 
be performed.

3.4.2	 �Coregistration of Functional 
and Anatomical Data Sets

If functional images are superimposed on coplanar images, 
spatial transformations (translations and rotations) to align 
the two data sets are not necessary (except maybe the cor-
rection of small head movements and small geometric dis-
tortions), since the respective slices are measured at the 
same 3D positions. Since the coplanar anatomical images 
are usually recorded with a higher resolution (typically with 
a 256 × 256 matrix) than the functional images (typically 
64 × 64 or 128 × 128 matrices), only a scaling factor has to 
be applied. To allow high-quality visualization of the func-
tional data in arbitrary resliced anatomical planes, the func-
tional data must be coregistered with high-resolution 3D 
data sets.

These high-resolution 3D data sets are usually recorded 
with different slice orientation and position than the func-
tional data, and the coregistration step, thus, requires an 
affine spatial transformation including translation, rota-
tion, and scaling. These three elementary spatial transfor-
mations can be integrated in a single transformation step 
expressed in a standard 4 × 4 spatial transformation matrix. 
If the high-resolution 3D data set has been recorded in the 
same scanning session as the functional data, the coregis-
tration matrix can be constructed simply by using the scan-
ning parameters (slice positions, pixel resolution, slice 
thickness) from both recordings. The alignment based on 
this information would be perfect if there would be no head 
movement between the anatomical and functional images. 
To further improve coregistration results, an additional 
intensity- or gradient-driven alignment step is usually per-
formed after the initial (mathematical) alignment correct-
ing for head displacements (and eventually geometric 
distortions) between the functional and anatomical record-
ings. While this step operates similar as described for 
motion correction, it is likely not possible to align the two 
data sets perfectly well in all regions of the brain due to 
signal dropouts and distortions in the functional EPI 
images. For neurosurgical purposes, it is important to 
ensure that at least the relevant regions of the brain do not 
suffer from EPI distortions and that they are perfectly 
coregistered with the anatomical data. EPI distortions and 
signal dropouts can be corrected to some extent with spe-
cial MRI sequence modifications as well as with image 
processing software. Using appropriate visualization tools, 
it is also possible to manually align a functional volume 
with an anatomical 3D data set. The precision of manual 
alignment depends, however, strongly on acquired 
expertise.
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3.4.3	 �Visualizing Statistical Maps 
on Reconstructed Cortex Representations

High-resolution anatomical data sets can be used to create 
3D volume or surface renderings of the brain, which allow 
additional helpful visualizations of functional data on a 
subject’s brain (Fig.  21c). These visualizations require 
segmentation of the brain, which can be performed automati-
cally with most available software packages. For more 
advanced visualizations, segmentation of cortical voxels 
allows to construct topologically correct mesh representa-
tions of the cortical sheet, one for the left and one of the right 
hemisphere (e.g., Fischl et al. 1999; Kriegeskorte and Goebel 
2001). The obtained meshes (Fig. 21a) may be further trans-
formed into inflated (Fig. 21b) and flattened (Fig. 21c) cortex 
representations. Functional data can then be superimposed 
on folded, inflated, and flattened representations (Fig. 21c), 
which is particularly useful for topologically organized func-
tional information, for example, in the context of retinotopic, 
tonotopic, and somatotopic mapping experiments. To help in 
orientation, inflated and flattened cortex representations indi-
cate gyral and sulcal regions by color-coding local curvature; 
concave regions, indicating sulci, may be depicted, for exam-
ple, with a dark gray color, while convex regions, indicating 
gyri, may be depicted, for example, with a light gray color 
(Fig. 21). A general advantage of visualizing functional data 
on flat maps is that all cortical activation foci from different 
experiments can be visualized at once at their correct ana-
tomical location in a canonical view. In contrast, visualizing 
several activated regions using a multi-slice representation 

depends on the chosen slice orientation and number of slices. 
Note that anatomical data is not only important to visualize 
functional data. Anatomical information may also be used to 
constrain statistical data analysis as has been described in 
Sect. 3.3.5. Furthermore, the explicit segmentation of cortical 
voxels is also the prerequisite for advanced anatomical 
analyses, including cortical thickness analysis.

3.5	 �Group Analysis of Functional Data Sets

Presurgical neuroimaging requires detailed single-subject 
analyses, which can be performed with the methods described 
in the previous sections. A standardized routine for analyz-
ing (clinical) fMRI data in individuals is given in chapter 
Task-based presurgical functional MRI in patients with brain 
tumors. If, however, characterization and statistical assess-
ment of general brain patterns is desired, multiple subjects 
have to be integrated in groups. Such group studies allow 
generalizing findings from a sample of subjects to the popu-
lation from which the patients or healthy subjects have been 
drawn. Group analysis of functional data sets is of clinical 
relevance when the effects of various brain pathologies or 
different therapies (e.g., pharmacological effects) on brain 
function are subject to study.

The integration of fMRI data from multiple subjects is 
challenging because of the spatial correspondence problem 
between different brains. This problem manifests itself 
already at a purely anatomical level but presents a funda-

Fig. 21  Cortex representations used for advanced visualization.  
(a) Segmentation and surface reconstruction of the inner (white/gray 
matter, yellow) and outer (gray matter/CSF, magenta) boundary of the 

gray matter. (b) “Inflated” cortex representation of the left hemisphere 
obtained by iterative morphing process. (c) “Flat map” of the right cor-
tical hemisphere with superimposed functional data
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mental problem of neuroscience when considered as a 
question of the consistency of structure-function relation-
ships. At the anatomical level, the correspondence problem 
refers to the differences in brain shape and, more specifi-
cally, to differences in the gyral and sulcal pattern varying 
substantially across subjects. At this macroanatomical 
level, the correspondence problem would be solved if 
brains could be matched in such a way that for each macro-
anatomical structure in one brain, the corresponding region 
in the other brain would be known. In neuroimaging, the 
matching of brains is usually performed by a process called 
brain normalization, which involves warping each brain 
into a common space allowing averaging over (more or 
less) corresponding regions in different subjects. After 
brain normalization, a point in the common space identified 
by its x, y, and z coordinates is assumed to refer to a similar 
region in any other normalized brain. The most commonly 
used target space for normalization is the Talairach space 
(see below) and the closely related MNI template space. 
Unfortunately warping brains in a common space does not 
solve the anatomical correspondence problem very well, 
that is, macroanatomical structures, such as banks of prom-
inent sulci are often still misaligned with deviations in the 
order of 0.5–1 cm. In order to increase the chance that cor-
responding regions overlap, functional data is therefore 
often smoothed with a Gaussian kernel with a width of 
about 1 cm. More advanced anatomical matching schemes 
attempt to directly align macroanatomical structures such 
as gyri and sulci (see below) and require less (or no) spatial 
smoothing of functional data.

The deeper version of the correspondence problem 
addresses the fundamental question of the existence of an 
identical relationship between certain brain functions and 

neuroanatomical structures across subjects. While 
neuroimaging has successfully demonstrated that there is 
common structure-function relationship across brains, a high 
level of variability has also been observed, especially for 
higher cognitive functions. A more satisfying answer to this 
fundamental question might only emerge after much more 
careful investigations, for example, by letting the same sub-
jects perform a large battery of tasks (Frost and Goebel 
2012). An interesting approach to the functional correspon-
dence problem has been proposed that aims to only align 
those brain regions-of-interest (ROIs), which are activated in 
a given task in all or most subjects.

3.5.1	 Talairach Transformation
The most often-used standard space for brain normalization 
is the Talairach space (Talairach and Tournoux 1988) or the 
closely related MNI template space. Talairach transforma-
tion is controlled either by the (automatic) specification of a 
few prominent landmarks or by a data-driven alignment of a 
subject’s brain to a target (average) brain (typically the MNI 
template brain) that has been previously transformed in 
(near-) Talairach space. In the explicit landmark-based 
approach (Talairach and Tournoux 1988), the midpoint of the 
anterior commissure (AC) is located first, serving as the ori-
gin of Talairach space. The brain is then rotated around the 
new origin (AC) so that the posterior commissure (PC) 
appears in the same axial plane as the anterior commissure 
(Fig. 22). The connection of AC and PC in the middle of the 
brain forms the y-axis of the Talairach coordinate system. 
The x-axis runs from the left to the right hemisphere through 
AC orthogonal to the y-axis. The z-axis runs from the infe-
rior part of the brain to the superior part through AC orthogo-
nal to both other axes. In order to further constrain the x- and 

Fig. 22  Definition of Talairach space. (a) View from left. (b) View 
from top. Talairach space is defined by three orthogonal axes pointing 
from left to right (x-axis), posterior to anterior (y-axis), and inferior to 
superior (z-axis). The origin of the coordinate system is defined by the 
anterior commissure (AC). Coordinates are in millimeters. The posterior 

commissure (PC) is located on the y-axis (y = −23 mm). The borders of 
the Talairach grid (a) correspond to the borders of the cerebrum. The 
most right point of the brain corresponds to x = 68 mm, the most left one 
to x = −68 mm, the most anterior one to y = 70, the most posterior one to 
y = −102, the most upper one to z = 74, and the most lower one to z = −42
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z-axes, a y-z plane is rotated around the y (AC-PC)-axis until 
it separates the left and right hemisphere (midsagittal plane). 
The obtained AC-PC space is attractive for individual clini-
cal applications, especially presurgical mapping and neuro-
navigation since it keeps the original size of the subject’s 
brain intact while providing a common orientation for each 
brain anchored at important landmarks. For a full Talairach 
transformation, a cuboid is defined running parallel to the 
three axes enclosing precisely the cortex. This cuboid or 
bounding box requires specification of additional landmarks 
specifying the borders of the cerebrum. The bounding box is 
subdivided by several sub-planes. The midsagittal y-z plane 
separates two sub-cuboids containing the left and right hemi-
sphere, respectively. An axial (x-y) plane through the origin 
separates two sub-cuboids containing the space below and 
above the AC-PC plane. Two coronal (x-z) planes, one run-
ning through AC and one running through PC, separate three 
sub-cuboids: the first contains the anterior portion of the 
brain anterior to the AC, the second contains the space 
between AC and PC, and the third contains the space poste-
rior to PC. These planes separate 12 sub-cuboids. In a final 
Talairach transformation step, each of the 12 sub-cuboids is 
expanded or shrunken linearly to match the size of the cor-
responding sub-cuboid of the standard Talairach brain. To 
reference any point in the brain, x, y, and z coordinates are 
specified in millimeters of Talairach space. Talairach and 
Tournoux (1988) also defined the “proportional grid” to ref-
erence points within the defined cuboids.

In summary, Talairach normalization ensures that the 
anterior and posterior commissures obtain the same coordi-
nates in each brain and that the sub-cuboids defined by the 
AC-PC points and the borders of the cortex will have the 
same size. Note that the specific distances between land-
marks in the original postmortem brain are not important for 
establishing the described spatial relationship between 
brains. The important aspect of Talairach transformation is 
that correspondence is established across brains by linearly 
interpolating the space between important landmarks.

While Talairach transformation provides a recipe to nor-
malize brains, regions at the same coordinates in different 
individuals do not necessarily point to homologous brain 
areas. This holds especially true for cortical regions (e.g., 
Frost and Goebel 2012). For subcortical structures around 
the AC-PC landmarks, however, the established correspon-
dence is remarkably good even when analyzing high-
resolution fMRI data (e.g., De Martino et al. 2013).

As an alternative to specify crucial landmarks, a direct 
approach of stereotactic normalization has been proposed 
(e.g., Evans et  al. 1993; Ashburner and Friston 1999) that 
attempts to align each individual brain as good as possible to 
an average target brain, called template brain. The most 
often-used template brain is provided by the Montréal 
Neurological Institute (MNI) and has been created by aver-

aging many (>100) single brains after manual Talairach 
transformation. Although automatic alignment to a template 
brain has the potential to result in a better correspondence 
between brain regions, comparisons have shown that the 
achieved results are not substantially improved as compared 
to the explicit landmark specification approach, even when 
using nonlinear spatial transformation techniques. This can 
be explained by noting that the template brain has lost ana-
tomical details due to extensive averaging. In order to bring 
functional data of a subject into Talairach space, the obtained 
spatial transformation for the anatomical data may be applied 
to the functional data if it has been coregistered with the 
unnormalized anatomical data set. Using the intensity-driven 
matching approach, functional data sets may also be directly 
normalized (without the help of anatomical data sets) because 
versions of the MNI template brain for functional (EPI) 
scans are also available. If possible, it is, however, recom-
mended to apply the transformation obtained for the anatom-
ical data also to the functional data because this approach 
guarantees that the precision of functional-anatomical align-
ment achieved during coregistration is not changed during 
the normalization step. More advanced volume-based nor-
malization schemes have been proposed that replace the pre-
sented simple intensity-driven approaches (e.g., DARTEL, 
Ashburner 2007).

3.5.2	 Cortex-Based Normalization
In recent years, more advanced brain normalization tech-
niques have been proposed going beyond simple volume 
space alignment approaches. A particular interesting method 
attempts to explicitly align the cortical folding pattern (mac-
roanatomy) across subjects (Fischl et al. 1999; Goebel et al. 
2004, 2006; Frost and Goebel 2012) starting with topologi-
cally correct cortex mesh representations (see Sect. 3.4.3). 
The folded cortex meshes are first morphed to spherical rep-
resentations since the restricted space of a sphere allows 
alignment using only two dimensions (longitude and lati-
tude) instead of three dimensions as needed in volume space. 
Since the inflation of cortex hemispheres to spheres removes 
(“flattens”) information of the gyral/sulcal folds, the respec-
tive information is retained by calculating curvature maps 
prior to inflation that are projected on the spherical represen-
tations. Cortex meshes from different subjects are then 
aligned on the sphere by increasing the overlap of curvature 
information. Since the curvature of the cortex reflects the 
gyral/sulcal folding pattern of the brain, this brain matching 
approach essentially aligns corresponding gyri and sulci 
across brains. It has been shown that cortex-based alignment 
substantially increases the statistical power and spatial speci-
ficity of group analyses by increasing not only the overlap of 
macroanatomical regions but also the overlap of correspond-
ing functionally defined specialized brain areas (Frost and 
Goebel 2012).
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3.5.3	 �Correspondence Based on Functional 
Localizer Experiments

An interesting approach to establish correspondence between 
brains is to use functional information directly. Using 
standardized stimuli, a specific region-of-interest (ROI) may 
be functionally identified in each subject. The ROIs identi-
fied in such functional localizer experiments are then used to 
extract time courses in subsequent main experiments. The 
extracted time courses of individual subjects are then inte-
grated in group analyses (see below). If the assumption is 
correct that localizer experiments reveal corresponding brain 
regions in different subjects, the approach provides an opti-
mal solution to the correspondence problem and will allow 
detection of subtle differences in fMRI responses at the 
group level with high statistical power. Statistical sensitivity 
is further enhanced by avoiding the massive multiple com-
parison correction problem. Instead of hundreds of thousand 
voxel-wise tests, only a few tests have to be performed – one 
for each considered ROI. The approach is statistically sound 
(no circularity) because the considered regions have been 
determined independently from the main data using special 
localizer runs. It may also be acceptable to use the same 
functional data for both localizer and main analysis as long 
as the contrast to localize ROIs is orthogonal to any contrast 
used to statistically test more subtle differences. The local-
izer approach has been applied successfully in many experi-
ments, most notably in studies of the ventral visual cortex 
(e.g., O’Craven and Kanwisher 2000).

Unfortunately, it is often difficult to define experiments 
localizing the same pattern of activated brain areas in all sub-
jects, especially in studies of higher cognitive functions, 
such as attention, mental imagery, working memory, and 
planning. If at all possible, the selection of corresponding 
functional brain areas in these experiments is very difficult 
and depends on the investigator’s choice of thresholding sta-
tistical maps and often on additional decisions such as group-
ing subclusters to obtain the same number of major clusters 
for each subject. Note that the increased variability of acti-
vated regions in more complex experiments could be 
explained by at least two factors. On the one hand the loca-
tion of functionally corresponding brain regions may vary 
substantially across subjects with respect to aligned macro-
anatomical structures. On the other hand, subjects may 
engage in different cognitive strategies to solve the same task 
leading to a (partially) different set of activated brain areas. 
Most likely, the observed variability is caused by a mixture 
of both sources of variability. Another problem of the local-
izer approach is the tendency to focus only on a few brain 
areas, namely, those, which can be mapped consistently in 
different subjects. This tendency bears the danger to over-
look other important brain regions. This can be avoided by a 
recently proposed approach, functionally informed cortex-
based alignment (Frost and Goebel 2013), that integrates 

ROI-based and whole-cortex analysis using a modified ver-
sion of cortex-based alignment that uses corresponding pre-
mapped ROIs as alignment targets in addition to anatomical 
curvature information.

3.5.4	 Statistical Analysis of Group Data
After brain normalization, the whole-brain data from 
multiple subjects can be statistically analyzed simply by 
concatenating time courses at corresponding locations. The 
corresponding locations can be voxel coordinates in 
Talairach/MNI space, vertex coordinates in cortex space, or 
identified ROIs in the localizer approach. Note that the power 
of statistical analysis depends on the quality of brain normal-
ization. If the achieved alignment of corresponding func-
tional brain areas is poor, suboptimal group results may be 
obtained since active voxels of some subjects will be aver-
aged with non-active voxels (or active voxels from a non-
corresponding brain area) from other subjects. In order to 
increase the overlap of activated brain areas across subjects 
in volume space, the functional data of each subject is often 
smoothed, typically using rather large Gaussian kernels with 
a full width at half maximum (FWHM) of 8–12 mm. While 
such an extensive spatial smoothing increases the overlap of 
active regions, it introduces other problems including poten-
tial averaging of non-corresponding functional areas within 
and across brains; furthermore, functional clusters smaller 
than the smoothing kernel will be suppressed. While spatial 
smoothing may be beneficial to reduce noise, it may also 
reduce detection sensitivity of truly active but small func-
tional clusters. Extensive spatial smoothing may not be nec-
essary when using advanced volumetric normalization 
schemes (e.g., Ashburner 2007), cortex-based alignment 
(e.g., Frost and Goebel 2012, 2013), or functional 
localizers.

After concatenating the data, the statistical analysis 
described for single-subject data (see Sect.  3.3) can be 
applied to the integrated time courses. In the context of the 
GLM, the multi-subject voxel time courses as well as the 
multi-subject predictors may be obtained by concatenation. 
After estimating the beta values, contrasts can be tested in 
the same way as described for single-subject data. While the 
described concatenation approach leads to a high statistical 
power due to the large number of blocks or events, the 
obtained results cannot be generalized to the population level 
since the data is analyzed as if it stems from a single subject. 
Significant findings only indicate that the results are repli-
cable for the same “subject” (group of subjects). In order to 
test whether the obtained results are valid at the population 
level, the statistical procedure must assess the variability of 
observed effects across subjects (random effects analysis) as 
opposed to the variability across individual measurement 
time points as performed in the concatenation approach 
(fixed effects analysis). There are many statistical methods to 
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assess the variability across subjects for the purpose of 
proper population inferences. A simple and elegant method 
is provided by multilevel summary statistics approach (e.g., 
Kirby 1993; Holmes and Friston 1998; Worsley et al. 2002; 
Beckmann et  al. 2003; Friston et  al. 2005). In the first 
analysis stage, parameters (summary statistics) are estimated 
for each subject independently (level 1, fixed effects). Instead 
of the full time courses, only the resulting first-level param-
eter estimates (betas) from each subject are carried forward 
to the second analysis stage where they serve as the depen-
dent variables. The second-level analysis assesses the con-
sistency of effects within or between groups based on the 
variability of the first-level estimates across subjects (level 2, 
random effects). This hierarchical analysis approach reduces 
the data for the second stage analysis enormously since the 
time course data of each subject has been “collapsed” to only 
one or a few parameter estimates per subject. Since the sum-
marized data at the second level reflects the variability of the 
estimated parameters across subjects, obtained significant 
results can be generalized to the population from which the 
subjects were drawn as a random sample.

To summarize the data at the first level, a standard GLM 
may be used to estimate effects – beta values – separately for 
each subject. Instead of one set of beta values in fixed effects 
analysis, this step will provide a separate set of beta values 
for each subject. The obtained beta values can be analyzed at 
the second level using again a GLM or a standard ANOVA 
with one or more within-subjects factors categorizing the 
beta values. If the data represent multiple groups of subjects, 
a between factor for group comparisons can be added.

These short explanations indicate that the statistical 
analysis at the second level does not differ from the usual 
statistical approach in medical studies. The only major differ-
ence to standard statistics is that the analysis is performed 
separately for each voxel (or vertex) requiring correction for 
a massive multiple comparison problem as has been described 
above. Note that in addition to the estimated subject-specific 
effects of the fMRI design (beta values of first-level analysis), 
additional external variables (e.g., an IQ value for each sub-
ject) may be incorporated as covariates at the second level.

3.6	 �Selected Advanced Data Analysis 
Methods

The analysis steps described in previous sections for single 
subjects and for group comparisons represent essential com-
ponents of a standard fMRI analysis, which are performed in 
a similar way for most fMRI studies. Such a standard analy-
sis involves proper preprocessing that includes drift removal 
and 3D motion correction, coregistration of functional and 
anatomical data, brain normalization, and a thorough statisti-
cal analysis usually based on the general linear model. The 

standard procedure produces statistical maps that localize 
regions showing differential responses with respect to speci-
fied experimental hypotheses. Random effects group analy-
ses allow generalization of observed findings from a sample 
of subjects to the population level. Event-related averages of 
active brain regions or prespecified ROIs can be used to 
compare estimated condition time courses within and across 
brain areas, often revealing additional interesting insights. 
The following sections shortly describe a selected list of fur-
ther analysis methods aiming at improving or extending the 
standard analysis procedure.

3.6.1	 Nonparametric Statistical Approaches
As stated in Sect. 3.3.3.5, GLM hypothesis testing requires 
normally distributed residuals with equal variance. 
Fortunately, the GLM is robust with respect to minor viola-
tions of the normality assumption. To avoid, however, wrong 
inferences due to non-normal distributions, nonparametric 
methods may be used, especially when analyzing small data 
samples.

3.6.2	 Bayesian Statistics
It has been proposed to use Bayesian statistics because it pro-
vides an elegant framework for multilevel analyses (Friston 
et al. 2002). In the Bayesian approach, the data of a single 
experiment (or the data of a single subject) is not considered 
in isolation, but in light of available a priori knowledge. This 
a priori knowledge is formalized with prior probabilities p(Hi) 
for relevant initial hypotheses Hi. Obtained new data D modi-
fies the a priori knowledge resulting in posterior conditional 
probabilities p(Hi|D), which are updated probabilities of the 
initial hypotheses given the new data. To calculate these prob-
abilities, the inverse conditional probabilities p(D|Hi) must be 
known describing the probability to obtain certain observa-
tions given that the hypotheses Hi are true. In the context of 
the empirical Bayes approach, these conditional probabilities 
can be estimated from the data. The empirical Bayes approach 
is appropriate for the analysis of fMRI data, since it allows an 
elegant formulation of hierarchical random effects analyses. It 
is, for example, possible to enter estimated parameters at a 
lower level as prior probabilities at the next higher level. 
Furthermore, the approach allows integrating correction for 
multiple comparisons resulting in thresholding values similar 
to the ones obtained with the false discovery rate approach.

3.6.3	 Brain Normalization
As described earlier, brain normalization methods have an 
important influence on the quality of group analyses, since 
optimization of the standard analysis does not lead to 
substantial improvements if voxel time courses are concate-
nated from nonmatching brain regions. The described cor-
tex-based normalization technique may substantially 
improve the alignment of homologue brain regions across 
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subjects. For more complex tasks, different, nonmatching 
activity patterns might reflect different cognitive strategies 
used by subjects. To cope with this situation, it would be 
desirable to use methods allowing automatic estimation of 
the similarity of activity patterns across subjects. Such 
methods could suggest splitting a group in subgroups with 
different statistical maps corresponding to the neural corre-
late of different cognitive strategies. Such a clustering 
approach has been recently implemented in the context of 
group-level ICA analyses (Esposito et al. 2005).

3.6.4	 Data-Driven Analysis Methods
When considering the richness of fMRI data, it may be 
useful to apply data-driven analysis methods, which aim at 
discovering interesting spatiotemporal relationships in the 
data, which would be eventually overlooked with a purely 
hypothesis-driven approach. Data-driven methods, such as 
independent component analysis (ICA, e.g., McKeown et al. 
1998a, b; Formisano et al. 2002), do not require a specifica-
tion of expected, stimulus-related responses since they are 
able to extract interesting information automatically 
(“blindly”) from the data. It is, thus, not necessary to specify 
an explicit statistical model (design matrix). This is particu-
larly interesting with respect to paradigms for which the 
exact specification of event onsets is difficult or impossible. 
Spatial ICA of fMRI data has been successfully applied in 
many tasks including the automatic detection of active net-
works during perceptual switches of ambiguous stimuli 
(Castelo-Branco et al. 2002) and the automatic detection of 
spontaneous hallucinatory episodes in schizophrenic 
patients (van de Ven et al. 2005). Data-driven methods are 
exploratory in nature and should not be viewed as replace-
ments but as complementary tools for hypothesis-driven 
methods: If interesting, unexpected events have been dis-
covered with a data-driven method, one should test these 
observations in succeeding studies with a hypothesis-driven 
standard statistical analysis. More generally, ICA has 
become an important method to reveal functionally con-
nected networks, especially in the context of resting-state 
fMRI (see below).

3.6.5	 �Multivariate Analysis of Distributed 
Activity Patterns

Multi-voxel pattern analysis (MVPA) is gaining increasing 
interest in the neuroimaging community because it allows to 
detect differences between conditions with higher sensitivity 
than conventional univariate analysis by focusing on the 
analysis and comparison of distributed patterns of activity 
(Haxby et  al. 2001). In such a multivariate approach, data 
from individual voxels within a region are jointly analyzed. 
Furthermore, MVPA is often presented in the context of 
“brain reading” applications reporting that specific mental 

states or representational content can be decoded from fMRI 
activity patterns after performing a “training” or “learning 
phase.” In this context, MVPA tools are often referred to as 
classifiers or, more generally, learning machines. The latter 
names stress that many MVPA tools originate from a field 
called machine learning, a branch of artificial intelligence. In 
fMRI research, the support vector machine (SVM, Vapnik 
1995) has become a particular popular machine learning 
classifier, which is used both for analyzing patterns in ROIs 
and for discriminating patterns that are potentially spread out 
across the whole brain.

Another popular MVPA approach is the “searchlight” 
method (Kriegeskorte et  al. 2006). In this approach, each 
voxel is visited, as in a standard univariate analysis, but 
instead of using data of the visited voxel only for analysis, 
several voxels in the neighborhood are included forming a 
set of features for joined multivariate analysis. The neighbor-
hood is usually defined roughly as a sphere, that is, voxels 
within a certain (Euclidean) distance from the visited voxel 
are included. The result of the multivariate analysis is then 
stored at the visited voxel (e.g., a t value resulting from a 
multivariate statistical comparison or an accuracy value 
from a support vector machine classifier). By visiting all 
voxels and analyzing their respective (partially overlapping) 
neighborhoods, one obtains a whole-brain map in the same 
way as when running univariate statistics.

3.6.6	 Real-Time Analysis of fMRI Data
The described steps and techniques to analyze functional 
MRI data are very computation intensive and are, thus, per-
formed in most cases hours or days after data acquisition 
has been completed. There are many scenarios that would 
benefit greatly from a real-time analysis of fMRI data, 
especially when studying single subjects as in presurgical 
mapping. Using appropriately modified analysis tools and 
state-of-the-art computer hardware, it is nowadays possible 
to perform real-time fMRI analysis during an ongoing 
experiment, including 3D motion correction and incremen-
tal GLM statistics of whole-brain recordings (Goebel 2012; 
Weiskopf 2012). It is even possible to run multivariate data-
driven tools in real-time, including ICA (Esposito et  al. 
2003) and multi-voxel pattern analyses (LaConte et  al. 
2007; Sorger et al. 2010). One obvious benefit of real-time 
fMRI analysis is quality assurance. If, for example, one 
observes during an ongoing measurement that a patient 
moves too much or that the (absence of) activity patterns 
indicates that the task was not correctly understood, the 
running measurement may be stopped and repeated after 
giving the subject further instructions. If the ongoing statis-
tical analysis on the other hand indicates that expected 
effects have reached a desired significance level earlier than 
expected, one could save scanning time by stopping the 
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measurement ahead of schedule. Real-time fMRI offers 
also the possibility to plan optimal slice positioning for 
subsequent runs based on the results obtained of an initial 
run. Based on the results of a first run, it would be, for 
example, possible to position a small slab of slices at an 
identified functional region for subsequent high-resolution 
spatial and/or temporal scanning. More advanced applica-
tions of real-time fMRI include neurofeedback (Weiskopf 
et al. 2003) and communication BCIs (Sorger et al. 2012).  
In fMRI neurofeedback studies, subjects learn to volun-
tarily control the level of activity in circumscribed brain 
areas by engaging in mental tasks such as inner speech, 
visual or auditory imagery, spatial navigation, mental cal-
culation, or recalling (emotional) memories. In recent 
years, fMRI neurofeedback has been successfully employed 
as a therapeutic tool for various psychiatric and neurologi-
cal diseases (e.g., Linden et  al. 2012; Subramanian et  al. 
2011).

4	 �Functional Connectivity and Resting-
State Networks

Generally, three types of brain connectivity are distinguished 
in brain research (Sporns 2010). Structural connectivity (or 
anatomical connectivity) refers to the physical presence of 
an axonal projection from one brain area to another. This 
type of connectivity and how diffusion MRI and computa-
tional tractography can be used to identify large axon bun-
dles in the human brain is described in Sect. 5. Functional 
connectivity refers to the correlation structure in the data that 
can be used to reveal functional coupling between specific 
brain regions and to reveal functional networks. Finally, 
effective connectivity refers to models that go beyond 
correlation (or more generally statistical dependency) to 
more advanced measures of directed influence and causality 
within networks (Friston et al. 1994).

4.1	 �Functional and Effective Connectivity

Functional and effective connectivity methods aim to reveal 
the functional integration of brain areas, whereas the classi-
cal voxel-wise statistical approach (Sect. 3) is suited to reveal 
the functional segregation (functional specialization) of brain 
regions. Besides data-driven methods such as independent 
component analysis (ICA), many approaches have been used 
to model the interaction between spatially remote brain 
regions more explicitly. In the simplest case, the time courses 
from two regions are correlated resulting in a measure  
(e.g., linear correlation coefficient) of functional connectiv-
ity. Functional connectivity can be calculated separately for 

different experimental conditions, which allows to assess 
whether two brain areas change their functional coupling in 
different cognitive contexts (Büchel et  al. 1999). In condi-
tions of attention, for example, two remote areas might work 
more closely with each other than in conditions of no 
attention.

Models of effective connectivity go beyond simple pair-
wise correlation analysis and assess the validity of models 
containing directed interactions between brain areas. These 
directed effective connections are often symbolized by 
arrows connecting boxes each representing a different brain 
area. Structural equation models (SEM, e.g., McIntosh and 
Gonzalez-Lima 1994) and, more recently, dynamic causal 
modeling (DCM, e.g., Penny et  al. 2004) are used to test 
effective connectivity models. An interesting data-driven 
approach to effective connectivity modeling is provided by 
methods based on the concept of Granger causality. This 
approach does not require specification of connectivity mod-
els but enables to automatically detect effective connections 
from the data by mapping Granger causality for any selected 
reference voxel or region-of-interest (Goebel et  al. 2003; 
Roebroeck et al. 2005, 2011).

4.2	 �Resting-State Networks

In recent years, functional connectivity studies have gained 
increased interest where the subject is in a relaxed resting 
state, that is, in the absence of experimental tasks and behav-
ioral responses. These resting-state fMRI (RS-fMRI) studies 
allow measuring the amount of spontaneous BOLD signal 
synchronization within and between multiple regions across 
the entire brain (Biswal et al. 1995). The measured RS-fMRI 
activity is characterized by low-frequency (0.01–0.1  Hz) 
BOLD signal fluctuations, which are topologically organized 
as multiple spatially distributed functional connectivity net-
works called resting-state networks (RSNs) (e.g., van de Ven 
et al. 2004; De Luca et al. 2006). Spatial ICA (see Sect. 3.6.4) 
at the individual and group level is commonly applied in 
resting-state fMRI revealing RSNs that are consistently 
found in individuals, including the default-mode network 
(often separated in an anterior and posterior subnetwork), a 
visual and a auditory network, a sensorimotor network, and 
two (lateralized) dorsolateral frontoparietal networks 
(Fig. 23; for further details, see, e.g., Allen et al. 2011). The 
extracted independent components are usually scaled to spa-
tial z-scores (i.e., the number of standard deviations of their 
whole-brain spatial distribution). These values express the 
relative amount a given voxel is modulated by the activation 
of the component (McKeown et al. 1998b) and hence reflect 
the amplitude of the correlated fluctuations within the cor-
responding functional connectivity network.
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An alternative (less objective) approach to retrieve RSNs 
is to calculate whole-brain correlations from seed regions that 
correspond to core locations of RSNs. In this approach the 
DMN, for example, can be retrieved by selecting a region in 
the posterior cingulate cortex as the seed region and then cor-
relating each voxel’s time course with the reference time 
course from the seed region. For both the seed-based correla-
tion and ICA approach, it is recommended to account for pos-
sible BOLD effects due to cardiac pulsation and respiratory 
cycle (Birn et al. 2008) using a physiological noise correction 
method such as RETROICOR (Glover et al. 2000).

The obtained functional networks during rest conditions 
demonstrate that the brain is never “at rest” and the descrip-
tion of RSNs is, thus, a useful approach to explore the brain’s 
functional organization in healthy individuals as well as to 
examine if it is altered in neurological or psychiatric diseases. 
Furthermore, it has been possible to relate RSNs to externally 
modifiable factors, such as different pharmacological treat-

ments or psychological experiences (Khalili-Mahani et  al. 
2012; Esposito et al. 2014). The default-mode network (DMN) 
has gained particular attention – the term “default mode” has 
been introduced by Raichle et al. (2001) to describe resting-
state brain function. The DMN is a network of brain regions 
that include part of the medial temporal lobe (presumed mem-
ory functions), part of the medial prefrontal cortex (presumed 
theory of mind functions), the posterior cingulate cortex along 
with the adjacent ventral precuneus, and the medial, lateral, 
and inferior parietal cortex. The DMN is active when the indi-
vidual is not focused on the outside world and the brain is at 
wakeful rest corresponding likely to task-independent intro-
spection, mind-wandering, and self-referential thought. 
During goal-oriented activity, the DMN is deactivated and 
other regions are active that are sometimes described as the 
task-positive network (TPN). The DMN has been hypothe-
sized to be relevant to disorders including Alzheimer’s dis-
ease, autism, and schizophrenia (Buckner et al. 2008).

Fig. 23  A subset of major resting-state networks (RSNs) obtained by ICA analysis of the resting-state fMRI data of a group of healthy individuals 
(n = 8); the default-mode network (DMN) is split in an anterior and posterior part (upper row)
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5	 �Diffusion-Weighted MRI 
and Tractography

In recent years, MRI has not only revolutionized functional 
brain imaging targeting gray matter neuronal activity but also 
enabled insights into the human white matter structure using 
diffusion-weighted magnetic resonance imaging (DW-MRI, 
dMRI, or DWI). Pulse sequences for dMRI measure the 
diffusion of water molecules in each voxel providing infor-
mation about the fibers in that voxel that can be used to assess 
the “intactness” of the white matter structure and as the basis 
for computational tractography since the diffusion process is 
hindered by the boundaries of the fibers forcing the majority 
of water molecules to diffuse along these fibers.

A diffusion-weighted MR measurement consists of sev-
eral volumes each measuring the reduction of the signal 
resulting from diffusion along a specific axis in space that is 
selected by setting the x, y, and z gradients of the scanner 
accordingly using a pulsed-gradient spin echo-sequence 
(PGSE) developed by Stejskal and Tanner (1965).

5.1	 �Diffusion Tensor Imaging

It has been proposed to model the diffusion measured in a 
voxel as a 3D Gaussian probability function from which a 
diffusion tensor (3 × 3 matrix) can be calculated (Basser 
et  al. 1994), which has led to the name diffusion tensor 
imaging (DTI) for the most widely used diffusion-weighted 
MRI acquisition and modeling approach. In order to con-
struct the diffusion tensor, a minimum of six diffusion-
weighted volumes and a non-diffusion-weighted image 
need to be measured. From the diffusion tensor, the princi-
pal diffusion directions (three eigenvectors of the tensor) 
and associated diffusion coefficients (three eigenvalues λ1, 
λ2, λ3) can be derived. Note that although eigenvectors 
mathematically represent directions, DTI cannot distin-
guish opposing directions from each other, that is, the 
resulting values estimate diffusion along opposing direc-
tions, that is, along principle axes of diffusion. The eigen-
vectors and eigenvalues can be visualized as an ellipsoid. If 
water molecules diffuse without restrictions in all direc-
tions, the resulting “ellipsoid” will have the shape of a 
sphere, that is, all three axes (eigenvectors) have the same 
length (λ1 = λ2 = λ3) and there is no preferred axis of diffu-
sion. This situation is described as isotropic diffusion. In 
case that water molecules diffuse with low restrictions 
along one axis but diffusion is hindered in other directions, 
a strongly elongated (cigar shaped) ellipsoid will be 
obtained (λ1 >  > λ2 ≈ λ3). This case of restricted diffusion 
occurs within and around white matter fibers and is 
described as anisotropic diffusion. In this case, the main 
(longest) axis of the resulting ellipsoid will likely coincide 

with the main orientation of fiber bundles running through 
the measured voxel. This is the principle assumption of 
DTI.  Note, however, that the tensors estimated in each 
voxel do not provide fibers but only local discrete measure-
ments, that is, putative fibers need to be reconstructed using 
computational tractography, that is, the orientation of esti-
mated tensors need to be “concatenated” across neighbor-
ing voxels. Since results of specific tractography procedures 
are dependent on many factors (see below), visualized 
fibers need to be interpreted with care.

Several interesting quantities can be derived from the dif-
fusion tensor in each voxel. The mean diffusivity quantifies 
the overall movement of water molecules in a voxel, which 
depends on tissue type (e.g., CSF vs. the white matter) and 
the presence of diffusion restrictions (e.g., axons). 
Figure 2.24b shows that the mean diffusivity is high in the 
ventricles (yellow color) while it is low in the white and gray 
matter (orange color). The most common derived scalar 
quantity is fractional anisotropy (FA) that characterizes the 
overall shape of the diffusion, that is, it quantifies the fraction 
of the diffusion tensor that can be ascribed to anisotropic 
diffusion:

	

FA =
−( ) + −( ) + −( )

+ +( )
l l l l l l

l l l

1 2

2

2 3

2

1 3

2

1
2

2
2

3
22 	

The FA value varies between 0 (isotropic diffusion, shape of 
a sphere) and 1 (maximal anisotropy, shape of a line). 
Figure 2.24c shows that fractional anisotropy is high (yellow 
color) in the white matter (e.g., in the corpus callosum) but 
low (orange color) in the gray matter and ventricles. The FA 
value disregards the specific diffusion axis. A value of 0 indi-
cates no preferred diffusion axis (sphere) while a value of 1 
indicates diffusion precisely along a single axis. Since the 
white matter contains parallel fibers within larger tracts, it 
contains usually high FA values (>0.3) whereas FA values 
are low (0.0–0.2) in the gray matter. The FA quantity has 
gained increasing interest in recent years since it has been 
shown that FA values in specific tracts can be related to spe-
cific diseases and since they correlate with cognitive perfor-
mance measures such as reading capability (see Sect. 5.3).

5.1.1	 �Tractography: From Tensors  
to Fiber Bundles

Based on the preferred orientation of the tensors in neighbor-
ing voxels, computational tractography or fiber tracking proce-
dures aim to reconstruct the trajectory of fibers in the white 
matter by “concatenating” neighboring tensors. Fiber tracking 
is usually launched (seeded) in all voxels (even in sub-voxel 
coordinate grids) except those with low FA values since they 
do not reflect strong directness. The tracking process then gen-
erates a large amount of short and long reconstructed (“soft-
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Fig. 2.24  Important voxel-wise 
measures that can be extracted 
from diffusion-weighted MRI 
scans. (a) Anatomical scan 
shown as reference. (b) Mean 
diffusivity map coregistered with 
anatomy shown in (a); note that 
diffusivity is high in CSF 
(ventricles, yellow color) but low 
in gray matter and white matter 
fiber bundles such as the corpus 
callosum (orange color). (c) 
Fractional anisotropy (FA) map 
coregistered with anatomy shown 
in (a); note that FA is low 
(orange color) in the presence of 
low diffusion restrictions 
(ventricles) but high in white 
matter fiber bundles such as the 
corpus callosum containing 
coherently oriented fibers within 
voxels
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ware”) fibers. Specific fiber tracts are extracted from the dense 
fiber field by using regional constraints  
(e.g., Catani and Thiebaut de Schotten 2008), that is, fibers 
belonging to a specific tract are included if they pass through 
one or more specified volumes-of-interest (VOIs). Since the 
main axis of the tensor indicates an oriented axis and not a 
direction, fiber tracking is performed in two opposing direc-
tions. After both “half-fibers” have been reconstructed, they 
are finally integrated into a single fiber. In order to reconstruct 
a (half-) fiber, a small (sub-voxel) step is performed in one of 
the two directions provided by the main (longest) axis of the 
ellipsoid at a seed position. At the reached position, the direc-
tion for the next small step will be calculated using the tensor 
orientation and the direction of the previous step. Since the 
reached position usually does not correspond to integral coor-
dinates (i.e., it falls between voxels), the calculation of the next 
direction is based on the tensors surrounding the current 3D 
position; in this interpolation process, tensors influence the 
calculation with respect to the distance of the corresponding 
voxels to the current position. After updating the direction, the 
next step is performed. Again a new direction is calculated at 
the new position for the next step and so on producing a con-
nected trajectory of short line segments. This process contin-
ues until certain stop criteria are reached such as when an FA 
value is reached that falls below a specified threshold or in case 
that the reconstructed fiber leaves the white matter. In order to 
create smooth reconstructed fibers (Fig. 25), the chosen step 
size needs to be smaller than the distance of the voxels.

5.2	 �Validation and Improvements

While tractography usually creates interesting results, it is 
important to realize that visualized fibers are reconstructed 
from diffusion estimates that are measured at discrete 3D 
positions (voxels) and, thus, may not necessarily reflect true 
fiber tracts in the brain. A central concern in current tractog-
raphy research concerns the question how much one can trust 
the beautiful pictures generated by fiber tracking procedures. 
The answer depends on many factors including the quality of 
the diffusion-weighted measurement which is influenced by 
scanner parameters (e.g., signal-to-noise ratio) as well as by 
parameters of the participant such as head motion and physi-
ological noise. The most important limiting factor is related 
to the voxel size used for in vivo studies that is a few orders 
of magnitudes larger than the small scale at which the diffu-
sion of water molecules happens. With a typical spatial reso-
lution of about 2 mm, only the average diffusion of water 
molecules in a large cube (voxel) is captured, which does not 
allow to resolve fine-grained white matter fiber bundles or 
fiber bundles in the gray matter. The resolution issue relates 
also to the “kissing or crossing” problem, that is, it can often 
not be decided in a large voxel whether two (or more) incom-
ing fiber bundles cross in that voxel or whether they merely 
touch each other and part by changing direction.

Despite its usefulness in many applications, the diffusion 
tensor model has the drawback of being a unidirectional 
model. Its orientation estimation works very well in areas 
characterized by prominent fiber pathways following one 
direction, giving rise to a unimodal water diffusivity profile. 
When, however, several different diffusion directions are 
present in one voxel, the estimated diffusion tensor contains 
directionality information which has high uncertainty at best 
(low precision) or is even biased to a wrong average 
orientation. In order to obtain more valid results from 
diffusion-weighted measurements, several advanced mea-
surement schemes and analysis methods have been proposed. 
The most complete approach to estimate the full fiber orien-
tation density function is diffusion spectrum imaging (DSI) 
that requires, however, very long measurement times (Wedeen 
et  al. 2005). Somewhat less time-consuming advanced 
approaches are q-ball imaging (Tuch 2004) and spherical 
deconvolution (Tournier et  al. 2004). These modeling 
approaches go beyond the simple tensor model and fit more 
complex models to the measured diffusion data that no longer 
assume a single major diffusion axis but explicitly allow mul-
tiple (crossing) fibers in a voxel. In order to provide sufficient 
constraints for these more complex models, many more dif-
fusion directions (e.g., 100) need to be measured as for con-
ventional DTI scans that require only 6 diffusion directions. 
Because of the high number of direction measurements, these 
approaches are also called “HARDI” (high angular resolu-
tion diffusion imaging) methods. Since HARDI measure-
ments (Tuch 2002) need much longer scanning time than DTI 
measurements, they are not common in clinical MRI mea-
surements. Even with more advanced measurement and anal-
ysis approaches, reconstructed fiber tracts may vary 
substantially depending on the used tractography algorithm 
(Bastiani et al. 2012). To validate fiber tracking algorithms, it 
is important to have ground-truth data, that is, knowledge 
about the true trajectory of fiber bundles. One way to perform 
ground-truth validation is to use “DTI phantoms” that con-
tain known, artificially created fibers, including challenging 
cases with crossing and kissing fibers (Pullens et al. 2010). 
Another important validation approach uses postmortem 
brain tissue that is analyzed both with dMRI as well as with 
tracers that are released in specific brain areas. Since these 
tracers traverse backward along axons through other regions, 
they reveal true region-to-region connectivity that can be 
used as ground-truth data for DWI-based connectivity analy-
ses of the same tissue (e.g., Seehaus et al. 2013).

5.3	 �Applications

In recent years, diffusion MRI has led to several interesting 
applications. Especially the fractional anisotropy measure 
has become an important biomarker of white matter integrity 
serving as a local index to diagnose neurological or psychiat-
ric diseases or to predict (lack of) cognitive performance. It 
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has been, for example, shown that FA values extracted from 
dMRI measurements from good and poor readers differ, and 
the size of the difference is largest within a region within the 
left hemisphere temporoparietal white matter (Klingberg et al. 
2000; Deutsch et al. 2005). FA values could also be related 
to the level of creativity in several brain areas including the 
prefrontal cortex, basal ganglia, and at the border of the tem-
poral and parietal lobe (Takeuchi et al. 2010). Note, however, 
that FA values are not fixed (“hard-wired”) properties of the 
white matter but can change depending on usage of the under-
lying fibers. It has been, for example, shown that FA values 
in the white matter in regions of the posterior parietal cortex 
(containing fibers that presumably mediate visuospatial trans-
formation) significantly increase when subjects train on an 
intensive visual motor coordination task such as learning to 
juggle (Scholz et al. 2009). It has also been discovered that FA 
values reflect the development of cognitive abilities includ-
ing systematic increases in the corpus callosum and prefron-
tal cortex during childhood (Barnea-Goraly et al. 2005); the 
changes observed in prefrontal cortical areas are discussed 
as related to the development of working memory, attention, 
and behavioral control. FA measures are also increasingly 
used for early diagnosis of stroke since reduced diffusion in 

affected brain regions is often detected already minutes after 
the stroke. It is important to note that FA measurements are 
quantitative values (as opposed to fMRI measurements) that 
can be compared across people, labs, and scanners.

While computational tractography produces less objec-
tive results than FA estimates, reconstructed white matter 
fiber tracts are especially important to guide neurosurgical 
procedures potentially reducing the risk of lesioning 
important fiber tracts, for example, related to language 
functions. For this and similar purposes, several tools 
(e.g., Yeatman et  al. 2012) are now available that allow 
extracting major long-range fiber tracts from dMRI data, 
including commissural tracts (e.g., corpus callosum) con-
necting both cortical hemispheres, association tracts (e.g., 
arcuate fasciculus) connecting regions within the same 
hemisphere, and projection tracts (e.g., corticospinal 
tract) connecting cortical regions to subcortical areas, the 
cerebellum, and the spinal cord. Figure 25 shows selected 
major fiber tracts that have been reconstructed from the 
dMRI data of a healthy individual; further details about 
the depicted (as well as other) fiber tracts are described, 
for example, by Catani and Thiebaut de Schotten (2008) 
and Yeatman et al. (2012).

Fig. 25  A subset of major fiber tracts revealed by computational tractography from the diffusion-weighted MRI data of a healthy individual. CST 
corticospinal tract, IFOF inferior fronto-occipital fasciculus, ILF inferior longitudinal fasciculus
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5.3.1	 The Human Connectome
An important aim of recent brain research is to understand 
how brain areas communicate with each other. This aim is 
pursued by investigating anatomical connectivity with dMRI 
to reconstruct in  vivo the macroscale human connectome 
(Sporns et al. 2005), which is the map of all the structural 
connections in the human brain. This is complemented by 
functional connectivity studies using fMRI (see Sect.  4.1) 
and other modalities such as EEG and MEG. In integrative 
multimodal modeling approaches, the anatomical connec-
tome may serve as an important structural constraint for 
functional connectivity models since only brain areas that 
are connected via fiber bundles may communicate directly 
with each other. Diffusion MRI may even help to estimate 
the strength of connectivity between brain areas. The cur-
rently most prominent attempt along these lines is the Human 
Connectome Project (http://www.neuroscienceblueprint.nih.
gov/connectome/). This project aims to derive a complete 
map of all major connections between brain areas by mea-
suring dMRI as well as functional connectivity and genetic 
data in more than 1,000 individuals (twin pairs and their sib-
lings from 300 families). Besides deriving a connectivity 
map  – the human connectome  – the measured data of 
structural and functional connectivity will be shared to stim-
ulate research in the emerging field of human connectomics 
as well as providing the basis for future studies of abnormal 
brain circuits in neurological and psychiatric disorders.
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