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Abstract The mechanisms of disease pathogenesis in leptospirosis are poorly
defined. Recent developments in the application of genetic tools in the study of
Leptospira have advanced our understanding by allowing the assessment of mutants
in animal models. As a result, a small number of essential virulence factors have been
identified, though most do not have a clearly defined function. Significant advances
have also beenmade in the in vitro characterization of leptospiral interactionwith host
structures, including extracellular matrix proteins (such as laminin, elastin, fibro-
nectin, collagens), proteins related to hemostasis (fibrinogen, plasmin), and soluble
mediators of complement resistance (factor H, C4b-binding protein), although none
of these in vitro findings has been translated to the host animal. Binding to host
structures may permit colonization of the host, prevention of blood clotting may
contribute to hemorrhage, while interaction with complement resistance mediators
may contribute to survival in serum. While not a classical intracellular pathogen, the
interaction of leptospires and phagocytic cells appears complex, with bacteria sur-
viving uptake and promoting apoptosis; mutants relating to these processes (such as
cell invasion and oxidative stress resistance) are attenuated in vivo. Another feature of
leptospiral biology is the high degree of functional redundancy and the surprising lack
of attenuation of mutants in what appear to be certain virulence factors, such as
LipL32 and LigB. While many advances have been made, there remains a lack of
understanding of how Leptospira causes tissue pathology. It is likely that leptospires
have many novel pathogenesis mechanisms that are yet to be identified.
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1 Introduction to the Pathogenesis of Leptospirosis

The molecular basis of leptospiral pathogenesis remains poorly understood. Lepto-
spires lack classical virulence factors due to the large phylogenetic distance to well-
studied, prototypic, bacterial pathogens. This indicates that Leptospira likely has
novel virulence mechanisms, a notion supported by the over representation of
“hypothetical” open reading frames in the group of genes specific to pathogenic
Leptospira interrogans; 78 % of pathogen-specific genes have no defined function,
compared to 40 % of the whole genome (Adler et al. 2011).

Recent advances in genetics, including the construction of the first defined
mutants by transposon mutagenesis (Bourhy et al. 2005), and directed mutagenesis
(Croda et al. 2008), combined with the increase in available genomic sequences
(see the chapter by M. Picardeau, this volume) have led to progress in the identi-
fication and characterization of virulence factors. Virulence factors that are required
for disease in animal models, identified through mutagenesis, are summarized in
Tables 1 and 2. An overview of the stages of acute infection is illustrated in Fig. 1;
the virulence factors essential for acute disease and their probable role in disease are
indicated. Clearly, most disease processes occur by mechanisms that are yet to be
fully defined.

This chapter covers recent research into known and predicted virulence factors,
redundancy of virulence mechanisms, molecular mechanisms of damage to the
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host, and the molecular basis of host specificity. The term virulence factor is used to
describe proteins, structures (e.g., LPS), or phenotypes (e.g., motility) that are
required to cause disease, or have been demonstrated to interact with host proteins
in a way that may potentiate disease.

Pathogen entry and dissemination
• Chemotaxis
• Motility (FlaA, FliY)
• Adhesion
• Tissue penetration/degradation (ColA)
• Inhibition of wound repair and blood clotting

Persistence
• Nutrient acquisition (HemO)
• Immune evasion 

–Subversion of complement cascade
–Avoid killing by phagocytes/oxidative 
stress (Mce, KatE, ClpB)

Pathogen adhesion
• Adhesion to extracellular matrix
• Adhesion to host cells

Renal colonisation
• Traverse tissue barriers
• Adhesion
• Transmission to new host

Damage host tissues
• Inflammation
• Vascular damage
• Lung haemorrhage
• Renal failure
• Jaundice
• Autoimmunity-uveitis (LruA, LruB)

Fig. 1 Stages of the leptospirosis infection process. Probable virulence mechanisms are indicated
along with associated virulence factors experimentally confirmed to be required for disease (see
text for references). The pronounced lack of confirmed virulence factors for various aspects of
infection highlights our limited understanding of the pathogenesis of leptospirosis. Additional
virulence factors, without defined function, include Loa22, LPS, LB139, and the heat shock
protein HtpG. LruA is also essential for virulence (unrelated to the role in Leptospira-induced
uveitis)

The Molecular Basis of Leptospiral Pathogenesis 145



1.1 Methods for the Identification and Characterization
of Virulence Factors

Virulence factors can be predicted bioinformatically or identified experimentally.
Bioinformatics approaches include identification of sequences similar to known
virulence factors in other species, and genomic comparisons, especially between
pathogenic and saprophytic species (Adler et al. 2011). Few confirmed leptospiral
virulence factors have been identified by bioinformatics, with the exception of
catalase, collagenase, heme oxygenase, and Mce (Table 1). Genomes of pathogenic
leptospires also encode sphingomyelinases and phospholipase, other proteases and
TlyABC-like hemolysins, though a definitive role in virulence for these has not
been established (Nascimento et al. 2004). Pathogenic leptospiral genomes also
encode an unusually large number of leucine-rich repeat proteins, containing a
motif often associated with pathogen–host interaction. Notably, leptospires lack
recognized systems for translocation of effectors into host cells such as non-flagellar
type III, and types IV and VI secretion systems (Nascimento et al. 2004). In vitro
experimental approaches for identification of virulence factors include prospecting
for interactions between a substrate and leptospiral proteins by ligand blots (Hoke
et al. 2008; Verma et al. 2006), “pull down” or column extraction experiments
(Asuthkar et al. 2007), analysis of leptospiral cells that have interacted with host
proteins (Zhang et al. 2013), protein arrays (Pinne et al. 2012), and phage display
(Ching et al. 2012). Potential virulence factors have also been inferred through
comparison of the genomic and transcriptional changes between a virulent strain of
L. interrogans and a culture-attenuated derivative (Zhong et al. 2011; Lehmann
et al. 2013; Toma et al. 2014).

Characterization of putative virulence factors can be conducted in vitro or
in vivo. In vitro demonstration of interaction between recombinant leptospiral
protein and host proteins is commonly used, though this does not prove a role
in vivo and is subject to artifacts that may be introduced in vitro, such as protein
misfolding and possible lack of appropriate post-translational modifications. Whole,
live cells can also be used in in vitro assays such as binding experiments; inter-
actions can be blocked with specific antibodies or by competitive inhibition with the
protein of interest (Choy et al. 2007), but it may be difficult to isolate the role of a
particular factor due to functional redundancy (Murray et al. 2009c). “Gain of
function” studies involve transfer of genes from pathogens to saprophytes and
measurement of virulence characteristics such as adhesion (Figueira et al. 2011). In
these experiments, a protein is more likely to be expressed with “normal” con-
formation, post-translational modifications and context, such as lipidation or
membrane insertion, and also have the advantage of excluding functionally anal-
ogous proteins of pathogens that may confound results.

The only definitive method to determine that a factor is required for virulence is
by mutagenesis followed by testing in vivo; factors essential for virulence identified
by this methodology are detailed in Tables 1 and 2. It is important to stress that the
majority of putative virulence factors have not been shown to have a role in the
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host. Notably, mutagenesis and in vivo testing may not identify virulence factors
with redundant function. The readout for these experiments is usually animal sur-
vival, though as a crude measure of virulence this may not identify subtle attenu-
ation (Adler et al. 2011). Other useful readouts include tissue pathology (e.g.,
frequency and severity of macroscopic lung hemorrhage, histopathology of various
tissues), renal colonization, and bacterial burden in tissues (measured by quanti-
tative PCR) (King et al. 2014; Lambert et al. 2012a). Recently, a high throughput
method for screening mutants for attenuation was described (Marcsisin et al. 2013).
Tables 1 and 2 should be viewed with the following caveats. Only mutants in
L. interrogans have been tested, mainly in serovars Manilae and Lai. This may not
be representative of pathogenic strains generally, and what is true for one strain may
not necessarily be extrapolated to other strains [e.g., the clpB mutant is avirulent in
serovar Kito but retains virulence in serovar Manilae (Lourdault et al. 2011)]. The
intraperitoneal challenge route does not test aspects of disease such as host entry,
meaning that factors with a key role in these aspects of disease may not be iden-
tified. For some of the attenuated mutants, the challenge strain retained sufficient
virulence to cause pathology and kidney colonization, and with sufficient dose, host
death. Finally, the majority of mutants have been tested in the acute models of
gerbils, hamsters, and guinea pigs, neglecting carrier hosts which are the reservoir
from which humans are infected.

Complementation is a cornerstone of microbiological studies that rely on
mutagenesis to prove phenotype (Falkow 1988); however, due to the lack of rep-
licating plasmids for pathogenic leptospires this is difficult and few mutants have
been successfully complemented (Table 1). This has been achieved by transforming
bacteria a second time with the himar1 transposon with an alternative selective
marker and intact gene with promoter (King et al. 2014; Lourdault et al. 2011;
Ristow et al. 2007), or through integrating an intact copy of the gene onto the
chromosome by homologous recombination (Zhang et al. 2012; Kassegne et al.
2014). In the absence of complementation use of a second, independent mutant in
the gene or pathway of interest (Eshghi et al. 2012; Murray et al. 2010; Lambert
et al. 2012a) or whole genome sequencing (Zhang et al. 2013) can be used to rule
out other attenuating mutations.

It should be noted that many “virulence factors” are also found in the sapro-
phytes. In some cases, a role in virulence overlaps with normal cell metabolism; for
example, heme oxygenase is presumably useful for the degradation of heme from
endogenous or exogenous sources in both saprophyte and pathogen (Guégan et al.
2003). Other “virulence factors” in saprophytes may have roles in environmental
survival; for example, saprophytes and pathogens can degrade the lipids in cell
membranes (Kasărov 1970) which could be used to obtain lipids from environ-
mental organisms as well as animal hosts.
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1.2 Redundancy of Leptospiral Virulence Mechanisms

Pathogenic leptospires possess extensive genetic and functional redundancy. This
may be a result of a process of genomic expansion through gene duplication
(Bulach et al. 2006, Chap. 4). Groups of functionally similar, paralogous genes such
as the lig and len families abound; LigA and LigB both bind collagen, laminin,
fibrinogen, fibronectin, and numerous soluble regulators of the complement system
(Choy et al. 2007), while LenABCDEF all bind laminin and fibronectin (Barbosa
et al. 2006; Stevenson et al. 2007). There is also considerable functional overlap
between proteins without sequence similarity, particularly adhesins and proteins
that bind complement regulatory proteins. For example, LipL32, LigA, LenABC-
DEF, TlyC are among more than 25 proteins reported to bind to laminin (Carvalho
et al. 2009; Hoke et al. 2008; Stevenson et al. 2007, Table 3).

The maintenance of redundant factors in the leptospiral genome is difficult to
explain. Functionally redundant proteins may operate at different stages of disease,
in different tissues, or work synergistically. Multiple leptospiral receptors targeting
a particular host substrate may also permit leptospires to infect a diverse repertoire
of mammalian hosts where the target molecule may vary in structure. It is plausible
that the numerous receptors for soluble proteins such as fibronectin and plasmin-
ogen (Tables 3 and 4) may coat the surface of leptospires with host proteins in a
form of immune evasion, masking the underlying antigens.

The flipside of functional redundancy is the surprising lack of attenuation for
specific mutants. There are several proteins, such as LipL32, LipL41, and LigB that
appear to be obvious virulence factors by way of in vitro functional characteriza-
tion, conservation, and expression profiles. However, mutants in genes encoding
these proteins retain full virulence (Croda et al. 2008; King et al. 2013; Murray
et al. 2009c). Notably, LipL32 and LigB mutants retained virulence in both acute
disease and animal colonization models. Other notable mutants that retained viru-
lence include L. interrogans serovar Manilae mutants in ligC, lenB, and lenE
(Murray et al. 2009a). Presumably the loss of these putative virulence factors is
covered by other functionally related proteins (Adler et al. 2011).

2 Pathogen Entry

Human infection with Leptospira occurs upon contact with contaminated envi-
ronmental reservoirs (water, soil) or animal sources (urine, animal tissues). Bacteria
breach mucosal membranes or enter transdermally through wet or abraded skin
(Adler and de la Peña Moctezuma 2010). The molecular mechanisms by which
entry occurs are currently unknown.
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2.1 Motility

Leptospires are highly motile as a result of two periplasmic flagella that are inserted
subterminally and wrap around the protoplasmic cylinder (see the chapter by C.E.
Cameron, this volume); loss of flagella results in loss of motility (Picardeau et al.
2001). Flagella are thought to comprise a core containing FlaB (encoded by four
flaB genes), a sheath composed of FlaA (encoded by two flaA genes), and possibly
other proteins yet to be identified (Lambert et al. 2012a). Leptospiral motility is
more effective in viscous substrates (Berg and Turner 1979; Kaiser and Doetsch
1975), which may allow penetration of substrates such as collagen and hyaluronic
acid found in tissues that would stall externally flagellated bacteria (reviewed in
Charon and Goldstein 2002).

In the initial stages of leptospirosis, motility is most likely necessary to breach
the mucosal membranes or enter the tissues through damaged skin, though this has
not been directly demonstrated. An undefined motility mutant of L. interrogans
(with defective translational motility, loss of hooked ends) was attenuated in
hamsters (Faine and van der Hoeden 1964). Similar motility mutants had reduced
adhesion to primary murine renal epithelial cells and a murine fibroblast cell line
(Ballard et al. 1986; Vinh et al. 1984). More recently two defined mutants, in fliY
and flaA2, that lack motility were attenuated in acute models of infection. Together
these studies indicate that once inside the host motility is essential for disease.

A fliY (flagella motor switch) mutant exhibited reduced motility, although polar
effects on the expression of multiple downstream flagellar genes were noted (Liao
et al. 2009). The fliY mutant was attenuated in guinea pigs and showed reduced
adhesion to macrophages and reduced induction of macrophage apoptosis
(Table 1). The authors speculate that this may result from reduced export of
adhesins and toxins through the flagella apparatus (Liao et al. 2009). As an alter-
native explanation, lack of motility may reduce encounters between leptospires and
macrophages, giving the appearance of a less adhesive strain and reduced apop-
tosis; attenuation in vivo maybe a consequence of reduced dissemination in the
host.

A flaA2 transposon mutant has been described which did not express FlaA1 nor
FlaA2 (Lambert et al. 2012a). This mutant had altered flagella structure (loss of
helical shape), altered cell morphology (loss of hooked/helical cell ends), and
lacked translational motility, similar to motility mutants described earlier (Faine and
van der Hoeden 1964). The flaA2 mutant was highly attenuated in hamsters, which
survived >105 LD50 with no detectable kidney colonization 25 days after infection
(Table 1). Interestingly, the flaA2 mutant was present in far lower numbers or
undetectable in liver and kidney 5 days post infection compared to very high
numbers of WT bacteria (Lambert et al. 2012a), suggesting that motility is nec-
essary for the ubiquitous tissue distribution of leptospires found in acute hosts
(Faine 1957).

A mutant in a gene encoding a putative sensor protein, lb139, showed down
regulation of 115 genes; of these, genes encoding regulatory proteins, putative
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secreted proteins, and motility and chemotaxis proteins were over represented
(Eshghi et al. 2014). The mutant was highly attenuated in the hamster model of
infection by both conjunctival and intraperitoneal routes. While the down regulated
secreted proteins may have a direct role in virulence, reduced motility (observed in
plate and video microscope assays) may also explain the attenuation of this strain.

2.2 Chemotaxis

Leptospires possess the majority of the key chemotaxis genes found in other
bacteria, with approximately 12 methyl-accepting chemotaxis proteins (MCPs)
encoded in the genomes of pathogens (Nascimento et al. 2004; Ren et al. 2003).
This indicates that leptospires respond to a wide range of chemical stimuli, though
the ligand for each receptor is unknown. One suggested chemical attractant is
hemoglobin (Yuri et al. 1993), although hemoglobin is too large to cross the outer
membrane and be detected in the periplasm by an MCP (Lambert et al. 2012b);
perhaps in these experiments bacteria were attracted to a smaller, readily diffusible
breakdown product. Nevertheless, this result indicates chemotaxis toward blood,
suggesting that leptospires are attracted to the host at the site of injury where tissue
barriers have already been degraded.

Other leptospiral chemoattractants include glucose, sucrose, pyruvate, and
Tween 80 (a source of oleic acid) (Lambert et al. 2012b). As a synthetic compound,
Tween 80 would have no role in leptospirosis per se, although chemotaxis toward
Tween 80 may indicate a tendency to move toward nutritional sources of fatty
acids, even though the level of lipids such as triglycerides in blood is low
(approximately 1 mM). Likewise, the significance of chemotaxis toward glucose is
unknown as leptospires do not utilize this sugar as an energy source, and the
concentration of glucose in blood is around 5 mM, lower than the tested concen-
tration (100 mM).

The importance of chemotaxis in leptospiral infection has not been thoroughly
investigated. Mutants in putative chemotaxis genes cheB and cheX were not
attenuated in hamsters when infected intraperitoneally (Murray et al. 2009a),
although a role for these proteins in leptospiral chemotaxis is yet to be established
and there are multiple cheB genes encoded in leptospiral genome (Dong et al.
2010). Additionally, it is possible that chemotaxis is not required once the host has
been invaded; therefore mutants should also be tested via “natural” routes of
infection (conjunctiva, dermal abrasion). It is tempting to speculate that chemotaxis
is important for tissue tropisms, but apparent tissue tropisms such as localization in
the renal tubules may alternatively be the result of immune clearance of leptospires
from some sites but not others.
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2.3 Crossing Host Tissue Barriers

In order to disseminate throughout the host, leptospires must cross many barriers
including extracellular matrix, basement membranes, and cell layers. The mecha-
nisms by which leptospires cross tissue layers occurs remain unknown, but motility
is likely to play a key role (Lambert et al. 2012a).

Treponema pallidum is thought to cross cell layers through cell junctions
(Thomas et al. 1988), while Borrelia burgdorferi had been reported to cross cell
layers by invading the cell cytoplasm (Comstock and Thomas 1989) or at cell
junctions (Moriarty et al. 2008; Szczepanski et al. 1990). In a mouse infection
model, leptospires were observed to cross into the kidney lumen between cells
(Marshall 1976). In contrast, two studies examining transcytosis of leptospires
across the polarized Madin-Darby canine kidney (MDCK) cell line found evidence
of transit through cells (Barocchi et al. 2002; Thomas and Higbie 1990); leptospires
crossed layers rapidly without major disruption of tight junctions and were
observed intracellularly, presumably in transit across the cell layer. Intracellular
bacteria were sometimes surrounded by a host cell membrane, but were also free in
the cytoplasm. Many pathogens such as Salmonella spp. and Yersinia spp. enter
host cells through specific interactions that cause perturbations in cellular archi-
tecture. By contrast, during leptospiral “invasion” of the monolayer, cells remained
intact and there was no evidence of cytoskeletal rearrangements. The results suggest
a novel mechanism of cell invasion as a means of crossing tissue barriers. Inter-
estingly, Leptospira biflexa was also observed to cross layers (though less effi-
ciently than pathogenic leptospires) (Barocchi et al. 2002); perhaps transcytosis is a
result of the thin, helical morphology and vigorous motility shared between path-
ogen and saprophyte rather than a specific molecular mechanism. Experiments
could be repeated with motility mutants to test this theory.

Proteases may also contribute to the crossing of cell layers. Transcytosis across
human umbilical vein endothelial cell (HUVEC) monolayers was enhanced when
leptospires were coated with plasminogen or plasmin, suggesting a proteolytic
mechanism (Vieira et al. 2013). A collagenase mutant also had reduced ability to
cross HUVEC and human renal tubular epithelial cell line (HEK293) cell layers, and
in vivo the same mutant had reduced distribution in tissues in hamsters, indicating
that collagenase may assist with bacterial dissemination (Kassegne et al. 2014).

3 Pathogen Adhesion and Dissemination

3.1 Adhesion to Host Cells

Adhesion to host surfaces is an important step in bacterial pathogenesis (Kline et al.
2009). In animals, close association of leptospires with microvilli of proximal renal
tubules has been observed in hamsters and sheep, but generally without obvious
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cytopathology (Faine et al. 1999; Marshall 1974). In vitro, adhesion to various host
cells has been observed, including MDCK and primary dog kidney cell lines
(Thomas and Higbie 1990; Tsuchimoto et al. 1984), mouse fibroblast cells (Vinh
et al. 1984), mouse renal tubular epithelial cells (Ballard et al. 1998), human
umbilical vein endothelial cells, and porcine kidney epithelial cells (Thomas and
Higbie 1990). Adhesion levels correlated with strain virulence (Tsuchimoto et al.
1984). Leptospiral adherence to cells is diminished after pretreatment of monol-
oayers with proteases, indicating probable protein receptors (Breiner et al. 2009;
Thomas and Higbie 1990). Cellular fibronectin and glycosaminoglycans are
potential host receptors participating in this binding.

3.2 Glycosaminoglycans

Glycosaminoglycans (GAGs) are unbranched, long polymers of disaccharides that
may be sulfated. GAGs form part of the extracellular matrix, and when bound to
proteins, they constitute proteoglycans and are located on the surface of cells.
Leptospira binds to GAGs, chondroitin sulfate B and C, though specific unknown
receptors (Breiner et al. 2009); in the absence of GAGs significant binding to host
cells occurred, implying that additional adhesin targets exist. The authors specu-
lated that GAGs present on cells at mucosal surfaces may be involved in initial host
colonization, while GAGs expressed in the renal tubule and released in the urine
may facilitate renal colonization and shedding (Breiner et al. 2009). In a phage
display experiment, LigB was found to bind to the heparin sulfate, which could
mediate binding to host cells (Ching et al. 2012), although a ligB mutant bound to
MDCK cells at the same rate as WT leptospires (Croda et al. 2008).

During the hematogenous spread, pathogenic leptospires most likely adhere to the
endothelium of the blood vessel under fluid shear forces and then penetrate the cell
layer to enter tissues. The mechanism by which this occurs is unknown, but studies
in B. burgdorferimay provide clues. B. burgdorferi exits from post-capillary venules
through a sequence of interactions with the vessel endothelium: transient interac-
tions, dragging interactions, adhesion, then transmigration into surrounding tissues,
mainly through cell junctions (Moriarty et al. 2008). The B. burgdorferi protein
BBK32 is thought to play a role in this process by mediating direct and indirect
interaction via fibronectin with GAGs of endothelial cells (Moriarty et al. 2012).
A similar process of escape from the microvasculature may occur in leptospirosis,
facilitated by direct interaction with GAGs or indirect interaction via numerous
fibronectin receptors with different affinity for fibronectin.
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3.3 Adhesion to Extracellular Matrix

The extracellular matrix (ECM) is a complex mixture of fibrous proteins and other
components such as GAGs that supports the architecture of tissues, as well as
contributing to cell viability, development, differentiation, and motility. Components
include 28 types of collagen (with I, III, IV, and VI being most prominent), laminin,
fibronectin, and proteoglycans (Batzios et al. 2013). Early studies identified that
pathogenic leptospires can bind to ECM components, including fibronectin, colla-
gen, laminin, and hyaluronic acid (Ito and Yanagawa 1987). Adhesion to ECM
molecules is enhanced after incubation at physiological osmolarity, simulating the
transition from environment to host (Matsunaga et al. 2007).

Proteins that bind to host structures are often termed Microbial Surface Com-
ponents Recognizing Adhesive Matrix Molecules (MSCRAMMs). The first indi-
cation of a specific leptospiral protein that binds ECM components was the finding
that a 36-kDa outer membrane protein binds fibronectin, though the identity of this
protein is unknown (Merien et al. 2000). Subsequently, a very large number of
leptospiral proteins have been reported to bind to components of the ECM
(Table 3). Despite the identification of many potential adhesins, none has been
shown to be essential for virulence, a possible consequence of functional
redundancy.

The majority of studies characterizing the interaction of leptospiral proteins with
ECM components have used recombinant protein in in vitro assays. It is therefore
difficult to translate the meaning of these findings to natural infection. This diffi-
culty is compounded when the exposure of the protein of interest on the leptospiral
cell is either not investigated (Lima et al. 2013), is inconclusive, or cannot be
verified (Oliveira et al. 2011; Pinne et al. 2012, Table 3). The use of recombinant
protein also presents a number of problems. Some leptospiral proteins undergo
post-translational modification, such as lipidation, sialylation, glycosylation,
phosphorylation, methylation, and proteolysis (Cao et al. 2010; Cullen et al. 2002;
Ricaldi et al. 2012). Recombinant proteins produced in Escherichia coli are unli-
kely to have appropriate modifications. Furthermore, the majority of putative lep-
tospiral membrane proteins are insoluble when expressed in E. coli in high
quantities (Murray et al. 2013). Refolding of proteins is difficult and may result in
formation of soluble multimers of protein which may not produce obvious solution
turbidity but participate in non-specific ionic interactions (Burgess 2009). It is
unlikely that leptospires require more than 25 laminin-binding proteins and more
than 30 fibronectin-binding proteins, leading to the conclusion that some findings
may be in vitro artifacts.

In some studies, protein function has been verified through alternative assays
(Table 3), adding confidence to the results of the study. For example, the binding of
leptospiral cells to host protein substrates was competitively inhibited by the
addition of recombinant leptospiral proteins including LigA and LigB (inhibited
leptospiral binding to fibronectin) (Choy et al. 2007), TlyC (ECM) (Carvalho et al.
2009), enolase (plasminogen) (Nogueira et al. 2013), Lsa20, Lsa25, and Lsa33
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(laminin and plasminogen) (Domingos et al. 2012; Mendes et al. 2011), Lsa66
(ECM and plasminogen) (Oliveira et al. 2011), Lsa63 (collagen IV and laminin)
(Vieira et al. 2010b), and OmpL1 (laminin, plasminogen, fibronectin) (Fernandes
et al. 2012). In a similar confirmatory process, leptospiral attachment to laminin was
blocked by antibody to Lsa24/lenA/LfhA (Barbosa et al. 2006), and binding to
plasminogen was reduced by antibodies to enolase (Nogueira et al. 2013). In each
of these studies, Leptospira–substrate interaction was only partially inhibited by
antibody or recombinant protein, supporting the notion of multiple, redundant
adhesins sharing the same substrate specificity. In some studies, the use of specific
antibodies or excess recombinant protein resulted in no inhibition. For example,
leptospiral binding to ECM was not inhibited by specific antibody to LipL32 (Hoke
et al. 2008). In the case of OmpL37, cell adhesion to elastin was not inhibited by
excess recombinant protein and, surprisingly, was enhanced in the presence of
specific antiserum (Pinne et al. 2010). In another approach to confirmation of
protein function, the ability of LigA and LigB to bind to fibronectin and laminin
and the properties of fibronectin-binding proteins Mfn1, Mfn4, and Mfn7 were
confirmed through gain of function studies using the saprophyte L. biflexa (Figueira
et al. 2011; Pinne et al. 2012; Toma et al. 2014). In contrast, the mutants in lipL32
and ligB displayed normal binding to ECM and MDCK cells, respectively (Croda
et al. 2008; Murray et al. 2009c).

3.3.1 Fibronectin-Binding Proteins

Fibronectin exists both as a major component of the extracellular matrix and in
soluble form in plasma. A large number of leptospiral proteins have fibronectin-
binding properties in in vitro binding experiments (Table 3). Binding interactions
with different affinities play a part in the slowing and exit of B. burdorferi from
blood vessels (Moriarty et al. 2012); hence multiple proteins with different affinities
may potentially be involved in the attachment, dragging, and arrest of leptospires in
the blood vessel endothelium. Leptospiral fibronectin binding may also mediate
binding to host cells via the I domain of the CR3 complement receptor (found on
polymorphonuclear leucocytes, mononuclear phagocytes, and natural killer cells),
potentially increasing phagocytosis in the absence of specific opsonins (Cinco et al.
2002).

The identification of fibronectin-binding proteins highlights how different
methods of analysis do not always correlate. Merien et al. (2000) found one
fibronectin-binding protein by ligand blot, yet subsequent studies have found more
than 30 such proteins in Leptospira (Table 3). When a protein array comprising 401
predicted leptospiral outer membrane proteins was used to screen for fibronectin-
binding proteins (Pinne et al. 2012), of the top 15 fibronectin-binding proteins only
one had previously been identified (Lsa66). Notable fibronectin-binding proteins
LigB (repeat domains 8–12) had 34th highest affinity for fibronectin, while LipL32
was 169th on the list. Regardless of this, fibronectin binding was validated by
ligand blot for six of the top 15 proteins, and expression of three proteins in
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L. biflexa conferred the ability to bind soluble fibronectin (Pinne et al. 2012). While
different experimental approaches may have contributed to the different outcomes
from these and other studies, the lack of correlation is surprising and suggests that
some binding affinities identified in vitro are artifacts.

3.3.2 Laminin-Binding Proteins

Laminin is an important component of basement membranes of epithelial and
endothelial surfaces. Ability to bind to laminin may enhance the ability of lepto-
spires to invade and cross tissue layers. A remarkably large number of leptospiral
proteins have been found to bind laminin in in vitro assays. One group of proteins is
the Len protein paralogs; all of the Len proteins bind to laminin with varying
degrees of affinity (Stevenson et al. 2007).

3.3.3 Elastin-Binding Proteins

Elastin fibers composed of the soluble protein tropoelastin confer elasticity to tis-
sues, and are found in ECM of numerous tissues including the lung, skin, arteries,
uterus, and placenta. Leptospirosis has an impact on many of these tissues; hence
elastin-binding properties of LigB and OmpL37 and OmpL47 (Lin et al. 2009;
Pinne et al. 2010) may assist with the initial stages of colonization in the skin, or
facilitate pathogen adherence and damage to the lungs and blood vessel endothe-
lium resulting in lung hemorrhage and vessel damage, or contribute to abortion.
Interestingly, all three of these proteins bind specifically to numerous other host
ligands (Table 3). LigB was observed to bind to elastin, and binding was localized
to certain LigB domains (Lin et al. 2009). LigB also bound tropoelastin, potentially
inhibiting tissue repair by preventing formation of elastin fibers (Lin et al. 2009).
OmpL37 had high affinity for skin elastin. Rather than inhibit adhesion, antibodies
to OmpL37 enhanced OmpL37 binding to elastin but not to other ECM proteins,
suggesting that the host immune response to this protein may specifically promote
adhesion to elastin (Pinne et al. 2010).

3.4 Disruption of Hemostasis and Wound Repair

3.4.1 Leptospiral Binding of Fibrinogen

Leptospirosis is characterized by thrombocytopenia, hemorrhage, and vascular
injury. Some of these pathologies may be explained by the ability of leptospires to
bind fibrinogen (Choy et al. 2007) with subsequent inhibition of fibrin formation
(Oliveira et al. 2013). This may assist bacterial dissemination and contribute
directly to hemorrhage. Numerous fibrinogen-binding proteins have been identified
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(Table 4). Of these, LigB, Lsa33, LIC12238, LIC11975, and OmpL1 inhibited
thrombin-catalyzed fibrin formation in vitro (Choy et al. 2011; Lin et al. 2011;
Oliveira et al. 2013). LigB binding to the C-terminal αC domain of fibrinogen also
inhibited platelet adhesion and aggregation in vitro (Lin et al. 2011). Some of the
leptospiral proteins caused a slight decrease in the binding of leptospiral cells to
fibrinogen in a competitive binding assay (Oliveira et al. 2013). However, none of
these proteins has a confirmed role in disease, and as stated above, a ligB mutant
retains normal virulence (Croda et al. 2008).

Notably, while other fibrinogen-binding proteins such as Streptococcus epide-
rmidis SdrG completely inhibit fibrin formation (Davis et al. 2001), inhibition by
leptospiral proteins was incomplete. This may indicate that leptospiral proteins are
more important as adhesins, or work in concert for an additive effect. LigA also
binds fibrinogen and is released from the leptospiral cell; this may inhibit blood
coagulation beyond the immediate proximity of the leptospiral cell, though this has
not been demonstrated (Choy et al. 2007). In addition to a role in prevention of
hemostasis, LigB binds to collagen type III, fibroblast fibronectin and tropoelastin,
which are all involved in tissue repair (Choy et al. 2011; Lin et al. 2009). This may
allow leptospires to attach to a fresh wound for initial colonization, and may
potentiate the formation of lesions and hemorrhage during systemic disease.

It should be noted that in one study, L. biflexa serovar Patoc also bound
fibrinogen to about 75 % of the level seen in a virulent L. interrogans strain;
L. biflexa-bound fibrinogen was able to inhibit thrombin-dependent fibrin formation
to the same degree as L. interrogans strains (Oliveira et al. 2013). This finding
questions the relevance of in vitro fibrinogen binding to pathogenesis.

3.4.2 Leptospiral Binding of Plasminogen

Plasminogen is a proenzyme found in extracellular fluid and plasma that can be
converted to the enzyme plasmin by proteases such as urokinase plasminogen
activator (uPA). Active plasmin may degrade numerous substrates, including fibrin
clots, ECM proteins such as fibronectin and laminin, and immunoglobulins. Many
pathogens bind to plasminogen, which is activated by endogenous or host proteases
to produce the active protease plasmin. Surface-bound plasmin is involved in
pathogenesis through degradation of ECM, complement components and antibod-
ies, and the activation of matrix metalloproteases (Lähteenmäki et al. 2001) and
plays an important role in the pathogenesis of bacteria such as streptococci (Li et al.
1999; Sanderson-Smith et al. 2008; Svensson et al. 2002).

Leptospires bind plasminogen in vitro, and bound plasminogen can be converted
to plasmin in the presence of uPA (Verma et al. 2010a; Vieira et al. 2009). In vitro,
Leptospira-bound plasmin degrades ECM components such as fibronectin (Vieira
et al. 2009) and human fibrinogen (Oliveira et al. 2013), and may activate host
matrix metalloproteases which in turn could contribute to tissue degradation.
Plasmin-coated leptospires also crossed human umbilical vein epithelial cell mon-
olayers more efficiently than normal leptospires, although the precise mechanism
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was not investigated (Vieira et al. 2013). Taken together these data suggest that
surface-bound plasmin may facilitate crossing of ECM and tissue barriers and
degradation of fibrin clots by leptospires, resulting in dissemination throughout the
host. As found in other pathogens (Lähteenmäki et al. 2001), leptospires may up
regulate activators of plasminogen in host cells (Vieira et al. 2013). However, one
study reported that saprophytic L. biflexa acquired more plasmin activity in vitro
than some pathogenic strains, tempering these observations and complicating
extrapolation to a host infection scenario (Vieira et al. 2009).

In vitro, leptospiral surface-bound plasmin also interferes with the deposition of
C3b and immunoglobulin on the cell surface (Vieira et al. 2011). The elongation
factor Tu (EF-Tu), involved in protein synthesis but also found to moonlight as a
surface protein, binds plasminogen which may be activated to cleave C3b (Wolff
et al. 2013). Reduced binding to C3b may diminish opsonization for phagocytosis
and decrease the activation of the complement cascade at the cell surface by both
the classical and alternative pathways. Plasmin-coated L. interrogans serovar
Pomona displayed enhanced serum survival (Vieira et al. 2011).

Numerous leptospiral receptors for plasminogen have been identified. LenA
binds plasminogen and it can be converted to plasmin to degrade fibronectin
(Verma et al. 2010a). Enolase, a recognized plasminogen-binding protein of other
bacterial pathogens, also binds plasminogen in Leptospira (Nogueira et al. 2013).
Interestingly, leptospiral enolase is secreted and then associates with the leptospiral
surface. More than a dozen additional receptors, including LipL32, have been
reported to bind plasminogen and allow conversion to active plasmin in the pres-
ence of uPA, although evidence of surface localization for many of these proteins
was inconclusive (Table 4). The significance of plasmin binding in vivo by these
receptors is yet to be demonstrated.

3.5 Notable Proteins with Multiple Binding Affinities

Some leptospiral proteins bind to a remarkable number of diverse host proteins,
potentially playing a role in varied aspects of pathogenesis. There are precedents for
such proteins in the spirochetes; for example, the Treponema denticola protein
OppA binds to plasminogen and fibronectin (Fenno et al. 2000), while Msp binds to
fibronectin, keratin, laminin, collagen type I, fibrinogen, hyaluronic acid, and
heparin (Edwards et al. 2005). Outside the spirochetes examples include Emp of
Staphylococcus aureus, which interacts with fibronectin, fibrinogen, collagen, and
vitronectin (Hussain et al. 2001).

3.5.1 Lig Proteins

The leptospiral Lig proteins are a group of three proteins (LigABC) that belong to a
family of bacterial immunoglobulin-like proteins (Bigs) containing 12–13
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immunoglobulin-like repeats (Matsunaga et al. 2003; Palaniappan et al. 2002). Bigs
such as E. coli intimin and Yersinia pseudotuberculosis invasin mediate adhesion
and invasion of host cells (Hamburger et al. 1999; Luo et al. 2000). The ligA gene is
found in L. interrogans, L. kirschneri, and L. santarosai, although it is not yet clear
whether it is universally present in all serovars and strains. LigA is one of the few
promising vaccine candidate molecules for which statistically significant protection
against acute leptospirosis has been demonstrated (see the chapter by B. Adler).
ligA appears to have evolved from a partial gene duplication of ligB (McBride et al.
2009), and LigA is released from cells for an unknown purpose (Matsunaga et al.
2005). LigB is widely distributed in pathogenic leptospires. Many strains only have
ligB, suggesting that it may be sufficient for pathogenesis. LigC has a wider dis-
tribution than LigA but is a pseudogene in multiple strains that retain virulence,
indicating that it is unnecessary in these strains for disease pathogenesis (Cerqueira
et al. 2009; McBride et al. 2009). LigC has not been functionally characterized.

Many factors indicate that Lig proteins are virulence factors. Lig proteins are
significantly induced under conditions of increased osmolarity, emulating the
transition from an environmental source to the host (Choy et al. 2007). Prolonged
in vitro culture of leptospires leads to loss of Lig expression, correlating with a loss
of virulence (Matsunaga et al. 2003). LigA and LigB bind to numerous host pro-
teins and may play a role in disease by binding host ECM molecules at different
stages (Choy et al. 2007, Table 3). Lig proteins also bind complement regulatory
proteins (Table 4) and may play a role in potentiating tissue damage through
binding fibrinogen and matrix components associated with wound healing (Choy
et al. 2011). When ligA or ligB were expressed from a plasmid in the saprophyte
strain L. biflexa, the resulting strain exhibited enhanced binding to some ECM
components (fibronectin and laminin), but not others (Figueira et al. 2011). Lig
proteins contribute to binding to host cells (Figueira et al. 2011; Lin et al. 2010;
Toma et al. 2014). Lig proteins bind to complement regulatory proteins factor H
and C4-binding protein (Castiblanco-Valencia et al. 2012), and LigB appears to
contribute to serum resistance by inhibiting the alternative pathway of complement
activation (Choy 2012).

However, evidence of an essential role in disease, or otherwise, for Lig proteins
is inconclusive as a strain lacking all three Lig proteins has not been assessed
in vivo. L. interrogans serovar Lai lacks ligA but retains ligB and ligC and is
virulent (Ristow et al. 2007). A ligB mutant in L. interrogans serovar Copenhageni
also retained virulence, but this strain still possessed ligA (ligC is a pseudogene in
this strain) (Croda et al. 2008). Likewise, an L. interrogans serovar Manilae ligC
mutant caused disease, but this strain retains ligA and ligB (Murray et al. 2009a).
Given the extensive number of host substrates with which Lig proteins interact, in
pathways including host matrix adhesion, complement resistance, and blood
coagulation pathways, it seems likely that at least one Lig protein is required to
cause disease.
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3.5.2 The Len Proteins

This group of six proteins with similarity to human endostatins is found in path-
ogenic leptospires. It may have arisen through a process of gene duplication and
recombination events, resulting in some overlap and some unique functions in the
group (Stevenson et al. 2007). All of the Len proteins bind fibronectin and laminin.
LenA (also known as LfhA/Lsa24) also binds plasminogen, factor H, and factor
H-related protein, while LenB binds factor H (Verma et al. 2006, 2010a). Mutants
in lenB and lenE retained virulence, but this is understandable given the functional
redundancy of these proteins (Murray et al. 2009a).

3.5.3 LipL32

LipL32, also known as Hap1, is a dominant lipoprotein of the leptospiral outer
membrane (Haake et al. 2000). It is the most abundant protein in Leptospira with an
estimated 38,000 copies per cell (Malmstrom et al. 2009). The prominence of
LipL32 combined with a high degree of conservation in pathogens and leptospires
of intermediate pathogenicity, absence in saprophytic leptospires, and demonstrated
expression in vivo make this protein a likely virulence factor (Murray 2013). An
earlier indication that LipL32 may be associated with hemolysis has not been
confirmed (Lee et al. 2000). Studies using recombinant LipL32 have identified
binding substrates, including laminin, collagen I and V (Hoke et al. 2008), collagen
IV and plasma fibronectin (Hauk et al. 2008). Notably, these studies had conflicting
findings regarding laminin and collagen I binding by LipL32. Although reported
binding strengths were moderate, the sheer number of LipL32 molecules on the
surface may markedly increase the avidity of interaction (Vivian et al. 2009).
LipL32 has also been reported to bind to plasminogen (Vieira et al. 2010a).

Despite all the indications of a role in virulence, a lipl32mutant remained virulent
in both the hamster acute and rat colonization models of infection (Murray et al.
2009c). Notably, hamsters were challenged by both intraperitoneal and mucosal
infection routes. The lack of attenuation of the lipL32 mutant may be a result of
functional redundancy, as many proteins share substrate specificity with LipL32
(Tables 3 and 4). Interestingly, while LipL32 is found in leptospires that are patho-
genic or of intermediate pathogenicity, there are LipL32 orthologs in environmental
organisms outside Leptospira (Murray 2013) including the marine organism
Pseudoalteromonas tunicata (Hoke et al. 2008); perhaps this indicates a role for this
LipL32 in transmission and environmental survival, two factors not assessed in
current animal models. Furthermore, recent evidence using immunofluorescence and
surface proteolysis suggests that LipL32 may not in fact be exposed on the surface of
the cell (Pinne and Haake 2013). This may explain the general lack of protection
conferred by immunization with LipL32 and naturally acquired immunity to LipL32
(Murray 2013, Chap. 10). As a result of this finding, it is advisable not to use LipL32
as a surface marker control when performing immunofluorescence and surface pro-
teolysis experiments (see the chapter by D.A. Haake andW.R. Zückert, this volume).

The Molecular Basis of Leptospiral Pathogenesis 165

http://dx.doi.org/10.1007/978-3-662-45059-8_10
http://dx.doi.org/10.1007/978-3-662-45059-8_8


4 Persistence

4.1 Evasion of Host Immunity

Phagocytes help to control the early stages of leptospiral infection, while protective
acquired immunity is humoral in the vast majority of animal species and can be
transferred passively by serum (Jost et al. 1986; Masuzawa et al. 1990; Schoone
et al. 1989). Protective immunity is usually directed against lipopolysaccharides,
and so is restricted to related serovars (Adler and de la Peña Moctezuma 2010) (see
the chapter by R.L. Zuerner, this volume). Numerous interesting interactions have
been characterized between leptospires and the immune system, which may
increase the disease-causing potential of Leptospira.

4.1.1 Interaction with the Complement Cascade

During the initial stages of leptospirosis, bacteria are found in the blood for up to
2 weeks (Faine et al. 1999), necessitating a high degree of resistance to serum
complement. Complement resistance distinguishes pathogenic leptospires from the
highly susceptible saprophytes (Cinco and Banfi 1983). The difference between
pathogen and saprophytes appears to be at the level of C3 deposition and this
correlates with pathogen binding of host complement regulatory proteins factor H
(Meri et al. 2005) and C4-binding protein (C4BP) (Barbosa et al. 2009). The
consequence of inhibition of the complement cascade is not only reduced bacterial
cell lysis, but also potentially diminished recruitment and activation of phagocytes
(through reduced release of anaphylotoxins C3a and C5a) and reduced opsono-
phagocytosis (via phagocyte C3b receptors) (Blom et al. 2009).

Numerous proteins bind to the soluble host regulators of serum resistance factor
H (and related proteins) and C4BP (Table 4). As most findings have only identified
binding affinities using recombinant proteins, further work is required to elucidate
the role of these proteins in serum resistance; for example, can binding to respective
regulatory proteins be inhibited (by antibodies or ligand peptides), thereby
enhancing complement sensitivity, or do mutants in these factors have enhanced
serum sensitivity? Only ligB has been demonstrated to partially contribute to serum
resistance when expressed in L. biflexa (Choy 2012). As is the case for ECM-
binding proteins, a definitive in vivo role for complement pathway-interacting
proteins in Table 4 is yet to be established. Mutants in genes encoding LenB (binds
to factor H) and LigB (binds to factor H and C4BP) retained virulence, indicating
that these proteins are not essential for disease (Croda et al. 2008; Murray et al.
2009a).

In alternative strategies for serum resistance, leptospires may inactivate bound
complement proteins by proteases; plasmin-mediated reduction in C3b deposition
and enhanced serum survival has been reported (Vieira et al. 2011), while secreted
leptospiral proteases appear to degrade complement components (Fraga et al. 2014).
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There is also evidence that leptospires can synthesize sialic acid and related non-
ulosonic acids that may be added to surface proteins to promote serum resistance
(Ricaldi et al. 2012), though further investigation is necessary.

4.1.2 Interaction with Phagocytic Immune Cells

Leptospires are not classical intracellular pathogens. However, recent discoveries
suggest that intracellular phases may play a role in pathogenesis. In vitro studies
have found leptospires maybe transiently intracellular when passing through cell
layers (Barocchi et al. 2002; Thomas and Higbie 1990), and appear to persist in
macrophages (Li et al. 2010; Toma et al. 2011).

In the murine macrophage/monocyte-like cell line J774A.1, internalization of
leptospires occurred by receptor-mediated endocytosis rather than phagocytosis
(Merien et al. 1997), suggesting entry into phagocytic cells by a non-phagocytic
mechanism is beneficial to leptospires. A possible mechanism for this is via a
mammalian cell entry (Mce) protein. Mce proteins are a group of proteins identified
in Mycobacterium tuberculosis that mediate attachment and entry into host cells
(Arruda et al. 1993). Pathogenic leptospires have an mce-like gene; when disrupted
leptospiral adhesion and entry into macrophage-like cells was significantly reduced,
and these capacities were restored upon complementation (Zhang et al. 2012).
Adhesin and cell entry properties were conferred to L. biflexa upon complemen-
tation with the Mce protein and to Mce-coated latex beads. RGD protein motifs
bind to integrins (Ruoslahti 1996) and this may be exploited by bacterial pathogens
for cell adhesion and entry (Hauck et al. 2006). Binding of Mce to integrins α5β1
and αVβ3 was demonstrated, and when the RGD motif of Mce was modified,
binding of L. biflexa to host cells was lost (Zhang et al. 2012). The mce mutant had
a modest attenuation upon infection of hamsters compared to the parent strain and
complemented mutant (50-fold increase in LD50) (Table 1) (Zhang et al. 2012),
suggesting this entry mechanism is somewhat important for virulence. Leptospiral
proteins LMB216 and LigB also contribute to the uptake of leptospires by phag-
ocytic cells, as shown through analysis of L. interrogans mutants and by heterol-
ogous protein expression in L. biflexa (Toma et al. 2014).

Phagocytosis is an important immune control mechanism during leptospirosis
(Faine 1957, 1964), therefore subversion of phagocytic outcomes may be an
important mechanism of immune evasion. The production of reactive oxygen
species is an important microbicidal mechanism for phagocytes. Catalase (KatE)
found in pathogenic leptospires is required for resistance to hydrogen peroxide
(Eshghi et al. 2012). While the role of KatE in survival in macrophages has not
been directly tested, hamsters infected with katE mutants of L. interrogans serovars
Pomona or Manilae survived challenge without signs of disease, indicating that
oxidative stress resistance is essential for virulence (Table 1). Another mediator of
resistance to oxidative stress is the molecular chaperone ClpB; this protein is also
required for growth under nutrient restriction and heat stress (Lourdault et al. 2011).
A clpB mutant was also highly attenuated; gerbils receiving a very high dose

The Molecular Basis of Leptospiral Pathogenesis 167



survived infection with no clinical signs of leptospirosis and no macroscopic lesions
normally associated with disease (Table 1). Restoration of growth under oxidative,
heat, and nutrient stress conditions was achieved by complementation with an intact
copy of clpB, along with partial restoration of virulence (Lourdault et al. 2011). The
precise cause of attenuation of the clpB mutant is unknown, but may be due to
altered expression of virulence factors, in vivo growth deficiency, or increased
susceptibility to stress conditions including oxidative stress (Lourdault et al. 2011).
Interestingly, a second chaperone, HtpG, has been shown to be required for viru-
lence, but the mechanism of attenuation is yet to be determined (Tables 1 and 2).

Apoptosis is another potential mechanism for pathogens to escape killing in
phagocytes, but paradoxically may also be a host mechanism to contain infection.
Numerous potential mechanisms have been suggested for apoptosis observed
in vitro (Jin et al. 2009; Hu et al. 2013), including the involvement of sphingo-
myelinase 2 in a human liver cell line (Zhang et al. 2008) and by calcium ion flux
initiated by leptospiral phospholipase C (LB361) in human and murine macrophage
cell lines (Zhao et al. 2013). However, it remains unclear what role macrophage
apoptosis plays in leptospirosis as other studies have reported no evidence of
apoptosis in vitro (Toma et al. 2011). Additionally, evidence of apoptosis in animal
infection is limited, being reported in hepatocytes of laboratory infected guinea pigs
(Merien et al. 1998).

4.2 Nutrient Acquisition

The nutritional requirements of Leptospira are relatively simple, comprising a
source of B vitamins, iron, ammonium, and long chain fatty acids as an energy
source for β-oxidation (see the chapter by C.E. Cameron, this volume). Leptospires
have approximately 12 predicted TonB-dependent receptors that may be respon-
sible for active nutrient import (Nascimento et al. 2004; Ren et al. 2003). However,
little is known about the substrates for these receptors.

Fatty acids for β-oxidation may be obtained through degradation of host cells
membranes by phospholipases or sphingomyelinases (Kasărov 1970; Narayanavari
et al. 2012). Sphingomyelinases catalyze the hydrolysis of sphingomyelin into
ceramide and phosphorylcholine and may be responsible for hemolysis and damage
to host tissues. L. interrogans has five predicted sphingomyelinases (Sph1, Sph2,
Sph3, Sph4, SphH) while L. borgpetersenii has three (SphA, SphB, Sph4),
although only Sph2 and SphA are predicted to have complete catalytic sites
(Narayanavari et al. 2012). The sphingomyelinase activities of SphA and Sph2 have
been demonstrated (del Real et al. 1989; Segers et al. 1992), and Sph2 has cytotoxic
effects on cultured cells (Artiushin et al. 2004), while the activities of the remaining
enzymes are not fully resolved (Narayanavari et al. 2012). As noted in Table 3,
Sph2 may be an adhesin binding to fibronectin (Pinne et al. 2012) and may initiate
signaling that leads to cellular apoptosis (Zhang et al. 2008). It is hypothesized that
the sphingomyelinases lacking key amino acid residues in catalytic sites may still
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bind to sphingomyelin of the host cell followed by another effector function
(Narayanavari et al. 2012). Sphingomyelinases may contribute directly to endo-
thelial damage leading to hemorrhage, but this remains speculative. Sublytic
properties of sphingomyelinases may also be important in disease; the generation of
excess ceramide in the host cell membrane may lead to perturbations in cell biology
in different tissues leading to different pathologies (Narayanavari et al. 2012).

Leptospires require iron for growth (Faine 1959). In vivo, free iron is scarce due
to the rapid formation of oxidized forms under physiological conditions, and due to
host sequestration of iron by iron-binding proteins, especially as a defense against
pathogens during infection (Wooldridge and Williams 1993). The majority of iron
in the mammalian host (74 %) is in the form of heme in the protein hemoglobin
(Wooldridge and Williams 1993). Heme and hemoglobin are sufficient to support
leptospiral growth as sole iron sources (Guégan et al. 2003). In vivo, hemoglobin
may be obtained by lysis of erythrocytes by sphingomyelinases. There are orthologs
of the tlyABC hemolysins of Brachyspira hyodysenteriae encoded on the leptospiral
genome, but TlyB and TlyC do not appear to have hemolytic activity (Carvalho
et al. 2009). Efficient use of hemoglobin requires heme oxygenase to liberate fer-
rous iron from the tetrapyrrole ring for use by the leptospires (Murray et al. 2008).
A heme oxygenase mutant was moderately attenuated for virulence in the acute
model of disease, confirming that heme is an important iron source in vivo (Murray
et al. 2009b, Table 1).

Leptospira interrogans has one characterized heme import mechanism. HbpA is
a TonB-dependent receptor that binds heme (Asuthkar et al. 2007). A mutant in
hbpA was unable to colonize mice but was still virulent in the hamster model of
infection (Marcsisin et al. 2013). LipL41 was also reported to bind to heme but
there are conflicting findings regarding this potential function (Asuthkar et al. 2007;
King et al. 2013; Lin et al. 2013).

5 Mechanisms of Damage to Host Tissues

Leptospirosis is characterized by various symptoms, including vasculitis, acute
renal failure, jaundice, thrombocytopenia, pulmonary hemorrhage, myocarditis,
conjunctival suffusion, and uveitis (Levett 2001, Chap. 5). The mechanisms by
which damage occurs are not conclusively known. Injury to the endothelium of
small blood vessels may contribute to ischemia and dysfunction of multiple organs,
while circulating toxic cellular components or undefined toxins may contribute to
tissue damage (Adler and de la Peña Moctezuma 2010). Disruption of tissue
integrity may occur by activity of leptospiral sphingomyelinases and phospholipase
D. Leptospires also encode multiple proteases that may damage host tissues (col-
lagenase, metalloproteases, and multiple thermolysins) (Nascimento et al. 2004).
While the virulence properties of most of these remain to be fully characterized, a
collagenase mutant was recently reported to have modestly reduced virulence in the
hamster model of infection (25-fold increase in LD50), though it should be noted
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that the challenge strain had an extremely high LD50 of around 106 leptospires
(Table 1) (Kassegne et al. 2014). Decreased tissue distribution and reduced tissue
pathology were also reported in animals infected with the mutant (Kassegne et al.
2014), though it is unclear if the reduced pathology was a direct result of the loss of
collagenase activity. Activation of host proteases such as plasminogen and matrix
metalloproteases may also contribute to host tissue destruction and bacterial dis-
semination. Hemorrhage may be a result from a combination of tissue damage,
disruption of hemostatic mechanisms, and interference of wound repair.

Fever is a key feature of leptospirosis, and many pathologies associated with
leptospirosis may result from inflammation. Inflammation may be a consequence of
tissue damage rather than be directly mediated by bacterial factors (Faine et al.
1999), as leptospiral LPS has remarkably low pyrogenicity compared to the LPS of
other bacteria; LPS extracts injected into rabbits were non-pyrogenic in doses up to
5 µg/kg, had reduced activity in Limulus lysate assay (Vinh et al. 1986), and 500-
fold less acute lethality in mice and 20-fold less mitogenicity when compared to
Salmonella typhimurium LPS (Shimizu et al. 1987). In contrast to LPS, glyco-
lipoprotein extracts (containing polysaccharides, lipids and proteins) had cytotoxic
activity (Vinh et al. 1986). Low LPS toxicity may contribute to the ability of
leptospires to achieve high numbers in vivo, and may be a consequence of an
unusual lipid A structure (Que-Gewirth et al. 2004). It should be noted that bio-
logical properties of leptospiral LPS have been elucidated from in vitro-grown
bacteria and it is possible that LPS is modified in vivo (Nally et al. 2005), con-
ferring different pyrogenic properties. Leptospiral LPS also signals via TLR2
(rather than the normal TLR4) in human macrophages, while signaling via TLR2
and TLR4 in murine cells (Nahori et al. 2005), which may also contribute to
different outcomes in disease depending on host species.

Renal pathology during leptospirosis is associated with interstitial nephritis and
cellular infiltrates containing neutrophils and monocytes, suggesting an inflamma-
tory mechanism. Leptospiral membrane protein extracts induced inflammatory
response in cultured murine proximal tubule cells (Yang et al. 2002) signaling
through TLR2 (Yang et al. 2006); this activity may play a role in interstitial
nephritis. It was found that LipL32 plays a role in this stimulation via TLR2 (Hsu
et al. 2010; Yang et al. 2006). However, these experiments were performed using
extracted proteins with cell lines in vitro; an in vivo role for LipL32 signaling via
TLR2 is less clear as LipL32 in intact organisms may not be surface-exposed (Pinne
and Haake 2013), and hamsters infected with a LipL32 mutant had the same renal
pathology as hamsters infected with wild-type bacteria, indicating a role for other
processes in renal pathology (Murray et al. 2009c). The leptospiral outer membrane
protein Loa22 has also been implicated in causing necrosis of a rat proximal tubule
cell line and inducing an inflammatory response (Zhang et al. 2010). An alternative
inflammatory mechanism has recently been described, by down regulation of the
Na/K-ATPase pump by leptospiral glycolipoprotein, thereby activating the NLRP3
inflammasome (Lacroix-Lamande et al. 2012). Inhibition of the Na/K-ATPase
pump may also contribute to loss of lung integrity and kidney dysfunction, leading
to hypokalemia (Goncalves-de-Albuquerque et al. 2012).
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Uveitis is another complication of leptospirosis that may occur weeks to years
after initial infection. The condition may result from a breakdown in the immune
privilege status of the eye with a combination of inflammation and autoimmunity
(Verma and Stevenson 2012). Self-reactive antibodies have been found in uveitic
eyes, including antibodies to leptospiral proteins LruA that cross-react with lens
proteins α-crystallin B and vimentin, and antibodies to LruB that cross-react to
retinal protein β-crystallin B2 (Verma et al. 2010b).

6 Virulence-Associated Factors Without a Defined
Function

The role in pathogenesis has not been determined for a significant number of
virulence factors identified by mutagenesis and in vivo screening.

6.1 Loa22

Loa22 is a probable lipoprotein with an OmpA domain and peptidoglycan-binding
domain, indicating that it could be both surface exposed and interact with the
peptidoglycan layer. Loa22 was the first virulence factor identified by mutagenesis
and testing in vivo (Ristow et al. 2007). A loa22 mutant was attenuated in guinea
pigs and hamsters; virulence was partially restored upon complementation. Guinea
pigs infected with the loa22 mutant showed little or no tissue pathology, but
bacteremia was detected on day 3 and renal colonization was detected upon ter-
mination of the experiment at day 21. The level of attenuation for the loa22 mutant
was moderate given that at doses of approximately 108 leptospires not all animals in
the control group died, while some animals challenged with the loa22 mutant died;
this may be due to the use of strain L. interrogans serovar Lai strain Lai 56601
which has reduced virulence.

The function of Loa22 remains unknown. Given that Loa22 is the second most
abundant protein of the cell envelope of L. interrogans after LipL32 (Malmstrom
et al. 2009), it may play an essential structural or other role in the cell not directly
related to virulence (reviewed in Confer and Ayalew 2013). Surface exposure raises
the possibility that it may interact directly with host proteins/structures (Ristow
et al. 2007); in many bacterial species, OmpA proteins have been identified as
adhesins for host cells and extracellular proteins (Confer and Ayalew 2013) and
moderate binding to collagen type I, collagen type IV, and plasma fibronectin has
been reported for Loa22 (Barbosa et al. 2006). OmpA domains are a pathogen-
associated molecular pattern, thereby recognized by pattern recognition molecules
such as TLR2, and OmpA proteins activate dendritic cells (Torres et al. 2006).
Recombinant Loa22 was cytotoxic to a rat proximal tubule cell line and induced an
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inflammatory response via TLR2 (Zhang et al. 2010), even in the absence of protein
lipidation. OmpA family proteins have a diverse array of other virulence properties,
including promoting invasion, intracellular survival, and evasion of host immune
defenses such as complement (by binding fluid phase complement regulatory
proteins) and antimicrobial peptides (Confer and Ayalew 2013).

6.2 LruA

LruA is a lipoprotein that is conserved across the different classes of leptospires and
contains a LysM domain, suggesting that it binds to peptidoglycan. While LruA is at
least partly surface exposed (Zhang et al. 2013) the majority remains cell-associated
after TritonX 114 extraction (Verma et al. 2005), suggesting that the protein either
has an unusual membrane topology or multiple subcellular locations; although
unusual, lipoproteins with multiple subcellular locations have been described
(Michel et al. 2013). LruA is a probable inducer of autoimmunity that causes reactive
uveitis; antibodies to this protein cross-react with α-crystallin B and vimentin of the
ocular lens (Verma et al. 2010b). Independent of this property, a recent study also
identified this protein as essential for virulence (Zhang et al. 2013). Mutation of lruA
led to a moderate attenuation; infection with a dose 100 times the estimated LD50 for
serovar Manilae led to the death of 10 % of hamsters across two experiments.
Interestingly, a second mutant with a minor truncation of LruA (Δ525-556) retained
virulence, suggesting that the functional domains are not present at the carboxy
terminus of the protein.

The mechanism of attenuation of the lruA mutant is unknown, but may be
related to the interaction with host serum protein apolipoprotein A-I (Apo A-I). Apo
A-I is involved in lipid transport, but can also play a role in LPS detoxification and
inflammation during sepsis (Guo et al. 2013) and has been implicated in the killing
of Yersinia enterocolitica by serum complement (Biedzka-Sarek et al. 2011). The
LruA mutant bound considerably more Apo A-I than WT bacteria, but the sig-
nificance of this is yet to be determined, and it did not increase susceptibility to
killing by serum complement (Zhang et al. 2013). Given that LruA is a lipoprotein
and therefore membrane bound, and binds to peptidoglycan, it may have a struc-
tural role not directly related to virulence.

6.3 Lipopolysaccharide (LPS)

Leptospires have unusually large LPS synthesis loci of approximately 100 genes,
all encoded on the same DNA strand (Bulach et al. 2006; Nascimento et al. 2004;
Ren et al. 2003). The structure of LPS is unknown, as are the roles of individual
proteins in LPS synthesis. During a mutagenesis study of L. interrogans, relatively
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few mutants disrupted in the LPS locus were identified, implying an essential role
in the biology of Leptospira (Murray et al. 2009a).

In many pathogenic bacteria, LPS is essential for virulence. Two leptospiral
mutants with modified LPS were highly attenuated in the acute model of infection
even at very high dose (107 leptospires, more than 106 times estimated LD50). No
disease pathology and no symptoms of infection or tissue pathology were observed
(Murray et al. 2010; Srikram et al. 2011). The first LPS mutant (M895) had a
mutation in a gene of unknown function resulting in truncated LPS. The second
mutant had no obvious change in molecular mass but different reaction with anti-
bodies to LPS; subsequent bioinformatics analysis suggests that this gene may
encode a methyltransferase of the LIC12133 family (NCBI Conserved Domain
Database), which may explain the lack of a detectable mass difference by SDS
PAGE. Both of these strains with modified LPS also failed to colonize the mouse
maintenance host model (Marcsisin et al. 2013). The precise mechanism of atten-
uation is unknown, but was not due to increased susceptibility to complement-
killing (Murray et al. 2010). It is predicted that the LPS locus contains long tran-
scripts, raising the possibility that the mutations may affect the transcription of
downstream LPS synthesis genes.

6.4 Bacterial Chaperone HtpG

Bacterial chaperone HtpG is a homolog of the eukaryotic Hsp90. It has been
attributed variable roles in different bacteria, including resistance to heat and oxi-
dative stress and survival in macrophages (Dang et al. 2011; Weiss et al. 2007).
Attenuated htpG mutants have been described for Edwardsiella tarda (Dang et al.
2011) and Francisella tularensis (Weiss et al. 2007). A leptospiral htpG (lb058/
lic20044) mutant was highly attenuated in hamsters, with animals surviving a dose
of >106 times LD50 and lower bacterial burdens detected in tissues (King et al.
2014), although the htpG mutant colonized hamster kidneys. Additionally, micro-
scopic and macroscopic pathology was observed in hamsters infected with the
mutant. Virulence of the htpG mutant was fully restored upon complementation.

The mechanism of attenuation of the leptospiral htpG mutant is unknown, as
bacteria displayed no increase in susceptibility to physical and chemical stresses
(heat, osmolarity, and oxidative) and exhibited essential virulence phenotypes (LPS
expression, motility, expression of Loa22, survival in macrophages) (King et al.
2014). The ClpB chaperone contributes to resistance to oxidative and heat stress
(Lourdault et al. 2011) and there is a second htpG paralog (LA1231/LIC12469)
encoded in the leptospiral genome that may also account for some of these prop-
erties, although a mutant in this gene retained virulence (King et al. 2014). It is
difficult to predict what role HtpG plays in virulence as the substrates of this
bacterial chaperone are poorly defined (Buchner 2010). Disruption of htpG may
result in modulation of the expression of virulence factors and further character-
ization of this mutant may identify novel virulence processes.
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6.5 Other Attenuated Mutants

Mutants in genes encoding lb194, la2786, and la0589 (all of unknown function)
were colonization-deficient in the mouse colonization model (Marcsisin et al.
2013). LB194 may be involved in iron utilization; it is up regulated under low iron
conditions and is located in a preserved locus with HbpA (hemin-binding TonB-
dependent receptor) in both pathogenic and saprophytic species of Leptospira.
LA2786 is also marginally up regulated under low iron conditions (Lo et al. 2010).

LA0589 is one of around 12 highly similar paralogous proteins encoded in the
L. interrogans genome. Of note, these genes are highly up regulated in vivo and
point mutations in paralogs la3490 la3388 were identified in a culture-attenuated
leptospiral strain (Lehmann et al. 2013), further suggesting a role in virulence for
this gene family. Interestingly, there are similar sets of paralogous proteins in
Bartonella spp. Further work is required to elucidate the role of these proteins in
host colonization.

7 The Renal Carrier State

Depending on the host and infecting serovar, leptospiral infection may cause a
spectrum of syndromes from an asymptomatic carriage to a fulminant, acute dis-
ease. A carrier host, also termed maintenance, reservoir or chronically infected host,
may be defined as a host in which infection is endemic, disease is mild or
asymptomatic, and transmission occurs back to the same host species (Blackmore
and Hathaway 1979). Carrier hosts are often rodents. Hosts that suffer acute disease
such as humans are incidental hosts that are unlikely to serve as a source of
transmission, constituting a dead end infection.

Upon infection, bacteria disseminate throughout the carrier host and are most
likely cleared by the immune system from all tissues except the kidney. In the renal
tubules, bacteria continue to multiply and are excreted in the urine at concentrations
of as high as 107 leptospires/ml (Faine 1962; Monahan et al. 2008). While carrier
hosts may become lifetime shedders of Leptospira, acute hosts become temporary
urinary shedders, in the case of humans for 2 weeks to 1 month (Faine et al. 1999).
The carrier host has a long-term evolutionary association with leptospires where
equilibrium has been reached between virulence and host response, making the
organism almost commensal. The contrast with an acute host can be remarkable;
L. interrogans serovar Manilae has an LD50 of <10 bacteria in hamsters but a dose
of 108 does not cause any overt signs of disease in rats apart from renal colonization
(Murray et al. 2009c). Experimentally infected rats also display no tissue pathology
apart from possible interstitial nephritis (Monahan et al. 2008; Tucunduva de Faria
et al. 2007). It is feasible that incidental hosts become maintenance hosts over time,
concomitant with a reduction in leptospiral virulence for the particular host. For
example, in an area of high transmission rates in the Peruvian Amazon, around 5 %
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of people may become long-term renal shedders of Leptospira suggesting host
adaptation, although direct human to human transmission is yet to be demonstrated
(Ganoza et al. 2010).

While the carrier state is required for leptospiral transmission cycle, and carrier
animals are the exclusive reservoir for human infection, very little is known about
the molecular basis for development of the carrier state. Specific mechanism may be
required to cross into the lumen of proximal renal tubules, adhere to renal epithelial
cells, evade antibodies in the filtrate, and to acquire nutrients. Some studies have
analyzed antigenic properties relating to the carrier state. When compared to bac-
teria from an acute guinea pig model, leptospires derived from rat urine had
comparatively more LPS present, although the significance of this is unknown
(Nally et al. 2005). Furthermore, urine-derived bacteria exhibit reduced reactivity to
host-derived antibodies (Faine 1962). This may avoid the activity of antibodies that
leak into the tubule as a result of renal injury during infection (Lane and Faine
1963), possibly in part due to down regulation of proteins to which the host has
mounted an immune response (Monahan et al. 2008).

Analysis of defined mutants may give insights into the molecular basis for the
carrier state. Only a handful of mutants has been studied in carrier models of
disease. LipL32 and LigB were found to be unnecessary for renal colonization of
rats (Croda et al. 2008; Murray et al. 2009c). A third study analyzed 28 mutants for
virulence in a mouse carrier host (Marcsisin et al. 2013). Two virulence factors
required to cause disease in the acute model, LPS and HtpG, were also required to
colonize mouse kidneys. An additional five mutants were unable to colonize the
carrier host but still caused disease in the acute host (Marcsisin et al. 2013). These
colonization-deficient leptospires had mutations in genes encoding several proteins
of unknown function and with two proteins with potential roles in iron transport
(Table 2), thus identifying the first colonization-specific virulence factors.

While bacterial factors may contribute to the outcome of infection, there are likely
to be host factors that are also important, such as immune recognition of leptospires.
Leptospiral LPS signals via TLR2 in human macrophages (rather than the more
usual LPS receptor, TLR4), while signaling via TLR2 and TLR4 in murine cells
(Nahori et al. 2005). Recognition of leptospires through TLR4 is important for the
resistance of mice to acute leptospirosis, as mice defective in TLR4 are susceptible to
acute leptospirosis (Chassin et al. 2009; Viriyakosol et al. 2006, Chap. 9). This point
of difference between human and murine recognition of Leptospira may contribute
to the contrasting disease outcomes (Werts 2010).

8 Future Directions

In the past decade, significant advances have been made in the understanding of the
pathogenesis of leptospirosis. However, the molecular basis of disease remains
poorly elucidated. For example, the molecular basis for the pathology of leptospirosis
is largely unknown. Additionally, the functions of numerous essential virulence
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factors (Tables 1 and 2) are either uncharacterized or poorly defined. The secretome
also remains to be fully explored. It is likely that many more virulence factors remain
to be discovered and considering the overrepresentation of hypothetical genes in
those genes exclusively found in pathogenic leptospires, it is likely that these will be
novel. Hence, unbiased screening experiments for attenuated mutants will be very
useful (Marcsisin et al. 2013). Exclusively in vitro findings also require consolidation
with the understanding in animal models; the plethora of leptospiral proteins with an
in vitro-characterized function needs to be translated into the host, and any in vitro
artefactual findings need to be identified and discarded. Finally, the elucidation of
colonization mechanisms in the carrier host will be important in understanding
human disease and may lead to methods of disease prevention.
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