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Abstract Vaccines against leptospirosis followed within a year of the first isolation
of Leptospira, with the first use of a killed whole cell bacterin vaccine in guinea
pigs published in 1916. Since then, bacterin vaccines have been used in humans,
cattle, swine, and dogs and remain the only vaccines licensed at the present time.
The immunity elicited is restricted to serovars with related lipopolysaccharide
(LPS) antigen. Likewise, vaccines based on LPS antigens have clearly demon-
strated protection in animal models, which is also at best serogroup specific. The
advent of leptospiral genome sequences has allowed a reverse vaccinology
approach for vaccine development. However, the use of inadequate challenge doses
and inappropriate statistical analysis invalidates many of the claims of protection
with recombinant proteins.
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1 Bacterin Vaccines

Pathogenic Leptospira was first isolated in Japan in 1914. Within a year, Japanese
researchers had successfully immunized guinea pigs (Ido et al. 1916). They showed
that injection of leptospires inactivated with phenol elicited protective immunity in
guinea pigs and that immunity could be transferred with immune serum adminis-
tered concurrently with the infecting leptospires, demonstrating for the first time the
importance of antibodies in immunity to leptospirosis in an animal model. The first
large-scale human use took place in Japan, where Wani vaccinated 10,000 coal
miners between 1919 and 1921. He also showed passive protection of guinea pigs
with human immune serum (Alston and Broom 1958).

In the ensuing years, a variety of methods was used to kill leptospires for use as
vaccines, including heat, formalin, phenol, ethanol, freeze-thawing, and irradiation.
However, in the past 100 years very little has changed and at the present time the
only licensed vaccines remain whole cell, inactivated bacterins. These have been
used widely in cattle, swine, and dogs; specific usage for individual animal species
is detailed in chapter by W.A. Ellis, this volume. Because of problems with reac-
togenicity due to components of the leptospires and constituents of the growth
media, bacterin vaccines for humans have not gained acceptance to the same degree
as for animals. Attempts to overcome these problems have included the develop-
ment of protein-free growth media (Christopher et al. 1982; Torten et al. 1973).
However, yields were generally much poorer than in conventional media containing
serum or BSA. Nevertheless, human bacterin vaccines have been used successfully
in several regions, including China, Japan, Cuba, and Europe. The use of currently
available human vaccines is described in the chapter by D.A. Haake and P.N.
Levett, this volume.

Immunity elicited by bacterin vaccines is restricted to serovars with related
agglutinating antigens and is generally humorally mediated, with the exception of
Hardjo infection in cattle (Naiman et al. 2001). This restriction, therefore, requires a
good knowledge of the regional epidemiology, which can be reliably gained only
by culture and identification of locally prevalent serovars. Reliance on serological
surveys to predict local serovars is not recommended. A second consequence of the
limitation of immunity to serologically-related serovars is that in situations where
multiple serovars are circulating, multivalent vaccines are required. Accordingly,
bacterin vaccines containing up to four serovars are commonly used in many
countries, especially in dogs and pigs (see the chapter by W.A. Ellis, this volume).
Claims for protection against additional, closely-related serovars are probably valid.
In some countries, locally-produced vaccines, especially for use in cattle, may
contain up to eight serovars. Efficacy studies to demonstrate protection against all
the included serovars have very rarely, if ever, been performed. Any possible
antigenic competition effects between such large numbers of serovars are com-
pletely unknown. A final drawback of bacterin vaccines arises from the fact that the
immunity elicited is directed mainly against the leptospiral lipopolysaccharide
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(LPS), a T-independent antigen, and therefore involves IgM antibodies and lack of
a memory response. The duration of immunity is therefore relatively short, with
annual vaccination recommended in almost all cases.

2 Live Vaccines

The lack of detailed knowledge about leptospiral pathogenesis (see the chapter by
G.L. Murray, this volume) and the unavailability of genetic tools for easy manip-
ulation of pathogenic Leptospira spp. (see the chapter by M. Picardeau, this vol-
ume) have to date precluded any development of rationally-attenuated, live
vaccines. Nevertheless, serovar Pomona attenuated by laboratory passage was used
as a live vaccine and shown to elicit protective immunity in hamsters, swine, and
cattle (Stalheim 1968). Although demonstrated to be safe and to be effective in
stimulating a duration of immunity which lasted at least 14 months (Stalheim
1971), the basis for attenuation was unknown; the vaccine has not been developed
further and no live vaccines are currently licensed.

More recently, a defined LPS biosynthetic mutant of serovar Manilae was shown
to be attenuated in hamsters, which showed no clinical signs of infection, and did
not become renal carriers (Srikram et al. 2010). The mutant was also unable to
colonize the kidneys of mice (Marcsisin et al. 2013). Immunization with the mutant
elicited protective immunity against homologous challenge and also against het-
erologous challenge with serovars Pomona (Srikram et al. 2010) or Autumnalis
(Unpublished results). Killed bacteria stimulated only homologous protection.
Significantly, there was no detectable reactivity against either Pomona or Autum-
nalis LPS, strongly suggesting that immunity was mediated by protein antigens.
The identity of the protective antigens is unknown.

3 Lipopolysaccharide Vaccines

Unlike some of the other major spirochete genera Treponema and Borrelia, the
major surface component of Leptospira is LPS. Furthermore, leptospiral LPS is a
protective antigen. Monoclonal antibodies against LPS can protect against acute
lethal infection in guinea pigs and hamsters (Jost et al. 1986; Schoone et al. 1989)
and also protected dogs, based on recovery of leptospires from blood (Schoone et al.
1989). The protection shown in early studies with an “outer sheath” preparation
(Auran et al. 1972) was almost certainly mediated by LPS; indeed, LPS was shown
by silver staining and western blotting to be a major constituent of this preparation
(Adler B; unpublished results). Likewise, it is clear that a reported protective
“glycolipid” antigen (Masuzawa et al. 1990) was in fact LPS. Immunization with as
little as 2.5 µg of purified LPS, or the polysaccharide (PS) component of LPS, was
sufficient to elicit the production of agglutinating, protective antibodies in hamsters
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(Jost et al. 1989). The immunogenicity of PS could be enhanced by conjugation with
a protein carrier, diphtheria toxoid (Midwinter et al. 1990). An oligosaccharide
derived from LPS and conjugated to diphtheria toxoid elicited the production of
agglutinating, opsonic antibodies (Midwinter et al. 1994), suggesting that the con-
jugate would be protective, but protection studies were not undertaken. The structure
of leptospiral lipid A has been determined (Que-Gewirth et al. 2004), but the
structure of the carbohydrate component remains unknown. However, genome
sequences have identified LPS biosynthetic loci with close to 100 genes, suggesting
that the LPS structure is very complex (Bulach et al. 2006; Nascimento et al. 2004).

An intriguing possibility was raised by the use of LPS derived from saprophytic
Leptospira biflexa to immunize hamsters against infection with the pathogenic
serovar Manilae (Matsuo et al. 2000). However, the claims of protection must be
tempered by the fact that all hamsters, including controls, survived challenge,
despite the use of a high >106 challenge dose. Protection was based on clinical and
pathological criteria, but the use of small animal groups precludes the drawing of
any statistically meaningful results. It is possible that the effects observed were due
to activation of the innate immune response by L. biflexa LPS. The work has not
been reproduced, but significantly, an earlier study in which children were
immunized with an inactivated L. biflexa vaccine reported no agglutinating anti-
bodies against pathogenic serovars (Rottini et al. 1972). In addition, another study
found no protection against challenge with Canicola in gerbils immunized with L.
biflexa (Sonrier et al. 2000).

The clear capacity of LPS and LPS-derived components to elicit protective
immunity held the possibility of development of immunoconjugate vaccines,
similar to those developed against pneumococcal and Haemophilus influenzae
infections. However, this development has not eventuated, most probably because
of the large number of leptospiral serovars, the cost involved, and the unknown but
complex structure of leptospiral LPS. There is no prospect of LPS-based vaccines in
the near future.

4 Cross-Protective Immunity

It seems apparent that heterologous immunity does not usually follow natural
infection, at least in humans. The author has experience of two examples where
culture confirmed infection with one serovar (Pomona) was followed less than
3 months later by infection, again culture confirmed, with a different serovar
(Hardjo). Nevertheless, the stimulation of cross-protective immunity remains an
important focus and goal in leptospirosis vaccine research. Several studies have
shown that this is feasible.

Some inkling that cross immunity might exist was noticed as early as 1928
(Fletcher 1928) and perhaps even earlier, although these studies were primitive by
today’s standards. In work now 50 years old, Kemenes (1964) investigated cross
immunity in guinea pigs, which recovered from one infection and were then
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infected with a heterologous serovars. He showed a level of cross immunity
between serovars Pomona and Canicola and also between Pomona and Ict-
erohaemorrhagiae. Cross immunity did not extend to serovars Sejroe or Hyos (now
Tarassovi). Of course, the nature of the antigens involved was and remains
unknown, but interestingly, both of these serovars are now classified in the species
Leptospira borgpetersenii, while Pomona, Canicola, and Icterohaemorrhagiae
belong to Leptospira interrogans.

Using a similar approach, Plesko and Lataste-Dorolle (1970) showed limited, but
incomplete, cross immunity between several serovars, including Bratislava, Ict-
erohaemorrhagiae and Copenhageni, Pomona, Lora (all L. interrogans) and Grip-
potyphosa (L. kirschneri). In a subsequent study, significant, but not complete,
interserovar immunity was demonstrated in hamsters between four serovars of L.
borgpetersenii, viz. Tarassovi, Javanica, Poi and Arborea (Plesko and Hlavata
1971). Again, the responsible antigens remain unknown. However, it is notable that
all of these studies used live leptospires, highlighting the possibility that cross-
protective antigens may be expressed exclusively in vivo, or at best, expressed at
low levels in vitro.

There appears to have been no further work in this area for several decades until
Sonrier et al. (2000) investigated the cross-protective capacity of LPS and whole cell
extracts, obtained from in vitro-grown bacteria, in gerbils. Not surprisingly, LPS
elicited only homologous protection. However, whole cell extracts from Ict-
erohaemorrhagiae (p = 0.003) but not from Autumnalis (p = 0.2) protected against
challenge with Canicola. In a modified reverse experiment, a chloroform-methanol-
water extract of the phenol phase (designated as protein in this paper) LPS prepa-
ration from Canicola protected against challenge with Icterohaemorrhagiae
(p = 0.002). However, the claim of protein-mediated cross protection must be
tempered by two caveats. The phenol phase can also contain leptospiral LPS (Shi-
nagawa and Yanagawa 1972; Vinh et al. 1989) and there is a well-established MAT
cross-reactivity between serovars Canicola and Icterohaemorrhagiae. The possibility
that the observed protection was actually mediated by LPS cannot be excluded.

A more recent study examined cross immunity between four serovars, using
formalin-inactivated vaccines in hamsters (Rosario et al. 2012). Serovars Canicola
and Copenhageni belong to L. interrogans, serovar Ballum to L. borgpetersenii,
while serovar Mozdok may be classified as either L. borgpetersenii or L. kirschneri,
depending on the strain (not specified in this paper). All four vaccines elicited
100 % homologous immunity, as well as varying levels of cross immunity. The
Mozdok vaccine elicited only homologous immunity. Immunization with Copen-
hageni stimulated immunity against challenge with Ballum but not the other two
heterologous serovars. The claimed protection against Canicola was not significant
(p = 0.087). However, vaccination with Ballum or Canicola induced solid heter-
ologous immunity except against Mozdok, with 100 % survival except for the
Ballum-Copenhageni combination (70 %; p = 0.003).

As described above (Sect. 2), a genetically defined LPS biosynthesis mutant of
serovar Manilae was able to stimulate 100 % immunity in hamsters against chal-
lenge with Autumnalis (Unpublished results) or Pomona (Srikram et al. 2010).
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What conclusions can realistically be drawn from these studies? Although the
results have been variable, it seems clear that it is possible to stimulate heterologous
immunity and that the antigens involved are probably proteins which may well be
expressed poorly or not at all under the standard conditions used to culture lepto-
spires in vitro. Although some progress has been made in recent years, the identity
of the antigen(s) involved remains poorly understood.

5 Recombinant Proteins as Vaccines

The development of recombinant DNA techniques and the availability of lepto-
spiral whole genome sequences have resulted in a resurgence of activity to identify
protective antigens and to develop defined subunit vaccines. However, much of the
vaccination work reported in the literature suffers from the use of inadequate
challenge doses, lack of reproducibility, and inappropriate statistical analysis.
Accordingly, many of the claims about protection from infection, especially those
claiming partial protection, cannot be substantiated.

5.1 The Lipoprotein LipL32

The leptospiral outer membrane lipoprotein LipL32 (Haake et al. 2000) would
appear to have all the hallmarks of a virulence factor and/or protective antigen. It is
the most abundant protein in the leptospiral cell and the outer membrane and is
present exclusively in pathogenic Leptospira spp., where it is highly conserved.
Surprisingly, therefore, a defined lipL32 mutant retained virulence for hamsters,
whether infected parenterally or conjunctivally, and was unaffected in its ability to
colonize the renal tubules of rats (Murray et al. 2009). Originally identified as a
major component of the leptospiral surface (Cullen et al. 2005), its surface location
has recently been re-evaluated (Pinne and Haake 2013).

LipL32 is the most studied leptospiral protein (Murray 2013). Its ability to elicit
protective immunity against acute infection with several different serovars has been
reported numerous times using a range of antigen delivery methods and animal
models (Table 1). However, a rigorous evaluation reveals major deficiencies in
many of these reports, with the most common problems being the use of inadequate
challenge dose, small groups of animals, and inappropriate statistical analysis.
Accordingly, the majority of publications does not present a credible case for
protection when survival is used as the criterion (Table 1).

The original work in gerbils delivered LipL32 either as a recombinant protein or
via the lipL32 gene introduced as plasmid DNA or using an adenovirus vector.
Claims of protection must be tempered by the high survival rates in control animals
resulting in lack of statistically significant protection (Table 1). Similar problems
arise when assessing the results of attempts to immunize hamsters with LipL32
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expressed in Mycobacterium bovis BCG. A proper statistical analysis shows that
significance was achieved (p = 0.022, Fisher’s exact test) in only one of three
experiments. Claimed protection of hamsters immunized with LipL32 and LTB,
either as a mixture or as a fusion protein, likewise do not withstand proper analysis.
Importantly, two additional studies in hamsters showed unequivocal lack of pro-
tection following immunization with recombinant entire LipL32 or fragments
thereof (Table 1; Cao et al. 2011; Deveson Lucas et al. 2011).

In contrast, partial but significant protection was generated in guinea pigs
immunized with LipL32 and challenged with either serovar Lai (homologous) or
Ballum (Table 1; Luo et al. 2010). However, even here the conclusion must be
tempered by the apparently low virulence of the challenge strains, necessitating the
use of a very high challenge dose.

A more compelling case for LipL32 as a protective antigen arises from the clear
and highly significant protection conferred to hamsters that received mouse
monoclonal antibodies against LipL32 (Table 1; Maneewatch et al. 2008). What
then, are we to make of these apparently contradictory findings? Given that the
most credible protection has been mediated by antibodies generated in mice or
guinea pigs, is it possible that these animal species respond with antibody isotypes
that are protective, but hamsters do not? Or do these protective antibodies recognize
unique LipL32 epitopes? LipL32 in Leptospira is glycosylated (Ricaldi et al. 2012),
but recombinant proteins used in vaccination studies would almost certainly not be
glycosylated. Any role for LipL32-linked glycans in immunity remains completely
unknown.

A further possibility is that cell-mediated immunity plays an as yet undefined
role in the variable levels of protection observed. Intriguingly, in cattle where
immunity, at least to serovar Hardjo, is not antibody dependent but is correlated
with IFN-γ release by T-cells, the antigen which is the major stimulator of IFN-γ
release is LipL32 (Deveson Lucas et al. 2014). The possibility thus exists that
LipL32 is a protective antigen in some animal species but not in others. In the case
of humans at least, there is a compelling argument that LipL32 does not mediate
protection. LipL32 is expressed during human infection and is immunogenic;
indeed it has been used as a serodiagnostic antigen (Flannery et al. 2001). However,
in the face of this antibody response, immunity following human infection is
restricted to serovars with related LPS. Whether this restriction is true for other
animal species remains equivocal. Another possibility might be that antibodies
elicited during natural infection are not directed against as yet undefined protective
epitopes. The role of LipL32 in immunity thus remains enigmatic and warrants
further investigation.

5.2 The Lig Proteins

The Lig proteins were identified as major components of the leptospiral surface
which are not expressed under normal in vitro growth conditions (Matsunaga et al.
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2003, 2005). The Lig proteins have been investigated as vaccine candidates against
challenge infection with three different serovars (Table 2). As is the case with
LipL32 studies, many of the claims of protection must be tempered due to the use of
inadequate challenge doses, poor reproducibility, and inappropriate statistical
analyses. There are no studies which present a credible case for LigB as a protective
antigen (Table 2). Koizumi and Watanabe (2004) reported >90 % protection of
C3H/HeJ mice immunized with LigA and/or LigB, but with 40 % survival in the
GST-immunized control groups, yielding statistical insignificance. A study with
LigA in hamsters claimed efficacy (Table 2; Palaniappan et al. 2006), but control
animals showed 75 % survival. A subsequent attempt to immunize hamsters with
DNA encoding LigA also claimed protection (Faisal et al. 2008); however, a proper
statistical analysis of those data does not support the claim of enhanced survival
(Table 2). Nevertheless, several other studies have now shown unequivocal pro-
tection of hamsters immunized with the C-terminal portion of LigA, with ligA
DNA, or with specific domains within the LigA C-terminus (Table 2). An alter-
native approach was used to deliver lipidated LigA expressed in E. coli orally to
hamsters. Significant protection was elicited in single experiments against a low
intradermal challenge dose, but not against a slightly higher intraperitoneal chal-
lenge (Table 2; Lourdault et al. 2014). LigA therefore shows significant promise as
a protective protein antigen, at least against some serovars. Potential explanations
for the conflicting results include the use of different adjuvants, challenge doses,
and challenge serovars. Indeed, one study found no homologous protection in
hamsters immunized with Canicola LigA (Table 2; N. Bomchil, Personal com-
munication), whereas Copenhageni LigA elicited 100 % protection against
homologous challenge. A similar lack of homologous protection was observed with
serovar Manilae (Table 2; Deveson Lucas et al. 2011). The possibility therefore
remains that the protective capacity of LigA may not necessarily extrapolate to all
species or serovars.

5.3 Other Recombinant Proteins

There has been a range of other recombinant proteins tested for protective capacity.
Similar problems arise with the majority of claims, which report a single experi-
ment, or lack of reproducibility and therefore do not withstand proper statistical
analysis. These are summarized in Table 3 and will not be discussed further here.
Notably, Murray et al. (2013) found no protection elicited by any of the 238
recombinant proteins tested from serovar Hardjo, when colonization of hamster
kidneys was used as the criterion for protection. The list of proteins tested contained
several for which claims of protection had been made previously.

Two studies report protection elicited by the FlaB flagellar subunit protein
(Table 3). The first (Dai et al. 1997) was performed in mice, which were challenged
with a very high dose of 2.5 × 1010 leptospires; despite this dose, 40 % of controls
survived, but the numbers used yielded significant protection (Table 3). In the
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second study (Dai et al. 2000), guinea pigs were immunized with plasmid DNA
encoding FlaB, and again apparently significant protection was obtained, although
only a single experiment was performed. It is difficult to know how to interpret
these results. Leptospiral flagellar antigens are not surface exposed and indeed, do
not react with specific antibodies unless the leptospiral cells are first permeabilized
(Zhang et al. 2013). It is the opinion of this author that the protection claims with
flagellar antigens are not credible.

An even stranger claim is that of a recent study which reported significant pro-
tection of hamsters with recombinant GroEL (Table 3; Li et al. 2013). The chaperone
GroEL is a cytoplasmic protein; indeed, it is used routinely as a cytoplasmic marker
in cell fractionation experiments. The report that anti-GroEL antiserum agglutinated
all eight leptospiral serovars tested thus borders on bizarre. An independent
assessment of specific rabbit anti-GroEL antiserum found no evidence whatsoever of
agglutination of whole leptospires (B. Adler, unpublished observations).

Despite these mainly negative or unconvincing findings, there are some credible
reports of immunoprophylaxis. One of the earliest reports of protective immunity
elicited by defined protein antigens (Haake et al. 1999) involved immunization of
hamsters with E. coli membrane fractions containing a combination of OmpL1 and
LipL41. This preparation induced significant protection against homologous chal-
lenge with Leptospira kirschneri serovar Grippotyphosa, but only in one of three
experiments. These studies have not been repeated.

The hypothetical LemA protein induced partial, but highly significant, protection
in hamsters when delivered using a prime boost, DNA plus protein strategy. Sur-
viving animals were culture and lesion positive. Interestingly, LemA alone did not
elicit significant immunity, whereas lemA alone was marginally protective
(p = 0.03) despite not eliciting a detectable antibody response (Table 3; Hartwig
et al. 2013). Unfortunately, these results were based on a single experiment.

Faisal et al. (2009) reported significant protection in hamsters immunized with a
combination of three proteins of unknown function, Lp0607, Lp118 and Lp1454,
when delivered trapped in liposomes derived from polar lipids of L. biflexa (termed
leptosomes). Intriguingly, no protection was observed if the proteins were trapped
in phosphatidylcholine liposomes, nor if the proteins were delivered mixed with,
rather than trapped in, either of the liposome preparations (Table 3). The leptosomes
stimulated significantly higher Th1 and Th2 responses, although it is not clear
which of these was involved in mediating protection. However, here again, the
protection data were based on a single experiment.

6 Conclusions

On the centennial of the discovery of Leptospira as the causative agent of Weil’s
disease the only vaccines licensed for use in animals and humans are inactivated
bacterins not very different from those first used 90 years ago. The post-genomic era
has seen a flurry of activity to identify protein components of the leptospiral cell that
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are able to elicit cross-protective immunity. As outlined in this review, the majority
of claims for protection are not credible, based on the data reported. However, this
should not be viewed as painting too bleak a picture. It may well be that some of
these proteins will be shown to be capable of stimulating immunity when they are
tested in repeat experiments, perhaps in combination, and with sufficiently large
numbers of animals, proper challenge doses, and with appropriate statistical anal-
ysis. This prospect is exemplified by LigA. Despite a number of protection claims
which do not withstand proper scrutiny, there is now sufficient evidence that LigA is
a protective antigen, at least in some leptospiral species and serovars, and currently
represents the most likely candidate vaccine antigen. There is thus a realistic pos-
sibility of the development of defined, protein-based vaccines in the next decade.

A final cautionary point should be borne in mind. The experience with Hardjo
vaccines in cattle has emphasized the fact that mechanisms of immunity to lepto-
spirosis, and therefore the identity of the antigen(s) mediating that immunity, cannot
necessarily be extrapolated from laboratory animals to production or companion
animals, to humans, or even among different animal species. The caveat may also
hold for different serovars; the assumption should not be made that immunity
elicited by an antigen against a particular serovar in a particular animal, can be
generalized to other species.
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