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Abstract. This paper proposes a Population-P-Systems-inspired Membrane Al-
gorithm (PPSMA) for multi-objective optimization. In the algorithm, the cells of
population P systems are divided into two groups to implement different func-
tions and the communications among cells are performed at two levels in order
to obtain well converged and distributed solution set. Moreover, differential evo-
lution is employed as search operator in PPSMA. Twelve multi-objective bench-
mark problems are utilized to test algorithm performance. Experimental results
show that PPSMA performs better than five compared algorithms.
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1 Introduction

In recent years, membrane algorithms (MAs), which hybridize membrane computing
with evolutionary computation, have attracted much attention in both methodological
aspects and practical applications. At present, several membrane structures, such as
nested membrane structure [1], one level membrane structure [2], dynamic membrane
structure [3], statistic network structure [4] and dynamic network structure [5], have
been combined with various evolutionary algorithms to design many MAs. A compre-
hensive review of MAs can be found in the survey paper by Zhang et, al. [6].

To date, the research on MAs mainly focuses on the use of structures of cell-like P
systems. In our previous work [5], population P systems [7] were applied to construct
a MA for single-objective optimization. In this paper, we push the work forward and
propose a Population-P-Systems-inspired MA for multi-objective optimization called
PPSMA. In the algorithm, population P systems are used to organize individuals; cells
in the system are divided into two groups with different functions; communications
among cells are performed at local and global levels; and differential evolution (DE)[8]
is applied as search operator. Experimental results show that PPSMA outperforms five
peer algorithms in terms of three performance metrics.

2 PPSMA

To obtain uniformly distributed solutions, we can first define a set of uniformly
distributed directions and then search for one solution that converges well along each
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direction. Hence, the problem is transformed to a set of sub-problems with different
goals. To ensure good convergence performance, efficient search operators like DE
should be applied and the information of a sub-problem should be shared by others.
Population P systems are quite suitable for solving multi-objective optimization prob-
lems (MOPs). In PPSMA, the cells are divided into two groups. The first group called
evolving cells, including cells Ck, k = 1,2, . . . ,NP, focuses on searching individuals to-
ward Pareto front; while the second group called surviving cell, consisting of only one
cell CNP+1, aims at surviving individuals and re-scattering them across the evolving
cells for next generation, where NP is the population size. Hence, there are NP+1 cells
involved in the system.

In PPSMA, we first generate NP uniformly distributed direction vectors, one for each
evolving cell, and then define the neighboring cells of each evolving cell. Specifically,
each direction vector r = (r1,r2, . . . ,rM) should satisfy

rm ∈ { 0
H , H

H , . . . , H
H

}
,m = 1,2, . . . ,M,∑M

m=1 rm = 1 (1)

where M is the number of objectives and H is a positive integer. The total number of
available direction vectors is CM−1

H+M−1. Then, each evolving cell i is associated with a
unique direction vector, denoted as ri. The neighboring cells of evolving cell i are the
evolving cells whose direction vectors are the �R ·NP� closest vectors to ri, denoted as
N(i), where R ∈ (0,1) is a pre-defined parameter.

Based on the above description, the population P systems in PPSMA can be formu-
lated as the following construct

P = (V,γ,α,ωe,C1,C2, . . . ,CNP,CNP+1,co)

where

(i) V = {x1,x2, . . . ,xNP}, where xi = (xi,1,xi,2, . . . ,xi,D) is a real-valued string;
(ii) γ = ({1,2, . . . ,NP+ 1} ,E) with E = E1 ∪ E2 is a finite directed graph, where

E1 = {(i, j) |1 ≤ i ≤ NP, j ∈ N (i)}, E2 = {(i, j)|1 ≤ i ≤ NP, j = NP + 1,or i =
NP+ 1,1 ≤ j ≤ NP};

(iii) α is a finite set of bond making rule (i,x1;x2, j) ,(i, j) ∈ E;
(iv) ωe = λ ;
(v) Ck = (ωk,Sk,Rk), for each evolving cell k, 1 ≤ k ≤ NP,

(a) ωk = {x1,x2, . . . ,xnk}, where nk is the number of individuals in cell Ck, satis-
fying ∑NP

k=1 nk = NP;
(b) Sk is a finite set of communication rules of the form (λ ;b, in) ,b ∈V ;
(c) Rk is a finite set of transformation rules of the form x → y, consisting of the

mutation, crossover, and selection operators of DE;
and for surviving cell k, k = NP+ 1,
(a) ωk = {x1,x2, . . . ,xNP};
(b) Sk is a finite set of communication rules of the forms (λ ;b, in) and (b,exit) ,

b ∈V ;
(c) Rk = /0;

(vi) co = NP+ 1 is the label of the output cell.
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In what follows we describe the procedures of PPSMA step by step.
Step 1: Initialization. A population P system with NP+1 cells is created. Each evolv-

ing cell k is associated with a direction vector rk. An initial population with NP individ-
uals is generated and each individual is sent to a random selected evolving cell. Hence,
each evolving cell has nk individuals with 0 ≤ nk ≤ NP and ∑NP

k=1 nk = NP.
Step 2: Parameter setting. In PPSMA, DE is applied as search operator. As scaling

factor F and crossover rate Cr of DE have great influence on algorithm performance, we
adapt the two parameters according to their recent successful values using the strategy
in [9]. At generation g, the values Fi and Cri for the ith individual are generated by

Fi = randc(μF ,0.1),μF = ∑F∈sF
F2

/
∑F∈sF

F (2)

Cri = randn(μCr,0.1),μCr = ∑Cr∈sCr Cr
/

W (3)

where, randc(μF ,0.1) is a cauchy distribution with location parameter μF and scale
parameter 0.1; randn(μCr,0.1) is a normal distribution of mean μCr and standard devi-
ation 0.1; sF and sCr are the sets of most recent W values of F and Cr which produce
offspring entering the next generation.

Step 3: Individual evolution. Transformation rules of the form x → y is utilized to
evolve the objects in each of non-empty evolving cells (i.e., nk �= 0). The rules are the
mechanisms of DE. Instead of evolving individuals in each cell independently, indi-
viduals from neighboring cells are used through local communication. Specifically, for
each individual xi in an evolving cell k, i = 1,2, . . . ,nk, three individuals xr1, xr2 and xr3

randomly selected from evolving cells kr1, kr2 and kr3 are used to generate a trail vector
vi, where kr1, kr2 and kr3 ∈ {k}⋃{N(k)|nk �= 0}. If f(vi) dominates f(xi), xi is replaced
by vi; otherwise, xi is kept unchanged and vi is stored in the current cell temporally.
The values of kr1, kr2 and kr3 determine what membrane structure will be created and
used to perform local communication.

Step 4: Global communication. In this step, surviving cell co receives all individu-
als (including xi and temporally stored vi) from all evolving cells using rule (λ ;b, in),
forming a temporary population P′ with size N, N ∈ [NP,2NP]. The population P′
is then divided into fronts F1,F2, . . . ,FL through non-dominated sorting. The indi-
viduals in F1,F2, . . . ,Fl−1, l ≤ L are first survived, satisfying ∑l−1

i=1 |Fi| ≤ NP and

∑l
i=1 |Fi|> NP. Then for each individual x in fronts F1,F2, . . . ,Fl , we determine an

evolving cell k that x could enter according to the closest perpendicular distance be-
tween f(x) and ri, i.e.,

k = argmin
i∈{1,...,NP}

d (f(x),ri) = argmin
i∈{1,...,NP}

f(x)− rT
i f(x)ri (4)

Thirdly, we send all individuals inF1,F2, . . . ,Fl−1 to corresponding cells. Afterwards,
we scan all evolving cells in ascending order of the number of individuals in evolving
cells. Specifically, if an evolving cell has the fewest individuals in it and there exists an
individual in Fl that could enter into this evolving cell, the corresponding individual is
sent to this cell and the number of individuals in this cell is incremented by 1; otherwise,
the next evolving cell with the fewest individuals is checked. If all evolving cells with



PPSMA for Multi-objective optimization 43

the fewest individuals have been checked and there are still some individuals need to be
survived, then the evolving cells with the second fewest individuals are checked. The
scanning procedure is repeated until NP− ∑l−1

i=1 |Fi| individuals have been survived
from Fl . At the end of re-scattering procedure, the most recently adopted Fi and Cri

values which produce the survived individuals are stored in sF and sCr for updating μF

and μCr at next generation.
Step 5: Termination condition. The algorithm stops when a prescribed number of

evolutionary generations or function evaluations is attained. Otherwise, go to Step 2.
Step 6: Output. For cell co, rule (λ ;b, in) is performed to collect all individuals from

evolving cells. These individuals constitute the final solution set.

3 Experimental Results

Twelve benchmark MOPs, including five two-objective problems (ZDT1-ZDT4, ZDT6)
and seven three-objective problems (DTLZ1-DTLZ7) are employed to conduct exper-
iment. To quantify algorithm performance, three performance metrics including gen-
erational distance (GD), inverted generational distance (IGD) and hypervolume (HV)
are used. To show the advantage of PPSMA, five compared algorithms are considered,
i.e., NSGA-II [10], GDE3 [11], DEMO [12], ε-MyDE [13] and MOEA/D-DE [14].
The maximal number of function evaluations is set to 30,000 as the stopping criterion.
The population size NP is set to 100, except for PPSMA and MOEA/D-DE when solv-
ing three-object problems, where NP is set to 105 because it is impossible to generate
exact 100 uniformly distributed weight vectors or direction vectors for the two algo-
rithms when solving three-objective problems. In PPSMA, R and W are set to 0.3 and
80, respectively, according to a parameter analysis procedure. The other parameters for
each compared algorithms are set the same as in their original papers. In addition, 25
independent runs for each algorithm on each test problem are performed.

Due to space limitation, we do not list the mean and standard deviation values of
GD, IGD and HV. Instead, we give the statistical test results with respect to Wilcoxon’s
rank sum test at a 0.05 significance level, shown in Table 1. From the table, we can
see that the numbers of problems where PPSMA performs significantly better than five
compared algorithms are much larger than the number of problems where PPSMA per-
forms significantly worse, which demonstrates PPSMA is superior to five compared
algorithms.

Table 1. Statistical test results in terms of GD, IGD and HV

Algorithms
GD IGD HV

+ = − + = − + = −
NSGA-II 11 0 1 10 1 1 9 1 2

GDE3 8 2 2 7 2 3 8 2 2
DEMO 6 2 4 7 1 4 8 2 2

ε-MyDE 9 0 3 10 1 1 10 1 1
MOEA/D-DE 12 0 0 11 1 0 11 1 0
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4 Conclusion

This paper proposed a multi-objective MA called PPSMA. In the algorithms, two kinds
of cells with different functions are used and the communications are performed at
both local and global levels. Experimental results show that PPSMA outperforms five
peer algorithms in terms of three performance metrics. Our future work will focus on
designing multi-objective MAs by exploiting the features of other advanced P systems
and applying these algorithms to solving real-word problems.
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