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Abstract. Inthispaper, the nonlinear matrix equation X"+ > A X% A,

i=1
= @ is discussed. We propose the Newton iteration method for obtaining
the Hermite positive definite solution of this equation. And a numerical
example is given to identify the efficiency of the results obtained.
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1 Introduction

Consider the nonlinear matrix equation
X+AXTA=0Q. (1)

Zhan [5] have studied that the maximal positive definite solution of Eq.(1) with
the case @ = I. An iterative method for obtaining the maximal positive definite
solutions of Eq.(1) is proposed. The convergence of the iterative method is also
discussed in his paper. Simultaneously, Zhan and Xie [8] have proved that a
necessary and sufficient condition for the existence of solutions of Eq.(1) in which
A should satisfy the following demands : A = PTI'QX P, where P, Q are
orthogonal matrices, and diagonal matrix I" and X satisfy I" > 0, X > 0,
I'? + X2 = [.Meanwhile, the solution of Eq.(1) and some necessary conditions
for the existence of the solution of the nonlinear matrix equation are given.When
@ = I and A is real matrix, Engwerda [2] have used a simple recursion algorithm
to obtain the solution of Eq.(1) and proposed a sufficient and necessary condition
for the existence of a positive definite solution.

In this paper, we study Newton iteration method for obtaining Hermite pos-
itive definite solutions of equation

X+ Y AXTA; =Q, (2)

i=1
where A; is a nonsingular matrix, ) is a Hermite positive definite matrix, r, m
are positive integer and —1 < §; < 0(i =1,2,---,m).
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2 Newton’s Method for Obtaining Hermite Positive
Definite Solutions of the Matrix Equation

X+ 3 ATX A4, =Q
=1

In this section, we study Newton’s method for obtaining Hermite positive definite
solutions of matrix equation X + Z ArX~1A; = Q, where A; is a nonsingular

complex matrix and Q is a Hermlte deﬁnlte matrix.

2.1 Related Lemmas

Lemma 1. [6] Let Z Q- 24,Q 2|2 < 1, and define a matriz set T =

{X|51Q < X < BQQ} Thus Eq.(2) has a umque solution in T, where (1 is

a larger root of this equation x(1 —x) = )\mam(z Q_zAfQ_lAiQ_‘Z) and 2 18
i=1

a larger root of equation x(1 —x) = Xppin (D Q_éA;f‘Q_lAiQ_i).
i=1

m
Lemma 2. [1] Let B; € C™", and P, Q € H,™ ™. If Y [|Q:B:Q 2|2 < 1,
=1

m

then this matriz equation X — Y BfXB; = P has a unique solution X, and
i=1
X >0.

m 1 1
Lemma 3. [4] Let B; € C™*",P,Q,C € H.™*™. If Y |Q = B;C71Q=|* < 1,
i=1
m
the matriz equation C*XC — > BfXB; = P has a unique solution X, and
i=1
X >0.

Lemma 4. [7] If C and P are the same order Hermite equations, and P > 0,
then CPC + P~! > 2C.

Lemma 5. [3]IfF € R"™™, and ||F||p < 1, then I—F is nonsingular. Moreover
(I—-F)~' =% F* Purther ||[(I — F)7|p < 17”1Fup.
k=0
2.2 Newton Iteration Method for Solving the Matrix Equation
X+ Y AXX A, =Q

=1

Newton iteration construction process is given firstly. For matrix function

F(X)=Q-X—3 ArX—1A,. 3)
=1



110 J. Fang et al.

Let H = X, +1 — X,,. We have

F(X + H) — F(X)
= S AX T (X H) A H
i=1

= Z ANX +H)'HX'A; — H

27

- Z AX +H) ' — X UHX 4+ 5 ATXTHX A, — H
1=1

=- Z A'X'H(X + H7'HX'A; + Y, A X 'HX'A; — H.

i=1

For the definition of Frechet derivative, we know that
F'(X)H=Y A} X 'HX'A;,— H
i=1
by Newton’s formula
Therefore
n+1 Z A* 1Xn+1X;1Ai = Q — 2 Z A?X_l
i=1

Hence we can get the iterative algorithm:

1 m m
{X0€[,Q QL Xnp = D AIX X0 XA =Q-2) AX

i=1

—1
LA,

(7)

Theorem 1. Let Z Q- 2A4,Q 2|2 < 1 {Xn} is matriz sequence which is

determined by the ztemtwe Algorithm (7), then X,, € [ Q,Q], and
dolQrArX, Q| < 1.
i=1

Proof. For Y. Q2 A,Q72|> < }
i=1

HMS

@ 2 A;Q” 2H21—Z>\max( “LATQAQ ) > i -1 42Q

Hence

0< Y Q2 AIQ1AQ 3 < 11
=1

“1AQ 2.



Research on a Class of Nonlinear Matrix Equation 111

Similarly, we get

z Q- A X 1QH 2T
>ZQ2X 1AQ IA* IQ;
= L (QIXQQ T AQTIAIQ QXY

— (QEX;1Q} >[§<@*%Ai@*1A:@*%>}<@%X;1Q%>.

MS

Then by X, € [%Q,Q], we can obtain [ < Q%X,le% < 21. There is

3

S lQ :AIX Q22T < I

i=1

Hence

3

S QTAIX Q2P < 1.

i=1

We will prove X,,41 € BQ, Q)] using the inductive method as follow.

If £ = 0, according to known, we can obtain zy € [ Q,Q].

Assume that k =n, X,, € [%Q,Q] vn € N. We know k=n+1,X,11 € [2Q Q.
The Eq.(6) can become

Q - Xn+1 - Z A:XJI(Q - Xn+1) 1A - Z A* (2Xn Q)X_1
i=1

(8)
According to X, € [éQ, Q), that is 2X,, — Q > 0. We can deduce

AXT12X, — Q)X 714, >0, Vi=1,2,---,m

That is
m
SAIX(2X, - Q) X, M A > 0.

Thus from Lemma 2, we get Q) — X, 41 > 0. That is X, 11 < Q.
Similarly, the matrix Eq.(6) can also become

m

Xnt1 — Z Ar X N (X — ;Q)Xfl

=5Q- ZlA;‘(?X;l —3X,QX A
1=
From X, € [%Q,Q], we can obtain Q72 X,Q"2 € [é],]], and

2Q > X,Q72) = 3(Q T2 XQ2) 2 € [31,21).
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Hence

i AT2X - )X TQX A
=§2Q%«JéfﬁQ*%an*% 2Q72) 1 - 1(Q 7 X,Q72) Q2 AQ2)Q

<23 A:Q7M4

12 1
)
So the right side of Eq.(9) is positive semi-definite. Hence,
Xn+1 Z ;Q
In conclusion, ¥Yn =0,1,---, we have X,, € [éQ, Q], and

Yol AIXQ|” < 1.

i=1
]

m
Theorem 2. For iterative Algorithm(7), if > ||Q~ 2 A;Q 2| < L, then we
i=1

have
X12Xo2 2 X, 200l (10)
Proof. According to Newton iterative Eq.(5), for any n > 1, we have
m m
Xo— Xpg1 — 2 A X N X — X)X 1A = X+ D A XA — Q.
i=1 i=1
Since Z Q™2 A*X7'Qz||? < 1, if we can prove X, + Z ArX A —Q >0,

then We can get X,, — X411 > 0 directly.
Consider the Eq.(6)

SAXTLX XA -2 ARX A - X, +Q=0.
i=1 =1

Then
m
X, + Z AP XA - Q
=
= Z AX XX A+ Z Ar XA -2 Z A XA
= 2 ATX L (X = Xao) X 1 A + ZA* 1 (Xno1 = X)X 1A
=1
m
= 2 ATXL (X = X)X (X = X)X A
=1
>0

So X, — Xp+1>0, Vn=1,2,.... O
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m

Theorem 3. Consider the iterative Algorithm(7). If > \|Q_5A1Q_5 1 < 3
i=1

then the iterative sequence {X,} converges to Xr,.

Proof. According to Theorem 1 and Theorem 2, in Newton iterative method,
for VYn € N, we get X, € [éQ, Q], and {X,} is bounded monotonic sequence.
Hence, for enough n, {X, } converges to X, and X is a solution of the Eq.(2).
Let X, — X', X’ is a solution of the Eq.(2), then we have X’ < X. On the
other hand, notice that X’ is obtained by sequence {X,}, for the any solution
X of the Eq.(2), we will prove that X,, > X ,Vn > 1 as follow.

Eq.(6) then becomes

m
Xn+1 - X - Z A:szl(XnJrl - X)Xn_lAi

i=1

=Q—-2Y AIX 1A - X+ 3 AIX XX AL
i=1 1=1

According to X is a solution of Eq.(2), then X satisfies X+ Y A7 X 1A, = Q.
i=1

Therefore -

m
Xn+1 - X - Z A:XEI(XnJrl - X)XEIAi
=1

=S AX A+ Y ATXIXX A -2 ATX A,
i=1 i=1 i=1

i i=

= 2AjX*1(X,L — X)X A - > ARXH(X, - X)X A,
i= i=1
m

= ZIA;‘X;l(Xn - X)X (X, - X)X '4; > 0.
1=

According to Lemma 2, whether or not X,, — X is positive definite, we can
obtain X, 41 —X > 0. In fact, by X,, > X,;n=1,2,---, we can obtain X,, > Xy,
n=1,2---,and X' > Xy.

In conclusion, we have X' = X, it is equivalent to nh_}n;o X, =Xr. O

m
Theorem 4. If 3 Q2 A,Q 2|2 < 1, then the matriz sequence {X,} of Al-
i=1
gorithm (7) satisfies
435 Amaz(QFATQ T AQTR)IQ 212 @32

[ X1 = Xoff < o o 1Xn — X|?, (11)
F10-1 2 Amaz(Q 2 A;Q1AQ2))

m 1 1
1+\/174)‘max( 2 QT2ATQTIAQT 2)
1=1
where 1 = 9

Proof. Obviously, from Lemma 1 and Theorem 3, we know that the maximal
m

solution X7, of Eq.(2) satisfies X1, € (51Q, 52Q), and Q = X1 + >, A;FXglAi,
i=1
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then L
QX 'Qz2|| <
B

where f; is a large root of equation (1 — ) = Amax(>_ Q‘éA;kQ_lAiQ_é).
i=1
Therefore, we can obtain

1 .
1+\/1—4>\max( S QRT2ZAIQTTA;QT 2)
i=1
61 - 2

m
In Eq.(6), we use X + > AfXElAi to replace D, then
i=1

m m m
Zl A X X 1 X A -2 Zl Ar XA — X + X+ Zl ArX; A =0.
1= = 1=

1=

So
Xn+1 — X1,
=3 AIX T (X — X)X A+ Y AP X H(X, — X)X A,
=1 =1

-Zl A X N (X1 — X0) XA — 21 A XWX, — X)X A,
=1 =
+ 3 XX, - X)X A
i=1
m
=Y AX (X — X)X M4
1=1

m
+ 3 AXN (X, - X)X N, — X)X A
=1

Since X, € [3Q,Q)], then
lQ=x; Q| <2

So ) )
Q72 (Xpnt1 — X1) Q2|

< é 1Q 2 AQ QX QFPIQ 2 (Xngs — X1)Q 2|

m 1 1 1 1 1 _
+(ZlIIQ*Z’AZQ*Z’HZ)IIQ?%XJIQ%||2HQ2XL1Q2HHQ 2 (Xng1 — X£)Q 2|2
1=
<43 Mnax(Q 2 ATQ T AQ2)(|Q 3 (X1 — X£)Q 2|
i=1
13 dmax(@3AiQAQTE) ,
+ 7 8 Q= [|*[| Xy — X%
And then we obtain

X1 = X2l < Q22 - 1Q72 (Xns1 — X1)Q™ 2|

m I _1 _1 5 1.5
4;,\maX(Q 2ATQTTA QT 2)IQT 2% IQz2 | )
S = HXTI_XLH )

B1(1—4 ; Mnax(Q2A7Q714,Q72))



Research on a Class of Nonlinear Matrix Equation 115

i=1

]

1+\/1*4/\max(§3 Q- Q*lAiQ’%)
where 31 = 5

m
By this theorem, we know, if S [|Q~2 4,Q 2|2 < 1 and the condition of this
i=1

select initial original X € [;Q, @], the constructed Newton iterative convergence
is quadratic.

3 Numerical Examples

In this section, we will give a numerical example to identify the two algorithm of
achieve extremal positive definite solutions of the equation. For different matrices
A; and different «, r, §;, 1 = 1,2,...,m. We compute the solutions of the
equation

X+ S AX6iA; = Q.
i=1

We will operate all programs by using MATLAB 7.0. We note that

m

e(Xe) = X5+ 2 ATXP A - Q.

Ezxample 1. We consider the equation by using the two matrices A; and Ay as
follows:

—0.1 0.2 —0.06 0.01 0.02 0.03
A =05 02 —03 016 |, A= (0010225012 |,
—0.1 0 0.02 0 0.09 0.07
1

WhereQ:I,r:E),él:f;’, 0y = —

By Algorithm 7, the following table records the different values of parameter
a(a > 1), and the values satisfy the number of iterations which is needed by a
stop condition.

Table 1.
« k
tol =107 tol = 107% tol = 1078

1.3 3 4 5

1.5 3 4 5 ’

1.7 3 4 5

2.1 3 4 5
0.9969 0.0037 —0.0021 0.9969 0.0037 —0.0021
0.0037 0.9808 —0.0040 |, X, —D=[ 0.0037 0.9808 —0.0040 |,
—0. 0021 —0.0040 0.9943 —0.0021 —0.0040 0.9943

where D = Z A»QflA;‘)_%

z=1
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The eigenvalue of X, — D is (0.9791,0.9995, 0.9933).

The eigenvalue of Q% — X1, is (0.0005,0.0067,0.0208).

It implies that X € (2.

From the Table 1, we conclude that the number of iterations increased with
increasing of a within some extent errors.

Acknowledgments. We thank the reviewers for their valuable comments and
suggestions on this paper.
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