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13.1	 �Ion-Pair Formation 
for Penetration 
Enhancement

A diffusing molecule has to cross the skin barrier 
composed of the highly lipophilic stratum cor-
neum (SC) and the hydrophilic viable epidermis 
(ED) in order to reach the deep skin layer as well 
as the layers under the skin. Therefore, only 
active compounds with ideal physicochemical 
properties, e.g., low molecular weight, suitable 
solubility in oil and water, moderate partition 
coefficient, and low melting point, can permeate 
through both the lipid and polar microenviron-
ments in the skin (Barry 2001). Obviously, 
hydrophilic ionized drugs do not readily distrib-
ute into or penetrate through the lipophilic SC 
membranes. On the contrary, the problem for 
those very lipophilic drugs, which can easily dis-
tribute into SC membranes, is that they do not 
readily translocate from the SC to the relative 
hydrophilic ED due to their high solubility in the 
intercellular lipids, thus limiting their skin per-
meation. Ion pairing provides a possible approach 
to adjust the physicochemical properties of drugs 
without any changes on the structure and phar-
macologic actions of the drug compound and 
consequently facilitate the penetration of drugs 
across the skin barrier (Neubert 1989). Some 
products using ion-pair technique, such as 
Flector® Patch (diclofenac epolamine topical 
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patch) from IBSA Institut Biochimique SA 
(Switzerland) and Voltarol® emulgel (diclofenac 
diethylamine emulgel) from Novartis Consumer 
Health UK Ltd. (UK) are commercially
available.

13.1.1	 �The Concept of Ion Pairs

An ion pair is defined as neutral species which 
consists of a pair of oppositely charged ions held 
together by coulomb attraction without formation 
of a covalent bond (McNaught and Wilkinson 
1997). Practically, an ion pair behaves as one unit 
in determining conductivity, kinetic behavior, 
osmotic properties, etc.

In 1926, Bjerrum developed a theory that took 
the interaction of ions into account. He intro-
duced, for the first time, the concept of ion pairs 
and showed how the mass action constant of the 
equilibrium between ions and ion pairs is depen-
dent on the dielectric constant of the solvent as 
well as on temperature and the size of the ions 
(Kraus 1956). According to the Bjerrum theory, 
oppositely charged ions with their centers closer 
together than a distance (q) (pm) are considered 
to constitute an ion pair:

	
q z z Tr= × ( )+ −8 36 106. / e

	
(13.1)

Where z+ and z− are the charge numbers of the 
ions, εr is the relative dielectric constant of 
the  medium and T is the absolute temperature. 
The resulting ion pairs exhibit stable, thermody-
namically distinct species. Depending on the 
strength of the solvent–ion interactions, ion pairs 
can be classified into two types: contact (tight, 
intimate) and solvent-separated (loose) ion pairs 
(Nagy and Takacs-Novak 2000).

In polar solvents with high dielectric constant 
such as water, ion-pair formation is also possibly 
obtained. Diamond (1963) demonstrated that the 
existing of so-called hydrophobic ion pairing 
(HIP). HIP is composed of two large hydropho-
bic ions self-assembled together by coulomb 
attraction, hydrophobic forces, and hydrogen 
bonding in polar solvents. Even though the HIP
complexes display enhanced lipophilicity and 
thus are more suited for their potential application, 

it has not been paid extensive attention yet com-
pared to the classical ion pairs mentioned above.

Hydrogen-bonded ion pairs are a special type
of ion pairs. The concept of hydrogen-bonded ion 
pairs was brought out for better understanding 
the nature of the protonic acid–base interaction 
occurring in non-dissociating solvents (Barrow 
1956). The interaction between sufficiently 
strong protonic acids and bases in a solvent envi-
ronment, especially in solvents with low dielec-
tric constant, tends to promote the formation of 
ion pairs accompanied by proton transfer of a 
hydrogen bond. According to the Brønsted-
Lowry concept of acids and bases in aprotic sol-
vents, two forms of simple prototropic 
equilibrium exist as follows (Hudson et al. 1972):

 

The classical electrostatic attraction was pre-
dominant in weak hydrogen bonds, so-called 
classical hydrogen bonds (Equilibrium I). 
However, on going to stronger hydrogen bonds,
the contribution of the proton transfer led to the 
formation of ion pairs, so-called hydrogen-
bonded ion pairs (Equilibrium II) (Arunan et al. 
2011; Ratajczak 1972). Such a hydrogen bond is 
extremely polarizable. The formation of a 
hydrogen-bonded ion pair between a carboxylic 
acid and a pyridine base in benzene solution is a 
typical example of acid and base interaction 
(Barrow 1956).

13.1.2	 �Molecules Suitable for Ion-
Pair Formation

Both drugs and counter ions have to meet cer-
tain demands in order to form ion pairs success-
fully. For hydrophilic ionized drugs, Neubert 
(1989) pointed out that the ideal counter ions 
needed to possess high lipophilicity, sufficient 
solubility in physiological compatibility, and 
metabolic stability, which was suitable for ion-
pair formation and crossing lipid membranes in 
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the form of ion pairs. The ion pairs formed by 
quaternary ammonium drugs and organic anions 
are typical examples of ion-pair formation 
(Takacs-Novak and Szasz 1999). Similarly, 
Miller et al. (2009) performed a study in which 
three lipophilic acidic counter ions were 
employed to give an understanding of the mech-
anism of ion-pair mediated membrane transport 
of low permeable drugs.

Besides ionized species, for stronger hydro-
gen bonds like OH∙∙∙N, the contribution of the
proton transfer, OH  · · ·    N⇌ O−  · · ·    HN+, could 
lead to a hydrogen-bonded ion-pair formation. 
Sobczyk and Paweła (1974) have demonstrated 
the existence of proton-transfer equilibrium 
under appropriate conditions by measuring the 
dipole moment of carboxylic acid–pyridine 
base complexes. The results indicated that the 
dipole moments of these complexes were 
dependent on the pKa difference (∆pKa) between 
carboxylic acid and pyridine base, and large 
dipole moment was induced by strong interac-
tion of ion pairs. This type of interaction 
depends on the following factors: (a) ∆pKa of 
protonic acid and base, (b) specific complex 
solvation by solvent molecules, and (c) the 
influence of solvent expressed by its macro-
scopic dielectric permittivity. Based on the ion-
pair model established by Huyskens and
Zeegers-Huyskens (1964), it was predicted that 
a ∆pKa of 3.6–6 between protonic acid and base 
could lead to an almost complete shift to the 
proton-transfer equilibrium. A recent study 
(Gilli et al. 2009) also showed that ion-pair for-
mation could be reliably predicted from ∆pKa 
between the donor and acceptor groups.

13.1.3	 �The Confirmation of Ion-Pair 
Formation

In theory, ion pairs are defined as binary species 
which exist in solution and in solid in the salt 
form. Such intermolecular interaction can be 
qualitatively inferred from the spectral character-
istics. A variety of spectroscopic techniques 
including infrared spectroscopy (IR), nuclear 
magnetic resonance (NMR), ultraviolet–visible 
spectroscopy (UV-Vis), electron spin resonance 

spectroscopy (ESR), and X-ray crystallography
could provide insights into ion-pair formation.

IR and NMR spectroscopy often offer exper-
imental proofs to directly indicate the forma-
tion of ion pairs, and they are especially 
pronounced for hydrogen-bonded ion pairs 
(Barthel and Deser 1994; Biliškov et al. 2011; 
Habeeb 1997; Pregosin 2009). Recently, by 
using IR and chemical exchange two-dimensional 
infrared (2DIR) spectroscopy, Lee et  al. 
(2011) investigated the contact ion pairs (CIP) 
assembled by Li+ and SCN−ions in N, 
N-dimethylformamide. In IR spectrum, the CIP 
formation led to a blue shift (~16 cm−1) of the 
CN stretch frequency of Li–SCN CIP with 
respect to that of free SCN− ion. Moreover, the 
temperature-dependent IR absorption spectra 
revealed that the CIP formation was an endo-
thermic process. The CIP association and dis-
sociation time constants (165 and 190  ps, 
respectively) were determined by chemical 
exchange 2DIR spectroscopy. The experimen-
tal results indicated that the ion-pair formation 
was a dynamic process in electrolyte solutions 
and in biological systems under physiological 
conditions. In the case of hydrogen-bonded ion 
pairs, a broad continuum, called as the Zundel 
continuum, is often observed in IR spectrum 
with extensive intermolecular hydrogen bond-
ing, for which proton transfer is valuable. The 
broad band is caused by the strong hydrogen 
bonds in which a proton is distributed between 
the two hydrogen-bonded species by tunneling 
(Biliškov et al. 2011). According to the classi-
cal theory of hydrogen bond, a shift toward 
lower fields in the NMR spectrum is suggested 
as a criterion to confirm the formation of a 
hydrogen bond due to strong deshielding of the 
protons. Xi et al. (2012a, b) confirmed the for-
mation of hydrogen-bonded ion pairs between 
weak acidic drugs and organic amines at 1:1 
molar ratio by IR and 1H-NMR. In this study,
teriflunomide (TEF) and lornoxicam (LOX),
two weak acidic drugs with OH groups, were
used as the model drugs, and various 
organic amines including triethylamine (TEtA), 
diethylamine (DEtA), N-(2′-hydroxyethanol)-
piperidine (NP), diethanolamine (DEA), and 
triethanolamine (TEA) were employed as the 
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counter ions, whose structure was shown in 
Fig. 13.1. CHCl3 and CDCl3 solutions of TEF 
or LOX with or without the adding of equimo-
lar organic amines were detected, respectively, 
by spectroscopic methods. In IR spectra 
(Fig. 13.2), the absorption at ~3,400 cm−1 was 
assigned to stretching vibration of OH group of
the two drugs. A continuum gave rise to a very 
broad absorption in the 3,300–2,000 cm−1 range 
in the presence of most of organic amines. In 
1H-NMR study, compared to the signal of the
proton from OH group of TEF or LOX itself
(15.35 and 13.02 ppm, respectively), the proton 
magnetic resonance of OH in the complexes
has moved toward higher field, as illustrated in 
Fig. 13.3. It seemed that the results were con-
tradictory to the abovementioned classical theory 

of hydrogen bond in NMR. However, actually
this phenomenon may be caused by strong 
shielding of the proton, which was a direct 
consequence of the intermolecular hydrogen 
bond interaction between drugs and organic 
amines instead of intramolecular hydrogen 
bonds in drugs. Notably, the chemical shift of 
OH group kept almost constant when the stoi-
chiometric ratios of drug to organic amine 
were varied from 1:1 to 1:100. These results 
suggested that TEF and LOX have been inte-
grated sufficiently into ion pairs at the equimo-
lar ratio.

In addition, UV-Vis, ESR spectra in solution, 
and X-ray crystallography also have been
employed for measuring the electronic changes 
in ion-pair formation process (Lü et  al. 2005; 
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Pal et al. 2010). Hudson et al. (1972) found that 
when weak acidic 3,4-dinitrophenol encountered 
organic amines at different molar ratio, a series 
of  characteristic bathochromic shifts in UV 

absorption spectra were presented in going from 
free acid to a hydrogen-bonded complex, to an 
ion pair, to a solvated ion pair or a solvated anion. 
Lü et al. (2005) determined the crystal structures 
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of pure ion-pair salts K(LC)+//DNB− and 
K(LE)+DNB− by X-ray crystallography. In the
near-IR spectral analysis, they found that there 
were the same patterns of vibronic progressions 
for distinguishing the “separated” from the “con-
tact” ion pair in both of the crystalline solid state 
and THF solution state, which ensured that the
same X-ray structures persist in solution. Most
importantly, in this study, the labilities of these 
dynamic ion pairs in solution were thoroughly 
elucidated by the temperature-dependent ESR 

spectral changes. Compared with other methods, 
X-ray crystallography can provide definitive
structural information via analyzing the diffrac-
tion pattern of single crystal ion-pair salts. In 
another study, Fang et  al. (2004) prepared the 
crystals of ion-pair complexes with an equimolar 
ratio of mefenamic acid (MH) and alkanolamines
by removing the solvent in vacuo and subse-
quently confirmed that these complexes were 
associated with hydrogen bonds using X-ray
crystallography (Fig. 13.4).
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13.1.4	 �The Effect of Ion-Pair 
Formation on Skin 
Permeation

13.1.4.1  �The Mechanism of Skin 
Penetration Enhancement by 
Ion-Pair Formation

The effect of ion-pair formation on skin permeation 
is complex, and its mechanism has not been thor-
oughly clarified. Generally, the skin penetration 
enhancement by ion-pair approach with suitable 
counter ions is mainly dependent on the physico-
chemical properties of the counter ions (e.g., lipo-
philicity, pKa, and structure) and the solubility of 
ion pairs in donor medium.

The extent of penetration enhancement by 
ion-pair formation is strongly related to the lipo-
philicity of the ion pairs and the properties that 
depend on the lipophilicity of the selected coun-
ter ions. A series of studies performed by Neubert 
et al. (Neubert et al. 1984; Neubert and Dittrich 
1989; Neubert and Fischer 1991) have made 
great contribution to the understanding of how 
hydrophilic ionized drugs penetrate across lipid 
membranes together with lipophilic counter ions. 
These studies showed that the partition coeffi-
cient of the hydrophilic drugs, buformine, qui-
nine, pholedrine, and bretylium, was markedly 
increased by more than twofold after the forma-
tion of ion pairs with lipophilic ions, and thereby 
the transport of ionized drugs across an artificial 
lipid membrane (dodecanol collodion mem-
brane) could be enhanced. Moreover, it was 
found that the counter ions could be accumulated 
in the lipid membrane due to their high lipid solu-
bility and that they acted as carriers for the ion-
ized drugs. Besides the increased transport of 
ionized drugs, the counter transport of protons 
and lithium ions, respectively, was also observed. 
Nam et al. (2011) also provided a similar result in 
the skin permeation of hydrophilic and highly 
ionized risedronate (RIS) with three lipophilic 
basic counter ions, l-arginine, l-lysine, and 
diethylenetriamine, at different molar ratios. To 
varying degree, all the counter ions could enhance 
the solubility of RIS in xylene, a lipophilic sol-
vent. Although RIS ion pairs are slightly unstable 
in the aqueous solution, they had a remarkable 

enhancing effect on RIS penetration from the 
aqueous solution into hairless mouse skin, and 
RIS-diethylenetriamine ion pair brought out the 
largest enhancement ratio (ER), up to 36-fold 
compared to only RIS.

As to lipophilic drugs possessing some polar 
functional groups, e.g., –COOH, −OH, and –NH2, 
their skin permeation can also be enhanced by 
hydrogen-bonded ion-pair formation (Cheong 
and Choi 2002; Green et al. 1989; Kamal et al.
2007; Nogueira et al. 2011). However, for those
lipophilic drugs, their lipophilicity can be 
decreased by ion-pair formation with small 
molecular weight relative hydrophilic counter 
ions (Fang et al. 2003). The effect of the organic 
amines including monoethanolamine (MEA), 
DEA, TEA, and propanolamine (PPA) on the 
penetration of mefenamic acid (MH) across hair-
less rat skin from the lipophilic mixed solvent of 
isopropyl myristate (IPM) and ethanol (9:1). The 
n-octanol/water partition coefficients (log Ko/w) at 
32 °C of MH and its corresponding ion pairs,
MH-MEA, MH-DEA, MH-TEA, and MH-PPA,
were 3.31, 0.79, 0.74, 1.99, and 0.66, respec-
tively, which indicated that these complexes were 
relatively hydrophilic compared with MH. Hence,
the transdermal delivery of MH was significantly
enhanced by the formation of hydrogen-bonded 
ion pairs, and the ER values of these ion pairs 
were 279, 48, 84, and 357, respectively. Obviously, 
the reduced lipophilicity of the complexes has 
facilitated the partition from the SC to the ED and 
consequently enhanced drug delivery through the 
skin. These results suggested that a major part of 
ion pairs remained the integrity of ion pair during 
the process of crossing the lipophilic SC and the 
hydrophilic ED until they reach the receptor com-
partment. The subsequent studies done by Fang’s 
group further confirmed this point of view 
(Table 13.1).

In donor medium, the pKa of the counter ions is 
another main factor that influences the skin perme-
ation of ion pairs, especially the hydrogen-bonded 
ion pairs. A positive correlation was found between 
the skin permeation of ion pairs and the pKa of the 
counter ions was found (Ma et al. 2010; Xi et al.
2012a, b). In other words, the ∆pKa between the 
drug and the counter ion (they are acids and bases, 
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correspondingly) can directly influence the 
strengths (stability) of hydrogen-bonded ion pairs 
in a nonpolar medium.

Most intermolecular hydrogen bonds in the 
liquid state are formed and broken on an extremely 
short timescale (e.g., ~10−5 s), even a picosecond 
scale (Becker 2007; Simon and Peters 1982). It 
has been widely accepted that there are abundant 
hydrogen bond acceptors and donors existing in 
the SC part of the skin and they may disturb the 
binding of ion pairs and further influence the 

stability of hydrogen bonds (Guy and Hadgraft
1984; Michaels et  al. 1975). According to Xi
et  al. (2012a, b), the stability parameter of ion 
pairs (Tlife) can be obtained, based on the follow-
ing Eq.  13.2 and data of 1H-NMR shown in
Fig. 13.3.

	

T
vlife > ( )

1

2 0p dD
	

(13.2)

where ν0 was the spectrometer frequency and Δδ 
was the chemical shift difference (Tubbs and 
Hoffmann 2004). The results in Fig. 13.5 showed 
that, in general, the ER values were increased 
with Tlife. Therefore, the better stability of 
hydrogen-bond ion pairs notably facilitated 
transdermal drug delivery.

Megwa et al. (2000a, b) carried out some in vitro 
studies to evaluate the possibility of improving the 
skin permeation of salicylate through human epi-
dermis from an aqueous solution by forming ion 
pairs with basic counter ions (alkylamines and qua-
ternary ammonium ions). The skin permeation of 
the salicylate ion pairs with primary amines and 
quaternary ammonium ions was lower than that of 
salicylate itself (ER < 1), while all of secondary and 
tertiary amines except DEtA (ER = 0.83) signifi-
cantly promoted the skin permeation of salicylate 
(ER: 1.34–4.80). The enhancement effect of these 
amines on the penetration of salicylate was in the 
following order: quaternary < primary < secondary 
< tertiary. This phenomenon was attributed to the 
fact that the complex of salicylate with tertiary 
amines had higher stability than that with primary 
or secondary amines.

The skin permeation rate is also dependent on 
the concentration of the soluble permeant in the 
applied vehicle. For lipophilic drugs with sparingly 
solubility in both oil and water like piroxicam, 
meloxicam, and LOX, the skin permeation is very
poor (Cheong and Choi 2002; Xi et al. 2012b; 
Zhang et  al. 2009). Improving the solubility in 
donor solution and the partition in the SC and the 
ED by ion-pair formation is the main mechanism 
of penetration enhancement for those drugs. A 
recent study (Song et al. 2012) showed that biso-
prolol-maleate salt possessed a higher solubility in 
DURO-TAK® 87-4098 acrylate-vinyl acetate 

Table 13.1  The enhancement ratio (ER) of ion pairs of 
drugs with different amines

Drugs Counter ions ERa

Teriflunomide in 
isopropyl palmitateb

None 1.00
Diethylamine 2.47
Triethylamine 12.69
Triethanolamine 1.44
Diethanolamine 1.15
N-(2′-hydroxyethanol)-
piperidine

4.54

Lornoxicam in 
isopropyl palmitatec

None 1.00
Diethylamine 13.63
Triethylamine 19.52
Triethanolamine 4.92
Diethanolamine 13.77
N-(2′-hydroxyethanol)-
piperidine

12.08

Flurbiprofen in 10 % 
EtOH/isopropyl
myristated

None 1.00
Diethylamine 2.02
Triethylamine 2.27
Triethanolamine 2.93
Diethanolamine 3.76
Ethanolamine 2.60
N-(2′-hydroxyethanol)-
piperidine

1.86

Glipizide in 20 % 
EtOH/isopropyl
myristatee

Na salt 1.00
Diethylamine 6.79
Triethylamine 19.61
Triethanolamine 2.34
Diethanolamine 5.77
Ethanolamine 11.92
N-(2′-hydroxyethanol)-
piperidine (NP)

3.90

aER, the enhancement ratio of the cumulative amounts of 
drug permeated between with and without organic amines
b,cXi et al. (2012a, b)
dMa et al. (2010)
eTan et al. (2009)
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adhesive (National Starch & Chemical Co., USA) 
than bisoprolol-fumarate salt, which was respon-
sible for the higher penetration enhancing effect of 
the maleate salt. In addition, ion pairs existing in 
salt form can obviously decrease the melting point 
of the parent drug, which is frequently used as a 
predictor of solubility, and thereby promotes the 
skin permeation of drugs from transdermal formu-
lations, such as patches and emulgels (Cheong and 
Choi 2003; Wang and Fang 2008).

13.1.5	 �Ion-Pair Formation vs. 
Penetration Enhancers

Currently, the application of chemical enhancers 
is a frequently used approach to enhance the per-
meation of drugs through biomembranes. 
However, chemical enhancers are not omnipotent
in the drug delivery across the skin. Tan et  al. 
(2009) found that glipizide (GP) ion pairs with 
organic amines as the counter ions provided an 
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obvious enhancement of the skin permeation of 
GP, while five common enhancers, IPM, propyl-
ene glycol, N-methyl-2-pyrrolidone (NMP), 
Azone® (AZ, Tianmen Kejie Pharmaceuticals
Co., Ltd., China), and oleic acid (OA), had no 
enhancing effect. Moreover, Cheong and Choi 
(2002) investigated the effect of various enhanc-
ers on the permeation of piroxicam (PX) and its
ethanolamine salts (PX-EAs). The results showed
that, in general, ion-pair salts still exerted a great 
enhancement on the penetration of PX from vari-
ous saturated solution in which the enhancers 
also work as the donor mediums. As illustrated in 
Table 13.2, some studies support the finding that 
ion-pair formation shows a better or comparable 
penetration enhancing effect compared to classi-
cal chemical penetration enhancers (Ren et  al. 
2008; Wang et al. 2008; Zhang et al. 2009).

13.2	 �Complex Coacervates 
for Penetration 
Enhancement

Complex coacervates are a specialized form of 
ion pairs, which represents the separation of an 
aqueous phase containing a mixture of oppo-
sitely, charged ions into a dense coacervate oil 
phase, rich in ionic complex, and a dilute equilib-
rium phase. The difference between complex 
coacervates and ion pairs is that a complex coac-
ervate exists as a binary phase system. However,
in transdermal delivery systems, complex coac-
ervates behave like ion pairs. Stott et al. (1996) 
prepared complex coacervates composed of cat-
ionic amitriptyline (AMI) and counter ions 
including sodium deoxycholate (NaD) or sodium 
lauryl sulfate (SLS). The produced complex 

Table 13.2  The enhancement ratio (ER) of ion pairs of drugs with different counter ions and penetration enhancers

Drugs Counter ions ERa Penetration enhancers ER

Indapamide in 30 % (w/w) enthol/IPM b None 1.00 None 1.00
Acetic acid 2.74 5 % Azone® 4.83
Maleic acid 4.34 5 % l-menthol 3.01
Oxalic acid 2.85 5 % oleic acid 2.52
Adipic acid 3.10 5 % N-methyl pyrrolidone 3.88
Lactic acid 8.46
Citric acid 3.47
Succinic acid 5.13
Fumaric acid 6.93

Scutellarin in 20 % enthol/IPM c None 1.00 None 1.00
Diethylamine 4.76 5 % Azone® 5.64
Triethylamine 3.83 5 % l-menthol 3.28
Ethanolamine 7.11 5 % oleic acid 2.60
Diethanolamine 3.68 5 % N-methyl pyrrolidone 1.38
Triethanolamine 1.66

Meloxicam in 10 % propylene glycol /IPM d None 1.00 None 1.00
Diethylamine 3.71 5 % Azone® 2.89
Triethylamine 1.99 5 % l-menthol 1.28
Ethanolamine 1.399 5 % oleic acid 2.29
Diethanolamine 4.20 5 % N-methyl pyrrolidone 5.77
Triethanolamine 3.94
N-(2′-
hydroxyethanol)-
piperidine

5.78

aER, the enhancement ratio of the cumulative amounts of drug permeated between with and without counter ions
bRen et al. (2007)
cWang et al. (2008)
dZhang et al. (2009)
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coacervates AMI-NaD and AMI-SLS were 
employed to investigate their potentials to 
enhance transdermal flux of AMI.  Although 
AMI-NaD was separated into two distinct phases 
(octanol and vehicle), while AMI-SLS was in sol 
state, both of the systems could obviously 
increase octanol/vehicle partition coefficients of 
AMI. However, in the skin permeation study,
only the AMI-NaD coacervate provided a 2.2-
fold increment in drug flux. On the contrary, the 
AMI-SLS coacervate showed a marked reduc-
tion in drug flux. The results indicated that the 
increased lipophilicity of the coacervate’s oil 
phase could contribute to an increase in the trans-
dermal flux of charged species.

13.3	 �Summary

In conclusion, ion-pair formation is a simple and 
useful method for enhancing percutaneous pene-
tration of drugs by modifying the physicochemi-
cal properties of parent molecules and by 
regulating the partition of drugs between the 
dosage form, the SC, and the ED. Furthermore, 
hydrogen-bonded ion pairs make some unioniz-
able molecules become suitable for ion-pair for-
mation. In order to obtain a maximum 
enhancement in permeation of drugs, the combi-
nation of ion pairs and penetration enhancers is a 
feasible approach. The enhancement mechanism 
of ion pairs in transdermal drug delivery is worth 
for further study. As to complex coacervates, 
although the published data about their applica-
tion in the field of transdermal drug delivery is 
limited, this technology is still a bright prospect 
for transdermal pharmaceutical formulations.
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