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Abstract. Through the use of next generation sequencing (NGS) tech-
nology, a lot of newly sequenced organisms are now available. Annotating
those genes is one of the most challenging tasks in sequence biology. Here,
we present an automated workflow to find homologue proteins, annotate
sequences according to function and create a three-dimensional model.

1 Introduction

The advance in DNA sequencing technology over the last years has enormously
increased the number of newly sequenced genes. With the advent of the ’-omics’
technologies as genomics, metagenomics, proteomics, bioinformatics has discov-
ered a number of problems to deal with - one of the most important to effec-
tively manage these data and create biological context for them by creating links
between known and unknown data to infer (e.g. in case of protein sequences)
evolutionary history, function or even structure of the unknown proteins.

Sequences are usually stored in international Databases, for example GenBank
[4], the Nucleic Acid Database of the National Institute of Health (NIH). It has
more than 135 million sequence records (as of July 2012). In contrast, the PDB
[6], the RCSB Protein Data Bank that stores known structure of proteins, has
only about 81 thousand structures (as of July 2012). This shows the imbalance
between known sequences and the amount of information known about these
sequences.

The workflow presented here tries to address this problem. It can be used to
automatically mine for information about an unknown protein sequence. Con-
sider for example a metagenomics experiment, where the complete genomic con-
tent of an environment sample is analyzed to examine the proteins present (for
the sake of this example) [44]. After preprocessing of the data one has a number
of protein sequences that have to be assigned a biological context - where they
are from, what their function is, etc.

2 Service Analysis

This section introduces the methods and the tools that have been used for the
workflow. Note that only online services providing their functionality have been
used for the actual realization. The reason for that is, that online services provide
lots of computational power while keeping the cost of running for the user small.
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Blast, MaFFT and InterProScan are available at the EBI [16], Phyre is available
at the website of the structural bioinformatics group of the Imperial College
London [14]. The EBI provides RESTful as well as SOAP-Services. Here, only
the REST-services are used.

Technically, the services are accessed from jABC via an ExecuteCommand -
SIBs that executes cURL within a shell script. The results are downloaded
and stored on the user’s PC. As shell scripts are used, the user has to run
Linux with cURL already installed. cURL is open-source and available at
http://curl.haxx.se/download.html. The shell scripts should be copied to
a folder called ’nat2’ in your jABC-directory. In general, the online shell scripts
use the default settings of the respective tool. This should give good results in
general, but users should be advised that changing these options in the scripts
may improve them further. The default values can be found on the web-pages
of the EBI. Phyre does not give the option to change the default values.

2.1 Sequence Alignments

Two sequences are homologous, if they are derived from a common (sequence)
ancestor. They are further called orthologs, if they share their ancestry due to
a speciation event or paralogs if they share it due to gene duplication. These
homologous sequences provide lots of information about the unknown gene or
protein at hand. The idea is that the genetic code changes over time and the parts
of the code that stay the same must hold some valuable information. Consider
a speciation event, where two new species emerge from a common ancestor. At
first their set of genes will be similar, but after a while (on an evolutionary time
scale) their genetic code will drift apart due to accumulation of mutations. Most
of those mutations do not occur in protein coding regions and even if they do,
they have a certain probability of not changing the protein sequence due to the
degeneracy of the genetic code. The protein sequences are thus in general more
similar than the gene sequences. Furthermore, a lot of mutations will not change
the form or function of the protein (at least not by much) insertions or deletions
for example are often in loop regions whereas the core region of a protein or its
secondary structure is more conserved. Also, amino acids that have a special role
in the proteins function (e.g. binding sites for substrates in enzymes or docking
sites for cofactors) are usually highly conserved, they cannot be changed without
disturbing the function of the protein. If you have an unknown protein sequence
you can infer the structure and function from its homologous’ proteins provided
those are known. Because of the higher conservation of the amino acids one
generally compares proteins on the amino acid-level instead of the gene level.
When mentioning sequences, here I refer to protein sequence unless mentioned
otherwise.

2.2 Optimal Pairwise Alignment

Homologous sequences are usually foundby a pairwise comparison (alignment) be-
tween the sequences. They are scored and if the score is above a certain threshold
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and the finding is statistically significant, the genes are said to be homolog. There
are various tools to achieve apairwise sequence alignment, the probably best known
tool are based on the Needleman-Wunsch algorithm [34], which produces an opti-
mal global alignment of two proteins, and on the BLAST algorithm [2], which is
usually faster but relies on heuristics.

The Needleman-Wunsch algorithm was developed in 1970 by S. Needleman
and C. Wunsch. It uses a dynamic programming approach to find an optimal
global alignment of two proteins. The algorithm consists of three main parts:
Creating the dynamic programming table, filling it and backtracking to find
the optimal alignment. The dynamic programming table is a two-dimensional
matrix of the size m + 1 × n + 1 with m,n being the length of the sequences.
The value of a field (i, j) in this matrix is computed as the maximum of either
(i−1, j−1) plus some weight w, (i−1, j) or (i, j−1). The values are thus computed
from the top left to the bottom right field of the table. On Backtracking, the
Needleman-Wunsch starts in the bottom right field and goes the other way back
to the upper left field of the table; always choosing the path that maximizes the
overall achieved score. The chosen path then represents the alignment of the two
sequences. If there are multiple equal paths possible, all those alignments are
equal.

2.3 Substitution Matrices and Gap Penalties

The weight w that is added is determined by a substitution matrix, for example
the BLOSUM or the PAM matrix. Those substitution matrices score the proba-
bility of a mutation of one amino acid to another. Due to the different shape and
chemical nature of the amino acids not all mutations are even likely. Glycine for
example is the smallest amino acid; its side chain consists of only one hydrogen
atom. It is very agile and often found in loop regions on the outside of a pro-
tein, for example between two alpha helices. Phenylalanine on the other hand
is a considerably large amino acid that has a benzene-derivate as side chain. A
mutation that would lead to a change from glycine to phenylalanine would have
dramatic impacts on the structure of a protein. However, because of the different
nature of the two amino acids, this mutation is very unlikely and has a low score
in the substitution matrix. The BLOSUM-Matrix (Blocks of Amino Acid Sub-
stitution Matrix) calculates the scores as the logarithmic ratio of the probability
of the two amino acids appearing in a protein together and the probability of
either of the amino acids appearing in the proteins alone. There are different
BLOSUM matrices labeled by the percentage of identity of the sequences used
to create the matrix. The default value for a lot of programs and services is
the BLOSUM62 matrix, which was computed from proteins having at least 68%
sequence identity.

The PAM matrix (Point Mutation Accepted, accepted mutations per 100
residues) is a similar substitution matrix, but it was created differently. Here,
a phylogenetic tree was build using highly related sequences. The ratio of the
number of changes of each type of amino acid to the total number of occurrences
of that amino acid in the set of sequence is used as the score [40].
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Sequences often change their length with increasing evolutionary distance.
This is the result of insertions or deletions of amino acids. In an alignment, those
mutations are seen as gaps in one of the sequences. To limit the introduction
of gaps, a gap penalty is used. In the Needleman-Wunsch algorithm, this is
implicitly done, when the maximum value of a field is equal to the value of the
field to the left or top of it. The gap penalties used to score gaps are important;
if a gap is given a lower score, more gaps are likely to be found, if a higher score
is given, less will be found. Usually, different gap scores are given for creating,
extending and closing a gap.

A progression of the Needleman-Wunsch algorithm is the Smith-Waterman
algorithm that produces optimal local alignments of two proteins. It has a slightly
changed backtracking, so it does not only find one optimal global alignment, but
many optimal aligned pieces.

These algorithms produce good results; however, they are slow as they have to
compute a full alignment of two sequences. The runtime of the (serial) Needleman-
Wunsch Algorithm isO(n2). Consider a database with millions or sequences that
one unknown sequence has to be compared against. This is not a trivial task and
requires an algorithm with maximal speed to be done in an acceptable time.

2.4 Blast

BLAST uses a different approach and is usually faster than Needleman-Wunsch.
As it uses heuristics, it cannot provide an optimal alignment, statistics can be
used to counteract and score the found alignment based on the significance of
appearance in the searched database.

Blast searches in its initial state for small identical words in the database. A
word in this respect is a k-mer of identical residues of the two sequences that
would score above a certain threshold T if it was aligned with the query k-mer.
It uses finite-state automata to search these words. The input of the automaton
is the sequence splitted in its symbols; for each possible input (each combination
of amino acids) there is a defined response from the automaton. The score is
computed using a substitution matrix such as BLOSUM62 and explicit gap
penalties. The query sequence is divided in all possible k-mers and all words in
the complete database are found. Originally, these words were then extended in
both directions until the score drops off by some amount. Newer version of the
Blast-Algorithm use a so called two-hit method: The idea behind that is that the
significant alignments have probably more than one word in their alignment. The
algorithm searches for a second word within the realm of a certain distance. If a
second word is found, it is ungapped extended. If this extension does not yield a
score above a threshold S x, it is discarded. If it does, a dynamic programming
approach is used to determine a gapped alignment.

If a DNA sequence is to be compared to an amino acid sequence, one has to
pay attention to the reading frame. There are six possible ways to translated
proteins; if there are additional insertions or deletions due to sequencing error,
frame shifts can occur. For the purpose of this work, I consider only one reading
frame and assume that all errors are eliminated.



Data Mining for Unidentified Protein Sequences 77

As mentioned earlier, the Blast-Score can be used to find a significant align-
ment in the given database. The total Score S of an alignment is the sum of its
pairwise scores. From that, the so called bit-score S can be computed, a normal-
ized score that is a function of the raw score, the scoring matrix, and the amino

acid frequency in the database S = (λS)ln(K)
ln(2) With λ being a constant depending

on the substitution matrix, K being a constant depending on the amino acid
frequency in the database. The expected value of S (so called E-Value) is then
E = KmneλS with m,n being the length of the sequences. This is the expected
number of database hits with a score at least S, the observed bit-score. The
smaller the E-Value, the better: Alignments with a small E-Value are not likely
to be found by chance in the database; this indicates that biological significance
might be the crucial factor to explain why an alignment scores so well. Typically,
alignments that achieve an E-Value below 1−10 are said to be homologous.

2.5 MaFFT

Instead of incorporating information of just two sequences, one could look at
multiple sequences to find conserved regions. It seems intuitive that a residue
that is conserved in multiple sequences must be valuable to the protein, whereas
a residue that is only conserved in two of the many sequences may not be as
valuable something might not be detected when looking at only two sequences.
There are many programs that compute a multiple sequence alignment. The
program used here is called MaFFT [13], Multiple alignment by Fast-Fourier
Transformation.

MaFFT represents each amino acid in the sequence as a vector consisting
of the polarity and the volume of the amino acid. The vectors are then nor-
malized and the correlation between two sequences based on those vectors is
computed. This computed correlation peaks, if the sequences have homologous
regions. These peaks are used to find homologous regions, which guide a dy-
namic programming approach to find an alignment: With the information that
the alignment must pass some explicit regions, the dynamic programming table
can be reduced and the computation time can be improved. Reducing the dy-
namic programming table means dividing it into sub-matrices as indicated by
the homologous regions and only aligning those regions. After computing this
initial alignment, it is iteratively refined [5]

MaFFT uses a scoring matrix based on the previously discussed PAM substi-
tution matrix, but normalized by the frequency of occurrence of the amino acids.
To determine the order of the alignments that are to be aligned, a distance is
calculated based on the number of 6-tuples shared by two sequences. From this
distance matrix, a guide tree is built. This guide tree is computed by using the
UPGMA method (Unweighted Pair Group Method with Arithmetic mean)[42].
Building such a tree is fast, but it infers a uniform rate of evolution, an assump-
tion which is not necessarily true. Still, MaFFT performs very well and is faster
than most of its competitor programs [12].
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2.6 InterProScan

The information known about protein sequences is stored in the databases like
the UniProt-Database, especially the manually curated UniProt Knowledgebase
(UniProtKB). UniProt is the central resource for protein-related information.
Protein sequences can be used to query this database to find information for
example about its function, substrate specificity (in case of an enzyme), location,
GO-Terms, etc.

A more sensitive approach is not to search every single protein but create
protein signatures, mathematical descriptions of the sequence or structure of the
protein, and search with the help of that signature for protein families. These
signatures can be regular expressions used in Prosite [41], build from multiple
sequence alignments [9] or based on Hidden Marko Models [15]. Although there
are many databases, they all have their main focus on different things - using
only one in a query could lead to bad results because the analyzed protein did not
lie in the focus area of the database. This problem was addressed by InterPro,
a database combining now more than ten of these signature based databases
[10]. The InterPro database holds various information about the information,
one of them a list of precomputed mathes to the UniProtKB database. Using
the InterProScan tool (IPS) [46], a sequence can be scanned against the Interpro
database to find the matching InterPro entry and thus the UniProtKB entries.

2.7 Phyre

Proteins consist of four stages of protein sequences. The primary structure is
the linear chain of amino acid, the secondary structure is this chain ordered in
secondary structure motifs, the most prominent being alpha-helices and beta-
sheets, the tertiary structure is a three-dimensional arrangement of those motifs
as one would expect in vivo. The quaternary structure of a protein consists of
several tertiary structures together as a complex.

Although Anfinsen’s Paradigm [3] states that all information needed to create
the tertiary structure lies within the sequence of the protein itself, finding this
sequence is not trivial. The process of folding lowers the Gibbs free energy of the
protein and the folded protein will have the lowest possible free energy. In other
words, finding an energetic favorable structure for a given sequence will yield the
structure of the folded protein. Based on this thought, many molecular dynamic
(MD) simulations were constructed, to find the structure with the lowest energy
by computing the force on the atoms of the protein and thus the change of
their position over a given time frame. This yields good results in general but
it consumes too much time and computational power. Typical MD-Simulations
only simulate a few hundred nanoseconds, while a complete folding of a protein
can take several microseconds.

Although a lot of sequences are known, the respective structures remain un-
solved. As of July 2012, there were about 75,000 solved protein structures and
about 6,000 solved nucleic acid and protein/nucleic acid complexes. The number
of unique folds on the other hand is comparably slow and not as fast-growing as
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the total number structures. A lot of programs exploit this fact. They are based
on the idea that although the sequence does not fully determine the structure of
the protein, it biases it into the right direction. It should therefore be possible
to infer the structure of a query protein by looking at the structure of its known
homologues. This is referred to as homology modeling. Prominent example of
this method are for example Rosetta [37] or the here used Phyre [14].

A submitted query protein us searched against a database of non-redundant
protein sequences using the tool PSI-Blast [1]. This is an development of the
original BLAST algorithm, that uses so-called profiles, to iteratively find more
homologous sequences. The secondary structure of the found sequences is com-
puted using the tools PsiPred [11], SSPro [35] and JNet [7], also the ordered and
disordered parts of the proteins are computed using Disopred [25]. The profiles
found by PSI-BLAST and the secondary structure predictions are then scanned
against a database of known folds to achieve an E-Value similar to that ob-
tained in a traditional BLAST-search. The highest scoring known folds are then
combined to yield a resulting fold for the query protein.

3 Workflow Realization

The jABC workflow now does several things. First, it tries to find homologous
proteins via a Blast search. With those homologous proteins, a multiple sequence
alignment is created using MaFFT. Simultaneously, the sequence is classified
structural and functional using an InterProScan. The third part is finding infor-
mation about the overall fold and structure. This is done using Phyre.

Fig. 1. Main procedure of this jABC workflow. It repeatedly loads a sequence from a
file and sends it to the second procedure, here called mine, until the file is empty.

The workflow consists of two parts: The main part (see Figure 1) that is
only used to set settings and load the sequences from the specified files, and the
sub-workflow that realizes the actual gene annotation (see Figure 2).

The main procedure asks for the path of the sequence file. That is, a plain
text file consisting of unknown sequences, one line each. It proceeds to ask for
a valid e-mail address. This is necessary, since most of the online tools need it
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Fig. 2. Actual gene annotation workflow

to function properly. You must not leave this dialog box empty. It continues to
determine the current directory. It is assumed that the directory is the jABC
main directory, the shell scripts are assumed to be in jABC/Nat2/. A shell script
is executed that splits off the first sequence of the sequence file and starts the
mine-procedure.

The sub-workflow that realizes the actual gene annotation is then divided into
three parts: part A creates the multiple alignment, part B searches the InterPro
database using Interproscan, and part C searches for structural homologous using
Phyre. These parts run in parallel in different threads created by a Fork-SIBs.
At the end, they are all joined by Join-SIBs. This is necessary to prevent the
main procedure from beginning with the next sequence, when the first has not
completely finished. This drags down the speed of the procedure due to the
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different speeds of the Alignment, IPS and Phyre tools. This is mainly due to
the small capacity of the Phyre-Server; in peak-times the queue is comparably
long so that a job may have to wait for more than an hour. This is a problem
and should be addressed in further versions of this workflow.

3.1 Blast and Multiple Alignment

Fig. 3. Part A of the workflow: Blast and multiple alignment

In Figure 3 you see the workflow for the Blast and MSA procedures. The im-
plementation is very straightforward. The first ExecuteCommand -SIB (termed
BLAST) sends the sequence to the BLAST web service of the EBI. It returns
the Job-ID, and identifier that can be used to check the status of the Job and
download the results. The former task is done by the second ExecuteCommand -
SIB (Check Running). It checks, if the job has already finished. If it hasn’t, it
waits for ten seconds, then checks again. After the job has finished, the third Ex-
ecuteCommand -SIB (Blast Get Results) downloads the results and stores them
in the folder jABC/nat2/blast-results/[Job-ID]/.

The Blast results are then used as an input for the multiple sequence align-
ment. The first ExecuteCommand -SIB, MaFFT, loads the found homologous
and sends them to the MaFFT service at the EBI. It returns a Job-ID, that
the second ExecuteCommand -SIB (MaFFT Checking) uses to access the sta-
tus of the job. If it is stilled running of queued, the workflow waits for thirty
seconds, than queries the status again. After the Alignment is done, the third
ExecuteCommand -SIB (MaFFT Get Results) downloads the results and stores
them at jABC/nat2/mafft-results/[Job-ID]/.
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3.2 InterProScan

Fig. 4. Part B of the workflow: InterproScan of the query sequences

Figure 4 shows the second part of the workflow. As mentioned before, Interpro is
being searched by IPS. The sequence is given to the first ExecuteCommand -SIB
called InterProScan. It starts the online-search in the InerPro database. It uses
the default values and returns a Job-ID. The second ExecuteCommand -SIB, IPS
Checking, uses this ID to check the status of the job. Once it has finished, the
third ExecuteCommand -SIB, IPS Get Results, downloads all available results.

3.3 Phyre

Fig. 5. Part C of the workflow: Structural modeling and homology search with Phyre

The last part of the workflow is depicted in Figure 5. Phyre is used to assess
the overall fold of the protein. The implementation is as straightforward as in
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the case of the IPS or MSA. Phyre is run on a server of the Imperial College
London. It does not provide an explicit API and thus does not meet all criteria
for a traditional web service. However, as Phyres web-page structure is very
simple, it is easy to access it via cURL.

The first ExecuteCommand -SIB (Submit Phyre) submits the query sequence
to the Phyre sever. The second ExecuteCommand -SIB checks the status of the
Job. If the job is running, the process halts for thirty seconds and then queries the
status again. When the job is finished, it is downloaded by the third ExecuteCom-
mand -SIB, Phyre Download Results. The results are saved at jABC/nat2/phyre-
results/[Job-ID]/.

4 Conclusion

With the advent of Next Generation Sequencing mechanism, Big Data in Biology
is now a highly discussed topic. One of the problems is still the gap between the
number of known sequences and the amount of information known about these
sequences.

The goal of this jABC project was to - at least partially - automate the steps
to annotate an unknown protein sequence and thus put them in a meaningful
biological context. This goal was reached - the workflow presented here is an
easy way to mine the databases for information about an unknown protein.
The use of online services guarantees huge databases that can searched very
performant, while keeping the requirements for the user in terms of hardware
and cost low. Also, the workflow is easily expandable to incorporate new services
or new options for the existing services as they arise.

Still, it should be noted that the jABC workflow was not as extensively tested,
as one would do for a program for the productive use. The results should be
treated with extreme caution. Also, the use of online-services may offer some
disadvantages in terms of privacy, as the results of the queries are openly avail-
able.

There are various ways how this project could be extended. First, the operabil-
ity could be improved by displaying the expected running time of the services,
so the user always knows if and which program is running. Secondly, more ser-
vices could be used to gain more information. An interesting idea would be to
create a 3D-model in Rosetta, as this is a tool known to be very performant
and accurate. Unfortunately, the Rosetta server that handles automatic model
generation requires a log-in and it can not be expected of all users to have an
account. Still, a local version of Rosetta could be used to locally compute the
model of the protein. A third way to further improve the protein would be an
automatic upload of the protein to UniProt along with all known information
about the protein. A drawback of this workflow is the running time - especially
the phyre-search runs very slowly and can take for longer proteins at peak-times
up to some hours. A simple way to address this problem would be to rearrange
the submit- and download-scripts. If at first all queries are submitted before the
first download of the results is begun, the workflow will probably run a lot faster,
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as the download scripts of InterProScan and MaFFT would not have to wait for
Phyre to finish. This asynchronous work could improve the running time by a
many-fold but could not be tested due to time concerns.

Another drawback of the current workflow is its strong platform dependency
due to the use of the ExecuteCommand SIBs and shell scripts in a fashion that
requires a particular directory structure. Here, platform independency could be
achieved by using appropriate REST or jETI SIBs instead.

This article is part of a larger evaluation [18], which aimed at illustrating
the power of simplicity-oriented development [30] by validating the claim
that process modeling can indeed be handed over to the domain experts
by providing them with a graphical modeling framework [43] that covers
low-level details in a service-oriented fashion [32], integrates high-level mod-
eling in the overall development process in a way that user-level models
become directly executable [31,28], and supports ad-hoc adaptations and
evolution [27,29].

The project described in this article can be characterized as follows:

– Scientific domain: bioinformatics
– Number of models: 2
– Number of hierarchy levels: 2
– Total number of SIBs: 38
– SIB libraries used (cf. [23]): common-sibs
– Service technologies used: REST web services

The bioinformatics part of this volume contains five other articles on work-
flow applications in this domain [36,24,38,39,45]. Further examples of work-
flow projects with he bioinformatics-specific incarnation of the jABC frame-
work, called Bio-jETI [20], have been described, for example, in [19,21,8]. As
shown in [20,22,17], bioinformatics is also a suitable field for the application
of semantics-based (semi-) automatic workflow composition techniques (as
provided by, e.g., [33]) to support the workflow design process.
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