
Lessons Learned

Anna-Lena Lamprecht, Alexander Wickert, and Tiziana Margaria

Chair for Service and Software Engineering, Potsdam University,
Potsdam, D-14482, Germany

{lamprecht,awickert,margaria}@cs.uni-potsdam.de

Abstract. This chapter summarizes the experience and the lessons we
learned concerning the application of the jABC as a framework for design
and execution of scientific workflows. It reports experiences from the
domain modeling (especially service integration) and workflow design
phases and evaluates the resulting models statistically with respect to
the SIB library and hierarchy levels.

Keywords: domain modeling, service integration, workflow design,
service usage statistics.

1 Introduction

The gallery of scientific workflow applications in this book is so far the largest
project where non-IT users (in this case Master students with biology and ge-
ography backgrounds) autonomously designed complete running workflows for
their particular purposes with the jABC. The workflows in previous studies,
also predominantly in the bioinformatics and geoinformatics domains (such as
[36,19,29,27,12,8]), were in contrast discussed and modeled together with project
partners from the field of application. These partners provided valuable input
and knowledge, but hardly took part in the actual implementation. For instance,
GeneFisher-P [29] and Flux-P [12] have been developed in close collaboration
with their later users and strongly according to their needs, resulting in a set of
readily configured workflows for the identified processes. The users sometimes
built variants of existing workflows, but usually did not design entirely new
workflows on their own, as it is the case for the projects presented here.

In general,we candistinguish three roleswhenworkingwith scientificworkflows:

1. The domain modeler prepares the initially domain-independent workflow
framework for use in a particular application domain. Mostly this concerns
the definition of the domain-specific workflow building blocks, deciding which
service libraries should be integrated, which SIBs should be available, and
how they should be integrated and organized within the jABC’s SIB palettes.

2. The service integrator actually provides the defined SIBs by integrating
the corresponding services into the framework. The service integrator can
be the same person as the domain modeler, but also someone else. Service
integration is a quite technical task, often requiring a good amount of pro-
gramming skills, so that we recommend this role to be filled by a person
with correspondingly solid IT expertise.

A.-L. Lamprecht et al. (Eds.): Process Design for Natural Scientists, CCIS 500, pp. 45–64, 2014.
DOI: 10.1007/978-3-662-45006-2_4 c© Springer-Verlag Berlin, Heidelberg 2014



46 A.-L. Lamprecht, A. Wickert, and T. Margaria

3. The workflow designer then works with the prepared domain-specific
workflow framework and designs the workflows for his needs. This is mainly
done by selecting, configuring and connecting adequate workflow building
blocks so that they perform the intended computations. This kind of work-
flow design requires extensive knowledge about the application domain, but
no classical programming skills, so that this role is filled by the application
experts, in our case the students.

In fact, we observed this clear separation between domain modeling, service
integration and workflow design in the scope of the course:

1. In the beginning, the domain modeling was performed as a joint effort by
lecturers and students of the course. While the lecturers provided (”pushed”)
a number of SIBs from previous projects and services they considered useful
also for the new projects, the students analyzed the functional requirements
of their projects and asked (”pulled”) for new SIB libraries.

2. The lecturers and tutors of the course took then care of integrating the
identified services and functionality, and provided the missing SIBs. The few
students who actually had the required technical expertise integrated the
services they needed themselves.

3. The SIB libraries could then simply be used by workflow designers, i.e.
the students. They realized their workflows without having to deal with the
technical details of the underlying services implementations.

Following the above distinction of roles and phases, in Sections 2, 3 and 4 this
chapter reports on lessons learned and experiences gained during the domain
modeling, service integration and workflow design in the scope of this course,
respectively. Focusing on the actual results of the project work, Section 5 eval-
uates the created workflow applications of this book in terms of some usage
metrics (used SIBs, reused services) and workflow structures. Finally, Section 6
concludes this chapter and also the introductory part of this book.

2 Domain Modeling

In the context of the applications described in this book, domain modeling com-
prises the choice and integration of domain-specific services into the jABC frame-
work in order to prepare it for being used for workflow design. We start with
a closer look at two challenges the domain modeler typically faces: finding ser-
vices providing the required functionality, and finding services suitable for being
accessed from a workflow environment.

2.1 Shopping for Service Functionality

Finding tools and services that provide the “right” functionality required for
realizing the intended workflows is a sometimes quite time-consuming research



Lessons Learned 47

task, which is typically performed by web search and literature study. Sometimes
one comes across curated service directories for particular scientific areas (like,
e.g., the BioCatalogue [10] for life science web services), but they cover only
a small part of the actually available functionality, so that other sources of
information need to be considered to find adequate services. Accordingly, web
search and literature study to find services with functionality adequate for the
envisaged applications was a major research task in the beginning of the students’
project work.

2.2 Service Access

In addition to finding services with adequate functionality, finding services that
are also technically suitable for workflow integration means in the first place to
find services that allow for some kind of programmatic access to their function-
ality. This can be a web service interface, an application programming interface
(API), or command line options that execute a tool in ”headless” operation
mode (i.e. without requiring user interaction via a graphical or other user in-
terface). Many available tools and programs, however, do not fulfill this crucial
requirement. Desktop programs and web applications are unfortunately often
implemented to require interaction with a human user for their execution. Usu-
ally this means that there is no (easy) way to strip the GUI and use them as
embedded services in a workflow.

For example, Henriette Sens, author of ”Web-Based Map Generalization Tools
Put to the Test” [55], was searching for a map generalization tool to include
as a service in her workflow, but could not find a single one that could be
operated in headless mode as described above. The Flash-based ”Mapshaper”
web application1 that she finally used can be started in a browser from the
command line (and thus with the ExecuteCommand SIB), but is from then on
interactive, so that the user can only produce and store a result manually, and
then resume the automatic workflow at the respective point.

In general, also licensing issues and availability constraints can be relevant
here. That is, services might only be available after signing particular agreements,
if using the resources for particular purposes, after paying some access fee, or if
being member of a particular organization. While we have experienced obstacles
in this regard in other courses, they were fortunately not present for the services
used in the projects described in this book.

3 Service Integration

The service integration is done by someone with adequate technical and program-
ming skills. It concerns implementing the access to services, their encapsulation
into SIBs and their basic testing, while the development of more complex appli-
cations is subsequently done by the application experts that design the actual

1 http://www.mapshaper.org

http://www.mapshaper.org


48 A.-L. Lamprecht, A. Wickert, and T. Margaria

workflows. Major issues here are usually the technicalities of the service inter-
face, the lack of proper service documentation, and changing service interfaces,
as explained and illustrated in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Service Interfaces

Unfortunately, even services which principally allow for programmatic access as
described in Section 2.2 cannot always easily be integrated (cf., e.g. [21,20,34]).
Different technical obstacles may be identified by the SIB programmer when
working on the integration. Then it has to be decided whether the problems can
be solved and if solving them is worth the effort, or if an alternative service is
available. For example, when we created the twitter-sibs (for sending Twitter [5]
messages), we first tried to use the Twitter REST-API [6] directly. After spend-
ing much time unsuccessfully trying to handle its authentication protocol, we
dropped this plan and decided to use instead the simpler Twitter4J [7] library,
although this meant to have no image upload functionality available in our SIBs.

More common is, however, that the programmer simply faces difficult-to-use
service interfaces. For instance, the EBI web services [48,23] define several own,
complex data types that have to be used by the client application, and further-
more operate most services in asynchronous mode, which requires active polling
of the service results. The CSISS services [1] use URLs instead of standard file
names for defining input and output data. This makes data transfer difficult,
as all involved data has to be accessible by the URLs. All these examples do
not prevent the service from being accessed by a SIB, but hamper the actually
straightforward integration process.

3.2 Incomplete or Missing Documentation

When working with services of all kinds, one soon realizes that exact descriptions
of parameters are very important. If one has incomplete lists of possible values of
parameters and comprehensible explanations, it is usually difficult for an external
user to integrate an unknown service (cf. also [34]). In the first place, the lack of
proper documentation makes life difficult for the programmer who creates the
SIBs. However, it is often a problem also for the workflow designer, who usually
reads pieces of documentation that are propagated from the underlying levels.
Typically, the programmer does not write new domain-specific documentation.

Among the SIB collections created for the students’ projects, the CSISS and
EBI web services (used in [55,47,50] and [49,11,53,33], respectively) are two
examples of service collections with documentation in need of improvement. In
fact, we often executed these services with different test data sets (which in the
case of CSISS were provided by the providers on request) in order to learn from
experience how they actually work, since this was not completely evident from
the available documentation alone.



Lessons Learned 49

3.3 Changing Interfaces

As discussed elaborately in [25], scientific application domains are characterized
by the long-term availability of their basic computational components. At the
same time their concrete service interfaces are subject to frequent changes. While
it is clear that this is a typical and unavoidable phenomenon when working with
public third-party services, it is still a recurring source of interruption during
workflow execution and requires code repairs.

For instance, currently many major service providers in bioinformatics are
abandoning their SOAP-based web service interfaces and follow the general trend
towards using REST-style interfaces. Consequently, SIBs that have been imple-
mented for accessing, e.g., the DDBJ and EBI web services [2,48,23] have to
be changed accordingly at some point, to follow the technology shift on the
provider’s side. Similarly, we experienced different changes of the Google Maps
API for location-based mapping [3], so that the corresponding SIBs have been
already updated several times. Luckily, as also discussed in detail in [25], the SIB
interfaces typically do not change during these updates, so that on the workflow
level this change of underlying technology is usually not perceptible at all.

More severe is the case where services simply stop operating. An example here
are the EBI’s SoapLab [4] services. They used to provide web service access to
the tools of the EMBOSS [51] suite, but were terminated in February 2013. For
several of the EMBOSS tools, alternative services are provided in the ”standard”
EBI web service collection [48,23], but do not cover the entire functionality
previously available. Another example from the bioinformatics domain is the
DDBJ Web API [2], which used to provide access to a number of molecular
biology databases and standard query and analysis tools. Its operation has been
“temporarily suspended” in February 2012, and not been resumed since then.
Consequently, contrary to what was anticipated when we prepared the course,
the DDBJ services could not be used in the students’ projects and alternatives
had to be identified.

4 Workflow Design: The jABC Framework

The experiences with the students from our course and also with project part-
ners using the jABC framework, suggest that it provides an adequate level of
abstraction from classical programming: after only a short introduction, non-IT
users are quickly able to use it to design and manage scientific workflows accord-
ing to their needs. In fact, the workflows presented in this book were built by
the students mostly autonomously with only little support by the lecturers. As
for other examples, the GeneFisher-P [29] and FiatFlux-P [12] workflows have
been frequently adapted by their users (biology diploma and bio-engineering
PhD students without specific computer science education) according to chang-
ing experimental setups.

The feedback on the jABC framework provided by some students gave us more
detailed insights about the user’s perception of working with the platform. First
and foremost, it confirmed our expectation and impression that handling the



50 A.-L. Lamprecht, A. Wickert, and T. Margaria

jABC as a tool is or quickly becomes intuitive. Exemplarily, Christine Schütt,
author of ”Identification of differentially expressed genes” [54], reports: ”At the
beginning it took some time to become familiar with its operating principle. This
was of course not such a big surprise for it takes always a bit of work to learn
the principles of a program or programming language. [...] Apart from this point
no real difficulties occurred during the implementation. [...]”

In fact, our experience with new jABC users shows that the graphical workflow
modeling as such hardly requires any explanation. Dragging and dropping SIBs
from the SIB browser to the canvas, and connecting them with labeled branches
according to the flow of control, as well as the configuration of simple parameters
and the adaptation of existing workflows can usually be learned in less than 30
minutes. We have seen this many times in 45-minute workshops for high school
students that we gave at open days at our universities, where the students were
shown how to use jABC models to develop strategies for the well-known Connect-
Four game [9]. Similarly, enriching the models with custom SIB icons and draw
elements and making use of plugins like the LocalChecker and the Tracer can be
typically be learned within another hour of instruction.

Some particular concepts and plugins have to be explained and practiced
more elaborately before they become useful. This concerns the ExecutionCon-
text with its different scopes and the ContextKeys and ContextExpressions that
are required for controlling the flow of data. For instance, Judith Reso, author
of ”Protein classification workflow” [49], reports in this regard that: ”[...] In the
beginning it was difficult to find out how to access local variables and use them
as input for another tool. [...]”. As another example, to make proper use of the
model checking plugin, the users need to have at least a basic idea about proposi-
tions and logics before they can formulate constraints and use these capabilities
of the framework.

The feedback by the students also shows that intuition is subjective: some
features that appear intuitive to one user can be quite confusing for another.
For instance, with regard to debugging with the Tracer plugin, users’ opinions
differed considerably. Christine Schütt, for instance, thinks that ”A real good
feature of jABC is the animated execution of the workflow model with theTracer
plugin. With this it is possible to follow each single step in a debugging style, to
see what single SIBs do and to find potential sources of errors even faster.”

Similarly, Monika Lis, author of ”Workflow for phylogenetic tree construc-
tion” [33], notes on the Tracer: ”A very good option is the Tracer and its execu-
tion controller, which enables you to go through your workflow stepwise and look
if every single step of your workflow works well and which results it provides.”,
but then adds: ”However, the more SIBs have been executed, the more confus-
ing the status overviews including the error messages. That is, in my opinion,
the major disadvantage of jABC: The error messages which are, especially for
beginners, not easy to interpret. [...]”.

Problems like this are common, however not caused the by actual jABC frame-
work, but rather by SIBs that are poorly documented or erroneous, or simply
due to not knowing which SIBs are available. For instance, Monika Lis describes



Lessons Learned 51

problems similar to those sketched in Section 3.2 (Incomplete or missing docu-
mentation) that she experienced when trying to use new SIBs in her workflow:
”In my case there have been some difficulties while constructing the workflow.
First, it was not always possible to use all parameters, because some of them
seemed to be faulty and led to breaking up the workflow. Sometimes it was nec-
essary to mess around the parameters if one wanted to see which of them causes
in errors, because this was not always clear.”

Janine Vierheller, author of ”Exploratory data analysis” [60] describes prob-
lems with finding adequate SIBs for a workflow: ”The implementation of the
workflow with jABC was not always intuitive, because you start with the func-
tions you already know, which are some Common SIBs. If you search for a
specific SIB of which you think it might exist, you have to have a clear idea how
this could be named.”

The last two comments point to a common problem that users of workflow
management systems face: while the graphical workflow modeling facilities make
it syntactically easy for the user to design the application, they do not help the
user semantically. That is, the user is still responsible for identifying services
with adequate functionality, and for understanding the technical details of the
inputs and outputs so that he/she can connect them correctly. Semantics-based
approaches to service discovery that make use of domain-specific ontologies for
the description of services and data types, can help in this regard by reducing
the gap between the domain language of the user and the technical language of
the service infrastructure.

In fact the jABC provides technologies for using such methods, for instance
with the plugin for semantically supported service selection described by [61]
and with the PROPHETS plugin for semantically supported (semi-) automatic
service composition [30,39]. Since their application crucially depends on ade-
quate domain models (consisting of domain-specific ontologies, service and type
descriptions in terms of these ontologies, and possibly also different kinds of con-
straints), which were not available and which could not be built in the time we
had, we did not use them in the course. We plan, however, to include this topic
in future editions of this course.

Finally, some comments pointed to usage details that sometimes cause con-
fusion in the beginning and can be quite annoying, but are not related to the
modeling approach of the jABC and are actually caused by details of the current
implementation. For example, Monika Lis reports: ”In general, jABC is a good
tool for connecting different services, but the use of jABC takes some getting
used to. For example it is strange to need to press enter, if you want to change
parameters. You need to forget it a hundred times, until you remember to press
it. [...]”

The overall impression of the jABC as a modeling tool was very positive. The
students were able to get productive within hours and did not need to acquire
classical programming skills, yet were successful in creating running workflows of
medium complexity largely on their own. The encountered difficulties had mostly
to do with the more programming-like characteristics, e.g. the management of



52 A.-L. Lamprecht, A. Wickert, and T. Margaria

variables, the use of the context and context expressions, and the issue of poor
documentation of the inside error messages delivered by services and routines
they used as SIBs. The idea of a typed variable as a placeholder for a value, that
can be put there and subsequently looked up is hard to eliminate or simplify fur-
ther. However, the other two issues can be tackled, although at different levels.
The new jABC4 [41] already used in a workflow project in the field of Cachexia
research [35] and the jABC5 [40,42] that is in preparation include an integrated
and much simplified handling of data, not requiring an explicit management of
the context anymore. The poor documentation and error treatment will gradu-
ally improve with the more widespread reuse of such components and routines
as services, under the pressure of the crowd of workflow developers.

5 Workflow Metrics

In this book, we present 15 scientific workflow projects. 6 in the area of bioin-
formatics and 9 in the area of geovisualization. To evaluate the scientific jABC
workflow models of these students’ projects, we created jABCstats, a library
of jABC workflows that computes metrics of jABC workflows. It is completely
modeled with the Common SIBs that come with every jABC distribution. For
a detailed explanation of jABCstats the reader is referred to [62]. In the follow-
ing, Section 5.1 explains briefly the analyses carried out by jABCstats, before
Section 5.2 discusses the actual findings for the projects presented in this book.

5.1 jABCstats: Empirical Analysis of jABC Workflows

jABCstats currently provides functionality for the analysis of jABC workflow
models with regard to workflow and project sizes, hierarchy levels, control-flow
workflow patterns and service usage. For the workflow and project sizes jABC-
stats simply counts the total number of SIBs in the workflows and the number of
workflow files in the projects, respectively. To determine the number of hierar-
chy levels it uses a simple recursive counting mechanism. For the analysis of the
modeling patterns used in the workflows, jABCstats evaluates the control-flow
model structure of the workflows and counts the sequence, conditional branching,
simple merge, fork, join and loop structures (as described in [59]).

For assessing the service usage, jABCstats analyzes the models with regard to
the occurrences of individual SIBs and for each hierarchical level of its complete
namespace, extracting this information from the XML file that stores the jABC
model. For example, let the namespace be de.jabc.ExampleSIB. For this specific
SIB the counters for de.jabc.ExampleSIB, de.jabc.*, de.*, and #allSIBs are
increased by one. This happens for every SIB in the model. The result can be
displayed on the screen and/or saved as a CSV file. As shown exemplarily in
Figure 1, the resulting CSV file consists of two rows. The first row is labeled
with the complete SIB names and all partial namespaces of them. The second
row records its occurrences.

The service usage analysis can be applied to single models or to whole di-
rectories containing several files. In addition to that, it is also possible to sum



Lessons Learned 53

Table 1. Exemplary SIB usage numbers

#allSIBs de.* de.jabc.* de.jabc.ExampleSIB de.jabc.OtherSIB . . .

10 10 6 1 2 . . .

the SIB counters from different CSV files into one single CSV file and to merge
the metrics of different models into one single CSV file, achieving a project-level
statistics aggregation.

5.2 Results

Here we describe and discuss the most interesting outcomes that we obtained by
applying jABCstats to the 15 workflow projects of this book.

Workflow and Project Sizes: Designed and developed in the scope of a one-
semester course, most of the projects are in fact quite small. Most of them (12)
comprise only one model, one comprises two, and two projects comprise eight
models. The models themselves also vary considerably in their size, being com-
posed from 6 to 156 SIBs, with an average of 26.8 and a median of 18.5 (standard
deviation 29.4).

Workflow Hierarchy: As indicated above, 12 of 15 projects only used one
main model and are hence only working with one level of hierarchy. The three
projects that used more models [11,47,52] have one main model with several
submodels (but no further hierarchical cascade), which means that they make
use of two levels of hierarchy.

Workflow Patterns: We let jABCstats count the most relevant control-flow
workflow patterns in all workflow models of our sample. As Figure 1 shows, the
sequence pattern (simple sequential execution of two services) is by far the most-
used control structure, with 571 occurrences in the analyzed workflows. Exclu-
sive choices (conditional branchings), simple merges (convergence of branches)
and loops (repetitive behavior) also occur quite often, while parallel executions
(fork/join) do in fact only play a minor role. Although these are only results for
a very small sample of workflows, this substantiates our observation that con-
ditional branchings and loops are required and used quite frequently. Hence it
is important that workflow modeling systems provide the possibility to include
them in their models.

SIB Usage: Using jABCstats, we created individual SIB usage statistics for all
students’ projects and merged them into one single CSV file. Then we used a
spreadsheet software and GNU R to compute aggregated values and some charts
for analyzed workflows. Tables 2, 3 and 4 summarize the created SIB usage



54 A.-L. Lamprecht, A. Wickert, and T. Margaria

Sequence
(571)

Exclusive Choice
(76)

Simple Merge
(21)

Loop
(34)

Fork
(15)

Join
(12)

Analyzed Patterns

N
um

be
r o

f O
cc

ur
re

nc
es

0
10

0
20

0
30

0
40

0
50

0
60

0

Fig. 1. Usage of workflow patterns

statistics with regard to all available SIBs, the SIBs provided by the jABC and
the jABC’s Common SIBs in particular, respectively. The upper parts of the
tables contain the individual numbers for each project, while the lower parts
report aggregated values for all analyzed workflows, namely:

1. the sum (total number) of SIBs from the package used in the projects,
2. the number of projects that used SIBs from the package,
3. the percentage of projects that used SIBs from the package,
4. the minimum number of SIBs from the package used in a project,
5. the average number of SIBs from the package used in the projects, and
6. the maximum number of SIBs from the package used in a project.

We were in particular interested in the distribution of the SIB usage, that
is, how many of the individual SIBs were used in the workflows, and how much
of the workflows use the individual SIBs. In Tables 2, 3 and 4 we give the
numbers for selected hierarchy levels of the namespaces in order to be able to
compare the usage of the most relevant groups of SIBs. Below each table, a pie
chart additionally visualizes the distribution of the SIB packages used in the
workflows, that is, the values contained in aggregation line 1.

Starting with the general overview of the SIB usage (see Table 2), we see, most
interestingly, that more than 75% of the SIBs used by the students are included
in every jABC distribution. Only about 23% of all SIBs used were created on
demand by the lecturers and tutors of the course. This comprises, for instance,
the REST SIBs, the FTP SIBs and the different bioinformatics and geovisual-
ization SIBs described in [32]. They have been used by 12 projects (80%). 6 SIBs
were created by the geovisualization student Daniel Teske [58]. He created some



Lessons Learned 55

Table 2. SIB usage overview
ca
te
g
o
ry SIBs SIBs

created created
for the by the

all SIBs jABC SIBs students students

w
o
rk
fl
ow

a
n
a
ly
si
s
re
su
lt
s
p
er

p
ro
je
ct

Christian Kuntzsch [22] 21 18 3 0
Christine Schuett [54] 13 13 0 0
Daniel Teske [58] 18 11 1 6
Franziska Noack [47] 119 96 23 0
Gunnar Schulze [53] 40 38 2 0
Henriette Sens [55] 9 8 1 0
Janine Vierheller [60] 28 28 0 0
Josephine Kind [18] 67 48 19 0
Judith Reso [49] 13 6 7 0
Lasse Scheele [52] 142 76 66 0
Leif Blaese [11] 38 38 0 0
Marcel Hibbe [15] 79 77 2 0
Monika Lis [33] 14 10 4 0
Robin Holler [16] 46 45 1 0
Tobias Respondek [50] 156 104 52 0

a
g
g
re
g
a
ti
o
n

1. total # of SIBs from package: 803 616 181 6
2. # of projects using package: 15 15 12 1
3. % of projects using package: 100 100 80 6.7
4. min # SIBs from package: 9 6 0 0
5. average # SIBs from package: 54 41 12 0.4
6. max # SIBs from package: 156 104 66 6

jABC SIBs
(616 of 803, or 76.75%)

SIBs created for the students
(181 of 803, or 22.5%)

SIBs created by the students
(6 of 303, or 0.75%)



56 A.-L. Lamprecht, A. Wickert, and T. Margaria

Table 3. Usage statistics of the SIBs provided by the jABC
ca
te
g
o
ry

jABC Common jETI Control Macro
SIBs SIBs SIBs SIBs SIBs

w
o
rk
fl
ow

a
n
a
ly
si
s
re
su
lt
s
p
er

p
ro
je
ct

Christian Kuntzsch [22] 18 18 0 0 0
Christine Schuett [54] 13 10 0 3 0
Daniel Teske [58] 11 7 0 4 0
Franziska Noack [47] 96 89 0 0 7
Gunnar Schulze [53] 38 35 0 3 0
Henriette Sens [55] 8 8 0 0 0
Janine Vierheller [60] 28 28 0 0 0
Josephine Kind [18] 48 16 32 0 0
Judith Reso [49] 6 6 0 0 0
Lasse Scheele [52] 76 22 47 0 7
Leif Blaese [11] 38 33 0 4 1
Marcel Hibbe [15] 77 77 0 0 0
Monika Lis [33] 10 10 0 0 0
Robin Holler [16] 45 43 0 2 0
Tobias Respondek [50] 104 93 0 11 0

a
g
g
re
g
a
ti
o
n

1. total # of SIBs from package: 616 495 79 27 15
2. # of projects using package: 15 15 2 6 3
3. % of projects using package: 100 100 13 40 20
4. min # SIBs from package: 6 6 0 0 0
5. average # SIBs from package: 41 33 5 1.8 1
6. max # SIBs from package: 104 93 47 11 7

Common SIBs
(495 of 616, or 80.5%)

Control SIBs (27 of 616, or 4.5%)
Macro SIBs (15 of 616, or 2.5%)

jETI SIBs
(79 of 616, or 12.5%)



Lessons Learned 57

Table 4. Usage statistics of the Common SIBs
p
a
ck
a
g
e

de.jabc. de.jabc. de.jabc. de.jabc. de.jabc.
sib. sib. sib. sib. sib.
com- common. common. common. common.
mon.* basic.* collec- gui.* io.*

tion.*

w
o
rk
fl
ow

a
n
a
ly
si
s
re
su
lt
s
p
er

p
ro
je
ct

Christian Kuntzsch [22] 18 11 1 3 3
Christine Schuett [54] 10 0 0 5 5
Daniel Teske [58] 7 1 0 6 0
Franziska Noack [47] 89 23 0 60 6
Gunnar Schulze [53] 35 1 1 14 19
Henriette Sens [55] 8 0 0 4 4
Janine Vierheller [60] 28 0 0 19 9
Josephine Kind [18] 16 16 0 0 0
Judith Reso [49] 6 0 0 6 0
Lasse Scheele [52] 22 7 0 15 0
Leif Blaese [11] 33 13 0 6 14
Marcel Hibbe [15] 77 49 2 15 11
Monika Lis [33] 10 5 0 3 2
Robin Holler [16] 43 13 0 15 15
Tobias Respondek [50] 93 69 4 0 20

a
g
g
re
g
a
ti
o
n

1. total # of SIBs from package: 495 208 8 171 108
2. # of projects using package: 15 11 4 13 11
3. % of projects using package: 100 73 27 87 73
4. min # SIBs from package: 6 0 0 0 0
5. average # SIBs from package: 33 14 0.5 11 7
6. max # SIBs from package: 93 69 4 60 20

common.gui.*
(171 of 495, or 34.5%)

common.basic.*
(208 of 495, or 42%)

common.io.*
(108 of 495, or 22%)

common.collection.*
(8 of 495, or 1.5%)



58 A.-L. Lamprecht, A. Wickert, and T. Margaria

SIBs on his own because he already had background knowledge in Java pro-
gramming, thus it was easy for him to implement his own SIBs. Not visible from
the statistics shown in the tables, the common.io.ExecuteCommand SIB is also
used quite often to integrate external functionality in the workflows. In fact, 8
projects (53%) made use of this SIB for executing some functionality, such as
own scripts, on the local machine.

Going top-down in the namespace hierarchy and having a closer look at the
distribution of the jABC SIBs used (see Table 3), we see that the Common
SIBs are by far the most-used SIBs from those provided by the jABC (with a
share of around 80%). In fact, each project makes use of the Common SIBs. As
described in [32], they are necessary for defining values on the context (Basic
SIBs), working with collections (Collection SIBs), retrieving some input from
the user of the application and showing results (GUI SIBs), and for reading
and writing files on the file system (IO SIBs). 13 students (87%) used GUI
SIBs and 11 students (73%) used basic and IO SIBs. The outcome of 11 project
workflows (73%) depended on some user input (common.gui.ShowInputDialog),
and 8 projects (53%) used SIBs to read from and write to text files.

Table 4 details further on the usage of the Common SIBs. It shows that most
of the Common SIBs used in the projects are from the common.basic.* (42%)
and common.gui.* (34.5%) packages. The IO SIBs make up for 22%, while the
Collection SIBs do only account for 1.5% of the Common SIBs that were used
in the projects.

Small Comparison of the Bioinformatics andGeovisualizationProjects:
The total amount of SIBs used by geovisualization students is considerably
higher than by the students with bioinformatics-related workflows. Especially
the usage difference between the usage of Basic and GUI SIBs is noticeable.
jETI SIBs are used by only two geovisualization projects. The diversity of the
available SIBs is generally more exploited by the geovisualization projects.

Looking at the details of the percentage of SIB usage, we see that all bioin-
formatics and all geovisualization students used the Common SIBs, which rein-
forces our impression that they are a basis for every workflow. Geovisualization
students made more use of common.gui.ShowBranching[/Image]Dialog SIBs
and bioinformatics students used more ShowInputDialog and ExecuteCommand

SIBs. Additionally, geovisualization students read (ReadTextFile) and wrote
(WriteTextFile) three times more often text files (31 times) than bioinformat-
ics students (11 times). REST SIBs have only been used by geovisualization
students, who made more use of submodels (MacroSIB).

6 Conclusion

The results of this course were very satisfying for us. We had previously used
the jABC in many courses in Computer Science (Software Engineering, For-
mal Methods in System Design, Service-Oriented Architectures, Foundations of



Lessons Learned 59

Service Engineering, and many more), but not so systematically with non-IT stu-
dents. The student feedback provided in this course and meanwhile also in similar
courses gives a good impression of the wide usability of the jABC framework.
The experiences with student users showed that the framework is syntactically
easy to handle, but the central remaining challenge concerns how to make the
services more easily accessible. A systematic usability study is subject of future
work. Features that would improve the handling and are already available in
jABC, or jABC4, but were not used in the students’ workflows concern design
for simplicity, processes as data, and variability and evolution.

Design for Simplicity

Design for Simplicity aims at fighting the often unexpectedly high longer-term
costs for maintenance, adaptation, migration, etc.. Guided by the questions,
’what is really required’, ’what is provided in terms of standards solutions’, and
’which parts really need to be newly developed’ (cf. [37,38]), a number of projects
have been realized which comprise, for instance, a plug-in framework enhanc-
ing the functionality of the jABC framework [41], a synthesis-based approach
solution to service-oriented programming [30], and a learning-based testing ap-
proach [57].

Processes as Data

A graphical and dynamic framework for binding and execution of (business)
process models has been developed that is tailored to integrate

– ad hoc processes modelled graphically,
– third party services discovered in the (Inter)net, and
– (dynamically) synthesized process chains that solve situation-specific tasks,

with the synthesis taking place not only at design time, but also at runtime.

Key to this approach [44,45,46,43] is the introduction of type-safe stacked second-
order execution contexts that allow for higher-order process modeling. Tamed
by our underlying strict service-oriented notion of abstraction, this approach
is tailored also to be used by application experts with little technical knowl-
edge: users can select, modify, construct and then pass (component) processes
during process execution as if they were data. The most advanced feature of
this framework is the combination of online synthesis with the integration of
the synthesized process into the running application [46]. This ability leads to
a particularly flexible way of implementing self-adaption, and to a particularly
concise and powerful way of achieving variability not only at design time, but
also at runtime.

Variability and Evolution

Constraint-based variability modeling is a flexible, declarative approach to man-
aging solution-space variability [17,31]. Product variants are defined in a top-
down manner by successively restricting the admissible combinations of product



60 A.-L. Lamprecht, A. Wickert, and T. Margaria

artifacts until a specific product variant is determined. Methods range from
applying model checking to manually designed variants to applying synthesis
technology [56,13,14] for the fully automatic generation of product variants that
satisfy all given constraints [26]. This technology underlies the the loose pro-
gramming approach, where incomplete specifications are turned into running
programs via synthesis [30]. Moreover, it can be even combined with the above
mentioned concept of higher-orderedness to realize a very flexible form of run-
time adaptability [46].

We see therefore the current basis as an excellent foundation for further stud-
ies, for instance more empirical analyses with jABCstats, as shown in [62], but
also with regard to the automated synthesis of such workflows based on knowl-
edge nuggets as made possible by the PROPHETS plugin [39]. While the domain
models get more precise, and more work is needed to properly describe semantics,
constraints, relations concerning services, their data and their embedded func-
tionalities and quality of service, the subsequent workflow design requires less
knowledge and less work due to (semi-) automatic composition and conformity
to constraints by construction [28,26,25,24]. In this sense, in the further practical
investigation we intend to include more semantics, and raise the availability and
use of the domain knowledge during the workflow composition.

References

1. CSISS/GMU Geospatial Web Services, http://geobrain.laits.gmu.edu/

grassweb/manuals/index.html (last accessed September 9, 2013)
2. DDBJ Web API for Biology, http://xml.nig.ac.jp/workflow/ (temporarily sus-

pended since February 15, 2012)
3. Google Maps, A.P.I.: - Google Developers, https://developers.google.com/

maps/ (last accessed March 21, 2013)
4. Soaplab, http://soaplab.sourceforge.net/soaplab1/ (last accessed May 5,

2013)
5. Twitter, https://twitter.com (last accessed September 10, 2013)
6. Twitter Developers, https://dev.twitter.com (last accessed September 11, 2013)
7. Twitter4J - A Java Library for the Twitter API. http://twitter4j.org/ (last

accessed September 10, 2013)
8. Al-areqi, S., Kriewald, S., Lamprecht, A.-L., Reusser, D., Wrobel, M., Margaria,

T.: Agile Workflows for Climate Impact Risk Assessment based on the ci:grasp
Platform and the jABC Modeling Framework. In: International Environmental
Modelling and Software Society (iEMSs) 7th Intl. Congress on Env. Modelling and
Software (accepted, 2014)

9. Bakera, M., Jörges, S., Margaria, T.: Test your Strategy: Graphical Construction of
Strategies for Connect-Four. In: Proceedings of the 2009 14th IEEE International
Conference on Engineering of Complex Computer Systems, ICECCS 2009, pp.
172–181. IEEE Computer Society, Washington, DC (2009)

10. Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M.,
Wolstencroft, K., Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.A.:
BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic
Acids Research 38(suppl. 2), 689–694 (2010)

http://geobrain.laits.gmu.edu/grassweb/manuals/index.html
http://geobrain.laits.gmu.edu/grassweb/manuals/index.html
http://xml.nig.ac.jp/workflow/
https://developers.google.com/maps/
https://developers.google.com/maps/
http://soaplab.sourceforge.net/soaplab1/
https://twitter.com
https://dev.twitter.com
http://twitter4j.org/


Lessons Learned 61

11. Blaese, L.: Data Mining for Unidentified Protein Sequences. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 73–87. Springer, Heidelberg (2014)

12. Ebert, B.E., Lamprecht, A.-L., Steffen, B., Blank, L.M.: Flux-P: Automating
Metabolic Flux Analysis. Metabolites 2(4), 872–890 (2012)

13. Freitag, B., Margaria, T., Steffen, B.: A Pragmatic Approach to Software Synthesis.
In: Workshop on Interface Definition Languages, pp. 46–58 (1994)

14. Freitag, B., Steffen, B., Margaria, T., Zukowski, U.: An Approach to Intelligent
Software Library Management. In: Proceedings of the 4th International Conference
on Database Systems for Advanced Applications (DASFAA), pp. 71–78. World
Scientific Press (1995)

15. Hibbe, M.: Spotlocator Project Documentation. In: Lamprecht, A.-L., Margaria, T.
(eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 149–158. Springer,
Heidelberg (2014)

16. Holler, R.: GraffDok: A Graffiti Documentation Application. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 235–247. Springer, Heidelberg (2014)

17. Jörges, S., Lamprecht, A.-L., Margaria, T., Schaefer, I., Steffen, B.: A Constraint-
based Variability Modeling Framework. International Journal on Software Tools
for Technology Transfer (STTT) 14(5), 511–530 (2012)

18. Kind, J.: Creation of Topographic Maps. In: Lamprecht, A.-L., Margaria, T. (eds.)
Process Design for Natural Scientists. CCIS, vol. 500, pp. 225–234. Springer,
Heidelberg (2014)

19. Kubczak, C., Margaria, T., Fritsch, A., Steffen, B.: Biological LC/MS Preprocess-
ing and Analysis with jABC, jETI and xcms. In: Proceedings of the 2nd Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2006), Paphos, Cyprus, November 15-19, pp. 308–313. IEEE
Computer Society (2006)

20. Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented Mediation with
jABC/jETI (2008)

21. Kubczak, C., Margaria, T., Steffen, B., Naujokat, S.: Service-oriented Medi-
ation with jETI/jABC: Verification and Export. In: Proceedings of the 2007
IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology, WI-IAT Workshop, Silicon Valley, California, USA, pp.
144–147. IEEE Computer Society Press (November 2007)

22. Kuntzsch, C.: Visualization of Data Transfer Paths. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
140–148. Springer, Heidelberg (2014)

23. Labarga, A., Valentin, F., Anderson, M., Lopez, R.: Web services at the European
bioinformatics institute. Nucleic Acids Research 35(Web Server issue), W6–W11
(2007)

24. Lamprecht, A.-L.: User-Level Workflow Design. LNCS, vol. 8311. Springer,
Heidelberg (2013)

25. Lamprecht, A.-L., Margaria, T.: Scientific workflows: Eternal components, chang-
ing interfaces, varying compositions. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part I. LNCS, vol. 7609, pp. 47–63. Springer, Heidelberg (2012)

26. Lamprecht, A.-L., Margaria, T., Schaefer, I., Steffen, B.: Synthesis-based variabil-
ity control: Correctness by construction. In: Beckert, B., Damiani, F., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 69–88. Springer,
Heidelberg (2012)



62 A.-L. Lamprecht, A. Wickert, and T. Margaria

27. Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven variations of an alignment
workflow - an illustration of agile process design and management in bio-jETI.
In: Măndoiu, I., Wang, S.-L., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI),
vol. 4983, pp. 445–456. Springer, Heidelberg (2008)

28. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10(Suppl 10), S8 (2009)

29. Lamprecht, A.-L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC Bioin-
formatics 9(Suppl 4), S13 (2008)

30. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proc. of the 7th Int. Conf. on the Quality of Information
and Communications Technology (QUATIC 2010), Porto, Portugal, pp. 262–267
(September 2010)

31. Lamprecht, A.-L., Naujokat, S., Schaefer, I.: Variability Management Beyond Fea-
ture Models. IEEE Computer 46(11), 48–54 (2013)

32. Lamprecht, A.-L., Wickert, A.: The Course’s SIB Libraries. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 30–44. Springer, Heidelberg (2014)

33. Lis, M.: Constructing a Phylogenetic Tree. In: Lamprecht, A.-L., Margaria, T.
(eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 101–109. Springer,
Heidelberg (2014)

34. Margaria, T., Boßelmann, S., Doedt, M., Floyd, B.D., Steffen, B.: Customer-
Oriented Business Process Management: Visions and Obstacles. In: Hinchey, M.,
Coyle, L. (eds.) Conquering Complexity, pp. 407–429. Springer, London (2012)

35. Margaria, T., Floyd, B., Lamprecht, A.-L., Camargo, R.G., Neubauer, J.,
Seelaender, M.: Simple Management of High Assurance Data in Long-lived In-
terdisciplinary Healthcare Research: A Proposal. In: ISoLA 2014. LNCS, Springer,
Heidelberg (to appear, 2014)

36. Margaria, T., Kubczak, C., Njoku, M., Steffen, B.: Model-based Design of Dis-
tributed Collaborative Bioinformatics Processes in the jABC. In: Proceedings of
the 11th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 2006), Los Alamitos, CA, USA, pp. 169–176. IEEE Computer
Society (August 2006)

37. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. Com-
puter 43(6), 90–92 (2010)

38. Merten, M., Steffen, B.: Simplicity driven application development. Journal of In-
tegrated Design and Process Science (SDPS) 16 (2013)

39. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose Programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineer-
ing. LNCS, vol. 7212, pp. 94–98. Springer, Heidelberg (2012)

40. Naujokat, S., Lybecait, M., Steffen, B., Kopetzki, D., Margaria, T.: Full Generation
of Domain-Specific Graphical Modeling Tools: A Meta2modeling Approach (under
submission, 2014)

41. Naujokat, S., Neubauer, J., Lamprecht, A.-L., Steffen, B., Jürges, S., Margaria, T.:
Simplicity-First Model-Based Plug-In Development. Software: Practice and Expe-
rience 44(3), 277–297 (2013) (first published online)

42. Naujokat, S., Traonouez, L.-M., Isberner, M., Steffen, B., Legay, A.: Custom
Graphical Specification of Multi-Faceted Concurrent Systems: A Metamodeling
Approach. In: Proc. of the 12th Int. Conf. on Software Engineering and Formal
Methods (SEFM 2014) (2014) (under submission)



Lessons Learned 63

43. Neubauer, J.: Higher-Order Process Engineering. Phd thesis, Technische Univer-
sitüt Dortmund (2014)

44. Neubauer, J., Steffen, B.: Plug-and-Play Higher-Order Process Integration. IEEE
Computer 46(11), 56–62 (2013)

45. Neubauer, J., Steffen, B.: Second-order servification. In: Herzwurm, G., Margaria,
T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 13–25. Springer, Heidelberg (2013)

46. Neubauer, J., Steffen, B., Margaria, T.: Higher-Order Process Modeling: Product-
Lining, Variability Modeling and Beyond. Electronic Proceedings in Theoretical
Computer Science 129, 259–283 (2013)

47. Noack, F.: CREADED: Coloured-Relief Application for Digital Elevation Data. In:
Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS,
vol. 500, pp. 182–195. Springer, Heidelberg (2014)

48. Pillai, S., Silventoinen, V., Kallio, K., Senger, M., Sobhany, S., Tate, J., Velankar,
S., Golovin, A., Henrick, K., Rice, P., Stoehr, P., Lopez, R.: SOAP-based services
provided by the European Bioinformatics Institute. Nucleic Acids Research 33(Web
Server issue), W25–W28 (2005)

49. Reso, J.: Protein Classification Workflow. In: Lamprecht, A.-L., Margaria, T.
(eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 65–72. Springer,
Heidelberg (2014)

50. Respondeck, T.: A Workflow for Computing Potential Areas for Wind Turbines.
In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists.
CCIS, vol. 500, pp. 196–211. Springer, Heidelberg (2014)

51. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology Open
Software Suite. Trends in Genetics 16(6), 276–277 (2000)

52. Scheele, L.: Location Analysis for Placing Artificial Reefs. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
212–224. Springer, Heidelberg (2014)

53. Schulze, G.: Workflow for Rapid Metagenome Analysis. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
88–100. Springer, Heidelberg (2014)

54. Schütt, C.: Identification of Differentially Expressed Genes. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 127–139. Springer, Heidelberg (2014)

55. Sens, H.: Web-Based Map Generalization Tools Put to the Test: A jABC Workflow.
In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists.
CCIS, vol. 500, pp. 171–181. Springer, Heidelberg (2014)

56. Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model
Construction. Technical report, Fakultät für Mathematik und Informatik, Univer-
sität Passau (1993)

57. Steffen, B., Neubauer, J.: Simplified Validation of Emergent Systems through Au-
tomata Learning-Based Testing. In: 2011 34th IEEE Software Engineering Work-
shop (SEW), pp. 84–91 (June 2011)

58. Teske, D.: Geocoder Accuracy Ranking. In: Lamprecht, A.-L., Margaria, T. (eds.)
Process Design for Natural Scientists. CCIS, vol. 500, pp. 159–170. Springer,
Heidelberg (2014)

59. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

60. Vierheller, J.: Exploratory Data Analysis. In: Lamprecht, A.-L., Margaria, T.
(eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 110–126. Springer,
Heidelberg (2014)



64 A.-L. Lamprecht, A. Wickert, and T. Margaria

61. Wickert, A.: Semantische Dienstselektion für modellgetriebene Geschäftsprozesse
in jABC: Analyse, Integration und Evaluation. Diploma thesis, Universität Pots-
dam (2010)

62. Wickert, A., Lamprecht, A.-L.: jABCstats: An Extensible Process Library for the
Empirical Analysis of jABC Workflows. In: ISoLA 2014. LNCS. Springer (to ap-
pear, 2014)


	Lessons Learned
	1 Introduction
	2 Domain Modeling
	2.1 Shopping for Service Functionality
	2.2 Service Access

	3 Service Integration
	3.1 Service Interfaces
	3.2 Incomplete or Missing Documentation
	3.3 Changing Interfaces

	4 Workflow Design: The jABC Framework
	5 Workflow Metrics
	5.1 jABCstats: Empirical Analysis of jABC Workflows
	5.2 Results

	6 Conclusion
	References




