
GraffDok — A Graffiti Documentation

Application

Robin Holler

Potsdam University, Potsdam, D-14482, Germany
robin@wxyz.de

Abstract. GraffDok is an application helping to maintain an overview
over sprayed images somewhere in a city. At the time of writing it aims at
vandalism rather than at beautiful photographic graffiti in an underpass.
Looking at hundreds of tags and scribbles on monuments, house walls,
etc. it would be interesting to not only record them in writing but even
make them accessible electronically, including images.

GraffDok’s workflow is simple and only requires an EXIF-GPS-tagged
photograph of a graffito. It automatically determines its location by using
reverse geocoding with the given GPS-coordinates and the Gisgraphy
WebService. While asking the user for some more meta data, GraffDok
analyses the image in parallel with this and tries to detect fore- and
background – before extracting the drawing lines and make them stand
alone. The command line based tool ImageMagick is used here as well
as for accessing EXIF data.

Any meta data is written to csv-files, which will stay easily accessible
and can be integrated in TeX-files as well. The latter ones are converted
to PDF at the end of the workflow, containing a table about all graffiti
and a summary for each – including the generated characteristic graffiti
pattern image.

Keywords: data acquisition, documentation, image analysis, image
processing, geocoding, automation, automatization, graffiti, photogra-
phy, LaTeX, meta data, ImageMagick, Gisgraphy.

1 Introduction: Workflow Scenario

GraffDok assumes there are lots of people out there carrying new smart mobile
phones. They all have the possibility to capture their environment in photographs
and upload them immediately to the www. So there’s a nice big potential for
crowd sourcing – not only for creating maps like OSM but for documentation
too. At the moment GraffDok is still evolving and is working locally only but it
is aiming at a large world wide database of graffiti.

First of all GraffDok is dealing with kinds of vandalism. But later on the
beautiful graffiti will follow. That’s the reason why the neutral word ”documen-
tation” lies within GraffDok’s name and description: GraffDok can be used to
create stats and even follow/locate a sprayer until he is arrested, but it does not

A.-L. Lamprecht et al. (Eds.): Process Design for Natural Scientists, CCIS 500, pp. 239–251, 2014.
DOI: 10.1007/978-3-662-45006-2_19 c© Springer-Verlag Berlin, Heidelberg 2014



240 R. Holler

need to. There are some beautiful thoughts and purposes, e. g. a rating system
for photogenic graffiti world wide.

In a wise foresight there will never be a big database with contributions from
people all over the world until there is a quick and easy way to contribute.
That’s why this story starts with jABC: It may sound simple to stick picture and
description together, creating a profile. But it requires great efforts to make this
efficient, useful and thus sustainable. Any data must be complete and accurate.
The images should be edited and saved as clean or even model like patterns –
out of various photographs taken by mobile phone cameras! Only if all works
out, it will be possible to search the database for graffiti by text and even by
image.

Putting submission things in a standardized workflow seems therefor a good
way to achieve entries of high quality only. It’s always a good idea to take some
time first, make some decisions about how to process the images best and then
implement these thoughts in automatized processes. That way noone has to sit
down and process all the images in editing software by sight. And yet there will
be good results without significant deviations. There may be batch processing
for images, but image processing is just one element of the process chain. With
jABC one has not even to start diverse batch processing jobs. Just follow the
entire workflow once it is created.

In future GraffDok will have to deal with creating a digital fingerprint of each
graphic/pattern. Finding a way to express its characteristics as handy useful
code, serving as findable marker in the database is not trivial, but necessary for
searching by image. As a start GraffDok will concentrate on clean user submis-
sions and image preprocessing. Establishing a large database with all that basic
input will provide a solid foundation for further developments.

2 Service Analysis

GraffDok wants to add some readable and understandable geo information. That
said it has to transform the coordinates into an address. The coordinates are
given by the EXIF data attached to a (JPEG-)photograph out of a smart phone
with GPS. So there’s need for a (reverse) Geocoding Webservice. And there’s a
need for a tool able to read EXIF data and make them accessible, too.

There are many Webservices for geocoding. Google Maps can be used, for
example. It’s a simple service and most often it is as easy as creating a schematic
URL containing latitude and longitude:

http://maps.googleapis.com/maps/api/geocode/xml?latlng=lat,long

would return an XML containing a lot of information to this point and local
area. Most Geocoding Webservices are free to use and delivered valuable results
while testing within jABC. In the end Gisgraphy [17] was implemented in the
workflow as Geocoding WebService. Gisgraphy is not only free but based on an
open source framework and offers its services via Java or REST API.



GraffDok — A Graffiti Documentation Application 241

There are also a lot of tools able to read EXIF. There even is one, called
exif [1]. But since we need an image processing tool as well: ImageMagick [3] is
a powerful tool in terms of image processing and is not only able to process the
images but will fetch all necessary EXIF data from an image, too. ImageMagick
is most often used as command line tool without an graphical interface and is
licensed under Apache 2.0.

Many graffiti images typically contain two classes: the surface in the back-
ground and the graffito itself in the foreground. In these cases the image analysis
can be done by a nice bash script called fuzzythresh from Fred Weinhaus [26].
It is free for use in free apps as well as ImageMagick is. And it’s fine for images
with fore- and background typically revealing a bimodal shaped histogram.

Since GraffDok saves any meta data as csv-text-files and integrates these files
in TeX-files, there’s the need of an installed TeX distribution with enhancement
by the LaTeX package csvsimple(.sty) [24]. Then it will be possible to import csv-
files into TeX and finally form tables in PDF by running pdflatex on command
line.

After all there shouldn’t be any restrictions since all services are either
free/libre software or free to use non-commercially. Moreover all important ser-
vices should work independently from the platform in principal. But since
GraffDok has evolved under an unix-like system (Ubuntu Linux) and did not
use jETI yet, it may be possible that some code/paths have to be adjusted, e.g.
to control some command line tools like ImageMagick by ExecuteCommand-
SIBs. There is even little use of unix-tools like sed and cat, but it shouldn’t be
difficult to find an adequate replacement for Win and others.

3 Workflow Realization

The entire workflow is visible in figure 1: the four essential parts are framed by
rounded rectangles.

The arrangement in the part on top shows when files are chosen and paths are
defined, as well as where file names are extracted. There is a lot of interaction
with the user since the program needs to get input first, most importantly a
photograph of a graffito. As a result mainly common GUI SIBs are used here,
except for one row of common basic SIBs dealing with strings and extraction of
pattern.

So the first thing GraffDok does – after welcoming the user, of course – is
to ask him for choosing the photograph. It should be a graffito detail, meaning
a close framing without environment and concentrating on the motif: only the
pattern on a certain surface. There is an option for a second wide angle image
showing the area around the graffito. This second wide angle image will only be
resized in further processing and could be added to the final graffito profile.

To keep it simple, GraffDok will make a suggestion for the working directory.
By default the working directory is just derived from the selected image file
path. Following the suggestion it will be build one level above. In other words:
The image folder containing the original photograph would already lay inside



242 R. Holler

Fig. 1. The entire workflow devided in its four essential parts. Part on top: Choosing
files, defining paths, file names, working directory. Middle left: Processing meta data
and generating csv-/tex-files. Middle right: Processing images. Bottom part: Generating
PDF documents (overview and current profile) including processed meta data as well
as processed images.



GraffDok — A Graffiti Documentation Application 243

the suggested working directory. Ideally the image folder is named ”original” or
similar since it will also serve as target folder for all further graffiti photographs.

But it’s a user’s decision to follow the suggestion. To make things work there
have to be created two more folders inside the working directory. By default
both should be created aside to the folder with original photographs. One called
”Imagicks” will contain all processed images, the other one ”MetaPDF” will save
text-files and PDFs. Right in the working directory lies the fuzzythresh script
which may create temporary files in there while working and iterating.

So the user implicitly gives the path of the suggested working directory by
selecting the image of choice via file chooser. Technically a regular expression is
used here to get the working directory out of the file path:

.*(?=/[\w]*/)

That expression takes any characters of a given file path until there is only
one level of directory left. The last slash in a file path usually devides path from
file name. So the latter one as well as the folder containing it, will both be cut off
due to the positive lookbehind in the expression (lookbehind: second last slash,
certain characters, last slash).

Example: From a chosen file path

~/jabc/GraffDok/original/IM0001.jpg

the working directory

~/jabc/GraffDok

would be derived.
That’s what the common basic SIBs in the part on top of the workflow are for.

In this case they are all using different but short and simple regular expressions,
though it would be possible to use one complex regular expressions for all:

^(.*/)?(?:$|(.+?)(?:(\.[^.]*$)|$))

By using this expression for unix paths, one is able to address the target
group by an index. The expression groups the string into the whole file path,
the directory, the filename and finally a dot with extension.

By the way: the FileChooser is set to only show JPEG and TIFF in its dialog,
assuming that these image formats are common and may hold the required EXIF
data with the GPS coordinates. The limited choice is nice for finding files more
quickly but can always be modified of course.

The middle left and right part will be processed in parallel. While the one on
the right is all about image processing – consuming hardware power and time –
the one on the left is processing meta data. This way the user is able to enter
his descriptions while images are processed in the background.

As said the part on the right visualizes the image processing. The only inter-
action with the user is about which colors should be used in the processed image.
Beside this interaction the acting of fuzzythresh and ImageMagick is controlled
and initiated by ExecuteCommand-SIBs on command line.



244 R. Holler

Figure 2 shows, what a usual graffito photograph out of a mobile phone could
look like. Of course the quality isn’t splendid and without positive exposure
correction most photographs will come out rather dark due to rather bright
background surfaces in most cases, and the cam trying to expose it to a mid grey.
But it should be sufficient to filter the pattern and its graphical characteristics.

Fig. 2. A sample photograph of a red harlekin face in Goettingen, Germany

With regard of the already addressed time to plan and create a good work-
flow, this is an important point. How to deal with various images differing in
exposure/brightness, color, etc. without looking at each? There are questions on
how to unify/preprocess and how to classify the images, to make the graffito
class left.

In figure 2 a human eye has no problems with filtering the graffiti lines. But
yet it could be visibly improved. And more important: It should be improved and
made even clearer to make it contain only relevant information on the graffito
itself. Then it will be easier or even possible to create a digital fingerprint –
whatever it will look like in future.

In its current status GraffDok concentrates on emphasizing the characteristic
of a pattern by using thresholds. ImageMagick offers many enhancements like
simple global affecting filters for contrast and brightness or histogram stretch-
ing. Since the histograms of each color channel may be stretched differently the



GraffDok — A Graffiti Documentation Application 245

questions comes up, how important accurate colors are. A linear-stretch should
avoid heavy color shifts. The command line would look like:

convert SDIM001.jpg -linear-stretch 1x1% linearStr.jpg

and as a result the pattern is visible more clearly. But first it’s an overall
global action on the image and second there are too many useless background
information left. So one might try manual leveling to cut off this redundant
information. To avoid hard edges one may may use sigmoidal contrast, too. The
command lines would look like:

convert SDIM001.jpg -level 25%,40% leveled.jpg

convert SDIM001.jpg -sigmoidal-contrast 18%,30% sigmoidal.jpg

The results are quite promising and much better for extraction of this graffito
pattern. But: the values to achieve these results have been found while trying
and looking at the picture. In a common workflow with many diverse pictures
this wouldn’t be possible. The same intense value settings with such strong
thresholding would make some other graffiti certainly disappear.

That’s why there is only one choice: An analysis of the image first and a
processing accordingly to the analysis afterwards. Fuzzythresh looks at the his-
togram and its typical bimodal shape due to fore- and background – before
thresholding it to a binary black and white image. The latter one afterwards
shows the foreground only in black while the rest is white (or inverse). One may
read the description of the script author [26].

To make fuzzythresh run on a command line, type

. ./fuzzythresh SDIM001.jpg SDIM_fuzzy.jpg

Due to the calculated (iteratively and a bit slow) threshold at 34.8709% for
this image, the result is fine. There’s only the pattern left, but it is black. Since
the pattern itself seems a lot more important than the lost color this should be
okay. Sprayers will probably also switch colors, rather than using the same color
for a certain tag all the time.

Since there is a possibility to assign colors to the resulting binary image in
ImageMagick, this may compensate the loss of original color. It even may be nicer
because of dealing with a smaller and more exact color pool in the database. Also,
the original image and its colors always remain accessible through the graffito
profile in the database.

Back to the workflow, this is how images will be processed: first step is the
fuzzy script with image analysis, second is a user interaction about the coloring
of the generated black and white image. Three common gui SIBs handle this
interaction, two as input SIBs for entering fore- and background color and one
to confirm the selection.

On command line ImageMagick simply needs fore- and background color as
parameters (fg/hg):

convert graffito_bw.gif +level-colors fg,hg graffito_color.gif



246 R. Holler

Now sizing is the only thing left in image processing. Assuming that the final
profile document will have fixed spaces of 500 px in width and height for its
images, resizing will be done by reducing to 500 x 500 px after the longest side
and filling white color where necessary:

convert fuzzy.jpg -resize 500x500 -size 500x500 xc:white

+swap -gravity center -composite fuzzy_sizedwhite_500.jpg

With finishing the middle right part of the workflow there will be up to five
new processed images. Both originals (detail and wide angle) will have copies in
decreased size of 500 x 500 px. And the more important detail image is avail-
able in three more versions as clean binary pattern, as image in clean adapted
colors and as final image in reduced size. Figure 3 shows the original images in
/original/ while figure 4 shows the processed images in /Imagicks/.

Fig. 3. One detailed and one wide angle photograph as originals

Fig. 4. Five images processed from two original images – ready to be used in the profile

The middle left part of the workflow is dealing with the meta data of the
captured graffito. As already stated these processes will be executed in parallel
with the image processing of the middle right part.

First GraffDok uses ImageMagick on command line to read specific EXIF data
from the input image, e.g. date and latitude/longitude. Since there most often
have to be made adjustments in each returned value, there are ExtractPattern-
SIBs in between the ExecuteCommand-SIBs. Afterwards two PutExpression-
SIBs help transforming the notation of the coordinates from ddd mm’ ss,ss”



GraffDok — A Graffiti Documentation Application 247

into ddd,dddddd for each: latitude and longitude. The reason for calculating to
decimal values is the Webservice Gisgraphy, accepting only decimal values in the
request query.

Since Gisgraphy not only returns few values but a list containing addresses in
XML ordered by distance, one have to restrict the result to the one closest at the
given coordinates. To extract all relevant information again an ExtractPattern-
SIB is used.

To this point the middle left part of the workflow is processed really fast and
without interaction to the user. However the following two InputDialog-SIBs will
ask for the type/content of the graffito and the kind of object it was sprayed on.
Then the user is also prompted to enter few keywords. Until no digital fingerprint
works, these keywords are important to make the database searchable.

Since there are no hardware power consuming tasks to do in this part of the
workflow, the submission of text by the user takes some time which is used to
finish image processing in parallel.

All current processed and entered meta data is written in a simple comma-
separated text file named currentMeta.csv. Each graffito and therefore each de-
tailed photograph will be evaluated in this way. Each time all information is
stored in a new line of a collecting csv-file named allMeta.csv.

ExecuteCommand is used to do some operations on text files. For example a
carriage return is added to allMeta.csv. This will ensure writing in a new line
with the current meta data. This is important because comma-separated text
files won’t work otherwise. So there are WriteTextFile-SIBs creating and writing
current meta data in a csv-text-file and there are ExecuteCommand-SIBs for
merging current data to allMeta.csv and to add line breaks.

The file allMeta.csv lays inside /MetaPDF/ and since it has only its headline
and no entries by default, the headline shows what kind of information will be
entered:

ID, date, content, object, city, stand name, street type, OSM,

profile, keywords

Next to allMeta.csv inside /MetaPDF/ lays a lightweight TeX-file, staying un-
changed but integrating the growing allMeta.csv:

\documentclass{article}

\usepackage[landscape]{geometry}

\geometry{hmargin=.1cm,vmargin=.4cm}

\usepackage[utf8]{inputenc}

\usepackage{csvsimple}

\begin{document}

\csvautotabular{allMeta.csv}

\end{document}



248 R. Holler

When the left and right part of the workflow are finished and join again, we’ll
have processed meta data written in text files (csv and tex) on the one hand, and
we have processed clean and small images on the other hand. The little framed
part to the end covers two final ExecuteCommand-SIBs. All processed text-files
as well as the images are available to them now. So they can perform pdflatex on
command line. As a result there will be two PDF documents: a table containing
all meta data from each processed image (figure 5), and a profile showing meta
data of the current image next to its characteristic pattern.

Fig. 5. Generated overview-PDF, CVS integrated in TeX through csvsimple

Fig. 6. Generated profile-PDF: graffito pattern next to current meta data

4 Conclusion

There are obvious advantages using GraffDok. The user still has to enter meta
data each time he’s processing a photograph and there’s no way around human
input or image description. But the user is guided, and all other things are done



GraffDok — A Graffiti Documentation Application 249

automatically, e. g. a growing table as graffiti overview. And these processes are
even done in the time the user needs to enter the description.

So it is not a real one-click-application, but except for the image description
it is! And as long as we take simple photographs with distinct graffiti lines on
a surface, the graffiti are processed and extracted from their background very
well. In some time it should be easy to create nice stats, for example in which
area the most graffiti can be found. The choice of collecting data as csv should
also be a benefit then, because csv-files are quite easy to handle with GNU R.
Also, csv-files are in general easily editable in any editor or tab-based calculation
software.

TeX may be a good choice, too. The layout is very simple yet. But TeX offers
precise positioning and standardized outputs for more complex profile PDF-
documents in future. With the help of csvsimple both, TeX and CSV, are quite
usable in combination, while concentrating on a minimum.

Of course there is room for improvement in this first version of GraffDok.
First of all there should be a multiple file input in future, allowing multiple
descriptions at a time, maybe with thumbnails. At least in case somebody takes
a lot of images it is for sure annoying to start from the beginning with every
graffito.

Also the image processing only works fine with the most common type of
graffiti: distinct lines on homogenous backgrounds. In this simple case thresh-
olding works well enough. But to handle graffiti with different colors and mixed
backgrounds, in other words: more classes, it will become necessary to do a more
complex image classification. To stay with Open Source and to avoid too many
different software, one may take GNU R for the stats as well as for the image
classification, e. g. via random forests.

A digital fingerprint is hard to develop but would be greatly useful. It’s a pity
it will still take some time until one can capture a graffito and GraffDok tells im-
mediately where this pattern was found elsewhere – without crawling databases
by own sight or keywords. In terms of image recognition some free and open
source frameworks for Augmented Reality may help. Especially those working
markerless, recognizing any image without predefined binary markers/codes.

There are few more options to make this project even better. There are ways
and tools like tth doing tex2html. By converting all TeX-Profiles into HTML-
Websites and converting the overview to a website as well, one could make the
database accessible to everyone via web. It would be easy to hyperlink from the
overview to a profile or to OSM showing the waypoint.

And the whole bunch of visualizing stats may follow, e. g. spatial distribution.
An interface/GUI for editing old entries would be nice, too. And a beautifully
visualised comparison of entries – maybe telling, that there already was a similar
graffito at a certain place, but maybe was cleaned and sprayed on again.



250 R. Holler

This article is part of a larger evaluation [7], which aimed at illustrating the
power of simplicity-oriented development [14] by validating the claim that
process modeling can indeed be handed over to the domain experts by pro-
viding them with a graphical modeling framework [23] that covers low-level
details in a service-oriented fashion [16], integrates high-level modeling in the
overall development process in a way that user-level models become directly
executable [15,12], and supports ad-hoc adaptations and evolution [11,13].

The project described in this article can be characterized as follows:

– Scientific domain: geoinformatics
– Number of models: 1
– Number of hierarchy levels: 1
– Total number of SIBs: 46
– SIB libraries used (cf. [10]): common-sibs (45), gisgraphy-sibs (1)
– Service technologies used: REST web services

The geoinformatics part of this volume contains eight other articles on work-
flow applications in this domain [5,19,4,25,21,20,2,22]. Further geoinformat-
ics workflow projects with the jABC have recently been started. Ongoing
work is also exploring how to apply semantics-based (semi-) automatic work-
flow composition techniques (as provided by, e.g., [18]) to support the work-
flow design process, as described in [8,9,6] for the bioinformatics domain.

References

1. exif – the simple command line interface to libexif, an open source EXIF library
written in C, http://libexif.sourceforge.net/ (Online; last accessed January
20, 2013)

2. Hibbe, M.: Spotlocator Project Documentation. In: Lamprecht, A.-L., Margaria, T.
(eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp. 149–158. Springer,
Heidelberg (2014)

3. ImageMagick Studio LLC. ImageMagick – open source software for editing images,
http://www.imagemagick.org/ (Online; last accessed January 20, 2013)

4. Kind, J.: Creation of Topographic Maps. In: Lamprecht, A.-L., Margaria, T. (eds.)
Process Design for Natural Scientists. CCIS, vol. 500, pp. 225–234. Springer,
Heidelberg (2014)

5. Kuntzsch, C.: Visualization of Data Transfer Paths. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
140–148. Springer, Heidelberg (2014)

6. Lamprecht, A.-L.: User-Level Workflow Design. LNCS, vol. 8311. Springer,
Heidelberg (2013)

7. Lamprecht, A.-L., Margaria, T.: Scientific Workflows and XMDD. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 1–13. Springer, Heidelberg (2014)

8. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jETI: A framework for semantics-
based service composition. BMC Bioinformatics 10(suppl. 10), S8 (2009)

http://libexif.sourceforge.net/
http://www.imagemagick.org/


GraffDok — A Graffiti Documentation Application 251

9. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based compo-
sition of EMBOSS services. Journal of Biomedical Semantics 2(suppl. 1), S5 (2011)

10. Lamprecht, A.-L., Wickert, A.: The Course’s SIB Libraries. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 30–44. Springer, Heidelberg (2014)

11. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2009)

12. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing-
Approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

13. Margaria, T., Steffen, B.: Continuous Model-Driven Engineering. IEEE Com-
puter 42(10), 106–109 (2009)

14. Margaria, P., Steffen, B.: Simplicity as a Driver for Agile Innovation. Com-
puter 43(6), 90–92 (2010)

15. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with
XMDD. In: Hinchey, M., Coyle, L. (eds.) Process Design for Natural Scientists,
pp. 217–236. Springer, London (2012)

16. Margaria, T., Steffen, B., Reitenspiess, M.: Service-Oriented Design: The Roots.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 450–464. Springer, Heidelberg (2005)

17. Masclet, D.: Gisgraphy project – open source framework offering geolocalisation
and geocoding services, http://www.gisgraphy.com/ (Online; last accessed Jan-
uary 20, 2013)

18. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose Programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineer-
ing. LNCS, vol. 7212, pp. 94–98. Springer, Heidelberg (2012)

19. Noack, F.: CREADED: Coloured-Relief Application for Digital Elevation Data. In:
Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS,
vol. 500, pp. 182–195. Springer, Heidelberg (2014)

20. Respondeck, T.: A Workflow for Computing Potential Areas for Wind Turbines.
In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists.
CCIS, vol. 500, pp. 196–211. Springer, Heidelberg (2014)

21. Scheele, L.: Location Analysis for Placing Artificial Reefs. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
212–224. Springer, Heidelberg (2014)

22. Sens, H.: Web-Based Map Generalization Tools Put to the Test: a jABC Workflow.
In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists.
CCIS, vol. 500, pp. 171–181. Springer, Heidelberg (2014)

23. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

24. Sturm, T.F.: csvsimple – open source LaTeX package for processing of
files with comma separated values, http://www.ctan.org/tex-archive/macros/
latex/contrib/csvsimple/ (Online; last accessed January 20, 2013)

25. Teske, D.: Geocoder Accuracy Ranking. In: Lamprecht, A.-L., Margaria, T. (eds.)
Process Design for Natural Scientists. CCIS, vol. 500, pp. 159–170. Springer,
Heidelberg (2014)

26. Weinhaus, F.: fuzzythresh script – bash script for automatically thresholding a two
class image to binary black and white format using fuzzy c-means, free use in free
software, http://www.fmwconcepts.com/imagemagick/fuzzythresh/ (Online; last
accessed January 20, 2013)

http://www.gisgraphy.com/
http://www.ctan.org/tex-archive/macros/latex/contrib/csvsimple/
http://www.ctan.org/tex-archive/macros/latex/contrib/csvsimple/
http://www.fmwconcepts.com/imagemagick/fuzzythresh/

	GraffDok — A Graffiti DocumentationApplication
	1 Introduction: Workflow Scenario
	2 Service Analysis
	3 Workflow Realization
	4 Conclusion
	References




