
Spotlocator – Guess Where the Photo Was

Taken!

Marcel Hibbe

Potsdam University, Potsdam, D-14482, Germany
mhibbe@gmail.com

Abstract. Spotlocator is a game wherein people have to guess the spots
of where photos were taken. The photos of a defined area for each game
are from panoramio.com. They are published at http://spotlocator.

drupalgardens.com with an ID. Everyone can guess the photo spots by
sending a special tweet via Twitter that contains the hashtag #spotlo-
cator, the guessed coordinates and the ID of the photo. An evaluation is
published for all tweets. The players are informed about the distance to
the real photo spots and the positions are shown on a map.

Keywords: Geoinformation, Spotlocator, panoramio, twitter, game,
google static maps, REST.

1 Introduction: Workflow Scenario

The basic idea of this project is a game wherein people have to guess the spots
of where photos were taken. It should improve people’s geographical knowledge
about their neighborhood. The administrator can define the search area of the
current game. Thereafter information about geo-referenced photos are down-
loaded from Panoramio (www.panoramio.com) for the specified area. For every
photo a unique ID is generated which gets stored in a file containing additional
data such as the coordinates and the author. The photos are published on the
website http://spotlocator.drupalgardens.com together with their IDs. The
challenge for the players is to search the photo locations on site. For that they
need a Twitter account (www.twitter.com), and a smartphone with GPS sup-
port. When a player has found a photo location, he sends a tweet in the following
format:

#spotlocator 52.123456,13.123456 id:123

The hashtag #spotlocator is the name of the game and is used to identify tweets
containing information about the assumed photo locations. The numbers in the
middle are geographical coordinates which have to be modified by the player for
the current photo. The ID refers to the Photo-ID published on the website. This
way, every person having a Twitter account and owning a smartphone can join
the game.

For evaluation all the tweets containing the Hashtag #spotlocator are down-
loaded. The distance to the original photo locations is calculated by comparing

A.-L. Lamprecht et al. (Eds.): Process Design for Natural Scientists, CCIS 500, pp. 149–160, 2014.
DOI: 10.1007/978-3-662-45006-2_12 c© Springer-Verlag Berlin, Heidelberg 2014

http://spotlocator.drupalgardens.com
http://spotlocator.drupalgardens.com
www.panoramio.com
http://spotlocator.drupalgardens.com
www.twitter.com

150 M. Hibbe

Fig. 1. Workflow of the game

the assumed coordinates with the coordinates stored in the file containing the
original photo information. The results are published on the website, so everyone
can check how accurate his assumption was. Figure 1 shows the workflow of the
game.

The reason for using Panoramio was that there is already a pool of data that
can be used and there is no need to create an own data basis. The reason for
using Twitter was the wide distribution of the service so that people don’t have
to register any additional account for playing the game.

2 Service Analysis

The services needed for realizing the workflow is the Panoramio REST API [21]
to get the photo Information and the Twitter REST API to download the tweets.
Additional tools are Dropbox, which is used to publish the generated HTML
sites. The content management system Drupal has been used to design a website
where the generated HTML sites are embedded via an iFrame.

A site that uses the Panoramio API can show photos that appear on Panoramio
free of charge. The site must credit the photographer and link to the original
photo page. You must also display the text ”Photos provided by Panoramio

Spotlocator – Guess Where the Photo Was Taken! 151

are under the copyright of their owners” under Panoramio-photos. To use, copy,
print, or download a photo from Panoramio, you must get explicit permission
from the photographer [22]. For this reason the spotlocator program will not
have a print-function. To use the REST API in jABC, you have to do a GET
on an URL like this:

http://www.panoramio.com/map/get panoramas.php?set=public&from=

0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium&mapfilter=

true

Minx, miny, maxx and maxy define the area to show photos from. ”set=public”
means that only popular photos are used and ”size=medium” specifies the image
size. You can define the number of photos to be displayed using ”from=X” and
”to=Y”, where Y-X is the number of photos included. The value 0 represents
the latest photo uploaded to Panoramio. For example, ”from=0 to=20” will
extract a set of the last 20 photos uploaded to Panoramio, ”from=20 to=40”
the previous set of 20 photos and so on. The result data is formatted using
JavaScript Object Notation (JSON) [3]. To do a GET command in jABC, the
REST SIB ”FetchTextualDataFromURL” is used. It fetches textual content be-
hind the given URL and puts the result into the execution context. To use the
Twitter REST API [28] a GET command is used as well and the result data is
formatted using JavaScript Object Notation (JSON), too. The URL to search
for Tweets with the hashtag #spotlocator is:

http://search.twitter.com/search.json?q=40spotlocator

As the Twitter search is mainly a real-time search, it’s only possible to find
Tweets of the last few days (between 4 and 10 days). This is enough to fit the
needs of the spotlocator game.

As a result of the jABC workflow there are generated HTML files contain-
ing the current game, the results of the guesses and an archive for old games.
These files get stored in the public folder of Dropbox, which has to be installed
at the local machine. For each HTML file there is a public URL (rightclick -
copy public URL). These URLs are used to display these sites via an iframe in
a website created using the content management system Drupal Gardens. As
creating a website is not a topic of this seminar paper, this documentation will
limit to the generation of the HTML files via jABC. The website can be visited
at http://spotlocator.drupalgardens.com.

All in all, the only requirement to run the program is the desktop version of
Dropbox. As the guesses published by the Twitter users refer to the photos on
the Website http://spotlocator.drupalgardens.com (currently updated by
the author), it is not recommended to send tweets referring to photos which have
been generated by another machine. This would lead to redundant photo IDs so
that the evaluation would show up wrong results. Because of this it is allowed

http://www.panoramio.com/map/get_panoramas.php?set=public&from=0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium&mapfilter=true
http://www.panoramio.com/map/get_panoramas.php?set=public&from=0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium&mapfilter=true
http://www.panoramio.com/map/get_panoramas.php?set=public&from=0&to=20&minx=-180&miny=-90&maxx=180&maxy=90&size=medium&mapfilter=true
http://search.twitter.com/search.json?q=40spotlocator
http://spotlocator.drupalgardens.com
http://spotlocator.drupalgardens.com

152 M. Hibbe

to run this program on another machine, but tweets should always refer to the
photos on the website which is administrated by the author.

3 Workflow Realization

At the beginning of the program there is the possibility to make some config-
urations. If the program is running on another machine, you can set the paths
where the program data will be saved. If you are using Dropbox to publish the
generated HTML files, you have to choose the Dropbox public folder. The table
depicted in Figure 2 shows all the files used by the program.

Fig. 2. Files used by the program

After configuration there is an option (ShowBranchingDialog) between creat-
ing a new game or evaluating the tweets from Twitter. The following 2 Chapters
will describe each option.

3.1 Create a New Game

To create a new game, the user first has to enter four geographical coordinates
(ShowInputDialog) to define a bounding box in which the photo spots must be
guessed. The site http://www.openstreetmap.org/export is suitable to get the
coordinates. In another Input Dialog the user can enter the number of photos
that have to be guessed in the specified area. These inputs are stored in variables
that are used to build the GET URL for Panoramio:

http://www.panoramio.com/map/get panoramas.

php?set=public&from=0&to=${number of photos}&minx=${area west}&
miny=${area south}&maxx=${area east}&maxy=${area north}&
size=medium&mapfilter=true

The GET request is performed using the REST-SIB ”FetchTextualDataFro-
mURL”. The result containing the JSON-Code is stored in the variable
”panoramio get”. For one photo the code looks like the following:

http://www.panoramio.com/map/get_panoramas.php?set=public&from=0&to=${number_of_photos}&minx=${area_west}&miny=${area_south}&maxx=${area_east}&maxy=${area_north}&size=medium&mapfilter=true
http://www.panoramio.com/map/get_panoramas.php?set=public&from=0&to=${number_of_photos}&minx=${area_west}&miny=${area_south}&maxx=${area_east}&maxy=${area_north}&size=medium&mapfilter=true
http://www.panoramio.com/map/get_panoramas.php?set=public&from=0&to=${number_of_photos}&minx=${area_west}&miny=${area_south}&maxx=${area_east}&maxy=${area_north}&size=medium&mapfilter=true
http://www.panoramio.com/map/get_panoramas.php?set=public&from=0&to=${number_of_photos}&minx=${area_west}&miny=${area_south}&maxx=${area_east}&maxy=${area_north}&size=medium&mapfilter=true

Spotlocator – Guess Where the Photo Was Taken! 153

{
”count ” : 773840 ,” photos ” : [

{
” photo id ” : 532693 ,
” p h o t o t i t l e ” : ”Wheat f ie ld in a f t e rnoon l i g h t ” ,
” photo ur l ” : ” http ://www. panoramio . com/photo /532693” ,
” p h o t o f i l e u r l ” :

” http :// s t a t i c 2 . bareka . com/photos/medium/532693. jpg ” ,
” long i tude ” : 11 .280727 ,
” l a t i t u d e ” : 59 .643198 ,
”width ” : 500 ,
” he igh t ” : 333 ,
” up load date ” : ”22 January 2007” ,
” owner id ” : 39160 ,
”owner name ” : ”Snemann” ,
” owner ur l ” : ” http ://www. panoramio . com/ user /39160” ,

}
}

The next task is to extract the strings that are needed in the program. This
is done for every string with the SIB ”ExtractPattern” by using regular expres-
sions [20].
The expression to extract the pattern for the photo file URL is:

” p h o t o f i l e u r l ” : ” ([\p{Graph } [\p{Space }]&&[ˆ”]]+)

This command is searching for the text ”photo file url”:”. After this string
there is the URL that has to be extracted. ”Graph” and ”Space” define the
characters that are allowed to be extracted. The symbols

[ˆ ”]

mean that the next quote defines the end of the extraction and ”+” means that
this search is done until there are no more matching patterns. As a result, the
ExtractPattern SIB stores all photo file URL in an array. This procedure is
also done for latitude, longitude, photo id and owner name. At this point the
JSON-Code is no longer needed because all information has been extracted into
arrays.

The next four SIBs are for creating an archive for old games. If the pro-
gram is executed for the first time a new file called ”Spolocator Archive.htm”
is created without content. The next time the program runs, the previous game
(”Spotlocator NewGame.htm”) will always be added to the archive. This is done
by the SIBs ”ReadTextFile” and ”WriteTextFile”. The SIB ”PutExpression”
merges the previous game and the old archive into one variable that becomes
the content of the new archive. After that, the photo information ”Spotloca-
tor photoinfo.htm” of earlier games is loaded from hard drive with the ”Read-
TextFile” SIB. If there is no such file it will be created by the ”WriteTextFile”
SIB.

154 M. Hibbe

The following ”PutExpression” SIB is for creating the beginning of the HTML
file ”Spotlocator NewGame.htm”. To give the players an overview where they
have to search for the photo spots, there are 2 Google Maps (Google Static Maps
[1]) that show the bounding box in 2 different zoom levels. The links for the maps
are created by using the variables that the user defined at the beginning. Addi-
tionally, there is the option to open the bounding box in OpenStreetMap.

<head>
<s t y l e>
body{ font−s i z e :13 px ; font−f ami ly : He lv e t i ca ; }
</s t y l e>

</head>

<center>
the photos are form the f o l l ow in g area :

<img s r c=”http ://maps . goog l e . com/maps/ ap i / stat icmap?
path=co l o r : 0 x0000FF80 | weight : 4 |
${ area nor th } , ${ area west } | ${ area nord } , ${ a r ea ea s t } |
${ area sou th } , ${ a r ea ea s t } | ${ area sou th } , ${ area west } |
${ area nor th } , ${ area west}&s i z e =300x300&zoom=7&sensor=true”>
 ; ;

<img s r c=”http ://maps . goog l e . com/maps/ ap i / stat icmap?
path=co l o r : 0 x0000FF80 | weight : 5 |
${ area nor th } , ${ area west } | ${ area nord } , ${ a r ea ea s t } |
${ area sou th } , ${ a r ea ea s t } | ${ area sou th } , ${ area west } |
${ area nor th } , ${ area west}&s i z e =500x300&sensor=true”>

To view t h i s area in OpenStreetMap
<a h r e f=”http ://www. openstreetmap . org /?minlon=${ area west }
&minlat=${ area sou th}&maxlon=${ a r ea ea s t }
&maxlat=${ area nor th}&box=yes ” t a r g e t=” blank”> c l i c k here.

<hr>

</center>

The next SIB ”ReadTextFile” reads the current counter of the photo IDs from
the file ”Spotlocator current number.txt”. Storing the ID on the hard drive is
necessary, because otherwise the counter would start at 0 again at every program
start. If the file with the counter does not exist, it will be created. The following
loop show in Figure 3 is a main part of creating a new game. The loop summarizes
the information for every photo and adds it to the Information about the other
Photos. Then the HTML-part for the current photo is generated which is added
to the whole HTML Code. After that the photo ID and the loop number is
increased.

Spotlocator – Guess Where the Photo Was Taken! 155

Fig. 3. Loop for summarizing photo information

<center>
<h2>photo number : ${photonumber}</h2>
<a h r e f=”http ://www. panoramio . com/photo/
${ panoramio int photo id [loopnumber]}”
t a r g e t=” blank”>

<smal l>Copyright o f t h i s photo :
<i>${panoramio ownername [loopnumber]}</ i></smal l>

You know where t h i s photo was taken ?
Send a tweet with the f o l l ow ing tex t :
#spo t l o c a t o r <i>l a t i t ud e </i>,<i>l ong i tude</i>
id :${photonumber}

</center>

156 M. Hibbe

After the loop, the current photo ID and all the photo informations are saved
to hard drive. The HTML file ”Spotlocator NewGame.htm” is saved into the
Dropbox public folder. The user gets a confirmation that the game was created
successfully and additional information about the next steps.

3.2 Game Evaluation

The Game evaluation starts by downloading all tweets with the Hashtag #spot-
locator. This is done by the REST SIB ”FetchTextualDataFromURL”. The URL
is: http://search.twitter.com/search.json?q=spotlocator.

The answer in JSON-Format is the basis for the ExtractPattern SIBs to ex-
tract the desired information. Like at the game creation, this is done by using
regular expressions. The extracted information is the Twitter Names of the own-
ers, their nicknames, the coordinates and the photo ID of the photo they refer to.
In the next step, the photo information (”Spotlocator photoinfo.htm”) that is
stored on the hard drive is read with the ”ReadTextFile” SIB. ”ExtractPattern”
is used again to store the information as arrays. The following ”PutExpression”
SIB is for creating the beginning of the HTML file ”Spotlocator Report.htm”.
The loop shown in Figure 4 is to compare photos mentioned in the tweets with
the original photo information.

Fig. 4. Loop for photo comparison

http://search.twitter.com/search.json?q=spotlocator

Spotlocator – Guess Where the Photo Was Taken! 157

At the beginning of the loop, the current photo ID that is mentioned in the
tweet is written into a variable with the value $tweets photoid[tweetnumber].
The next 5 SIBs calculate the distance between the assumed photo locations
and the real photo locations. This is realized by using the theorem of Pythago-
ras while considering that the distance between lines of longitude varies with the
latitude. The algorithm for this is [5]:

l a t = (l a t r e a l + l a t tw i t t e r) / 2 ∗ 0 .01745
dx = 111 .3 ∗ cos (l a t) ∗ (l o n r e a l − l o n tw i t t e r)
dy = 111 .3 ∗ (l a t r e a l − l a t t w i t t e r)
d i s t ance = sq r t (dx ∗ dx + dy ∗ dy)∗1000
Lat and lon are the geographical coordinates in degree. Distance has the unit

meter. The distance is rounded up with the command ”ceil”. The next ”Evalu-
ateCondition” and ”PutExpression” SIBs generate a comment like ”very good”
or ”not so good! good luck for the next time” for the different ranges of differ-
ence. Afterwards the HTML part for the current tweet is generated. This is added
to the whole HTML Code. After that the loop number is increased. After the
loop the HTML file ”Spotlocator Report.htm” is saved into the Dropbox public
folder. The user gets a confirmation that the game was evaluated successfully
and additional information about the next steps.

4 Conclusion

The workflow could be realized as planned and the game is running without prob-
lems. A current inconvenience is that the game creation and evaluation have to be
executed manually, so that the website http://spotlocator.drupalgardens.

com is not always up to date. Ideally, the program would be running continuously
on a server so that the information will update in real time. Another constraint
is that there can be problems if a Twitter user did not obey to the required tweet
format. In future versions this will be improved by changing the regular expres-
sions. At this time, a new game can only be created by the jABC administrator.
A better solution for this would have to be realized in future versions, too. An
idea is that everyone can create his own game via a special tweet. Furthermore
the evaluation could be improved by ranking the best tips for a photo. To build
more complex websites a SIB would be useful which is able to post blog entries.
Another possibility to interact with the players would be to directly reply to the
tweets by tweeting the results. This would require a special SIB as well. All in
all, this project could be realized as a jABC workflow without problems. As the
results are nearly solely HTML files which have to be published via a web server,
PHP would be a good alternative. On the other hand the advantage of jABC is
the flexibility to quickly make modifications and to have an overall view of the
game.

http://spotlocator.drupalgardens.com
http://spotlocator.drupalgardens.com

158 M. Hibbe

This article is part of a larger evaluation [8], which aimed at illustrating the
power of simplicity-oriented development [15] by validating the claim that
process modeling can indeed be handed over to the domain experts by pro-
viding them with a graphical modeling framework [26] that covers low-level
details in a service-oriented fashion [17], integrates high-level modeling in the
overall development process in a way that user-level models become directly
executable [16,13], and supports ad-hoc adaptations and evolution [12,14].

The project described in this article can be characterized as follows:

– Scientific domain: geoinformatics
– Number of models: 1
– Number of hierarchy levels: 1
– Total number of SIBs: 79
– SIB libraries used (cf. [11]): common-sibs (18), rest-sibs (2)
– Service technologies used: REST web services

The geoinformatics part of this volume contains eight other articles on work-
flow applications in this domain [6,19,4,27,2,24,23,25]. Further geoinformat-
ics workflow projects with the jABC have recently been started. Ongoing
work is also exploring how to apply semantics-based (semi-) automatic work-
flow composition techniques (as provided by, e.g., [18]) to support the work-
flow design process, as described in [9,10,7] for the bioinformatics domain.

References

1. GOOGLE. Google Static Maps API V2 Developer Guide (last accessed July 24,
2012), https://developers.google.com/maps/documentation/staticmaps/

2. Holler, R.: GraffDok — A Graffiti Documentation Application. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 239–251. Springer, Heidelberg (2014)

3. Json.Org. JavaScript Object Notation (last accessed July 24, 2012),
http://www.json.org/

4. Kind, J.: Creation of topographic maps. In: Lamprecht, A.-L., Margaria, T. (eds.)
Process Design for Natural Scientists. CCIS, vol. 500, pp. 229–238. Springer,
Heidelberg (2014)

5. Kompf, M.: Entfernungsberechnung (last accessed July 24, 2012),
http://www.kompf.de/gps/distcalc.html

6. Kuntzsch, C.: Visualization of data transfer paths. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
140–148. Springer, Heidelberg (2014)

7. Lamprecht, A.-L.: User-Level Workflow Design. LNCS, vol. 8311. Springer,
Heidelberg (2013)

8. Lamprecht, A.-L., Margaria, T.: Scientific workflows and XMDD. In: Lamprecht,
A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500,
pp. 1–13. Springer, Heidelberg (2014)

https://developers.google.com/maps/documentation/staticmaps/
http://www.json.org/
http://www.kompf.de/gps/distcalc.html

Spotlocator – Guess Where the Photo Was Taken! 159

9. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10(suppl. 10), S8 (2009)

10. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based com-
position of EMBOSS services. Journal of Biomedical Semantics 2(suppl. 1), S5
(2011)

11. Lamprecht, A.-L., Wickert, A.: The course’s SIB libraries. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
30–44. Springer, Heidelberg (2014)

12. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg (2009)

13. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing-
Approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

14. Margaria, T., Steffen, B.: Continuous Model-Driven Engineering. IEEE Com-
puter 42(10), 106–109 (2009)

15. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. Com-
puter 43(6), 90–92 (2010)

16. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with
XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236.
Springer, London (2012)

17. Margaria, T., Steffen, B., Reitenspiess, M.: Service-Oriented Design: The Roots.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 450–464. Springer, Heidelberg (2005)

18. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose Programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 94–98. Springer,
Heidelberg (2012)

19. Noack, F.: CREADED: Colored-Relief Application for Digital Elevation Data. In:
Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS,
vol. 500, pp. 182–195. Springer, Heidelberg (2014)

20. ORACLE. Pattern,
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

(last accessed August 1, 2012)

21. PANORAMIO. Panoramio API Zeigen Sie Fotos von Panoramio auf Ihrer Webseite
an, http://www.panoramio.com/api/data/api.html (last accessed July 2, 2012)

22. PANORAMIO. Panoramio Copyright,
http://www.panoramio.com/help/copyright (last accessed July 23, 2012)

23. Respondek, T.: A Workflow for Computing Potential Areas for Wind Turbines. In:
Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists. CCIS,
vol. 500, pp. 200–215. Springer, Heidelberg (2014)

24. Scheele, L.: Location analysis for placing artificial reefs. In: Lamprecht, A.-L.,
Margaria, T. (eds.) Process Design for Natural Scientists. CCIS, vol. 500, pp.
216–228. Springer, Heidelberg (2014)

25. Sens, H.: Web-based map generalization tools put to the test: A jABC workflow.
In: Lamprecht, A.-L., Margaria, T. (eds.) Process Design for Natural Scientists.
CCIS, vol. 500, pp. 175–185. Springer, Heidelberg (2014)

26. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://www.panoramio.com/api/data/api.html
http://www.panoramio.com/help/copyright

160 M. Hibbe

27. Teske, D.: Geocoder accuracy ranking. In: Lamprecht, A.-L., Margaria, T. (eds.)
Process Design for Natural Scientists. CCIS, vol. 500, pp. 161–174. Springer,
Heidelberg (2014)

28. TWITTER. Twitter Developers, https://dev.twitter.com/docs (last accessed
August 1, 2012)

https://dev.twitter.com/docs

	Spotlocator – Guess Where the Photo Was
Taken!

	1 Introduction: Workflow Scenario
	2 Service Analysis
	3 Workflow Realization
	3.1 Create a New Game
	3.2 Game Evaluation

	4 Conclusion
	References

