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Abstract. We investigate the contribution of unsupervised learning and regular
grammatical inference to respectively identify profiles of elderly people and
their development over time in order to evaluate care needs (human, financial
and physical resources). Grammatical Inference (also known as automata
induction, grammar induction and automatic language acquisition) allows
grammar and language learning from data. Machine learning by using grammar
has a variety of applications: pattern recognition, adaptive intelligent agents,
diagnosis, biology, systems modelling, prediction, natural language acquisition,
data mining… The proposed approach is based on regular grammar. An adap-
tation of k-Testable Languages in the Strict Sense Inference algorithm is pro-
posed in order to infer a probabilistic automaton from which a Markovian model
which has a discrete (finite or countable) state-space has been deduced. In
simulating the corresponding Markov chain model, it is possible to obtain
information on population ageing. We have verified if our observed system
conforms to a unique long term state vector, called the stationary distribution
and the steady-state.

Keywords: Grammar inference � k-Testable language in strict sense � Proba-
bilistic deterministic finite automata � Timed-transition systems � Evolution of
elderly people disability

1 Introduction

Demographic shifts in the population and the fact that people are living longer have
created an awareness that the health care system is and will be increasingly difficult to
control, organize and finance especially where the ageing population are concerned.
The senior citizen population is increasing along with the diversity of their health
backgrounds and medico-social needs which cannot be provided easily because of
health aspects, social conventions and lifestyles that are intertwined with the ageing
process. Long-term care is a variety of services that includes medical and non-medical
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care to people who have a chronic illness or disability. This illness or disability could
include a problem with memory loss, confusion, or disorientation. This is called cognitive
impairment and can result from conditions such as Alzheimer’s disease [15]. Care needs
often progress as age or as chronic illness or as disability progresses. Long-term care helps
meet health or personal needs. Most long-term care is to assist people with support
services such as activities of daily living like dressing, bathing, and using the toilet.
Approximately 70 % of individuals over the age of 65 will require at least some type of
long-term care services during their lifetime. Over 40 % will need care in a nursing home
for some period of time. Nursing homes provide long-term care to people who need more
extensive care, particularly those whose needs include nursing care or 24-hour supervision
in addition to their personal care needs. We focus our interest on nursing homes.

This presentation is split up into eight sections. After an introduction describing the
scope of the study, the study context is presented in Sect. 2. The characteristics of the
collected data are described in Sect. 3. The profiles of residents obtained by using
cluster analysis are presented in Sect. 4. A brief review of previous works is presented
in Sect. 5. Section 6 deals with the techniques used (regular probabilistic grammar
inference) to model the automaton symbolizing the changing profiles and their
development over time. Starting from this automaton, a Markov model is deduced.
Thereby, it is possible to verify if our system is achieving a steady state. Section 7
presents the results obtained concerning the four medical nursing homes (called Ber-
nadette, Soleil, Les Myosotis, Val Dorlay situated in France) and dementia. We con-
clude with some future works.

2 Study Context

This project is being carried out in close collaboration with a French mutual benefit
organization called “Mutualité Française de la Loire” which manages several nursing
homes.

To fully explore the opportunities for our approach, we propose a modelling
environment. This allows one to manage the resources, to elaborate medico-social
resource planning and to simulate them in order to evaluate the performance of each of
them (Fig. 1).

The Decisional Information System is crucial in the methodological framework.
The objective is to design an environment for decision aid-tools dedicated to health-
care and social services professionals for strategic and tactical decisions such that:

– Which activity should be developed, and at what cost?
– Whether or not to open additional facilities - and if so which ones?
– etc.

The aim is to provide a certain standard of care to dependent old people in nursing
homes, through the sharing of resources (staff, finance and equipment) thanks to all the
key indicators (via the managers’ choices).

The methodological framework is described in Fig. 2.
So, in order to do this, we have to identify different senior citizen profiles as well as

the length of stay according to these profiles and to study their development over time.
The collected data comes from administrative data, previous medical history, etc.
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We evaluate the workload in function of the profile of each elderly person in the
nursing home. Based on nursing home pricing (for accommodation and care in function
of the degree of dependence…), we can verify that:

– the budget will not be exceeded,
– we have enough staff to carry out the workload.

Simulations are used to forecast population ageing. So we can identify the work-
load in the short-term, medium-term and long-term and estimate the resources needed.
From the potential elderly people needs, we can also evaluate which profiles should be
accepted to ensure that both quality and safety criteria are respected from a workload
and financial point of view.

In this article, we will present the study of the progression over time of elderly
people autonomy-disability. The steps of the project consist in:

1. The specification of elderly people profiles by using unsupervised learning
approach [9],

2. The study of the development of these profiles over time by using a probabilistic
graph of transitions between the clusters inferred by k-TSSI (k-Testable Languages
in the Strict Sense Inference) algorithm. The objective is to deduce Markov process
which has a discrete (finite or countable) state-space.

3. Discrete-time Markov chain simulation is used to forecast population ageing. It
allows to identify the elderly people care needs and the workload in short-term,
medium-term and long-term and to predict the future costs. An application is
presented in [8].

Fig. 1. Modelling environment
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3 Data Collected

The quantitative data arises from the databases and the corresponding information
system deals with the evaluation of autonomy/disability of elderly people. Dependence
evaluation in France is carried out using a specific national grid called AGGIR:
Autonomy-Gerontology-Group-Iso-Resources. The quantitative data concerns 628
residents and more than 2,200 observations of independence evaluations. The evalu-
ations are made by the resident doctor in collaboration with the medical staff. An item
can be evaluated using the four adverbs (see Fig. 3):

• Spontaneously corresponding to the letter S,
• Entirely corresponding to the letter E,
• Correctly corresponding to the letter C,
• Usually corresponding to the letter U.

Fig. 2. Methodological framework
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The codification is the following. If all four adverbs are marked, the code is C. If
less than four adverbs are checked (three or two or one), the code is B. If no adverb is
checked, the code is A.

The proposed algorithm uses numerical data. So, the corresponding values are:

– 0 for code A meaning the person can do it alone,
– 1 for code B meaning the person can partially do it,
– 2 for code C meaning the person cannot do it alone.

The first step is to analyze the degree of autonomy-disability in order to identify
clusters.

4 Identification of Residents’ Profiles

The aim is to find feature-patterns related to the autonomy-disability level of elderly
people living in nursing homes. These levels correspond to profiles based on the
people’s ability to perform activities of daily living like being able to wash, dress and
move. To achieve this aim, an unsupervised learning approach is proposed [9]. It is
based on principal component analysis technique to direct the determination of the
clusters with self-organizing partitions. Cluster analysis is made on the 8 variables:
Transferring to or from bed or chair, Moving indoors, Washing, Toilet, Dressing, Food,
Orientation, Coherence. The cluster analysis identifies two kinds of patterns (see
Fig. 4):

– The decline in executive functions regarding to motor and functional abilities called
apraxia disorders,

– The cognitive impairment and neuropsychological deficits.

Fig. 3. A.G.G.I.R. grid
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By combining clustering with a machine learning process, we could be able to
predict the development of physical autonomy loss or mental autonomy loss in elderly
people over time. To reach this objective, we use machine learning approach based on
grammar inference in order to infer a probabilistic automaton. In the article, we only
present the patients’ profiles evolution regarding to upper body functional disorders
(cognitive impairment).

5 Related Works

We want to obtain a probabilistic graph of transitions between states (clusters) with the
length-of-stay in each state (temporal state representations). It is also interesting to
study cluster succession of length k (for example, the 3 last states of resident’s clusters).
Probabilistic automata are used in various areas in pattern recognition or in fields to
which pattern recognition is linked. Different concept learning algorithms have been
developed for different types of concepts.

We are interested by the class of regular grammars that are the simplest class of
formal grammars in the Chomsky hierarchy and it consists in the identification of the
corresponding learning of deterministic finite automata (DFA).

The learning of DFA, also called regular inference is based on acceptance of regular
languages which allow to model the behaviour of systems. The aim consists in con-
structing a DFA from information about the set of words it accepts. There are many
algorithms for learning DFAs, the most well-known being the algorithm due to Dana
Angluin [4, 5]. There are many approaches for regular inference [6, 7, 11, 16, 17, 19].
For more information, the book [14] presents an overview on learning automata and
grammar inference.

A finite automaton with transition probabilities represents a distribution over the set
of all strings defined over a finite alphabet. The articles [18, 24] present a survey and a
study of the relations and properties of probabilistic finite-automata and tree. The
article [10] clarifies the links between probabilistic automata and Hidden Markov
Models (HMM). In a first part of this work, the authors present:

Fig. 4. Contribution of the clustering
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– the probabilities distributions generated by these models,
– the necessary and sufficient conditions for an automaton to define a probabilistic

language.

The authors show that one the one hand, probabilistic deterministic finite automata
(PDFA) form a proper subclass of probabilistic non-deterministic automata (PNFA)
and the other hand, PNFA and HMM are equivalent.

However, there are almost no extensions of these algorithms to the setting of timed
systems. A variant of a DFA including the notion of time is called Timed Automaton
(TA). These models are based on the fact that each symbol of a word occurs at a certain
point in time. TA can see that an automaton that generates strings with event-time value
pairs called timed strings. Very few works exist in the domain [1–3, 13, 20, 21]. Timed
automata correspond to finite state models where explicit notion of time is taken into
account and is represented by timed events. Time can be modelled in different ways,
e.g. discrete or continuous. The more recent works [22, 23] propose an algorithm for
learning simple timed automata, known as Deterministic Real-Time Automata (DRTA)
where the transitions of real-time automata can have a temporal constraint on the time
of occurrence of the current symbol relative to the previous symbol. The main draw-
back of such approaches is that it can result in an exponential blow-up of both the input
data and the resulting size of the model and the obtained models are quite difficult to
interpret.

The main objective of the study is the ability to analyze an identified model in
identifying automaton models from observations. We want to take an established
method to learn a DFA and apply it to our timed sequences. Our problem could be
modelled as a timed-state transition graph, a probabilistic deterministic finite automaton
(PDFA) taking into account timed-event. We also have a set of positive timed-strings
(or time-stamped event sequences).

From a set of labelled (positive only) time stamped event sequences, the problem to
solve is to find the automaton model that most likely produce the data. We do not want
to learn (identify) a DRTA such that [22], with time constraints because we do not
exactly have the same problematic of real-time system. We only have timed-strings
from which we propose to automatically deduce a Markov chain model.

The k-TSSI (k-Testable Languages in the Strict Sense Inference) algorithm [11, 12]
could be useful, convenient and suitable for two reasons: the simplicity of imple-
mentation and the possibility to take into account memory effects (macro-states). The
inductive inference of the class of k-testable languages in the strict sense (k-TLSS) has
been studied and adapted to local languages, N-grams and tree languages. A k-TLSS is
essentially defined by a finite set of substrings of length k that are permitted to appear in
the strings of then language. Given a size k of memory, the objective is to find an
automaton for the language. This subclass of language called k-testable language has
the property that the next character is only dependent on the previous k-1 characters. In
our case, it is interesting to be able to identify the substrings (memory) of length k.

But, our goal is to infer a timed-system model and an automaton inferred by the k-
TSSI algorithm does not take into account the timed strings.

The problem is also that it is difficult to take into account a set of substrings of
length k(k > 1) and the algorithm is not generalized to probabilistic timed-automata. In

Inference of Markov Chain Models by Using k-Testable Language 95



this section we propose a model in order to take into account the concept of time in the
automaton inferred by the k-TSSI algorithm (i.e. the duration of time a resident spends
in a particular cluster) taking into account timed-transition system. In the next section,
we present the implementation of the model.

6 Development of Patients’ Profiles: Model Implementation

We present an algorithm for inferring a model of a timed transition system based on the
K-Testable Language in Strict Sense (K-TLSS).

The method consists of:

1. Learning a Deterministic Finite Automata (DFA) of timed-transition systems by
using an extension of k-TSSI algorithm.

2. Transforming this DFA into a probabilistic DFA.
3. Converting this probabilistic DFA in a Markov chain model.

6.1 Preliminaries

The aim of grammatical inference is to learn models of languages from sample sen-
tences in these languages. A sentence can be any structured composition of primitive
elements or symbols, though the most common type of composition is concatenation.
So we infer grammar and the corresponding representation is an automaton.

A finite automaton is a 5-tuple A = (Q, Σ, δ, q0, F) with:

– Σ: a finite input alphabet of symbols,
– Q: a finite set of states with q0 as start state,
– F: a set of final states (F ⊆ Q),
– δ: a transition function of Q × Σ→ Q. So that qʹ = δ(q, σ) returns a state for current

state q and input symbol σ from Σ. Each transition is noted by 3-tuple (q, σ, qʹ).

If for all q ∈ Q and for all σ ∈ Σ, δ(q, σ) corresponds to a unique state of Q, then the
automaton is said to be a Deterministic Finite Automaton (DFA). Grammatical infer-
ence refers to the process of learning rules from a set of labelled examples. It belongs to
a class of inductive inference problems [4] in which the target domain is a formal
language (a set of strings generated from some alphabet Σ) and the hypothesis space is
a family of grammars. It is also often referred to as automata induction, grammar
induction, or automatic language acquisition. The inference process aims at finding a
minimum automaton (the canonical automaton) that is compatible with the examples.
In regular grammar inference, we have a finite alphabet Σ and a regular language
L ⊆ Σ* where:

– Σ*: the set of all finite length strings generated from Σ,
– L: a sub-set of Σ* corresponding to the words recognized from the automaton A.

Given a set of examples that are in the language (I+) and a (possibly empty) set of
examples not in the language (I-), the task is to infer a deterministic finite automaton
A that accepts the examples in I+ and rejects the examples in I-.
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6.2 Automata Induction

The k-TSSI algorithm [11] allows us to infer k-Testable Languages in the Strict Sense.
The inductive inference of the class of k-Testable Languages in the Strict Sense is
defined by a finite set of substrings of length k that are allowed to appear in the strings
of the language. Given a positive sample I+ ∈ L of strings of an unknown language, a
deterministic finite-state automaton that recognizes the smallest k-TLSS containing I+
is obtained. An automaton inferred by the k-TSSI algorithm is by its construction, non-
ambiguous. Moreover, our choice is justified by the fact that k-testable (k > 1) can take
into account a memory effect (i.e. N-gram). Indeed, we observed during data analysis
that the change in evolution of the autonomy/disability state depends on the previous
resident’s states and their diseases (especially for chronic and disabling diseases such as
osteoarticular degenerative diseases, anxio-depressive disorder, behavioural disor-
ders…). To illustrate our approach and for the sake of simplicity, we will present in this
article, the results obtained with 1-TSSL (the next state depends only on the previous
states) in order to explain how we turn the timed transitions into sequences (time-
series). We choose to divide up the length-of-stay in each cluster (for example, one
discrete step T = 30 days).

Consequently, the corresponding automaton is a 6-tuple (Q, Σ, δ, q0, F, d) where
d corresponds to the length-of-stay in the clusters. At each cluster, we assign a symbol
σ ∈ Σ. Each symbol is represented by a pair (σi, di), where di is the delay on the symbol
σi which corresponds to an application d: Σ → N with d(σi) = di.

In the following sections, we explain the implementation of the model through an
example (on only six residents: 7, 12, 17, 14, 8, 44 corresponding to an excerpt of the
collected data).

Setting Up the Alphabet. The assessment of elderly people’s autonomy/disability
allows us to classify residents into five levels of mental dependence situation (5 to 1 in
decreasing order of severity). Figure 5 presents the data collected from the database.

The resident assessment is made on different dates. For example, resident number 7
was evaluated at level 3 (mental disorder) on the 06/24/2002. For all the assessments
concerning resident number 7, we can deduce the sequence: 3321111. But this
sequence does not express the amount of time the person spends in each state (level of
mental disorder). In this model, each symbol of a word occurs at a certain point in time.

From such observations, we only obtain positive data I+, and now we have to
describe how we can obtain timed strings. The following paragraph present the basic
notions explaining how we take into account timed-transitions between clusters.

Preliminary Mapping of the Set of Strings. The objective is to obtain a stochastic
state transition graph taking into account the length-of-stay in each state. So we have to
associate for each occurrence of a symbol (event) in order to model time value. In
practice, we use the evaluation date.

The first step consists in the definition of the alphabet (the set Σ). The set Σ is
based on an alphabet of 6 symbols - {a, b, c, d, e, f} which correspond to:

– a length-of-stay in cluster number 1 during a given period T (example: 30 days)
meaning d(a) = T,

– b length-of-stay in cluster number 2 during a given period,
– etc. (until the symbol e for cluster number 5).
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The symbol f models the fact that a resident can leave the nursing home or cor-
responds to the last resident assessment during the last 30 days before the data
extraction. It is only used when we want to deduce the Markov model. Consequently,
in the following example, the symbol f does not exist in Fig. 6.

The second step concerns the identification of the words which corresponds to the
translation of the initial sequence in order to take into account length of time spent in each
cluster. Resident number 7 stayed in cluster number 3 from 06/24/2002 to 03/15/2004 (date
at which the resident was evaluated and changed to cluster number 2). Thus resident
number 7 stayed in cluster number 3 for about 22 periods of 30 days. The symbol modeling
cluster number 3 for 30 days is c, consequently the initial sequence “33” becomes
“cccccccccccccccccccccc”. The resident stayed in cluster number 2 for 9 periods…

And the corresponding word is:

ccccccccccccccccccccccbbbbbbbbbaaaaaaaaaaaaaaaaaa

So we obtain the set I+ ⊆ Σ*. I+ corresponds to the learning set from which the
automaton is inferred. The initial set of sequences (Fig. 5)

{3321111, 42, 212, 56656, 243333, 4}

becomes:

Iþ ¼ fccccccccccccccccccccccbbbbbbbbbaaaaaaaaaaaaaaaaaa; ddb; bbbbbaaaab;
ddddeeeeeeeeddee; bbbdddddddccccccccccccccccc; ddg

From the set I+ by using k-TSSI algorithm (to simplify, we present the case cor-
responding to k = 1), we obtain the automaton described in Fig. 6. The algorithm [12]

Fig. 5. Data and sequencing
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consists in building the sets Q, Σ, δ, q0, F by observation of the corresponding events
in the training strings. From these sets, a finite-state automaton that recognizes the
associated language is straightforwardly built.

y  xij // to build the substrings of length  k regarding the 
word xi 

If y  > k then 
y  y y  y  // the length of the substring must be equal to k. 

  // =>Shift of one symbol  
EndIf 
q  y //the state representing the substring 

Q  Q  {q} //to add this state 
     {( ij,q)} //to add the transition 
If j = xi  Then // at the end of the word 

F  F  {q} // the state is final 
EndIf 

  q // progression on the state in order to process the next 
symbol 

EndFor 
EndFor 
Return Ak 
End k-TSSI 

 

 
Let I+ be a positive sample of the regular language L. 
Input 
 k // substrings of length k 
 I+ = {x1 I+

} //collected sample 
 D={ ( ,d( )) with   } 
Output Ak = (Q, , ,q0,F,d) //the obtained automaton 
Begin 
   Q  q0 // initial state 
    ,   , F   
  q0   //  corresponds to an empty string  
For i=1 until I+  // for all words xi in I+ 
   q0 

For j=1 until xi //For all symbol xij of the word xi  I+  
     {xij} // to add a symbol xij to the alphabet 

Fig. 6. The automaton inferred by the algorithm k-TSSI with q0 = 0
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6.3 Computation of Probabilities

The automaton is inferred by the k-TSSI algorithm. We have to associate transition
probabilities with states. In order to compute these probabilities, we use the learning set
I+. From the words of set I+, when they are recognized by the automaton inferred by k-
TSSI, we count:

– The transition between two states for a given symbol (transition from the state q by
the symbol σ): cpδ(q,σ),

– each transition in a state q: cpq,
– if a state q is the final state (end of the words): cpq_final.

For the algorithm, we use the three epochs-counts in order to estimate the proba-
bilities. The algorithm computing the probabilities from a learning set is the following.

 cp ( q,xij) ++ //epoch-count in passing transition 
 q   
EndFor 

 cpq_final++ //epoch-count concerning the final states 
 cpq ++ 
EndFor 
For all q  Q 

pq_final= cpq_final / cpq //Computation of final-state probabilities 
EndFor 
For all ( q, )   
p ( q, ) = cp ( q, )/ cpq //Computation of transition probabilities 
EndFor 
Return PAk 

 

 
Input I+ = {x1 I+  } //collected sample 
  Ak = (Q, , ,q0,F,d) //the inferred  

automaton 
Output PAk = { p ( q,xij), pq_final} //the obtained probabilities 
Begin 
For i=1 until I+  //for all words xi in I+ 
 q  q0 
 For j=1 until xi  //for all symbol xij of the word xi  I+  

 ( q,xij) //the corresponding transition  
 cpq ++ //epoch-count in passing state  

From the automaton (Fig. 6) and the set I+, we count:

• cpq: The number of times the state q was used while generating the set of words of
I+.

• cpδ(q,σ): The number of times the transition δ(q,σ) was used while generating the set
of words of I+.

• cpq_final: The number of times that a state q is final (state gets at end of the words).
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The obtained results from the sample presented in Fig. 5 are:

 cpq = (6(0), 39(1), 19(2), 22(3) , 17(4), 10(5)), 
 cpq_final = (0(0), 1(1), 2(2), 1(3), 1(4), 1(5)), 
 cp (q, ) = (2 (0,b), 1 (0,c), 3 (0,d), 0 (0,e), 1 (1,b), 37 (1,c), 2 (2,a), 14 (2,b), 
1 (2,d), 20 (3,a), 1 (3,b), 1 (4,b), 1 (4,c), 12 (4,d), 2 (4,e), 1 (5,d),.8 (5,e)). 

And afterwards, we deduce the probabilities:

 pq_final  = cpq_final / cpq 

= (0/6(0), 1/39(1), 2/19(2), 1/22(3), 1/17(4), 1/10(5)), 
 p (q, ) = cp (q, ) / cpq 

= (2/6 (0,b), 1/6 (0,c), 3/6 (0,d), 1/39 (1,b), 37/39 (1,c), 2/19 (2,a), 
14/19 (2,b), 1/19 (2,d), 20/22 (3,a), 1/22 (3,b),1/17 (4,b), 
1/17 (4,c), 12/17 (4,d), 2/17 (4,e), 1/10 (5,d), 8/10 (5,e)). 

So we obtain the probabilistic deterministic automaton where the time series are
taken into account. The advantage of using 1-TSSL (k-TSSI algorithm with k = 1) lies
in the fact that one state corresponds to one symbol. We have added a new symbol
f and a final state q6 in order to facilitate the translation of the probabilistic automaton
into a Markov process. For all q states where pq_final > 0, we add a transition δ(q,
g) = q6, pδ(q,g) = pq_final and pq_final ← 0. We note that pq6_final = 1.

Fig. 7. The automaton inferred by the algorithm k-TSSL (Soleil nursing home: residents
suffering from dementia).
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From patients’ file living in Soleil nursing home and suffering from Alzheimer
disease, the probability matrix of transitions between states and the corresponding
automaton are respectively presented in Table 1 and in Fig. 7.

6.4 Markov Model

The final state q6 does not only represent the resident state when they left the system
but also the last resident assessment (resident present in the system at the date of
database extraction).

In order to obtain the Markov chain model, we have to compute the probabilities:

– Pei: Input probabilities (i.e. the initial resident assessments) in each clusteri
(i = 1..5),

– Psi: Output probabilities (i.e. the last resident assessments when residents leave the
system) in being clusteri (i = 1..5) after d(clusteri) = 30 days (corresponding to the
equidistant discrete time described in the automaton definition in the paragraph 5.2).

We have also to modify the probabilities of staying in clusteri (i = 1..5), regarding if
the patient is staying in the nursing home at the at the date of database extraction (these
evaluations are taken into account in the transition with the symbol f to q6 in Table 1).
We add the number of evaluations in the corresponding clusteri. It is the reason that the
probability to be in cluster1, (initially is 0.9738 in Table 1) becomes 0.9902 in the
Markov matrix.

When a resident leaves the system, he is immediately replaced by a new resident.
Consequently, two other probabilities are taken into account PE and PS. The Markov
matrix is presented in Table 2.

We verify if the system reaches a steady state. Out of definition, an eigenvector x is
associated to eigenvalue l if: A � x ¼ l � x:

(A corresponding to the probabilities matrix presented in Table 2)
If an eigenvector of x is associated to a unique eigenvalue 1, such a vector is called

a steady state vector. If we identify only one eigenvalue 1, then the distribution is said
to be irreducible and aperiodic.

Table 1. The corresponding probability matrix of transitions between states (Fig. 7).

To  
From  

Cluster 5 Cluster4 Cluster3 Cluster2 Cluster1 q6 

q0 0.5072 0.0580 0.3333 0.0290 0.0725  
Cluster5 0.9738 0.0005 0.0009 0 0 0.0248 
Cluster4 0.0629 0.9021 0.0210 0 0 0.0140 
Cluster3 0.0229 0.0134 0.9408 0.0019 0.0019 0.0191 
Cluster2 0 0.0299 0.0299 0.8955 0 0.0448 
Cluster1 0 0 0.0122 0.0488 0.9268 0.0122 
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The eigenvector associated with the eigenvalue 1 has been computed. We have one
eigenvalue 1 and the corresponding eigenvector x is the following:

0.00692 0.01263 0.01966 0.12108 0.03768 0.79510 0.00693.
The interpretation of this eigenvector is that the system (ratio of the resident profiles

without 0.69 % of resident turnover of input/output in the nursing home) evolves
towards a state where the percentages of population are:

• 1.28 % are in cluster1,
• 1.99 % are in cluster2,
• 12.28 % are in cluster3,
• 3.82 % are in cluster4,
• 80.63 % are in cluster5.

7 Experiments

The experiment deals with the evolution of a patient’s loss of cognitive autonomy over
time. Table 3 presents the steady state vectors from different samples which correspond
to a stable condition that does not change over time or in which change in one direction
is continually balanced by change in another. We see that the decline is more signif-
icant for elderly people with dementia than non-demented elderly people.

Now, we simulate the evolution over time by using transition matrix used to model
the Markov chain concerning each population. The results concerning the patients’
profile progress in 2 years are presented in Tables 4 and 5.

Table 2. The Markov matrix obtained from the collected data - Soleil Nursing home: patient
suffering from dementia.

Pei Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 PSS
PEE 0 0 0 0 0 0 1
Cluster1 0.0725 0.9390 0 0.0019 0 0 0
Cluster2 0.0290 0.0488 0.9403 0.0019 0 0 0
Cluster3 0.3333 0.0122 0.0299 0.9580 0.0210 0.0009 0
Cluster4 0.0580 0 0.0299 0.0134 0.9161 0.0005 0
Cluster5 0.5072 0 0 0.0229 0.0629 0.9902 0
Psi 0 0 0 0.0019 0 0.0084 0

Table 3. Steady state: population staying in medical nursing homes.

4 Nursing Homes Patient Without 
Dementia Disease

Patient Suffering from 
Dementia

Cluster5 3.57% 35.98% 0.32%
Cluster4 13.42% 27.00% 1.93%
Cluster3 27.80% 15.96% 5.21%
Cluster2 11.54% 5.65% 6.84%
Cluster1 43.66% 15.40% 85.69%
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If the patient does not suffer from dementia disease, if he is initially in cluster5, in 2
years, the probabilities that the patient will be staying in:

– Cluster5 is 50.9 %,
– Cluster4 is 16 %,
– Cluster3 is 5.8 %…
– and leaves the system with a probability near to 23 %.

If the patient suffers of dementia, the probabilities that the patient which will be
staying in:

– Cluster5 is 9.7 %,
– Cluster4 is 20.6 %,
– Cluster3 is 27.1 %,…
– and leaves the system with a probability near to 10 %.

8 Conclusion

A real case application of grammatical inference to identify the progression of a res-
ident’s autonomy-disability over time has been presented. From profiles identified by
using clustering approach [9], we propose preliminary results of an investigation where
regular grammars are used for modeling the evolution of ageing over time. The finite
automaton is inferred by using the k-TSSI algorithm and afterward modified in order to
obtain a probabilistic graph of transitions between states (clusters) with the length-
of-stay in each state. From this graph, we automatically deduce the corresponding
Markov chain model. For the sake of simplicity, we only present in the article, the case
where k = 1. It is evident that in this case, we can use a bi-gram. But we have also
studied the evolution with k = 2..n. So, the approach allows identifying a sub-sequence
of n items from sequences.

Table 4. Evolution of patients’ profiles in 2 years (patients without dementia)

No Dementia Cluster5 Cluster4 Cluster3 Cluster2 Cluster1 Exit
Cluster5 50.9% 16.0% 5.8% 1.6% 2.4% 23.3%
Cluster4 3.8% 56.0% 10.6% 3.4% 4.1% 22.2%
Cluster3 4.3% 4.0% 25.2% 9.1% 13.8% 43.6%
Cluster2 0.8% 0.9% 11.4% 29.4% 29.6% 27.9%
Cluster1 0.1% 0.6% 0.7% 1.3% 33.1% 64.2%

Table 5. Evolution of patients’ profiles in 2 years (patients suffering from dementia)

Dementia Cluster5 Cluster4 Cluster3 Cluster2 Cluster1 Exit
Cluster5 9.7% 20.6% 27.1% 12.7% 19.4% 10.5%
Cluster4 0.5% 20.2% 32.4% 14.7% 20.0% 12.2%
Cluster3 0.6% 1.5% 21.8% 17.7% 34.1% 24.3%
Cluster2 0.1% 0.1% 1.9% 11.9% 31.7% 54.3%
Cluster1 0.2% 0.1% 1.5% 15.5% 64.8% 17.9%
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In future work, we will extend and validate the different models to other class of
diseases. Approximately 1–1.5 % of the French population suffer from dementia and
the causes of dementia are neurological disorders such as Alzheimer’s disease (which
causes 50 %–70 % of all dementia), blood flow-related (vascular) disorders such as
multi-infarct diseases, inherited disorders such as Huntington’s disease, and infections
such as HIV [15]. In fact, we would like to simulate the patient’s progress in order to
forecast and to analyze the need for long, medium and short-term care. This allows us
to evaluate human, financial and physical resources in the future.
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