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Abstract. Considering the important role of interdiciplinarity in cur-
rent research, this article provides an overview of the interchange of
methods among three different areas: agent technologies, learning models
and formal languages. The ability to learn is one of the most funda-
mental attributes of the intelligent behaviour. Therefore, any progress
in the theory and computer modelling of learning processes is of great
significance to fields concerning with understanding intelligence, and this
includes, of course, artificial intelligence and intelligent agent technology.
Agent technologies can offer good solutions and alternative frameworks
to classic models in the area of computing languages and this can ben-
efit formal models of learning. Formal language theory –considered as
the stem of theoretical computer science– provides mathematical tools
for the description of linguistic phenomena. This theory is central to
grammatical inference, a subfield of machine learning. The interest of
the interrelation among these disciplines is based on the idea that the
collaboration among researchers in these areas can clearly improve their
respective fields. Our goal here is to present the state-of-the art of the
relationship among these three areas and to emphasize the importance
of this interdisciplinary research.

1 Introduction

Nowadays, although disciplines are highly specialized, research areas are get-
ting more and more interdisciplinary. Researchers realize that in order to solve
problems in their respective areas, it is necessary to cross traditional academic
boundaries. There is a great need to connect and integrate disciplines, methods
and technologies in order to improve our knowledge. Subjects must be attacked
from various angles and across disciplines. Interdisciplinarity should be an essen-
tial trait of research and, of course, the three areas considered in this paper are
not an exception. This is why in this article we focus not on single fields but on
the common space delimited by those three areas: agent technologies, learning
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models, and formal language theory (see Fig. 1). The main goal here is to show
how interdisciplinarity among people working in such disciplines can provide new
models that may improve the current scientific results in artificial intelligence
technologies.

Fig. 1. Intersection among machine learning, agent technology and formal language
theory.

Understanding human learning well enough to reproduce aspects of that
learning capability in a computer system is a worthy scientific goal that have
been considered by the research on machine learning, a field of artificial intelli-
gence that aims to develop techniques that allow computers to learn. As Nilsson
says, “a machine learns whenever it changes its structure, program or data (based
on its inputs or in response to external information) in such a manner that its
expected future performance improves” [35]. Machine learning techniques have
been successfully applied to different domains, such as bio-informatics (e.g., gene
finding), natural language processing (e.g., machine translation), speech and
image recognition, robotics, etc.

Agent technology is one of the most important areas of research and develop-
ment that have emerged in information technology in the 1990s. It can be defined
as a distributed artificial intelligence approach to implement autonomous enti-
ties driven by beliefs, goals, capabilities, plans and agency properties. Roughly
speaking, an agent is a computer system that is capable of flexible autonomous
action in dynamic, unpredictable, multi-agent environments. The metaphor of
autonomous problem solving entities cooperating and coordinating to achieve
their objectives is a natural way of conceptualizing many problems. In fact, the
multi-agent system literature spans a wide range of fields including robotics,
mathematics, linguistics, psychology, and sociology, as well as computer science.

Formal languages originated from mathematics and linguistics as a theory
that provides mathematical tools for the description of linguistic phenomena.
The main goal of formal language theory is the syntactic finite specification of
infinite languages. The theory was born in the middle of the 20th century as a
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tool for modelling and investigating the syntax of natural languages. However,
very soon it developed as a new research field, separated from linguistics, with
specific problems, techniques and results and, since then, it has had an important
role in the field of computer science, in fact it is considered as the stem of
theoretical computer science.

Taking into account the important advantages that collaboration among
researchers of these fields can have for the area of artificial intelligence, we focus
on the common space delimited by them and organize the paper as follows.

In Sect. 2 the relationship between learning and formal languages is taken
into account. The theory of formal language is central to the field of machine
learning, since there exists even an area called grammatical inference dealing
with the process of learning formal grammars and languages from a set of data.

In Sect. 3, the relationship between agents and formal languages is considered.
While in classic formal language theory, grammars and automata modelled com-
puting devices where the computation was accomplished by one central agent,
new models in formal languages take into account distributed computing. The
idea of several devices collaborating for achieving a common goal was formal-
ized in many subfields of formal language theory giving rise to the so-called
agent-based models of formal languages.

In Sect. 4, we consider the relationship between learning and agents. The
intersection of multi-agent systems and machine learning techniques have given
rise to two different research areas [21]: (1) learning in multi-agent systems
where machine learning solutions are applied to support agent technology and
(2) agent-based machine learning techniques where agent technology is used in
the field of machine learning with the interest on applying agent-based solutions
to learning.

Finally, Sect. 5 concludes the paper by suggesting potential and promising
directions of future research on the intersection among learning, agents and
formal languages.

2 Learning and Formal Languages

The intersection between machine learning and formal languages constitutes a
well-established research area known as grammatical inference. As A. Clark says,
“grammatical inference is the study of machine learning of formal languages” [8].
This new area was born in the 1960s and since then has attracted the attention
of researchers working on different fields, including machine learning, formal
languages, computational linguistics, information theory, pattern recognition,
and many others.

E.M. Gold [17] originated the study of grammatical inference and gave the
initial theoretical foundations of this field. Motivated by the problem of children’s
language acquisition, E.M. Gold aimed “to construct a precise model for the
intuitive notion able to speak a language in order to be able to investigate
theoretically how it can be achieved artificially” [17]. After Gold’s work, there
has been developed a considerable amount of research to establish a grammatical
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inference theory, to find efficient methods for inferring formal grammars, and to
apply these methods to practical domains, such as bioinformatics or natural
language processing.

As H. Fernau and C. de la Higuera pointed out [16], there is a number of good
reasons for formal language specialists to be interested in the field of grammatical
inference, among others:

– Grammatical inference deals with formalisms describing formal languages,
such us formal grammars, automata, etc.

– Grammatical inference uses formal language methodologies for constructing
learning algorithms and for reasoning about them.

– Grammatical inference tries to give mathematical descriptions of the classes
of languages that can be learned by a concrete learning algorithm.

Most of grammatical inference research has been focused on learning regular
and context-free languages. Although these are the basic classes of the Chomsky
hierarchy, it has been proved that even to learn these classes is already too
hard under certain learning paradigms. Next, we review the main formal models
proposed in this field and some of the main learnability results obtained.

2.1 Learning Paradigms

Broadly speaking, in a grammatical inference problem, we have a teacher that
provides data to the learner (or learning algorithm), and a learner that must
identify the underlying language from this data. Depending on the kind of data
given to the learner, how this data is provided to it and the criteria used to say
that a learner has successfully acquired the language, we can distinguish three
main learning paradigms:

– Identification in the limit, proposed by Gold [17].
– Query learning, proposed by Angluin [1].
– Probably Approximately Correct learning (PAC), proposed by Valiant [48].

Imagine an adult and a child that is learning his native language. The adult
uses his grammar, G, to construct sentences of his language, L. The child receives
sentences and, after some time, he is able to use grammar G to construct sen-
tences of L. From a mathematical point of view, the child is described by a learn-
ing algorithm, which takes a list of sentences as input and generates a language
as output. Based on these ideas, Gold introduced a new formal model known as
identification in the limit [17], with the ultimate goal of explaining the process
of children’s language acquisition. In this model, examples of the unknown lan-
guage are presented to the learner, and the learner has to produce a hypothesis
of this language. Its hypothesis is updated after receiving each example; if the
new examples received are not consistent with the current hypothesis, it changes
its hypothesis. However, at some point, always, the learner will found the correct
hypothesis and will not change from it. Therefore, according to Gold’s model,
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the learner identifies the target language in the limit if after a finite number of
examples, the learner makes a correct hypothesis and does not change it from
there on.

There are two traditional settings within Gold’s model: (a) learning from
text, where only examples of the target language are given to the learner (i.e.,
only positive data); (b) learning from informant, where examples that belong and
do not belong to the target language are provided to the learner (i.e., positive
and negative information).

It is desirable that learning can be achieved from only positive data, since
in the most part of applications the available data is positive. However, one
of Gold’s main results is that superfinite classes of languages (i.e., classes of
languages that contains all finite languages and at least one infinite language)
are not identifiable in the limit from positive data [17]. This implies that even
the class of regular languages is not identifiable in the limit from positive data.
The intuitive idea is that, if the target language is a finite language contained
in an infinite language, and the learner infers that the target language is the
infinite language, it will not have any evidence to refute its hypothesis and it
will never converge to the correct language. Due to these results, learning from
only positive data is considered a hard task. However, learnability results have
been obtained by studying subclasses of the languages to be learned, providing
additional information to the learner, etc. For more details, see [14].

In Gold’s model, the learner passively receives examples of the language.
Angluin proposed a new learning model known as query learning model (or
active learning), where the learner is allowed to interact with the teacher, by
making questions about the strings of the language [1]. There are different kinds
of queries, but the standard combination to be used are: (a) membership queries:
the learner asks if a concrete string belongs to the target language and the teacher
answers “yes” or “no”; (b) equivalence queries: the learner asks if its hypothesis
is correct and the teacher answers “yes” if it is correct or otherwise gives a coun-
terexample. According to Angluin’s model, the learner has successfully learnt the
target language if it returns the correct hypothesis after asking a finite number
of queries.

The learnability of DFA (Deterministic Finite Automata) has been success-
fully studied in the context of query learning. One of the most important results
in this framework was given by D. Angluin [1]. She proved that DFA can be
identified in polynomial time using membership and equivalence queries. Later,
there were developed more efficient versions of the same algorithm trying to
increase the parallelism level, to reduce the number of EQs, etc. (see [3,18,41]).
Moreover, some new type of queries have been proposed to learn DFA, such
as corrections queries, that has led to some interesting results [5]. Angluin and
Kharitonov [2] showed that the problem of identifying the class of context-free
languages from membership and equivalence queries is computationally as hard
as the cryptographic problems.

In order to obtain some positive learnability results for classes of languages
more powerful than regular, researchers have used different techniques: to
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investigate subclasses of context-free languages, to give structural information
to the learner, to reduce the problem to the learning of regular languages, etc.
For more details, see [14].

In Gold’s and Angluin’s model, exact learning is required. However, this has
always been considered a hard task to achieve. Based on these ideas, Valiant
introduced the PAC model: a distribution-independent model of learning from
random examples [48]. According to this model, there exist an unknown dis-
tribution over the examples, and the learner receives examples sampled under
this distribution. The learner is required to learn under any distribution, but
exact learning is not required (since one may be unlucky during the sampling
process). A successful learning algorithm is one that with high probability finds
a grammar whose error is small.

In the PAC learning model, the requirement that the learning algorithm must
learn under any distribution is too hard and has led to very few positive results.
Even for the case of DFA, most results are negative. For a review of some positive
results in this model, see [14].

3 Agents and Formal Languages

Multi-agent systems offer strong models for representing complex and dynamic
real-world environments. The formal apparatus of agent technology provides a
powerful and useful set of structures and processes for designing and building
complex applications. Multi-agent systems promote the interaction and coop-
eration of autonomous agents to deal with complex tasks. Taking into account
that computing languages is a complex task, formal language theory [42] has
taken advantage of the idea of formalizing architectures where a hard task is
distributed among several task-specific agents that collaborate in the solution of
the problem: in this case, the generation/recognition of language.

The first generation of formal grammars, based in rewriting, formalized clas-
sical computing models. The idea of several devices collaborating for achieving
a common goal has given rise to a new generation of formal languages that
form an agent-based subfield of the theory. Colonies, grammar systems and eco-
grammar systems are examples of this new generation of formal languages. All
these new types of formalisms have been proposed as grammatical models of
agent systems. The main advantage of those agent-based models is that they
increase the generative power of the system thanks to interaction, distribution
and cooperation.

A third generation of formal language theory has started with the introduc-
tion of biological ideas in the field. In the last decades, natural computing has
become the most extended framework where new models in formal language
theory have been developed. DNA computing [39] is an example of those mod-
els. During the last years, systems biology and cellular biology have achieved an
important development. These advances have provided new models for computer
science. One of them is cellular computing, a model that emphasizes the concept
of microbiological populations as well as the equilibrium of the devices and the
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relationships between the elements. P systems [38] can be considered an example
of this emerging paradigm. On the other hand, natural computing has evolved
from the first numeric models –like neural networks– to symbolic models –as
cellular computing– which are closer to multi-agent systems. Networks of evolu-
tionary processors (NEPs) [7] are inspired in both, bio cellular models and basic
structures for parallel and distributed symbolic processing. The main reason
for adopting such theoretical perspectives is the need to reach a more realistic
human-designed computing, both understanding the processes the nature carries
out and taking advantage of the natural mechanisms that science is discovering.

3.1 Colonies

Colonies as well-formalized language generating devices have been proposed in
[24], and developed during the nineties in several directions in many papers
[4,12,23,25,26,30,31,37,45,46].

Colonies can be thought of as grammatical models of multi-agent systems
motivated by Brooks’ subsumption architectures [6]. They describe language
classes in terms of behaviour of collections of very simple, purely reactive, situ-
ated agents with emergent behaviour.

A colony consists of a finite number of simple agents which generate finite
languages and operate on a shared string of symbols –the environment– without
any explicitly predefined strategy of cooperation. Each component has its own
reactive behaviour which consists in: (1) sensing some aspects of the context and
(2) performing elementary tasks on it in order to achieve some local changes.

Formally, a colony is defined as follows.

Definition 1. A colony C is a 3-tuple: C = (R, V, T ), where R = {Ri|1 ≤
i ≤ n} is a finite set of regular grammars Ri = (Ni, Ti, Pi, Si) producing finite
languages L(Ri) = Fi for each i. Ri will be referred to as a component of C;
V =

⋃n
i=1(Ti ∪ Ni) is the alphabet of the colony; T ⊆ V is the terminal alphabet

of the colony.

Components Ri ∈ R (1 ≤ i ≤ n) of a colony C are regular grammars generating
finite languages and operating on a shared string of symbols –the environment–
without any explicitly predefined strategy of cooperation of the components.

An environment of a colony is formed by strings of symbols from V . Strings
are modified only by sequential activities of components of a colony. Because of
the lack of any predefined strategy of cooperation between components, each com-
ponent may participate in the rewriting of the current string whenever its start
symbol is present in the current string. Conflicts are solved non-deterministically,
as it is usual in classical theory of formal grammars. The activity of components
in a colony is performed by string transformation on a common tape. Elementary
changes of strings are determined by a basic derivation step:

Definition 2. For x, y ∈ V ∗ we define x =⇒ y iff x = x1Six2, y = x1zx2,
where z ∈ Fi for some i, 1 ≤ i ≤ n.



Agent Systems, Learning Models and Formal Languages 53

The behaviour of a colony is defined as the set of all strings which can be
generated by the colony from a given starting string. A terminal symbol of
one component can occur as a non-terminal symbol of another one, so that
the possibility of cooperation of components of the colony allows to generate
substantially more than finite languages. The global behaviour of the whole
colony emerges from the strictly individual behaviours of components.

Definition 3. The language determined by a colony C starting with the word
w0 ∈ V ∗ is given by: L(C,w0) = {v|w0 =⇒∗ v, v ∈ T ∗}.

A colony is outlined in Fig. 2.

Fig. 2. A colony.

Colonies offer a formal framework for the emergence of complex behaviours by
using purely reactive simple components. The main advantage of colonies is their
generative power, the class of languages describable by colonies that make use of
strictly regular components is beyond the set describable in terms of individual
regular grammars.

3.2 Grammar Systems

Grammar system theory is a consolidated and active branch in the field of for-
mal languages that provides syntactic models for describing multi-agent systems
at the symbolic level, using tools from formal grammars and languages. The
attempt of the ‘parents’ of the theory was “to demonstrate a particular possi-
bility of studying complex systems in a purely syntactic level” [10] or, what is
the same, to propose a grammatical framework for multi-agent systems.

A grammar system is a set of grammars working together, according to a
specified protocol, to generate a language. Note that while in classical formal
language theory one grammar (or automaton) works individually to generate
(or recognize) one language, here we have several grammars working together in
order to produce one language.

The theory was launched in 1988 [9], when Cooperating Distributed Gram-
mar Systems (CDGS) were proposed as a syntactic model of the blackboard
architecture of problem solving. A CDGS consists of a finite set of generative
grammars with a common sentential form (axiom) that cooperate in the deriva-
tion of a common language. Component grammars generate the string in turns
(thus, sequentially), under some cooperation protocol. At each moment in time,
one grammar (and just one) is active, this is, rewrites the common string, while
the rest of grammars of the CDGS are inactive. Conditions under which a com-
ponent can start/stop its activity on common sentential form are specified in the
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cooperation protocol. Terminal strings generated in this way form the language
of the system.

An analogy can be drawn between CDGS and the blackboard model of prob-
lem solving described in [34] as consisting of three major components: (1) Knowl-
edge sources. The knowledge needed to solve the problem is partitioned into
knowledge sources, which are kept separate and independent; (2) Blackboard data
structure. Problem solving state data are kept in a global database, the black-
board. Knowledge sources produce changes in the blackboard that lead incre-
mentally to a solution to the problem. Communication and interaction among
knowledge sources take place solely through the blackboard; (3) Control. Knowl-
edge sources respond opportunistically to changes in the blackboard. There is a
set of control modules that monitor changes in the blackboard and decide what
actions to take next. Criteria are provided to determine when to terminate the
process. In CDGS, component grammars correspond to knowledge sources. The
common sentential form in CDGS plays the same role as the blackboard data
structure. And finally, the protocol of cooperation in CDGS encodes control on
the work of knowledge sources. The rewriting of a non-terminal symbol can be
interpreted as a developmental step on the information contained in the current
state of the blackboard. And, finally, a solution to the problem corresponds to
a terminal word.

One year later, in 1989, Parallel Communicating Grammar Systems (PCGS)
were introduced as a grammatical model of parallelism [40]. A PCGS consists of
several grammars with their respective sentential forms. In each time unit, each
component uses a rule, which rewrites the associated sentential form. Coopera-
tion among agents takes place thanks to the so-called query symbols that allow
communication among components.

If CDGS were considered a grammatical model of the blackboard system
in problem solving, PCGS can be thought of as a formal representation of the
classroom model. Let us take the blackboard model and make the following mod-
ifications: (1) Allow each knowledge source to have its own ‘notebook’ containing
the description of a particular subproblem of a given problem; (2) Allow each
knowledge source to operate only on its own ‘notebook’ and let exist one distin-
guished agent which operates on the ‘blackboard’ and has the description of the
problem; (3) and finally, allow agents to communicate by request the content of
their own ‘notebook’. These modifications on the blackboard model lead to the
‘classroom model’ of problem solving where the classroom leader (the master)
works on the blackboard while pupils have particular problems to solve in their
notebooks. Master and pupils can communicate and the global problem is solved
through such cooperation on the blackboard. An easy analogy can be established
between PCGS and the classroom model: pupils correspond to grammars which
make up the system, and their notebooks correspond to the sentential forms.
The set of rules of grammars encodes the knowledge of pupils. The distinguished
agent corresponds to the ‘master’. Rewriting a nonterminal symbol is interpreted
as a developmental step of the information contained in the notebooks. A partial
solution, obtained by a pupil corresponds to a terminal word generated in one
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grammar, while solution of the problem is associated to a word in the language
generated by the ‘master.’

The sequential CDGS and the parallel PCGS are the two main types of gram-
mar systems. However, since 1988, the theory has developed into several direc-
tions, motivated by several scientific areas. Besides distributed and decentralized
artificial intelligence, artificial life, molecular computing, robotics, natural lan-
guage processing, ecology, sociology, etc. have suggested some modifications of
the basic models, and have given rise to the appearance of different variants and
subfields of the theory. For more information on those new types see [10,13].

3.3 Eco-Grammar Systems

Eco-grammar systems have been introduced in [11] and provide a syntactical
framework for eco-systems, this is, for communities of evolving agents and their
interrelated environment. An eco-grammar system is defined as a multi-agent
system where different components, apart from interacting among themselves,
interact with a special component called ‘environment’. Within an eco-grammar
system we can distinguish two types of components environment and agents.
Both are represented at any moment by a string of symbols that identifies the
current state of the component. These strings change according to sets of evo-
lution rules. Interaction among agents and environment is carried out through
agents’ actions performed on the environmental state by the application of some
productions from the set of action rules of agents.

An eco-grammar system can be thought of as a generalization of CDGS and
PCGS. If we superpose a CDGS and a PCGS, we obtain a system consisting of
grammars that contain individual strings (like in PCGS) and a common string
(like in CDGS). If we call this common string environment and we mix the func-
tioning of CDGS and PCGS, letting each component to work on its own string
and on the environmental string, something similar to an ecosystem is obtained.
If we add one more grammar, expressing evolution rules of the environment, and
we make evolution of agents depend on the environmental state, the thing we
obtain is an eco-grammar system.

The concept of eco-grammar system is based on six postulates formulated
according to properties of artificial life [27]:

1. An ecosystem consists of an environment and a set of agents.
2. In an ecosystem there is a universal clock which marks time units, the same

for all the agents and for the environment, according to which agents and
environment evolution is considered.

3. Both environment and agents have characteristic evolution rules which are
in fact L systems [22,28], hence are applied in a parallel manner to all the
symbols describing agents and environment; such a (rewriting) step is done
in each time unit.

4. Evolution rules of environment are independent of agents and on the state of
the environment itself. Evolution rules of agents depend on the state of the
environment.
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5. Agents act on the environment according to action rules, which are pure
rewriting rules used sequentially. In each time unit, each agent uses one action
rule which is chosen from a set depending on the current state of the agent.

6. Action has priority over evolution of the environment. At a given time unit
exactly the symbols which are not affected by action are rewritten by evolu-
tion rules.

Main features of eco-grammar systems are captured in Fig. 3.

Fig. 3. An eco-grammar system.

Definition 4. An Eco-Grammar System (EG-system) is an n + 1-tuple: Σ =
(E,A1, . . . , An), where:

– E = (VE , PE), VE is a finite alphabet; PE is a finite set of 0 L rules over VE.
– Ai = (Vi, Pi, Ri, ϕi, ψi) for i, 1 ≤ i ≤ n, where: Vi is a finite alphabet; Pi is a

finite set of 0 L rules over Vi; Ri is a finite set of rewriting rules of the form
x → y with x ∈ V +

E , y ∈ V ∗
E ;

– ϕi : V ∗
E −→ 2Pi ;

– ψi : V +
i −→ 2Ri .

Definition 5. A state of an Eco-Grammar System Σ = (E,A1, . . . , An) is an
(n+1)-tuple: σ = (wE , w1, w2, . . . , wn), where wE ∈ V ∗

E and wi ∈ V ∗
i , 1 ≤ i ≤ n;

wE is the state of the environment, and wi is the state of i-th agent, 1 ≤ i ≤ n.

Definition 6. Let σ = (wE , w1, w2, . . . , wn) be a state of EG-system Σ =
(E,A1, . . . , An). Agent Ai is said to be active in state σ if the set of its cur-
rent action rules, this is ψi(wi), is nonempty. By an action of an active agent
Ai in state σ we mean an application of an action rule r, r ∈ ψi(wi), to the envi-
ronmental state wE. A simultaneous action of agents Ai1 , . . . , Air , {i1, . . . , ir} ∈
{1, . . . , n} being active in state σ, onto the environment is a parallel derivation
step wE =⇒ w′

E such that wE = x1u1x2u2 . . . urxr+1, and w′
E = x1v1x2v2 . . .

vrxr+1, where uj → vj ∈ ψij (wij ), 1 ≤ j ≤ r, and xi ∈ V ∗
E , 1 ≤ i ≤ r + 1.
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Definition 7. Let σ = (wE , w1, w2, . . . , wn) be a state of EG-system Σ =
(E,A1, . . . , An). We say that w′

i is a current evolution of agent Ai in state wi, if
w′

i can be derived from wi by productions of ϕi(wE), in 0L-manner, 1 ≤ i ≤ n.
For two states wE and w′

E of the environment we say that w′
E is an evolution

of wE if w′
E can be derived from wE by productions of PE in 0L-manner. A

change of a state of an Eco-Grammar System means an evolution of the state of
every agent and an evolution of the environment at each place except some dis-
tinguished ones where currently active agents perform simultaneously an action.

Definition 8. Let σ = (wE , w1, w2, . . . , wn) and σ′ = (w′
E , w′

1, w
′
2, . . . , w

′
n) be

two states of EG-system Σ = (E,A1, . . . , An). We say that σ changes into σ′,
written as: σ =⇒Σ σ′, iff the following conditions hold: (i) w′

E arises from wE

by an evolution affected by all the active agents in state σ: wE = z1x1z2x2 . . .
zmxmzm+1 and w′

E = z′
1y1z

′
2y2 . . . z′

mymz′
m+1 such that: z1x1z2x2 . . . xmzm+1

=⇒ z1y1z2y2 . . . ymzm+1 is a simultaneous action of all the agents Ai1 , . . . , Aim ,
{i1, . . . , im} ⊆ {1, . . . , n}, that are active in state σ and, z′

1z
′
2 . . . z′

m+1 is an
evolution of z1z2; . . . zm+1; (ii) w′

i is an evolution of Ai in state wi, 1 ≤ i ≤ n.

3.4 NEPs-Networks of Evolutionary Processors

Networks of Evolutionary Processors (NEPs) are new computing mechanisms
directly inspired in the behaviour of cell populations. NEPs, introduced in [7,29],
can be defined as systems consisting of several devices whose communication is
regulated by an underlying graph. Such devices, which are an abstract formal-
ization of cells, are described by a set of words (DNA) evolving by mutations,
according to some predefined rules. Their outcome travels to the other nodes if
they accept it after passing a filtering process. At the end of the process, only
the cells with correct strings will survive.

The cellular basis of NEPs relate them with P systems, especially with tissue
P systems [32,33]. In tissue P systems, cells form a multitude of different asso-
ciations performing various functions. NEPs could be linked to systems biology
as well, because the model aims to develop a holistic theory where the behav-
iour of each agent can influence the environment and the other agents. From the
computational point of view, NEPs are related to the Connection Machine [19]
and the Logic Flow paradigm [15]. Another important theoretical relationship of
NEPs is the theory of grammar and eco-grammar systems [10,11] which share
with NEPs the idea of several devices working together and exchanging results.

With all this background and theoretical connections, it is easy to understand
how NEPs can be described as agential bio-inspired context-sensitive systems.
Many disciplines are needed of these types of models that are able to support
a biological framework in a collaborative environment. The conjunction of these
features allows applying the system to a number of areas, beyond generation and
recognition in formal language theory.

Definition 9. A Network of Evolutionary Processors of size n is a construct:
Γ = (V,N1, N2, ..., Nn, G), where:



58 L. Becerra-Bonache and M.D. Jiménez-López

– V is an alphabet and for each 1 ≤ i ≤ n,
– Ni = (Mi, Ai, P Ii, POi) is the i-th evolutionary node processor of the network.

The components of every processor are (we denote by e the empty word):
Mi is a finite set of evolution rules of one of the following forms only (i)
a → b, a, b ∈ V (substitution rules), (ii) a → e, a ∈ V (deletion rules), (iii)
e → a, a ∈ V (insertion rules); Ai is a finite set of strings over V . The set
Ai is the set of initial strings in the i-th node; PIi and POi are subsets of
V ∗ representing the input and the output filter, respectively. These filters are
defined by the membership condition, namely a string w ∈ V ∗ can pass the
input filter (the output filter) if w ∈ PIi(w ∈ POi).

– G = ({N1, N2, . . . , Nn}, E) is an undirected graph called the underlying graph
of the network. The edges of G, that is the elements of E, are given in the
form of sets of two nodes. The complete graph with n vertices is denoted by
Kn.

Definition 10. Configuration of a NEP is an n-tuple C = (L1, L2, . . . , Ln),
with Li ⊆ V ∗ for all 1 ≤ i ≤ n. It represents the sets of strings which are
present in all the nodes at a given moment.

A given configuration of a NEP can change either by an evolutionary step
or by a communicating step. When changing by an evolutionary step, each com-
ponent Li of the configuration is changed in accordance with the evolutionary
rules associated with the node i. The change in the configuration by an evolu-
tionary step is written as C1 ⇒ C2. When changing by a communication step,
each node processor Ni sends all copies of the strings it has which are able to
pass its output filter to all the node processors connected to Ni and receives all
copies of the strings sent by any node processor connected with Ni, if they can
pass its input filter. The change in the configuration by a communication step is
written as C1 � C2.

A scheme of the basic architecture of NEPs is shown in Fig. 4.

Fig. 4. Basic architecture of a NEP.

4 Learning and Agents

The intersection of agent technology and machine learning constitutes a research
area whose importance is nowadays broadly acknowledged in artificial intelli-
gence: learning in multi-agent systems. This new area has emerged as a topic of
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research in the late 1980s and since then has attracted increasing attention in
both the multi-agent systems community and the machine learning area. How-
ever, until the late 80s, multi-agent learning had been widely ignored by both
researchers in distributed artificial intelligence and in machine learning. This sit-
uation was due to two facts: (1) work in distributed artificial intelligence mainly
concentrated on developing multi-agent systems whose organization and func-
tioning were fixed and, (2) research in machine learning mainly concentrated on
learning techniques and methods for single-agent settings [51].

Nowadays, it is commonly agreed by distributed artificial intelligence and
machine learning communities that multi-agent learning –this is, learning that
requires the interaction among several intelligent agents [20]-deserves particular
attention. Two important reasons for the interest in studying learning in multi-
agent systems have been stressed [49]:

1. The need for learning techniques and methods in the area of multi-agent
systems in order to equip multi-agent systems with learning abilities to allow
agents to automatically improve their behaviour.

2. The need in the area of machine learning of considering not only single-agent
learning but also multi-agent learning in order to improve the understanding
of the learning processes in natural multi-agent systems (like human groups
or societies).

The area of multi-agent learning shows how developments in the fields of
machine learning and agent technologies have become complementary. In this
intersection, researchers from both fields have opportunities to profit from solu-
tions proposed by each other. In fact we can distinguish two directions in this
intersection [21]:

1. Learning in Multi-Agent Systems (MAS), this is, using machine learning tech-
niques in agent technology.

2. Agent-Based Machine Learning, this is, using agent technology in the field of
machine learning.

4.1 Learning in Multi-agent Systems

Learning is increasingly being seen as a key ability of agents and, therefore, sev-
eral agent-based frameworks that utilize machine learning for intelligent decision
support have been reported. Theoretical developments in the field of learning
agents focus mostly on methodologies and requirements for constructing multi-
agent systems with learning capabilities.

Many terms can be found in the literature that refer to learning in multi-
agent systems [43]: mutual learning, cooperative learning, collaborative learning,
co-learning, team learning, social learning, shared learning, pluralistic learning,
and organizational learning are just some examples.

In the area of multi-agent learning –the application of machine learning to
problems involving multiple agents [36]–, two principal forms of learning can be
distinguished [43,49]:
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1. Centralized or isolated learning where the learning process is executed by one
single agent and does not require any interaction with other agents.

2. Decentralized, distributed, collective or interactive learning where several
agents are engaged in the same learning process and the learning is done
by the agents as a group.

There are three main methods/approaches to learning in multi-agent systems
which are distinguished by taking into account the kind of feedback provided to
the learner [36,49]:

1. Supervised learning, where the correct output is provided. This means that
the environment or an agent providing feedback acts as a “teacher”.

2. Reinforcement learning, where an assessment of the learner’s output is pro-
vided. This means that the environment or an agent providing feedback acts
as a “critic”.

3. Unsupervised learning, where no explicit feedback is provided at all. This means
that the environment or an agent providing feedback acts as an “observer”.

A third classification can be obtained by taking into account the learning
strategies used by agents [43]. The main difference between the types of learning
included in this classification is the amount of learning effort required:

1. Rote learning consists of the direct implantation of knowledge and skills.
2. Learning form instruction and by advice taking. This type of learning trans-

forms new information (instruction or advice) into an internal representation
and integrates it with prior knowledge.

3. Learning from examples and practice consists of the extraction and refine-
ment of knowledge from positive and negative examples or from practical
experience.

4. Learning by analogy is as solution-preserving transformation of knowledge
from a solved problem to a similar unsolved problem.

5. Learning by discovery consists of gathering new knowledge by observations,
experiments, testing hypotheses or theories on the basis of the observational
and experimental results.

Space limitation prevents us of going deeper in the above models. For more
information the reader can see [36,43,44,47,49–51]. Our goal in this section has
been just to stress the fact that several dimensions of multi-agent interaction
can be subject to learning –when to interact, with whom to interact, how to
interact, and what exactly the content of the interaction should be [20]–, and
machine learning can be seen as a primer supplier of learning capabilities for
agent and multi-agent systems.

4.2 Agent-Based Machine Learning

In the intersection between multi-agent systems and machine learning we find
the so-called agent-based machine learning techniques where agent technology
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is applied to solve machine learning problems. According to Jedrzejowicz [21],
there are several ways in which the research of machine learning can profit from
the application of agent technology:

– First of all, there are machine learning techniques where parallelization can
speed-up learning, therefore, in these cases using a set of agents may increase
the efficiency of learning.

– Secondly, there are machine learning techniques that rely on the collective
computational intelligence paradigm, where a synergetic effect is expected
from combining efforts of various agents.

– Thirdly, in the so-called distributed machine learning problems, a set of agents
working in distributed sites can be used to produce some local level solutions
independently and in parallel.

Taking into account those advantages, several models have been proposed
that apply agent-based solutions to machine learning problems:

– Models of collective or collaborative learning.
– Learning classifier systems that use agents representing set of rules as a solu-

tion to machine learning problem.
– Ensemble techniques.
– Distributed learning models.

According to [21], agent technology has brought to machine learning several
capabilities including parallel computation, scalability and interoperability. In
general, agent based solutions can be used to develop more flexible machine
learning tools. For the state of the art of agent-based machine learning see [21].

5 Conclusions

According to [49], the interest in multi-agent systems is founded on the insight
that many real-world problems are best modelled using a set of agents instead of
a single agent. Multi-agent modelling makes possible to cope with natural con-
straints like the limitation of the processing power of a single agent and to profit
from inherent properties of distributed systems like robustness, fault tolerance,
parallelism and scalability. These properties have facilitated the application of
multi-agent technology to many types of systems that help humans to perform
several tasks.

Machine learning is one of the core fields of artificial intelligence, since arti-
ficial intelligence has been defined as “the science and engineering of making
intelligent machines” and the ability to learn is one of the most fundamental
attributes of intelligent behaviour. It is usually agreed that a system capable of
learning deserves to be called intelligent; and conversely, a system being consid-
ered as intelligent is, among other things, usually expected to be able to learn.

Formalization has a long tradition in science, besides traditional fields such as
physics or chemistry, other scientific areas such as medicine, cognitive and social
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sciences and linguistics have shown a tendency towards formalization. The use
of formal methods has led to numerous results that would have been difficult
to be obtained without such formalization. Formal language theory provides
good tools to formalize different problems. This flexibility and abstraction has
been proven by the application of formal languages to the fields of linguistics,
economic modelling, developmental biology, cryptography, sociology, etc.

From what we have said, it follows that multi-agent systems, machine learn-
ing and formal language theory provide flexible and useful tools that can be used
in different research areas due to their versatility. All three areas have revealed
to be very useful for dealing with complex systems. MAS provide principles for
the construction of complex systems and mechanisms for coordination. Formal
language theory offers mathematical tools to formalize complex systems. And
machine learning techniques help to deal with the complexity of complex sys-
tems by endowing agents with the ability of improving their behaviour. We have
seen in this paper that some intersection between those areas has been already
performed: agents with learning, agents with formal languages and formal lan-
guages with learning.

Future research should help to further integrate the three fields considered
in this paper in order to obtain what in [20] is seen as a must: a formal theory
of multi-agent learning.

Another important and challenging working direction is the application of
this formal theory of multi-agent learning to a real world domain as is the area
of processing natural language. The interaction between researchers in those
three topics can provide good techniques and methods for improving our knowl-
edge about how languages are processed. The advances in the area of natural
language processing may have important consequences in the area of artificial
intelligence since they can help the design of technologies in which computers will
be integrated into the everyday environment, rendering accessible a multitude
of services and applications through easy-to-use human interfaces.
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21. Jȩdrzejowicz, P.: Machine learning and agents. In: O’Shea, J., Nguyen, N.T.,

Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS, vol. 6682,
pp. 2–15. Springer, Heidelberg (2011)

22. Kari, L., Rozenberg, G., Salomaa, A.: L Systems. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 1, pp. 253–328. Springer, Berlin (1997)

23. Kelemen, J.: Colonies - a theory of reactive agents. In: Kelemenová, A. (ed.) Pro-
ceedings on the MFCS’98 Satellite Workshop on Grammar Systems, pp. 7–38.
Silesian University, Opava (1998)
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