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Abstract. Some major financial markets are currently reporting that
50% or more of all transactions are now executed by automated trad-
ing systems (ATS). To understand the impact of ATS proliferation on
the global financial markets, academic studies often use standard ref-
erence strategies, such as “AA” and “ZIP”, to model the behaviour of
real trading systems. Disturbingly, we show that the reference algorithms
presented in the literature are ambiguous, thus reducing the validity of
strict comparative studies. As a remedy, we suggest disambiguated stan-
dard implementations of AA and ZIP. Using Exchange Portal (ExPo),
an open-source financial exchange simulation platform designed for real-
time behavioural economic experiments involving human traders and/or
trader-agents, we study the effects of disambiguating AA and ZIP, before
introducing a novel method of assignment-adaptation (ASAD). Exper-
iments show that introducing ASAD agents into a market with shocks
can produce counter-intuitive market dynamics.

Keywords: Software agents · Auctions · Agent-based computational
economics · ACE · Agent-based modelling · ABM · Automated trad-
ing · Computational finance · ExPo · Exchange portal · Assignment
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1 Introduction

In 2001, a team of researchers at IBM [9] reported on a series of experiments
to test the efficiency of two adaptive trading-agent algorithms, MGD [16] and
ZIP [8], when competing directly against human traders. Previous studies using
homogeneous trader populations of all-humans or all-agents had indicated that, in
both cases, trading interactions within the populations rapidly and robustly con-
verged toward theoretically optimal, and stable, dynamic equilibria. IBM’s results
demonstrated for the first time that, in heterogeneous populations mixing human
traders with trader-agents, both MGD and ZIP consistently out-performed the
human traders, achieving greater efficiency by making more profitable trans-
actions. The IBM authors concluded with a prescient statement, predicting:
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“in many real marketplaces, agents of sufficient quality will be developed such
that most agents beat most humans”. Hindsight shows that they were correct:
in many of the world’s major financial markets, transactions that used to take
place between human traders are now being fulfilled electronically, at super-
human speeds, by automated trading (AT) and high frequency trading (HFT)
systems. AT and HFT systems are typically highly autonomous and dynami-
cally adapt to changes in the market’s prevailing conditions: for any reasonable
definition of software agent, it is clear that AT/HFT systems can be considered
as software agents, even though practitioners in the finance industry typically
do not make much use of the phrase.

However, as the number of AT and HFT systems has increased, and as the bil-
lions of dollars worth of daily transaction volumes that they control has steadily
risen, a worrying gap has emerged between theory and practice. Commercial
deployments of AT/HFT continue to proliferate (some major financial markets
are currently reporting that 50 % or more of transactions are now executed by
automated agents), yet theoretical understanding of the impact of trading agent
technologies on the system-level dynamics of financial markets is dangerously
deficient. To address this problem, in 2010 the UK Government’s Office for Sci-
ence (UKGoS) launched a two year “Foresight” project entitled “The Future of
Computer Trading in Financial Markets”.1

One report [12] commissioned by that project and published by UKGoS
attempted a replication of IBM’s study, but with two extensions: firstly, trading
agents used the Adaptive Aggressive (AA) strategy [26], which had previously
been shown to outperform both MGD and ZIP [11]; secondly, to increase the
experimental “realism”, order assignments to trade were continuously replen-
ished, thus producing a continuous “drip-feed” market that more closely approx-
imates the real world, rather than a discrete, periodic market as had been used in
almost all prior experimental studies. Results showed that, under these exper-
imental conditions, agents were less efficient than human traders, with slower
markets hindering agent performance but enhancing human performance [12].

In this paper, we perform two sets of experiments. Firstly, we replicate the
continuous replenishment experiments of [12] using ExPo: The Exchange Por-
tal, an open-source platform designed to facilitate financial trading experiments
between humans, agents, or both [13]. However, unlike [12], we study agent-only
markets. Perhaps surprisingly, we believe that this is the first time agent-only
markets have been studied using continuous replenishment of order assignments.
For our trading agents, we use two well-known “reference” algorithms from the
trading-agent literature, AA [26] and ZIP [8].

In our second set of experiments, we introduce “market shocks” to the system
and explore a novel extension to the reference algorithms (assignment-adaptive,
or ASAD, agents), designed to enable agents to take advantage of such shocks.
We demonstrate that if all agents in the market are ASAD, then the market is
more efficient in the presence of market shocks than if all agents are non-ASAD.
1 The final report from that investigation was published in Oct. 2012, and is available

at: http://bit.ly/UvGE4Q.

http://bit.ly/UvGE4Q
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However, somewhat counter-intuitively, when the market is a heterogeneous mix-
ture of ASAD and non-ASAD, non-ASAD agents outperform ASAD agents by
adapting to the new price signals generated by ASAD agents.

This paper is organised as follows.2 In Sect. 2 we review the literature on
financial trading agent experiments and the agent algorithms, AA and ZIP. In
Sect. 3 we introduce ExPo, our experimental platform, and describe our experi-
mental design. In Sect. 4 we present the results from our two sets of experiments.
Finally, conclusions are drawn in Sect. 5.

2 Background

2.1 The Continuous Double Auction

An auction is a mechanism whereby sellers and buyers come together and agree
on a transaction price. Many auction mechanisms exist, each governed by a
different set of rules. In this paper, we focus on the Continuous Double Auction
(CDA), the most widely used auction mechanism and the one used to control
all the world’s major financial exchanges. The CDA enables buyers and sellers
to freely and independently exchange quotes at any time. Transactions occur
when a seller accepts a buyer’s “bid”, or when a buyer accepts a seller’s “ask”.
Although it is possible for any seller to accept any buyer’s bid, and vice-versa,
it is in both of their interests to get the best deal possible at any point in time.
Thus, transactions execute with a counter party that offers the most competitive
quote.

Vernon Smith explored the dynamics of CDA markets in a series of Nobel
Prize winning experiments using small groups of human participants [20]. Split-
ting participants evenly into a group of buyers and a group of sellers, Smith
handed out a single card (an assignment) to each buyer and seller with a single
limit price written on each, known only to that individual. The limit price on the
card for buyers (sellers) represented the maximum (minimum) price they were
willing to pay (accept) for a fictitious commodity. Participants were given strict
instructions to not bid (ask) a price higher (lower) than that shown on their
card, and were encouraged to bid lower (ask higher) than this price, regarding
any difference between the price on the card and the price achieved in the market
as profit.

Experiments were split into a number of “trading days”, each typically lasting
a few minutes. At any point during the trading day, a buyer or seller could
raise their hand and announce a quote. When a seller and a buyer agreed on a
quote, a transaction was made. At the end of each trading day, all stock (sellers
assignment cards) and money (buyer assignment cards) was recalled, and then
reallocated anew at the start of the next trading day. By controlling the limit
prices allocated to participants, Smith was able to control the market’s supply
and demand schedules. Smith found that, typically after a couple of trading days,
human traders achieved very close to 100 % allocative efficiency; a measure of
2 For an earlier version of the work presented here, we refer the reader to [23].
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the percentage of profit in relation to the maximum theoretical profit available
(see Sect. 2.2). This was a significant result: few people had believed that a very
small number of inexperienced, self-interested participants could effectively self-
equilibrate.

2.2 Measuring Market Performance

An “ideal” market can be perfectly described by the aggregate quantity supplied
by sellers and the aggregate quantity demanded by buyers at every price-point
(i.e., the market’s supply and demand schedules, Fig. 1). As prices increase, in
general there is a tendency for supply to increase, with increased potential rev-
enues from sales encouraging more sellers to enter the market; while, at the same
time, there is a tendency for demand to decrease as buyers look to spend their
money elsewhere. At some price-point, the quantity demanded will equal the
quantity supplied. This is the theoretical market equilibrium. An idealised the-
oretical market (and many real ones) has a market equilibrium price and quan-
tity (P0, Q0) determined by the intersection between the supply and demand
schedules. The dynamics of competition in the market will tend to drive trans-
actions toward this equilibrium point. For all prices above P0, supply will exceed
demand, forcing suppliers to reduce their prices to make a trade; whereas for
all prices below P0, demand exceeds supply, forcing buyers to increase their
price to make a trade. Any quantity demanded or supplied below Q0 is called

Fig. 1. Supply and Demand curves (here illustrated as straight lines) show the quan-
tities supplied by sellers and demanded by buyers at every price-point. In general, as
price increases, the quantity supplied increases and the quantity demanded falls. The
point at which the two curves intersect is the theoretical equilibrium point; where Q0

is the equilibrium quantity and P0 is the equilibrium price.
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“intra-marginal”; all quantity demanded or supplied in excess of Q0, is called
“extra-marginal”. In an ideal market, all intra-marginal units and no extra-
marginal units are expected to trade.

In the real world, markets are not ideal. They will always trade away from
equilibrium at least some of the time. We can use metrics to calculate the “per-
formance” of a market by how far from ideal equilibrium it trades, allowing us to
compare between markets. In this report, we make use of the following metrics:

Smith’s Alpha. Following Vernon Smith [20], we measure the equilibration
(equilibrium-finding) behaviour of markets using the coefficient of convergence,
α, defined as the root mean square difference between each of n transaction
prices, pi (for i = 1 . . . n) over some period, and the P0 value for that period,
expressed as a percentage of the equilibrium price:

α =
100
P0

√
√
√
√

1
n

n∑

i=1

(pi − P0)2. (1)

In essence, α captures the standard deviation of trade prices about the theoretical
equilibrium. A low value of α is desirable, indicating trading close to P0.

Allocative Efficiency. For each trader, i, the maximum theoretical profit avail-
able, π∗

i , is the difference between the price they are prepared to pay (their “limit
price”) and the theoretical market equilibrium price, P0. Efficiency, E, is used to
calculate the performance of a group of n traders as the mean ratio of realised
profit, πi, to theoretical profit, π∗

i :

E =
1
n

n∑

i=1

πi

π∗
i

. (2)

As profit values cannot go below zero (traders in these experiments are not allowed
to enter into loss-making deals), a value of 1.0 indicates that the group has earned
the maximum theoretical profit available, π∗

i , on all trades. A value below 1.0 indi-
cates that some opportunities have been missed. Finally, a value above 1.0 means
that additional profit has been made by taking advantage of a trading counter-
party’s willingness to trade away from P0. So, for example, a group of sellers might
record an allocative efficiency of 1.2 if their counterparties (a group of buyers) con-
sistently enter into transactions at prices greater than P0; in such a situation, the
buyers’ allocative efficiency would not be more than 0.8.

Profit Dispersion. Profit dispersion is a measure of the extent to which the
profit/utility generated by a group of traders in the market differs from the profit
that would be expected of them if all transactions took place at the equilibrium
price, P0. For a group of n traders, profit dispersion is calculated as the root
mean square difference between the profits achieved, πi, by each trader, i, and
the maximum theoretical profit available, π∗

i :
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πdisp =

√
√
√
√

1
n

n∑

i=1

(πi − π∗
i )2. (3)

Low values of πdisp indicate that traders are extracting actual profits close
to profits available when all trades take place at the equilibrium price P0. In
contrast, higher values of πdisp indicate that traders’ profits differ from those
expected at equilibrium. Since zero-sum effects between buyers and sellers do
not mask profit dispersion, this statistic is attractive [17].

2.3 Algorithmic Traders

Zero-Intelligence Plus (ZIP) agents were developed by Dave Cliff [8] to
overcome the provable shortcomings of Gode & Sunder’s ZI-C agents [17]. ZIP
agents are profit-driven traders that adapt using a simple learning mechanism:
adjust profit margins based on the price of other bids and offers in the market,
and decide whether to make a transaction or not. When a decision to raise or
lower a ZIP trader’s profit margin, μi(t), is taken, ZIP modifies the value using
market data and an adaptation rule based on the Widrow-Hoff “delta rule” [28]:

Δi(t) = βi(τi(t) − pi(t)), (4)

where βi is the learning rate, pi is the quote price and τi is the target price (based
on the price of the last quote in the market). At time t, an update to the profit
margin, μi, takes the form:

μi(t + 1) =
pi(t) + Γi(t + 1)

li − 1
, (5)

and
Γi(t + 1) = γi(t) + (1 − γi)Δi(t), (6)

where Γi(t + 1) is the amount of change on the transition from t to t + 1, and γi
is the momentum coefficient. Given the limit price, li, of the current assignment,
ZIP then updates its profit margin, μi(t), based on these trading rules, where
the final quote price, pi, is given as:

pi = li(1 + μ(t)). (7)

The ZIP strategy has become a popular benchmark for CDA experiments.
In their IBM study, [9] concluded that ZIP was a dominant strategy, beating
humans in experimental trials and matching the performance of their own mod-
ified GD [16] algorithmic trader. More recently, ZIP has again been shown to
outperform humans [10,11]. However, it is no longer considered the dominant
agent strategy (having been shown to be beaten by AA; see Sect. 2.3). ZIP has
also been tested against humans in a continuous “drip-feed” market, where ZIP
was shown to be less efficient than humans (a result that surprised the authors)
[7,12]. However, we believe that De Luca’s implementation of ZIP [18] that was
used in those experiments may have played some part in this result.
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The original implementation of ZIP [8] was designed to handle only one limit
price, had no explicit notion of time and no persistent orders. So, when the
IBM team used ZIP to conduct human vs. agent experiments, they adapted ZIP
for their platform [9]. In order to handle persistent orders, a “sleep time” was
introduced into ZIP, such that if no trade took place within a given time period,
then the ZIP agent would automatically initiate a competitive price movement,
i.e., a price movement towards the best value on the other side of the order book
[ibid]. Perhaps more importantly, ZIP was further modified to have a vector of
internal price variables, allowing profit to be made at different values for different
assignments. These modifications were similar to an alternative implementation
that had been independently proposed in a previous study [19]. Other versions
of ZIP also appear in the literature. In [26], ZIP (and presumably, also AA)
algorithms were forced to update only the most profitable bid (for buyers) or ask
(for sellers) at any one time. This approach was replicated in De Luca’s open-
source implementation of ZIP and AA [18]. Finally, ZIP has also been adapted to
enable arbitrage, by allowing an individual agent to both buy and sell. Initially
introduced by [25], and recently adapted by [2], ZIP “arbitrageurs” contain two
profit margins (buy and sell) and the price adjustment mechanism adjusts two
prices each time the agent receives new market information. For this reason, ZIP
arbitrageurs can be considered equivalent to two standard ZIP agents (one buyer
and one seller) working as a team.

Here, we test to see whether a ZIP implementation with multiple profit mar-
gins, ZIPM , is more efficient than a ZIP trader with a single profit margin, ZIPS .
As far as we are aware, this comparison has not been directly tested before. We
use ZIPS to describe the implementation in [26], where only the most profitable
order is updated on every wakeup; and ZIPM to denote an implementation of
ZIP similar to that used in [9,19,24], such that ZIPM is capable of updating all
profit margins for all orders simultaneously. Every unique limit price received is
given a new μ and γ (the values of μ and γ are decided at random when the
agent is started) and all ZIP parameters are the same as those used in [8].

Adaptive-Aggressive (AA) agents were developed by Vytelingum [26] to
explicitly model “aggressiveness”—trading the opportunity of extra profit for
the certainty of transacting. Aggressive agents enter competitive bids (or asks)
for a quick trade, while passive agents forgo the chance of a quick trade in order
to hold out for greater profit. To control the level of aggressiveness, AA uses the
Widrow-Hoff delta rule [28] that is also used in ZIP (Eq. 4). However, whereas
ZIP uses learning to update profit margin, AA updates an aggression parameter
based on previous market information. At time, t, AA estimates the competitive
equilibrium price, p∗, based on a moving window of historic market transaction
prices; p∗ is then used in AA’s long-term adaptation component, which updates
θ, a property of the aggressiveness model. In this long-term adaptation compo-
nent, an internal estimate of Smith’s α (Eq. 1) is calculated, enabling the agent to
detect and react to price volatility. AA was developed to perform well in dynamic
markets. Short-term learning is used to react to the current state of the market,
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while long-term learning is used to react to market trends. AA has been shown
to dominate other agent strategies in the literature [11,26], however, unlike ZIP,
which has been independently re-implemented by many different researchers, we
believe the only replication of AA in the literature prior to this study is De
Luca’s OpEx implementation [18].

In Vytelingum’s original AA implementation [26], it is unclear how an agent
should quote when the market first opens and is empty. In De Luca’s version
[18], AA uses the maximum bid or ask price allowed in the market, Pmax = 400,
to determine an agent’s initial quote price, pt=0, such that pt=0 is a random
variable from a uniform distribution with range [0.15Pmax, 0.85Pmax]. In the
absence of any “real” market data, the value pt=0 acts as a proxy for the ini-
tial estimate of market equilibrium. But, since pt=0 is artificially constrained
by the arbitrary market value Pmax, we believe that this method of generating
pt=0 is not domain independent and may present AA with an unfair “equilib-
rium finding” advantage when compared with other agent strategies, such as
ZIP, which do not have access to this parameter. Moreover, for their first quote
price, De Luca’s OpEx agents [18] do not make use of the limit prices of their
internal assignments (other than to maximally bound the quote at the bid limit
and minimally bound at the ask limit). We believe this to be unrealistic. At the
beginning of the market the only information agents have available for price dis-
covery are their own personal assignments. Therefore, it is intuitive that agents
should try to benefit from any information contained therein. For this reason, we
introduce a modification to AA whereby agents set their own internal estimation
of Pmax such that Pmax equals twice the maximum assignment limit price an
agent holds.3 Readers should note that agents could only submit a quote once
they had received an assignment to trade.

In March 2012, an unexpected “max spread rule” in De Luca’s AA code of
OpEx version 1 was exposed [5]. This rule states that an agent should automat-
ically execute against the best quote on the other side of the book if the relative
spread (the difference between best quotes on either side of the book) is within
a threshold, maxSpread (and within limit price range).4 Although this rule is
not described in the definition of AA, we believe that it is a vestigial morph of a
spread rule appearing in Risk-Based (RB) agents [27], a previous trader agent that
Vytelingumeventually developed intoAA [26]. Themax spread rule encouragesDe
Luca’s AA agents to “jump the spread” for a quick transaction. However, in OpEx
version 1, maxSpread was hard-coded to a value of 15%. Following [5], we believe
that this value is unrealistically large and therefore casts a question of doubt on
the validity of previous experimental results gathered using these agents.5 In this
3 We do not suggest that two is the optimum multiplier for this equation; rather we

aim to investigate the effect of introducing this modification and select two as a
simple heuristic estimate.

4 For a lengthy discussion on the consequences of the max spread rule, see [5].
5 Since this issue was raised by [5], the spread jumping rule has subsequently been clas-

sified as a bug and removed from De Luca’s OpEx AA agents (http://sourceforge.net/
p/open-exchange/tickets/1/).

http://sourceforge.net/p/open-exchange/tickets/1/
http://sourceforge.net/p/open-exchange/tickets/1/
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paper, we explore the effect of the spread-jumping rule. Unless otherwise stated, we
remove the maxSpread condition (i.e., set maxSpread = 0% for our AA agents).
All other AA parameters are set to those suggested by [26]. Following the litera-
ture, we also use the rule of updating only the most profitable bid (for buyers) or
ask (for sellers) at any one time (similar to ZIPS).

3 Methodology

3.1 ExPo: Exchange Portal Platform

Exchange Portal [13] is a real-time online financial trading exchange platform
designed to run controlled scientific trading experiments between human traders
and automated trader robots (see Fig. 2). ExPo was developed at the University
of Bristol as both a teaching and research platform and has been open-sourced
as a gift to the wider research community. ExPo can be run across a network
(e.g., the internet), with human and/or automated trader agents messaging the
exchange via HTTP. Alternatively, ExPo can be run on a single machine, with all
clients running locally. For all experiments detailed in this paper, we run ExPo
and the agent traders on the same physical machine. Prior to running exper-
iments, ExPo was stress-tested through a rigorous series of agent-only experi-
ments (see [22]).

Figures 3 and 4 show a typical set up for an auction using the admin GUI
(Fig. 3) and an example of ExPo in operation (Fig. 4). The assignment sequences

Fig. 2. ExPo architecture. The ExPo exchange is a Ruby on Rails web server applica-
tion with RESTful architecture, using a MySQL database for storage. Clients (auto-
mated trader agents, or human traders using a web browser) connect and message the
server using HTTP messaging. ExPo internal servers communicate via unix sockets.
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Fig. 3. Screenshot of ExPo’s auction configuration GUI, used to initialise a financial
trading experiment. Top: the auction parameters table is used to name a market exper-
iment, define the market running time, set the market equilibrium price, link to the
trader agent algorithm code, and select whether or not human users are able to par-
ticipate. Bottom: the assignment sequences for participants are configured using the
text boxes on the left, and illustrated dynamically by the graph on the right, with the
blue line indicating aggregate market demand and the yellow line indicating aggregate
market supply.

for participants are looped until the end of the auction. When competitors are
added to an auction through the automation scripts, they are put on the same
assignment sequences as already exist in the market. This is designed to avoid
accidentally introducing an asymmetrical advantage for any one group.
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Fig. 4. ExPo screenshot of the admin screen (not available to ordinary market par-
ticipants) during an open market period. Top-left: table showing details of all traders
(human and robot) participating in the market. Top-right: the public order book dis-
plays current prices and volumes quoted in the market. Bottom-left: execution prices
of trades are plotted dynamically. Bottom-right: an exportable list of all market trans-
actions are detailed.

3.2 Experiment Design

Market environments used in previous experiments typically follow the “trading
day” model of Smith’s original experiments (notable exceptions include [5–7,12]).
The problem with this is that it assumes traders only get new assignments at
the start of each trading day—typically only one assignment each. Platforms like
ExPo help to model markets in a more realistic way. By modelling a market as
a continuous replenishment auction, we are able to model in real time, allowing
assignments to drip feed into the market like they would if you were a sales trader
on a financial trading desk, receiving assignments from clients throughout the
day.

Each agent strategy in the market was grouped into 3 buyers and 3 sellers.
The running time for each auction was 1152 s (64 assignment “loops” of 18 s
each), similar to the 20 min length of time that was used in [12]. Assignments
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Fig. 5. Supply and demand assignment sequences used for experiments. Left: equilib-
rium price, P0 = 230. Right: equilibrium price P0 = 300. Each agent (3 buyers and 3
sellers) receives 6 assignments per assignment “loop”, hence the total volume demanded
and supplied per loop is 18 and Q0/loop = 9. Assignments are allocated in pairs (to one
seller and one buyer) every second, with each agent receiving a new assignment on aver-
age every 3 s. Assignment loops are repeated 64 times, producing a total experiment
running time of 1152 s, and an equilibrium quantity Q0 = 64 × 9 = 576.

were sequentially allocated in pairs (to one buyer and one seller) every second,
thus for each agent the mean time between assignments received was 3 s. Each
assignment “loop” (see Fig. 5), agents each received 6 assignments with different
limit prices. As assignments belonging to an agent are grouped by limit price,
when an agent receives a new assignment the assignment quantity for that limit
price was incremented. All agents treat current holdings of assignments as a
single entity, increasing or decreasing their quote price as a group. However, one
or multiple assignments may be traded from a group at any time if only a certain
number are able to transact on the order book. No retraction of assignments was
permitted, and once assignments were distributed, their limit prices could not
be modified. For all experiments, equilibrium was set at 230 (Fig. 5, left), and
raised to 300 (Fig. 5, right) when a “market shock” occurred. We do not use the
NYSE spread-improvement rule, thus enabling traders to submit quotes at any
price.

When a new assignment is provided to an agent, that agent has the ability
to put it straight on the order book. Although agents can create new orders
immediately, each agent can only update their orders once a sleep-time, s, has
expired. While the agent is asleep (we can think of this as a “thinking” period), it
is still actively able to calculate a new order price using shouts and transactions
in the marketplace. Once sleep-time has elapsed, an agent is able to update
their order price. The ability to put new assignments on the order book as
soon as they are received is an important difference to previous implementations
of sleep-time. An order placed immediately on the book is more advantageous
than delaying a trade by waiting. The sleep-time of each agent was set randomly
within a boundary of ±(0-25) % of the sleep-time provided. This is the same
“jitter” setting implemented in [9]. For all experiments reported here, we set
sleep-time s = 4 s. While it is not strictly necessary to enforce a period of sleep
time in agents (on the scale of human reaction times) when the market contains
no humans, we do this to replicate the experimental method of [7,12]. This
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enables us to directly compare results, and hence challenge or confirm any of
their conclusions.

All experiments were repeated 5 times and results analysed using the non-
parametric Robust Rank-Order (RRO) statistical test [14,15]. The number of
trials was necessarily restricted due to the real-time nature of experiments, with
each run taking approximately 20 min.

4 Results

4.1 AA Modifications

Here, we present results from a series of experiments between the “reference”
AA agents from the literature, and the modifications we suggested in Sect. 2.3.

The Effect of Pmax on AA. In De Luca’s implementation of AA [18], agents
use the OpEx system parameter Pmax = 400. For the majority of OpEx experi-
ments, markets were engineered to have an equilibrium value of P0 = 200, exactly
half the value of Pmax, e.g., [7,12]. We believe that the use of this system para-
meter by AA agents may produce artifactual dynamics and favourably bias AA
agents (when compared with other agents, such as ZIP, that do not make use of
this system parameter). Here, we test three implementations of AA to observe the
effect Pmax has on AA dynamics: AAL, with low value Pmax = 500; AAH with
high value Pmax = 2000; and AAD, with dynamic Pmax = 2 × max(limitPrice).
The value used for AAL was purposely set to be approximately twice equilibrium
(set to P0 = 230 in all experiments) to enable comparison with OpEx results.
Note that, since limit price is exogenously assigned to agents via the supply and
demand permit schedules, Pmax will vary between AAD agents. For example,
if an agent, a, receives 2 sell assignments with limit prices 250 and 350, then
Pmax = 700 for that agent, a. For buy assignments, quote prices are implicitly
bounded by zero.

Figure 6 displays mean Smith’s α across 5 runs of homogeneous AAL, AAH

and AAD markets. We see that a lower value of Pmax encourages better market
equilibration by constraining the “exploration” of initial equilibrium values. This
suggests that Pmax introduces an artificial system bias. In heterogeneous markets
(containing 3 AAL and 3 AAH on each side) AAL agents gained greater efficiency
in 4 of the 5 experiments. However, using Robust Rank Order (RRO) [15] this
result was not statistically significant at the 10.3 % level.

Table 1 summarises the performance of homogeneous AAL, AAH and AAD

markets. We see that Pmax has virtually no effect on efficiency, but has a large
effect on Smith’s α and profit dispersion. There is no significant difference
between the efficiencies or α values of homogeneous AAD and AAH markets.
We believe the reason AAD did not outperform AAH on these metrics is due
to the assignment distribution pattern. In all experiments, assignments are dis-
tributed in descending order, such that buy assignments with the highest limit
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Fig. 6. Smith’s α over time for each homogeneous AA market. AAL produces lower α
than AAH , demonstrating that lower values of Pmax artificially encourage equilibration.
AAD performs similarly to AAH , but does not rely on the market dependent Pmax value
and hence is more robust.

Table 1. Performance of AA with varying values of Pmax. While efficiency varies little
between the three settings, AAL produces significantly lower Smith’s α and profit
dispersion, verifying that the spurious variable Pmax affects market dynamics.

Strategy Efficiency Alpha Profit dispersion

AAL 0.999372 0.0114 97.3

AAH 0.999365 0.0436 204.4

AAD 0.999323 0.0469 253.4

prices are always allocated first. Therefore, initial values of Pmax for AAD agents
are higher than they would be otherwise.

Having shown that AA agents are sensitive to the system value Pmax, we
propose that AA agents should be modified to dynamically adapt their own
internal value of Pmax. For the remainder of this paper, unless stated otherwise,
we use the dynamic AAD version of AA.

The Effect of maxSpread on AA. In OpEx version 1 [18], AA agents had a
fixed parameter value maxSpread = 15%. These agents were used in [7,12]. Here,
we test the effect of this parameter by comparing homogeneous and heterogeneous
markets containing two AA versions: AAD with no maxSpread condition; and
AAMS

D with maxSpread = 15%.
Figure 7 displays the time series of trade prices from one example run of a

homogeneous AAMS
D market (left) and homogeneous AAD market (right). As

we would expect, AAMS
D markets have greater price volatility and less equi-

libration to P0, with AAMS
D happy to “jump” a spread of 15%. Conversely,

AAD agents will post quotes closer to equilibrium and wait to be “hit”. Table 2
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Fig. 7. Trade prices executed in homogeneous markets of AA agents with maxSpread
rule (left) and no maxSpread rule (right). Left: AAMS

D agents (maxSpread = 15 %)
produce volatile trading dynamics, with execution prices rapidly fluctuating above and
below equilibrium price P0 = 230, within a region approximately bounded by P0±7.5 %.
Right: AAD agents (maxSpread = 0 %) produce much more stable dynamics, with
executions clustered closely around P0. Since AAMS

D agents are happy to accept prices
away from equilibrium (within the maxSpread limit), maxSpread markets (left) are
more liquid (produce more trade executions) than non-maxSpread markets (right).

Table 2. Mean results summary (5 runs) of fast homogeneous markets, allocating
assignments every 3 s. ZIPM performs significantly better than ZIPS across all mea-
sures. AAD outperforms AAMS

D , and significantly dominates overall.

Agent Trials Efficiency Smith’s α Profit disp. Total shouts Total trades

ZIPS 5 0.974 0.0664 678.6 4245 582

ZIPM 5 0.995 0.0529 308.6 7479 594

AAMS
D 5 0.988 0.0658 530.5 4036 639

AAD 5 0.999 0.0469 253.4 4104 577

summarises mean results (5 runs) across all homogeneous markets. Comparing
AAMS

D with AAD, we see that the “spread jumping” behaviour of AAMS
D results

in lower efficiency, higher α (less equilibration) and greater profit dispersion.
AAMS

D markets also execute roughly 10% more trades than AAD, producing
the most liquid markets of all strategies tested. However, it should be noted that
although AAMS

D made more trades, they were not more profitable. In hetero-
geneous markets containing 2 agent types (with 3 agents of each type on each
side), AAD gained significantly higher efficiency than AAMS

D (RRO, p ≤ 0.004).

4.2 ZIP Modifications

Single vs. Multiple Profit Margins. We tested multi-profit margin, ZIPM ,
and single-profit margin, ZIPS , in a series of homogeneous markets. Table 2 sum-
marises mean results (5 runs). ZIPM is significantly more efficient than ZIPS
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in fast continuous replenishment markets, with 3 s between assignments (RRO,
p ≤ 0.004). However, this superiority diminishes as the market slows. With
6 s between assignments, ZIPM still has significantly greater efficiency (RRO,
0.004 ≤ p ≤ 0.008), but with 12 and 24 s between assignments, ZIPM are no
longer more efficient. This suggests that holding a vector of simultaneously
adjustable profit margins is more effective in markets where a quick response
is necessary.

Overall, AAD is the dominant strategy of the four tested (see Table 2), with
significantly higher allocative efficiency and significantly lower Smith’s α than
both ZIPM and ZIPS across all market speeds (RRO, p < 0.048). This confirms
the dominance of AA over ZIP reported in the literature (for the full set of
detailed results, see [22]).

4.3 Market Shocks

Thus far, we have assessed the performance of agents in static markets with
a fixed theoretical equilibrium, P0. Here, we test the performance of agents in
dynamic markets that experience a market “shock”, such that P0 changes value
mid-way though an experiment. For brevity, we only present results for shocks
where the market equilibrium, P0, increases. However, the reader should note
that shocks where P0 decreases are equally likely and lead to symmetrically
similar results (see Fig. 8). As such, where buyers benefit from a shock in one
direction, sellers will equally benefit from a shock in the other. When a market
shock occurs, new assignments entering the market are perturbed by the same
value as the shock. For example, if a market shock moves P0 from 230 to 300,
all new assignment allocations are given an increased limit price 70 units higher
than they were before the shock. Real-world financial markets are inherently
dynamic, experiencing continual supply and demand fluctuations. By exploring
dynamic markets we aim to better understand the dynamics of agent traders in
real-world markets.

When a market shock occurs, assignments that have already been allocated
into the market are not recalled. Thus, the actual market equilibrium P ′

0 does
not immediately move to the new theoretical market equilibrium P0. Rather, P ′

0

asymptotically tends toward P0, only reaching P0 when all assignments allocated
before the market shock have executed. We use this model of assignment persis-
tency since we assume agents are acting as sales traders—assigned by a client
to buy or sell on their behalf. Figure 8 illustrates example markets containing,
from left to right, ZIPS , ZIPM and AAD agents. In each case, we see transaction
prices gradually tend toward the new equilibrium after a market shock. These
results are different to those seen in discrete trading day experiments presented
in the literature, where markets tend to re-equilibrate much quicker. However,
we believe the setup we use here to be a more accurate model of real markets.

Table 3 summarises the mean profits of traders across 5 experiments with
positive market shocks; i.e., shocks in which P0 increases. Results for negative
market shocks are symmetrically similar. For brevity, we do not present results
for negative shocks, since all conclusions drawn are the same as those for positive
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Fig. 8. Illustrative example of a market shock. Top row: a positive shock from P t
0 = 230

to P t+1
0 = 300. Bottom row: a negative shock from P t

0 = 300 to P t+1
0 = 230. Markets

containing only ZIPM agents (centre) re-equilibrate after a market shock more quickly
than ZIPS (left) and AAD (right). Market dynamics are symmetrically similar for
positive (top) and negative (bottom) shocks.

Table 3. Mean profit in positively shocked homogeneous markets.

Average profit per trade

Strategy Buyers Sellers % difference

ZIPS 97.08 71.65 35.50 %

ZIPM 90.62 72.50 24.99 %

AAD 98.28 69.46 41.49 %

shocks. We see that, in all cases, positive shocks benefit buyers (similarly, nega-
tive shocks benefit sellers). This is because, for the period that P ′

0 is below P0,
buyers have the opportunity to trade at a “cheap” price. In Fig. 8, top row, the
area between the new equilibrium line (in red) and the transaction time-series
(in blue) is additional profit that buyers are making and that sellers miss out on
(similarly, for negative shocks, bottom row, this is additional profit for sellers).
We can quantify this by the percentage difference in the average profit per trade
of buyers and sellers (Table 3). We see that ZIPM markets have significantly lower
profit spread (RRO, 0.071 < p < 0.089), indicating quicker re-equilibration after
market shock. There is no significant difference in profit spread between ZIPS

and AAD markets. We believe shocked homogeneous markets containing ZIPM

agents are able to re-equilibrate more quickly due to ZIPM agents’ ability to
update multiple orders each time they “wake”. Thus, if we ran further experi-
ments using AAD agents with multiple profit margins, we would similarly expect
a decrease in re-equilibration time.

However, while both AA and ZIP agents are able to re-equilibrate after market
shocks, neither algorithm is specifically designed to anticipate price movements
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following a shock. In the following section, we explore the effects of adding such a
novel mechanism.

4.4 Assignment-Adaptive Agents

If an agent is capable of analysing their own assignments to see if there is an
inherent rise (or fall) in value, then it may be possible to infer that a market shock
has occurred, thus enabling the agent to anticipate a rise (fall) in transaction
prices. By adjusting profit margins accordingly, the agent may be able to secure
greater profit. Here, we introduce a preliminary method for agents to adapt
their profit margins using information contained in their own assignment orders.
We call these agents Assignment Adaptive (ASAD). This is exploratory work
and is not intended to be a definitive solution. Rather, we are more interested
in the dynamics of markets that contain such agents. For all experiments, we
use ZIPM agents, previously shown to most quickly re-equilibrate after market
shocks. Once again, we present results for positive market shocks only. However,
results for negative shocks are symmetrically similar and the same conclusions
can be drawn for shocks in both directions.

ASAD agents store assignment limit prices in a rolling memory window con-
taining the last 20 prices, ordered oldest to youngest. Agents only begin acting
on these prices once the window is filled (i.e., once an agent has received and
stored 20 assignment prices). ASAD agents then calculate the gradient of change
in assignment prices using Ordinary Least Squares (OLS) regression [21], such
that gradient, ∇, is:

∇ =

∑

xiyi − y
∑

xi
∑

x2
i − x

∑

xi

, (8)

where xi is the index position of assignment limit price yi in the assignment price
window. Figure 9 provides a visual example of how this gradient calculation can
help to detect a change in prices. This gradient value, ∇, is then transformed
using a simple logarithm function, in order to return a value greater than 1 for
positive gradients and a value less than 1 for negative gradients:

φ =

{

−ln(1 − ∇) if ∇ < 0
ln(∇ + 1) otherwise.

(9)

We call this value the shock indicator, φ. Values of φ > 1 indicate prices in the
market may increase; values of φ < −1 indicate prices in the market may fall.

ASAD agents use φ to alter profit margin according to the following two
rules:

if (seller & phi > 1) increase profit margin,
if (buyer & phi < -1) increase profit margin.
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Fig. 9. Illustrative example of an agent’s assignment sequence, subject to a negative
market shock after assignment 42. Blue dots plot the limit price of each assignment.
The black line plots a moving average over 20 assignments (the ASAD agent memory
window). Ordinary Least Squares (OLS) regression is used to calculate the grandient of
change in assignment prices (i.e., the gradient of the moving average), which between
assignments 43 and 61 is significantly negative, indicating a negative market shock
(Color figure online).

While φ > 1 for sellers (or φ < −1 for buyers), agent calculated quotes
are increased, or inflated, by 20 %. To prevent ASAD agents from returning to
market clearing price (P ′

0) too early after a shock is detected, the cumulative
value of φ is used to “wind-down” ASAD price inflation from 20 % to 0 % over
time. This decline in percentage over time is proportional to the size of the
cumulative value of φ, reduced (increased) by 0.5 every time the ASAD agent
can update its orders (subject to no current shock occurring), until cumulative
φ, and therefore percentage, equals zero.

Results from one homogeneous market containing ASAD agents is shown
in Fig. 10. We see that immediately following a positive market shock prices
begin to rise. Prices then overshoot the new equilibrium value, before returning to
near-equilibrium value. This suggests that ASAD agents are sensitive to market
shocks, but require tuning. In homogeneous markets with all ASAD agents,
sellers benefit from a positive market shock, being able to either match or beat
buyers’ average profit. This is in stark contrast to ZIPM markets, where sellers
consistently lose out by a margin of ≈ 25%. Further, very little profit is lost
in the market itself, suggesting that assignment adaptation can equalise profit
between buyers and sellers during a market shock.

However, when testing ASAD (adapted ZIPM ) agents in positive shock mar-
kets containing näıve ZIPM agents, results were somewhat surprising:

– In heterogeneous markets containing six ASAD and six ZIPM agents, ASAD
sellers performed significantly worse than ZIPM sellers. Surprisingly, ZIPM

sellers also outperformed all buyers.
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Fig. 10. Example of a positive market shock in a homogeneous ASAD market. The
market quickly reacts to the shock, but initially overshoots the new equilibrium.

– In heterogeneous markets containing eleven ZIPM agents and only one ASAD
seller, once again the profits of every ZIPM seller was increased, while the
ASAD agent significantly under-performed.

– The profit spread between buyers and sellers of homogeneous markets contain-
ing twelve ZIPM agents was significantly higher than in markets containing
at least one ASAD agent; although in every case the ASAD agent(s) suffered.

Fig. 11. Normal form matrix of results between competing ASAD (adapted) and non-
ASAD (näıve) agents. Homogeneous markets of adapted (ASAD) agents perform better
than homogeneous markets of näıve (ZIPM ) agents. However, in heterogeneous mar-
kets, näıve (ZIPM ) agents gain while adapted (ASAD) agents lose.
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These findings suggest that ASAD agents generate a new price signal to which
price sensitive ZIPM agents can react and benefit. However, ASAD agents them-
selves suffer from the resulting behaviour of ZIPM agents. If we consider longer-
term market evolution, a population of ASAD agents can be easily invaded by
ZIPM . If the entire market is ASAD then everyone benefits, but if any non-
ASAD agent enters the market, it parasitically benefits from the behaviour of
ASAD and will flourish, eventually exterminating the ASAD agents from the
marketplace. We summarise these outcomes in Fig. 11. Although these results
may appear counter-intuitive, such dynamics are not unusual in co-adaptive sys-
tems of competing populations (for example, see [1,3,4]).

Potentially, these findings could be due to the simple ASAD strategy imple-
mented here. For example, ASAD agents are not designed to consider the rate
of change of prices in the market. Perhaps a more suitable approach would be
to implement an adaptive learning rule, such as the Widrow-Hoff delta rule [28],
which is the basis of the adaptation mechanism in ZIP [8] and AA [26]. We
reserve this extension for future work.

5 Conclusion

We have used the Exchange Portal (ExPo) platform to perform a series of agent-
based computational economics experiments between populations of financial
trading agents, using continuous replenishment of order assignments.

In the first set of experiments, we exposed several idiosyncrasies and ambi-
guities in AA and ZIP, two of the standard “reference” algorithms from the lit-
erature. First, we showed that ZIP performs better in fast markets when agents
contain a vector of profit margins that they can update simultaneously. Then, for
AA agents, we demonstrated how Pmax provides unfair information about the
market and how the algorithm can use readily available information to overcome
this. Finally, we demonstrated how “spread jumping” in AA negatively affects
market dynamics and performance.

In the second set of experiments, we introduced market “shocks” and pre-
sented a novel exploratory Assignment Adaptation (ASAD) modification to ZIP.
Results showed that homogeneous populations of ASAD agents perform better
than homogeneous populations of ZIP agents. However, in heterogeneous ASAD-
ZIP populations, ZIP agents perform better while ASAD agents perform worse.
This suggests that ASAD agents provide a novel price signal that benefits ZIP,
to the detriment of ASAD agents themselves.

This work naturally suggests further extensions. Firstly, to expose the bene-
fits of dynamically selecting a value of Pmax, we set Pmax = 2×max(limitPrice).
The multiplier value, 2, was arbitrarily selected and should be optimised for per-
formance. Secondly, it is likely that the introduction of an adaptive learning algo-
rithm (similar to that used by ZIP) could improve the performance of ASAD.
Thirdly, unlike ZIP agents, AA agents have never been adapted to contain a
vector of profit margins that they can update simultaneously (i.e., an AAM ).
We reserve these avenues of research for further work.
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Perhaps more interestingly, we also reserve more general open questions for
future exploration. Firstly, in the work presented here all market shocks are
exogenous. It would be very interesting to see how results are affected when
shocks are endogenous to the market. However, to answer this, it is first necessary
to have agents acting as “proprietary” (“prop”) traders—buying and selling on
their own behalf for profit—rather than “sales” traders (trading on behalf of a
client). This is a more difficult challenge, but one that is pertinent if we are to
further our understanding of the global financial markets. Secondly, since real
financial markets include human traders and “robot” automated trading agent
systems, we hope to explore the dynamic interactions between these groups by
introducing human participants into our experiments. ExPo has been specifically
designed to enable human participation; and further, since ExPo participants
(whether human, or robot) connect to the exchange using HTTP messaging
across a network, ExPo allows geographically dis-located human participants to
sign in via a web browser and then leave or return at will. Theoretically, this
enables us to run experiments with large numbers of participants, over long time
periods of days, weeks, or even months. As far as we are aware, this has never
been done before and has the potential to provide valuable insight into real world
financial markets.
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