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Abstract This paper proposes to represent symbolic polyphonic musical data as
contingency tables based upon the duration of each pitch for each time interval.
Exploratory data analytic methods involve weighted multidimensional scaling,
correspondence analysis, hierarchical clustering, and general autocorrelation indices
constructed from temporal neighborhoods. Beyond the analysis of single polyphonic
musical scores, the methods sustain inter-voices as well as inter-scores comparisons,
through the introduction of ad hoc measures of configuration similarity and cross-
autocorrelation. Rich musical patterns emerge in the related applications, and
preliminary results are encouraging for clustering tasks.

1 Introduction

This paper aims to produce an exploratory data analysis of symbolic polyphonic
musical data represented as contingency tables, which count the duration of each
pitch for each time interval, given a predefined partition of the musical score into
equal durations. This representation, not so far from the piano-roll representation or
from the Chroma representation for audio files (see, e.g., Miiller and Ewert 2011
or Ellis and Poliner 2007), has the advantage of representing digital polyphonic
musical scores, being usable with common data analytic methods, such as corre-
spondence analysis and being aggregation-invariant (Sect. 2).

In Sect. 3.1, analyses of whole music pieces are proposed, by means of
correspondence analysis and a flexible autocorrelation index able to deal with
general neighborhoods. Both methods grasp intrinsic structures of musical scores
and provide pattern visualizations. Multiple voices within a single musical score are
analyzed through soft multiple correspondence analysis and a cross-autocorrelation
index (Sect. 3.2). Finally, based on the choice of the contingency table, a similarity
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measure, aimed to cluster music pieces according to composers, is proposed and
illustrated (Sect. 3.3).

2 Data Representation

In this contribution, symbolic music files are used, and especially files in Humdrum
**kern format, as they are well structured with all voices, independent of the per-
former and freely available on the web (http://kern.ccarh.org/). Moreover, Humdrum
extras (http://extra.humdrum.org/) are used when modifications, such as transposi-
tion, are needed, as well as to transform **kern files in Melisma format (http://www.
link.cs.cmu.edu/music-analysis/), easily handleable for the representation proposed
in this paper. Note that the representation proposed in the followings could have
also been obtained with other digital score formats, such as ABC or MIDI files,
especially if the latter is performed with a constant tempo.

Each musical score is represented, with all repeated passages, as a contingency
table X = (x;) crossing pitches (j = 0,...,m) and time intervals (t = 1,...,n).
The table gives the duration of each pitch in each time interval. Notice that the
repetition of notes of the same pitch within a time interval is not coded. In more
detail, MIDI note numbers (0 to 127) are transformed in a 12-note octave-equivalent
pitch set using a modulo 12, where 0 stands for C; 1, for Cff or Db; 2, for D; etc.
Moreover, a true rest 7 is added whenever no note is played. Thus, j can take on
13 different values: O to 11 and z. Regarding time intervals, each one has a constant
duration of T which can take any value, such as a 16th note, a measure or a number
of milliseconds. Consequently, the total duration of the musical score is it = nt.
An example of the transposed contingency table is given in Fig. 1 for two different
values of 7.

Besides the advantage to deal with polyphonic music, this representation is
aggregation-invariant in the sense that doubling T amounts to summing counts
within two consecutive parts. So, considering an interval 7" made out of smaller
intervals ¢, the new counts are X7; = Zt er X;- Lavrenko and Pickens (2003) and
Morando (1981) use a quite similar representation, except that the former do not take
into account the duration of and between notes and the latter bases his representation
upon the succession of chords. However, in contrast to the present representation,
theirs are not aggregation-invariant.

Then, as a second step, the contingency table X = (x;) is normalized to & =
(&) in order that the sum of each row Z,’ & = &ecequalsto 1, thatis & = ;—’f.
Thus, the same importance is given to each time interval, regardless of the duration
and the number of pitches.


http://kern.ccarh.org/
http://extra.humdrum.org/
http://www.link.cs.cmu.edu/music-analysis/
http://www.link.cs.cmu.edu/music-analysis/
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Fig. 1 Extract of the third movement of the Beethoven’s Piano Sonata No. 1 in F minor, Op. 2,
No. 1. Transposed display of the contingency table X = (x;;), giving the duration of each pitch (in
units of 16th note), for T equal to a quarter note (fop) and to a dotted half note (bottom)

3 Methods and Applications

3.1 Single Score Analysis

3.1.1 Correspondence Analysis

To perform the correspondence analysis (CA) on the Z matrix, an equivalent
method is used which consists in applying a weighted multidimensional scaling
on the chi-squared dissimilarities between time intervals D = (Dy;) and between
pitches D = (Dj):

ey

Dy=>pj(gy—q5)’ Dy =Y fi(qi—ay)’
J t

where f; = 1/n is the relative weight of time intervals, p; = &,;/n is the relative
weight of pitches, and q,; = §;n/&.; is the independence ratio.

In a nutshell, scalar products between time intervals B = (55,) and between
pitches B = (l;ij) are computed from the dissimilarity matrices as:

. 1 A~ \ 1 v
B = —EHfD(Hf)/ B=—H'D(H"Y
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where H/ = I —1f', H? = I — 1p’ are the corresponding centering matrices.
Then, weighted scalar products K = (k) and K = (k;;) are defined as:

ke = ' fs fiby l;ij = «/Pipjgij ()

The spectral decomposition of the matrix K (respectively K) provides the eigen-
vectors u;, (resp. vjo) and the corresponding eigenvalues A, (identical for both
matrices) from which stem the factor coordinates for time intervals (x;,) and for

pitches (yq):

o 1 & e -

® =1

Xta =

An example of this formalism for the well-known French monophonic nursery
melody Frere Jacques (Are you sleeping? in English) is given in Fig. 2. The graph
on the left shows the result obtained with 7 equal to an eighth note, which means that
no more than one pitch is played during each time interval, i.e. the representation is
totally monophonic. In that case, chi-squared dissimilarities between time intervals
are “star-like”, i.e. of the form 155, = ay + a, (see, e.g., Critchley and Fichet 1994).
Consequently all A, are equal and data are difficult to compress by factor analysis.
When 7 is equal to a measure (graph in the middle), the graph reveals the structure of
the music piece, with each measure played two times. Note the “horseshoe effect”
resulting from the temporal ordering of time intervals. The right graph highlights
that when increasing the duration 7, the percentage of explained inertia climbs,
except when t is smaller than or equal to a eighth note, the smallest duration of
anote, and between t equal to a whole note (corresponding to a measure) and equal
to two whole notes, due to the repeated structure of the piece.

Fig. 2 CA on Are you sleeping? in C major. Left: scree graph and biplot with 7 equal to an eighth
note. Triangles with large-sized figures in italic stand for pitches (triangle size is proportional to
the quantity of the pitch in the music piece) and full circles, sometimes with small-sized figures,
represent time intervals and are linked in consecutive order according to the time progression.
Middle: biplot with 7 equal to a measure. Right: explained inertia by the (two) first factors
according to t. Dotted lines represent results for all durations and solid lines stand for results
for integer divisors of 7y
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Fig. 3 CA on Mazurka Op. 6, No. 1 in Fff minor by Chopin. Biplots with t, respectively, equal to
a quarter note (left), a measure (middle), and eight measures (right)

Another example is given in Fig. 3 for a Mazurka by Chopin, with three different
interval durations. The structure emerges more clearly for large values of 7. In
particular, the right graph, with t equal to eight measures, reveals the similar (e.g.,
1, 3, 6,9 and 13) and different passages (e.g., 2 against 3).

While these two examples clearly highlight the structure of the piece, results are
less comprehensible when a motif is transposed in the same piece or when a true
rest appears. In fact, in the latter case, the first factor often exclusively expresses the
contrast between true rests and pitches.

3.1.2 Autocorrelation Index

Consider now the neighborhood analysis between ordered time intervals, repre-
sented by the rows of ='. Temporal neighborhoods can be defined by a non-negative
symmetric exchange matrix E = (ey) obeying e;e = eoy = fi = 1/n. The
associated autocorrelation index (Bavaud et al. 2012) is calculated as:

_ A _Aloc

S
A

€[-1.1] 3)

where A is the (global) inertia and Ay, is the local inertia:

1 N 1 A 1 N
A= E %: fvﬁ‘Dst = W ;D‘vt Aloc = E ;e‘vtht (4)

Thus, the autocorrelation index measures the difference between the overall
variability of chi-squared interval dissimilarities and the local variability within
some neighborhood defined by E, generalizing the usual “immediate left-right
neighborhood” (see, e.g., Morando (1981) for a musical data-analytic approach).
A large positive (resp. negative) autocorrelation means that the pitches distributions
are more (resp. less) similar in the neighborhood than in randomly chosen intervals.
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Fig. 4 Autocorrelation index according to the lag r varying from O to n (solid line), its expected
value (dashed line) plus or minus ug 975 = 1.96 times the standard deviation (dotted line). Left:
Are you sleeping? with t equal to a quarter note. Middle: Mazurka Op. 6, No. 1 by Chopin with t
equal to a measure. Right: sonata L. 12 (K. 478) by Scarlatti with T equal to a measure

Among all possible exchange matrices, it turns out to be convenient to define a
periodic exchange matrix, with a neighborhood at temporal distance (or lag) r (right
and left) of the current interval, E):

e = %{1@ = (s+tr)modn)+ 1((s £r) mod n = 0) - 1(t = n)]

For statistical testing of the autocorrelation index, see, e.g., Cliff and Ord (1981)
and Bavaud (2013). Note that in contrast to the usual autocorrelation function in time
series analysis (see, e.g., Box and Jenkins 1976) which considers a single numerical
variable, the autocorrelation index can deal with multiple simultaneous categorical
variables.

The autocorrelation index is computed on three musical scores (Fig. 4). As
expected, § = 1 for r = 0 and the figures are symmetric, since the neighborhood is
periodic (E) = E=")). Moreover, noticeable peaks appear in all graphs. For
the monophonic music piece Are you sleeping?, the highest value (§ = 0.495)
appears for r = 4 which corresponds to the duration of a measure. In fact, due
to the systematic repetition of each measure, at each point the same pitches are
played at a distance equal to four, sometimes on the left, sometimes on the right.
For Chopin’s piece, peaks occur each eight measures as expected by the results
obtained in Fig. 3. Finally, for Scarlatti’s sonata, there are two remarkable peaks
(§ = 0.25and 6 = 0.21), for r = 54 and r = 61 measures, corresponding to the
length of the two repeated parts of the piece, which compose the whole piece. In
conclusion, peaks of § appear to detect strict or approximate repetitions, but do not
detect transposed repetitions.

3.2 Between Voices Analysis
3.2.1 Soft Multiple Correspondence Analysis

Let &Y denote the row-normalized contingency table for voice v = 1,...,V
occurring in a music piece. The complete contingency table of the musical score
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Fig. 5 Soft MCA on the Canon in D Major by Pachelbel with t equal to a quarter note. Left:
factor coordinates for the pitches, whose names are preceded by V1 for violin I, V2 for violin II,
V3 for violin III, and V4 for Harpischord. Right: factor coordinates for the time intervals

is given as ECOMP = (81|&2|...|E"), on which a CA is carried out. Whereas an
usual multiple correspondence analysis (MCA) is computed on a disjunctive table,
the present procedure is applied to row cells containing, due to row-normalization,
the pitch proportions of the voice during a given ¢, and hence constitutes a soft
variant of MCA.

Figure 5 shows the results obtained for the Pachelbel’s canon. On the right graph,
different zones appear depending on the number of instruments which are playing.
For instance, in the bottom zone, only the harpsichord is playing, and so there are
true rests for the three violins. Again, as for CA, the clarity of pattern representation
largely depends upon the value of <.

3.2.2 Cross-Autocorrelation Index

Define the “raw” coordinates of the voice &V as *Et}’ = /P (qt'j). — 1), with the

property that the associated squared Euclidean distances Dy = ) j & 5~ *E;;)z are
equal to the chi-squared distances Dy, of Eq. (1).

To extend the autocorrelation index to two voices (¢ and ), one proposes a cross-
autocorrelation index for multidimensional variables £ and £# , which measures
the similarity between the pitch distribution of « and the pitch distribution of j
within a fixed lag or, more generally, a defined neighborhood, namely:

_ AE*EP) - Ae(E°, BP)

JAE)AEP)

e[-1,1]
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Fig. 6 Cross-autocorrelation index according to the lag r varying from O to n. Left: Canon in D
Major by Pachelbel with t equal to a measure. Middle and right: first movement of the String
Quartet No. 1 in F major, Op. 18 by Beethoven with 7 equal to a measure

In the latter, A(Z") is the inertia of the voice v [see the first part of (4)],
AEEP) = LY iD= X, LY el — 3 B¢ ED s the cross-
inertia between the voice « and the voice 8, where Df,ﬁ =3 j (* G~ *E;‘ )(*55 -
*ég ) is the cross-dissimilarity between two time intervals of two voices, and finally
A% EP) = LY euDil = X, fi X, 8T8 = Ve X "5y TE is the
local cross-inertia between voices « and .

In particular, A(Z, Z) = A(E) and A (E, &) = Aje(E), s0 8(&, &) =
8(&) = § given in (3). It must be noticed that this formalism works in this specific
context because f,* = f,ﬁ = f, = % due to the normalization of & or Z? and since
all voices have the same number of time intervals.

This cross-correlation index is computed on two multiple-voice music pieces
with the same exchange matrix as the one proposed for the autocorrelation index
(Fig. 6). For Pachelbel’s canon, highest peaks on the left graph appear at r = 2 for
the cross-autocorrelation between violins I and II and between violins II and III, and
at r = 4 between violins I and III, corresponding to the lag of two or four measures
between the starts of each violin. For Beethoven’s string quartet (center and right
graphs), peaks at r = 0 reveal largest melodic similarities between violin I and
violin II on the one hand, and between viola and cello on the other hand. Moreover,
both graphs exhibit large peaks at r = 114 measures, corresponding to a repetition
in the music piece.

Thus, the cross-autocorrelation index allows the comparison of different voices
of a music piece. It can also be implemented to compare two music piece variants.
See, e.g., Ellis and Poliner (2007), who apply cross-correlation on audio files.

3.3 Between Scores Analysis

To measure the configuration similarity between two musical scores a and b, a
weighted dual version of the RV-Coefficient proposed by Robert and Escoufier
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Fig. 7 Hierarchical clustering of 20 music pieces with the Ward aggregation method

(1976) is computed:
Tr(K* kb)
JTH((Ra2)Tr((K?)2)

Csab =

where K¢ (resp. Kb ) is the weighted scalar product between pitches of the musical
score a (resp. b) as defined in the second part of the Eq. (2). By construction, the
components of K® (or Kb ) are zero for a pitch absent in the corresponding musical
score. Both K and K? depend upon the reference duration t, chosen as identical
for both music pieces.

Define the dissimilarity between two musical scores as D, = 1 — CS,p. This
dissimilarity can be seen as a generalization of the well-known cosine distance (see,
e.g., Weihs et al. 2007), and turns out to be squared Euclidean. Usual clustering
methods between musical scores, based upon D, can in turn be applied.

Figure 7 presents the results obtained with an agglomerative hierarchical cluster-
ing on a dataset made up of 20 music pieces written by four composers:

¢ Scarlatti: Sonatas L. 1 (K. 514), L. 16 (K. 306), L. 336 (K. 93), L. 345 (K. 113),
and L. 346 (K. 408). They all have a 2/2 time signature.

* Mozart: First movement of piano sonatas n°1, 2, 3, 4, and 5.

* Beethoven: First movement of piano sonatas n°1, 2, 3, 4, and 5.

¢ Chopin: Mazurkas Op. 6 (No. 1), Op. 7 (No. 1), Op. 17 (No. 1), Op. 24 (No. 1),
and Op. 30 (No. 1).

For comparison sake, the 20 music pieces are all transposed in C, with a common t
value of one measure. Although the dataset is small, this first result is encouraging,

producing well-grouped music pieces with respect to each composer, especially for
Beethoven.



410 C. Cocco and F. Bavaud
4 Conclusion

The present data-analytic treatment of musical scores is based upon two prim-
itives, namely a dissimilarity matrix and a neighborhood matrix between time
intervals, defined with respect to a reference duration. It covers and generalizes
well-known multi-categorical, factorial and time-series techniques, and is able
to treat polyphonic pieces, as well as performing between-voices and between-
scores analyses, with encouraging clustering results. Its modest computational cost
makes it amenable to the automatic treatment of large symbolic musical data
sets. Furthermore, it allows the consideration of flexible alternatives, both for the
dissimilarity matrix (other than the chi-square) and for the exchange matrix (other
than periodic neighborhood), deserving further investigation.

So far, exploratory analyses are interpretable in a fairly satisfactory way, although
the complex factorial structures exhibited by rich music pieces certainly deserve
further attention. In the near-future agenda, within the present formalism, we hope
to progress in the automatic detection of t, motif recognition and large dataset
clustering or classification.
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