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Abstract In this paper, we introduce a new approach for supervised classification
to handle mixed-data (i.e., categorical, binary, and continuous) data structures using
a hybrid radial basis function neural networks (HRBF-NN). HRBF-NN supervised
classification combines regression trees, ridge regression, and the genetic algorithm
(GA) with radial basis function (RBF) neural networks (NN) along with information
complexity (ICOMP) criterion as the fitness function to carry out both classification
and subset selection of best predictors which discriminate between the classes.
In this manner, we reduce the dimensionality of the data and at the same time
improve classification accuracy of the fitted predictive model. We apply HRBF-
NN supervised classification to a real benchmark credit approval mixed-data set to
classify the customers into good/bad classes for credit approval. Our results show
the excellent performance of HRBF-NN method in supervised classification tasks.

1 Introduction

Credit approval is one of the most critical decisions of banking requiring solid
risk analysis. Credit scoring systems are introduced to evaluate the customers’
eligibility for credit approval based on historical and current information about
the customers. This information can be numeric such as income, age, volume of
previous credit history as well as nominal-categorical such as sex, race, type of
criminal record, and so on. Although processing such nominal-categorical variables
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can be easy by simple credit scoring systems, it can be difficult to handle them in
more sophisticated statistical methods for credit approval decision making.

Traditional techniques such as discriminant analysis and logistics regression
suffer in the presence of nominal-categorical data. When the variables are nominal
(categorical) definitions of the similarity (dissimilarity) measures become difficult
and it requires a new metric. In this paper, our objective is to introduce a new
approach for supervised classification using a hybrid radial basis function neural
networks (HRBF-NN) with continuity justification on dependent variable so as
to handle mixture of nominal-categorical and continuous predictors without using
dummy variables for classification. We illustrate the practical utility and the
importance of our approach by providing a real example on a benchmark credit
approval data from the banking industry to classify good and bad customers. Most
of the technical details of this paper can be found in Akbilgic et al. (2013), Akbilgic
(2011), Akbilgic and Bozdogan (2011). Here, we only recapitulate the necessary
parts from these papers to set up the background of this current paper.

The paper is organized as follows. In Section 2, we briefly explain HRBF-NN
and what radial basis function neural network (RBF-NN) model is. In Section 3, we
discuss classification trees (CT) and its usage in HRBF-NN model; transforming
tree nodes into RBFs. Estimation of the weight parameters is presented in Section 4
using the least-squares method. Later, we explain how to make classification
problem look like non-parametric regression by adding a threshold function into
output neuron of RBF-NN model. Our threshold function turns out to be a non-linear
function of the predictive model. For other threshold selection methods, we refer the
readers to Flach et al. (2013) in this volume. In Section 5, for model selection, we
develop and use information-theoretic measure of complexity (ICOMP) criterion as
our fitness function and show its derived form under both correctly and misspecified
HRBF-NN models. We also give the forms of Akaike’s information criterion (AIC)
(Akaike 1973; Bozdogan 1987) and Rissanen/Schwarz (MDL/SBC) (Rissanen
1978; Schwarz 1978). In Section 6, we briefly explain the background of the genetic
algorithm (GA) and the implementation of GA for the subset selection of the best
predictors which discriminate between the classes. In Section 7, we give a numerical
example to illustrate the performance of the proposed new supervised classification
approach via the HRBF-NN model on a real credit approval data set to classify the
customers into good/bad credit card customers or classes. Later, in Section 8, we
conclude the paper with a discussion.

2 Hybrid Radial Basis Function Neural Networks:
HRBF-NN Model

In this section, we briefly introduce the structure of HRBF-NN model as a combi-
nation of RBF-NNs, classification trees, ridge regression, information complexity
ICOMP, and the genetic algorithm (GA).
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2.1 RBF-NN Model

RBF-NNs model is a technique that transforms non-linearly separable features to
linearly separable features using radial basis functions (RBFs). RBF-NN model is
a nonparametric regression technique (Bishop 1995) defined as

y D f .w; x/ D
mX

j D1

wj hj .x/ D w1h1 C w2h2 C � � � C wmhm: (1)

In equation (1), y is the dependent variable, x1; x2; : : : ; xm are independent
variables,

˚
hj .x/

�m

j D1
, and

˚
wj

�m

j D1
are the unknown adaptable coefficients, or

weights. Equation (1) is represented in matrix form in equation (2) where H is
the .n�m/ design matrix, and " is an .n�1/ vector of random noise term, such that

y D Hw C �: (2)

2.2 Radial Basis Functions

RBF-NN gains its flexibility from RBFs. We shall consider four most common
RBFs in this work although there are many others. These are Gaussian (GS), Cauchy
(CH), multi-quadratic (MQ), and inverse multi-quadratic (IMQ) which are given in
Table 1.

The RBF-NN non-linearly transforms n-dimensional inputs to m-dimensional
space by m basis functions, each characterized by their centers cj in the (original)
input space and a width or radius vector rj , j 2 f1; 2; : : : ; mg (Orr 2000).

Table 1 The most common radial basis functions

RBF kernels Functional form

Gaussian (GS) hj .x/ D exp

�
�Pp

kD1

.xk �cjk/2

r2
jk

�

Cauchy (CH) hj .x/ D 2

s

1 C exp

�
�Pp

kD1

.xk �cjk/2

r2
jk

�

Multiquadric (MQ) hj .x/ D 2

s

1 C exp

�
�Pp

kD1

.xk �cjk/2

r2
jk

�

Inverse multiquadric (IMQ) hj .x/ D 1

2

vuut1Cexp

 

�

Pp
kD1

.xk �cjk /2

r2
jk

!
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3 Classification Trees and its Use in HRBF-NN Model

3.1 Classification Trees

Classification and regression trees (or CART in short) models are used for both
prediction and classification. Classification trees algorithm is based on recursively
partitioning of the input space into two parallel hyper-rectangles. The hyper-
rectangles with no more splits are called terminal nodes of the tree and a class label
is assigned for each terminal nodes. The class assignment rule for a terminal node
is simply to correspond the class label having the largest number of members in the
terminal node (Sutton 2005).

During the process of recursive partitioning of input space, each split is parallel
to one of the axes and can be expressed as an inequality involving of the input
components (e.g. xk > b). The input space is divided into hyper-rectangles
organized into a binary tree where each branch is determined by the dimension .k/

and boundary .b/ which together minimize the misclassification error (Orr 2000).
The root node of the classification tree is the smallest hyper-rectangle that will
include all of the training data fxi gp

iD1. Its size sk (half-width) and center ck in
each dimension k are

sk D 1

2
.max

i2S
.xik/ � min

i2S
.xik/ (3)

ck D 1

2
.max

i2S
.xik/ C min

i2S
.xik// (4)

where k 2 K is the set of predictor indices, and S D f1; 2; : : : ; pg is the set of
training set indices. A split of the root node divides the training samples into left and
right subsets, SL and SR, on either side of a boundary b in one of the dimensions k

such that

sL D fi W xik � bg ; (5)

sR D fi W xik > bg ; (6)

In classification trees, for a given set of class labels fA1; A2; ; A3 : : :g, the output
values of each side of the bifurcations are

OyL D Aargmaxi�sL
fai g (7)

OyR D Aargmaxi�sR
fai g (8)
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where the number of members of class label in each subset is defined with the set
a D fa1; a2; a3 : : :g. The misclassification error (MCE) rate is then

MCE.k; b/ D
P

i�sL
M.yi ; OyL/ CP

i�sR
M.yi ; OyL/

n
; (9)

where n is the total sample size, and M.yi ; OyL/ is a function equal to 0 if yi D Oy,
and 1 otherwise.

The split which minimizes MCE .k; b/ over all possible choices of k and b

is used to create the children of the root node and is found by simple discrete
search over m dimensions and p observations. The children of the root node
are split recursively in the same manner and the process terminates when every
remaining split creates children containing fewer than pmin samples, which is
another parameter of the method. The children are shifted with respect to their parent
nodes and their sizes reduced in the k-th dimension (Akbilgic et al. 2013; Akbilgic
2011; Akbilgic and Bozdogan 2011).

3.2 Transforming Tree Nodes into RBFs

The classification trees contain a root node, some non-terminal nodes (having
children) and some terminal nodes (having no children). Each node is associated
with a hyper-rectangle of input space having a center c and size s as described
above. The node corresponding to the largest hyper-rectangle is the root node and
it is divided up into smaller and smaller pieces progressing down the tree (Breiman
et al. 1984; Orr 2000). To transform the hyper-rectangle into different basis kernel
RBFs we use its center c as the RBF center and its size s, scaled by a parameter ˛

as the RBF radius given by

r D ˛s: (10)

The scalar ˛ has the same value for all nodes (Kubat 1998), and it is another
parameter of the method. In this study we set ˛ D p

2˛�1
K where ˛K is the Kubat’s

parameter (Kubat 1998; Orr 2000).

4 Estimation of Weight Parameters

4.1 Least-Squares Estimation

Given a network model in equation (1) consisting of m RBFs with centers
˚
cj

�m

j D1

and radii
˚
rj

�m

j D1
and a training set with p patterns, f.xi ; yi /gp

iD1, the optimal
network weights can be found by minimizing the sum of squared errors:

SSE D
pX

iD1

.f .xi / � yi /
2 (11)
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and is given by

Ow D �
H 0H

��1
H 0y (12)

the so-called least squares estimation. Here H is the design or model matrix, with
its elements Hij D hj .xi /, and y D �

y1; y2; : : : ; yp

�0
is the p-dimensional vector

of training set of output values.
In RBF-NN, one of the most common problems is singularity of the (H 0H )

matrix. At this point, to overcome possible singularity problem in the model matrix,
we use global ridge regression (Tikhonov and Arsenin 1977; Bishop 1991) to
regularize HRBF-NN model with the cost function given by

C.w; �/ D
pX

iD1

.f .xi / � yi /
2 C �

mX

iD1

w2
j D "0" C w0w: (13)

C.w; �/ is minimized to find a weight vector which is more robust to noise in
the training set. The optimal weight vector for global ridge regression is given
in equation (14), where Im is the m dimensional identity matrix, and � is the
regularization parameter.

Ow D �
H 0H C �Im

��1
H 0y: (14)

We use Hoerl, Kennard, and Baldwin (HKB) (Hoerl et al. 1975) approach to data
adaptively determine optimal � that is given by

O�HKB D ms2

Ow0
LS OwLS

; (15)

where m D k, the number of predictors not including the intercept term, n is the
number of observations, s2 is the estimated error variance using k predictors so that

s2 D 1

.n � k C 1/
.y � H OwLS/

0
.y � H OwLS/ ; (16)

where OwLS is the estimated coefficient vector obtained from a no-constant model
given in matrix form by

OwLS D �
H 0H

��1
H 0y: (17)
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4.2 RBF Neural Networks for Classification

The goal of classification is to assign observations into target categories or classes
based on their characteristics in some optimal way. Thus, in classification case,
outcomes are one of discrete set of possible classes rather than of a continuous
function as in non-parametric regression (Bishop 1995). However, we can make
the classification problem look like a non-parametric regression by incorporating a
threshold function into the output of the neuron of the RBF-NN model.

For a binary dependent variable case, we can assign HRBF-NN predictions to
class labels by substituting equation (1) in the threshold function t .f .w; H/I t0/

given by

t .f .w; H// D
�

0 f .w; x/ < t0
1 f .w; x/ > t0

(18)

where t0 is the value separating two classes.
When two clusters have equal number of observations, then t0 D 0:5.
Assuming that the classes are represented with 0, and 1 and having n1, and n2, the

number of observations in each class, the calculation of threshold value is given by

t0 D n1

n1 C n2

: (19)

Threshold value can be considered as a prior probability of the first group which
is equal to 0:5 when two of the groups have equal number of observations.

5 Information Theoretic Model Selection Criteria

In HRBF-NN, we use ICOMP criterion of Bozdogan (1994, 2000, 2004) and Liu
and Bozdogan (2004) as the fitness function to carry out variable selection with GA.
The complexity of a nonparametric regression model increases with the number of
independent and adjustable parameters, which is also termed effective degrees of
freedom in the model. According to the qualitative principle of Occam’s Razor, the
simplest model that fits the observed data is the best model. Following this principle,
we aim to provide a trade-off between how well the model fits the data and the model
complexity (Akbilgic et al. 2013).

The derived forms of information criteria are used to evaluate and compare
different horizontal and vertical subset selection in the genetic algorithm (GA) for
the regularized regression and classification trees and RBF networks model given in
equation (1) under the assumption, " � N

�
0; �2I

�
or equivalently "i � N

�
0; �2

�

for i D 1; 2; : : : ; n.
General form of ICOMP is an approximation to the sum of two Kullback–

Leibler (KL) (Kullback and Leibler 1951) distances. For general multivariate normal
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linear or nonlinear structural model suppose C1

� O†model

	
is approximated by the

complexity of the IFIM C1

� OF�1
� O�
		

. Then, we define ICOMP(IFIM) as

ICOMP.IFIM/ D �2log L
� O�
	

C 2C1

� OF�1
� O�
		

; (20)

where C1 .:/ is a maximal information theoretic measure of complexity of the esti-
mated inverse Fisher information matrix (IFIM) of a multivariate normal distribution
given by

C1

� OF�1
� O�
		

D s

2
log

0

@
tr
� OF�1

� O�
		

s

1

A � 1

2
log j OF�1

� O�
	

j; (21)

and where s D dim
� OF�1

	
D rank

� OF�1
	

. The estimated IFIM for the HRBF-NN

model is given by

dCov
� Ow; O�2

� D OF�1 D
"

O�2 .H 0H/
�1

0

0 2 O�4

4

#
; (22)

where

O�2 D .y � H Ow/
0
.y � H Ow/

n
: (23)

Then, the definition of ICOMP(IFIM) in equation (20) becomes:

ICOMP.IFIM/ D nlog .2�/ C nlog
� O�2

�C n C 2C1

� OF�1
� O�
		

; (24)

where the entropic complexity is

C1

� OF�1
� O�m

		
D .m C 1/ log

"
tr O�2 .H 0H/

�1 C 2 O�4

4

m C 1

#
(25)

�1

2
log j O�2

�
H 0H

��1 j Clog

�
2 O�4

4

�
:

We can also define ICOMP for misspecified models given as follows:

ICOMP.IFIM/Misspec D �2logL
� O�
	

C 2C1

�
dCov

� O�
	

Misspec

�
(26)

D nlog .2�/ C nlog
� O�2

�C n C 2C1

�
dCov

� O�
	

Misspec

�
;
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where

dCov
� O�
	

Misspec
D OF�1 OR OF�1 (27)

"
O�2.H 0H/�1 0

0 2 O�4

n

#"
1
O�4 H 0D2H H 01 Sk

2 O�3�
H 01 Sk

2 O�3

�0 .n�m/.Kt�1/

4 O�4

#"
O�2.H 0H/�1 0

0 2 O�4

n

#

is a consistent estimator of the covariance matrix Cov.��
k /, which is often called the

sandwich covariance or robust covariance estimator, since it is a correct covariance
regardless whether the assumed model is correct or not. When the model is correct
we get OF D OR. Hence, the sandwich covariance reduces to the usual IFIM OF�1

(White 1982). Note that this covariance matrix takes into account the presence
of skewness and kurtosis, which is not possible with AIC (Akaike 1973) and
other Akaike-type criteria such as Rissanen/Schwarz (MDL/SBC) (Rissanen 1978;
Schwarz 1978). The derived forms of these criteria for the HRBF-NN model are:

AIC.m/ D n log.2�/ C n log

 
.y � H Ow/

0

.y � H Ow/

n

!
C n C 2.m C 1/; (28)

MDL=SBC.m/ D n log.2�/ C n log

 
.y � H Ow/

0

.y � H Ow/

n

!
C n C m log.n/:

(29)

6 Genetic Algorithm for Subset Selection

There are several standard techniques available for variable selection such as
forward selection, backward elimination, a combination of the two, or all possible
subset selection. Both forward and backward procedures cannot deal with the
collinearity in the predictor variables. Major criticisms on the forward, backward,
and stepwise selection are that, little or no theoretical justification exists for the order
in which variables enter or exit the algorithm. Stepwise searching rarely finds the
overall best model or even the best subsets of a particular size. Stepwise selection,
at the very best, can only produce an “adequate” model.

All possible subset selection is a fail proof method, but it is not computationally
feasible. It takes too much time to compute and it is costly. For 20 predictor
variables, for the usual subset regression model, total number of possible models
we need to evaluate is: 220 D 1;048;576. At this point, we use genetic algorithm to
carry out variable selection in HRBF-NN with ICOMP as the fitness function.

Genetic algorithm is a robust evolutionary optimization search technique with
very few restrictions (David and Alice 1996). GA treats information as a series
of codes on a binary string, where each string represents a different solution for a
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given problem. It follows the principles of survival of the fittest, which is introduced
by Charles Darwin. The algorithm searches for optimum solution within a defined
search space to solve a problem (Eiben and Smith 2010). It has outstanding
performance in finding the optimal solution for problems in many different fields
(Akbilgic et al. 2013; Akbilgic 2011; Akbilgic and Bozdogan 2011).

7 A Numerical Example: Analysis of Credit Approval Data

In this section, we report our computational results on a credit approval data sets
to classify the customers into good/bad classes using our hybrid RBF-NN approach
with regularization, GA, and ICOMP(IFIM) as the fitness function.

Our modern world depends upon credit. Entire economies are driven by people’s
ability to “buy-now, pay later” (Anderson 2007).

Therefore, credit approval is one of the most critical decisions of banking
industry requiring solid risk analysis.

Credit scoring systems are introduced almost 50 years ago to evaluate the
customers’ eligibility for credit approval based on historic and current information
about the customers.

This information can be numeric such as income, age, volume of previous credit
history as well as nominal-categorical such as sex, race, type of criminal record, and
so on with high dimensions.

Our credit approval data set is obtained from UCI Machine Learning Repository
(2013). Original version of credit approval data set is consisted of 690 observations
including fifteen independent variables; six continuous and nine categorical, and
one binary dependent variable. However, by excluding the observation with missing
attributes, we reduced the data size to 654 representing 296 positive, and 358

negative credit ratings. Because all of the nine categorical independent variables
were coded by meaningless letters to protect confidentiality of the data, we
transformed them into numbers, 1; 2; 3; : : :, based on the number of categories in
each variable. The representation of the original data and the usage of them in our
study are given in Table 2.

We first analyzed credit approval data via HRBF-NN model separately for four
different RBFs: Gaussian, Cauchy, Multi-Quadratic, and Inverse Multi-Quadratic
using saturated model. Confusion matrix for different RBFs are reported in the
Tables 3, 4, and 5 where ICOMP(IFIM)miss values are reported in the last column
of Table 8. For simplicity in text, we will use ICOMP for ICOMP(IFIM)miss in our
report in this study. Note that calculation of classification accuracy is carried out
using equation (30). The reason we run HRBF-NN model for saturated model is to
compare the results after variable selection. The classification accuracy is defined by

Classification accuracy D 100
number of correctly classified observations

total number of observations
: (30)
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Table 2 Usage of credit approval data in our analysis

Variables Original presentation Usage in our analysis

A1 b, a 1, 2

A2 Continuous Continuous

A3 Continuous Continuous

A4 u, y, l, t 1, 2, 3, 4

A5 g, p, gg 1, 2, 3

A6 c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

A7 v, h, bb, j, n, z, dd, ff, o 1, 2, 3, 4, 5, 6, 7, 8, 9

A8 Continuous Continuous

A9 t, f 1, 2

A10 t, f 1, 2

A11 Continuous Continuous

A12 t, f 1, 2

A13 g, p, s 1, 2, 3

A14 Continuous Continuous

A15 Continuous Continuous

A16 C, � (class attributes) 1, 2

Table 3 Gaussian Classes C1 C2 Total Accuracy (%)

C1 274 22 296 92.57

C2 39 319 358 89.11

Overall 654 90.67

Table 4 Cauchy Classes C1 C2 Total Accuracy (%)

C1 270 26 296 91.22

C2 36 322 358 89.94

Overall 654 90.52

Table 5 MQ Classes C1 C2 Total Accuracy (%)

C1 275 21 296 92.91

C2 52 306 358 85.48

Overall 654 88.84

Tables 3, 4, 5, and 6 show the high performance of HRBF-NN model for
classification of credit data which is approximately 90 %. At this point we run
variable selection on credit data using GA with ICOMP as the fitness function.
Parameter setting of GA is based on our previous studies on HRBF-NN model
(Akbilgic et al. 2013). Thus, we set our GA parameters as given in Table 7.

After finishing the first stage of analysis for saturated model and setting the
GA parameters, next, we carried out variable selection for credit data using GA
separately for four different RBFs. Table 8 shows the selected variable subsets and
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Table 6 Inverse MQ RBF

Classes C1 C2 Total Accuracy (%)

C1 271 25 296 91.55

C2 33 325 358 91.34

Overall 654 91.44

Table 7 Parameter setting of GA for variable selection

Parameter Setting

Number of generations 35

Number of populations 20

Mutation probability 0.01

Crossover probability 0.65

Crossover type Single point

Elitism rule Yes

Table 8 Variable selection under different RBFs

ICOMP:

RBF type Best subset Best subset-Saturated model

Gaussian 3-6-9-10-14 191.45 461.56

Cauchy 3-5-6-9-10-11-14 191.28 400.49

Multi-quadratic 1-3-4-7-9-10-11-13-14 248.00 570.77

Inverse multi-quadratic 3-4-5-6-9-10-13-14 214.28 491.45

Table 9 Gaussian RBF

Classes C1 C2 Accuracy (%)

C1 269 27 90.88

C2 33 325 90.78

Overall 90.83

minimized ICOMP values under selected variable subsets for different RBFs. We
also showed the ICOMP values we calculated before for saturated model in Table 8
to give a better comparison.

It is noted from Table 8 that ICOMP values for selected subsets are significantly
lower than the ICOMP values calculated for saturated model. At this point, it is
important to see if obtained lower ICOMP values correspond to a simple model
giving good classification accuracy. To show this, we run HRBF-NN model for
all four of the RBFs with corresponding selected best subsets given in Table 8.
Confusion matrix and classification accuracy is calculated for each case and the
results are reported in Tables 9, 10, 11, 12.

The important results appearing in Tables 9, 10, 11, and 12 show that variable
selection within HRBF-NN allows us to reduce dimension of input variables without
any loss in classification accuracy. Comparing the classification accuracy results
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Table 10 Cauchy RBF Classes C1 C2 Accuracy (%)

C1 264 32 89.19

C2 37 321 89.66

Overall 89.45

Table 11 MQ RBF Classes C1 C2 Accuracy (%)

C1 271 25 91.55

C2 57 321 89.66

Overall 90.52

Table 12 IMQ RBF Classes C1 C2 Accuracy (%)

C1 268 28 90.54

C2 32 326 91.06

Overall 90.83

between saturated model and best subsets shows the similarity of classification
performance while the dimensionality is significantly reduced for best subsets.
According to Table 8, by carrying out variable selection with Gaussian RBF has
resulted in selecting a subset with only five variables out of fifteen where ICOMP
value is minimized. Note that, there is even slightly better classification accuracy for
best subset selected for Gaussian RBF in comparison with classification accuracy
for the saturated model.

Finally, for comparison purposes, we carried out the usual logistic regression
analysis, although the assumptions are violated here for this data set, we obtained a
classification accuracy of 87:1 % using stepwise variable selection which gave nine
predictors as the best predictors including the constant term. These nine predictors
are: 0, 4, 5, 7, 8, 9, 10, 11, and 15. Note that this subset does not include variables
3, 6, 9, 10, and 14 obtained from our results.

8 Conclusions and Discussion

In this paper, we introduced a novel approach for supervised classification using
a HRBF-NN model with ICOMP. Our study shows that HRBF-NN model is a
highly clever technique to handle hard classification problems even if the data is
mixture of continuous and categorical variables. We demonstrated that the GA
is a powerful optimization tool for selecting the best subset of predictors that
discriminate between the classes or groups. HRBF-NN using ICOMP with GA
provides us a flexible variable selection and at the same time a classification tool
which gives better results than the full saturated model. With our approach we can
now provide a practical method for choosing the best kernel basis RBF for a given
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data set which was not possible before in the literature of RBF based-methods.
In real-world applications, we frequently encounter data sets with 100 and 1,000
of variables. Our results show that HRBF-NN model is a very flexible procedure
that can handle dimensionality reduction drastically without losing information in
classification accuracy. In our example, we reduced the number of input variables
from fifteen to five with even slightly better classification accuracy which is
around 91%. As is well known, recently, kernel-based supervised classification
techniques such as the support vector machines (SVMs) and multi-class SVMs
have become popular. One problem that has not been addressed in the literature is
that kernelization and supervised classification takes place in the high dimensional
reproducing Hilbert kernel space (RHKS) and not in the original data space. The
transformed kernel space mapping is not one-to-one and onto, and not invertible to
the original data space due to the dot product operations in using the kernel trick.
This makes the practical interpretation of the results difficult even though one can
get good classification error rates.

The new HRBF-NN approach proposed in this paper overcomes the difficulties
encountered in the RHKS type supervised classification and provides us a flexible
technique in the original data space that combines regression trees, regularized
regression, and the genetic algorithm (GA) with radial basis function (RBF) neural
networks (NN) along with information complexity ICOMP criterion as the fitness
function to carry out both classification and at the same time subset selection of best
predictors which discriminate between the classes.

Therefore, we believe our approach is a viable means of data mining and
knowledge discovery via the HRBF-NN method.
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