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Abstract. In the existing folksonomy system, users can be allowed to add any 
social tags to the resources, but tags are fuzzy and redundancy in semantic, which 
make it hard to obtain the required information for users. An optimized tag 
recommender algorithm is proposed to solve the problem in this paper. First, 
based on the motivation theory, the recommender system uses the model given to 
calculate the user retrieval motivation before searching information. Second, we 
use the results in first step to distinguish the user’s type and then cluster the 
resources tagged according to users who have the similar retrieval motivation 
with k-means++ algorithm and recommend the most relevant resources to users. 
The experimental results show that our proposed algorithm with user retrieval 
motivation can have higher accuracy and stability than traditional retrieval 
algorithms in folksonomy system. 

Keywords: Folksonomy, tag recommender system, collaborative filtering, user 
retrieval motivation, k-means++. 

1 Introduction  

Nowadays, with the development of web 2.0, a large amount of digital resources appear 
and rise. Accord to them, a new network information classification system folksonomy 
appears. The term folksonomy is generally attributed to Thomas Vander Wal [1], 
which is a portmanteau of folk and taxonomy. In folksonomy, the tags and resources 
are created by users, and users can tag the information according to their own needs and 
preferences in order to make others to retrieve and share the resources. As shown in 
Figure 1, the resource “Baidu.com” is tagged by user “Brown” with the tag “Search”. In 
folksonomy, users can easily find other users with similar preferences, resources and 
tags which have been used.  

In the existing folksonomy system, most of tags are lack of semantic precision and 
not standard, which affect the use of it to a certain degree. In order to better organize the 
information resources, the collaborative filtering [2] recommender system was 
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The traditional collaborative recommender algorithm usually has some problems, 
such as concept drift and sparse, because the limitation of a algorithm is a fact. In this 
paper, an optimized tag recommender algorithm is proposed to improve these 
disadvantages based on the user’s retrieval motivation. At the same time, this optimized 
tag recommender algorithm is proved to feasible after the experiment. 

2.2 The User’s Tagging Motivation 

In this paper, we add the users’ motivation theory to folksonomy system and use the 
theory proposed by Strohmaier. In this theory, there are two kinds of users in the 
datasets, and they are called categorizers and describers. Categorizer is the users who 
are motivated by categorization and view tagging as a means to categorize resources 
according to some high-level characteristics. For example, when a popular music is 
tagged by categorizers, they will use tag ‘music’ rather the tag ‘song’, ‘tune’ even if 
they have the similar meaning. Describers are the users who are motivated by 
description view tagging as a means to accurately and precisely describe resources. For 
example, when a popular music is tagged by describers, the tag “music”, “popular”, and 
“favorite” can be used to describe the resource. We consider the tags tagged 
respectively rather than the tags that can’t be classified, which can give the benefit to us 
and improve the quality of result. In next section, we will give the model to calculate 
the users’ motivation. 

2.2.1  Measures 
In this part, we use four indicators to measure the users’ tagging motivation. The four 
measures are respectively Tags per Post (TPP), Tag Resource Ratio (TRR), 
Low-frequency tagging ratio (LFTR) and Interrogative adverbs tagging ratio (IATR). 
According to the results obtained by the above measures, we can get the type of the 
users, a categorizer or a describer. The detail description of the measures can be found 
in literature [5]. 

• Tags per Post (TPP) 

 TPPሺuሻ ൌ ∑ |T౫౟|౨౟సభR౫  (1) 

Where Ru is the number of resources tagged by the user u, Tui is the numbers of tags 
annotated by user u on resources i, r is the total number of resources. This measure 
relies on the verbosity of users. So, if the TPP reflects in a higher score, the user is 
more likely a Describer. 

• Tag Resource Ratio (TRR) 

 TRRሺuሻ ൌ T౫R౫ (2) 
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Where Tu is the number of tags annotated by the users, Ru is the number of resources 
annotated by the users. Because a typical Categorizer would apply only a small of 
tags to his resources and score a low number on this measure. 

• Low-frequency tagging ratio (LFTR) 

 LFTRሺuሻ ൌ หT౫బ ห|T౫|    ,   T୳଴ ൌ ሼt||Rሺt ൑ nሻ|ሽ  , n ൌ ቒ|Rሺ୲ౣ౗౮ሻ|ଵ଴଴ ቓ (3) 

Equation 3 shows the calculation of the final measure where are seldom used tags. Tu 
are all tags of the given user. tmax denotes the tag which was tagging the most by the 
user. n means the critical value. If the LFTR reflects in a lower score, the user is more 
likely a Categorizer. 

• Interrogative adverbs tagging ratio (IATR) 

 IAIRሺuሻ ൌ Cୟ୰ୢሺ୲אT౩౪౨ሻ|T౫|  (4) 

Where Tstr={ what, who, when, where, …} is a set of Interrogative adverbs, 
Card(t∈Tstr) is the number of interrogative adverbs tags annotated by user, Tu is the 
number of tags annotated by the users. Obviously, IATR(u)∈(0,1), and if the IATR 
reflects in a lower score, the user is more likely a Categorizer. 

2.2.2 An Evaluation Model for User’s Motivation 
According to the four indicators above to distinguish the users’ type, categorizers or 
describers, we can construct a reasonable evaluation model [7] to calculate the 
orientation of users’ motivation below. M=a*TPP(u)+b*TRR(u)+c*LFTR(u)+d*IA- 
-TR(u),Where, a,b,c,d ∈(0, 1). According to the results of the experiment, we find that 
each datasets has a different optimal coefficient. So, we choose the average score of M 
and use M’ to denote the value of it. 

 Mᇱ ൌ ሺTPPሺuሻ ൅ TRRሺuሻ ൅ LFTRሺuሻ ൅ IATRሺuሻሻ 4⁄  (5) 

According to the formula 6, we find that M’ is a monotonic function and it also has a 
threshold Mt. If M’ is larger than Mt, we consider the user a Describer; On the contrary, 
the user is a Categorizer. If both are equal, he has not a special motivation and we treat 
the user either Describer or Categorizer; if the user who have little tagging behaviors 
and it is hard to get the users’ retrieval motivation, we call them the users without 
motivation. 

2.3 Porter Stemmer and K-means++  

In the existing folksonomy system, most of tags and resources are created by users 
without restriction, so they are short of semantic precision and standardization, which 
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Table 1. The optimized algorithm 

An optimized algorithm with users’ retrieval motivation: 

Input ：a folksonomy datasets，the cluster center k，a retrieved tag tu by user u. 
Output：some tags(to user u). 

1) get T(t1, t2, …, tn) from a folksonomy datasets; 
2)       for each ti (ti∈ T) ； 
3)            if  {  ti has some problem; 
4)                      remove;        } 
5)            else {  porter stemmer; 
6)                     get the stem tj of ti; 
7)                         Q←tj;       } 
8)       end; 
9)       for each tj, tj∈Q； 
10)           Switch(the tj(userj) tagging motivation Muj’) 
11)            {  case ‘categoritizers’:  k-means++(Q’(tj∈categoritizers)); 
12)                                  find(sim max(Quj’,tj))→L; 
13)                                  tf-idf L, return the top-n to u ; 
14)               case ‘describers’:     k-means++(Q’(tj∈describers)); 
15)                                  find(sim max(Quj’,tj))→L; 
16)                                  tf-idf L, return the top-n to u ; 
17)               case ‘no-motive users’: k-means++(Q’(tj∈Q)); 
18)                                  find(sim max(Quj’,tj))→L; 
19)                                  tf-idf L, return the top-n to u; 
20)                deefault:            system.out.print(“Absence recommender.”) 
21)  end; 

 
There are three modules in this procedure. First, in the module of data collection, we 

get the data from the internet and some preprocessing will be done to get the more 
useful data which have less interference factors. When we get the data, we need to 
remove the error tags. Then, we can reduce the number of the tags which have the 
similar semantics by using the stemming technique that we introduced above. And 
then, some relatively good data is selected for the next module, with which we can 
ensure the effectiveness of the text data and reduce the number of the text data which 
has the little influence on the results in the experiment. Second part, after we get the 
relatively good data, we classify the users into different types. According to the model 
given above, we can get the M’ score, the value of orientation of users’ motivation, with 
which we can get a ranked lists of users, where Categorizers rank high, and Describers 
rank low. With the two types of users and the tags they have tagged, we can easily find 
the resources which have tagged by the users with the similar motivation. And this can 
improve the efficiency of retrieving information when the system recommends 
resources to users. Third part, after we get the types of users, we need to get the smaller 
range of search resources, we use the k-means++ algorithm to cluster these resources 
tagged by users who have the similar motivation. After the data cluster, we calculate the 
similarity between the retrieved information and the clustered data and then return the 
resources which have the high similarity to the user. But, for users who have little 
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tagging behaviors and it is hard for us to get the users’ retrieval motivation, we only use 
TF-IDF algorithm to find the similar resources, and then recommend them to the user. 

4 Experiments 

According to the optimized algorithm proposed above, we need to collect the datasets 
first. We use the datasets downloaded from http://www.flickr.com in our experiments. 
This datasets has 4 classifications and 3000 documents. The classifications contain the 
following types: Resources, Tags, users, Messages of the photo.  

In this experiment, we just use three classifications which are Resources, Tags and 
User. After data processing in the module of data collection, we get the 89 resources, 
2537 users and 8478 tags. 

4.1 Evaluation Measures 

To evaluate the proposed approach, we introduce three measures, precision, recall and 
F-measure to evaluate the quality of retrieval by different methods, which are defined 
as follows. 

Precision. In the field domain of information retrieval, precision is the fraction of 
retrieved instances that are relevant, and it is also used with recall. The definition is: 

 precision ൌ |ሼ୰ୣ୪ୣ୴ୟ୬୲ ୢ୭ୡ୳୫ୣ୬୲ୱሽתሼ୰ୣ୲୰୧ୣ୴ୣୢ ୢ୭ୡ୳୫ୣ୬୲ୱሽ||୰ୣ୲୰୧ୣ୴ୣୢ ୢ୭ୡ୳୫ୣ୬୲ୱ|  (6) 

Recall. Recall in information retrieval is the fraction of the documents that are relevant 
to the query that are successfully retrieved. The definition is: 

 recall ൌ |ሼ୰ୣ୪ୣ୴ୟ୬୲ ୢ୭ୡ୳୫ୣ୬୲ୱሽתሼ୰ୣ୲୰୧ୣ୴ୣୢ ୢ୭ୡ୳୫ୣ୬୲ୱሽ||୰ୣ୪ୣ୴ୟ୬୲ ୢ୭ୡ୳୫ୣ୬୲ୱ|  (7) 

F-measure. Generally speaking, a good retrieval algorithm should be able to have a 
higher score in precision and recall. Therefore, we use the compromise value to 
measure, such as F-measure(β=1), that it indicates the precision and recall are equally 
important now. The formula is shown: 

 Fሺஒୀଵሻ ൌ ଶ כ ୮୰ୣୡ୧ୱ୧୭୬ כ ୰ୣୡୟ୪୪ ୮୰ୣୡ୧ୱ୧୭୬ ା ୰ୣୡୟ୪୪  (8) 

If F-measure score is higher, it means that this retrieval algorithm is better than the 
other. 
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Table 1. The F-measure score(%) results at random 

The F-measure 
score(%) 

User1(k=260) User2(k=260) User3(k=260) 
Tag1 Tag2 Tag3 Tag4 Tag5 Tag6 

Algorithm 1 56.2 57.0 62.4 71.6 46.2 58.2 
Algorithm 2 56.3 57.0 69.1 79.4 53.3 62.3 
Algorithm 3 56.3 57.1 66.1 77.7 65.7 65.5  

From the analysis above, we can conclude that in tag recommender system, the 
optimized algorithm with users’ retrieval motivation can have the better results than the 
traditional algorithm without users’ retrieval motivation when recommend the resource 
to the users. 

5 Conclusions 

In folksonomy system, the traditional tag recommender algorithm [9] need to deal with 
the resources tagged by all the users. For improving the efficiency of the recommender, 
the users’ motivation is added to our tag recommender algorithm. When users retrieved 
the information, their motivations were given to the model. Then, we just need to deal 
with the resources tagged by the users who has the similar motivation, and this need 
less time just to deal with the more relevant resources, meanwhile, the accuracy of 
resources recommend was improved. The experimental results show that this algorithm 
with user retrieval motivation can have higher accuracy and stability than traditional 
retrieval algorithms when recommend the resources to users. 
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