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9.1	 �Introduction

Glaucoma is a retinal disease influencing the optic 
nerve head (ONH) by damaging ganglion cells. 
Today, it is the second leading cause of blindness 
worldwide, affecting more than 60 million people 
in 2010. This number is estimated to increase to 
about 80 million in 2020 [1]. In the USA, more 
than 2.2 million people suffer from glaucoma, 
accounting for more than 9 % of all cases of blind-
ness. In terms of economic impacts, this causes 
more than ten million physician visits and 
expenses of about US$1.5 billion per year [2].

The untreated glaucoma disease causes a suc-
cessive degeneration of retinal nerve fibers par-
ticularly in the ONH region that leads to 
progressive narrowing of the visual field up to 
complete blindness. Proper treatment can stop the 
progress although already degenerated nerve 
fibers cannot be reactivated. Thus, the early detec-
tion and treatment of the disease are essential.

The initial diagnosis of glaucoma [3, 4] is 
extensive and consists of the assessment of:
	1.	 Risk factors such as high intraocular pressure, 

race, age etc.
	2.	 The front chamber angle
	3.	 The morphology of the ONH (Sect. 9.4.1)
	4.	 Possible defects of the visual field

Furthermore, a longitudinal assessment of the 
ONH is performed to confirm the initial diagno-
sis. Despite the steady rise of diseases over the 
past years, glaucoma is often undiagnosed until the 
unrecoverable structural damage of retinal nerve 
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fibers gets evident by the significant narrowing of 
the visual field. Several studies showed that screen-
ing programs for glaucoma [5] can reduce this 
high number of unreported cases. The main goal 
of these screening applications is the detection of 
suspicious cases from a large population and their 
successful routing to more extensive clinical exam-
ination for a final diagnosis. Common screening 
populations are characterized by a high amount of 
normals which have to be assessed manually by the 
involved reading center (Fig. 9.1 step (3)).

Computer-aided diagnostics (CAD) supports 
an ophthalmologist in the preparation of a medical 
diagnosis based on automatic data-mining meth-
ods. In particular, CAD is applicable in screening 
setups in order to reduce the number of normals 
for manual judgment, which helps to increase the 
efficiency of the reading centers (Fig. 9.1 step (2)). 
This is done by an upstream analysis of the per-
sonal data, e.g. images or anamnesis data, utilizing 
pattern recognition techniques that automatically 
perform a preselection of suspicious cases. Here, a 
computer-aided assessment augments the manual 
assessment provided by the reading center. As 
depicted in Fig. 9.1, this approach is considered as 
computer-aided screening (CAS). The proposed 
strategy can also be realized in a telemedical setup 
where image acquisition and examination are done 
spatially and temporally separated.

Scope
This contribution provides an overview on 
the  recent advances in the development of pat-
tern  recognition techniques for automatic 
glaucoma detection. We will focus on fully auto-
matic techniques applicable within a screening 
environment utilizing pure structural retinal fun-
dus data published in 2008 or later.

Outline
The remainder of this chapter is organized as fol-
lows: After the introduction of common imaging 
modalities to document ONH morphology, we 
provide an excursus on pattern recognition. As 
major part of this work, two methodologies are 
presented that arise from current automatic glau-
coma detection literature on structural retinal 
image data: (i) structure-driven and (ii) data-driven 
techniques. Finally, the methods are compared and 
evaluated toward the application in CAS.

9.2	 �Imaging Modalities

One main part in diagnosing glaucoma is the assess-
ment of the ONH morphology. Besides the slit lamp
that allows a live examination of the eye background, 
several digital imaging modalities got established. 
These devices allow the documentation of the ONH’s 
structure by acquiring 2-dimensional (2-D) or 
3-dimensional (3-D) image data as shown in Fig. 9.2.

Fundus imaging is one of the most commonly 
used technologies in ophthalmology to obtain 
high-resolution color photographs of the human 
retina [7, 8]. The fast image acquisition and rela-
tively low costs of a digital fundus camera make 
this modality attractive to document the retina 
during screening. The acquired images can be 
analyzed to detect pathological degenerations 
caused, e.g., by glaucoma [9].

Confocal laser ophthalmoscope commercially 
available as Heidelberg retina tomograph (HRT) 
[10] acquires topographic and gray-scaled reflec-
tance images of the ONH. In particular, the topo-
graphic images capturing the ONH’s shape allow 
the extraction of parameters to discriminate 
between normals and glaucomatous subjects [11].

Fig. 9.1  Computer-aided screening consists of subse-
quent building blocks: Initially, the anamnesis and image 
data of the entire screening collective is analyzed to prese-
lect unsuspicious cases. The remaining set has to be 

manually assessed for further exclusion of unremarkable 
subjects. Only a small proportion of the initial set will be 
forwarded to clinical assessment to gain a final diagnosis 
and follow-up treatment if necessary

T. Köhler et al.
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Optical coherence tomography (OCT) [12] as 
the optical pendant to ultrasound enables the acqui-
sition of depth profiles and even entire 3-D vol-
umes of the retina. As the image data also records 
the retinal nerve fiber layer (RNFL), OCT data 
allows a detailed judgment of the retinal constitu-
tion and a reliable diagnosis of glaucoma. In addi-
tion, OCT data can be utilized for CAD applications 
as it was demonstrated by Huang and Chen [13] 
and Burgansky et al. [14]. As an alternative device 
for measuring the RNFL thickness, also scanning 
laser polarimetry (SLP) can be utilized.

From this retinal image data, pattern recognition 
techniques can extract glaucoma-related markers 
utilized during the computer-aided assessment 
within a screening scenario as shown in Fig. 9.1.

9.3	 �Excursus: Pattern 
Recognition Pipeline

The goal of pattern recognition is to analyze 
and classify patterns such as images or speech. 
For this purpose, pattern recognition systems 
are divided into multiple processing stages 
that are organized as a pipeline with similar 
underlying structure for different real-world 
problems [15]. In terms of glaucoma detec-
tion based on retinal image data, this pipeline 
is outlined in Fig.  9.3. Please also refer to 
Fig. 9.1 as the pattern recognition pipeline can 
be embedded within the automated glaucoma 
assessment step.

a

c

b

Fig. 9.2  Sample images capturing the optic nerve head 
(ONH) region: (a) high-resolution color fundus image, (b) 
topographic image acquired with Heidelberg retina tomo-
graph (HRT), and (c) OCT line scan intersecting the ONH 

and depicting the different retinal layers including the reti-
nal nerve fiber layer as the top one (Reprinted from [6] 
with permission from Elsevier)

9  Computer-Aided Diagnostics and Pattern Recognition: Automated Glaucoma Detection
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Data Acquisition
In an initial data acquisition stage, sensor data 
such as images or speech is captured. Analog sen-
sor data is commonly converted into a discrete 
mathematical representation for further process-
ing by means of pattern recognition methods.

Example: For image-based glaucoma detec-
tion, the human eye is captured with an imaging 
modality. In a common clinical workflow, digital 
fundus cameras are employed to analyze the 
optic nerve for traces of glaucoma. As glaucoma 
detection relies on the quality of the acquired 
image, data acquisition also involves quality 
assessment for image data. In case of fundus 
imaging, several automatic and objective quality 
indices have been proposed to recognize images 
not usable for further processing [16–18].

Data Preprocessing and Analysis
Pattern recognition techniques require an appro-
priate preparation of the acquired data. Therefore, 
preprocessing steps are required to correct invalid 
or erroneous measurements present in the raw 
data. Different parts of the acquired signal that 
are relevant for a specific pattern recognition 

problem are extracted and analyzed. Then, these 
parts are used to measure certain parameters and 
to classify patterns in the underlying sensor data.

Example: Retinal image analysis [19] pro-
vides methods to process and analyze retinal 
image data in order to measure clinical parame-
ters of the eye. In terms of fundus imaging, pre-
processing for image enhancement includes 
illumination correction [20] to adjust uneven 
contrast and denoising techniques [21] to enhance 
the quality of noisy data. Preprocessing is also 
beneficial to remove features not related to glau-
coma and to make the measurement of disease-
specific parameters more reliable [22]. Common 
analysis steps include a segmentation of the ONH 
for glaucoma assessment [23–25].

Feature Extraction
Feature extraction reduces the complexity of the 
prepared data by modeling it with a finite set of 
features organized as a feature vector x R∈ d . 
Each single feature xi is a mathematical descrip-
tion of a certain parameter or measurement. 
Features can be either continuous, e.g., geometric 
measurements such as lengths or diameters of 

Fig. 9.3  Pattern recognition pipeline applied to automated 
glaucoma detection: Retinal image data is (i) acquired 
with an eye imaging modality such as fundus imaging or 
optical coherence tomography (OCT), (ii) preprocessed 
and analyzed as preparation for pattern recognition 

techniques, (iii) used to extract relevant features to detect 
traces of glaucoma, and (iv) used in a classification stage 
trained with manually classified image data. A common 
example workflow is visualized for glaucoma detection 
based on fundus photographs

T. Köhler et al.
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anatomical structures, or discrete, e.g., the sex of 
a human subject. Additionally, dimensionality 
reduction may be used in an optional step to 
reduce the complexity of raw features x to obtain 
a compressed feature vector ′∈ ′x � d  where 
d′ < d. Feature selection techniques learn the most 
meaningful features x′ in an automatic manner 
based on example data. Opposed to this approach, 
principal component analysis (PCA) is a com-
mon tool to perform dimensionality reduction in 
an unsupervised procedure.

Example: Features that can be extracted from 
fundus images are geometric parameters of the 
ONH segmented in the previous stage of the 
pipeline. This includes the well-known cup-to-
disk ratio (CDR) denoted as x1 or the size of the 
optic disk denoted as x2. The associated feature 
vector is given by x = (x1, x2)⊺.

Pattern Classification
Sensor data represented by a feature vector x is 
characterized by a class label y∈  where 
 = …{ }y yk1, ,  denotes a discrete set of k classes. 
However, the true class label is unknown and must 
be determined from the features. A classifier pre-
dicts a class label y* from the features x in an auto-
matic manner. Therefore, the classifier is derived 
from a training set  = ( ) = …{ }x i iy i n, | , ,1  to 
learn the relationship between the features xi and 
the associated class yi. The set   is composed 
from n training patterns x1, …, xn, where the true 
class label yi for each xi is known and is used as 
gold standard. State-of-the-art classifiers com-
monly used in practical applications are support 
vector machines (SVM), random forests, artificial 
neural networks (ANN), or boosting methods such 
as AdaBoost [15].

Example: In glaucoma detection, we are inter-
ested in the state of glaucoma, and the aim is to 
solve a two-class problem with y ∈ {N, G} 
whereas y = N for a normal subject and y = G for a 
subject suffering from glaucoma, respectively. 
Nayak et  al. [9] proposed an ANN to discrimi-
nate between healthy normals and glaucomatous 
eyes based on features gained from fundus 
images. Therefore, the ANN is trained with pat-
terns obtained from manually labeled fundus 
images provided by an ophthalmologist.

9.4	 �Glaucoma Detection by 
Means of Imaging

One trend in ophthalmology is the quantitative sur-
vey of the retinal fundus based on image data 
acquired in a noninvasive and in vivo way. These 
techniques utilize characteristics of the ONH as 
parameter and can be embedded within glaucoma 
screening programs [26]. As already depicted in 
Sect.  9.1, they can be automatically employed 
within a computer-aided assessment step to detect 
traces of glaucoma based on image data and to pro-
vide an initial exclusion of most likely normal cases.

Two major types of methodologies can be 
distinguished:
Structure-driven techniques commonly automate 

the extraction of established structural param-
eters of the ONH, e.g., the diameters of the 
optic disk and cup. These parameters are 
already known in the medical community and 
also statistically verified but are often deter-
mined manually.

Data-driven techniques utilize data-mining 
methods applied on the entire image to obtain 
discriminative markers for glaucoma detec-
tion. In contrast to structure-driven techniques, 
no direct relation between the ONH structure 
and the marker can be further obtained.

9.4.1	 �Structure-Driven Glaucoma 
Detection

In structure-driven glaucoma detection, disease-
specific indicators of clinical significance are 
measured quantitatively. In general, glaucoma is 
characterized by a continuous, irreversible loss of 
ganglion cells [3]. This loss is the root cause for 
a set of structural ONH changes which can be 
captured by fundus imaging modalities as intro-
duced in Sect. 9.2: (i) Thinning of the neuroreti-
nal rim and (ii) a simultaneous extension of ONH 
cupping can be measured in fundus photogra-
phies and HRT images [27] as shown in Fig. 9.4 
for an example fundus image [8]. (iii) The thin-
ning of the retinal nerve fiber layer can be quanti-
fied, e.g., by OCT devices, and correlates with 
visual field defects due to glaucoma [28].

9  Computer-Aided Diagnostics and Pattern Recognition: Automated Glaucoma Detection
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9.4.1.1	 �2-D Optic Nerve Head Analysis
A medically established feature accepted for 
glaucoma diagnosis is the cup-to-disk ratio 
(CDR) defined as:

	
CDR

d

d
cup

disk

=
	

(9.1)

where dcup and ddisk denote the vertical cup and 
disk diameter, respectively. With a thinned neu-
roretinal rim and an enlarged cup in case of glau-
comatous eyes, a larger CDR indicates an 
increased risk of glaucoma.

Originally, the CDR was manually determined. 
An automated calculation is possible when utiliz-
ing recent image segmentation algorithms. A 
supervised procedure employs pixel classification 
to discriminate between disk, cup, and remaining 
background, e.g., based on superpixels [25]. 
Contrary, region-based methods rely on active 
contour models for disk segmentation and vessel-
bend detection [23]. In case of stereo fundus 
imaging, the depth map obtained from a stereo 
image pair can be utilized to increase the reliabil-
ity of the cup segmentation [29]. Once disk and 
cup are segmented, dcup and ddisk are measured to 
determine the CDR according to Eq. (9.1).

The CDR may also be combined with further 
structural features such as the blood vessel areas 

in inferior, superior, nasal, and temporal (ISNT) 
quadrants or the distance between optic disk cen-
ter and ONH as proposed by Nayak et al. [9]. The 
optic disk size should also be included to glau-
coma classification as it highly correlates with 
CDR [30].

9.4.1.2	 �Topographic Optic Nerve  
Head Analysis

One inherent limitation of the CDR is that it 
ignores the underlying surface of the ONH as it is 
a 2-D feature only. HRT imaging enables the 
topographic analysis of the optic nerve which has 
been also investigated for glaucoma detection 
[11, 31].

In the approach of Swindale et  al. [11], a 
surface model z: � �2 →  estimated from ONH 
images defines  the depth z as a function of the 
position (u, v) on the ONH. This model consists 
of two parts modeling the surface: (i) the para-
bolic retinal fundus and (ii) the ONH cup, which 
is parameterized by ten features. These encode 
meaningful structural features such as center, 
radius, slope, or depth of the optic cup as well as 
secondary parameters such as cup gradient mea-
sures derived from the model. They differ for 
healthy and glaucomatous subjects and are uti-
lized for glaucoma detection. The resulting glau-
coma probability score (GPS) is obtained by a 
Bayes classifier which allows to introduce an
adapted loss functions [15] in order to penalize a 
misclassification of a glaucoma patient as a 
healthy one, usually referred to as false negative. 
This is useful in a screening scenario where 
unrecognized cases should be avoided.

Twa et al. [32] modeled the ONH depth profile 
utilizing pseudo-Zernike radial polynomials. The 
parameters are then used as features within a 
decision tree classification. This method can be 
considered as a generalization of Swindale et al. 
[11] as a generic parametric function is used in 
comparison to a cup-specific parametric model.

9.4.1.3	 �Volumetric Retinal Nerve  
Fiber Layer Analysis

In addition to 2-D and topographic modalities, 
OCT imaging enables an in-depth analysis of the 
retinal layers. To enable a reliable determination 

Fig. 9.4  Fundus image showing the optic nerve head 
(ONH): The optic cup is visible as bright spot inside the 
optic disk enclosed by the neuroretinal rim (Image data is 
taken from the high-resolution fundus (HRF) database

T. Köhler et al.
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of the RNFL, modality-specific image artifacts 
such as speckle noise [33–35] and motion arti-
facts [36] need to be compensated beforehand. 
Afterward, an automatic analysis of the RNFL by 
image processing and classification methods is 
promising for glaucoma detection [13, 14].

A threshold-based classification schema con-
sidering the single average RNFL thickness is 
proposed by Pachiyappan et al. [37]. The RNFL 
is automatically segmented by active contours.

The amount of input features is extended by 
Bizios et al. [38] who added new parameters to 
the conventional structural measurements that 
capture percentile thickness values of different 
retinal quadrants around the ONH. For classifica-
tion, (i) an SVM and (ii) neural network classifi-
ers were applied and compared.

An automatic framework for glaucoma 
detection that also extends the feature space has 
been proposed by Mayer et al. [39]. Based on an
automatic segmentation of the RNFL in circular 
B-scans centered at the ONH [40], the following 
features are extracted from the RNFL thickness 
profile and used as classifier input: (i) statistical 
features including minimum, maximum, and 
mean values of the profile and (ii) the entire 
thickness profile compressed by a PCA model. 
The yielded feature vector x only represents the 
appearance of the RNFL without including any 
anamnesis data and is utilized by an SVM 
classifier.

Overall, the structure-driven methods for glau-
coma detection mainly rely on a small set of highly 
discriminative and medically motivated features.

9.4.2	 �Data-Driven Glaucoma 
Detection

In data-driven approaches, the entire image data 
is exploited by general-purpose features such as 
spectral or texture features that are established in 
signal and image processing. These features are 
neither directly related to glaucoma nor of clini-
cal meaningfulness but represent an abstract 
mathematical description of the retina. Novel 
techniques employing this concept for glaucoma 
detection are described in the following sections.

9.4.2.1	 �Higher-Order Spectra (HOS) 
and Texture Analysis

The glaucoma detection method introduced by 
Acharya et al. [41] exploits higher-order spectra 
(HOS) features that are combined with texture 
features.

The proposed HOS features exploit phase and 
amplitude information of fundus images. Spectral 
descriptors are obtained from this information and 
are used as features for glaucoma classification.

The variation of pixel values in an image 
encodes its texture. For the extraction of texture 
features, two quantities are analyzed:
	(i)	 The gray-level co-occurrence matrix encodes 

the number of combinations for different 
pixel values in an image. Additionally, a dif-
ference matrix encodes probabilities that a 
certain gray-level differences between two 
pixels occur. This is derived from the co-
occurrence matrix.

	(ii)	 The run-length matrix Ρθ(i, j) encodes how 
often a pixel value i successively appears j 
time for a certain direction given by angle θ. 
From these quantities, texture descriptors are 
derived as features. For a mathematical defi-
nition of the complete feature set, the inter-
ested reader is referred to [41].

HOS and texture features are combined as a 
joint feature set to discriminate healthy and glau-
coma subjects. Therefore, SVM, random forests, 
and naive Bayes classifiers have been investi-
gated showing competitive performance in terms 
of sensitivity and specificity.

9.4.2.2	 Wavelet-Based Features
Dua et al. [42] proposed to use the discrete wave-
let transform (DWT) as a feature extractor in 
glaucoma detection from fundus images showing 
the ONH.

The DWT decomposes the input signal, i.e., 
the fundus image, into spatial and frequency 
domains at different scalings and is well estab-
lished in signal and image processing. To identify 
the most discriminative descriptors for glaucoma 
detection, this extensive set of features is then 
reduced by feature ranking and selection. Similar 
to [41], several classifiers such as random forest, 
SVM, and naive Bayes have been investigated.

9  Computer-Aided Diagnostics and Pattern Recognition: Automated Glaucoma Detection
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9.4.2.3	 �Eigenimages and Glaucoma 
Risk Index (GRI)

The concept of appearance-based pattern recog-
nition for glaucoma detection on fundus images 
was introduced by Bock et al. [6] and is inspired 
by the Eigenimages originally proposed for face 
recognition [43].

First, input images are preprocessed using 
ONH centering, illumination correction, and 
blood vessel inpainting to remove image charac-
teristics not related to glaucoma. Then, three dif-
ferent feature types are extracted from the 
images: (i) the raw image intensities, (ii) the 
Fourier coefficients, and (iii) the B-spline
coefficients. Each of these feature sets is sepa-
rately compressed by an unsupervised PCA to 
condense the major image variations into a com-
pact format. Finally, an SVM classifier hierarchy 
is employed. In the first stage, each feature vector 
per feature type is classified by one probabilistic 
SVM yielding three distinct glaucoma probabili-
ties. In the second stage, these three probabilities 
are then merged to an intermediate feature vector 
and used as input for an additional probabilistic 
SVM to obtain a final probabilistic glaucoma risk 
index (GRI). The processing pipeline for the GRI 
computation is outlined in Fig. 9.5.

9.4.2.4	 �Independent Component 
Analysis

A further appearance-based method for glau-
coma detection has been proposed by Fink et al. 
[44]. This method utilizes the independent com-
ponent analysis (ICA) [45] on images captured 
with a confocal laser ophthalmoscope (Heidelberg 
retina tomograph (HRT)). In contrast to PCA, 

ICA decomposes the signal into statistically 
independent factors. The entire HRT image is 
treated as a feature vector and used to derive its 
ICA decomposition coefficients. The final clas-
sification is then achieved by applying a K-nearest 
neighbor classifier utilizing these coefficients as 
a feature.

9.5	 �Summary

This section summarizes the performance of the 
described structural and data-driven approaches. 
Subsequently, both paradigms are discussed and 
compared.

9.5.1	 �Performance Comparison

For quantitative evaluation, the following mea-
surements are considered: (i) the accuracy to 
assess the percentage of correctly classified 
images, (ii) the sensitivity and specificity to quan-
tify the trade-off between a sensitive glaucoma 
detection and an unreasonable high false-positive 
rate, and (iii) the area under the receiver operating 
characteristic curve (AUC) to evaluate for the 
overall performance. While the AUC measure-
ment is independent from a binary cut-off thresh-
old during classification, the remaining 
measurements might be adjusted by selecting a 
different threshold, e.g., optimized for a screening 
scenario. Table 9.1 summarizes quantitative results 
as reported in the cited original publications. The 
numbers are not necessarily gained from the same 
sample set and may have different distributions of 

Fig. 9.5  Glaucoma risk index (GRI): The processing 
pipeline performs three major steps: (i) preprocessing to 
eliminate disease independent variations, (ii) data-driven 
feature extraction based on different feature types and 

principal component analysis (PCA), and (iii) two-stage 
probabilistic classification using support vector machine 
(SVM) to achieve the final risk index

T. Köhler et al.
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glaucoma disease, age, sex, or race. If multiple 
classifiers were evaluated on the same feature set, 
we report the best performance achieved.

The results indicate that image-based glau-
coma detection achieves a notable accuracy and 
an AUC of at least 80 %, respectively. Considering 
fundus photography and HRT imaging, both 
structural and data-driven methods can achieve 
an accuracy of around 90 %. However, volumet-
ric analysis based on OCT data is characterized 
by an outstanding AUC of up to 98 %. Thus, nei-
ther structural nor data-driven methodology is 
outperforming the other one, while the volumetric, 
structure-driven techniques seem to be most 
discriminative.

9.5.2	 �Structure-Driven vs. Data-
Driven Approach

The presented paradigms achieve a comparable 
glaucoma detection performance within the same 
imaging modality although they both rely on con-
trary basic assumptions.

Structure-driven methods depend on a small, 
but highly discriminative, set of features, neglect-
ing the bigger part of the image data. In general, 
these are either computed by fitting a parametric 
model to the image data or segmenting retinal 
structures. The obtained indicators were manu-
ally selected and proved by clinical studies and/
or trials. In mass screening, an automated and 
reliable analysis, e.g., of the CDR, relies on an 
accurate segmentation of cup and disk. However, 
since boundaries of these structures are not well 
defined and highly variable, such an automatism 
is difficult to achieve in practice.

In data-driven approaches, no manual preselec-
tion of the image content is performed, but the entire 
image data is utilized. The desired compact set of 
discriminative features required for a reasonable 
classification is then obtained by a subsequent auto-
matic feature selection and compression. Thus, the 
data-driven techniques might extract novel features 
that are not yet captured by structure-driven 
approaches. A further medical analysis of these data-
driven features is promising as it might provide new 
insights to glaucoma disease and its variations.

�Conclusion

This chapter presents novel trends for glau-
coma detection by means of pattern recogni-
tion. These techniques employ noninvasive 
and in vivo imaging of the human retina and 
can be embedded to computer-aided screening. 
In the course of this chapter, methods based on 
fundus photography, topographic HRT imag-
ing, and volumetric analysis using OCT are 
reviewed. The two major methodologies, i.e., 
(i) structure- and (ii) data-driven techniques, 
utilize complementary image information and 
showed a comparable performance.

Even when first experimental evaluations 
showed promising results, there are several 
ways to extend these techniques and to gain 
new insight to glaucoma disease and its charac-
teristics. Since all presented methods employ a 
single imaging modality, multimodal tech-
niques are an interesting extension. Therefore, 
complementary information, e.g., 2-D photo-
metric data obtained from fundus photography 
augmented by volumetric data acquired by 
OCT, can be used to extract a multimodal fea-
ture set. In addition, features obtained by struc-
tural and data-driven methods can be combined 
to a hybrid classification approach. This might 
improve automatic glaucoma detection in order 
to reduce the amount of manually assessed 
screening patients and may help to reduce the 
costs of glaucoma screening programs.
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