

J. Lloret Mauri et al. (Eds.): SSCC 2014, CCIS 467, pp. 120–135, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Security Enhancement in Web Services by Detecting
and Correcting Anomalies in XACML Policies

at Design Level

M. Priyadharshini1, J. Yowan2, and R. Baskaran1

1 Computer Science Department, Anna University, India
mpriya1977@gmail.com, baaski@annauniv.edu

2 Department of Information Science and Technology, Anna University, India
jyowan@gmail.com

Abstract. The significance of XACML (Extensible Access Control Markup
Language) policies for access control is immeasurably increasing particularly in
web services. XACML policies are web access control policies which are used
to permit the genuine users to access the resources and also deny the sham
users. Generation of this XACML policy is very important task in order to
avoid security seepage. Detecting and Correcting inconsistencies in access
control policies are highly time consuming and tedious when size of XACML
polices are high. The Process when done at execution time could even need
more time and effort. The purpose of this work is to devise an anomaly
detection and correction tool which could be used at the time of designing
policies so as to reduce time and effort. Policy designer could easily discover
and resolve the inconsistencies such as conflicts and redundancies in the
XACML policies with the help of our XACML Policy Analyzer tool.

Keywords: Web Services, XACML, Access Control, Anomalies, Policy
Analyzer.

1 Introduction

Extensible Access Control Markup Language(XACML) [1], which is a general
purpose access control policy language drafted by the Organization for the
Advancement of Structured Information Standards (OASIS), has been broadly used to
specify access control policies for numerous applications, especially in the domain of
Web Services [3]. XACML policy designer when creating XACML Policies may
sometimes create it with inconsistencies [2]. Conflict and Redundancy are the two
types of inconsistency that exist in XACML Policies. In the XACML policies
redundancies occur, if one rule’s content may be repeated in another rules with same
effect such as permit or deny. Conflicts occur, if one rule’s content may be repeated in
other rules with different effect such as permit or deny. Redundancies in the policies
increase the policy evaluation time. Conflicts in XACML Policies lead two kinds of
problems. First, Security problem (e.g. permitting sham users).Second, accessibility

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 121

problem (e.g. denying genuine users).The Policy designer can manually resolve these
problems only for the policies which contain few rules. The Policy designer cannot
manually resolve these problems for the policies which contain many rules.

XACML has four different combining algorithms [1] such as Deny-overrides,
Permit-overrides, First-Applicable and Only-One-Applicable. Policy Designer cannot
assign correct combining algorithm without correct conflict information about the
XACML policies. Redundancy elimination is the solution for XACML policy
optimization. Policy optimization can improve the performance of XACML Evaluation.

In this paper, we propose four algorithms for detecting and correcting anomalies in
XACML policies. First, Redundancy Detecting Algorithm which finds the
redundancies present in the policies. Second is the Redundancy Elimination Algorithm
that eliminates the redundancies in the policies. Third, Conflict Detection Algorithm is
used to identify the conflicts in the policies. Fourth, Conflict Correction Algorithm is
used to resolve the conflicts in the policies.At present XACML conflict correction
mechanisms use only one combining algorithm to resolve all detected conflicts within
an XACML policy or policy set. Also, many other conflict correction methods are
present [4], [5], [6], but they don’t support XACML. Thus we provide a policy
detection and conflict correction mechanism for XACML in this proposed work.

The rest of this paper is organized as follows. Section 2 describes the overview of
XACML Policy and a discussion on the anomalies in the XACML Policy is also been
presented. Section 3 presents the proposed methodology. In Section 5, we present the
results and discussion of the proposed methodology. In Section 6 few related works
are specified and finally conclusion and future work in Section 7.

2 Overview of XACML

The root of all XACML policies is PolicySet or a Policy. A PolicySet contains many
Policies or other PolicySets and corresponding policy combining algorithm. A Policy
contains a target, set of rules and also rule combining algorithm. The target defines a
set of subjects, resources and actions. A rule set is a sequence of rules. Each rule
consists of a target, a condition, and an effect.

The target of a rule determines whether an access request is applicable to the rule
and it has a similar structure as the target of a policy or a policy set. Table 1 shows a
sample XACML policy. The root policy set pset1 contains two policies, Pol1 and
Pol2, which are combined using First-Applicable combining algorithm. The policy
Pol1 has two rules, r1 and r2, and its rule combining algorithm is Deny-Overrides.
The policy Pol2 includes four rules r3, r4, r5 and r6 with Deny-Overrides combining
algorithm. In this sample, there are three subjects: Assistant Manager, Project
Manager, and Site Engineer; two resources: Project Report and Contractor
Details; and two actions: Read and Write; one condition with time attribute:
8<=Time<= 18.

122 M. Priyadharshini, J. Yowan, and R. Baskaran

Table 1. Sample XACML policy

<PolicySetPolicySetid=”pset1” Policy Combining AlgId=”First-Applicable”>
 <Target/>
 <Policy PolicyId=”pol1” RuleCombiningAlgId=”Deny-Overrides”>
 <Target/>
 <Rule RuleId=”r1” Effect=”Permit”>
 <Target>

 <Subjects>
 <Subject>Project Manager</Subject>
 </Subjects>
 <Resources>
 <Resource>Project Report</Resource>
 <Resource>Contractor details</Resource>
 </Resources>
<Actions>
 <Action>Read<Action>
 <Action>Write<Action>

 </Actions>
</Target>

 </Rule>
 <Rule RuleId=”r2” Effect=”Permit”>

 <Target>
 <Subjects>
 <Subject>Project Manager</Subject>
 <Subject>Assistant Manager</Subject>
 </Subjects>
 <Resources>
 <Resource>Project Report</Resource>
 <Resource>Contractor details</Resource>
 </Resources>
 <Actions>
 <Action> Read<Action>
 </Actions>
 </Target>
</Rule>

 </Policy>
<Policy PolicyId=”pol2” RuleCombiningAlgId=”Permit-Overrides”>
 </Target>

<Rule RuleId=”r3” Effect=”Permit”>
 <Target>
 <Subjects>
 <Subject>Site Engineer</Subject>
 </Subjects>
 <Resources>
 <Resource>Contractor details</Resource>
 </Resources>
 <Actions>
 <Action> Read<Action>
 </Actions>
 </Target>
 <Condition>8 <=Time<=18</Condition>

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 123

 </Rule>
<Rule Rule Id=”rule4” Effect=”Permit”>
 <Target>
 <Subjects>
 <Subject>Assistant Manager</Subject>
 </Subjects>
 <Resources>
 <Resource>Project Report</Resource>
 </Resources>
 <Actions>
 <Action>Read<Action>
 </Actions>
 </Target>
</Rule>
<Rule Rule Id=”r5” Effect=”Deny”>
 <Target>
 <Subjects>
 <Subject>Site Engineer</Subject>
 </Subjects>
 <Resources>
 <Resource>Contractor details</Resource>
 </Resources>
 <Actions>
 <Action>Read<Action>
 </Actions>
 </Target>
 </Rule>
 <Rule Rule Id=”r6” Effect=”Deny”>
 <Target>
 <Subjects>
 <Subject>Assistant Manager</Subject>
 </Subjects>
 <Resources>
 <Resource>Project Report</Resource>
 </Resources>
 <Actions>
 <Action>Read<Action>
 </Actions>
 </Target>
 </Rule>
</Policy>

</PolicySet>

2.1 Anomalies in XACML

Redundancy and Conflict are two anomalies that could exist between Policies and
Policy Sets which need to be resolved so as to enable taking smooth decision in case
of access control.

124 M. Priyadharshini, J. Yowan, and R. Baskaran

Anomalies at Policy Level
A Policy contains a target, set of rules and also rule combining algorithm and there is
a possibility that two rules defined may lead to different decisions that is to permit or
deny or else even they may have same redundant rule been defined thus leading to
anomalies at Policy level.

Redundancies:

In Policy pol1, rule r1 is in redundant with rule r2 in Fig 1 where r1 allows the
Project Manager (Subject) to read (Action) Project Report and Contract details
(Resources) which is also permitted by r2.The complete set of redundancies in each
policy of the sample XACML policy in Table 1 is shown in Table 2.

Table 2. Redundancy at Policy Level

S. no Policy Id Redundancy between the rules
1

pol1

Rule Id r1 r2
r1 - yes

r2 yes -
2 pol2

Rule Id r3 r4 r5 r6
r3 - no no no
r4 no - no no
r5 no no - no
r6 no no no -

Conflicts:

In Policy pol2, rule r3 is in conflict with rule r5 and also r4 is in conflict with r6 in
Table 1 because r3 allows the Subject Site Engineer to read (Action) the Resource
Contract details in the time interval [8:00, 18:00] which are denied by r5. The
complete conflicts in each policy of the sample XACML policy in Fig 1 is shown in
Table 3.

Anomalies at Policy Set Level
A Policy Set has a set of policies and there is a possibility that two policies defined
could possess same target, set of rules and rule combining algorithm leading to
different decisions that is to permit or deny or else even they may have same
redundant policy been defined thus leading to anomalies at policy set level.

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 125

Table 3. Coflicts at policy level

S. no Policy Id Conflicts between the rules

1

pol1

Rule Id r1 r2

r1 - no

r2 no -

2 pol2

Rule Id r3 r4 r5 r6

r3 - no yes -

r4 - - - yes

r5 yes - - -

r6 - yes - -

Redundancies:

Redundancies may also occur between policies or policy sets. Rule r2 of Policy pol1
is in redundant with rule r4 of Policy pol2 in Table 1because r2allows the Assistant
Manager (Subject) to read (Action) Project Report (Resource) which is also
permitted by r4. The complete redundancies between each policies of the sample
XACML policy in Table 1 is shown in Table 4.

Table 4. Redundancy in policy set level

S. no Policy Ids Redundancy between the rules

 Rule Id r3 r4 r5 r6

1

pol1 and
pol2

r1 no no no no

r2 no yes no no

Conflicts:

Conflicts may also occur between policies or policy sets. Rule r2 of Policy pol1 is in
conflict with rule r6 of Policy pol2 in Table 1 because r2 allows the Assistant
Manager (Subject) to read (Action) Project Report (Resource) which is denied by r6.
The complete conflicts between each policies of the sample XACML policy in Fig 1 is
shown in Table 5.

Table 5. Conflicts at policy set level

S. no Policy
Ids

Conflicts between the rules

 Rule Id r3 r4 r5 r6
1

pol1 and
pol2

r1 no no No no
r2 no no No yes

126 M. Priyadharshini, J. Yowan, and R. Baskaran

3 Proposed Methodology

The proposed methodology consists of sequence of activities to construct the Boolean
Expression followed by the Algorithms to detect as well as to correct the anomalies in
the XACML Policy. The algorithms include redundancy detection algorithm,
redundancy elimination algorithm, conflict detection algorithm and finally conflict
correction algorithm as given in Fig. 1 below.

Fig. 1. Proposed Architecture

3.1 Construction of Boolean Expression

First, XACML policy is parsed to identify policy set id, policy id, rule effect, rule id
and also attributes such as subjects, actions, resources and conditions. The parsed
result is used to form Boolean Expression.

Second, After Parsing, a new Boolean variable should be assigned to each
attributes. We assign each of the attributes values as a Boolean variable. For example,
an attribute Subject=“Project Manager” is assigned into a Boolean variable S1.

Table 6. Boolean Expressions of XACML Policy in Table 1

S. no Rule Effect Boolean Expression
1 r1 Permit (S1) ˄ (R1 ˅ R2) ˄ (A1 ˅ A2)
2 r2 Permit (S1 ˅ S2) ˄ (R1 ˅ R2) ˄ (A1)
3 r3 Permit (S3) ˄ (R2) ˄ (A1) ˄ (C1)
4 r4 Permit (S2) ˄(R1) ˄ (A1)
5 r5 Deny (S3) ˄(R2) ˄ (A1)
6 r6 Deny (S2) ˄(R1) ˄ (A1)

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 127

Third, we utilize the Variable Assigning technique to construct Boolean
expressions in terms of Boolean variables for XACML rules. Each Boolean
expression of a rule contains attributes combined by logical operator ∨and ∧. Boolean
Expressions are used for anomaly detection, elimination and correction. Thus Table 6
shows the complete list of Boolean expressions for the XACML in Table 1.

3.2 Redundancy Detection Algorithm

Redundancy Detection Algorithm is used to find the redundancies present in the
XACML Policies. Line 4-15 in Algorithm 1 contains redundancy_detection() method
which can find the redundancies in the XACML Policies. Redundant rules have the
following two properties:

1. All rules are pair wise disjointed

 Rule id ri ≠ Rule id rj

2. The effects of matched rules contain either “Permit” only or “Deny” only.

Line7 in Algorithm1 checks these properties. In Table 6, rule r1 is in redundant

with rule r2 because Subject (S1), Resources (R1, R2), and Action (A1) are present in
both the rules. So Subject_Match_ri_rj, Resource_Match_ri_rj, Action_Match_ri_rj
and No_Condition_ri_rj from Line 8-11 in Algorithm 1 are greater than zero.

Algorithm1. Redundancy Detection in XACML Policy

Input: Boolean Expression of rules with Effect

Output: Detected Redundancies between the rules

1 /*parsing the XACML Policy*/
2 /*Boolean Encoding*/
3 /*Boolean Expression of each rules*/
4 redundancy_detection()
5 for each ri ϵ Be

6 for each rj ϵ Be

7 if Ǝ riϵ Be, rjϵ Be,ri≠rj,ri.Effect=rj.Effect
8 if Subject_Match_ri_rj,>0
9 if Resource_Match_ri_rj,>0
10 if Action_Match_ri_rj,>0
11
12

 if ConditionMatch_of_ ri_rj,>0
 ||No_Condition_Match_ri_rj=0

13 Redundancy present between ri and rj
14 redundancy_elimination();
15 new_boolean_expression();
16 redundancy_detection();

128 M. Priyadharshini, J. Yowan, and R. Baskaran

3.3 Redundancy Elimination Algorithm

After finding the redundancy, Redundancy Elimination algorithm identifies the
redundancy type so as to find the different set of solutions to handle the redundancy.

Check Points for Redundancy Elimination
Redundancy Elimination Algorithm consist four Check points. The Check Points
are Same, Different Equal, Different Subset and Different Superset. These Check
Points analyse and find out the correct redundancy type. The Check Points for the
redundancy elimination approach are shown in Fig 2.

Fig. 2. Check Points for Redundancy Elimination

The Check points are briefly explained below:

Same: All the attribute values of same attribute group for rule ri and rj should be
same. Consider rule r1 and r2 from the Boolean Expression Table, Here Resources R1
and R2 are present in both the rules. All Resources of r1 are not only same to the
Resources of r2 but also the Resource length of r1 is equal to the Resource length of
r2.Here Resource length of r1 and r2 is 2.

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 129

Different Equal: Few attribute values of same attribute group for rule ri and rj should
be same and also the length of the attribute groups of the both the rules ri and rj should
be same. Consider rule r1 and r2 from the Boolean Expression Table, For instance, if
we change the Resource R2 of r2 to R3, now the Resources of rule r1 are R1and
R3.Here only Resource R1 is present in both the rules. Few resources of r1 are not
only same to the Resources of r2 but also the Resources length of r1 is equal to the
Resource length of r2.Here Resource length of r1 and r2 is 2.

Different Subset: Few attribute values of same attribute group for rule ri and rj should
be same and also the attribute group length of the rule ri should be less than rj.

Consider rule r1 and r2 from the Boolean Expression Table. Here Subject S1 is present
in both the rules. Subject S2of r2 is not present in the rule r1.Few Subjects of r1 are
not only same to the Subjects of rule r2 but also the Subjects length of r1 is lesser than
the Subjects length of r2.Here Subject length of r1 is 1 and Subject length r2 is 2.

Different Superset: Few attribute values of same attribute group for rule ri and rj

should be same and also the attribute group length of the rule ri should be greater than
rj. Consider rule r1 and r2 from the Boolean Expression Table. Here Actions A1 and
A2are present in both the rules. Action A2of r1 is not present in the rule r2.Few Actions
of r1 are not only same to the Actions of rule r2 but also the Actions group length of r1
is greater than the r2.Here Action group length of r1 is 2 and length of r2 is 1.

The function redundancy_detection() in Algorithm 1 is invoked to find the
redundancy between the rules. In Boolean Expression Table 6, rule r1 is redundant
with rule r2.The function redundancy_elimination() in Algorithm 2 uses Check point
to eliminate the redundancy between the rules. The Check Points between these rules
are Different Subset for Subjects, Same for Resources and Different Superset for
Actions. The Solution for this redundancy type is to remove the Subject S1 from the
rule r2.Now new_boolean_expression() function in Algorithm 1 is called to assign
new Boolean expression for rule r1 and r2.The Boolean expression after redundancy
elimination is shown in the Table 7.

Table 7. Boolean Expression after Redundancy Elimination

S. no Rule Effect Boolean Expression
1 r1 Permit (S1) ˄ (R1 ˅ R2) ˄ (A1 ˅ A2)
2 r2 Permit (S2) ˄(R1 ˅ R2) ˄ (A1)
3 r3 Permit (S3) ˄(R2) ˄(A1) ˄ (C1)
4 r4 Permit (S2) ˄ (R1) ˄ (A1)
5 r5 Deny (S3) ˄ (R2) ˄ (A1)
6 r6 Deny (S2) ˄ (R1) ˄ (A1)

Again redundancy_detection() function is called to find the redundancy between

the rules in the new Boolean expression. Now rule r2 is redundant with rule r4. Again
function redundancy_elimination() uses Check points to eliminate the redundancy
between the rules. The Check Points between these rules are Same for Subjects,
Different Superset for Resources and Different Superset for Actions. The Solution for
this redundancy type is to remove the rule r4 from the Sample XACML Policy. Now

130 M. Priyadharshini, J. Yowan, and R. Baskaran

new_boolean_expression() function assign new Boolean expression for the new
Sample Policy. This process continues until eliminate the redundancies in the
XACML Policy completely. A complete list of Boolean encoding for the example
XACML policy in Table 1 is shown in Table 2.

3.4 Conflict Detection Algorithm

Conflict Detection Algorithm is used to find the conflicts present in the XACML
Policies. Line 4-25 contains conflict_detection() method which can find the conflicts
in the XACML Policies.

Algorithm2. Conflict Detection in XACML Policy

Input: New Boolean Expression without redundancy

Output: Detect Conflicts present between the rules

1 /*parsing the XACML Policy*/
2 /*Boolean Encoding*/
3 /*Boolean Expression of each rules*/
4 conflict_detection()
5 for each r ϵ nBe

6

for each r ϵ nBe

7 if Ǝ riϵnBe, rjϵnBe,ri≠rj,ri.Effect≠trj.Effect
8 if Subject_Match_ri_rj,>0
9 if Resource_Match_ri_rj,>0
10 if Action_Match_ ri_rj,>0
11
12
13

if Condition_Match_ri_rj,>0
||No_Condition_Match_ri_rj=0
||One_Condition_ri_rj>0

14 Conflict present between ri and rj
15 if Ǝ riϵ Ps, rjϵ Ps,ri≠rj,ri.Effect=rj.Effect
16 if Subject_Match_ri_rj,>0
17 if Resource_Match_ri_rj,>0
18 if Action_Match_ri_rj,>0
19 if One_Condition_ri_rj>0
20
21
22

 Conflict present between ri and rj

23 get_policy_designer_effect();
24 conflict_resolution();
25 new_boolean_expression();

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 131

Conflicting rules have the following two Conditions:
Condition1 has three properties

1. All rules are pair wise disjointed
 Rule id ri ≠ Rule id rj

2. The effects of matched rules should contain both “Permit” and “Deny”
3. If Condition attribute present in the rules then

 ”NoCondition list length is greater than zero” or
 “ConditionMatch list length is greater than Zero”
 or “OneCondition list length is greater than Zero”.

Line7-11 in the Algorith 2 checks these properties.
Condition2 has three properties
1. All rules are pair wise disjointed

Rule id ri ≠ Rule id rj

2. The effects of matched rules contain either “Permit” only or “Deny” only.
3. If condition attribute present in the rules then “OneCondition list length

should be greater than Zero”.

Line17-21 of Algorithm 2 checks these properties.
In new Boolean Expression table, rule r3 is in conflict with rule r5 because Subject

(S3), Resources (R2), and Action (A1) are present in both the rules and also
Condition attributes is present only in the rule r3. So Subject_Match_ri_rj,
Resource_Match_ri_rj, Action_Match_ri_rj and One_Condition_ri_rjsize are greater
than zero. Rule r2 is in conflict with rule r6becauseSubject (S1), Resources (R1), and
Action (A1) are present in both the rules and also So Subject_Match_ri_rj,
Resource_Match_ri_rj, and Action_Match_ri_rjsizeare greater than zero.

3.5 Conflict Resolution Algorithm

First, the function conflict_detection() is called to find the conflicts between the
rules. In Boolean Expression table, rule r2 is in conflict with ruler6and also r3 is in
conflict with r5.

Second, get_policy_designer_effect() is called to get the rule effects of the
conflicting rules and show that effects and conflicting segments to the Policy
Designer. The policy designer should set the correct effects to those conflicting
segments; to enable easy interpretation a grid based representation is used. Here the
following three segments are the conflicting segments.

1. S2-R1-A1 from rule r2
2. S3-R2-A1-C1 from rule r3
3. S3-R2-A1 from rule r5

If the Policy Designer set the effect Permit to the conflicting segments S2-R1-A1
and S3-R2-A1-C1, the conflicting segment S3-R2-A1 will be hidden to the Policy
designer for which the system provides a user interface to suggest the policy designer
as in Fig. 3.

132 M. Priyadharshini, J. Yowan, and R. Baskaran

Fig. 3. User Resolution suggestion User Interface

Third, the function conflict_resolution() uses Check point to resolve the conflicts
between the rules r2 and r6 and also between the rule r3 and r5. The Check Points
between the rule r2 and r6 are Same for Subjects, Different Superset for Resources
and Same for Actions. The Solution for this conflict type is to remove the rule r6.The
Check Points between the rule r3 and r5 are Same for Subjects, Same for Resources,
Same for Actions and one condition is present in r3. The Solution for this conflict
type is to remove the rule r5.After the conflict resolution new_boolean_expression()
function assign new Boolean expression we get new Refined Boolean Expression
presented in Table 8.

Table 8. Refined Boolean Expression

S. no Rule Effect Boolean Expression
1 r1 Permit (S1) ˄ (R1 ˅ R2) ˄ (A1 ˅ A2)
2 r2 Permit (S2) ˄ (R1 ˅ R2) ˄ (A1)
3 r3 Permit (S3) ˄ (R2) ˄ (A1) ˄ (C1)

4 Results and Discussion

The proposed methodology of conflict and redundancy elimination covers the already
prevailing methodologies where only part of the methodology was implemented and
analyzed.

Table 9 presents various tools(T) and approaches(A) that are used for detecting
and resolving anomalies in XACML Policy, the features they support and hence the
purpose of the proposed methodology to highly reduce the processing time of PDP is
also solved resolving the anomalies.

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 133

Table 9. Listing of Tools and Approaches for Anamoly Detection and Resolution

S. no Tools/Approach Phase Features
Supported

Features
Not Support

1 Margrave(T) Implementation Policy Verification

Anomaly Resolution

2 EXAM(T) Implementation Policy Analysis,

Policy Verification,

Policy Integration

Anomaly Resolution

3 PCL(A) Implementation Conflict Resolution Without pre-defined

combining algorithm

in XACML Policy

4 XEngine(T) Implementation Conflict Resolution Without predefined

combining

algorithms in the

policy

5 SunPDP(T) Implementation Conflict Resolution Without predefined

combining

algorithms in the

policy

6 XAnalyzer(T) Design Redundancy

Elimination and

Conflict Resolution

Without predefined

combining

algorithms in the

policy

7 XACML Policy

Analyzer(T)

Design Redundancy

Elimination and

Conflict Resolution

without pre-defined

combining

algorithms

-

A sample policy with 6 Rules, 2 Policies and 1 Policy Set is taken as a sample and

executed in our system and compared with that of XAnalyzer[2].Our approach is
found to consume lesser time for redundancy removal as well as for conflict
detection when compared to the other approaches and also this proves to be efficient
since done at design level itself. The result of the experimentation is provided as
follows in Table 10.

The other important aspect that could justify our approach is that our approach
eliminates the process of applying rule combining algorithms during processing as
done with other approaches which could raise the performance increase in total
processing time.

134 M. Priyadharshini, J. Yowan, and R. Baskaran

Table 10. Comparision of Approaches in Conflict Resoultion and Redundancy Elimination

S. no Tools/Approach Phase Conflict
Resolution Time(s)

Redundancy
Elimination Time (s)

1 XAnalyzer(T) Design 0.82 0.87

2 XACML Policy
Analyzer(T)

Design 0.80 0.84

5 Related Works

In [7], Dan Lin et al proposed a policy similarity measure for XACML policy
similarity analysis. In [8], Lin et al designed a tool EXAM can be used for policy
property analysis, policy similarity analysis and policy integration. Fisler et al. [9]
designed a tool Margrave, which can verify policy properties and perform change-
impact analysis. During runtime Sun PDP [10] and XEngine [11] detect the conflicts
and resolve the conflicts by applying predefined combining algorithms in the policy.
In [2], Hongxin Hu et al developed a tool XAnalyzer which can be used for policy
analysis at policy design time. XAnalyzer can identify all conflicts within a policy
and help policy designers to select appropriate combining algorithms for conflict
resolution. Bauer et al. [12] adopted a data-mining technique to eliminate
contradictions occurring between access control policies. Our tool XACML Policy
Analyzer also concentrates on policy analysis at policy design time. XACML Policy
Analyzer can identify all conflicts within a policy and finally it selects first -
Applicable combining algorithm to resolve the conflicts.

Few other approaches which were concentrating on formalizing XACML policies
were provided [13] and [14]. In [13] a process algebra named as Communication
Sequential Process(CSP) is provided to verify the policy’s properties as well as to
compare access control policies. In [14] Ahn et al does the formalization using a
declarative programming known as Answer Set Programming (ASP) which enables
ASP reasoners to perform policy evaluation. In either methods of formalization no
guarantee for the complete elicitation of policy properties and policy verification is
provided.

6 Conclusions

We have proposed a mechanism that facilitates systematic detection and resolution of
XACML policy anomalies eliminating the need to construct BDD. An efficient
anomaly detection and resolution is done at the design level hence reducing the
processing time of the PDP and this could be helpful in cases of larger XACML
policies with more number of rules, policies and policy set. This also aims at security
in terms of access control and to increase availability of the service. As a future
extension this could be implemented for XACML3.0 and also could be included with
handling obligations and user defined functions.

 Security Enhancement in Web Services by Detecting and Correcting Anomalies 135

References

1. Godik, S., Moses, T.: Extensible Access Control Markup Language (XACML). version
2.0, OASIS Standard (2005)

2. Hu, H., Ahn, G., Kulkarni, K.: Discovery and Resolution of Anomalies in Web Access
Control Policies, p. 11 (2013)

3. XACML. OASIS XACML committee website (2011), http://www.oasisopen.
org/committees/xacml/

4. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing
authorizations. In: IEEE Symposium on Security and Privacy, Oakland, CA, pp. 31–42
(May 1997)

5. Jin, J., Ahn, G., Hu, H., Covington, M., Zhang, X.: Patient-centric authorization
framework for sharing electronic health records. In: Proceedings of the 14th ACM
Symposium on Access Control Models and Technologies, pp. 125–134. ACM, New York
(2009)

6. Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., Lin, D.: Access control policy
combining: theory meets practice. In: Proceedings of the 14th ACM Symposium on
Access Control Models and Technologies, pp. 135–144. ACM (2009)

7. Lin, D., Rao, P., Bertino, E., Lobo, J.: An approach to evaluate policy similarity. In:
Proceedings of the 12th ACM Symposium on Access Control Models and Technologies,
pp. 1–10. ACM (2007)

8. Lin, D., Rao, P., Bertino, E., Li, N., Lobo, J.: Exam: A Comprehensive Environment for
the Analysis of Access Control Policies. International Journal of Information Security 9(4),
253–273 (2010)

9. Hu, H., Ahn, E.: Enabling Verification and Conformance Testing For Access Control
Model. In: Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies, pp. 195–204. ACM (2008)

10. http://sunxacml.sourceforge.net
11. Liu, A., Chen, F., Hwang, J., Xie, T.: XEngine: A Fast and Scalable XACML Policy

Evaluation Engine. ACM SIGMETRICS Performance Evaluation
12. Bauer, L., Garriss, S., Reiter, M.: Detecting and Resolving Policy Misconfigurations In

Access-Control Systems. ACM Transactions on Information and System Security
(TISSEC) 1, 2–5 (2011)

13. Bryans, J.: Reasoning about XACML policies using CSP. In: Proceedings of the 2005
workshop on Secure Web Services, p. 35. ACM (2005)

14. Ahn, G., Hu, H., Lee, J., Meng, Y.: Representing and Reasoning about Web Access
Control Policies. In: 34th Annual IEEE Computer Software and Applications Conference,
pp. 137–146. IEEE (2010)

	Security Enhancement in Web Services by Detecting and Correcting Anomalies in XACML Policies at Design Level
	1 Introduction
	2 Overview of XACML
	2.1 Anomalies in XACML

	3 Proposed Methodology
	3.1 Construction of Boolean Expression
	3.2 Redundancy Detection Algorithm
	3.3 Redundancy Elimination Algorithm
	3.4 Conflict Detection Algorithm
	3.5 Conflict Resolution Algorithm

	4 Results and Discussion
	5 Related Works
	6 Conclusions
	References

