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21.1             Introduction 

 Despite major investments in cancer research and 
cancer prevention and treatment, the current sta-
tistics are grim [ 1 – 4 ]. Considering the spiraling 
cost of cancer care, in particular the cost of can-
cer therapeutics, what has been thus far achieved 
in benefi ts is only marginal [ 5 ]. The new genera-
tion cancer drugs, under the banner of “patient- 
tailored medicines,” which are narrowly directed 
against tumor-associated factors (such as ligands, 
receptors, and signaling pathways) are not only 
costly but, more importantly, are not applicable 
to a broad range of cancer patients and, disap-
pointing enough, very often fail to show better 
results over much more widely used (and cheaper) 
chemotherapeutic drugs [ 6 ,  7 ]. Not to mention 
diffi culties arising due to the specifi c factors 
applying to the tumor mass itself, such as persis-
tency and advanced stage detection [ 8 – 15 ]. To 
make things worse, some tumors appear to adapt 
to survive these specialized drugs, and any time a 
specifi c pathway gets blocked, tumors circum-
vent this blockage by developing an alternative 
route to survive. Owing to all these diffi culties, 
and in spite of novel developments in cancer 
treatment technologies, the mainstream and con-
ventional treatment package that includes sur-
gery + radiation therapy + chemotherapy remains 
the most widespread option available for the 
oncologists. In this chapter, photodynamic ther-
apy and antitumor immune responses would be 
discussed in more detail.  
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21.2     Photodynamic Therapy 

 Worldwide preclinical and clinical studies for over 
two decades have shown that photodynamic ther-
apy (PDT) can be a promising ingredient of a mul-
timodality treatment approach to various cancer 
types and other malignancies [ 16 – 18 ]. PDT has 
the potential to alleviate many of the problems/
drawbacks associated with conventional cancer 
treatments. It is already a clinically approved ther-
apeutic modality used for the management of non-
malignant and neoplastic diseases. 

 PDT has three essential components: light, 
oxygen, and photosensitizer (PS) [ 19 ,  20 ]; 
 individually all these components are nontoxic, 
but when combined together, they initiate a cas-
cade of photochemical reactions which culminate 
in the generation of highly reactive oxygen spe-
cies such as singlet oxygen. Since PDT is highly 
localized and the lifetime of the singlet oxygen is 
very short, approximately 10–320 ns, followed 
by limited cellular diffusion depth, approxi-
mately 10–55 nm [ 21 ], the photodynamic dam-
age only occurs in the vicinity of the PS molecular 
location. 

 The antitumor effect of the PDT arises due to 
three interrelated and/or inter-dependent mecha-
nisms: (1) direct cytotoxic effects on tumor cells, 
(2) damage to tumor vasculature, and (3) induc-
tion of a robust infl ammatory reaction that can 
lead to systemic immunity development. The 
interplay between these three mechanisms and 
the tumor mass is critically dependent on factors 
such as the type and dose of the used PS, time 
frame of the PS administration, the light compo-
nent characteristics (exposure, light dose, fl uence 
rate, etc.), tumor oxygen concentration or gradi-
ent, and possibly other (still poorly understood) 
variables. 

 The process begins with administering the PS 
to a patient either topically or parenterally, and 
depending on the pharmacokinetic and pharma-
codynamic properties, it accumulates in the 
tumor cells and the associated vasculature. Upon 
illumination with an appropriate wavelength and 
dose of light, the photons are absorbed thus trig-
gering the chain of reactions through 
 “photoactivation,” the activated PS undergoes a 

cascade of energy conversions and transfers, and 
in the presence of tissue-molecular oxygen, the 
process ends up generating a range of reactive 
oxygen species (ROS) which ultimately destroy 
tumor cells in close proximity (Fig.  21.1 ) 
[ 22 – 25 ].  

 PDT has several advantages over other cancer 
treatment modalities currently in use. In addition 
to its selectivity and multiple application possi-
bility, it is inexpensive with tolerable side effects. 
Moreover, it is rarely resistant to the observed 
treatments [ 26 ,  27 ]. More importantly, clinically 
approved PS does not accumulate in the cell 
nuclei and thus have limiting DNA damaging 
effects that can be by nature carcinogenic or can 
lead to the development of resistant clones. 
Several classes of inexpensive PS are commer-
cially available and some are already approved to 
be used on patients. Most of the PS classes in use 
are of porphyrin or chlorin backbones or their 
modifi cations. With the newer PS classes, prob-
lems such as prolonged skin sensitization have 
been virtually eliminated [ 28 ]. Moreover, these 
compounds absorb in the region of visible spec-
trum, optimal for deep-tissue penetration. The 
list of benefi ts can be extended to include absence 
of the adverse effects of radiation and chemother-
apies, no signifi cant change in tissue temperature 
during illumination, preservation of the connec-
tive tissue at the PDT application site, thus mini-
mal fi brosis induction, and improved cosmetic 
outcome. Clearly this is a very promising treat-
ment modality that needs further translational 
and clinical studies. 

 In  in vivo  studies, the observed PDT effects 
can be attributed to several and interconnected 
biological and physiological effects. Depending 
on the PS concentration, location in the organ-
ism/tumor site, and applied irradiation dosage, 
PDT effects can be direct cell killing, occlusion 
of the tumor-associated vasculature, and modu-
lation of the immune system, and sometimes 
 cumulatively all of these effects can be observed. 
At the cellular level, both necrosis and apoptosis 
have been observed as the outcome of the PDT 
[ 17 ,  29 – 32 ]. It is a known fact that direct dam-
age of the tumor cells and nearby vasculature 
initiates several cell-signaling cascades. In 
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 addition, damaged endothelial cells lead to for-
mation of thromboses and consequently to vas-
cular occlusion. In all these cases, the released 
cell fragments and cytokines trigger a range of 
infl ammatory mediators which in turn activate 
the body’s defense mechanism, i.e., the immune 
response, which can be classifi ed as innate or 
adaptive immunity. In essence, PDT treatment is 
generating a pronounced systemic effect as well 
as working in sync with the body’s natural 
defense mechanisms; the success of the PDT 
lies in the fact that it employs body’s “natural 
pathways” of defense. 

 PDT has been clinically applied to the treat-
ment of early stage pulmonary, gastric, and 
esophageal carcinoma and has been examined for 

an application to other diseases such as retinal 
diseases [ 33 ,  34 ] or cardiovascular disorders [ 35 , 
 36 ].  

21.3     Closer Look Up at the PDT 
and Triggered Immune 
Response 

 In cancer treatment, one of the most important 
effects of PDT, besides tumor destruction, is that 
by the virtue of triggering an acute infl ammatory 
reaction, it “activates” body’s immune system 
(Fig.  21.2 ). In fact, induction of a strong infl am-
matory reaction is the central paradigm of the 
antitumor effect of PDT. At the treatment locality 

  Fig. 21.1    PDT induced effects. In tumors, cells loaded 
with PS upon excitation generate ROS species which 
leads to predominantly apoptotic and necrotic cell deaths. 
Tumor cell death is accompanied with complement cas-
cade activation; proinfl ammatory cytokine activation; 
rapid neutrophils, DCs, and macrophages recruitment. 
Dying tumor cells and their debris are phagocytosed by 

phagocytic cells and DCs, which then migrate to the local 
lymph nodes and there differentiate into antigen- 
presenting cells. Tumor antigen presentation is then fol-
lowed by clonal expansion of tumor- sensitized 
lymphocytes that home to tumor site and eliminate resid-
ual tumor cells       
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due to PDT-induced oxidative stress, strong acute 
infl ammation reaction and localized edema are 
generated [ 19 ,  37 ], i.e., PDT ends up producing a 
chemical (and subsequently a physiological) 
insult in the tumor tissue which is perceived by 
the body as a localized trauma. The next step is 
launching the protective mechanisms to reestab-
lish tissue integrity and homeostasis at the 
treated/affected site [ 38 ]. At the onset, an acute 
infl ammatory response is the principal effector. 
During this stage, the body is engaged in “con-
taining the damage” – disruption of the homeo-
stasis – which includes removal of damaged 
cells, and then promoting the healing process at 
the affected area, in order to restore normal tissue 
functions [ 38 ]. This elicited infl ammation is 
 nonspecifi c for the tumor antigen and is being 
orchestrated by the innate immune system [ 38 ]. 

The pattern recognition receptors are responsible 
for detecting the PDT-caused localized insult per-
ceived as “altered self” [ 38 ]. PDT is responsible 
for speedy and prolifi c generation of “danger” 
signals, called damage-associated molecular pat-
terns (DAMPs) or cell death-associated molecu-
lar patterns (CDAMPs), at the treatment site that 
get detected by the innate immunity [ 39 – 42 ]. At 
the onset of infl ammation, the tumor vasculature 
undergoes signifi cant changes and becomes 
adhesive for infl ammatory cells (via over express-
ing selections) and permeable/leaky for blood 
proteins [ 38 ]. The infl ammatory cells, fi rst the 
neutrophils followed by mast cells, monocytes, 
and macrophages, infi ltrate the PDT illumination 
site [ 43 ]. At this stage, the primary function of 
these cells is to “neutralize” the DAMPs/CAMPs 
by eliminating cellular debris, compromised 
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  Fig. 21.2    PDT induced infl ammation. Damaging the 
endothelial cells ( ECs ) activates a cascade of events lead-
ing to local infl ammation, vessel dilation, and platelet 
aggregation. Much of these effects are caused by the 
release of thromboxane ( TBX ), cytokines (such as 

 interleukins IL1β, IL6, IL8, tumor necrosis factor-α), and 
infi ltration of immune system cells (necrotic and apop-
totic cells provide antigens to the DCs that migrate to 
lymph nodes)       
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 tissue components, etc. [ 38 ]. The vascular occlu-
sion, observed after PDT illumination, effectively 
“walls off” the damaged area, until it is removed 
by phagocytosis, thus preventing further spread-
ing of the homeostasis disruption [ 38 ]. Studies 
have shown that depletion of these infl ammatory 
cells or inhibiting their activity diminishes the 
therapeutic effect of the PDT [ 44 – 47 ]. Moreover, 
it is elucidated that interleukins IL-1β and IL-6 
are amongst the most critical ones in this process 
[ 48 ,  49 ]. Also blocking the function of various 
adhesion molecules can render PDT ineffective 
[ 48 ,  49 ]. On the other hand, blocking the anti- 
infl ammatory cytokines, IL-10 and TGF-β, can 
improve the PDT effect remarkably [ 50 ,  38 ].   

21.4     Signifi cance of PDT 
and Adaptive Immunity 

 Both preclinical and clinical studies have shown 
that PDT infl uences adaptive immune response 
in different ways; some regimens potentiate 
 adaptive immunity, whereas others lead to immu-
nosuppression. Although the precise mechanisms 
leading to the former or later response are not 
entirely clear, they appear to be PDT-regiment 
dependent [ 47 ,  51 ,  52 ]. Interestingly, PDT- 
induced immune suppression is mostly confi ned 
to cutaneous and transdermal treatments that 
involve larger surface areas [ 51 ,  53 ]. 

 As previously mentioned, the effi cacy of the 
PDT treatment strongly depends on the induction 
of antitumor immunity; research is showing that 
long-term tumor response is reduced or absent in 
immune-compromised mice [ 44 ,  54 ], whereas 
transfer of bone marrow or T-cells, from immu-
nocompetent mice, results in improved PDT effi -
cacy. In this process, recognition of the major 
histocompatibility complex class I (MHC-I) is 
critical for activation of CD8 +  T-cells, thus tumors 
that lack MHC-I expression are resistant to cell- 
mediated antitumor immune reactions [ 55 ,  56 ]. 
Case in point, patients with vulval intraepithelial 
neoplasia (VIN) who lacked the MHC-I mole-
cules did not respond to PDT treatment effec-
tively as did patients expressing MHC-I [ 57 ,  58 ]; 
patients with positive PDT treatment response 

had increased CD8 +  T-cell infi ltration into the 
treatment site to differ with nonresponders, who 
lacked that effect. 

 The PDT effect over the immune system and 
more specifi cally induction of immune potentia-
tion was demonstrated for the fi rst time in the 
seminal study by Canti et al. [ 59 ]; the study 
proved that cells isolated from tumor-draining 
lymph nodes of PDT treated mice were able to 
pass on tumor resistance to naïve mice. Even 
more importantly, Korbelik et al. [ 60 ] in an 
 in vivo  study of murine tumors showed that PDT 
treatment generated an immune memory effect 
[ 60 ]. Multiple clinical studies support these lab 
research fi ndings that PDT enhances the antitu-
mor immunity effect. In clinical trials, PDT treat-
ment of multifocal head and neck angiosarcoma 
showed reduction of untreated metastatic tumors 
owing to increased immune-cell infi ltration into 
these untreated formations [ 61 ]. Further clinical 
phase I and II trials revealed promising results in 
proving the effectiveness of the PDT for induc-
tion of antitumor immunity effect [ 62 – 67 ].  

21.5     Mechanism of PDT 
Immunologic Effects 

 Although the exact mechanistic pathways of 
immunologic activation are not entirely clear, 
there is a consensus that PDT activates both the 
humoral and the cell-mediated antitumor immu-
nity systems. It is known by now that PDT effi -
cacy is reduced and even null in the absence of 
CD8 +  T-cell activation or their infi ltration to 
tumorous sites [ 44 ,  68 ,  69 ]. Thus, it is imperative 
to have a clear understanding about the mecha-
nisms of the potentiation of CD8 +  T-cell activa-
tion due to PDT. One thing is clear, however, that 
PDT treatment induces acute local and/or sys-
temic infl ammation which culminates with anti-
tumor immunity induction [ 52 ]. During this 
process, upon infl ammation induction, dendritic 
cells (DCs) get matured and activated as critical 
components of tumor-specifi c CD8 +  T-cell acti-
vation and, subsequently, antitumor immunity 
generation [ 70 ]. This chain reaction starts with 
DC activation (due to PDT treatment) followed 
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by migration to the lymph nodes, where they acti-
vate the T-cells via presenting their antigens [ 49 , 
 71 ]. At this stage, another class of T-cells may 
also be involved, the CD4 +  T-cells, called also 
helper T-cells; they start dividing rapidly and 
secreting the cytokines that regulate and/or assist 
the immune response. The PDT-induced antitu-
mor immune response may or may not depend on 
CD4 +  T-cell presence [ 69 ,  72 ] and that role may 
be taken by the natural killer cells [ 69 ]; these are 
the cells bridging the adaptive immune system 
with the innate immune system, to differ from 
conventional T-cells (which recognize the pep-
tide antigens presented by MHC), and these cells 
recognize the glycolipid antigens (however, once 
activated they can perform functions attributed to 
T-cells). In this cascade of cause-effects, it is 
believed that DC stimulation (thus increased abil-
ity to stimulate T-cells), at least partly, is due to 
dead and/or dying tumor cells [ 73 ]; it is known 
that PDT causes both cell death and cell stress 
[ 19 ,  74 ] and the initial activation of DCs at the 
PDT-treated locale is a result of DAMPs/
CDAMPs recognition generated from the dying 
cells [ 75 – 77 ]. Recent studies have been looking 
extensively at the release patters of DAMPs after 
PDT [ 40 ,  41 ], and the most frequently expressed 
DAMP after PDT treatment seems to be the 
upregulation and translocation of the heat-shock 
proteins (HSPs) of the cell membrane [ 78 ].  

21.6     Case Studies 

 For over a decade now, the Hamblin laboratory 
has been involved and has taken a leading role in 
elucidating mechanistic pathways of PDT- 
induced infl ammation and antitumor immunity 
with the aim to trace novel immune mediated 
cancer treatment avenues stemming from PDT 
effects [ 79 – 89 ]. In the following section, we will 
discuss some of our fi ndings, including the most 
recent study results, emphasizing the effects of 
PDT-generated infl ammation and its refl ection/
implications in cancer therapy modalities. 

 It is widely accepted now that most deaths 
from cancer are caused by metastatic tumors; 
thus, our vision has been to develop  methodologies 

that not only will destroy the primary tumor mass 
but also will activate the patient’s immune system 
to battle distant (untreated and may be not even 
detected yet) metastases [ 89 ]. It is well known 
now that removal of primary tumors via surgery 
and radiotherapy, which has immunosuppressive 
effect at high doses, renders micro- metastases to 
grow unchecked. On the other hand, after PDT 
treatment, there is an induction of an acute 
infl ammatory response causing a massive regu-
lated invasion of neutrophils [ 49 ], mast cells, and 
macrophages [ 90 ]. Not only that, but also, it has 
been shown that depletion of neutrophils in 
tumor-carrying mice decreased the PDT-mediated 
tumor treatment effect [ 54 ]. As discussed before, 
acute infl ammation is implicated in attracting and 
activating DCs; as a result, they prime the tumor-
specifi c cytotoxic T-cells (CTLs). In addition, it 
is well known that CTLs activity is not limited to 
the PDT treatment area alone and that they have 
a broader effective range [ 60 ]. Other groups have 
shown that low-dose cyclophosphamide (CY) 
can potentiate antitumor immunity in murine 
models. Suggested mechanistic explanations 
included depletion of suppressor T-cells [ 91 ], 
reduction of immunosuppressive cytokines [ 92 ], 
and anti-angiogenesis [ 93 ]; it has been generally 
accepted now that low- dose CY selectively 
depletes T-regs in mice, and by doing so, it 
increases both the priming and effector phases of 
the antitumor immune response [ 94 ]. In this cru-
cial context, the authors reported, for the fi rst 
time, that a combination of PDT with low-dose 
CY could cure a highly metastatic mouse tumor 
and could produce tumor-specifi c CTLs and 
potent memory immunity [ 89 ]. In this seminal 
work, we used J774, a highly metastatic reticu-
lum cell sarcoma in BALB/c mouse, 
a highly aggressive, invasive, metastatic macro-
phage tumor, and PDT with benzoporphyrin 
derivative monoacid ring A (BPD). The CY was 
injected 48 h before light delivery. Our study 
demonstrated that PDT combined with low-dose 
CY generates a dramatic improvement in sur-
vival and numbers of cures. On the other hand, no 
cures but only some survival advantage were 
seen with each one of the components used sepa-
rately, whereas when PDT was coupled with 
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high-dose CY (as opposed to low dose), no addi-
tional benefi t was observed. In comparison, with 
a combination treatment of BPD-PDT and low- 
dose CY, a long-term memory immunity gener-
ated allowed the cured mice to even reject 
rechallenging with tumorigenic doses of J774 
cells. The observed long-term cures with only 
low-dose CY-PDT combination treatment sug-
gests that in some tumor models, there is a kind 
of host factor which is counteracting the immune- 
stimulating effect of PDT. Judging by our fl ow 
cytometry results, this factor could be 
CD4 + FoxP3 +  T-regs, and the benefi t of low dose 
CY could be due to their particular susceptibility 
to low-dose cytotoxic drugs. The effect of low- 
dose CY on the tumor was much more pro-
nounced than the high-dose CY alone (Fig.  21.3 ). 
Our overall results are proving that the effects of 
CY on J774 tumor are due to the immunostimula-
tory effect rather than the traditional cytotoxic 
effect of the CY [ 89 ].  

 It is widely accepted now that cancer  treatment 
involving PDT modality is effectively engaging 
both arms (innate and adaptive) of the immune 
systems via stimulating the release or expression 
of various proinfl ammatory mediators [ 19 ,  37 , 
 49 ,  75 ,  95 ,  96 ]. As a result, a powerful acute 
infl ammatory response is launched causing accu-
mulation of extensive numbers of neutrophils and 
other infl ammatory cells at the PDT- treated site 
attacking the cancer cells [ 37 ,  43 ]. The fact is that 
this cycle is not only a powerful tool in eliciting 
direct antitumor effects [ 97 – 99 ], but as impor-
tantly, it is stimulating the cells to release second-
ary infl ammatory mediators (including the 
cytokines IL-1β, TNF-α, IL-6, and IL-10 and 
prostaglandins, histamines, leukotrienes, etc. 
[ 100 ]). The one area needed to be further explored 
was to study the local treatment effects on elicit-
ing systemic immunological response, in particu-
lar, establishing the link between PDT-mediated 
immunity and tumor antigens expression. Our lab 
was the fi rst to recognize this effect. The authors 
designed a study in which a pair of equally lethal 
BALB/c colon adenocarcinomas were used: fi rst, 
CT26 wild- type (CT26WT), i.e., antigen nega-
tive, and, second, CT26.CL25 transduced with 
lacZ gene, thus expressing the tumor antigen 

β-galactosidase (β-gal). The idea was to study if 
PDT treatment would elicit a systemic antigen-
epitope- specifi c antitumor immune response in 
otherwise identical cancer cells [ 86 ]. In this 
study, both used cell lines were equally lethal, 
and the level of β-gal expression was low enough 
to allow the tumor to grow without triggering any 
clinically signifi cant immune response (often 
seen in cancer patients), thus only PDT applica-
tion could generate signifi cant differences in the 
therapeutic outcome and the observed elicitation 
of immune response. 
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 The outcome was that PDT induced a local 
response in all β-gal antigen-negative CT26WT 
tumors, with clear reduction in size, but only 
until day 18 (Fig.  21.4 ) after that the regrowth 
took hold. The net result was only that the growth 
was stalled for 8–10 days. In the case of CT26.
CL25 tumors, however, the difference was dra-
matic (Fig.  21.4 ); tumor reduction was not only 
complete after day 20, but most importantly, 
100 % of these β-gal antigen-positive tumors 
stayed in remission during the complete trial 
period of 90 days [ 86 ]. During the study, it was 

also observed that the PDT-induced immune 
response leads to elevated levels of released 
IFN-γ and TNF-α cytokines. Our study also 
shows that PDT can induce a very strong antigen- 
specifi c immune response, capable of generating 
memory immunity which allows mice to reject 
the rechallenge with the same antigen-positive 
cells. The induced immune response is potent 
enough to cause regression of a distant well- 
established antigen-positive tumor outside the 
treatment area [ 86 ] (Fig.  21.5 ). The presence of 
the activated antigen-specifi c effector CTLs was 
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also confi rmed. During the study, it was realized 
that regression of distant and untreated tumors 
took place in 70 % of the treated mice.   

 Moreover, our study demonstrated, for the 
fi rst time, that tumor cells may escape PDT- 
induced immunosurveillance due to antigen loss. 
In clinical settings, it is known that some tumors 
escape from immune recognition and elimina-
tion; only now, we realized that this is happening 
due to tumor antigen loss. We also demonstrated 
that PDT-induced antitumor effects are abrogated 
when there is no functional adaptive immune 
response as in athymic nude mice (Fig.  21.6 ). 
Clearly, effective vascular PDT treatment can not 
only destroy a local tumor but also induce sys-
temic strong antigen-specifi c antitumor immune 
response. And this immunity is so potent that it is 
capable to induce regression and destruction of 
distant, antigen-positive tumors outside the irra-
diation reach. The treatment also proved to be 
effective in inducing long-term immune memory 
effect, imprinting a resistance to rechallenge. Our 
study was successful in proving that the observed 
tumor-destructive effect was mediated by tumor 
antigen-specifi c cytotoxic T-cells, induced after 
PDT, which are capable of recognizing the 
immunodominant epitope of the β-gal antigen.  

 To examine antigen-specifi c PDT-induced 
antitumor immune response in a more clinically 
relevant tumor model, the authors designed a 
separate study, where a naturally occurring can-
cer antigen, the P1A, a mouse homologue of 
human MAGE-type antigen, was employed 
[ 101 ]. We decided to use this specifi c  cancer- testis 
antigen, since it is not only a well- established 
one, but more importantly, it is mostly expressed 
in testis and cancers and only at very low levels in 
other tissues [ 102 – 105 ]; P1A antigen- positive 
mouse mastocytoma P815 wild type (parental) 
and P1A antigen-negative P1.204 (P815 derived) 
cell lines were compared. 

 Murine methylcholanthrene-induced masto-
cytoma P815 cancer cells are known to generate 
very interesting immunologic response patterns. 
The signifi cance of P815 antigen arises from the 
fact that it shares many characteristics identifi ed 
in TAA genes in human, such as those belonging 
to melanoma MAGE family and other tumors 

[ 106 ]; these antigens are not expressed in most 
mature tissues with the exception of testis and 
placenta [ 107 ]. It is known that P815 can elicit 
CTL response against at least four distinct anti-
gens: AB, C, D, and E [ 107 – 115 ]. It appears that 
the main CTL response against P815 tumor is 
geared towards AB and E antigens [ 111 ]. Also, it 
has been shown that T-cells isolated from DBA/2 
mice infl icted with P815 tumor primarily recog-
nize either antigen AB or C-D-E, but not both 
[ 116 ]. Moreover, the two epitopes of the P815AB, 
P815A, and P815B are recognized by two differ-
ent CTLs. Another gene code for P815E and a 
different CTLs recognize its antigen. On the 
other hand, P815-derived P1.204 cell line is an 
immune system escape variant [ 117 ]; it has lost 
the P815AB antigen and only retains the P815E 
antigen. 

 During  in vivo  experiments performed by the 
authors, the majority of mice with P815 tumors 
revealed regression upon PDT irradiation and no 
recurrence during the trial period of 90 days.  In 
stark contrast ,  mice with P1.204 tumor did not 
respond with tumor regression but rather with 
progression . The difference in response between 
the two tumor types was hypothesized to be due 
to differential triggering of immune response. To 
confi rm the PDT-generated long-term immune 
system “activation” in this clinically relevant 
tumor model, we rechallenged the cured mice 
with the same tumor from which they were origi-
nally cured. Only mice cured for P1A antigen- 
positive P815 tumors rejected the rechallenging, 
while all the naïve mice injected with either 
tumor cell type grew tumors. The implication of 
the fi nding is that P1A antigen-positive P815 
tumors, after PDT treatment, develop strong and 
robust enough immune response that prevents 
tumor growth upon challenging with a tumori-
genic dose of cells. 

 In the  ex vivo  study, the extent of host antitu-
mor immune response induction, as a result of 
PDT treatment of P1A antigen-presenting P815 
mastocytoma cancer cells, and whether the anti-
gen is activating T-cells before and/or after PDT, 
was looked into. The answer for that was pro-
vided by the cytokines secreted from CD4 +  and 
CD8 +  T-cells. Our results showed that PDT of 
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  Fig. 21.6    ( a ) Tumor volumes of CT26.CL25 tumors 
PDT treated and untreated in BALB/c Nu/Nu immuno-
compromised mice. ( b ) Tumor volumes in bilateral CT26.
CL25 tumors PDT treated and untreated in BALB/c Nu/
Nu immunocompromised mice. ( c ) Kaplan-Meier  survival 

curves of % surviving BALB/c and BALB/c Nu/Nu mice 
with either CT26.CL25 or CT26WT tumors, PDT treated. 
Non-treated BALB/c Nu/Nu mice with CT26.CL25 tumor 
is used as control (Adapted with permission from Mroz 
et al. [ 86 ])       

P1A antigen-positive tumors led to marked 
increase in IL-2 and TNF-α levels. Moreover, 
we were able to identify a population of CD8 +  
T-cells that were able to recognize the 
LPYLGWLVF epitope of P1A antigen. In addi-
tion, in nude mice (lacking an adaptive immune 
system) bearing the P1A antigen-positive P815 
tumors, antitumor effectiveness of PDT is cur-
tailed to nil. Interestingly, their survival can be 
signifi cantly prolonged by adoptive transfer of 
activated lymph node cells isolated from PDT-
treated  immunocompetent mice bearing the 
P815 tumor. 

 The initial escape of P815 tumors from immu-
nosurveillance (and accordingly response) is 
documented to be due to antigenic loss [ 21 ,  39 , 
 40 ]. It has been shown [ 110 ] that there are three 
different escape mechanisms employed by P1A 
tumors, presenting the peptide antigen 
LPYLGWLVF (expressed in different tumor 
models), for avoiding immune response: in P815 
tumors, all progressions occur due to antigenic 
loss, while in J558 tumors, all progressions take 
place due to antigenic drift (antigen mutation 
[ 39 ]), whereas all progressing methA tumors 
develop resistance to CTLs. 
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 Our study confi rmed that if an antigen is 
expressed in a tumor tissue, PDT may be more 
successfully applied in patient population con-
taining tumors positive for a particular antigen. 
Secondly, even though many solid tumors show 
heterogeneous expression of tumor antigens, it 
has been shown that de novo induction of tumor 
antigens in these tumors may represent a novel 
means to break tumor escape mechanisms [ 40 ]. 
Thirdly, combination of PDT with various tumor 
antigen expression enhancement and their pre-
sentation via MHC class-I, may have benefi cial 
treatment effects for those cancers that are other-
wise untreatable. 

 Application of PDT for localized microbial 
infections, especially those caused by multiple-
drug- resistant bacteria, is a very promising alter-
native modality to antibiotics, particularly in 
intractable microbial infection situations; bone or 
joint infections caused by multidrug-resistant 
bacteria are extremely intractable. Moreover, 
treating orthopedic infectious disease (such as 
osteomyelitis, arthritis) can be problematic due to 
the aseptic nature of joints, bones, and cartilages. 
For such cases, we looked into the induction of 
protective innate immune response due to PDT 
treatment and observed that the process germi-
nated through neutrophil accumulation. 

 It is well known that bacterial phagocytosis by 
innate immune cells, such as neutrophils, plays a 
critical role in the elimination of invading 
 bacteria, especially  Staphylococcus aureus  [ 118 –
 120 ]. Malfunction of the phagocytic immune sys-
tem, therefore, renders the host susceptible to 
bacterial infections [ 121 ]. If a treatment impairs 
the function of phagocytes in combating micro-
bial infection, the effi cacy of the antimicrobial 
treatment might be reduced, resulting in deterio-
ration and prolongation of the infection. We 
established a murine chronic MRSA arthritis 
model using a combination of bioluminescent 
MRSA and resin microparticles, which allowed 
sequential noninvasive optical evaluation of the 
course of infection in an individual mouse and 
enabled us to carry out a detailed examination of 
the PDT effects in an effi cient manner [ 81 ]. We 
established that administration of anti-GR-1 
(anti- neutrophil) antibody eliminated the 

 therapeutic effect of PDT, indicating that the 
therapeutic PDT using methylene blue had a cur-
ing effect for bacterial infection via the attraction 
and accumulation of neutrophils into the infected 
region [ 81 ]. 

 There are other studies showing the curing 
role played by neutrophils in the therapeutic 
response at various PDT regiments. DeVree et al. 
[ 122 ] showed that depletion of neutrophils, using 
a neutralizing antibody, abrogated the tumori-
cidal effect of PDT, whereas increasing the num-
ber of circulating neutrophils, with injection of 
granulocyte colony-stimulating factor, potenti-
ated the antitumor effect. Cecic et al. [ 90 ] found 
a rapidly developing systemic (as well as local) 
neutrophilia in tumor-bearing mice after PDT 
with two different PS that could be abrogated by 
inhibitors of complement activation. Although 
the role of PDT-activated/stimulated neutrophils 
in the therapeutic effects of PDT against cancer is 
established, the role of neutrophils in the thera-
peutic effects of antimicrobial PDT had not been 
previously reported (prior to our studies on 
murine bacterial arthritis [ 123 – 125 ]). 

 Our PDT treatment system [ 81 ] showed a 
promising therapeutic effect in murine chronic 
MRSA arthritis model with neutrophil accumula-
tion and migration. Preventive PDT, used as a 
preconditioning regimen before bacterial inocu-
lation, suppressed bacterial growth and inhibited 
the establishment of infection [ 81 ]. This is the 
fi rst demonstration of a protective innate immune 
response against a microbial pathogen being 
induced by PDT.  

21.7     Concluding Remarks 

 The proven ability of PDT to trigger infl amma-
tion and improve immune response can be suc-
cessfully used, in tandem with other treatment 
modalities, to combat cancer and to achieve 
long- term tumor control. By making this thera-
peutic treatment more targeted and dose con-
trolled, the arising strong infl ammatory response 
can be confi ned to the tumor site, and thus, the 
body’s immunoregulatory and immunosuppres-
sive mechanisms can be kept at bay. On the other 
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hand, PDT-triggered controlled infl ammation can 
be effective for treating distant, untreated/inoper-
able tumors and may also have a role in control-
ling microbial infections.     
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