
17M. Karahan et al. (eds.), Effective Training of Arthroscopic Skills,
DOI 10.1007/978-3-662-44943-1_3, © ESSKA 2015

 “I hear and I forget. I see, I remember. I do, I understand.” – Confucius 

        Take-Home Messages 

•     Learning to use arthroscopic instruments 
involves minimization of predicted and 
actual sensory information by tuning the 
internal models in our brain that represent 
the tasks at hand.  

•   As all individuals demonstrate differences 
in innate arthroscopic skills, the training 
period should vary in order to allow all 
trainees to achieve a preset competency 
level.  

•   Exposure to many different conditions in a 
training program facilitates skills learning.  

•   A perfect teacher is not the one who has the 
best ability to perform a specifi c motor 
skill but the one who has the ability to 
transfer a skill to a student.  

•   Developing “ideal” training programs for 
basic part task arthroscopic skills is needed 
to complement current residency curricula     

3.1     Defi nitions 

  Sensorimotor  relates to activity involving both 
sensory and motor pathways of the nerves 
(Oxford English Dictionary  2014 ). 

 ( Psycho ) motor skill  is the potential to produce 
voluntary muscular movements after practice 
(Kaufman et al.  1987 ; Oxford English Dictionary 
 2014 ). 

  Psychomotor learning  is an interaction 
between cognitive functions and physical activi-
ties with the emphasis on learning coordinated 
activity involving the arms, hands, fi ngers, and 
feet. 

  Efference copy  is an internal copy of an out-
fl owing, movement-producing signal generated 
by our human motor system (Kawato  1999 ; 
Wolpert and Miall  1996 ). 

  Internal model  is a postulated neural process 
that simulates the response of the motor system 
in order to estimate the outcome of a motor com-
mand (Kawato  1999 ; Wolpert and Miall  1996 ).  

3.2     Introduction 

 This chapter is highly interesting as it brings 
together theories from different fi elds – i.e. neu-
roscience, education, and arthroscopy – which 
combination gives insights in human perfor-
mance capabilities when interacting with the 
environment and more specifi cally effectively 
training arthroscopic skills, the title of this book. 
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Section A describes the state of the art on senso-
rimotor learning from a neuroscience perspec-
tive, whereas Section B discusses psychomotor 
skills in arthroscopic training through the science 
of learning.  

3.3     Section A: Sensorimotor 
Learning 
from Neuroscientifi c 
Perspective 

 The range and complexity of the tasks involved 
in arthroscopy are impressive but even more so 
is the capacity of humans to learn the variety of 
precise and delicate motor skills needed to suc-
cessfully perform these operative procedures 
(Kaufman et al.  1987 ). Arthroscopic instruments 
introduce changes in the relationship between the 
movements of the surgeons’ hand and the tip of 
the instrument. The use of arthroscopic instru-
ments challenges the operators’ sensorimotor 
abilities, by requesting effi cient gathering of the 
often limited and distorted sensory information 
and by requesting the implementation of adap-
tive mechanisms to perform instrument handling. 
Mastery of instrument handling implies that one 
is able to account for complex transformations, 
as is, for example, needed to cope with the dis-
turbed eye-hand coordination (Miller  1985 ) and 
the uncertainties about task-relevant information 
when planning the movements. 

 When we use novel tools in everyday life, we 
are exposed to a new mechanical environment. 
The tools initially perturb our movements, but 
after practice, we are again able to process a 
certain input (the sensory information provided 
by our sensor organs – eyes, proprioception) to 
obtain the desired output (the movement of the 
tip of the instrument). Learning of surgical skills 
can be thought of as the process of mastering 
and adapting such sensorimotor transformations. 
Depending on the complexity of the transfor-
mations, this may take several hundred move-
ments. This is refl ected in the prolonged learning 
curves for the minimally invasive techniques, 
in comparison to the time needed to acquire 
the skills for open surgery (Atesok et al.  2012 ; 
Megali et al.  2005 ). 

 In the past decade, there have been substantial 
advances in our understanding of how we learn 
(psycho)motor skills, with models emerging 
from computational approaches to movement 
science. The following is a discussion of the main 
concepts for our understanding of learning surgi-
cal motor skills:  

 These concepts will be applied to understand 
and explain the, often limited, transfer of learning 
from the training situation to the real perfor-
mance in the operating room. 

3.3.1     Internal Models 

 It is generally believed that the process of learn-
ing skilled control relies on the acquisition of 
models of both our own body and the instru-
ments we interact with (Davidson and Wolpert 
 2003 ; Flanagan et al.  2003 ). Learning to control a 
new instrument (i.e., act in a novel environment) 
produces an “internal model” that represents the 
sensorimotor transformations involved in the use 
of the instrument. Two main classes of internal 
models are being distinguished: forward mod-
els and inverse models. Here, we describe how 
these two fundamental concepts of motor con-
trol are related to learning to handle arthroscopic 
instruments. 

 Forward internal models describe the causal 
relationship between our interactions with the 
instrument and the environment and the sensory 
feedback that will result from these interactions 
(Wolpert and Miall  1996 ). 

 In particular, they allow us to predict the sen-
sory consequences of our actions on the basis 
of a copy of the motor command (i.e., efference 
copy) that is send to our motor system (Fig.  3.1 ). 
These predictions are essential for acquiring a 
training signal when learning a new task. This 
is elucidated with one aspect of performing an 
arthroscopic procedure: the scaling of visual 

   Internal models  
  Sensory weighting  
  Structural and parametric learning   
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motion of the instruments seen via the two- 
dimensional monitor. The arthroscopic image 
is a zoomed-in two-dimensional projection of 
the surgical area, for which the exact zoomed-in 
scale factor is initially unknown to the trainee. 
As a consequence, the predicted visual motion of 
the instrument tip is likely to be underestimated: 
one moves too far. This difference between the 
predicted and the actual sensory information 
results in an error that can be used as a training 
signal to update the internal model (Fig.  3.1 ). In 
a subsequent repetition of this aspect, the error 
is likely to be smaller by generating an adapted 
motor command, which is sent to the involved 
muscles.  

 The second group of internal models that are 
relevant for understanding motor learning are 
known as inverse models. These models perform 
the opposite transformation in that they obtain 
the required motor command from the desired 
sensory consequences. Thus, when the task is to 
reach a visual location as seen on the monitor, 
one needs to compute the required hand move-
ment in order to achieve this desired state. In the 
above-presented example, where the actual visual 
motion on the monitor screen was larger than 
intended, the thus generated error signal can also 
be used to update the inverse model and by that 
induce learning. 

 In summary, learning to use arthroscopic 
instruments involves both building up inverse 
models to control the instrument and forward 
models for predicting the consequences of this 
control. Discrepancies between predicted and 
actual sensory information generate an error sig-
nal that is a prerequisite for learning.  

3.3.2     Sensory Weighting 

 The accuracy of the error signals generated with 
help of forward models not only depends on the 
accuracy of the predicted feedback but also on 
the accuracy of our estimate of the actual sensory 
information. The signals obtained from our sen-
sors are disturbed by internal noise (i.e., in the 
neural transmission). However, when we have 
various sources of information available, then 
these can be optimally combined to achieve esti-
mates that reduce the effects of noise (van Beers 
 2009 ). For instance, when moving the hand to a 
visual target, the location of the target and the 
location of the hand need to be to be determined. 
Both visual information and proprioceptive infor-
mation contribute to estimations of the positions 
of the target and the hand. When information is 
available in both modalities, we combine these 
sources of information into one coherent idea of 
where objects are relative to ourselves. 

 This integration process also needs to take 
into account the disturbances in sensory infor-
mation infl icted by external objects, such as the 
surgical instruments and the operative environ-
ment. In the case of arthroscopic procedures, 
the sensory information is often limited and dis-
torted. Altered 30° viewing angle of the arthro-
scope makes that the visual and proprioceptive 
modalities are no longer aligned. Friction and 
reaction forces of the manipulated tissue often 
disturb the forces experienced at the handle of 
the instruments. Especially in the inexperienced 
trainees, this induces movement inaccuracy and 
variability. 

 The ability of humans to compensate for such 
disturbances is a well-studied phenomenon. In a 
wide range of tasks, it has been found that humans 
are still able to perform well by optimally com-
bining sensory cues. For instance, it has been 
shown that the optimal use of unaligned sensory 
information can limit movement errors in the 
absence of vision (Smeets et al.  2006 ). These 
studies show that when we have knowledge about 
the reliability of our sensory information, we can 
combine different modalities together in a statis-
tically optimal manner. Depending on the reli-
ability of the information, different weights are 
assigned to the sensory signals when they are 

  Fig. 3.1    Forward models are necessary for learning. 
A copy of the motor command is used to predict the sen-
sory feedback. The prediction is compared to the actual 
feedback. A discrepancy in the sensory signals can be 
used for training       
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combined. Therefore, one important aspect of 
training arthroscopic skills may be suffi cient 
exposure to the variable conditions that can be 
encountered. This enables the trainee to come to 
an estimate of the reliability of the sensory infor-
mation that is available in the procedures. The 
variable conditions include different handling 
instruments form different companies, anatomic 
variations of human joints, variation in patholo-
gies (e.g., meniscal tears), and different distur-
bance conditions (e.g., bleedings). An advantage 
of offering many variable conditions is that train-
ees remain motivated as they need to deal with 
new situations in subsequent training sessions. 

 The idea arises that the crucial diffi culties in 
arthroscopic skills are much more related to a lack 
of experience with the large variety of disturbing 
sensations as opposed to a lack of experience with 
instrument-tissue interaction per se. This is sup-
ported by a study of Bholat and coworkers ( 1999 ) 
that shows that, without vision, both expert sur-
geons and novices are able to correctly identify 
object properties when using  minimally invasive 
instruments. In this study, the movements of the 
instruments were not constrained so that no other 
external objects could affect the sensations of 
the subjects. Therefore, the substantial perfor-
mance differences between experts and novices 
in arthroscopy presumably only arise, because 
experts are better able to discard the disturbing 
sensations due to their larger experience with var-
ious instruments and the compact intra-articular 
operative environments. As all individuals dem-
onstrate differences in innate arthroscopic skills, 
the training period should vary in order to allow 
all trainees to achieve a preset competency level 
(Alvand et al.  2011 ; Kaufman et al.  1987 ).  

3.3.3     Structural and Parametric 
Learning 

 Once we have learned a motor skill, such as mov-
ing arthroscopic instruments under highly 
zoomed-in viewing conditions, we can rapidly 
generalize to other surgical situations in which 
the fi eld of view is scaled and movements are 
visually amplifi ed, even though the scaling factor 

may differ. Such fast learning can presumably be 
accomplished by making small adjustments to 
the parameters of an existing internal model. This 
parametric learning implies that the model is 
already available and that only the proper param-
eters need to be adapted. Such adaptive learning 
has been reported in a large variety of motor tasks 
(Shadmehr et al.  2010 ). 

 One diffi culty with learning to control a new 
instrument is that the physical properties of the 
instrument are initially unknown and need to be 
characterized fi rst in the process of building up 
an internal model. An important part of this 
learning process is identifying the relevant inputs 
and outputs of the system and the transforma-
tions that defi ne the relationship between them. 
Through experience with many comparable 
instruments, one might discover the general form 
of the transformations for a certain type of instru-
ment (Braun et al.  2010 ). For instance, the conse-
quence of operating through small incisions in 
the skin is that the movement of the hand is oppo-
site to the desired motion of the effective part of 
the instrument (fulcrum effect). Such complex 
transformations are in essence what is learned in 
structural learning, whereas subsequent paramet-
ric learning would involve selecting the proper 
parameters for the currently used instrument (i.e., 
the scaling of the movements). 

 Evidence for structural learning comes from a 
study of Braun and coworkers ( 2009 ). In a series 
of experiments, they exposed human subjects 
to rotary visuomotor transformations in differ-
ent virtual reality environments. The parameters 
of these transformations (i.e., the direction and 
angle of rotation) were varied randomly over 
many trials, but the structure of the transforma-
tion (i.e., the presence of a rotation) was always 
the same. Because subjects showed faster learn-
ing of such transformations after random train-
ing, they must have learned much more than the 
average mapping as one would expect for simple 
parametric learning. 

 Enhancement of structural learning may also 
be achieved by means of providing additional 
information about the interactions of the instru-
ments with the environment and therefore increas-
ing the transparency of the  transformations. 
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For instance, previous research has shown that 
providing information about the orientation of 
the tip of the instrument improves performance 
in tasks performed with a minimally invasive 
simulator (Wentink et al.  2002 ). Horeman and 
coworkers ( 2012 ) showed that continuous visual 
information about exerted forces reduced the 
magnitude of forces used in manipulating mini-
mally invasive instruments (see also Chap.   9    ). 
However, retention of learning with such substi-
tuted feedback is generally low. 

 Sülzenbrück and Heuer ( 2012 ) demonstrate 
that visual feedback that enhances mechanical 
transparency can have opposite effects on learn-
ing. It is likely that the visual feedback reduces 
the need to build up an accurate internal model 
of the instrument interactions as evidenced by 
the lack of improvement once the visual feed-
back is removed. Alternatively, substituted sen-
sory feedback, like visual information that 
represents exerted forces (e.g., cognitive repre-
sentations), may require additional transforma-
tions to update internal models relevant for 
force control. In the study of Horeman and 
coworkers ( 2012 ), the visual information needs 
to be transformed into an error signal that is 
suitable to train the models of the dynamics of 
the task. Possibly, it is more benefi cial to pro-
vide error signals within the sensory modality 
that is relevant for the task. 

 In summary, training of arthroscopic skills 
benefi ts most from approaches that induce learn-
ing of the general structure of the task, the char-
acteristics of the transformations imposed by 
the arthroscopic instruments. Structural learn-
ing is mostly facilitated by exposure to a vari-
ety of tasks that share this common structure. 
Substituted feedback enhances the transparency 
of the transformations and can support perfor-
mance but may be less effi cient for building up 
new internal models.  

3.3.4     Transfer of Learning 

 In the above, we have discussed how structural 
learning could provide a mechanism for transfer 
of learning between tasks with the same task 

structure. Building up experience in one or more 
tasks often enables one to subsequently learn 
related tasks more rapidly. “Transfer of learning” 
has been demonstrated for various motor tasks 
(Braun et al.  2009 ; Seidler  2007 ). Unfortunately, 
there is still insuffi cient evidence for transfer of 
skills from surgical training programs to in vivo 
performance in the operating room (Modi et al. 
 2010 ; Slade Shantz et al.  2014 ). In surgical train-
ing often simulators, e.g., computer-controlled 
virtual environments, are employed as they allow 
precise control of the task parameters and assess-
ment of specifi c performance measurements 
(Chap.   5    ). In general, these simulators mimic 
only part of a surgical procedure. So far, results 
suggest that simulator training only improves 
performance in the same task in the same simula-
tor (Strom et al.  2004 ). 

 The lack of transfer can partly be explained by 
our ability to control a large variety of instru-
ments with different physical characteristics. 
When we use different instruments, the context 
of our movement changes in a discrete manner. 
For dexterous control of the instruments, we must 
select the appropriate internal model on the basis 
of contextual cues (Fig.  3.2 ). However   , a perfect 
match is rarely found, because the instrument 
properties may fl uctuate over time (e.g., due to 
wear, friction), and the exact environmental con-
ditions (e.g., the patient) may never have been 
encountered.  

 Therefore, just as we need to combine sensory 
information to optimally estimate our current 
state, we need to derive models from combina-
tions of previously experienced situations. The 
central idea is that when we encounter novel situ-
ations, with unknown dynamics, we weigh the 
outputs of several internal models selected on the 
basis of sensory information, for appropriate per-
formance (Fig.  3.2 ). 

 Crucial in the above-proposed scheme is 
that skilled manipulation in untrained situations 
requires previous exposure to many comparable 
contexts with various dynamics (Kording and 
Wolpert  2004 ; Wolpert and Ghahramani  2000 ). 
In contrast, an often-adopted solution in surgi-
cal training simulators is to create conditions 
in which the training context mimics the real 
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 performance context as closely as possible and, 
more importantly, always with the same physi-
cal properties. The drawback of this approach is 
refl ected in the lack of transfer of learning from 
one simulator to another. Albeit similar, the prop-
erties of the simulated may slightly differ so that 
a less effective internal model is selected. 

 The idea emerges that the broad repertoire of 
motor skills needed in the operating room can 
be more effectively learned when being trained 
in much more variable environmental conditions 
using a diversity of instruments. From a prag-
matic perspective, such an approach also reduces 
the need to recreate real situations in the training 
setting which is probably also more cost- 
effective. The validity of this perspective for 
training of arthroscopy is illustrated by studies 
that compare the performance of expert sur-
geons and trainees on novel surgical trainers. 
Although expert surgeons generally display bet-
ter performance than novices, the performance 
of experts improves with practice, as well as that 
of novices (Chap.   7    ) (Pedowitz et al.  2002 ; 
Tuijthof et al.  2011 ). Presumably, the learning 
curves of the experts refl ect further optimization 
in the weighting process based on the sensory 
information that is currently experienced in this 
novel situation.   

3.4     Section B: Psychomotor 
Learning from Educational 
Perspective 

 Learning and teaching have a very old history. 
Written records showed that ancestors of formal 
education were seen in Egypt around 500 B.C 
(Tokuhama-Espinosa  2010 ). Through the human 
history, educators tried to develop better ways of 
teaching. In 1956, Benjamin Bloom and a group 
of educational psychologists developed a clas-
sifi cation of educational objectives known as 
“Bloom’s Taxonomy” (Bloom et al.  1956 ). 

 Taxonomy divides educational objectives into 
three domains: cognitive (Fig.  3.3a ), affective 
(Fig.  3.3b ), and psychomotor. Within the domains, 
learning at the higher levels is dependent on hav-
ing attained prerequisite knowledge and skills at 
lower levels. Bloom’s Taxonomy guides educators 
to focus on all three domains, creating a holistic 
form of education.  

 Benjamin Bloom has completed his work on 
cognitive and affective domains, but never com-
pleted the psychomotor domain. Dave was the 
fi rst to suggested simple form of the psychomo-
tor domain in 1970 (Dave  1970 ) and underlined 
the signifi cant role of “imitation” in psychomotor 
learning (Fig.  3.3c ). In the 1990s, Anderson and 
coworkers updated the taxonomy to refl ect today’s 
educational systems (Fig.  3.3d ) (Anderson et al. 
 2001 ). Examples of psychomotor skills learning 
in daily life include driving a car, throwing a ball, 
and playing a musical instrument. 

 As indicated in Section A, the psychomo-
tor domain of learning is not explained by pure 
knowledge or experience (Rovai et al.  2009 ) 
but focuses on sensorimotor skill development 
involving parameters such as speed, accuracy, 
and grace of movement and dexterity (Anderson 
et al.  2001 ; Rovai et al.  2009 ). Initially, these 
manual tasks can be simple such as throwing 
a ball but can become complicated such as 
arthroscopic surgery. As they increase in com-
plexity, the amount of overall skills needed to 
execute the task also increases. That is why psy-
chomotor learning cannot be isolated from the 
cognitive domain. One should have  suffi cient 

  Fig. 3.2    The internal model is chosen that is most likely 
to predict the smallest estimation error       
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theoretical information about the skill that is 
going to be trained but also know what type 
of learning style in order to design an “ideal” 
training program to learn arthroscopic skills. 
In the remainder, learning styles, psychomotor 
acquisition models, feedback, and other ele-
ments are discussed that need to be taken into 
account when designing such an “ideal” train-
ing program. 

3.4.1     Learning Styles 

 Individuals have different ways of learning. In 
adult learners, three types of learning styles are 
defi ned: visual, auditory and kinesthetic learn-
ers, which make up around 65, 30, and 5 % of 
the population, respectively (Dankelman et al. 
 2005 ). Visual learners need slide presentations, 
pictures, fl ow charts, videos, and handouts. In 
society, they will tend to be the most effective 
in written communication and symbol manip-
ulation (Dankelman et al.  2005 ). Dialogues, 
discussions, and debates are the main tools for 
auditory learners, who may be sophisticated 
speakers. Kinesthetic learners learn effectively 
through touch, movement, and space; they learn 
skills by imitation and practice. They benefi t 

highly from games and hands-on training ses-
sions. A quick way to determine what learn-
ing style you have is to follow this link to the 
VARK-Learn questionnaire (  www.vark-learn.
com    ) (Kim et al.  2013 ). Training techniques 
and teaching programs should be designed 
such to accommodate the three learning styles 
(Windsor et al.  2008 ). 

 Learning styles of adults are also related with 
intelligence of the individuals. Gardner devel-
oped multiple intelligence theory to defi ne a rela-
tion with the learning styles of individuals 
(Gardner  2011 ). According to his theory, intelli-
gence of trainees is classifi ed into nine categories 
(Table  3.1 ). Each person has these intelligences; 
however, their ratios vary from one to another. 
Ratios of these intelligences in a person can also 
change over time, because of environmental fac-
tors. This is a major obstacle in front of when 
trying to design an “ideal” arthroscopic teaching 
program.

   To accommodate the learning style of indi-
viduals in respect to their intelligences, a pre- 
course evaluation would be useful. MIDAS 
stands for Multiple Intelligences Developmental 
Assessment Scale (  www.miresearch.org    ) that is a 
self-administered questionnaire to defi ne the 
learning styles of individuals before starting a 

a b

c d

  Fig. 3.3    ( a ) Levels of 
cognitive domain of 
Taxonomy in the 1950s 
(Bloom et al.  1956 ). 
( b ) Levels of affective 
domain of Taxonomy in the 
1950s (Bloom et al.  1956 ). 
( c ) Levels of psychomotor 
domain of Taxonomy in the 
1970s (Dave  1970 ). 
( d ) Levels of Taxonomy 
updated by Anderson and 
coworkers in the 1990s 
(Anderson et al.  2001 )       
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training program (Shearer  1998 ). By using 
MIDAS, trainees’ primary, secondary, and ter-
tiary intelligences can be identifi ed prior to a 
course; in the long run, this can be helpful to 
design specifi c training programs, perhaps even 
per learning style. In a previous study among sur-
geons, it was shown that trainees with a primary 
“bodily kinesthetic” intelligence were the best 
performers in laparoscopic tasks (Windsor et al. 
 2008 ). Thus, knowing once learning style is a 
prerequisite for both trainee and teacher to 
achieve an optimal learning experience.  

3.4.2     Psychomotor Learning 
Education Models 

 Fitts and Posner proposed a three-stage model of 
learning psychomotor skill (Fitts and Posner 
 1967 ): 

    Cognitive Stage 
 In the cognitive stage, tasks are well defi ned, and 
appropriate consecutive actions are listed needed 
to accomplish the task goals. This stage usually 
interacts with the knowledge of the trainee. In 
other words, one must have enough theoretical 
information to complete the cognitive stage. 
Characteristic of this stage is that the trainee must 
think about the execution of each action before 
doing so, which results in slow and intermittent 
actions.  

    Associative Stage 
 Once the cognitive stage is accomplished, the 
trainee can focus on the details of the actions to 
achieve task completion. In this transient associa-
tive stage, the required actions are split into sim-
ple sensorimotor skills, and smooth transition 
between these skills is exercised. This results in a 
decrease of the time consumed for thinking about 
the action, but actions are not fl uent yet.  

    Autonomic Stage 
 The fi nal stage is the autonomous stage, in which 
the trainee can perform the necessary sensorimo-
tor skills fl uently and completes predefi ned task 
goals in an optimal or effi cient manner. Thus, the 
trainee does not need to spend time to think about 
the action and demonstrate a fl uent skill. 

 A characteristic feature of this three-stage 
model is that the initial stages have a rapid pro-
gression whereas slowly progress to the auto-
nomic stage. Simpson described more detailed 
stages of psychomotor learning connected to 
teaching strategies (Simpson  1972 ). This psy-
chomotor learning model consists of (1) percep-
tion, (2) ability to perform a specifi c task by the 
guidance of a supervisor, (3) ability to perform 
a specifi c task without supervision, (4) ability to 
perform a complex pattern of simple tasks, (5) 
ability to respond to new situations by altering the 
action plan, and (6) ability to develop new action 
plans. This model represents the transformation 
of a rookie to a pro, as can also be seen in the 

   Table 3.1    Details of the Gardner’s multiple intelligences (Gardner  2011 )   

 Multiple intelligence type  Incorporated into subject matter  Way of demonstrating understanding 

 Linguistic  Books, stories, speeches, author visits  Writing stories, scripts, storytelling 
 Logical  Exercises, drills, problem solving  Calculating, theorizing, demonstrating, 

computer programming 
 Musical  Tapes, CDs, concert going  Performing, singing, playing, composing 
 Visual-spatial  Posters, art work, slides, charts, graphs, 

videos, museum visits 
 Drawing, illustrating, collage making, 
photography 

 Bodily kinesthetic  Movies, animations, exercises, 
physicalizing concepts 

 Dance recital, athletic performance or 
composition 

 Interpersonal  Teams, group work, specialist roles  Debates, panels, group work 
 Intrapersonal  Refl ection time, meditation exercises  Journals, diaries, habits, personal growth 
 Naturalist  Aquariums, pets, farm, nature walks, 

museum visits 
 Collecting, classifying, caring for 
animals and nature 

 Existential  Working on causes, charity work  Community service 

J.J. van den Dobbelsteen et al.
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Global Rating Scales scoring forms (Appendices    
13A-E). According to Van Merriënboer and 
coworkers, one should be careful not to assume 
that learning of a complex task is the sum of 
part tasks, because it also includes the ability to 
coordinate and integrate those parts (Merrienboer 
et al.  2002 ). This latter is basically already applied 
in the residency curricula of arthroscopy, as train-
ing in the operating room requires this form of 
integration, which is refl ected in the holistic type 
of performance monitoring (Chap.   14    ). However, 
part task training is especially needed, when cer-
tain actions need to be automated. This is where 
basic skills training in simulated environments 
can play a central role in increasing learning effi -
ciency of psychomotor skills.   

3.4.3     Preconditions for a Training 
Program of Basic Arthroscopic 
Skills 

 In today’s surgical education, most of the endo-
scopic skills are practiced on real patients. Studies 
showed that a surgeon may need 15–100 cases 
to reach profi ciency which may take quite a time 
on clinical setup (American Board of Internal 
Medicine  1991 ; Eversbusch and Grantcharov 
 2004 ; Hawes et al.  1986 ; Hoppe et al.  2014 ; 
O’Neill et al.  2002 ). The diffi culty of teaching in 
a clinical setup as it resembles the highest level 
of task complexity forced medical educators to 
seek different and effective training tools. Until 
recently, the abovementioned basic skills train-
ing has not been given a lot of attention. That is 
why it will have the focus in the remainder of this 
section. Several important preconditions are dis-
cussed that need to be taken into account when 
design the “ideal” basic training program. 

 In other fi elds that require psychomotor skills 
training such as sports and playing a music instru-
ments, the abovementioned theories have been 
used to design different educational programs. 
The general approach has been to divide a com-
plex task into basic pat tasks. For example, when 
training basketball players, basic skills such as 
dribbling and passing are thought before full 
court playing. In archery, one must exercise 

inspiration techniques and hand-eye coordination 
before shooting. Another program involving this 
kind of stepped skill teaching has been success-
fully used in music students (Neiman  1989 ).  

3.4.4     Defi ne Basic Skills 

 Nowadays, information on the science of learn-
ing and education gradually is being applied in 
residency training. To use or adapt previous stud-
ies and knowledge about psychomotor learning 
to arthroscopic training, a fi rst crucial step would 
be the unambiguous defi nition of the basic skills 
that is needed for the arthroscopic tasks. In the 
current literature, basic skills are not standard-
ized; many others can be added. In a different 
study, Suksudaj and coworkers tested different 
psychomotor skills and showed that tracing is 
an important basic skill among dental students, 
which is correlated with performances (Suksudaj 
et al.  2012 ). Neequaye and coworkers showed 
basic components of endovascular surgical 
procedures (Neequaye et al.  2007 ). Chapter   2     
presents data that can be used to fulfi ll this pre-
condition for arthroscopy as well. When defi n-
ing such basic skills, one must consider the basic 
components of endoscopic surgery. The main 
differences between endoscopic surgeries and 
open surgeries are loss of binocularity, loss of 
tactile feedback, the  fulcrum effect  of portals (as 
mentioned in Section A), and the need for trian-
gulation. Two-dimensional monitors are used in 
endoscopic surgeries, and this leads to the loss 
of binocularity. Loss of binocularity means that 
you lose substantial part of your depth percep-
tion. Tactile feedback is a very important cue in 
open surgery as surgeons use it to discriminate 
between normal and pathologic tissues. During 
endoscopic surgeries, tactile feedback is substan-
tially decreased because of the instruments such 
as probes that act as interface between the hand 
of the surgeon and the tissue. This implies that 
surgeons need to rely more on the visual impres-
sion behavior of tissue when probing. A char-
acteristic of experienced endoscopic surgeons 
is their ability of anticipation to this new envi-
ronment to cope with the lost or disturbed cues. 

3 Theory on Psychomotor Learning Applied to Arthroscopy

http://dx.doi.org/10.1007/978-3-662-44943-1_14
http://dx.doi.org/10.1007/978-3-662-44943-1_2


26

The last important difference, the  fulcrum effect , 
is caused by the portal dependency in endoscopic 
surgeries (Gallagher et al.  2009 ). This reverse 
relation causes a visual proprioceptive confl ict 
for the surgeon’s brain (Gallagher et al.  2005 ). As 
this effect is so different from interactions with 
our environment in daily lives, this confl ict con-
sumes a signifi cant time for the surgeon to adapt. 
Bilateralism and triangulation are helpful to over-
come the fulcrum effect. 

 The abovementioned basic skills can be exer-
cised in training simulators as presented in 
Chaps.   3    ,   4    , and   5    . So the training means are 
available, the next step would to design validated 
exercises to train them and to extend the 
arthroscopic curriculum with these exercises to 
improve the residents’ performances and achieve 
effi cient learning.   

3.5     Example of a Basic Skill 
Course 

 Karahan and coworkers are among the fi rst to 
propose such a basic skills training program, 
which has been validated. The program consists 
of a 2-day course consisting of six modules 
(Unalan et al.  2010 ):  

 In their studies, Karahan and coworkers and 
Unalan and coworkers showed that experienced 
surgeons outperform the novices in reaction 
time and double-arm coordination time when 
executing the basic skills exercises of Module 3 
(Karahan et al.  2009 ; Unalan et al.  2010 ). This 
is in line with the theory that assumes that skill 
can be explained as the ability to perform a spe-
cifi c task with less energy and time (Straub and 
Terrace  1981 ).  

3.6     Additional Points 
of Attention 

 When designing a basic skill training program, 
other elements of psychomotor learning should 
also be considered. Training time or the number of 
training sets in order to achieve profi ciency on a skill 
can vary from one surgeon to another. For example, 
Eversbusch and Grantcharov concluded that ten 
repetitions on a gastrointestinal simulator would 
be enough to acquire basic skills (Eversbusch and 
Grantcharov  2004 ). In a different study, Unalan 
and coworkers as well as Verdaasdonk and cor-
workers used ten repetitions on basic motor skill 
training instruments to achieve the plateau in the 
learning curve (Unalan et al.  2010 ; Verdaasdonk 
et al.  2007 ). An average number of repetitions on 
a specifi c training instrument should be defi ned 
before organizing a training program. 

 Another important element is the loss of a 
gained skill. Gallagher and coworkers showed 
that 2 weeks of no use will cause loss of recently 
acquired skills (Gallagher et al.  2012 ), whereas 
Gomoll and coworkers showed that continued 
training indeed maintained skill profi ciency over 
a period of 3 years (Gomoll et al.  2008 ). Any 
training program should be followed by a practic-
ing session within weeks in order to reinforce the 
skill acquisition. 

 Feedback is another important point in psy-
chomotor learning. Closed-loop theory points out 
that feedbacks are important in skill acquisition. 
Trainees receiving verbal feedback while perform-
ing a task do better than the ones who do not receive 
that (Adams  1971 ). This fi nding is supported in 

    1.    Interactive presentations about 
arthroscopic technology and basic knee 
pathologies.   

   2.    Video presentations of basic arthroscopic 
procedures.   

   3.    Basic motor skill exercises such as tri-
angulation; depth are shown in (Chap.   6    , 
Fig.   6.1    ).   

   4.    Triangulation exercises on dry knee joint 
models or virtual reality simulators.   

   5.    Wet lab exercises on a cow knee 
(Chap.   5    ), which is mainly designed to 
mimic a real arthroscopic procedure.   

   6.    The knot station, in which all partici-
pants can train surgical knot tying again 
on a very basic model.    
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various other studies in which structured feed-
back was compared with no additional feedback 
during endoscopic surgery by decreased errors 
and improved learning curves of the feedback 
groups (Boyle et al.  2011 ; Harewood et al.  2008 ; 
O’Connor et al.  2008 ; Triano et al.  2006 ). Live 
feedback during skill teaching may provide a better 
learning environment. Consequently, arthroscopic 
training programs should include interactive ses-
sions with real-time feedback mechanisms.  

3.7     Discussion 

 Although the precise nature of the mechanisms 
involved in learning arthroscopic techniques are 
at this point still largely unknown, the hypotheti-
cal constructs discussed in the current chapter 
provide a framework for our thinking about 
 training programs for arthroscopic surgeons. The 
importance of such a methodical approach is 
obvious when one considers the variations in the 
acquisition of surgical skills among residents 
(Alvand et al.  2011 ). Prior to a course or training 
program, trainees can be assessed on their initial 
skills levels with instruments for dexterity tests 
and on their learning style with online question-
naires. Both tests can be done within minute and 
provide the teachers valuable information to 
adapt to the trainee’s levels and enhance transfer 
of knowledge and experience. 

 Skills training programs should focus on 
facilitating the buildup of internal models of 
the arthroscopic instruments and the environ-
ment they interact with – which are the human 
joints. The approach of using training tools, such 
as instruments virtual reality training simula-
tors, will be useful to automate certain surgi-
cal actions. However, the current absence of 
suffi cient clinical variation in these simulators 
makes them insuffi cient to mimic actual proce-
dures. Experiencing task variation will enhance 
learning of the structure of the task as opposed 
to merely learning one set of parameter values 
that only applies for a specifi c training condi-
tion. Therefore, it is of much more importance 
to ensure that the variability in training tools and 

tasks captures the subtle but high variability of 
sensory information that is encountered in the 
real procedures. This is, for example, the case in 
the presented 2-day basic arthroscopy course. 

 A well-designed adult teaching program 
should cover all these needs; one should not for-
get that competent teachers are equally important 
to complete an “ideal” teaching program. A per-
fect teacher is not the one who has the best ability 
to perform a specifi c motor skill but the one who 
has the ability to transfer that skill to a student. 

 In conclusion, including psychomotor learn-
ing theory into our daily training grounds, teach-
ing skills will be more effi cient and effective. As 
much as it seems as if it is “other people’s ball 
fi eld,” theory on learning is for us orthopedic sur-
geons a primary concern and should be applied 
on a day-to-day basis. Only then we will become 
true teachers.     
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