
An Ambient ASM Model of Client-to-Client
Interaction via Cloud Computing

and an Anonymously Accessible Docking Service

Károly Bósa(B)

Christian Doppler Laboratory for Client-Centric Cloud Computing, JKU, Linz,
Softwarepark 21, 4232 Hagenberg im Mühlkreis, Austria

k.bosa@cdcc.faw.jku.at

Abstract. In our former work we have given a high-level formal model
of a cloud service architecture in terms of a novel formal method app-
roach which combines the advantages of the mathematically well-founded
software engineering method called abstract state machines and of the
calculus of mobile agents called ambient calculus. This paper presents
an extension for this cloud model which enables client-to-client interac-
tion in an almost direct way, so that the involvement of cloud services
is transparent to the users. The discussed solution for transparent use of
services is a kind of switching service, where registered cloud users com-
municate with each other, and the only role the cloud plays is to switch
resources from one client to another. We also show in an example at the
end of this paper how our novel client-to-client interaction mechanism
can be utilized for the development of the anonymously accessible cloud
services.

Keywords: Cloud computing · Ambient abstract state machines ·
Ambient calculus

1 Introduction

In [1] we proposed a new formal method approach which is able to incorpo-
rate the major advantages of the abstract state machines (ASMs) [2] and of
ambient calculus [3]. Namely, one can describe formal models of distributed sys-
tems including mobile components in two abstraction layers such that while the
algorithms of executable components (agents) are specified in terms of ASMs;
their communication topology, locality and mobility described with the terms of
ambient calculus in our method.

In [4] we presented a high-level formal model of a cloud service architecture
in terms of this new method. In this paper, we extended this formal model with
a Client-to-Client Interaction (CTCI) mechanism via a cloud architecture. Our
envisioned cloud feature can be regarded as a special kind of services we call
channels, via which registered cloud users can interact with each other in almost

c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 235–255, 2014.
DOI: 10.1007/978-3-662-44920-2 15

236 K. Bósa

I

n

t

e

r

f

c

e

a

a) Scenario I. b) Scenario II.

Client l Client l

I
n
t
e
r
f
a
c
e

Om m+1

2 3 O4 O5O1 O O

2 3 O4 O5O1 O O

2 3 O4 O5O1 O O2 3 O4 O5O1 O O Om m+1

Legend:

Outer Firewall

Cloud

S1 S1 Sj

Infrastructure Services

Cloud (nowadays)

S1

S1

Sj

Outer Firewall

Client−Cloud Interaction Controller

Infrastructure Services
Rn

Ri

R1
R1 Ri Rn

O

O

Ri : Cloud Resource Sj : Service Protected Area Area
 : Firewall Protected : Credential

Service OwnerV

Service OwnerW
Contact Point of

Contact Point of
Service OwnerV

Contact Point of

Contact Point of
Service OwnerW

abstract...

abstract...

abstract...

abstract...

Specific Functions
for UserY

Specific Functions
for Service OwnerW

Specific Functions
for Service OwnerV

Specific Functions
for UserX

Protected Area
of UserX

Protected Area
of UserX

Specific Functions
for UserY

Specific Functions
for Service OwnerW

Specific Functions
for Service OwnerV

Specific Functions
for UserX

Fig. 1. Application of our model according to different scenarios.

direct way and, what is more, they are able to share available cloud resources
among each other as well.

Some use cases, which may claim the need of such CTCI functions, can be
for instance: dissemination of large or frequently updated data whose direct
transmitting meets some limitations; or connecting devices of the same user (in
the later case an additional challenge can be during a particular interpretation
of the modeled CTCI functions, how to wrap and transport local area protocols,
like upnp via the cloud).

The rest of the paper is organized as follows. Section 2 informally summarizes
our formerly presented high-level cloud model. Section 3 gives a short overview
on the related work as well as ambient calculus and ambient ASM. Section 4
introduces the definitions of some non-basic ambient capability actions which
are applied in the latter sections. Section 5 describes the original model extended
with the CTCI functions. Section 6 demonstrates how the CTCI architecture
and the shared cloud resources can be applied for anonym usage of certain cloud
services. Finally, Sect. 7 concludes this paper.

2 Overview on Our Model

Roughly our formal cloud model can be regarded as a pool of resources equipped
with some infrastructure services, see Fig. 1a. Depending whether these abstract
resources represent only physical hardware and virtual resources or entire com-
puting platforms the model can be an abstraction of Infrastructure as a Service
(IaaS) or Platform as a Service (PaaS), respectively. The basic hardware (and
software) infrastructure is owned by the cloud provider, whereas the softwares
running on the resources are owned by some users. We assume that these soft-
wares may be offered as a service and thus used by other users. Accordingly,
we apply a relaxed definition of the term service cloud here, where a user who
owns some applications running on some cloud resources may become a soft-
ware service provider at the same time. Thus, from this aspect the model can
be regarded as an abstraction of a mixture of Software as a Service (SaaS) and
of IaaS (or a mixture of SaaS and PaaS).

An Ambient ASM Model of Client-to-Client Interaction 237

We make a distinction between two kinds of cloud users. The normal users
are registered in the cloud and they subscribe to and use some (software) services
available in the cloud. The service owners are users as well, but they also rent
some cloud resources to deploy some service instances on them.

For representing service instances, we adopt the formal model of Abstract
State Services (AS2s) [5,6]. In an AS2 we have views on some hidden database
layer that are equipped with service operations denoted by unique identifers
o1,. . . , on. These service operations are actually what are exported from a service
to be used by other systems or directly by users. The definition of AS2s also
includes the pure data services (service operations are just database queries)
and the pure functional services (operation without underlying database layer)
as extreme cases.

In our approach the model assumes that each service owner has a dedicated
contact point which resides out of the cloud. It is a special kind of client that can
also act as a server for the cloud itself in some cases. Namely, if a registered cloud
user intends to subscribe to a particular service, she sends a subscription request
to the cloud, which may forward it to such a special kind of client belonging to the
corresponding service owner. This client responses with a special kind of action
scheme called service plot, which algebraically defines and may constrain how the
service can be used by the user1. (E.g.: it determines the permitted combination
of service operations). This special kind of client is abstract in the current model.

The received service plots, which may be composed individually for each sub-
scribing user by service owners, are collected with other cloud functions available
for this particular user in a kind of personal user area by the cloud. Later, when
the subscribed user sends a service request, it is checked whether the requested
service operations are allowed by any service plot. If a requested operation is per-
mitted then it is triggered to perform, otherwise it is blocked as long as a plot
may allow to trigger it in the future. Each triggered operation request is autho-
rized to enter into the user area of the corresponding service owner to whom the
requested service operation belongs. Here a scheduler mechanism assigns to the
request a one-off access to a cloud resource on which an instance of the corre-
sponding service runs. Then the service operation request is forwarded to this
resource, where the request is processed. Finally, the outcome of the performed
operation returns to the area of the initiator user, where the outcome is either
stored or send further to a given client device. In this way, the service owners
have direct influence to the service usage of particular users via the provided
service plots.

Regarding our proposed cloud model one of the major questions can be
whether it is adaptable to the leading cloud solutions (e.g.: Amazon S3, Microsoft
Azure, IBM SmartCloud, etc.). Since due to the applied ambient concept the
relocation of the system components is trivial, we can apply our model accord-
ing to different scenarios. For instance, all our novel functions including the
client-to-client interaction can be shifted to the client side and wrapped into a
1 For an algebraic formalization of plots Kleene algebras with tests (KATs) [7] has

been applied.

238 K. Bósa

Table 1. Definition of ambient calculus.

A. The Mobility and Communication Primitives

P, Q, R::= processes
P | Q parallel composition
n[P] ambient
(ν n)P restriction of name n within P a

0 inactivity (skip process)
!P replication of P
M.P (capability) action M then P
(x).P input action (the input value is

bound to x in P)
a async output action

M1.Mk a path formation on actions

M ::= capabilities
IN n entry capability (to enter n)
OUT n exit capability (to exit n)
OPEN n open capability

(to dissolve n’s boundary)

B. Reduction (Operational Semantics)

P ≡ P , Q ≡ Q , P −−→ Q =⇒ P −−→ Q

P −−→ Q =⇒ P | R −−→ Q | R

P −−→ Q =⇒ n[P] −−→ n[Q]

P −−→ Q =⇒ (ν n)P −−→ (ν n)Q

n[IN m.P | Q] | m[R] −−→ m[n[P | Q] | R]

m[n[OUT m.p | Q] | R] −−→ n[P | Q] | m[R]

OPEN n.P | n[Q] −−→ P | Q

(x).P a P (x/a)

C. Structural Congruence (Operational Semantics)

P ≡ P
P ≡ Q =⇒ Q ≡ P
P ≡ Q, Q ≡ R =⇒ P ≡ R
P ≡ Q =⇒ ¶ | R ≡ Q | R
P ≡ Q =⇒ n[P] ≡ n[Q]
P ≡ Q =⇒!P ≡!Q
P ≡ Q =⇒ (ν n)P ≡ (ν n)Q
P ≡ Q =⇒ M.P ≡ M.Q
P ≡ Q =⇒ (x).P ≡ (x).Q
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
!P ≡ P | !P
(ν n)(ν m)P ≡ (ν m)(ν n)P
(ν n)(P | Q) ≡ P | (ν n)Q if n /∈ fn(P)
(ν n)(m[P]) ≡ m[(ν n)P] if n = m
P | 0 ≡ P
!0 ≡ 0
(ν n)0 ≡ 0

aName Restriction creates a new (unique) name n within a scope P . One must be careful with the term !(ν n)P ,
because it provides a fresh value for each replica, so (ν n)!P �= !(ν n)P .

middleware software which takes place between the end users and cloud in order
to control the interactions of them, see Fig. 1b. The specified communication
topology among the distributed system components remains the same in this
later case.

3 Related Work

It is beyond the scope of this paper to discuss the vast literature of formal
modeling mobile systems and SOAs, but we refer to some surveys on these
fields [8–10].

One of the first examples for representing various kinds of published services
as a pool of resources, like in our model, was in [11].

In [12] a formal high-level specifications of service cloud is given. This work
is similar to ours in some aspects. Namely, it applies the language-independent
AS2s with algebraic plots for representing services. But it principally focuses on
service specification, service discovery, service composition and orchestration of
service-based processes; and it does not apply any formal approach to describe
either static or dynamically changing structures of distributed system compo-
nents.

Another approach similar to ours is Cloud Calculus [13], which also uses
ambient calculus for capturing the dynamic topology of cloud computing sys-
tems. Cloud Calculus is very effective to verify whether global security policies
are preserved after virtual machine migrations, but it is a very specific tool
which is not applicable for giving the formal specification of functionalities of
cloud/distributed systems.

In the rest of this section, we give a short summary on ambient calculus and
ambient ASM, respectively, in order to facilitate the understanding of the latter
sections.

3.1 Ambient Calculus

The ambient calculus was inspired by the π-calculus [14], but it focuses primarily
on the concept of locality and process mobility across well defined boundaries

An Ambient ASM Model of Client-to-Client Interaction 239

instead of channel mobility as π-calculus. The concept of ambient stands in the
center of the calculus, see a summary of the definition of ambient calculus in
Table 1.

The ambient calculus includes only the mobility and communication primi-
tives depicted in Table 1A. The main syntactic categories are processes (including
both ambients and agents) and actions (including both capabilities and commu-
nication primitives). A reduction relation P −−→ Q describes the evolution of
a term P into a new term Q (and P −→∗ Q denotes a reflexive and transitive
reduction relation from P to Q).

An ambient is defined as a bounded place where computation happens. An
ambient is written as n[P], where n is its name, which can be used to control
access (entry, exit, communication, etc.), and a process P is running inside its
body (P may be running even if n is moving). Ambient names may not be unique.
Ambients can be embedded into each other such that they can form a hierarchical
tree structure. An ambient body is interpreted as the parallel composition of its
elements (its local ambients and its local agents) and can be written as follows:

n[P1 | . . . | Pk | m1[. . .] | . . . | ml[. . .]] where Pi �= mi[. . .]

An ambient can be moved. When an ambient moves, everything inside it
moves with it (the boundary around an ambient determines what should move
together with it). An action defined in the calculus can precede a process P .
P cannot start to execute until the preceding actions are performed. Those
actions that are able to control the movements of ambients in the hierarchy or to
dissolve ambient boundaries are restricted by capabilities. By using capabilities
an ambient can allow some processes to perform certain operations without
publishing its true name to them (see the entry, exit and open in Table 1). In
case of the modeling of a real life system, communication of (ambient) names
should be rather rare, since knowing the name of an ambient gives a lot of
control over it. Instead, it should be common to exchange restricted capabilities
to control interactions between ambients (from a capability the ambient name
cannot be retrieved).

3.2 Ambient ASM

In [15] the ambient concept (notion of “nestable” environments where computa-
tion can happen) is introduced into the ASM method. In that article an ASM
machine called MobileAgentsManager is described as well, which gives a
natural formulation for the reduction of three basic capabilities (Entry, Exit
and Open) of ambient calculus in terms of the ambient ASM rules. For this
machine an ambient tree hierarchy is always specified initially in a dynamic
derived function called curAmbProc. The machine MobileAgentsManager
transforms the current value of curAmbProc according to the capability actions
given in curAmbProc. Since one of the main goals of [15] is to reveal the inherent
opportunities of the new ambient concept introduced into ASMs, the presented
definitions for moving ambients are unfortunately incomplete.

240 K. Bósa

Table 2. A Summary of the definitions of some non-basic capabilities.

Names New Reduction Relations (Based on the Definitions) Definitions of the New Capabilities

1) Renaming n[n BE m.P | Q] −−−−→∗ m[P | Q] n BE m.P ≡ (ν s)(s[OUT n | m[OPEN n.OUT s.P]] | IN s.IN m)
2) Seeing n[] | SEE n.P −−−−→∗ n[] | P SEE n.P ≡ (ν r, s)(r[IN n.OUT n.r BE s.P] | OPEN s)
3) Wrapping n[m WRAP n.P] −−−−→∗ m[n[P]] m WRAP n.P ≡

(ν s, r)(s[OUT n.SEE n.s BE m.r[IN n]] | IN s.OPEN r.P)
4) Allowing Code ALLOW key.P | key[Q] −−−−→∗ P | Q ALLOW key.P ≡ OPEN key.P
5) Drawing in m[Q | ALLOW key] | n[n DRAWINkey m.P] n DRAWINkey m.P ≡
(an Ambient) −−−−→∗ n[Q | P] key[OUT n.IN m.IN n] | ALLOW m.P
6) Drawing in m[Q | ALLOW key] | n DRAWINkey m THENRELEASE lock.P ≡
Then Release n[DRAWINkey m THENRELEASE lock.P] key[OUT n.IN m.IN n] | SEE m.lock WRAP n.ALLOW m.P
a Lock −−−−→∗ lock[n[Q | P]]
7) Concurrent SERVERn

key m.P ≡
Server m[Q | ALLOW key] | SERVERn

key m.P (ν next)(next[] |
Process −−−−→∗ SERVERn

key m.P | n
uniq
k

[Q | P] !(ν n)(OPEN next.n[
n DRAWINkey m THENRELEASE next.P]))

In [1] we extended this ASM machine given in [15], such that it fully captures
the calculus of mobile agents and it can interpret the agents’ algorithms (given
in terms of ASM syntax in curAmbProc as well) in the corresponding contexts.
By this one is able to describe formal models of distributed systems including
mobile components in the mentioned two abstraction layers.

Since the definition of ambient ASM is based upon the semantics of ASM
without any changes, each specification given this way can be translated into a
traditional ASM specification.

Ambient ASM is not the only research which aims to build in a concept
of mobile ambients to the ASM method. In [16] some advantages of a simple
ambient concept introduced into ASM are demonstrated. Although this work
was also inspired by ambient calculus, it is by far not refined and versatile
as ambient ASM.

4 Definitions

As Cardelli and Gordon showed in [3] the ambient calculus with the three basic
capabilities (Entry, Exit and Open) is powerful enough to be Turing-complete.
But for facilitating the specification of such a compound formal model as a model
of a cloud infrastructure, we defined some new non-basic capabilities encoded in
terms of the three basic capabilities. Table 2 summarizes the definitions of these
non-basic capabilities.

Below we give an informal description of each non-basic capability in Table 2.
It is beyond the scope of the paper to present detailed explanations and reduc-
tions of their ambient calculus-based definitions, but we refer to our former
works [4,17] for more details.

1. Renaming. This capability is applied to rename an ambient comprising this
capability. Such a capability was already given in [3], but our definition differs
from Cardelli’s definition. In the original definition, the ambient m was not
enclosed into another, name restricted ambient (it is called s in our definition),
so after it has left ambient n, n may enter into another ambient called m (if
more than one m exists as sibling of n).

An Ambient ASM Model of Client-to-Client Interaction 241

2. Seeing. This operation was defined in [3] and it is used to detect the presence
of a given ambient.

3. Wrapping. Its aim is to pack an ambient comprising this capability into
another ambient.

4. Allowing Code. This capability is just a basic Open capability action. It
is applied if an ambient allows/accepts an ambient construct (which may be a
bunch of foreign codes) contained by the body of one of its sub-ambients (which
may was sent from a foreign location). The name of the sub-ambient can be
applied for identifying its content, since its name may be known only by some
trusted parties.

5. Draw in (an Ambient). The aim of this capability is to draw in a par-
ticular ambient (identified by its name) into another ambient (which contains
this capability) and then to dissolve this captured ambient in order to access to
its content. For achieving this, a mechanism (contained by the ambient key) is
applied which can be regarded as an abstraction of a kind of protocol identified
by key. The ambient key enters into one of the available target ambients which
should accept its content in order to be led into the initiator ambient.

6. Draw in then Release a Lock. This capability is very similar to the
previous one, but after m has been captured by n (and before m is dissolved),
n is wrapped by another ambient. The new outer ambient is usually employed
as release for a lock2.

7. Concurrent Server Process. This ambient construct can be regarded as
an abstraction of a multi-threaded server process. It is able to capture and
process several ambients having the same name in parallel. In the definition n is a
replicated ambient whose each replica is going to capture another ambient called
m. Since there is a name restriction quantifier in the scope of the replication sign,
which binds the name n, a new, fresh and unique name (denoted by nuniq

k) is
generated for each replica of n. One of the consequences of this is that nobody
knows from outside the true name of a replica of the ambient n, so each replica
of n is inaccessible from outside for anybody (even for another replica of n, too).

5 The Extended Formal Model

In the formal model discussed in this section, we assume that there are some
standardized public ambient names, which are known by all contributors. We dis-
tinguish the following kinds of public names: addresses (e.g.: cloud, client1, . . . ,
clientn), message types (e.g.: reg(istration), request, subs(cription),
returnV alue, etc.) and parts of some common protocols (e.g.: lock, msg, intf ,
access, out, o1, . . . , os, op). All other ambient names are non-public in the
model which follows:
2 In ambient calculus the capability Open n.P is usually used to encode locks [3].

Such a lock can be released with an ambient like n[Q] whose name corresponds with
the target ambient of the Open capability.

242 K. Bósa

curAmbProc := root[Cloud | Client1 |. . . | Clientn]3

In this paper, we focus on the cloud service side and we leave the client side
abstract.

5.1 User Actions

In the model user actions are encoded as messages. A user can send the following
kinds of messages to the cloud:

MsgFrame ≡ msg[In cloud.Allow intf .content]
where content can be:
RegMsg ≡ reg[Allow CID.〈UIDx〉]

SubsMsg ≡ subs[Allow CID.〈UIDx, SIDi, pymt〉]

RequestMsg ≡ request[In UIDx.Allow CID |
〈oi, clientk, argsi〉 | . . . | 〈oj , clientk, argsj〉]

AddClMsg ≡ addCl[In UIDx | Allow CID.〈clientk, pathl, UID(on clientl)〉]

AddChMsg ≡ addCh[Allow CID.〈UIDx, cname〉]

SubsToChMsg ≡ subsToCh[Allow CID.〈UIDx, cname, uname, clientk, pymt〉]

ShareInfoMsg ≡ share[In CHIDi | Allow CID.〈sndr, rcvr, info〉]

ShareSvcMsg ≡ share[In CHIDi | Allow CID.
〈sndr, rcvr, info, oi, argsP, argsF 〉]

In the definitions above: the ambient msg is the frame of a message; the term
In cloud denotes the address to where the message is sent; the term Allow intf
allows a (server) mechanism on the target side which uses the public protocol
intf to capture the message; and the content can be various kind of message
types. The term Allow CID denotes that the messages are sent to a service of
a particular cloud which identifies itself with the non-public protocol/credential
CID (stands for cloud identifier).

The first three kinds of messages were introduced in the original model. In
a RegistrationMsg the user x provides her identifier UIDx that she is going
to use in the cloud. By a SubscriptionMsg a user subscribes to a cloud service
identified by SIDi; the information represented by pymt proves that the given
user has paid for the service properly.

Again, cloud services provide their functionalities for their environment (users
or other services) via actions called service operations in our model. In a
RequestMsg a user who has subscribed to some services before can request
the cloud to perform some service operations belonging to some of these ser-
vices. Service operation requests are denoted by triples, where oi and oj are the
unique names of these service operations; clientk is the identifer of a target loca-
tion (usually a client device) to where the output of a given operation should

3 The ambient called root is a special ambient which is required for the ASM definition
of ambient calculus, see [1,15].

An Ambient ASM Model of Client-to-Client Interaction 243

be sent by the cloud; and argsi and argsj are the arguments of the correspond-
ing requested service operations. Furthermore, the term In UIDx represents the
address of the target user area within the Cloud.

The rest of the message types is new in the model. With AddClMsg a user
can register a new possible target (client) device or location for the outcomes of
the requests initiated by her. Such a message should contain the chosen identifier
clientk of the new device, the address pathl of the device and the user identifier
UID(on clientl) used on the given target device.

By AddChMsg users can open new channels, by SubsToChMsg users can
subscribe to channels and by ShareInfoMsg and ShareSvcMsg users can share
information as well as service operations with some other users registered in the
same channel. For the detailed description of the arguments lists of these last
four messages, see Sect. 5.3.

5.2 The Cloud Service Architecture

The basic structure of the defined cloud model, which is based on the simplified
Infrastructure as a Service (IaaS) specification given in [1], is the following:

Cloud ≡ (ν fw, q, rescr1,. . . rescrm)cloud[
interface |
fw [rescr1[service1] |. . . | rescrl[service1] | rescrl+1[service2] |. . . | rescrm[

servicen] |
q[!Open msg | BasicCloudfunctions | CTCIfunctions |
UIDx[userIntf] |. . . | UIDy[userIntf] |
UIDowner

v [ownerIntf] |. . . | UIDowner
w [ownerIntf]]]]

where
interface ≡ Servern

intf msg.In fw.In q.n be msg

In the cloud definition above, the names of the ambients fw, q and
rescr1,. . . rescrm are bound by name restriction. The consequence of this is that
the names of these ambients are known only within the cloud service system, and
therefore the contents of their body are completely hidden and not accessible at
all from outside of the cloud. So each of them can be regarded as an abstraction
of a firewall protection.

The ambient expression represented by interface “pulls in” into the area
protected by the ambients fw and q any ambient construct which is encompassed
by the message frame msg. The purpose of the restricted ambients fw and q
is to prevent any malicious content which may cut loose in the body of q after
a message frame (msg) has been broken (by Open msg) to leave the cloud
together with some sensitive information. For more details we refer to [4].

The restricted ambients resrc1,. . . , resrcm, represent computational
resources of the cloud. Within each cloud resource some service instances can be
deployed. A service may have several deployed instances in a cloud (see instances
of service1 in resrc1,. . . , resrcl above).

Every user area is represented by an ambient whose name corresponds to the
corresponding user identifier UIDi. Furthermore, the user areas extended with

244 K. Bósa

service owner role are denoted by UIDowner
i . The terms denoted by

BasicCloudfunctions are responsible for cloud user registration and service sub-
scription. Finally the terms denoted by CTCIfunctions encode the client-to-
client interaction.

It is beyond the scope of this paper to describe all parts of this model in
details (e.g.: the structure of service instances servicei, functions of a service
owner area ownerIntf , the service plots and the ASM agents in
BasicCloudfunctions). For the specification of these components, we refer to [4].

User Access Layers. A user access layer (or user area) may contain the fol-
lowing mechanisms: accepting user requests and converting them to the format
which is compatible with plots4 (requestPreprocessor), accepting new plots
(!Allow newPlot), accepting outputs of service operations (!Allow return-
V alue) and some service plots.

userIntf ≡
requestPreprocessor | !Allow newPlot | clientRegServer | !Allow returnV alue |
sortingOutput | client1[postingclient1] |. . . | clientk[postingclientk]
PlotSIDi |. . . | PlotSIDj |

where
requestPreprocessor ≡ Servern

CID request.(o, c, args).o[Allow op.〈c, args〉]

sortingOutput ≡ !(o, client, a).output[In client.Allow CID | 〈o, client, a〉]]

clientRegServer ≡ Servern
CID addCl.(client, path, UID).(n Be client |

postingclient)

postingclienti ≡ Servern
CID output.(o, client, a).

Out clienti.forwardToclienti .returnV alue[In UID(on clienti) | 〈o, client, a〉]]

forwardToclienti ≡ n Be outgoingMsg.Out UIDx.leavingCloud.pathi

leavingCloud ≡ Out q.Out fw.Out cloud.outgoingMsg Be msg

This paper extends the user areas with some new functionalities.
clientRegServer is applied to process every AddClMsg sent by the correspond-
ing user. It creates new communication endpoint for target (client) devices. Each
such an endpoint is encoded by an ambient whose name clienti corresponds the
given identifier provided in a message AddClMsg. By these endpoints outputs
of service operations can immediately be directed to registered (client) devices
after they are available. Of course, if no target device or a non-registered one is
given in a RequestMsg, the outcome will be stored in the area of the user.

Every service operation output, which is always delivered within the body
of an ambient called returnV alue, consists of three parts: the name of the per-
formed service operation, the identifier of a target location to where the output
should be sent back and the outcome of the performed service operation itself.

sortingOutput distributes every service operation output among the commu-
nication endpoints in an ambient called output. The mechanism postingclienti

,
4 Service plots can accept requests if they are encompassed by ambients whose names

are correspond with the unique names of the requested operations (oi. . . oj), see the
definition of requestPreprocessor above.

An Ambient ASM Model of Client-to-Client Interaction 245

which resides in each such a communication endpoint, is responsible to wrap each
output of service operations which reaches the corresponding endpoint again into
an ambient returnV alue and to forward it to the specified user UID(on clienti)

on the corresponding device clienti.

5.3 Client-to-Client Interaction

Again, the client-to-client interaction in our model is based on the constructs
called channels. These are represented by ambients with unique names denoted
by CHIDi which contain some mechanisms whose purpose is to share some
information and service operations among some subscribed users, see below:

CTCIfunctions ≡
CHID1[channelIntf] |. . . | CHIDl[channelIntf] |
Servern

CID addCh.(UID, cname).ChMgr(n, UIDx, cname) |
Servern

CID subsToCh.(UID,cname,uname,client,pymt).
ChSubsMgr(n, UID, cname, uname, client, pymt)

where
channelIntf ≡ Servern

CID share.((sndr, rcvr, info).
〈sndr,rcvr,info,undef ,undef ,undef〉 |
(sndr, rcvr, info, o, argsP , argsF).
SharingMgr(n, sndr, rcvr, info, o, argsP , argsF))

Every cloud user can create and own some channels by sending the message
AddChMsg to the cloud, where an instance of the ASM agent ChMgr, which
is equipped with a server mechanism, processes such a request and creates a new
ambient with unique names for the requested channel, see Sect. 5.3.

If a user would like to subscribe to a channel she should send the message
SubsToChMsg to the cloud. The server construct belongs to the ASM agent
ChSubsMgr is responsible for processing these messages, see Sect. 5.3. In the
subscription process the owner of the channel can decide about the rights which
can be assigned to a subscribed user. According to the presented high-level
model, the employed access rights are encoded by the following static nullary
functions: listening is a default basic right, because everybody who joins to a
channel can receive shared contents; sending authorizes a user to send something
to only one user at a time; and broadcasting permits a user to distribute contents
to all member of the channel at once.

Both ShareInfoMsg and ShareSvcMsg are processed by the same server
which belongs to the ASM agent SharingMgr and which is located in the
body of each ambient CHIDi, see Sect. 5.3. In the case of ShareInfoMsg
the server first supplements the arguments list of the message with three addi-
tional undef values, such that it will have the same number of arguments as
ShareSvcMsg has. Then an instance of the ASM agent SharingMgr can
process the ShareInfoMsg similarly to ShareSvcMsg (the first three argu-
ments are the same for both messages).

246 K. Bósa

Table 3. The ASM agents ChMgr and ChSubsMgr.

Establishing a New Channel. ChMgr is a parameterized ASM agent, see
in Table 3, which expects UID of the cloud user who is going to create a new
channel and cname which is the name of this channel as arguments. The addi-
tional argument n is the unique name of an ambient which was provided by the
surrounding server construct and in which the current AddChMsg is processed
by an instance of this agent (such an argument is also applied in the case of the
other ASM agents below).

First the agent checks whether the given UID has already been registered
on the cloud and whether the given name cname has not been used as a name
of an existing channel yet (the unary function ownerOfCh returns the value
undef if there is no assigned owner to this name). If it is the case, the agent
generates a new and unique identifier denoted by CHID for the new channel
with the usage of the function new which provides a unique and completely
fresh element for the given set each time when it is applied. The abstract ASM
macro StoreChannel inserts into an abstract database a new entry with all
the details of the new channel which are the channel identifier, the channel name
and the identifier of the owner.

Then it calls the abstract derived function createChannel, which creates an
ambient called CHID with the terms denoted by channelIntf in its body which
encode the functions of the new channel. By the abstract tree manipulation
operation called NewAmbientConstruct5 introduced in [1], this generated
ambient construct is placed into the ambient tree hierarchy as sibling of the
agent.

Although a channel is always created as a sibling of the current instance of
ChMgr, but as a first step it leaves the ambient n which was provided by the
5 This is the only way how an ASM agent can make changes in the ambient tree

hierarchy contained by dynamic derived function curAmbProc [1].

An Ambient ASM Model of Client-to-Client Interaction 247

surrounding server construct and in which the message was processed (see the
underlined moving action in CHConstruct above). After that it is prepared to
serve as a channel for client-to-client interaction (it is supposed that the name
cname of every channel is somehow announced among the potential users).

Subscribing to a Channel. ChSubsMgr is a parameterized ASM agent, see
in Table 3, which expects the following as arguments: UID of the user who is
going to subscribe to the channel, cname which is the name of the channel,
uname is the name that the user is going to use within the channel, client which
is the identifier of a registered client device to where the shared content will be
forwarded and pymt which is some payment details if it is required. A user can
register to a channel with different names and various client devices in order to
connect these devices via the cloud.

First the agent checks whether the given UID and cname have already been
registered on the cloud and whether the given uname has not been used as a
name of a member of the channel yet. If it is the case, the agent informs the
owner of the channel about the new subscription by applying the abstract ASM
macro confirmRights, who responses with a set of access rights to the channel
that she composed based on the information given in the subscription.

If the subscription has been accepted by the owner and besides listening
some other rights are granted to the new user, an ambient construct is created
and sent as a message returnV alue to the user by NewAmbientConstruct.
This message contains the capability In CHID by which the new user can send
messages called ShareInfoMsg and ShareSvcMsg into the ambient CHID
which represents the corresponding channel (the owner of a channel also has to
subscribe in order to receive this information and to be able to distribute content
via the channel).

Sharing Information via a Channel. Every server construct in which the
agent SharingMgr is embedded is always located in an ambient which rep-
resents a particular channel and whose name corresponds to the identifier of
the channel. In order to be able to perform its task, it is required that each
instance of SharingMgr knows by some static nullary function called myChId
the name of the ambient in which it is executed.

SharingMgr is a parameterized ASM agent, see in Table 4, which expects
the following arguments: sndr is the registered name of the sender, rcvr is
either the registered name of a receiver or an asterisk “*”, info is either the
content of ShareInfoMsg or the description of a shared service operation in
ShareSvcMsg. The last three arguments are not used in the case of the message
ShareInfoMsg and the value undef is assigned to each of them by the sur-
rounding server construct. In the message ShareSvcMsg o denotes the unique
identifier of the service operation that sndr is going to share, argsP denotes the
arguments of o that rcvr can freely modify if she calls the operation and argsF
denotes those part of the argument list of o, whose value is fixed by sndr.

The agent first generates a new and unique operation identifier for the ser-
vice operation o in the control state InitialState. This new identifier which is

248 K. Bósa

Table 4. The ASM agent SharingMgr.

stored in the nullary location function shOp will be announced to the channel
member(s) specified in rcvr. In the control state SharingState the agent checks
whether the sndr is a registered member of the channel by calling the function
members(cname). Then if the given value of rcvr is equal to “*” the agent
broadcasts the content of the current message to all members of the channel,
see code branch bordered by the first rectangular frame below. Otherwise if the
value of rcvr corresponds to the name of a particular member of the channel, the
agent sends the content of the current message only to her, see the code branch
bordered by the second rectangular frame below.

Apart from the number of users to whom the information is sent the both
code branches mentioned above define the same actions. Accordingly at the end
of the processing of ShareInfoMsg the agent sends to the member(s) specified
in rcvr the message sharedMcontent1 , which contains the sender sndr and the
shared information info.

At the end of the processing of ShareSvcMsg two ambient constructs are cre-
ated by NewAmbientConstruct. The first one is the message sharedMcontent2

and it is sent to the member(s) specified in rcvr. It contains the sender sndr,
the new operation identifier shOp, the list of public arguments argsP and the
informal description of the shared operation denoted by info.

An Ambient ASM Model of Client-to-Client Interaction 249

The second ambient construct is the plot PlotshOp enclosed by the ambient
newPlot and equipped with some additional ambient actions (see the underlined
capabilities in the definition of sharedP lot) which move the entire construct into
the user area of the channel member(s) specified in rcvr, where the plot will be
accepted by the term !Allow newPlot.

The execution of the shared service operation shOp can be requested in
a usual RequestMsg as normal service operations. The PlotshOp is a plot,
which can accept service operation requests for shOp several times. It is special
plot, because instead of triggering the execution of shOp as in the case of a
normal operation a normal plot does, see [4], it converts the original request to
another request for operation o by applying the term triggero. This means that
it substitutes the operation identifier o for shOp, it completes its arguments list
with argsF and it forwards the request for o to the user area of the user sndr
who actually has right to trigger the execution of the operation o.

To the new request the name restricted ambient tmp is attached, whose pur-
pose is similar to the communication endpoints of registered clients. Namely, it is
placed into the user area of sndr temporary and it is responsible for forwarding
the outcome of this particular request from the user area of sndr to the user area
of the user who initiated the request. It is beyond the scope of this chapter to
present a reduction how a particular request for a shared operation is processed
in our model, but we refer to [18] for more details.

6 Anonymous Docking Service

If we apply the scenario proposed in Sect. 2 and depicted on Fig. 1b, according to
which we shift (among others) the client-to-client functionality to client side and
wrap into a middleware, then no traces of the user activities belonging to the
shared services will be left on the cloud, since all the service operations which
are shared via a channel are used on behalf of its initial distributor.

Many scenario can make a profit on this fact, which require some anony-
mously usable cloud services. For instance, one of the possible use cases arises
in a multi-clouds approach which enables many-to-many relationship between
cloud service providers and customers of the middleware, such that the middle-
ware architecture is capable to treat intermediate results exchanged among the
requested cloud services. It may become necessary to store intermediate results
on a third party cloud exploiting infrastructure as a service, and to ensure that
after completion of the temporary use of this docking service no trace of the
customers is left.

In the case study discussed in this section, we introduce a new kind of requests
called pipelined requests, which can be composed from some normal service oper-
ation requests such that the requested services are able to exchange data accord-
ing to a predefined information flow pattern. Below we also extend our formal
model to be able to process this new kind of requests in a distributed way and
to be able to anonymously store the intermediate results exchanged among some
requested services on (probably) a third-party IaaS.

250 K. Bósa

In our approach we assume that the middleware mentioned above (or its
provider) has access to such a third-party storage service, whose operations are
shared with all users of the middleware via some kind of public channel. Since
these users access to the third-party docking service on behalf of the middleware
(provider), their personal data is not given/forwarded to any third-party for any
service subscription.

A complex pipelined request can be regarded as an extension of RequestMsg
defined in Sect. 5.1, see an example below:

RequestMsgpipelined ≡ request[In UIDx.Allow CID | 〈P1〉 | 〈P2〉 |
〈oi, P1, argsi〉 | 〈oj , P2, argsj〉 | 〈ok, client, {arg1, . . . , P1, . . . , P2, . . . , argn}〉]

RequestMsgpipelined also contains the triples which denote the usual service
requests, but it can also contains some singletons which declare the names of
some information flow (or pipe) denoted by P1,. . . , Pn. If such a pipe name
appears as the target location of the output of a requested operation (see the
request triples for oi and oj above), then this output should be stored on a
docking service, instead of sending to the user who initiated the request.

If the name of some pipes appears in the argument list of some operation
requests, then the execution of these requests is blocked as long as all the inputs
provided via the mentioned pipes will be available. Every pipe always describes
a one-to-one or a one-to-many relationships (one operation can provide data to
many) and it is always local to its containing RequestMsg.

6.1 New Assumptions and Changes in the Model

Now, it is assumed that each user of the middleware has access to the following
two shared service operations which were distributed on behalf of the middleware
provider via some public channel after each user registration:

– sharedStore is a shared version of a service operation whose task is to store
some data in a filesystem on a third-party IaaS. It has two arguments, which
are freely modifiable by the users. The first is an identifier (a pipe name) and
the second is the data which are going to be stored.

– sharedReceive is a shared version of another service operation which belongs
to the same third party IaaS as sharedStore. It has only one freely modifiable
argument, the identifier by which some stored data can be retrieved. If no data
is stored with the given identifier, the operation blocks until some data bound
to such an identifier appear on the third-party IaaS.

In order to adapt the model to the new pipelined requests only the ambient
expression represented by requestPreprocessor has to be replaced which was
given as a part of the definition of user areas in Sect. 5.2:

requestPreprocessor ≡ Servern
CID request.(

!(p).Listenerpipe(p) | !(o, c, args).Listenerreq(o, c, args) | RequestMgr(n))

An Ambient ASM Model of Client-to-Client Interaction 251

Table 5. The ASM agents Listenerpipe and Listenerreq.

The new expression is an ambient server construct that is able to capture
(both normal and pipelined) service operation requests arriving at a user area
and able to prepare them for execution with the help of the three ASM agents
called Listenerpipe, Listenerreq and RequestMgr(n).

Listenerpipe and Listenerreq are very simple parameterized ASM agents,
see in Table 5, whose several instances are available in the server construct
referred by requestPreprocessor. Each replica of Listenerpipe can capture a
singleton containing a pipe name and mediates it to the agent RequestMgr via
the shared dynamic function mailboxpipe

6. Replicas of Listenerreq can capture
request triples, respectively, and also forward them to the agent RequestMgr
via the shared dynamic function mailboxreq.

6.2 Request Preprocessing

RequestMgr is a parameterized ASM agent, see in Table 6, whose only argu-
ment is n which is the unique name of an ambient provided by the surrounding
server construct and in which the content of current RequestMsg is preprocessed
by an instance of this agent.

In the control state InitialState the agent first waits until every singleton
and every triple in n are captured by Listenerpipe and Listenerreq. Then in
the control state PreProcessing all request triples contained by the captured
message will be prepared for execution in parallel.

In the next step, each request triple 〈o, c, args〉 is checked whether its
execution is independent from other requests or in other words none of the pipe
names occurs in args. If it is the case, the agent also checks whether the target
location c does not correspond with any pipe name. If this is true as well, then
the current request is a normal request which is not connected to any pipe,
so it is simply converted into a service plot compatible format as before with
NewAmbientConstruct (see request(n, o, c, args) in Table 6).

In that case if a pipe denoted by Pout is specified as a target location in the
request, the agent generates a new and unique global identifier denoted by PID
for the pipe with the function new. PID substitutes for Pout in the request
6 In our applied ambient ASM-based formal method, ASM agents can communicate

with each other directly via shared functions if and only if they are sibling of each
other [1].

252 K. Bósa

Table 6. The ASM agent RequestMgr.

triple as the target location of the output. When the modified ambient request
is created with NewAmbientConstruct another ambient term denoted by
tmpEndPoint attached to it, whose purpose is similar to the communication
endpoints of the registered clients. Namely, it refers to an ambient called PID,
so the output of the service operation eventually arrives at the body of this
ambient. The aim of the mechanism located in the body of the ambient PID is
to trigger the shared operation sharedStore which will store the output bound
to the global pipe identifier n:Pout on the third-party IaaS (Pout alone cannot be
applied as a unique global identifier of the pipe on a third-party storage, since it
is always given by a user; hence, it should be extended with n as prefix, because
n always refer to a unique name in the case of each captured RequestMsg).

In that case if some of the pipe names occur in args (non-independent
request), the request must be blocked until all the inputs referred by these pipes
are available. First a unique identifier denoted by RID is generated for the
request, which is applied as the name of the ambient, into where the request
is enclosed and at where the required inputs from the third-party IaaS arrive
eventually. Then a request for shared service operation sharedReceive is trig-
gered in parallel for each such a pipe with the argument n:Pin and with the
target location RID (see receiveMsg(RID, Pin) in Table 6). These requests

An Ambient ASM Model of Client-to-Client Interaction 253

3rd−Party Storage

1.

5.
2.

...

Service of Oi

4.
3.

[[]]] []RID Oi PID, { P1, ... Pn }
sharedReceive <RID, {Pn}>] | |PID sharedStore <PID, {P , output}> [out

]sharedReceive <RID, {P1}>

[
[

data bound to P1

data bound to Pn
requesting P1...Pn

output of Oi
execution of Oi

storing output of Oi with the identifier P out

Fig. 2. Execution of pipelined service operation oi.

block until some data bound to the global pipe identifer n:Pin is not available
on the third-party IaaS.

Concurrently with the sending of sharedReceive messages, an ambient con-
struct called blockedRequest is created, which denotes the ambient RID and
some ASM agents in its body. The ambient RID serves as the target location of
the outputs of the triggered sharedReceive requests. This ambient also contains
several replicas of the abstract ASM agent Listeneroutput and one instance of
the ASM agent ReqTrigger. Each Listeneroutput is responsible for capturing
an output triple of an executed sharedReceive and for delivering it to ReqTrig-
ger via a shared dynamic function. ReqTrigger is also an abstract ASM agent
whose task is to add all the expected inputs provided by other services via pipes
to the argument list of the current request and to then trigger this request as it
is specified in the agent ReqTrigger’s argument list. If the target location of a
non-independent request is also a pipe, then the original target location of this
request is replaced with PID and tmpEndPoint is attached to tmpEndPoint
like in the previous case above.

Figure 2 depicts a generalized summary how a request which is part of a
pipelined RequestMsg is processed in the model. According to it, if the request
for the operation oi requires inputs from other services, some sharedReceive
requests are sent to the third-party IaaS on behalf of the middleware and the
request for oi is blocked in an ambient whose name is denoted by RID. After
all the necessary data have arrived at the ambient RID and they have been
added to the argument list, the request for oi is triggered and executed. If the
given target location of the output of oi refers to another pipe, then this output
is delivered into the ambient PID instead of a client. From here the output is
forwarded in a sharedStore request message and stored on the third-party IaaS
on behalf of the middleware as well.

7 Conclusions

In this paper we extended our formerly given cloud model with the high-level
formal definitions of some client-to-client interaction functions, by which not

254 K. Bósa

only information, but cloud service functions can be also shared among the
cloud users. Our approach is general enough to manage situation in which a user
who has access to a shared service operation to share it again with some other
users via a channel (who in turn may share it again, etc.).

Furthermore, if we apply the scenario proposed in Sect. 2 and depicted on
Fig. 1b, according to which we shift (among others) the client-to-client func-
tionality to client side and wrap into a middleware, then no traces of the user
activities belonging to the shared services will be left on the cloud, since all the
service operations which are shared via a channel are used on behalf of its initial
distributor. As it was showed this consideration can facilitate the development
of anonymously accessible cloud services. The consequence of this is that if a
cloud user who has contracts with some service providers completely or par-
tially shares some services via a channel, then she should be aware of the fact
that all generated costs caused by the usage of these shared services will be
allocated to her.

The specification described in Sect. 6 can lead to a solution of some prob-
lems regarding nowadays (web) mashup services, too. A mashup is a composed
application, using elements from different sources. Namely, the examination of
the security requirements for mashups [19] demands among others stronger sep-
aration guarantees between the executable components, but at the same time
also require the possibility of interaction between these separated components.
According to our opinion the formal specification defined above for complex
pipelined requests can also be a good basis for overcoming these two problems
of mashup services.

Acknowledgements. This research has been supported by the Christian Doppler
Society.

References

1. Bósa, K.: Formal modeling of mobile computing systems based on ambient abstract
state machines. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2013. LNCS, vol.
7693, pp. 18–49. Springer, Heidelberg (2013)

2. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Secaucus (2003)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240, 177–213
(2000)

4. Bósa, K.: An ambient ASM model for cloud architectures. Formal Aspects of Com-
puting (2013, submitted)

5. Ma, H., Schewe, K.-D., Thalheim, B., Wang, Q.: Abstract state services. In: Song,
I.-Y., et al. (eds.) ER Workshops 2008. LNCS, vol. 5232, pp. 406–415. Springer,
Heidelberg (2008)

6. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software
services. Serv. Orient. Comput. Appl. 3, 263–283 (2009)

7. Kozen, D.: Kleene algebra with tests. Trans. Program. Lang. Syst. 19, 427–443
(1997)

An Ambient ASM Model of Client-to-Client Interaction 255

8. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: A theory of processes with
localities. Formal Aspects Comput. 6, 165–200 (1994). doi:10.1007/BF01221098

9. Cardelli, L.: Mobility and security. In: Bauer, F.L., Steinbrüggen, R., (eds.) Pro-
ceedings of NATO Advanced Study Institute on Foundations of Secure Computa-
tion. Lecture Notes for Marktoberdorf Summer School 1999 (A Summary of Several
Ambient Calculus Papers), pp. 3–37. IOS Press (1999)

10. Schewe, K.D., Thalheim, B.: Personalisation of web information systems - a term
rewriting approach. Data Knowl. Eng. 62, 101–117 (2007)

11. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media
for Editing, Distributing, and Managing Intellectual Resources. Wiley, New York
(2003)

12. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoper-
ability of service clouds. Serv. Orient. Comput. Appl. 6, 189–205 (2012)

13. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud calculus:
security verification in elastic cloud computing platform. In: Smari, W.W., Fox,
G.C. (eds.) CTS, pp. 447–454. IEEE (2012)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I. and II.
Inf. Comput. 100, 1–77 (1992)

15. Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with
applications. J. CSS (Special Issue in Honor of Amir Pnueli) 78, 939–959 (2012)

16. Valente, M., Bigonha, R., Loureiro, A., Maia, M.: Abstractions for mobile compu-
tation in ASM. In: Graham, P., Maheswaran, M. (eds.) Proceedings of the Inter-
national Conference on Internet Computing, IC 2000, Las Vegas, Nevada, USA,
26–29 June 2000, pp. 165–172. CSREA Press (2000)

17. Bósa, K.: A formal model of a cloud service architecture in terms of ambient
ASM. Technical report, Christian Doppler Laboratory for Client-Centric Cloud
Computing (CDCC), Johannes Kepler University Linz, Austria (2012)

18. Bósa, K.: An ambient ASM model for client-to-client interaction via cloud com-
puting. In: Proceedings of the 8th International Conference on Software and Data
Technologies (ICSOFT), Reykjavik, Iceland, pp. 459–470 (Best Paper Award).
SciTePress (2013)

19. De Ryck, P., Decat, M., Desmet, L., Piessens, F., Joosen, W.: Security of web
mashups: a survey. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010.
LNCS, vol. 7127, pp. 223–238. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/BF01221098

	An Ambient ASM Model of Client-to-Client Interaction via Cloud Computing and an Anonymously Accessible Docking Service
	1 Introduction
	2 Overview on Our Model
	3 Related Work
	3.1 Ambient Calculus
	3.2 Ambient ASM

	4 Definitions
	5 The Extended Formal Model
	5.1 User Actions
	5.2 The Cloud Service Architecture
	5.3 Client-to-Client Interaction

	6 Anonymous Docking Service
	6.1 New Assumptions and Changes in the Model
	6.2 Request Preprocessing

	7 Conclusions
	References

