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Abstract. Today software is core part of modern automobiles. The
amount, complexity and importance of software components within Elec-
trical/Electronics (E/E) systems of modern cars is only increasing with
time. Several automotive functions carrying software provide or interact
with safety critical systems such as systems steering and braking and
thus assuring functional safety for such systems is of high importance.
Requirements for the safety assurance are specified partially by such
functional safety standards as ISO 26262. The standard provides the
framework and guidelines for the development of hardware and software
for components deemed to be safety critical. In this chapter we argue
that traditional approaches for safety assurance such as fault injection
and mutation testing can be adapted and applied to functional models to
enable early verification and validation according to the requirements of
ISO 26262. We show how to use fault injection in combination with muta-
tion based testing to identify defects early in the development process -
both theoretically and on a case of self-driving miniature vehicles. The
argument is grounded upon the current best practices within the indus-
try, a study of ISO 26262 standard, and academic and industrial case
studies using fault injection and mutation based testing applied to the
functional model level. In this paper we also provide the initial validation
of this approach using software of a self-driving miniature vehicle.

Keywords: Fault injection · Mutation testing · ISO 26262 · Simulink ·
Model based development · Automotive domain · Safety critical software

1 Introduction

Nowadays, a typical premium car has up to 70 ECUs, which are connected by
several system buses to realize over 2,000 functions [1]. As around 90 % of all
innovations today are driven by electronics and software the complexity of cars
embedded software is expected to grow. The growth is fuelled by cars beginning
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to act more proactively and more assistive to its drivers, which requires software
to interact with hardware more efficiently and making more decisions automati-
cally (e.g. collision avoidance by braking, brake-by-wire or similar functions). In
total with about 100 million lines of code (SLOC), premium segment vehicles
carry more software code than in modern fighter jets and airliners [2]. Soft-
ware for custom functionality in modern cars is usually developed by multiple
suppliers although it is designed by a single OEM (Original Equipment Man-
ufacturer) like Volvo Cars. The distributed development and use of standards
like AUTOSAR aims to facilitate reuse of software and hardware components
between different vehicle platforms, OEMs and suppliers [3]. However, testing of
such systems is more complex and today testing of software generally accounts
for almost 50 % of overall development costs [4].

ISO-26262 in automotive domain poses stringent requirements for develop-
ment of safety critical applications and in particular on the testing processes for
this software. These requirements are intended to increase the safety of modern
cars, although they also increase the cost of modern cars with complex software
functions influencing safety or car passengers.

The position for which we argue in this paper is that efficient verification
and validation of safety functions requires combining Model Based Development
(MBD) with fault injection into models with mutation testing. This position is
based on the studies of the ISO 26262 standard (mainly Chap. 6 that describes
requirements on software development but also Chap. 4, which poses require-
ments on product development [5]). It is also based on previous case studies of
the impact of late defects on the software development practices in the automo-
tive section [6].

The requirements from the ISO 26262 standard on using fault injection tech-
niques is challenging since it relates to the development of complete functions
rather than components of sub-components of software. The current situation in
the automotive sector is that fault injection is used, but it is used at the level of
one electronic component (ECU) or one software system, rarely at the function
level [7,8].

The current state of art testing is not enough for detecting safety defects
early in the automotive software development process since fault injection is
done late in the development (when ECUs are being developed), which usually
makes the detection of specification-related defects difficult and costly [6]. This
detection should be done in the model level when the ECUs functionality is
still under design and thus, it is relatively cheap to redesign. The evidence from
literature on successful use of fault injection shows that the technique indeed
is efficient in finding dependability problems of hardware and software systems
when applied to computer systems [9]. To be able to increase the effectiveness of
the fault injection strategies and identify whether the faults should be injected
at the model, software or ECU level - mutation testing should be applied to
verify the adequacy of test cases. And finally we need to assess how to combine
these approaches and apply them at the model level that will enhance our ability
to detect safety related defects right at the design stage.
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In this paper we provide a roadmap, which shows how to introduce fault
injection and mutation testing to modelling of automotive software in order to
avoid costly defects and increase the safety of modern and future cars. This
paper is the extended version of our previous work [10] where we presented the
theoretical approach. In this paper we include a validation of this framework on
a set of software components of self-driving miniature vehicles. The system used
for initial validation is developed using a code-centric approach which makes
the framework more generic as the initial evaluation in [10] was conducted on
model-based development.

The remaining of the paper is structured as follows: In the next Sect. 2 we
provide an overview of software development in automotive domain and associ-
ated concepts. This is followed by brief discussion on related work in Sect. 3 and
our position is presented and discussed in Sect. 4. Section 5 presents the initial
validation case for the framework and Sect. 6 provides conclusions.

2 Background

In this section we take a brief overview on the current state of automotive soft-
ware development process and environment, how safety is important in safety
critical applications and overview of theoretical background on fault injection
techniques and mutation testing.

2.1 Automotive Software Development and ISO 26262

Various software functions/applications developed within the automotive indus-
try today are classed as safety critical for example Volvo’s City Safety consists
of components that are safety critical (Fig. 1).

Broy [1] gives examples of functions/areas within automotive domain of
recent development which includes crash prevention, crash safety, advanced
energy management, adaptable man-machine interface, advanced driver assis-
tance, programmable car, car networking etc., much of these fall within the
safety critical functionality and demands high quality and reliability. Also a
number of on-going projects are directed towards the goal of self-driving cars.

Software development in automotive sector in general follows the ‘V’ process,
where OEMs take the responsibility of requirement specification, system design,
and integration/acceptance test. This is followed by the suppliers, where the
actual code that runs on ECUs is developed. Although the code is tested at the
supplier level (mainly unit testing), the OEMs are responsible for the final inte-
gration, system and acceptance testing to ensure that the given implementation
of a software (SW) meets its intended functional and safety goals/demands.

In this model of software/product development (see Fig. 2) testing is usually
concentrated in the late stages of development, which also implies that most of
the defects are discovered late in the development process. In a recent study
using real defect data from an automotive software project from the industry
showed that late detection of defects is still a relevant problem and challenge yet
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Fig. 1. Volvo Cars city safety function, image provided by Volvo Car Corporation.

to overcome [6]. The defect inflow profile presented in this study is presented in
Fig. 3 for reference, which exhibits a clear peak in number of open defects in the
late stages of function development/testing.

Testing the software is an important tool of ensuring correct functionality
and reliability of systems but it is also a very resource intensive activity account-
ing for up to 50 % of total software development costs [11] and even more for
safety/mission critical software systems. Thus having a good testing strategy
is critical for any industry with high software development costs. It has also
been shown that most of the defects detected during testing do not depend on
actual implementation of code, about 50 % of defects detected during testing in

Fig. 2. The V-model in the automotive industry with distinction between the OEM
and supplier contributions.
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Fig. 3. Defect inflow profile for automotive software project, as given in [6].

the study by Megen and Meyerhoff [12] were found during the test preparation,
an activity independent of the executable code. And since automotive sector
has already widely adopted MBD for the software development of embedded
systems, a high potential exists for using the behavioural modes developed at
the early stages of software development for performing some of the effort spent
on V&V (Verification & Validation). Early V&V by helping to detect defects
early will potentially save significant amount of cost for the projects.

2.2 ISO 26262

ISO/IEC 26262 is a standard describing safety requirements. It is applied to
safety-related systems that include one or more electrical and/or electronic (E/E)
systems. The overview of safety case and argumentation is represented in Fig. 4.

Written specifically for automotive domain, the ISO-26262 standard is
adapted for the V-model of product development corresponding to the current
practice in the industry. The guidelines are laid out for system design, hardware
and software design and development and integration of components to realize
the full product. ISO-26262 includes specifications for MBD and provides rec-
ommendations for using fault injection techniques for hardware integration and
testing, software unit testing, software integration testing, hardware-software
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Item
• The item representing a system or a function is defined.

PHA
• A Preliminary Hazard Analysis & Risk Assessment is done to 

assign an appropriate ASIL level.

SG 
• Safety Goals are derived from the Hazard Analysis and they 

inherit the assigned ASIL level.

FSR
• Functional Safety Requirements are drawn such that the set 

Safety Goals are met.

TSR
• The Technical Safety Requirements are formulated describing 

how to implement FSR.

Doc 
• Further development includes implementation, integration and 

documentation of safety cases.

Fig. 4. Overview of ISO-26262 safety case & argumentation process.

integration testing, system integration testing and vehicle integration testing.
Although the functional safety standard specifies clearly the recommendations
for using fault injection during various stages of testing but does not recommend
anything with respect to using mutation testing. This also reflects the current
standard practice within the automotive industry where mutation testing is not
widely adopted yet.

2.3 Fault Injection

Fault injection techniques are widely used for experimental dependability eval-
uation. Although these techniques have been used more widely for assessing
the hardware/ prototypes, the techniques are now about to be applied at behav-
ioural models of software systems [13], thus enabling early verification of intended
functionality as well as enhancing communication between different stakehold-
ers. Fault injection techniques applied at models level offer distinct advantages
especially in an industry using MBD, but use of these techniques at model level
in automotive industry is currently at its infancy. Figure 5 shows a mind map of
classification of fault injection techniques based on how the technique is imple-
mented; some of the tools which are developed based on given approach are also
listed for reference. For a good overview of fault injection techniques readers are
referred to [9,14].
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Fig. 5. Common classification of fault injection techniques and implementation tools,
description available in [9,14].
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2.4 Mutation Testing

Mutation testing is technique for assessing the adequacy of given test suite/set of
test cases. Mutation testing includes injection of systematic, repeatable seeding
of faults in large number thus generating number of copies of original software
artefacts with artificial fault infestation (called a mutant). And on the basis of
what percentage of these mutations are detected by the given test cases/suite
gives a metrics (called “mutation adequacy score” [15]) which can be used for
measuring the effectiveness of given test suite. Faults for mutation testing app-
roach can be either hand written or auto-generated variants of original code.
The effectiveness of this approach in mimicking the real faults has also been
established [16] i.e. mutants do reflect characteristics of real faults. Mutation
theory is based on two fundamental hypotheses namely Competent Programmer
Hypothesis (CPH) and the Coupling Effect, both introduced by DeMillo et al.
[17]. CPH at its core reflects the assumption that programmers are competent
in their job and thus would develop programme close to correct version while
coupling effect hypothesis according to Offutt is “Complex mutants are coupled
to simple mutants in such a way that a test data set that detects all simple faults
in a program will detect a high percentage of the complex defects” [18].

3 Related Work

A number of European Union sponsored projects have within the area of embed-
ded software development and safety critical systems have looked at and devel-
oped techniques to effectively use fault injection for safe and reliable software
development. The examples include the ESACS [19] (Enhanced Safety Assess-
ment for Complex Systems), the ISAAC [20] (Improvement of Safety Activi-
ties on Aeronautical Complex systems). These projects have used the SCADE
(Safety-Critical Application Development Environment) modelling environment
to simulate hardware failure scenarios to identify fault combinations that lead
to safety case violations.

A model-implemented fault injection plug-in to SCADE called FISCADE
is introduced in [21] which utilizes approach similar to mutation based testing
and replaces the original model operators by equivalent fault injection nodes.
The derived models are then used to inject the fault during execution and log
the results which are analysed later. Dependability evaluation of automotive
functions using model based software implemented fault injection techniques
have also been studied in [22].

A generic tool capable of injecting various types of faults on the behavioural
or functional Simulink models is also developed and introduced [13]. The tool
called MODIFI (or MODel-Implemented Fault Injection tool) can be sued to
inject single or multiple point faults on behavioural models, which can be used to
study the effectiveness/properties of fault tolerant system and identify the faults
leading to failure by studying the fault propagation properties of the models.

Another work [23] with its root in the European CESAR (Cost-efficient meth-
ods and processes for safety relevant embedded systems) project provides a good
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Fig. 6. MBD based representation of a general system with inputs, outputs and
dependencies.

theoretical overview of how fault and mutation based test coverage can be used
for automated test case generation for Simulink models. We provide a practi-
cal framework on how fault injection combined with mutation testing within
an MDB environment can be used in the industry. And how will this practice
enhance the verification and validation of software under development, its func-
tional validation that would generates statistics for the effective argumentation
of ISO 26262 compliance.

4 Framework for Early Verification and Validation
According to ISO 26262

We contend that fault injection can be effectively used at the model level to verify
and validate the attainment or violation of safety goals. By applying mutation
testing approach at the model level enough statistical evidence will be provided
for the coverage needed for argumentation of fulfilment of safety goals as per the
ISO26262 safety standard requirements.

A major challenge in successful argumentation of ISO-26262 compliance is
to provide statistical evidence that Safety Goals (SGs) would not be violated
during operation and doing this within reasonable testing efforts.

If we are able to differentiate early between defects that will or not cause the
violation of SGs, the amount of testing required will be manageable. With MBD
the testing for functionality under these defect conditions could be modelled
using fault injection techniques, while the possibility of implementation bugs
in the actual code can be checked using the mutation testing approach. The
framework on how this could be achieved in practice is as follows:

As illustrated in Fig. 6, a given system/function generally has following com-
mon features (in context of model based development): firstly it will have x inputs
(i1,2,...x); it would have dependencies to other y components/functions (d1,2,...y);
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it will have z outputs (o1,2,...z); and it will have a number of sub-units/modules
within it that implements the intended functionality, let us assume that this
part contains n basic blocks in the modelling environment corresponding to n
statements for a hand written code. To verify and validate the correct function-
ality and ISO 26262 compliance of this generic function using fault and mutation
testing approach we can follow the steps as:

– Assign or define the Functional Safety Requirements (FSRs) and Technical
Safety Requirements (TSRs) for the z outputs of the given system/function
in accordance to ISO 26262.

– Use fault injection technique to inject common occurring defects and other
theoretically possible fault conditions at the x inputs.

– By studying the fault propagation of different injected faults at inputs and
their effect on outputs, the individual faults and combinations of it that violate
the FSRs for given system can be noted.

– Steps (b) & (c) should also be done to test and validate the given sys-
tem/function dependencies on other functions/components.

– Mutation approach is then used to inject faults (or cause mutations) to the n
basic blocks of given functional model and assess the detection effectiveness
of test suite/cases for possible implementation bugs.

– The mutants which are not killed by given set of test cases/suits are examined
for their effect on given functions FSRs, if the given mutation violates the
SGs/FSRs then a suitable test case will be created to detect/kill such mutants
i.e. detect such bugs in actual code.

Thus by following the above mentioned steps we not only ensure that the
given function works as intended, does not violate the SGs and FSR/TSRs under
faulty inputs and/or due to dependencies on other functions, but we can also
identify possible implementation defects using the mutation approach and ensure
that we have test cases ready to catch such faults that can potentially violate
the SGs/TSRs even before the code is implemented/generated.

Further to make this framework/approach more effective in industrial prac-
tice we identify some best practices that will have positive impact on detect-
ing defects early in the development process and thus have effective V&V of
ISO26262.

– Model evolution corresponding to different levels of software/product devel-
opment.

– Specification and testing for SGs, FSRs and TSRs on the behavioural models.
– Identification of different types of defects/types of faults and at what stage

they could be modelled/injected at models to ensure that models are build
robust right from the start instead of adding fault tolerance in later stages of
development.

5 Case Study: Validation

In this section we present the validation of proposed framework on a set of
components for self-driving miniature vehicles. The software for the miniature
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Fig. 7. Self-driving miniature vehicle [25].

Box 1: gap size = 6.92m 

Box 1: measured gap size = 7.017m 
(under fault mode) 

Fig. 8. Test track for the experiment with parking gap from our simulation
environment.

vehicles is build using similar methods and tools as professional software in the
automotive industry, although on a smaller scale. In the validation we use the
self-parking function of a self-driving miniature vehicle [24]. The architecture of
the software is described in detail in [25] and one of our miniature vehicles using
the self-driving vehicle software and a scenario for a sideways parking realized
in our simulation environment are illustrated in Figs. 7 and 8. The miniature
vehicles are in the scale 1:10 compared to the normal cars.
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For understanding the initial validation of this framework it is sufficient to
note that the functionality we are dealing with is self-parking for on a sideways
parking strip. The self-parking algorithm expects a gap size of at least 7 m to
park in one turn without using an additional correction trajectory. This scenario
is presented in Fig. 8.

We applied the framework for early verification and validation following the
steps given in Sect. 4 as follows:

– Assign FSR/TSR: An example of obvious functional safety requirement (FSR)
for self-parking functionality is parking without hitting any other object. The
corresponding technical safety requirement (TSR) can thus be parking only
when gap size exceeds 7 m (minimum gap size requirement).

– Using fault injection to simulate common fault scenario: A fault scenario is cre-
ated by injecting a fault in the returned value for the travelled path by adding
an error value of maximum 3.4 % for the relatively travelled path increment.
Thus, the size for measured gaps (due to faulty sensor input) increases for
example by 9.7 cm to 7.01678 m.

– Identify fault scenarios leading to FSR/TSR violations: Since in the exper-
iment with fault injection, the parking algorithm depends on the travelled
path; thus the algorithm parks the car in the lower gap which leads to a
safety case violation because the cars collides with the obstacle at the rear
side.

– Repeat steps (b) & (c) for all inputs: For this experiment, we focused on the
fault injection for a single signal.

– Cause mutations: Single point mutations are caused by changing the logical
operators in the self-parking function code, the standard test protocol to test
the expected functionality was then applied to evaluate the generated mutants.

– Examine mutants & create new test cases: The mutants and the results
whether they were successfully detected are provided in Table 1. In this sim-
ple case itself with only 24 mutations, to our surprise two mutations produced
unexpected results and violated the assigned FSR. While previously the test
protocol has been deemed being sufficient for this function, the experiment
clearly demonstrated the need for adding further test cases to reliably spot
these failures and to detect possible faults leading to FSR violations.

5.1 Lessons Learned

The initial validation experiment presented in this section for the proposed
framework is the first step towards a complete validation of this framework in
an industrial setting. Although the framework is focused on using fault injection
and mutation testing at functional model level in model-based development to
shift some of the verification and validation efforts to early stages of develop-
ment, the example here demonstrated its applicability of given framework in a
code-centric development environment as well.

The experiments using the software of a miniature vehicle provided a proof-
of-concept for the framework and provide a frame of reference with respect to
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Table 1. Mutation testing output, case with and without fault mode scenario.

its possible effectiveness. While in full scale safety evaluations following the ISO
26262, a given function depending on its functionality may be subjected to tens
of safety goals and even larger number of corresponding FSR/TSRs, we only
evaluated one such scenario. Still with only a single fault scenario - we were able
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to identify faults leading to safety case violation. Also the mutation approach
applied to this exemplary scenario by using 24 mutations, 2 out of these 24
mutants produced unexpected results and exposed the deficiency of the current
test protocol, which was considered as adequate for the given functionality.

Therefore while these are encouraging results pointing towards applicability
and effectiveness of the proposed framework, we also learned that we need further
validation on industrial scale projects to increase the external validity of these
results. Further for this framework to be successful in any organization much
of the steps of described framework will have to be automated and supported
by appropriate tools. As explained in Sects. 2 and 3, a number of tools for fault
injection and mutation testing based approaches are available for code-centric
development making this framework practical for implementation on large scale
with high automation. But corresponding tools to support fault injection and
mutation based testing at functional model level in model-based development
are not widely available and the few tools currently available are in their early
stages of development where reliability of such tools will be an issue at least for
some time in near future.

6 Conclusions

In this paper we have examined the growing importance of software in auto-
motive domain. The development of software in automotive and other similar
industries has widely adopted the paradigm of model based development and by
the nature of application much of the functionality developed and implemented
in these sectors is safety critical. Safety critical software/application development
requires observation of stringent quality assessment and adherence to functional
safety standards such as ISO 26262 in automotive and DO-173 in aerospace
industry.

Development of behavioural models in MBD offers significant opportunity
to do functional testing early in the development process. Fault injection and
mutation testing approach in combination can be used to effectively verify and
validate the functional properties of a software system/function. The approach
will also provide the required statistics for the argumentation of safety standards
compliance. In this paper the need for such validation and a framework on how
this could be achieved in practice is discussed. More research and tools are needed
to bring this approach into wider industrial adoption.

Initial validation of our proposed framework provided a proof-of-concept and
produced encouraging results indicating its usefulness and effectiveness in prac-
tice. It is also noted that the framework will become much more effective and
easy to use for model-based development as tools related to fault injection and
mutation testing at model level matures over time. In the meantime, valida-
tion on industrial scale functions will provide further evidence to evaluate the
applicability and effectiveness of the proposed framework in practice.

By detecting defects early and being able to do much of verification and
validation of intended functionality, robustness and compliance to safety stan-
dards on the models the quality and reliability of software in automotive domain
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will be significantly enhanced. More effective approaches and tools support will
also reduce the V&V costs and lead to shorter development times. High quality,
reliable and dependable software in automobiles brings innovative functionality
sooner, keeps product costs lower and most importantly ensures that automo-
biles are safer than ever before.
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