
Ching-Hsien Hsu
Xuanhua Shi
Valentina Salapura (Eds.)

 123

LN
CS

 8
70

7

11th IFIP WG 10.3 International Conference, NPC 2014
Ilan, Taiwan, September 18–20, 2014
Proceedings

Network and
Parallel Computing

Lecture Notes in Computer Science 8707
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ching-Hsien Hsu Xuanhua Shi
Valentina Salapura (Eds.)

Network and
Parallel Computing
11th IFIP WG 10.3 International Conference, NPC 2014
Ilan, Taiwan, September 18-20, 2014
Proceedings

13

Volume Editors

Ching-Hsien Hsu
Chung Hua University
707, Sec. 2, WuFu Rd., Hsinchu, 30012, Taiwan
E-mail: chh@chu.edu.tw

Xuanhua Shi
Huazhong University of Science and Technology
1037#, Luoyu Road, Wuhan, 430074, China
E-mail: xhshi@hust.edu.cn

Valentina Salapura
IBM Thomas J. Watson Research Center
1101 Kitchawan Rd., Yorktown Heights, NY 10598, USA
E-mail: salapura@us.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44916-5 e-ISBN 978-3-662-44917-2
DOI 10.1007/978-3-662-44917-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014948554

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of NPC 2014, the 11th IFIP International
Conference on Network and Parallel Computing, which was held in Yilan, Tai-
wan, during September 18–20, 2014.

NPC is recognized as the main regular event of the world that covers many
dimensions of network and parallel computing, including architectures, systems,
algorithms, and applications. NPC 2014 is intended to play an important role
for researchers and industry practitioners to exchange information regarding ad-
vancements in the state of art and practice of IT-driven services and applications,
as well as to identify emerging research topics and define the future directions
of network and parallel computing.

This year, the technical program of NPC 2014 drew from a large number of
submissions: 196 papers submitted from 42 countries representing four regions
- Asia Pacific, Europe, North, and South America. In the first stage, all papers
submitted were screened for their relevance and general submission requirements.
These manuscripts then underwent a rigorous peer-review process with at least
three reviewers, coordinated by the international Program Committee. The Pro-
gram Committee accepted 42 papers for presentation and included in the main
proceedings, resulting in an acceptance rate of 21.4%. We believe that this vol-
ume not only presents novel and interesting ideas but will also stimulate future
research in the area of NPC. To encourage and promote the work presented at
NPC 2014, we are delighted to inform the authors that some of the papers will
be accepted in special issues of International Journal of Parallel Programming.
The journal has played a prominent role in promoting the development and use
of network and parallel computing.

Organization of conferences with a large number of submissions requires a
lot of hard work and dedication from many people. First of all, we would like
to thank the Steering Committee chair, Dr. Kemal Ebcioglu, Prof. Hai Jin, and
Prof. Zhiwei Xu; the general chairs, Prof. Wen-Mei Hwu and Prof. Kun-Ming
Yu, for nourishing the conference and guiding its course. We are grateful to the
publicity chair, Dr. Erik Altman for his excellent job in publicizing the con-
ference. Thanks also go to Prof. Xuanhua Shi for his help with the conference
proceedings and a lot of detailed work, which facilitated the overall process of
publication. We wish to thank the authors for submitting high quality papers
that contributed to the conference technical program. We wish to express our
deepest gratitude to all Program Committee members and external reviewers
for their excellent job in the paper review process. Without their help, this pro-
gram would not have been be possible. We appreciate the participation of the
keynote speakers, Dr. Michael Gschwind and Dr. Yunquan Zhang; their speeches
greatly benefited the audience. Special thanks go to the entire Local Arrange-
ment Committee, Prof. Chang-Wu Yu, Liwen Chang, and Ya-Hui (Batty) Hsu

VI Preface

for their help in making the conference a wonderful success. We take this op-
portunity to thank all the presenters, session chairs and participants for their
presence at the conference, many of whom traveled long distances to attend this
conference and make their valuable contributions. Last but not least, we would
like to express our gratitude to all the organizations that supported our efforts
to bring the conference to fruition. We are grateful to Springer for publishing
these proceedings.

We are proud to have the authors sharing their research with you, fellow
members of the technical community, through NPC 2014 and these proceedings.
We hope that you enjoy the NPC 2014 proceedings, as much as we do. Welcome
again!

September 2014 Valentina Salapura
Robert Hsu

Organization

General Chair

Wen-Mei Hwu University of Illinois at Urbana-Champaign,
USA

Kun-Ming Yu Chung Hua University, Taiwan

Program Chair

Valentina Salapura IBM Research, USA
Robert C.H. Hsu Chung Hua University, Taiwan

Award Chair

Barbara Chapman University of Houston, USA
Cho-Li Wang Hong Kong University, Hong Kong

Publication Chair

Xuanhua Shi HUST, China
Fuu-Cheng Jiang Tunghai University, Taiwan

Registration Chair

Chang-Wu Yu Chung Hua University, Taiwan

Local Arrangement Chair

Cho-Chin Lin National Ilan University, Taiwan

Publicity Chair

Erik Altman Thomas J. Watson Research Center, USA
Daqiang Zhang Tongji University, China

Advisory Committee

Ruay-Shiung Chang National Dong Hua University, Taiwan
Ce-Kuen Shieh National Cheng Kung University, Taiwan

VIII Organization

Timothy K. Shih National Central University, Taiwan
Pen-Chung Yew University of Minnesota, USA

Steering Committee

Kemal Ebcioglu Global Supercomputing, USA (Chair)
Hai Jin Huazhong University of Science and

Technology, China
Chen Ding University of Rochester, USA
Jack Dongarra University of Tennessee, USA
Guangrong Gao University of Delaware, USA
Daniel Reed University of Iowa, USA
Zhiwei Xu Institue of Computing Technology, China
Yoichi Muraoka Waseda University, Japan
Jean-Luc Gaudiot University of California at Irvine, USA
Guojie Li The Institute of Computing Technology, China
Viktor Prasanna University of Southern California, USA
Weisong Shi Wayne State University, USA
Tony Hey Microsoft, USA

Technical Program Committee

Erik Altman IBM Research, USA
Bin Bao Qualcomm, USA
Greg Byrd NCSU, USA
Mehmet Balman VMware R&D and Lawrence Berkeley National

Laboratory, USA
Alessio Botta University of Napoli, Italy
Suren Byna Lawrence Berkeley National Lab, USA
Jose-Maria Cela BSC, Spain
Hsi-Ya Chang National Center for High-performance

Computing, Taiwan
Shin-Ming Cheng National Taiwan University of Science and

Technology, Taiwan
Thomas M. Chen City University London, UK
I-Hsin Chung IBM Research, USA
Luiz DeRose Cray Inc., USA
Zhihui Du Tsinghua University, China
Binzhang Fu Chinese Academy of Sciences, China
Franz Franchetti CMU, USA
Thomas Gschwind IBM Research, Switzerland
Georgi Gaydadjiev Chalmers, Sweden
Esa Hyytiä Aalto University, Finland
Engin Ipek University of Rochester, USA
Shadi Ibrahim Inria Rennes - Bretagne Atlantique, France

Organization IX

Fuu-Cheng Jiang Tunghai University, Taiwan
Kazuki Joe Nara University, Japan
Salah M. Kamel Jaen University, Spain
Rajgopal Kannan Louisiana State University, USA
David Kaeli Northeastern University, USA
Ulya Karpuzcu University of Minnesota, USA
Hyesoon Kim Georgia Tech, USA
Jens Knoop TU Wien, Austria
Dimitrios Koukopoulos University of Patras, Greece
Volodymyr Kindratenko University of Illinois, USA
Sriram Krishnamoorthy Pacific Northwest National Laboratory, USA
Jian Li IBM Research, USA
Hsien-hsin Lee Georgia Tech, USA
Pangfeng Liu National Taiwan University, Taiwan
Ruben S. Montero University Complutense of Madrid, Spain
Sam Midkiff Purdue, USA
Kaoutar El Maghraoui IBM Research, USA
Vijay Naik IBM Research, USA
Toshio Nakatani IBM Research, Japan
Alex Nicolau University of California at Irvine, USA
Keshav Pingali University of Texas at Austin, USA
Ivan Rodero Rutgers University, USA
Lawrence Rauchwerger Texas A&M, USA
Leonel Sousa Universidade Tecnica de Lisboa, Portugal
Rizos Sakellariou University of Manchester, UK
A. SATHEESH Periyar Maniammai University, India
Sofiene Tahar Concordia University, Canada
Cong Tang Peking University, China
Chen Tian Huawei, USA
Pedro Trancoso University of Cyprus, Cyprus
Alexander Veidenbaum University of California at Irvine, USA
You-Chiun Wang National Sun Yat-sen University, Taiwan
Chuliang Weng Huawei, China
Jin Xiong Chinese Academy of Sciences, China
Ramin Yahyapour GWDG/University Göttingen, Germany
Chengmo Yang University of Delaware, USA
Pen-Chung Yew University of Minnesota, USA
Yao Zhang Argonne National Laboratory, USA
Yunquan Zhang Chinese Academy of Sciences, China
Mohamed Zahran NYU, USA
Lixin Zhang Chinese Academy of Science
Yanmin Zhu Shanghai Jiao Tong University, China

Table of Contents

Systems, Networks and Architectures

Routing and Wavelength Assignment for Exchanged Hypercubes in
Linear Array Optical Networks . 1

Yu-Liang Liu

Page Classifier and Placer: A Scheme of Managing Hybrid Caches 10
Xin Yu, Xuanhua Shi, Hai Jin, Xiaofei Liao, Song Wu, and
Xiaoming Li

Temporal-Based Ranking in Heterogeneous Networks 23
Chen Yu, Ruidan Li, Dezhong Yao, Feng Lu, and Hai Jin

Designing Buffer Capacity of Crosspoint-Queued Switch 35
Guo Chen, Dan Pei, Youjian Zhao, and Yongqian Sun

Loss-Rate Driven Network Coding for Transmission Control 49
Chaoyuan Chiang and Yihjia Tsai

Multilayer Perceptron and Stacked Autoencoder for Internet Traffic
Prediction . 61

Tiago Prado Oliveira, Jamil Salem Barbar, and
Alexsandro Santos Soares

Optimization of Uncore Data Flow on NUMA Platform 72
Qiuming Luo, Yuanyuan Zhou, Chang Kong, Mei Wang, and Ye Cai

APP-LRU: A New Page Replacement Method for PCM/DRAM-Based
Hybrid Memory Systems . 84

Zhangling Wu, Peiquan Jin, Chengcheng Yang, and Lihua Yue

Towards Relaxed Rollback-Recovery Consistency in SOA 96
Jerzy Brzeziński, Mateusz Ho�lenko, Anna Kobusińska,
Dariusz Wawrzyniak, and Piotr Zierhoffer

A Novel Page Replacement Algorithm for the Hybrid Memory
Architecture Involving PCM and DRAM . 108

Kaimeng Chen, Peiquan Jin, and Lihua Yue

HiNetSim: A Parallel Simulator for Large-Scale Hierarchical Direct
Networks . 120

Zhiguo Fan, Zheng Cao, Yong Su, Xiaoli Liu, Zhan Wang,
Xiaobing Liu, Dawei Zang, and Xuejun An

XII Table of Contents

Wire Length of Midimew-Connected Mesh Network 132
Md Rabiul Awal, M.M. Hafizur Rahman, Rizal Mohd Nor,
Tengku Mohd Bin Tengku Sembok, Yasuyuki Miura, and
Yasushi Inoguchi

Parallel and Multi-Core Technologies

Benchmarking the Memory Hierarchy of Modern GPUs 144
Xinxin Mei, Kaiyong Zhao, Chengjian Liu, and Xiaowen Chu

Parallel CYK Membership Test on GPUs . 157
Kyoung-Hwan Kim, Sang-Min Choi, Hyein Lee, Ka Lok Man, and
Yo-Sub Han

Designing Coalescing Network-on-Chip for Efficient Memory Accesses
of GPGPUs . 169

Chien-Ting Chen, Yoshi Shih-Chieh Huang, Yuan-Ying Chang,
Chiao-Yun Tu, Chung-Ta King, Tai-Yuan Wang, Janche Sang, and
Ming-Hua Li

Efficient Parallel Algorithms for Linear RankSVM on GPU 181
Jing Jin and Xiaola Lin

A Real-Time Scheduling Framework Based on Multi-core Dynamic
Partitioning in Virtualized Environment . 195

Song Wu, Like Zhou, Danqing Fu, Hai Jin, and Xuanhua Shi

Automatic Data Layout Transformation for Heterogeneous Many-Core
Systems . 208

Ying-Yu Tseng, Yu-Hao Huang, Bo-Cheng Charles Lai, and
Jiun-Liang Lin

mpCache: Accelerating MapReduce with Hybrid Storage System on
Many-Core Clusters . 220

Bo Wang, Jinlei Jiang, and Guangwen Yang

Virtualization and Cloud Computing Technologies

Online Mechanism Design for VMs Allocation in Private Cloud 234
Xiaohong Wu, Yonggen Gu, Guoqiang Li, Jie Tao,
Jingyu Chen, and Xiaolong Ma

Threshold Based Auto Scaling of Virtual Machines in Cloud
Environment . 247

M.K. Mohan Murthy, H.A. Sanjay, and Anand Jumnal

A Novel Resource Provisioning Model for DHT-Based Cloud Storage
Systems . 257

Jingya Zhou and Wen He

Table of Contents XIII

BIDS: Bridgehead-Employed Image Distribution System for Cloud
Data Centers . 269

Zhongzhao Wang, Yuebin Bai, Kun Cheng, Jihong Ma, Duo Lv,
Yuanfeng Peng, and Yao Ma

A Broker-Based Self-organizing Mechanism for Cloud-Market 281
Jie Xu and Jian Cao

Group Participation Game Strategy for Resource Allocation in Cloud
Computing . 294

Weifeng Sun, Danchuang Zhang, Ning Zhang, Qingqing Zhang, and
Tie Qiu

Towards Optimal Collaboration of Policies in the Two-Phase Scheduling
of Cloud Tasks . 306

Cong Xu, Jiahai Yang, Di Fu, and Hui Zhang

Gossip Membership Management with Social Graphs for Byzantine
Fault Tolerance in Clouds . 321

JongBeom Lim, Joon-Min Gil, Kwang-Sik Chung, Jihun Kang,
Daewon Lee, and Heonchang Yu

An Ensemble Multivariate Model for Resource Performance Prediction
in the Cloud . 333

Jean Steve Hirwa and Jian Cao

Prediction-Based Optimization of Live Virtual Machine Migration 347
Changyuan Chen and Jian Cao

Control Protocol and Self-adaptive Mechanism for Live Virtual
Machine Migration over XIA . 357

Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, and Jiaqi Zhu

Efficient Live Migration of Virtual Machines with a Novel Data
Filter . 369

Yonghui Ruan, Zhongsheng Cao, and Yuanzhen Wang

Applications of Parallel and Distributed Computing

Energy-Efficient and Adaptive Algorithms for Constructing Multipath
Routing in Wireless Sensor Networks . 383

Shaohua Wan

An Adaptive Channel Sensing Approach Based on Sequential Order in
Distributed Cognitive Radio Networks . 395

Guangsheng Feng, Huiqiang Wang, Qian Zhao, and Hongwu Lv

XIV Table of Contents

A Location Privacy Preserving Method Based on Sensitive Diversity
for LBS . 409

Changli Zhou, Chunguang Ma, Songtao Yang, Peng Wu, and
Linlin Liu

Message Passing Algorithm for the Generalized Assignment Problem . . . 423
Mindi Yuan, Chong Jiang, Shen Li, Wei Shen, Yannis Pavlidis, and
Jun Li

PPMS: A Peer to Peer Metadata Management Strategy for Distributed
File Systems . 435

Di Yang, Weigang Wu, Zhansong Li, Jiongyu Yu, and Yong Li

Improving Log-Based Fault Diagnosis by Log Classification 446
Deqing Zou, Hao Qin, Hai Jin, Weizhong Qiang, Zongfen Han, and
Xueguang Chen

A Compilation and Run-Time Framework for Maximizing Performance
of Self-scheduling Algorithms . 459

Yizhuo Wang, Laleh Aghababaie Beni, Alexandru Nicolau,
Alexander V. Veidenbaum, and Rosario Cammarota

I/O, File Systems, and Data Management

PaxStore : A Distributed Key Value Storage System 471
Zhipeng Tan, Yongxing Dang, Jianliang Sun, Wei Zhou, and
Dan Feng

Semi-automatic Composition of Data Layout Transformations for Loop
Vectorization . 485

Shixiong Xu and David Gregg

Dynamic Stripe Management Mechanism in Distributed File Systems . . . 497
Jianwei Liao, Guoqiang Xiao, Xiaoyan Liu, and Lingyu Zhu

Accelerating the Reconstruction Process in Network Coding Storage
System by Leveraging Data Temperature . 510

Kai Li and Yuhui Deng

Poster Sessions

Speedup Critical Stage of Machine Learning with Batch Scheduling in
GPU . 522

Yuan Gao, Rui Wang, Ning An, Yanjiang Wei, and Depei Qian

The New Territory of Lightweight Security in a Cloud Computing
Environment . 526

Shu-Ching Wang, Shih-Chi Tseng, Hsin-Met Chuan,
Kuo-Qin Yan, and Szu-Hao Tsai

Table of Contents XV

DP: Dynamic Prepage in Postcopy Migration for Fixed-Size Data
Load . 530

Shuang Wu, Ce Yang, Jianhai Chen, Qinming He, and Bei Wang

Capacity Region of Wireless Network Coding . 534
Jun Zhang and Shu-Tao Xia

Tacked Link List - An Improved Linked List for Advance Resource
Reservation . 538

Li-bing Wu, Jing Fan, Lei Nie, and Bing-yi Liu

CFIO2: Overlapping Communications and I/O with Computations
Using RDMA Technology . 542

Cheng Zhang, Xiaomeng Huang, Yong Hu, Shizhen Xu,
Haohuan Fu, and Guangwen Yang

Performance Analysis of End-to-End Services in Virtualized Computing
Environments . 546

Guofeng Yan and Yuxing Peng

Adopting Two Strategies to Ensure and Optimize the Quality of
Service in Linux . 550

Shaohua Wan

Analysis of VMSS Schemes for Group Key Transfer Protocol 555
Ching-Fang Hsu and Shan Wu

Resource Prediction for Inter-cloud Broker . 559
Mohammad Aazam and Eui-Nam Huh

An Efficient Certificateless Blind Signature Scheme in the Random
Oracle Model . 563

Hao Xu, Baoyuan Kang, and Yongzheng Niu

Increasing Multi-controller Parallelism for Hybrid-Mapped Flash
Translation Layers . 567

Hung-Yi Sung and Chin-Hsien Wu

An Estimation-Based Task Load Balancing Scheduling in Spot
Clouds . 571

Daeyong Jung, HeeSeok Choi, Daewon Lee, Heonchang Yu, and
Eunyoung Lee

Distributed Ontology Integration Model for Cooperative Inference in
Context Aware Computing . 575

Soomi Yang

Cross-Platform Parallel Programming in PARRAY: A Case Study 579
Xiang Cui, Xiaowen Li, and Yifeng Chen

XVI Table of Contents

Different Solvers Evaluation for a Bucking Problem 583
Chau-Yi Chou, Jiunn-Horng Lee, Yu-Fen Cheng,
Chih-Wei Hsieh, and Weichung Wang

Quality of Service Enhancement by Using an Integer Bloom
Filter Based Data Deduplication Mechanism in the Cloud Storage
Environment . 587

Kuo-Qin Yan, Yung-Hsiang Su, Hsin-Met Chuan,
Shu-Ching Wang, and Bo-Wei Chen

Fault-Tolerant Storage Servers for the Databases of Redundant Web
Servers in a Computing Grid . 591

MinHwan Ok

Scheduling Cloud Platform Managed Live-Migration Operations to
Minimize the Makespan . 595

Xiaoyong Yuan, Ying Li, Yanqi Wang, and Kewei Sun

Sequential Sensing and Transmission for Real-Time Traffic in Cognitive
Networks . 600

Show-Shiow Tzeng and Ying-Jen Lin

An Adaptive Heterogeneous Runtime for Irregular Applications in the
Case of Ray-Tracing . 604

Chih-Chen Kao and Wei-Chung Hsu

DLBer: A Dynamic Load Balancing Algorithm for the Event-Driven
Clusters . 608

Mingming Sun, Changlong Li, Xuehai Zhou, Kun Lu, and
Hang Zhuang

Performance Prediction Model and Analysis for Compute-Intensive
Tasks on GPUs . 612

Khondker S. Hasan, Amlan Chatterjee, Sridhar Radhakrishnan, and
John K. Antonio

Interdomain Traffic Engineering Techniques to Overcome Undesirable
Connectivity Incidents . 618

Amer AlGhadhban, Ashraf Mahmoud, Marwan Abu-Amara,
Farag Azzedin, and Mohammed H. Sqalli

Author Index . 623

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 1–9, 2014.
© IFIP International Federation for Information Processing 2014

Routing and Wavelength Assignment for Exchanged
Hypercubes in Linear Array Optical Networks

Yu-Liang Liu*

Department of Computer Science and Information Engineering, Aletheia University, No.32,
Zhenli St., Danshui Dist., New Taipei City 25103, Taiwan

au4377@au.edu.tw

Abstract. The exchanged hypercube, denoted by EH(s, t), is a new interconnec-
tion network obtained by systematically removing links from the hypercube,
while preserves many appealing properties. This paper addresses the routing
and wavelength assignment for realizing exchanged hypercubes communication
patterns on linear array WDM optical networks. By using congestion estima-
tion, we derive a lower bound of the minimum number of required wavelengths,
and propose an optimal wavelength assignment algorithm that uses 2s+t-1 +
2t/3 wavelengths.

Keywords: WDM optical networks, Routing and wavelength assignment,
Exchanged hypercube, Linear array, Congestion.

1 Introduction

In a wavelength division multiplexing (WDM for short) optical network, the band-
width in optical fiber is partitioned into multiple virtual channels, in which different
stream of data can be transmitted simultaneously using separate virtual channels. In
this context, a virtual channel corresponds to a wavelength. In general, a WDM opti-
cal network consists of routing nodes interconnected by point-to-point fiber links. To
achieve all-optical communication without optoelectrical conversions at intermediate
nodes, end-to-end lightpaths are usually set up between each pair of source-
destination nodes. A connection or a lightpath in a WDM optical network is an or-
dered pair of nodes (S, D) corresponding to transmission of a packet from source node
S to destination node D.

The primary issue for WDM optical networks is to select a proper path and wave-
length satisfying the wavelength-continuity constraint and the distinct wavelength
constraint for each connection of a given communication pattern so that the number
of used wavelengths is minimized [12-15]. Up to now, there have been some works
about routing and wavelength assignments in optical networks [3-5,8,12-14].

The exchanged hypercube is a link-diluted variation of the hypercube nework, pro-
posed by Loh et al [9], with numerous desirable properties, such as lower diameter
and better cost effectiveness. Some related works on exchange hypercubes, such as
the domination number [6], the connectivity [10], the super connectivity [11], and
fault-tolerance measures [7] have been investigated.

2 Y.-L. Liu

The rest of this paper is organized as follows. In Section 2, we introduce some pre-
liminaries of exchanged hypercubes and the congestion of embedding schemes. In
Section 3, a lower bound of the number of required wavelengths for realizing ex-
changed hypercubes communication patterns on linear arrays is obtained. In Section
4, we propose an embedding scheme and an optimal wavelength assignment algo-
rithm. Finally, we conclude the paper in Section 5.

2 Preliminaries

In this section, we introduce some preliminaries of exchanged hypercubes and the
congestion of embedding schemes.

2.1 The Exchanged Hypercube

Let n be a positive integer. The n-dimensional hypercube (or n-cube for short) Qn is
the graph with vertex set {0, 1}. Two vertices (strings) u and v in Qn are adjacent if
and only if they differ in exactly one coordinate. Let H(u, v) denote the Hamming
distance between u and v, namely the number of coordinates in which u and v are
different. Thus two vertices u and v in Qn are adjacent if and only if H(u, v) = 1.

Let k > 1 and u = uk-1 …u0∈{0, 1}n be a binary string. We use uj:i to denote the
substring ujuj-1…ui of u for 0 ≤ i ≤ j < k.

Definition 2.1 ([9]). The vertex set V of exchanged hypercube EH(s, t) is the set
{us+tus+t-1…u0⏐ui ∈{0, 1} for 0 ≤ i ≤ s+t}.

Let u = us+t …u0 and v = vs+t …v0 be two vertices in EH(s, t). There is an edge (u,
v) in EH(s, t) if and only if (u, v) is in one of the following sets:
E1 = {(u, v) ⏐ u0 ≠ v0, ui = vi for 0 ≤ i ≤ s+t }.
E2 = {(u, v) ⏐ u0 = v0 = 1, H(u, v) = 1 with ui ≠ vi for some 1 ≤ i ≤ t }, and
E3 = {(u, v) ⏐ u0 = v0 = 0, H(u, v) = 1 with ui ≠ vi for some t+1 ≤ i ≤ s+t }.

Let EHi(s, t) be the subgraph of EH(s, t) induced by the edges in Ei for i ∈{1, 2, 3}.
Clearly, EH(s, t) contains 2s+t+1 nodes and is a spanning subgraph of hypercube Qs+t+1.
For u ∈ V(EH(s, t)), if u0 = 0, then the degree of u is s+1; otherwise, the degree of u is
t+1. Fig. 1 depicts EH(1, 2) which is a spanning subgraph of Q4. An edge with a label
i for i ∈{1, 2, 3} is in edge set Ei. We can see that each node u in EH(1, 2) with u0 = 0
is of degree 2 and all the other nodes are of degree 3.

Lemma 2.2 ([9]). EH(s, t) is isomorphic to EH(t, s).

By Lemma 2.2, hereafter, we may assume without loss of generality that s ≤ t.

 Routing and Wavelength Assignment for Exchanged Hypercubes 3

Fig. 1. An exchange hypercube EH(1, 2)

Proposition 2.3 ([6]). EH2(s, t) (respectively, EH3(s, t)) contains 2s (respectively, 2t)
copies of Qt (respectively, Qs) in which any two distinct copies of Qt (respectively,
Qs) are disjoint. Moreover, EH1(s, t) forms a perfect matching between nodes in
EH2(s, t) and EH3(s, t).

Denote by
1: ++ ttsu

tQ for the Qt in EH2(s, t) in which all vertices u ∈ Qt have the same

bits in us+t:t+1. Similarly,
1:tu

sQ denotes those Qs in EH3(s, t) for all vertices u ∈ Qs

having the same bits in ut:1. For brevity,
1: ++ ttsu

tQ and
1:tu

sQ are also denoted by Qx
t and

Qy
s, respectively, where x and y are the decimal values of us+t:t+1 and ut:1, respectively.

Fig. 2(a) and (b) show the two subgraphs EH2(1,2) and EH3(1, 2), respectively. Note
that EH2(1, 2) contains Q0

2 and Q1
2 while EH3(1, 2) contains Q0

1 , Q
1
1 , Q21, and Q3

1.

Fig. 2. The two subgraphs of EH(1, 2)

2.2 The Congestion

Let G = (V1, E1) be the guest graph and H = (V2, E2) the host graph, where V1 = V2.
An embedding scheme of G in H is an ordered pair Φ = (Ψ, Ω), where Ψ is a bijection
from V1 to V2, Ω is a mapping from E1 to a set of paths in H such that, for every edge
e = (u, v) ∈ E1, there is a path Ω(e) from Ψ(u) to Ψ(v) in H.

4 Y.-L. Liu

Definition 2.4. The congestion of an edge e ∈ E2 under embedding scheme Φ of G in
H, denoted by ce(G, H, Φ, e), is the number of paths Ω(e’) for all e’ ∈ E1 passing
through e, namely,

ce(G, H, Φ, e) = {e’: e ∈ E(Ω(e’)), e’ ∈ E1 and e ∈ E2}

The congestion of G in H under Φ, denoted by cp(G, H, Φ), is defined as:

),,,(max),,(
2

eHGcHGc e
Ee

p Φ=Φ
∈

The congestion of G in H under Φ, denoted by cg(G, H), is defined as:

),,(min),,(Φ=Φ
Φ

HGcHGc pg

Let λ(G, H) stand for the number of required wavelengths for realizing communi-
cation pattern G on WMN optical network H by embedding scheme Φ. Lemma 2.5
shows that cg(G, H) is a lower bound of λΦ(G, H).

Lemma 2.5 ([1, 3, 12]). λΦ(G, H) ≥ cg(G, H).

In this paper, we consider that the guest graph is EH(s, t) and the host graph is a li-
near array Ln, where n = s+t+1 and Ln is a path of 2n nodes. We label the nodes (re-
spectively, the edges) in Ln from 1 to 2n (respectively, from e1 to

12 −ne) in consecu-

tive order. For example, a linear array L3 is shown in Fig. 3. Given an embedding
scheme, each node u in V(EH(s, t)) will be assigned a distinct number in {1,…,2n}.
The node assigned number i is then embedded to the node i in Ln.

Fig. 3. A linear array L3

3 A Lower Bound of λΦ(EH(s,t), Ln)

If u = us+t …ut+1ut…u1u0 is a node in Qi
t (0 ≤ i ≤ 2s-1) and the decimal value of ut:1 is j,

then we also use qi,j
t to denote node u. Let Ri

t stand for the subgraph of EH(s, t) in-
duced by the nodes in Qi

t and all nodes in EH1 adjacent to some vertex in Qi
t.

Lemma 3.1. The congestion of embedding the nodes in Qi

t to a linear subarray Lt of
Ln is 2t + 2t/3.

Property 3.2. If Φ is an optimal embedding scheme, then Φ will embed nodes in a
subgraph of EH(s, t), which is isomorphic to Ri

t, to nodes 1, 2,…2t+1 of Ln.

 Routing and Wavelength Assignment for Exchanged Hypercubes 5

Lemma 3.3. 3/22)},,),,(({minmax 1

21; 1

tts
ine

ie
eLtsEHc

t
i

+≥Φ −+

Φ≤≤ +
.

Theorem 3.4. cg(EH(s, t), Ln) ≥ 2s+t-1+ 2t/3.

Lemma 3.5. The number of required wavelengths to realize EH(s, t) communication
patterns on linear array Ln is not less than 2s+t-1+ 2t/3.

Proof. By Lemma 2.5 and Theorem 3.4, the lemma is thus proved.
Q.E.D.

4 Optimal Wavelength Assignment for Realizing EH(s, t) on Ln

In this section, we first derive an embedding scheme, and then describe a routing and
wavelength assignment algorithm. Let u = us+t…ut+1ut…u1u0 be a node in V(EH(s, t)).
We partition V(EH(s, t)) into eight disjoint subsets as follows:

S1 = {u : ut+1 = 0; u1 = 0 and u0 = 1},
S2 = {u : ut+1 = 0; u1 = 1 and u0 = 1},
S3 = {u : ut+1 = 1; u1 = 0 and u0 = 1},
S4 = {u : ut+1 = 1; u1 = 1 and u0 = 1},
S5 = {u : ut+1 = 0; u1 = 0 and u0 = 0},
S6 = {u : ut+1 = 1; u1 = 0 and u0 = 0},
S7 = {u : ut+1 = 0; u1 = 1 and u0 = 0}, and
S8 = {u : ut+1 = 1; u1 = 1 and u0 = 0}.

Clearly, the subgraph induced by Si (1 ≤ i ≤ 4) comprises 2s-1 disjoint (t-1)-cubes,
and the subgraph induced by Si (5 ≤ i ≤ 8) comprises 2t-1 disjoint (s-1)-cubes. If s > 2
for the subgraph induced by Sm (1 ≤ m ≤ 4), we denote the (t-1)-cube by Qm,i

t-1 where i
(0 ≤ i ≤ 2s-1-1) is the decimal value of us+t:t+2, and the node u in Qm,i

t-1 is represented by
qm,i,j

t-1 , where j (0 ≤ j ≤ 2t-1-1) is the decimal value of ut:2. Otherwise, if s = 1, the
(t-1)-cubeis denoted by Qm,0

t-1, and the node u in Qm,0
t-1 is denoted by qm,0,j

t-1 , where j
(0 ≤ i ≤ 2t-1-1) is the decimal value of ut:2.

Similarly, if s > 2, for the subgraph induced by Sm (5 ≤ m ≤ 8), we denote the (s-1)-
cube by Qm,i

s-1, where i (0 ≤i ≤2t-1-1) is the decimal value of ut:2, and the node in Qm,i
s-1

is represented by qm,i,j
s-1 , where j (0 ≤ j ≤ 2s-1-1) is the decimal value of us+t:t+2. Other-

wise if s = 1, the 0-cube with decimal value i (0 ≤ i ≤ 2t-1-1) in substring ut:2 is denoted
as Qm,i

0, and the only node in Qm,i
0 is enoted as qm,i,j

0.
Let ui = ui

s+t…ui
t+1u

i
t…ui

1u
i
0 be a node in Si (1 ≤ i ≤ 8), and let v = vs+t-3…vt+1vt…

v1v0 be a binary string of length s + t - 2 with decimal value x (0 ≤ x ≤ 2s+t-2-1). If s >
2, then let ui

s+t:t+2 = vs+t-3:t-1 and ui
t:2 = vt-2:0; otherwise, for the case s = 1, let ui

t:2 = vt-2:0.
We can find that the nodes ui (1 ≤ i ≤ 8) form two reversed direction cycles, denoted
by cycle1(x) and cycle2(x), respectively. Fig. 4 shows the two reversed direction
cycles.

6 Y.-L. Liu

Fig. 4. Two reversed direction cycles in EH(s, t)

An embedding scheme α, which assign numbers to the nodes in EH(s, t), is shown
in Table 1.

Table 1. An embedding scheme α

Embedding scheme α
Input: An exchange hypercube EH(s, t).
Output: The assigned number NUM(u), u ∈ V(EH(s, t)).
begin
Step 1. Set k = 1;
Step 2. For each node u ∈ EH(s, t), set NUM(u) = NULL;
Step 3. For m = 1 to 4
For i = 0 to 2s-1-1

For j = 0 to 2t-1-1
NUM(qm,i,j

t-1) = k;
k = k + 1;

Step 4. For m = 5 to 8
For i = 0 to 2t-1-1

For j = 0 to 2s-1-1
NUM(qm,i,j

s-1) = k;
k = k + 1;

end

Property 4.1. In the embedding scheme α, if x ≠ y or m1 ≠ m2 or i1 ≠ i2, then the
nodes in Qm1,i1

x-1 and the nodes in Qm2,i2
y-1 are embedded into two disjoint linear subar-

rays of Ln.

Proof. This property is clear from the embedding scheme α.

 Routing and Wavelength Assignment for Exchanged Hypercubes 7

Fig. 5 shows the numbers assigned to the nodes in EH(1,2) by the embedding

scheme α.

Fig. 5. The numbers assigned to nodes in EH(1, 2)

A routing and wavelength assignment algorithm β for realizing EH(s, t) communi-
cation patterns on Ln is shown Table 2.

Table 2. A routing and wavelength assignment algorithm β

Routing and wavelength assignment algorithm β
Input: An exchange hypercube EH(s, t), and the assigned number NUM(u),
u ∈ V(EH(s, t)).
Output: The assigned number NUM(u), u ∈ V(EH(s, t)).
begin
Step 1. For x = 0 to 2s+t-2-1

assign 1 unused wavelength to link e in cycle1(x);
assign 1 unused wavelength to link e in cycle2(x);

Step 2. For m = 1 to 4
For i = 0 to 2s-1-1

Call Algorithm 1 in [3] to assign wavelengths to links in Qm,i
t-1.

Step 2. For m = 5 to 8
For i = 0 to 2t-1-1

Call Algorithm 1 in [3] to assign wavelengths to links in Qm,i
s-1.

end

Theorem 4.2. The optimal number of required wavelengths to realize EH(s, t) com-
munication patterns on Ln is 2s+t-1+ 2t/3.

Proof. It is clear that Algorithm β considers all links in EH(s, t). In Step 1, we have
that links on 2s+t-1 directed cycles are assigned wavelengths, and links on each

8 Y.-L. Liu

directed cycle are assigned 1 unused wavelength. Hence, 2s+t-1 wavelengths are as-
signed in this step. In Step 2 (respectively, Step 3), Algorithm 1 is invoked to assign
wavelengths to links in Qm,i

t-1 (respectively, Qm,i
s-1). According to the results in [3], it

follows that 2t/3 (respectively 2s/3) wavelengths are required for each Qm,i
t-1

(respectively, Qm,i
s-1) in Step 2 (respectively, Step 3). By Property 4.1, the wave-

lengths assigned to links in each Qm,i
s-1 and Qm,i

t-1 can be reused, and hence, Steps 2
and 3 require 2t/3 wavelengths. It is obvious that Algorithm β requires 2s+t-1 +
2t/3 wavelengths. By Lemma 3.5, an optimal wavelength assignment is achieved.
This completes the proof.

Fig. 6 shows the wavelengths assigned to the links in EH(1, 2) by the routing and
wavelength assignment algorithm β.

Fig. 6. The wavelengths assigned to links in EH(1, 2)

5 Concluding Remarks

In this paper, we study the optimal wavelength assignment for realizing the ex-
changed hypercube EH(s, t) communication patterns on linear array WDM optical
network Ln by proving that cg(EH(s, t), Ln) ≥ 2s+t-1+2t/3. We also design an embed-
ding scheme and a routing and wavelength assignment algorithm which assigns the
optimal number of wavelengths.

For the case when s = t, the exchanged hypercube is reduce to the dual-cubes [16],
and 22s-1+ 2s/3 wavelengths are required when the guest network is the dual-cube.
For a future research, it is worthwhile to parallelize the wavelength assignment algo-
rithm proposed in this paper, and consider the routing and wavelengths assignment
issues for other types of communication patterns, such as, crossed cubes, twisted
cubes, recursive circulants, etc.

References

1. Beauquier, B., Bermond, J.C., Gargano, L., Hell, P., Prennes, S., Vaccaro, U.: Graph prob-
lems arising from wavelength routing in all optical networks. In: Proceedings of the
Second Workshop in Optics and Computer Science, pp. 76–84 (1997)

 Routing and Wavelength Assignment for Exchanged Hypercubes 9

2. Bezrukov, S., Chavez, J., Harper, L., Rottger, M., Schroeder, U.P.: The congestion of n-
cube layout on a rectangular grid. Discrete Mathematics 213(1-3), 13–19 (2000)

3. Chen, Y., Shen, H.: Routing and wavelength assignment for hypercube in array-based
WDM optical networks. Journal of Parallel and Distributed Computing 70, 59–68 (2010)

4. Chen, Y., Shen, H., Liu, F.: Wavelength assignment for realizing parallel FFT on regular
optical networks. Journal of Supercomputing 36, 3–16 (2006)

5. Chen, Y., Shen, H., Zhang, H.: Wavelength assignment for directional hypercube commu-
nications on a class of WDM optical networks. In: Proceedings of International Confe-
rence on Parallel Processing, pp. 288–595 (2007)

6. Klav_zar, S., Ma, M.: The domination number of exchanged hypercubes. Information
Processing Letters 114, 159–162 (2014)

7. Li, X.J., Xu, J.M.: Generalized measures of fault tolerance in exchanged hypercubes.
Information Processing Letters 113, 533–537 (2013)

8. Libeskind-Hadas, R., Melhem, R.G.: Multicast routing and wavelength assignment in mul-
tihop optical networks. IEEE/ACM Transactions on Networking 10(5), 621–629 (2002)

9. Loh, P.K.K., Hsu, W.J., Pan, Y.: The exchanged hypercube. IEEE Transactions on Parallel
and Distributed Systems 16(9), 866–874 (2005)

10. Ma, M.: The connectivity of exchanged hypercubes, Discrete Mathematics. Algorithms
and Applications 2(2), 51–57 (2010)

11. Ma, M., Zhu, L.: The super connectivity of exchanged hypercubes. Information Processing
Letters 111, 360–364 (2011)

12. Yu, C., Yang, X., Yang, L., Zhang, J.: Routing and wavelength assignment for 3-aryn-
cube in array-based optical network. Information Processing Letters 112, 252–256 (2012)

13. Yu, C., Yang, X., Yang, L., Zhang, J.: Routing and wavelength assignment for 3-ary n-
cube communication patterns in linear array optical networks for n communication rounds.
Information Processing Letters 113, 677–680 (2013)

14. Yuan, X., Melhem, R.: Optimal routing and channel assignments for hypercube communi-
cation on optical mesh-like processor arrays. In: Proceedings of The Fifth International
Conference on Massively Parallel Processing, pp. 76–84 (1998)

15. Zang, H., Jue, J.P., Bukherjee, B.: A review of routing and wavelength assignment ap-
proaches for wavelength-routed optical networks. Optical Network Magazine 1(1), 47–60
(2000)

16. Li, Y., Peng, S., Chu, W.: Efficient collective communications in dual-cube. Journal of
Supercomputing 28, 71–90 (2004)

Page Classifier and Placer: A Scheme

of Managing Hybrid Caches

Xin Yu1, Xuanhua Shi1, Hai Jin1, Xiaofei Liao1, Song Wu1, and Xiaoming Li2

1 Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology,Wuhan, 430074, China

xhshi@hust.edu.cn
2 Department of ECE, University of Delaware, Newark, DE, USA

Abstract. Hybrid cache architecture (HCA), which uses two or more
cache hierarchy designs in a processor, may outperform traditional cache
architectures because no single memory technology can deliver the op-
timal power, performance and density at the same time. The general
HCA scheme has also been proposed to manage cache regions that have
different usage patterns. However previous HCA management schemes
control data placement at cache set level and are oblivious to software’s
different power and performance characteristics in different hardware
cache regions. This hardware-only approach may lead to performance
loss and may fail to guarantee quality of service. We propose a new
HCA approach that enables OS to be aware of underlying hybrid cache
architecture and to control data placement, at OS page level, onto dif-
ference cache regions. Our approach employs a light-weighted hardware
profiler to monitor cache behaviors at OS page level and to capture
the hot pages. With this knowledge, OS will be able to dynamically se-
lect different cache placement policies to optimize placement of data to
achieve higher performance, lower power consumption and better quality
of service. Our simulation experiments demonstrate that the proposed
hybrid HCA achieves 7.8% performance improvement on a dual-core sys-
tem compared to a traditional SRAM-only cache architecture and at the
same time reduces area cost.

Keywords: hybrid cache, page coloring, multi-core.

1 Introduction

Cache is widely used in todays computers to mend the ever-increasing speed gap
between processor core and main memory. Emerging memory technologies have
demonstrated significantly different properties in density, speed, power consump-
tion, reliability features, and scalability. Table 1 summarizes the important char-
acteristics of four memory technologies: SRAM, Phase-change RAM (PRAM)
[4, 6], embedded Dynamic RAM (eDRAM), and Magnetic RAM (MRAM) [5].

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 10–22, 2014.
c© IFIP International Federation for Information Processing 2014

Page Classifier and Placer 11

Table 1. Characteristic comparison of different memory technologies

Features SRAM eDRAM MRAM PRAM

Density Low High High Very high

Speed Very fast Fast
Fast read;
Slow write

Slow read;
Very slow write

Dynamic
Power

Low Medium
Low read;
High write

Medium read;
High write

Leak Power High Medium Low Low

Non-volatile NO NO Yes Yes

Scalability Yes Yes Yes Yes

Hybrid Cache Architecture (HCA) has been proposed to take advantage of
multiple memory technologies [4–6] in one cache. However, the existing HCA
management schemes control data placement at cache set level and hide from
software the knowledge about differences in power and performance character-
istics of hardware cache regions. This hardware-only approach may lead to per-
formance loss and loss of quality of service.

To address the shortcomings of existing HCA management schemes, we pro-
pose a new approach which makes operating system (OS) be aware of the un-
derlying HCA architecture and enables OS to customize data placement in HCA
and focus on using our proposed HCA technology to improve the throughput of
multicore systems.

This paper makes the following contributions:

– We extend the page coloring capability in OS with a novel awareness of L2
cache access patterns and program behavior. In particular, our technique
for the first time dynamically manages hybrid cache at page level through
page migration and optimize migration policy to amortize the performance
overhead.

– We propose a hardware-assisted mechanism page classifier to monitor the
patterns of L2 cache accesses from each core at page granularity. The page
classifier could not only monitor L2 accesses but also capture hot pages.

– We propose an effective heuristic to decide when and how to migrate hot
pages in or out of fast regions, so as to make full use of HCAs large capability
and high access speed at the same time.

2 Proposed Scheme

We assume the shared L2 is divided into a fast region and a slow region. The
heterogeneous cache placement is only possible if we can monitor the access
frequency of cache blocks and dynamically adjust placement of cache blocks. We
propose a hardware-assist software-controlled hybrid mechanism to address the
two challenges.

12 X. Yu et al.

2.1 Page Coloring

Traditionally, the intersection of page number bits and L2 index bits are used as
the page color bits, as shown in Fig.1. OS has control over these bits. We choose
certain subset of those bits to identify different cache regions, which is called
hybrid bits. Thus, when a page is migrated to specified page with certain hybrid
bits, its data would be accessed in that cache region. In this study, we assume
the size of a page is 4KB and the size of L2 is 128KB. Consequently there are
six page color bits in the cache subsystem used by this work, as shown in Fig.1.
As the ratio of fast region to slow region is 1:3, the first two bits of page color
bits are referred to hybrid bits.

Block
Offset

Page OffsetPage Number

6 016 11

L2

Physical
Memory

Set Number

Hybrid bit

Color bits

OS
controlled

OS not
controlled

Fig. 1. Page coloring bits and hybrid bits

2.2 Page Classifier

In this study, we enhance L2 cache with a new module: a page classifier. The
page classifier is composed of two parts, named Sampler and Mature/Nursery.
Mature/Nursery counts the number of L2 access of every page. To reduce the
power overhead of the added components, a L2 access filter Sampler is designed
and controls how often L2 accesses are counted.

Mature/Nursery classifies the L2 access pattern at page level. They are counter
caches. Every block records the access behavior of one page. Its data could in-
clude read counter, write counter and total access counter. As it is indexed via
physical page number, its tag is the segment of page number.

As what they are called, pages access pattern would be initially recorded in
Nursery. When one page becomes relatively hot, its block would be exchanged
into Mature. To archive this purpose, Mature and Nursery are designed to have
the same cache sets. Block swap happens between the same cache set of Mature
and Nursery. As a result, a new L2 access is firstly recorded in Nursery. When the
page has more and more L2 accesses, which is higher than other blocks, it would
be swapped into Mature. We set a swapping frequency for this progress to avoid
block jitters. The access to L2 cache and the access toMature/nursery are parallel.
If the access is a L1 cache miss, the physical address is sent to L2 cache module.
If the access to Mature/Nursery is a hit, the read or write counter is increased by
one. If it is a miss, the block with least number of accesses (LATBlock) in Nursery
would be replaced and the counter would be reset to one.

Page Classifier and Placer 13

We exchange blocks between Mature and Nursery periodically. OS compares
the blocks of biggest number of accesses in Nursery, named MATBlock, with
LATBlock in Mature. If the former is bigger, swapping would happen. After
swapping, MAT in Nursery and LAT in Mature both need to update.

2.3 Page Placer

The page placer is designed to determine where and when to migrate a candidate
page to a new physical page. Os would scan Mature to find hot pages still in slow
region and scan Nursery to find not-hot pages still in fast region periodically.

When choosing page migration destination, we need to specify its page color.
We take a round-robin policy in allocating physical pages, to make virtual pages
distributed evenly among different colors in memory. This round-robin process
of assigning page number is not only used by the page migration process, but
also adopted in the allocation of physical pages for virtual pages. In this study,
two registers are provided to assist this progress, which record next page color
(NPC) for each region. After one page is allocated, the value of next page color
would be increased by one; when it reaches the last page color of one region, it
would reset to zero. To adapt this policy, traditional buddy system algorithm
for managing free page frames is slightly modified: choosing appropriate bulks of
page frames for migration destination. For example, we assume 27 pages need to
be migrated to fast region. OS would search the list of blocks for buddy system
to find groups of 32 contiguous page frames. It would start to allocate page from
the page color recorded in NPC register of fast region and allocate 27 pages.
After page allocation, the register would add 27 accordingly.

To reduce page migration cost, one simple yet effective approach is to decide
the migration time separately for hot pages and not-hot pages. For hot pages,
page fault is triggered and the page would be copied to its destination page
at once, and thus its blocks are updated to fast region of L2 immediately. As
most part of its data has already been in L2, the copy process costs little time.
However, not-hot pages is to keep in a drowsy mode: they are invalided and
written back into swapping area of the disk in migration period; only when its
data is accessed, it writes into its destination page frame. Thus its data would not
pollute fast region because they avoid being swapped in and out of L2 frequently.
As a result, those policies make page migration damage the performance of the
applications slightly.

To reduce migration cost further, not only migration frequency is controlled,
but also hot page threshold (HotThreshold) is set. As the analysis above, pages
in Mature, which relatively hotter than pages of the same set in Nursery are
unnecessarily globally hottest. Therefore HotThreshold is set. There is a formula
to describe the relationship of system parameters and estimate an approximate
yet reasonable value for HotThreshold:

HotThreshold =
MigrCycle× IPC ×Ratio

CapabilityMN
×Multiplier (1)

14 X. Yu et al.

In Eq. 1, IPC is the number of instructions per cycle of the running programs,
MigrCycle is the page migration cycle, CapabilityMN is the total entry number
of Mature and Nursery, Ratio represents the average times of L2 cache access per
instruction, and Multipliecr represents the ratio of HotThredhold to the average
times of L2 accesses per page. In this formula, HotThreshold varies directly with
MigrCycle. As IPC and Ratio are the characteristics of the programs, we only
change Multiplier to adjust the ratio of hot pages and set it as 10 in this work.
In order to dynamically reflect the L2 access pattern of one page, all counters
in Mature/Nursery are aged by right shift by one bit at the end of migration
period.

3 Methodology

In this section, we describe our simulation methodology.

3.1 System Configuration

We choose the simulation parameters based on the related studies [4–6,9,12], and
we use the typical density, latency, and energy numbers for the three memory
technologies, which are calculated using CACTI 6.0 [8]. We scale these parame-
ters to 65nm technology as described in [1]. We use the same cache parameters
as described in [11], which are shown in Table 2.

Table 2. Four memory technology parameters

Cache Normal
Density

Latency
(cycles)

Dynamic en-
ergy (nJ)

Static power
(W)

SRAM (1MB) 1 8 0.388 1.36

eDRAM (4MB) 4 24 0.72 0.4

We choose Zesto [7] as our base simulator, which is a cycle-level x86 processor
simulator publicly available for academic use. We augment its cache part to
study the proposed hybrid cache management scheme. Our system configuration
is summarized in Table 3.

Table 3. System configuration

Processor 3000MHz, out of order, (8 way issues), core number depends on design

L1 32KB DL1, 32KB IL2, 64B8way, 8bank, (1 R/W port)

L2
(LLC)

shared LLC64B, 16way, 16 bank, latency and capability depends on design

Memory 400 cycle latency, (memory contr. vs. core speed 1:2),page size:4KB

Page Classifier and Placer 15

3.2 Workload

We choose SPEC CPU 2006 as the benchmarks to run on the simulated system.
In order to run on multi-core simulated by Zesto, we use a program, zesto-eio,
provided by Zesto to generate eio files and we got 21 eio files successfully out
of total 29 benchmarks shown in Table 4. After a warm-up period simulation of
100 million instructions, we simulate the system cycle-by-cycle for 100 million
instructions and collect the simulation results.

Table 4. Workloads

Benchmarks Applications

Spec
CINT2006

400.perlbench, 401.bzip2, 403.gcc, 429.mcf, 445.gobmk, 456.hm-
mer, 458.sjeng, 462.libquantum, 464.h264ref Spec

CFP2006 410.bwaves, 433.milc, 434.zeusmp, 435.gromacs, 436.cac-
tusADM, 437.leslie3d, 444.namd, 447.dealII, 450.soplex,
453.povray, 465.tonto, 470.lbm

3.3 Design Methodology

To take advantage of separate characteristics of different memory technologies,
we present the hybrid cache subsystem. To compare the performance of the
hybrid cache scenario and pure-SRAM cache scenario, we assume that the chip
area is the same for all the design cases.

Before we introduce the design methodology, we define the division of tasks be-
tween the hardwarepart (the page classifier) and the software part (the page placer
in OS). The hardware part is responsible for profile cache access behaviors of pro-
grams. It records howmany times a virtual page accesses the L2 and filters the hot
page. In this process it does not care the L2 architecture, no matter it is homoge-
neous like pure-SRAM cache, or it is heterogeneous, such as hybrid cache consisted
of SRAM and eDRAM, or it is consisted of SRAM and MRAM, even consisted of
eDRAM and MRAM. This means that the design of hardware part is not affected
by L2 architecture. OS is the only part that should be aware of L2 architecture.
Thus it could re-adjust which part of L2 could be accessed by one virtual page,
according to the attributes of different RAM technologies. By simply configuring
and taking advantage of those attributes in the page placer algorithm, OS could
optimize performance of L2 architecture. As analyzed above, the hardware part is
aware of software behaviors and the software part is aware of the hardwares attri-
bution. The unique combination of the two-way awareness enables OS to control
the behaviors of cache access without complex hardware design.

Therefore, this design is almost agnostic to the design of HCA (hybrid cache
architecture), which makes it scalable for different HCAs. The porting to differ-
ent HCAs is merely to change the configuration in the page placer algorithm.
To improve scalability, this design adopts a simple but efficient way and demon-
strates that this hardware-software combined design could work very well for
HCA. The advantage can be fully illustrated with a small scale system: dual
core and 2MB L2 on CMP, rather than on prevalent larger scale systems.

16 X. Yu et al.

The design of HCA also follows this simple but efficient methodology. The
quickest SRAM and slowest eDRAM are used, to illustrate that even in such
radical combinations, our technique can perform well.

There are clear benefits of such hybrid cache design: (1) The new memory
technology has a much higher density than traditional SRAM technology, which
increases the effective cache size under the same chip area constraint. (2) Perfor-
mance can be improved by keeping hot cache lines which are accessed relatively
most frequently in fast regions and place not so hot cache lines in slow regions.
(3) This hardware-software combined design has simplified the process of making
OS aware of L2 behavior and controlling it, and is scalable for different HCAs.
(4) Flexible and tunable page placing strategies become possible and promising.

4 Result

In this section, we present experimental results of HCA.

4.1 General Evaluation

We assume the total size of the hybrid cache is 2MB, and the size ratio of SRAM
and eDRAM is 1: 3. Under the same area constraint, we should study 0.875 MB
SRAM as control set. To avoid complicated indexing schemes which are often
associated with odd-sized caches, we construct 0.5 MB and 1MB SRAM instead
to approach the performance of 0.875 MB SRAM , shown as Conf.1 and Conf.2.

Table 5. Four sets of cache L2 parameters

L2 parameters

Conf.1 512KB SRAM-only (8 cycles)

Conf.2 1MB SRAM-only (8 cycles)

Conf.3
Fast region: 512KB SRAM (8 cycles);

Slow region: 1.5MB eDRAM (24 cycles)

4.2 Results of Page Classifier

To check whether page classifier can pick out the hot pages effectively, we analyze
the ratio of the access number of identified hot pages to the total L2 access
number. As shown in Fig.2, the ratio is over 0.8 for more than half of benchmarks,
and the average rate is over 0.6. The results proves that 1) majority of L2 cache
accesses are belong to very small set of pages, and 2) the page classifier does a
good job to identify these hot pages.

4.3 Results on Single-Core

First, we apply the page placer to HCA. We name HCA architecture with OS
Cache Management as HCACM and HCA refers to the common HCA without
OS cache management. Fig.3 compares the performance of HCACM and HCA,
and shows that the average IPC improvement is only 1%.

Page Classifier and Placer 17

Fig. 2. Ratio of hot page L2 access number to total L2 access number

0

Fig. 3. Comparison of normalized IPC between HCA enabled cache management and
not enabled cache management

To find out why this page placer does not work well, we compare the L2 miss
rate between HCA and HCACM in Fig.4. We can see that the benchmarks can
be divided into three categories: 1) the hot pages have high access frequency and
the page placer improves the L2 access performance, such as perlbench, gromacs,
cactusADM; 2) the hot pages have high access frequency, but their performance
almost stays the same, or even degrades, such as mcf, namd, soplex, and hmmer;
3) page classifier is not so useful for them, the hot page access frequency is lower
than normal and the performance nearly stays the same, for example gcc, bwaves,
milc, libquatum.

The analysis of the results above is consistent with the benchmarks L2 access
behavior. The first category of benchmarks are memory-latency sensitive and
has small working set, therefore benefiting more from our policy that hot pages
are all placed in fast region. The second category of benchmarks has a larger
working set that cannot wholly fit in to fast region. Therefore the total L2 miss
rate increases much when putting all hot pages in fast region, which could offset
performance improvement from low latency, or even hurts the performance. The
last category of benchmarks is non-memory sensitive, so they almost stay the
same no matter we apply cache management or not.

18 X. Yu et al.

Fig. 4. Comparison of total L2 miss rate between HCA and HCACM

Fig. 5. Comparison of normalized IPC between HCA, HCACM with migration policy
PIN and HCACM with migration policy PINOUT

To make page placer perform better in HCA, we focus on the first two cate-
gories of benchmarks and pursue a better policy to place hot pages. To resolve
the problem, the page placer not only migrates hot pages into fast region but
also migrates some out of fast region when its L2 miss rate is high in fast region
than slow region by 10% margin. To distinguish between the new policy and
the former one, we call the new policy PINOUT and the former one PIN. We
compare the two policies in HCA, and the results are shown in Fig.5.

In Fig.5, we can see the following: 1) the average performance improvement
for policy PINOUT for all the 20 benchmarks is about 7.6% over policy PIN,
4.2% over HCA; 2) The performance of the second category of benchmarks with
policy PINPOUT increases 27.7% over policy PIN. But the performance of the
first category decreases slightly, because they have small working set and do not
benefit from large capability.

We compare the HCACM-PINOUT (HCACM with migration policy
PINOUT) with SRAM with two configurations (Conf.1 and Conf.2 in Table
5), and the results are shown in Fig.6. We can see that the average IPC of
HCACM-PINOUT is 9.5% higher than that of 512 KB SRAM and 5.8% higher
than that of 1MB SRAM. Especially for bzip2, mcf, and soplex, the IPC is more

Page Classifier and Placer 19

Fig. 6. Comparison of normalized IPC between Conf.1, Conf.2 and HCACM with
migration policy PINOUT

than 10% higher than 512KB SRAM. It is worth noting that although cache
area used by HCACM-PINOUT is smaller than that of a 1MB SRAM L2 cache,
it performs much better than 1MB SRAM L2 cache. This confirms that not only
short latency but also large capability bring good performance for HCA when
reasonable management is applied.

4.4 Results on Dual-Core

We also apply this mechanism to dual-core system, and we run eight sets of
benchmarks, shown in Table 6, on dual-core system with different L2 cache
configurations and management policies.

We first run those benchmark sets on dual-core system with policy PIN. The
IPC results illustrate that the overall performance decrease a little as shown in
Fig.7(a) (the numbers of 1-8 refer to the sets of benchmarks, and 9 refers to the
average IPC of all the sets).

The PIN policy on dual cores has similar problem with that on single core,
which is proven by the comparing the total L2 miss rate between HCA and
HCA-PIN in Fig.7(b). Multiprogram has aggravated the competition in L2 and
lead to high cache jitter except set 2 and 6, which are more latency-insensitive
than capacity-insensitive.

To solve the cache jitter, we constrain that a candidate hot page could migrate
only if its miss rate is lower than a specified miss rate threshold. We call this
policy PINTD and run a series of experiments with it. We compare the IPCs

Table 6. Eight sets of benchmarks on dual-core system

Num. Benchmarks Num. Benchmarks

1 gcc+bwaves 5 povray+hmmer

2 gromacs+cactusADM 6 sjeng+libquantum

3 leslie3d+namd 7 h264ref+tonto

4 gobmk+dealII 8 lbm+soplex

20 X. Yu et al.

(a) Normalized weighted IPC (b) Total L2 miss rate

Fig. 7. Sets of benchmarks running on dual-core system

Fig. 8. Normalized weighted IPC of sets of benchmarks running on dual-core system

for HCA, HCACM-PIN, HCACM-PINTD, and HCACM-PINOUT, and get the
results in Fig.8. The HCACM-PINOUT refers to the results that we apply policy
PINOUT based on PINTD. From Fig.8, we can see the followings: 1) the average
performance improvement of HCACM-PINTD is just about 1.6% compared with
PIN; 2) The average weighted performance improvement for PINOUT is 13.5%
over PIN, 7.2% over HCA, 14.9% over Conf.1, 7.8% over Conf.2. Sets with
higher cache miss rate could benefit more from HCACM-PINOUT. For 2, 4 and
8, they achieve over 10% improvement compared to HCA, especially for set 8
with about 21% improvement. Although set 5 is not suitable for HCA cache
management, PINOUT could eliminate the bad effects of cache management.
Above all, the page placer which works with policy PINOUT could handle HCA
cache management well.

5 Related Work

In recent years, substantial research effort has been dedicated to intelligently
manage hybrid cache at fine granularity.

There are many different hybrid cache studies for CMPs. Sun et al. [10]
propose two architectural techniques: read-preemptive write buffer and

Page Classifier and Placer 21

SRAM-MRAM hybrid L2 cache to mitigate the long latency and high energy
of MRAM when writing. Wu et al. [11] , discuss and evaluate two types of hy-
brid cache architectures, and propose HCA management scheme to control data
placement at cache set level and hide from software the differences in power and
performance characteristics of hardware cache regions.

Managing shared cache in CMPs, at both finer and coarser granularity has
been widely studied [3], but few are applied to hybrid cache management. This
method requires complex search to per-core private tag arrays that must be kept
coherent, which adds extra design and hardware cost and some performance
lost.To avoid the aforementioned problems, many other works manage shared
caches in CMPs at page granularity. Chaudhuri et al. [2] have devised OS support
mechanism to allow page placement policies in NUMA systems. Awasthi et al [1]
extend that concept with new mechanisms that allow the hardware and OS to
dynamically manage cache capacity per thread as well as optimize placement of
data shared by multiple threads.

In this work, we apply page coloring approach to overcome the shortcomings
of existing HCA management schemes. Our key innovation is the introduction
of a light-weighted hardware mechanism added to HCA to identify and collect
cache behavior of hot OS pages.

6 Conclusion and Future Work

In this paper, we presented a hybrid cache architecture to construct on-chip cache
hierarchies with different memory technologies. We proposed a light-weighted
hardware mechanism to let OS be aware of underline hybrid cache architecture
and studied page placer mechanism to control data placement onto difference
cache regions at OS page level.

Overall, we showed the potential benefits of applying hybrid caches to im-
prove the cache subsystem performance with OS-aware cache management. As
an initial study, we have mainly presented page-level cache management. In fu-
ture work, if the extra hardware mapping layer is employed, the granularity of
classification and placement can be arbitrary.

Acknowledgments. This work is supported by the NSFC under grants No.
61370104 and No.61133008, National Science and Technology Pillar Program
under grant 2012BAH14F02, MOE-Intel Special Research Fund of Information
Technology under grant MOE-INTEL-2012-01, and Chinese Universities Scien-
tific Fund under grant No. 2014TS008.

References

1. Awasthi, M., Sudan, K., Balasubramonian, R., Carter, J.: Dynamic hardware-
assisted software-controlled page placement to manage capacity allocation and
sharing within large caches. In: Proceedings of IEEE 15th International Sympo-
sium on High Performance Computer Architecture (HPCA 2009), pp. 250–261.
IEEE (2009)

22 X. Yu et al.

2. Chaudhuri, M.: Pagenuca: Selected policies for page-grain locality management
in large shared chip-multiprocessor caches. In: Proceedings of IEEE 15th Inter-
national Symposium on High Performance Computer Architecture (HPCA 2009),
pp. 227–238. IEEE (2009)

3. Chishti, Z., Powell, M.D., Vijaykumar, T.: Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In: Proceedings of
36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
2003), pp. 55–66. IEEE (2003)

4. Hanzawa, S., Kitai, N., Osada, K., Kotabe, A., Matsui, Y., Matsuzaki, N., Takaura,
N., Moniwa, M., Kawahara, T.: A 512kb embedded phase change memory with
416kb/s write throughput at 100µa cell write current. In: Proceedings of IEEE
International Solid-State Circuits Conference (ISSCC 2007), pp. 474–616. IEEE
(2007)

5. Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K.,
Yamada, H., Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H.: A novel
nonvolatile memory with spin torque transfer magnetization switching: Spin-ram.
In: Proceedings of IEEE International Electron Devices Meeting (IEDM 2005),
pp. 459–462. IEEE (2005)

6. Lam, C.: Cell design considerations for phase change memory as a universal mem-
ory. In: Proceedings of International Symposium on VLSI Technology, Systems and
Applications (VLSI-TSA 2008), pp. 132–133. IEEE (2008)

7. Loh, G.H., Subramaniam, S., Xie, Y.: Zesto: A cycle-level simulator for highly
detailed microarchitecture exploration. In: Proceedings of IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS 2009),
pp. 53–64. IEEE (2009)

8. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: Cacti 6.0: A tool to model
large caches. HP Laboratories (2009)

9. Pellizzer, F., Pirovano, A., Ottogalli, F., Magistretti, M., Scaravaggi, M., Zuliani,
P., Tosi, M., Benvenuti, A., Besana, P., Cadeo, S., Marangon, T., Morandi, R.,
Piva, R., Spandre, A., Zonca, R., Modelli, A., Varesi, A., Lowrey, T., Lacaita, A.,
Casagrande, G., Cappelletti, P., Bez, R.: Novel µtrench phase-change memory cell
for embedded and stand-alone non-volatile memory applications. In: Proceedings of
International Symposium on VLSI Technology, Systems and Applications (VLSI-
TSA 2008), pp. 18–19. IEEE (2004)

10. Sun, G., Dong, X., Xie, Y., Li, J., Chen, Y.: A novel architecture of the 3d stacked
mram l2 cache for cmps. In: Proceedings of IEEE 15th International Symposium
on High Performance Computer Architecture (HPCA 2009), pp. 239–249. IEEE
(2009)

11. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., Xie, Y.: Hybrid cache ar-
chitecture with disparate memory technologies. In: Proceedings of International
Symposium on Computer architecture (ISCA 2009), pp. 34–45. ACM (2009)

12. Zhao, W., Belhaire, E., Mistral, Q., Chappert, C., Javerliac, V., Dieny, B., Nicolle,
E.: Macro-model of spin-transfer torque based magnetic tunnel junction device
for hybrid magnetic-cmos design. In: Proceedings of the 2006 IEEE International
Behavioral Modeling and Simulation Workshop (BMSW 2006), pp. 40–43. IEEE
(2006)

Temporal-Based Ranking in Heterogeneous

Networks

Chen Yu, Ruidan Li, Dezhong Yao, Feng Lu, and Hai Jin

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

Abstract. Ranking is a fundamental task for network analysis, bene-
fiting to filter and find valuable information. Time information impacts
results in content that is sensitive to trends and events ranking. The
current ranking either assumes that user’s interest and concerns remain
static and never change over time or focuses on detecting recency in-
formation. Meanwhile most prevalent networks like social network are
heterogeneous, that composed of multiple types of node and complex
reliance structures. In this paper, we propose a general Temporal based
Heterogeneous Ranking (TemporalHeteRank) method. We demonstrate
that TemporalHeteRank is suitable for heterogeneous networks on the
intuition that there is a mutually information balance relationship be-
tween different types of nodes that could be reflected on ranking results.
We also explore the impact of node temporal feature in ranking, then we
use the node life span by carefully investigating the issues of feasibility
and generality. The experimental results on sina weibo ranking prove the
effectiveness of our proposed approach.

Keywords: Heterogeneous Networks, Heterogeneous Ranking, Diverse
Rank, Information Flow Propagation, Hotspot Detection.

1 Introduction

In recent years, the rapid development and flexible application of networks have
revolutionized the way people discover, share, and these rapid changes simul-
taneously have a serious effect like massive data generated. Those enormous
amount of data lead to find the information of user’s interest is extremely diffi-
cult, making the network analysis techniques emerged. Ranking as one of these
is becoming a burning topic gradually, serving to Internet researchers and aca-
demics. The common practice is the graph based ranking [1][2]. However, those
approaches either assumed that user’s interest and concerns remain static and
never change over time [3][4] or focused on detecting recency sensitive infor-
mation [5][6][7]. Simple aggregation and recency extraction can overshadow the
temporal trends that could potentially provide valuable signals for better order-
ing of information, while lots of demands are not satisfied yet like the temporal
based rules.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 23–34, 2014.
c© IFIP International Federation for Information Processing 2014

24 C. Yu et al.

In this paper, we take sina weibo (or weibo) ranking for the instance. Weibo
as one of the most popular on-line short message communication platform, pro-
vides tremendous information. In particular, it focuses on recent hot-spots since
user can express opinions immediately. Due to the highly temporal nature, in-
corporating time information into weibo ranking is crucial. The conventional
approaches of weibo rank are based on content or the interaction of users, such
as forwarding, comments and following. They all have several deficiencies. First,
the characteristics used to rank are relatively simple that all nodes in the net-
work were regarded as the same type. Second, for the weibo content tend to
be over-entertainment, not all the information is valuable. Third, the temporal
factor is an important measurement for ranking results. To solve the problems
described above, we introduce temporal based heterogeneous ranking, i.e. Tem-
poralHeteRank, by integrating the information flow propagation in heteroge-
neous linked nodes and the temporal feature of nodes to enhance the precision
and contribute to detect the hotspot. To summarize, the contribution of this
paper are described as follows:

• We study the ranking on heterogeneous networks, where the network actu-
ally contains multiple types of nodes and complex dependence structures.
• Proposing a method to use the information flow propagation of multiple
types node to capture the correlation between different types of node.
• Integrating the temporal feature i.e. life span of nodes to explore the effect
on the process of ranking.
• Performing experiments on the most prevalent social network, sina weibo,
as the ranking application on hotspot detection to demonstrate the feasi-
bility.

The remaining of the paper is organized as follows. We present the related
work in Section 2, and introduces the fundamental concept and necessary pre-
liminaries in Section 3. We describe the specific process of TemporalHeteRank in
Section 4. We carry out the performance evaluation and application in Section
5, whereas our conclusions are drawn in Section 6.

2 Related Work

The fundamental goal of ranking is to filter and extract most relevant infor-
mation from tremendous data. Thus, ranking could save users time and find
informative content [8][9] simultaneously. However, few studies concentrate on
or relevant to the heterogeneous networks ranking problem from the past [1][10]
to the current[3][4]. The conventional methods [1][10] are both classical ranking
method playing an important role in homogeneous networks. The research of
[3] puts forward the Tri-HITS algorithm on tweet ranking by using the cross-
link between tweet and web document to construct the heterogeneous network.
After that, combing the reliability feature of the web documents and heteroge-
neous information iteratively propagation to improve the ranking quality. How-
ever, ranking tweet without considering the node temporal feature can lead to

Temporal-Based Ranking in Heterogeneous Networks 25

meaningless and unvalued information. As the tweet may be out of popularity
time [11] and the ranking may not satisfy users demand like tracking the news
or capturing the hot topics. [4] mainly rank the venues and authors on DBLP
network. They proposed the authority ranking principles based on the rules, that
if the node highly ranked then the other linked nodes should be ranked higher
reciprocally. While the defection is that none temporal information has consid-
ered on the rankings In [12], they present supervised mathematical method of
transfer learning called ”learn to rank” to solve the complex ranking issues on
heterogeneous networks, but the label information of dataset which needed in
the supervised learning are extremely expensive and difficult to obtain in the real
world. Those aforementioned approaches either assumed that user’s interest and
concerns remain static and never change over time or simple focused on detect-
ing recency-sensitive information[5][6][7], for instance [6] proposed a temporal
query model, using temporal features for query performance predict. Also many
studies like [11][13][14], they all demonstrate that the popularity and influence
of tweet varies over time.

3 Concepts and Preliminaries

3.1 Heterogeneous Information Network

An information network represents an abstraction of the real world, focusing
on the nodes and the interactions between the nodes. Formally, [4] define an
information network as the directed graphG = (V,E) on V = {V1∪. . .∪VN} and
E = {E1∪. . .∪EM}. When the types of nodes N > 1 or the types of relationship
M > 1, the network namely is the heterogeneous information networks. Here we
give some networks for example.

1. Sina weibo network [15]. The sina weibo consist of two different types
nodes (i.e. weibo and user) and many relationships between different types
of nodes. Relationships can emerge in same type like weibo forwarding,
and different types like user post weibo (see in Fig.1a).

Repost / Review Follow

Post

(a)

Co-author

Cite
Write

Contain

Publish

(b)

Fig. 1. Temporal trend of weibo and DBLP networks

2. DBLP bibliographic network [16]. DBLP contains four types of node,
namely papers, authors, terms and venues (conferences or journals). Links
exist between authors and papers by the relation of write (or written by),
between papers and terms by mention (see in Fig.1b).

26 C. Yu et al.

Information imbalance exists in heterogeneous linked nodes. Taking weibo
and web document for example, weibo possesses the qualities of real-time and
massive, whilst the messy weibo makes it uninformative and unreliable. Web
could not provide the real time information, but they always come from organi-
zations that reliable inherently. Thus we use the flow propagation to make the
information of heterogeneous linked nodes mutually reinforced. The connection
of weibo and web document’s built through semantic similarity.

The weibo heterogeneous network, defined as graph G inherited from the
information network, composes of weibo, web document, and user. Namely V =
{Vw ∪ Vu ∪ Vd} and E = {Ew ∪ Ewu ∪ Eu ∪ Ewd ∪Ed}.

doc weibo
user

Fig. 2. Weibo heterogeneous network

3.2 Preliminaries

We briefly introduce the work of [2] for the diverse rank in homogeneous net-
works. Diverse rank or DivRank is a random walk ranking algorithm. In con-
trast to PageRank, DivRank assumes that the transition probabilities change
over time, and the ranking score of nodes varies accordingly. After the z-th
iterations, the transition probability matrix M becomes:

M(z) = α ·M(z − 1) · R(z − 1) +
(1− α)

|V | · E (1)

4 TemporalHeteRank Method

To make the ranking draw attention as much as possible, we define the infor-
mative as the measurement of weibo rank. Our basic assumption of ranking
is the heterogeneous information flowing propagation: 1) Highly ranked weibo
may attract many forwarding amount and reviews generated by highly ranked
users, verse vice; 2) Highly ranked weibo aligns with many highly ranked web
document content. As the web contains abundant information and comes from
formal genre, so it can be used to reinforce the weibo content quality; 3) The
recently released weibo should be given the corresponded promotion, as minor
forwarding amount and comments that can reveal the process of the information
propagation explicitly.

Temporal-Based Ranking in Heterogeneous Networks 27

After crawling all the weibo within a specified time window, we first use
the weibo forwarding pattern to analyze weibo temporal information. Then we
define queries based on the top terms in weibo, and use the Google Search API to
retrieve the titles of the top m web for those queries (m = 5 for our experiments).

4.1 Ranking the Graph

Life Span Analysis. The life span is an important measurement to evaluate
the ranking qualities. Currently there are several approaches to measure the
weibo life span, like the temporal variation of hot topic that weibo related to
and the weibo forwarding amount. The forwarding can explicitly reflect the
information dissemination process, hence we adopt the forwarding to measure
the life span. To prove the generality, the life span could be extended to DBLP
network [17][18], and we employ the cite amount to analysis the paper temporal
trend in Fig.3b.

(a)

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

time /year

#c
ite

(b)

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time/hours

lif
e

sp
an

 w
ei

gh
t

original data
fitted curve

(c)

Fig. 3. Temporal trend of weibo and DBLP networks. a) describes thirty weibo’s tem-
poral repost; b) shows DBLP’s temporal cite amount; c) presents the life span of weibo.

In [11] and [19] they all proved a rule that almost 90% of weibo are rarely
forwarded after 72 hours since they are posted. Fig.3a depicts thirty weibo for-
warding pattern in 72 hours. It shows that the weibo forwarding amount quickly
increases with the time after release but saturates after reaching the time of thir-
tieth hours after birth and forwarding amount reaches 90% of the total. From
the description above we draw a conclusion that weibo forwarding approximates
to the sigmoid curve. Then we use the follow function to model the weibo life
span:

cW life
·t = d · expc−b∗t−a (2)

where W life
·t is the weibo life span weight at time t. Parameter a and d are used

to convert the horizontal position of curve and the b and c factors are defined
to control the decay rate. In Fig. 3c, the simulated trend almost totally overlaps
with the dynamic of the real world data forwarding process. The sum of residuals
square are all fall below 0.6 in 95% confidential interval.

28 C. Yu et al.

Initialize Weibo and Web Ranking. As the weibo ranks on multiple topics,
so we would like the output keep diversity. DivRank algorithm could achieve di-
versity by iteratively selecting the most prestigious or popular nodes and continu-
ously updating the transposition probability matrix. At each step, the algorithm
updates the dynamical transition matrix Eq.(1). Hence after z-th iterations, the
ranking score of weibo and web document become:

R(z) = α · [M(z)]T ·R +
(1− α)

|V | ·E (3)

Accordingly the temporal based weibo ranking Rw calculates as Rw ·W life.
The weight of two weibo(or web) wi and wj denotes the cosine similarity of
them. Each weibo can be treated as a short document, then we employ the TF-
IDF method to weight the terms of the weibo words. Each entry of the adjacent
matrix M stands for the text similarity of the weibo or web in the graph, and is
defined as follows:

Mij =
sim(wi, wj)∑
k sim(wi, wk)

, sim(wi, wj) =
wi ·wj

‖wi‖ · ‖wj‖ (4)

In Eq.(4), the sim(·) denotes the cosine similarity between two weibo (or
web) and the wi represent the TF-IDF vector of the weibo (or webs) wi. Also
TF represents term frequency, IDF said the reciprocal of documents.

Initialize User Ranking. The aforementioned user graph Gu = (Vu, Eu) is
a directed and weighted graph. At first we use the following relationship to
establish the users graph. When the user ui follows user uj, we add a edge
(ui, uj) to the following adjacent matrix Muf . Thus Muf is defined as follows:

Muf
ij =

f(ui, uj)∑
k f(uk, uj)

, f(ui, uj) =

{
1 (ui, uj) ∈ Eu

0 (ui, uj) /∈ Eu

(5)

Moreover, we take the credibility of users into consideration, as the prestige
is not absolutely coordinate with the credibility. We define the credibility weigh
between user ui and user uj as Muc

ij , according to the number of interactions,
for example mentions, reposts and reviews. The creditable weight between two
users ui and uj is described as follow:

Muc
ij =

actions from ui

actions of uj
(6)

Furthermore the users relation matrix Mu becomes Muf · Muc. In Eq.(6),
actions ∈ {mention, repost, review} represent user interactions with weibo. The
actions from ui denotes the reciprocal interactions between ui and uj. The
action of ui denotes the alternation of the optional user uk and uj . Naturally,
we apply DviRank random walk model on user graph using matrix Mu, and
compute the ranking score of each user.

Temporal-Based Ranking in Heterogeneous Networks 29

4.2 Affinity Matrices

According to the previous description of Ewd and Ewu, we define two adjacent
matrices Mwd and Mwu. Matrix Mwd represents the weight between the weibo
and the web documents, and measured by the cosine similarity of document and
weibo content.

Mwd
ij =

{
weightij , weightij > δwd

0 , others
, weightij =

sim(wi, dj)∑
k sim(wi, dk)

(7)

Matrix Mwu represents the weight between weibo and user. We use a set of
weibo that a user posts such as wm in a period of time to compute the cosine
similarity with the weibo wi, if the similarity exceeds the threshold we set the
user link to the weibo in Mwu.

Mwu
ij =

{
maxsim(wi,wk) wk ,maxsim(wi,wk) > δwu

0 , others
(8)

wk in Eq.(8) indicates the element of weibo set that a user posts in a period
of time. sim(·) describes the cosine similarity between pairwise weibo.

4.3 Flow Propagation

The tripartite weibo graph comprises three homogeneous graphs and two het-
erogeneous graphs. The weibo-document denotes the content align inter-relation
between the weibo and the web document, and the weibo-user means the implicit
relationship between the user and the weibo. Based on the ranking assumptions
described at foremost of this section, we use the following iterative information
flowing propagation to formulate the procedure:

Step 1. Starting from web document Rd, the update process considers both the
last ranking score and the information flow propagation from connected weibo
Rw, which can be expressed as:

Rd(z + 1) =(1− λd) ·Md(z) · Rd(z) + λd ·Mwd ·Rw(z) (9)

Step 2. In the same way, we define the information flow propagation from weibo
Rw to user Ru as:

Ru(z + 1) =(1 − λu)M
u(z) · Ru(z) + λu ·Mwu ·Rw(z) (10)

Step 3. Each weibo Rw can be influenced by the information propagation from
both web document and user, then compute weibo ranking scores:

Rw(z + 1) =(1− λd − λu)M
w · Rw(z + 1)

+ λd ·MdwRd(z) + λu ·MuwRu(z)
(11)

30 C. Yu et al.

where the parameter λ is to balance the importance of weibo, user, and document.
Rw(z),Rd(z) andRu(z) are the ranking score matrix of weibo, web document and
user at z-th iteration. To guarantee the iteration converges, we normalize Rw, Rd

andRu after each iteration usingR(z+1) = R(z+1)/‖R(z+1)‖. The algorithm
typically convergeswhen the difference between the scores computed at two succes-
sive iterations for any weibo falls below a threshold ξ (set as 0.001 in our method).

5 Experiment and Application

5.1 Dataset

Sina weibo is the most popular microblogging service in China. The dataset
in [20] collected a complete network between 1,700,000 users and all the weibo
posted by those users between Jul. 28th, 2012 and Oct. 29th, 2012. We choose
the three most popular topics in Aug, 2012 (described in Tab.1) and study how
to rank weibo in heterogeneous information network. We also study how life
spans of weibo influence the ranking results.

Table 1. Sina Weibo dataset description

Dataset Users Follow-relationship Original-microblogs Retweets

Sina Weibo 1,776,950 308,489,739 300,000 23,755,810

5.2 Evaluation Metric

For evaluation, we employ two widely used metrics: MeanAveragePrecision
(MAP) and DiscountedCumulativeGain (DCG) [21]. In particular, we measure
the MAP and DCG on the top-n results, denote as MAP@n and DCG@n respec-
tively. Instead of DCG@n, we adopt NormalizedDiscountedCumulativeGain
(NDCG) [22], which is a normalization of DCG in the range [0, 1] calculated as:

NDCG@n =
DCG@n

IDCG@n
,DCG@n =

n∑

i=1

2reli − 1

log2(i + 1)
(12)

where IDCG@n is the ideal DCG@n, i.e. the maximum possible DCG value up to
the ranking position n. We apply MAP on ranking output under the assumption
that the top ranked weibo are more relevant to the hot topic and the rest are
less:

MAP =
1

|T |
|T |∑

j=1

P j
i · rji (13)

where T represent the topic set. In our experiments we set n = 5, 10, 25, 50 i.e.
MAP@5, NDCG@10.

Temporal-Based Ranking in Heterogeneous Networks 31

5.3 Experiment on Ranking

In our experiment, we primarily show three different kinds of ranking methods
in Tab.2 to verify the feasibility.

Table 2. Description of three kinds of analysis method

Methods Description

1.Weibo-User Using information propagation between weibo and users
purely to rank on weibo-user network

2.Doc-Weibo-User Ranking by combining the web document and informa-
tion flow propagation on doc-weibo-user network

3.TemporalHeteRank Weibo temporal constraint life span included beside in-
formation propagation

The Sina Weibo official study points out that there were three drastically
discussed topics during August 2012, namely ’Liu Xiang’, ’Lin Dan’, and ’Diaoyu
Islands’. According to the studies, the experiments of ranking falls into two
parts: the topic sensitivity and the precision compared with the ground truth
ranking. We intuitively rank the topics based on the time it happened. The
topic sensitivity is to figure up the text similarity between weibo and topic, and
the weibo is much more similar to the higher ranked topic indicates the weibo
is relevant to this topic. The relevant is 1 and 0 otherwise, then get the topic
sensitivity by MAP. By employing the mutually annotated weibo as the ground
truth we use the NDCG to evaluate the precision that compared with the ground
truth ranking. Our results are summarized in Figure 4a and 4b. Fig 4a shows the
models that elicited above performance. In Figure 4b, it provides results when
model performance is evaluated against the gold standard ranking obtained from
the weibo network.

Figure 4a shows first method that ranks only on weibo and user perform worst,
that implies weibo based on the independent user rank is unable to extract sig-
nificant information like hot topics for weibo tend inclined to the entertainment.
The second performs better than the first. The crucial factor is the information
flow propagation between web document and weibo. The results also validate
our previous assumptions that making use of web document containing abun-
dant information and formal genre can improve the accuracy of weibo ranking.
Comparing with the two methods described above, the TemporalHeteRank i.e.
the third indicates the temporal feature of node has great impact on ranking
and fully satisfy the demand of topic detection.

We randomly choose weibo from the dataset manually annotated as the ground
truth ranking of our reference. Following the annotation guidelines defined by
[3], five annotators parallelize each assigned weibo a grade in a 5-star likert scale.
When the label difference between annotators is 1, the lower grade is selected.
When the label difference is greater than 1, those tweets are re-annotated until
the label difference falls below 1. From the Figure 4b, the TemporalHeteRank
method constantly performs superior to the other two methods.

32 C. Yu et al.

5 10 15 25 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Topic Sensitivity

M
A

P
@

n

Weibo-User
Doc-Weibo-User
TemporalHeteRank

(a)

5 10 25 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision

N
D
C
G
@
n

Weibo-User
Doc-Weibo-User
TemporalHeteRank

(b)

precision recall f-measure
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Topic Detection
HeteRank

(c)

Fig. 4. Describing the MAP and DCG of the three rankings. a) shows topic sensitivity;
b) represents precision compared with ground truth; c) denotes the comparison between
TemporalHeteRank and topic detection model.

5.4 Experiment on Hotspots Detection Application

As pointed out in the introduction of this paper, the weibo ranking can be applied
to hot-spots detection. We compare our approach with the state-of-the-art topic
detection model [23]. All the models are subject to use the same dataset and the
standard results attested by sina weibo. The detection model (Topic Detection)
optimizes the feature selection and weight computation method to filter out those
topic-unrelated weibo, and uses a new vector distance calculation method to
update the center vector. Fig.4c describes the experimental results on hot-spots
detection. The TemporalHeteRank based on information flow propagation and
weibo life span consistently outperforms the topic detection model, as the topic
detection model never takes the node temporal feature into account. It generates
the same hot-spots at any point. Our TemporalHeteRank algorithm models life
span regarding the weibo and integrate the information flow propagation to rank.
Moreover, it attempts to mine the informative weibo by invoking web document.
Both the instances are evaluated by precision, recall rate and F-measure. The
data in Fig.4c indicates the hot topics are unexpected and sent by many users
from multiple groups, ranking can promote user concern and experience.

6 Conclusion

This paper has investigated the temporal based ranking on the heterogeneous
network, and takes the most prevalent sina weibo for the experiments. After
crawling the weibo dataset, we analyse the temporal information via weibo for-
warding pattern and fit the time-vary life span curve of weibo firstly. Secondly,
we use the traditional approaches to filter the noisy weibo and mine the valu-
able information out from the weibo heterogeneous network. According to the
characteristic of entertainment, we improve the ranking precision of weibo re-
sorting to the web thirdly. In fourth step, by adopting the information flowing
propagation, the model balance the heterogeneous linked information. Finally,
the TemporalHeteRank model integrates temporal weighted ranking results to

Temporal-Based Ranking in Heterogeneous Networks 33

obtain hotspot of weibo. The proposed TemporalHeteRank method is easy to
implement, and the followed experiment shows that it is more efficient and more
effective than other conventional methods.

Acknowledgements. The work is partly supported by Technology Innovation
Fund of Huazhong University of Sci. and Tech. (No.CXY13Q018) and Ministry
of Education and China Mobile Communications Corporation (MoE-CMCC)
Research Founding (No.MCM20130382).

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

2. Mei, Q., Guo, J., Radev, D.: Divrank: The interplay of prestige and diversity in
information networks. In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 1009–1018
(2010)

3. Huang, H., Zubiaga, A., Ji, H., Deng, H., Wang, D., Le, H.K., Abdelzaher, T.F.,
Han, J., Leung, A., Hancock, J., Voss, C.R.: Tweet ranking based on heterogeneous
networks. In: Proceedings of the 24th International Conference on Computational
Linguistics, COLING 2012, pp. 1239–1256 (2012)

4. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis
approach. SIGKDD Explorations 14(2), 20–28 (2012)

5. Li, X., Croft, W.B.: Time-based language models. In: Proceedings of the 12th ACM
International Conference on Information and Knowledge Management, CIKM
2003, pp. 469–475 (2003)

6. Keikha, M., Gerani, S., Crestani, F.: Time-based relevance models. In: Proceedings
of the 34th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2011, pp. 1087–1088 (2011)

7. Choi, J., Croft, W.B.: Temporal models for microblogs. In: Proceedings of the
21st ACM International Conference on Information and Knowledge Management,
CIKM 2012, pp. 2491–2494 (2012)

8. Zhukovskiy, M., Khropov, A., Gusev, G., Serdyukov, P.: Fresh browserank. In:
Proceedings of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2013, pp. 1029–1032 (2013)

9. Yan, R., Lapata, M., Li, X.: Tweet recommendation with graph co-ranking. In:
Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics, ACL 2012, pp. 516–525 (2012)

10. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

11. Kong, S., Feng, L., Sun, G., Luo, K.: Predicting lifespans of popular tweets in
microblog. In: Proceedings of the 35th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2012, pp. 1129–1130
(2012)

12. Yang, Z., Tang, J., Li, J.: Learning to rank in heterogeneous network. Sciencepaper
Online 4, 273–279 (2011)

13. Cheng, S., Arvanitis, A., Hristidis, V.: How fresh do you want your search re-
sults? In: Proceedings of the 22nd ACM International Conference on Conference
on Information; Knowledge Management, CIKM 2013, pp. 1271–1280 (2013)

34 C. Yu et al.

14. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
WWW 2010, pp. 591–600 (2010)

15. Sina, http://weibo.com
16. Sun, Y., Han, J., Aggarwal, C.C., Chawla, N.V.: When will it happen?: relationship

prediction in heterogeneous information networks. In: Proceedings of the 15th ACM
International Conference on Web Search and Data Mining, WSDM 2012, pp. 663–
672 (2012)

17. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: Densification laws,
shrinking diameters and possible explanations. In: Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD
2005, pp. 177–187 (2005)

18. Gehrke, J., Ginsparg, P., Kleinberg, J.: Overview of the 2003 kdd cup. ACM
SIGKDD Explorations Newsletter 5(2), 149–151 (2003)

19. Ma, H., Qian, W., Xia, F., He, X., Xu, J., Zhou, A.: Towards modeling popularity
of microblogs. Frontiers of Computer Science 7(2), 171–184 (2013)

20. Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling
retweeting behaviors. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, IJCAI 2013, pp. 2761–2767 (2013)

21. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant
documents. In: Proceedings of the 23rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2000, pp. 41–48 (2000)

22. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

23. Zhao, X., Zhu, F., Qian, W., Zhou, A.: Impact of multimedia in sina weibo: Pop-
ularity and life span. In: Semantic Web and Web Science. Springer Proceedings in
Complexity, pp. 55–65 (2013)

http://weibo.com

Designing Buffer Capacity of Crosspoint-Queued

Switch

Guo Chen, Dan Pei�, Youjian Zhao, and Yongqian Sun

Department of Computer Science and Technology, Tsinghua University, Beijing
{chen-g11,sunyq12}@mails.tsinghua.edu.cn,

{peidan,zhaoyoujian}@tsinghua.edu.cn

Abstract. We use both theoretical analysis and simulations to study
crosspoint-queued(CQ) buffer size’s impact on CQ switch’s throughput
and delay performance under different traffic models, input loads, and
scheduling algorithms. In this paper, 1) we present an exact closed-
form formula for the CQ switch’s throughput and a non-closed-form but
convergent formula for its delay using static non-work-conserving random
scheduling algorithms with any given buffer size under independent
Bernoulli traffic; 2) we show that the above results can serve as
a conservative guidance on deciding the needed buffer size in pure
CQ switches using work-conserving algorithms such as random, under
independent Bernoulli traffic. Furthermore, our simulation results under
real-trace traffic show that simple round-robin and random work-
conserving algorithms can achieve quite good throughput and delay
performance with feasible crosspoint buffer size. Our work reveals the
impact of buffer size on CQ switches’ performance and provides a
theoretical guidance on designing the buffer size in pure CQ switch,
which is an important step towards building ultra-high-speed switching
fabrics.

1 Introduction

As content-rich Internet applications such as video streaming, audio streaming,
file sharing, live video/voice call, become more and more popular, the demands
for higher backbone bandwidth have grown extremely fast. For the increasingly
growing link rate, the switching fabric in core routers only has a very short time
(e.g 5.12ns for a 64 bytes long packets to be transmitted in a 100Gbps link)
to schedule and send out a packet. Thus, how to reduce the scheduling time
in switch fabrics becomes a huge challenge. Most of the previous switch fab-
rics, including input-queued (IQ) switch [1, 2], combined-input-and-crosspoint-
queued (CICQ) switch [3, 4] and multi-stage switching fabrics such as [5, 6]
allocate major buffers at linecards instead of switch fabrics. To avoid packets
conflicting and damaged at the switch fabrics, every scheduling cycle in these
approaches mandate a round-trip communication between the linecards and

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 35–48, 2014.
c© IFIP International Federation for Information Processing 2014

36 G. Chen et al.

the switch module, which limits the switching speed. As [7] shows, in order to
reduce power consumption, linecards and switch module in modern core routers
are often placed in different racks with distance from a few meters to up to
60 meters. Assuming the length of inter-rack cable is 2 meters long and the
propagation speed is 2 × 108 m/s [7], the back-of-envelope calculation shows
that each scheduling cycle has at least a 20 ns delay caused by round-trip
communication, which becomes a bottleneck for a high-speed switch.

Input

I1 XB11 XB12 XB1N. . .
XB21 XB22 XB2N. . .

XBN1 XBN2 XBNN. . .

. . .

...

...

...
Output

I2

IN

O1 O2 ON

Fig. 1. The CQ switch model

Recently, to overcome above limitations, both academia [8–11] and indus-
try [12] have a growing interest in crosspoint-queued (CQ) switch (illustrated in
Fig. 1). Packets are buffered only at each crosspoint using on-chip memory thus
switch decision can be made locally by each output scheduler independently,
solely based on the conditions of the buffers in the same column as the
output scheduler. Therefore, the scheduling algorithms can be made without
communications between linecards and switch module, which greatly reduces
the scheduling delay.

Although CQ switch was considered to be hard to implement due to the
scarcity of on-chip memory many years ago, it has become feasible to implement
CQ switch fabrics with large crosspoint buffers by modern technology. Recently,
[8] revisited the CQ switch and proved the feasibility using semiconductor
integration technology at that time by showing a crosspoint buffer could store
over three mega bits packets for a switch with more than a hundred of ports.

Despite the great promise of CQ Switch, there lacks a clear understanding
of how to design the crosspoint buffers to meet the switch fabric’s overall
performance requirement. In this paper, we take a first step towards this
direction. We focus on understanding the impact of buffer size on CQ switches’

Designing Buffer Capacity of Crosspoint-Queued Switch 37

performance, because the on-chip memory resource used by CQ switch for
crosspoint buffers is finite and very precious. Previously, [8] presents an accurate
analytical model for pure CQ’s throughput and delay, assuming a buffer size
of one and independent and identically distributed (i.i.d.) uniform Bernoulli
traffic. However, for larger buffer sizes, the authors introduce only approximate
analytical models and simulation results for only throughput. No theoretical
or simulating analysis on the switch’s average delay has been presented for
crosspoint buffer size larger than one. Later on, several papers [9–11] used
simulations to study pure CQ switch’s performance for buffers larger than one
under traffic models, such as uniform Bernoulli and bursty.

Compared to these related works, this paper is the first one to provide an
exact theoretical performance formula for pure CQ switch’s both throughput
and delay performance with buffer size one and larger under any independent
Bernoulli (both uniform or non-uniform) traffic. The contributions of this paper
are summarized as follows:

– To the best of our knowledge, this paper presents the first exact closed-
form formula of the CQ switch’s throughput with any given buffer size, and
presents the first exact non-closed-form (but convergent) formula of the delay
with any buffer size, both under independent Bernoulli traffic using static
non-work-conserving random scheduling algorithm.

– Through mathematic proof as well as the comparison between theoretical
value and simulation results, we show that theoretical value can serve as a
conservative guidance (a loose performance lower bound) for designing buffer
sizes of a CQ switch using work-conserving scheduling algorithms.

– Our real-trace simulation results show that with simple work-conserving
algorithms, CQ switch is able to reach a very good performance with
moderate memory resource consumption, which shows its feasibility in
practical use.

Our work reveals the impact of buffer size on CQ switches’ performance and
provides a theoretical and conservative guidance on deciding the needed buffer
size in pure CQ switches, which is an important step towards building ultra-high-
speed switching fabrics. Having a better understanding on CQ switches is also an
important step towards building multi-stage and multi-plane switching fabrics of
large capacity. How to scale up CQ switches to a larger self-sufficient switching
fabric is worthy of further studying, which is beyond the scope of this paper.

The rest of this paper is organized as follows. In Section 2, we introduce the
CQ switch model and give some necessary definitions and notes. Next, in Section
3, we analyse the throughput and delay performance of CQ switch. We verify our
analysis by simulations in Section 4. Finally, we conclude our paper and discuss
the future work in Section 5.

2 The Crosspoint-Queued Switch

In this section, we briefly describe the CQ switch model and provide some
fundamental definitions used in the rest of our paper.

38 G. Chen et al.

2.1 The CQ Switch Model

Consider an N × N CQ switch shown in Fig. 1, the i-th input and i-th output
are denoted by Ii and Oi respectively. XBij represents the crosspoint buffer
between Ii and Oj , where i, j = 1, . . . , N . We assume that time is slotted and
all the packets are segmented into fixed cells before being sent into the switch,
and all the internal and external links of the CQ switch have the same capacity
of transferring one cell per time slot. We follow this assumption in the rest of
the paper. XBij has the size of Lij cells.

At the beginning of a time slot, there is one cell or none arriving at each input.
If there is a cell arriving at input i heading to the output j at the start of a time
slot, it is buffered in XBij in a first-in-first-out (FIFO) manner if the buffer is
not full. The cell will be dropped in the case of that XBij is full. Within the
same slot, the scheduler of each output independently selects one of the buffers
in its column according to a certain scheduling algorithm, and sends the head
of line (HOL) cells out of the switch through the output if the selected buffer
is not empty. If an empty buffer is selected, there will be no cell scheduled out
through this output in this time slot. Note that the departure steps at different
output schedulers run in parallel.

2.2 Definitions

First we give some definitions that are related to the performance of a switch
fabric.

Definition 1. The throughput of a switch fabric is the ratio of the amount of
cells traversed the switch to the amount of cells arrived at the switch as time
goes to infinity. We define TP as the throughput of the switch.

Definition 2. The loss rate of a switch fabric is the ratio of the amount of cells
dropped by the switch to the amount of cells arrived to the switch as time goes
to infinity. We define LR as the loss rate of the switch.

Proposition 1. For a switch fabric which has finite buffers, the throughput of
the switch equals 1 minus the loss rate of the switch, if the average cell arrival
rate to the switch is greater than zero.

Proof. Assume the total buffers of the switch can contain L cells. Let λ denotes
the average arrival rate at all the inputs of the switch as time goes to infinity,
L∗(n) denotes the total amount of cells in the buffers of the switch at time
slot n, hence L∗(n) ≤ L. We define Ca, Cl, Ct as the total cells arrived, lost
and traversed at the switch as time goes to infinity respectively. Obviously,
Ca = limn→∞ λn, Cl = limn→∞ λn · LR, then we have Ct = limn→∞(λn −
λn · LR− L∗(n)). Thus, the throughput equals

TP =
Ct

Ca
= lim

n→∞(1 − LR− L∗(n)
λ · n) = 1− LR

Designing Buffer Capacity of Crosspoint-Queued Switch 39

Definition 3. The delay of a switch fabric is the average delay of all the packets
that traversed the switch as time goes to infinity. We define DL as the delay of
the switch.

Then, we give some definitions related to the scheduling algorithms.

Definition 4. A scheduling algorithm is called work-conserving if, using this
scheduling algorithm, any output of the switch will always be busy if at least one
buffer destined to this output is not empty. Otherwise, the scheduling algorithm
is called non-work-conserving.

Definition 5. A scheduling algorithm is called static if the rule of scheduling
remains the same regardless of the system’s state. Otherwise, it is called dynamic.

Definition 6. A static random scheduling algorithm is called fair if at each
time slot, a column’s output scheduler randomly (with the same probability)
selects one of the crosspoint to send out its HOL cell.

At the last, we present a definition related to the arrival traffic.

Definition 7. The traffic at an input is said to be uniform, if each cell arriving
at the input has the equal probability of going to any output of the switch.

3 Performance Analysis with Different Buffer Size

We focus on giving a theoretical throughput and delay calculation expression
according to the buffer size in this section.

Consider the CQ switch model shown in Fig. 1. We assume the cell arrivals
at each input are governed by independent Bernoulli process and with fixed
probability heading to each output. Each output scheduler uses a static non-
work-conserving random scheduling algorithm. We use the following notations:

ρi � the Bernoulli parameter of the cell arrival process in input Ii.
akij � the probability of k cells arrived at XBij in a given time slot. k = 0, 1.

dij � the probability of any cell arrived at Ii heading to the output Oj .∑N
j=1 dij = 1 and 0 ≤ dij ≤ 1 for i = 1, . . . , N .

sij � the probability of crosspoint buffer XBij being selected by output Oj .∑N
i=1 sij = 1 and 0 < sij < 1 for j = 1, . . . , N .

First, we present a formal description of a scheduling cycle in a time slot as
follows:

– Arrival Step: At the beginning of a time slot, for input i, there exists a
probability of ρi that one cell will arrive, and a probability of 1− ρi that no
cell will arrive. The cell arrived at input Ii has the probability of dij heading
to the output Oj . Successive cells and cell arrivals at different inputs are
independent.

40 G. Chen et al.

– Departure Step: Within the same slot after the arrival step, each output
scheduler picks a crosspoint buffer out of all the buffers in its column with
a static non-work-conserving random scheduling algorithm. For output Oj ,
it selects crosspoint buffer XBij with the probability of sij , and schedules
the HOL cell out of the switch if the selected buffer is not empty. Otherwise,
no cells are transmitted through Oj in this time slot. Each output schedules
cells independently and in parallel.

Let Lij denotes the capacity of crosspoint buffer XBij in cells, we assume
that Lij = L(i, j = 1, 2, . . . , N) for the ease to present. It means that all the
crosspoint buffers have the same capacity of L cells. We perform our analysis on
a particular crosspoint buffer XBij without loosing generality.

We assume random variable Aij , Ai, A to be the number of cells arrived to
XBij , input Ii and the whole switch during a given time slot respectively.
According to the conditions given above, the value of Aij can only be 0 or
1. Recall that akij denotes the probability that k cells arrive at XBij in a time
slot, then

a0ij = P{Aij = 0} = 1− ρi · dij
a1ij = P{Aij = 1} = ρi · dij
akij = P{Aij = k} = 0 k �= 0, 1

(1)

0 1

L-1 L

. . .

Fig. 2. The Quasi-birth-death state transition diagram for XBij

We define random variable Qij(m) as the cells in XBij at the end of time
slot m. According to the conditions stated before, we can find that Qij(m) can
be modeled as a discrete-time Quasi-birth-death process as Fig. 2 shows. The
transition diagram can be interpreted as follows:

– The transitions from state l to l + 1 mean the probability that there is an
arrival at the buffer and the buffer is not selected by the output scheduler.

– Transitions from state l to itself are calculated under 3 different conditions.
1) While l = 0, it equals the probability of one arrival and one departure
plus with the probability of no arrival. 2) While l = 1, . . . , L − 1, it equals
the probability of one arrival and one departure plus with the probability of

Designing Buffer Capacity of Crosspoint-Queued Switch 41

no arrival and no departure. 3) While l = L, it equals the probability of one
arrival and no departure (the cell will be dropped in the arrival step when
the buffer is full) plus with the probability of no arrival and no departure.

– Transitions from state l to state l − 1 are calculated under 2 different
conditions. 1) While l = 1, . . . , L− 1, it equals the probability of no arrival
and one departure. 2) While l = L, it equals the probability of the buffer
being selected (the buffer length will still be L before the departure step
begins as the cell will be dropped in the arrival step when the buffer is full).

Let Qij denotes the steady-state queue length of XBij , according to the
formula of the steady-state probabilities of discrete-time Quasi-birth-death
process [13], we can get the stead-state queue length distribution as follows:

η0ij =
1

1 +
∑L−1

l=1

(
(1−sij)a1

ij

sija0
ij

)l
+ a0ij

(
(1−sij)a1

ij

sija0
ij

)L

ηlij = η0ij

(
(1 − sij)a

1
ij

sija0ij

)l

, l = 1, . . . , L− 1

ηLij = η0ija
0
ij

(
(1− sij)a

1
ij

sija0ij

)L

(2)

where ηlij defines the steady-state probability of XBij’s length equals l, i.e Qij =
l.

So far, we have derived the steady-state probability distribution of XBij ’s
length. Next, we will use these results to analyze the throughput and delay of
the CQ switch.

3.1 Throughput Analysis

Obviously, the probability of a cell arrived at XBij being dropped equals the
probability of XBij being full, i.e., ηLij for the steady-state.

We define the random variable Dij , Di and D as the number of cells dropped
at XBij , input Ii and the whole switch during a given time slot at the steady-
state. Obviously, Dij , Di could only be 0 or 1. Then, we can get the probability
of a cell arrived at input Ii being dropped in a time slot as

P{Di = 1|Aj = 1} =
N∑

j=1

dijη
L
ij (3)

The above equation comes from the fact that the probability of a cell arrived at
input i being dropped in a given time slot equals the sum of probabilities that
a cell arrived at Ii being dropped at any crosspoint buffer of this line.

42 G. Chen et al.

Further, we have the expectation of the dropped cells at Ii during a time slot
as following

E(Di) = ρi · P{Di = 1|Aj = 1} = ρi

⎛

⎝
N∑

j=1

dijη
L
ij

⎞

⎠ (4)

Thus, we get the expectation of dropped cells at the whole switch in a given
time slot as

E(D) = E(

N∑

i=1

Di) =

N∑

i=1

ρi

⎛

⎝
N∑

j=1

dijη
L
ij

⎞

⎠ (5)

Then, we get the loss rate of the CQ switch as follows

LR =
E(D)

E(A)
=

∑N
i=1 ρi

(∑N
j=1 dijη

L
ij

)

∑N
i=1 ρi

(6)

where random variableA denotes the number of cells arrived at the switch during
a time slot and E(A) means the expectation of A.

Therefore, from Proposition 1 we can acquire the closed-form formula of the
throughput of the switch as

TP = 1− LR = 1−
∑N

i=1 ρi

(∑N
j=1 dijη

L
ij

)

∑N
i=1 ρi

(7)

3.2 Delay Analysis

Then, we analyze the average delay of CQ switch. Similarly, we begin with
focusing on a certain crosspoint buffer XBij.

Let random variable Wij ,Wi denotes the time slots a cell spent in the steady-
state (i.e., delay) in XBij and input Ii respectively. We assume that at the time
a cell arriving at XBij , the buffer length Qij = l(0 ≤ l < L) and the cell has
spent n time slots in XBij . We only consider the delay of a cell while it is not
dropped by the switch because the delay of dropped cells is meaningless. Thus,
we can have

P{Wij = n|Qij = l} = Cn−l
n (1− sij)

n−l (sij)
l+1 (8)

where n = l, l + 1, . . . ,∞. This equation denotes that the probability of a cell’s
delay Wij = n equals the probability of the buffer having been selected l times
during n slots to move the cell to the HOL and the buffer being selected after n
slots to schedule out the cell.

Thus, the steady-state probability of a cell’s delay being n time slots in XBij

equals

P{Wij = n} =
{∑n

l=0

(
ηlijP{Wij = n|Qij = l}) , 0 ≤ n ≤ L− 1

∑L−1
l=0

(
ηlijP{Wij = n|Qij = l}) , n > L− 1

(9)

Designing Buffer Capacity of Crosspoint-Queued Switch 43

Using the results of equation (2) and (1), we transform the above equation
into

P{Wij = n} =

⎧
⎪⎨

⎪⎩

η0ijsij

(
1−sij
a0
ij

)n
, 0 ≤ n ≤ L− 1

η0ijsij(1− sij)
n
∑L−1

l=0

[

Cn−l
n

(
a1
ij

a0
ij

)l]

, n > L− 1
(10)

Then, using the equation above, we can derive the following formula of the
mean delay of a cell in XBij which is not dropped as follows

E{Wij} =
∞∑

n=0

nP{Wij = n} (11)

Therefore, the mean delay of a cell coming into Ii which is not dropped equals
that

E{Wi} =
N∑

j=1

dijE{Wij} (12)

Thus, we acquire the delay of the switch (i.e the average delay of all the
packets that traversed the switch) from the following equation

DL =

∑N
i=1 ρiE{Wi}

(
∑N

i=1 ρi) · TP
(13)

Although the above formula of the switch’s delay is not closed-form, we have
proven its convergency. The proof is omitted here due to the space limitation.

So far, we derive the precise expression of the CQ switch’s throughput and
delay using static non-work-conserving random scheduling algorithms. Naturally,
an appropriate work-conserving scheduling algorithm will lead to a better
performance compared to the non-work-conserving random scheduling algorithm
that we use, to perform theoretical analysis. Next, we briefly prove that under
independent Bernoulli traffic, work-conserving random scheduling (randomly
selecting a crosspoint-buffer from all the non-empty ones) performs better than
static non-work-conserving random scheduling algorithm both in throughput
and average delay.

Theorem 1. Under same independent Bernoulli traffic, a CQ switch using
work-conserving random (WCRand) scheduling algorithm has a higher through-
put and lower average delay than using non-work-conserving (nWCRand) fair
random scheduling algorithm.

Proof. Similarly, we could also build a discrete-time Quasi-birth-death diagram
for WCRand as Fig. 2 shows. As stated before, for fair nWCRand, we have
sij =

1
N in each steady state of queue length. Unlike nWCRand, sij of WCRand

between different states in Fig. 2 are not the same. Let s′ij(m) denotes the
probability of crosspoint bufferXBij being selected by output Oj using WCRand

44 G. Chen et al.

in state m, and s∗ij = max{s′ij(m), 0 ≤ m ≤ L}. η
′l
ij defines the steady-

state probability of XBij ’s length equals l using WCRand. Because WCRand
randomly selects a crosspoint-buffer from all the non-empty ones in each time
slot, we can have

s∗ij ≥
1

N
= sij (14)

Thus, according to the formula of the steady-state probabilities of discrete-time
Quasi-birth-death process, we can get η

′L
ij ≤ ηLij . Therefore, it can be derived

that WC-Rand has a higher throughput than nWCRand using equation (7).
Also, from equation (11-13), we can easily get that WCRand has a lower average
delay than nWCRand.

Similarly, if we use the frequency of a crosspoint queue being selected by work-
conserving Round-Robin (WCRR) algorithm to approximate the probability of a
crosspoint queue being selected by WCrand algorithm, we can prove that WCRR
also performs better than nWCRand. Furthermore, it is intuitive that longest-
queue-first (LQF) scheduling has the highest throughput. A strict proof for
these 2 work-conserving algorithms is beyond the scope of this paper. Later,
we will show by our simulations that the above theoretical analysis provide an
appropriate lower-bound for a CQ switch’s performance using work-conserving
algorithms.

4 Verification of Analysis and Real Trace Simulations

In this section, we first present simulation results under both uniform and non-
uniform Bernoulli traffic to verify our former theoretical analysis in Section 4.1.
We consider four scheduling algorithms in our simulations: nWCRand, WCRand,
WCRR and LQF. We calculate the theoretical value (TV) of the loss rate and the
delay of nWCRand scheduling algorithm, according to the former results we got
under both uniform and non-uniform Bernoulli traffic. Various of simulations
have been done under different loads and using CQ switches with different
port numbers. All these results have verified our former analysis. Due to space
limitation, we just present the results of 16× 16 CQ under a heavy load of 0.95.
Each simulation run was conducted for 109 time slots.

Secondly in Section 4.2, we present simulation results of a 16 × 16 switch
fabric under real-trace traffic using the 4 work-conserving scheduling algorithms
mentioned above. It’s shown that with work-conserving algorithms, the CQ
switch is able to reach a good performance with moderate memory resource
consumption. Our data consists of two parts from CAIDA [14], 2 1-minute traces
from 10Gbps links , one at San Jose and another from Chicago. All the packets
are fragmented into 64 bytes long cells before sent into the switch fabric, and
the time slot of the switch is set to be 51.2ns according to the transmission
time of a cell on a 10Gbps link. We divide a 60 seconds trace into 16 equal size
segments for 16 inputs. The destination port of each packet is set as the hash
value of destination IP address. The traffic distribution under this situation is

Designing Buffer Capacity of Crosspoint-Queued Switch 45

not uniform but highly skewed and bursty. We believe this is similar to the real
condition of the Internet. Approximately 1.7× 107 packets with total length of
1.15 × 1010 bytes are sent into the switch fabric during each experimentation.
We only present the simulation result of San Jose trace due to space limitation.
The results for Chicago trace are similar.

4.1 Verification of Performance Analysis

From Fig. 3 and 4 we can see that, the results of non-work-conserving random
scheduling algorithm are almost identical as the theoretical results we derived
before, under both uniform and non-uniform traffic. Investigation into the slight
difference at the right end of the curves shows that the difference is due to
the computer random number generation are not 100% random. Under uniform
Bernoulli traffic with heavy input load of 95% as we can see in Fig. 3(a), with
crosspoint buffer size of 256 (such buffer size is easy to implement with modern
semiconductor technology[8]), the loss rate of nWCRand can be as low as 10−7

using the theoretical results we got before. Such a loss rate is good enough
for a lot of switch fabrics design and provide loose performance lower bound.
Our results also show a simple work-conserving algorithm like Round-robin and
Random can reach the same performance with only buffer size of 32 cells, and
the theoretical results could serve as a loose performance lower bound for them.
Using a more elaborated scheduling algorithm such as LQF, no packets are
lost during the 10−9 time slots simulation with only buffer size of 16. As for
the average delay, our theoretical analysis shows that with buffer size of 64, a
CQ switch can have a stable average delay about 10−5 seconds using nWCRand,
which is shown in Fig. 3(b). While using work-conserving algorithms, the average
delay is much lower down to less than 10−6 seconds.

Similarly, under non-uniform traffic as shown in Fig. 4, our analytic results
are also verified and effectively provide loose performance lower bound to work-
conserving algorithms. ω in the picture defines the unbalanced probability (refer

1 2 4 8 16 32 64 128 256 512

1E−7

1E−6

1E−5

Buffer Size (Cells)

A
ve

ra
ge

 D
el

ay
 (

s)

nWCRand(TV) nWCRand WCRR LQF WCRand

1 2 4 8 16 32 64 128 256 512
1E−9

1E−6

1E−3

1

Buffer Size (Cells)

Lo
ss

 R
at

e

(a) Loss rate (b) Average delay

Fig. 3. Loss rate and average delay of a 16 × 16 CQ switch under uniform Bernoulli
traffic with ρ = 0.95

46 G. Chen et al.

1 2 4 8 16 32 64 128 256 512
1E−8

1E−7

1E−6

1E−5

Buffer Size (Cells)

A
ve

ra
ge

 D
el

ay
 (

s)

nWCRand(TV) nWCRand WCRR LQF WCRand

1 2 4 8 16 32 64 128 256 512
1E−9

1E−6

1E−3

1

Buffer Size (Cells)

Lo
ss

 R
at

e

(a) Loss rate (b) Average delay

Fig. 4. Loss rate and average delay of a 16×16 CQ switch under non-uniform Bernoulli
traffic with ρ = 0.95 and ω = 0.5

to [3]) and ω = 0.5 means the traffic is extremely non-uniform. Accordingly, we
set the selecting probability parameters of the nWCRand used in this simulation
as the same as the load unbalanced probability. The results are very similar to
the uniform traffic, except nWCRand and WCRR having a much higher loss
rate than uniform traffic because of the blindness to the traffic distribution of
their scheduling manner. On the contrary, LQF has the ability to adjust to the
imbalance.

4.2 Simulations under Real-Trace

Fig. 5 shows the result of a 16× 16 CQ switch under real-trace traffic. The loss
rate in Fig. 5(a) refers to the packet loss rate. Once a cell of a packet is dropped,
the packet is counted as lost in the switch. We can see that a CQ switch only using
crosspoint memory can reach a good performance with simple work-conserving
scheduling algorithms. In Fig. 5(a) we can found that the switch can has a loss
rate down to 10−6 with buffer size of 64 using LQF. A simple Round-robin or
Random scheduling is able to reach the same performance with buffer size of

1 2 4 8 16 32 64 128 256 512

1E−6

1E−3

1

Buffer Size (Cells)

Lo
ss

 R
at

e

1 2 4 8 16 32 64 128 256 512
4E−7

6E−7

8E−7

Buffer Size (Cells)

A
ve

ra
ge

 D
el

ay
 (

s)

WCRR LQF WCRand

(a) Loss rate (b) Average delay

Fig. 5. Loss rate and average delay of a 16 × 16 CQ switch under real-trace traffic

Designing Buffer Capacity of Crosspoint-Queued Switch 47

256, which is totally within the capability of modern chip technology. Also, the
delay performance shown in Fig. 5(b) is very good. The delay here refers to the
average packet delay. We can see that WCRR and WCRand have a better delay
performance than LQF. It’s due to that, starvation, which greatly increases the
delay, may happen using LQF algorithm.

This result under real-trace traffic demonstrates that a CQ switch with such
scale can reach a very good performance with feasible crosspoint buffer size.
Thus a self-sufficient CQ switch is exactly suitable for ultra-high-speed link in
practical use.

5 Conclusion

This paper reveals the impact of buffer size on CQ switches performance and
provides a theoretical guidance on designing the buffer size in pure CQ switch.
Also, we show that CQ is a promising building block for high linerate switch
fabrics. As a next step, we plan to actually design ultra-high-speed and large-
port-number switch fabrics with multi-plane or mutli-stage structure, using CQ
as building blocks to scale up. We also plan to design scheduling algorithms with
performance better than round-robin algorithm, random or LQF presented in
this paper.

Acknowledgment. This work has been supported in part by the National High
Technology Research and Development Program of China (863 Program) under
Grant No. 2013AA013302, the National Key Basic Research Program of China
(973 program) under Grant No. 2013CB329105 and the State Key Program of
National Natural Science of China under Grant No. 61233007.

We would like to thank the anonymous reviewers for their valuable comments.
We greatly thank Kuan Cheng for his useful discussion on the mathematical
demonstration. Also, we thank Zhiyan Zheng for the packet trace of real
operational network that he provided us. At last, we thank Juexing Liao for
her proofreading on this paper.

References

[1] McKeown, N.: The islip scheduling algorithm for input-queued switches.
IEEE/ACM Transactions on Networking 7(2), 188–201 (1999)

[2] Li, Y., Panwar, S., Chao, H.: On the performance of a dual round-robin switch.
In: INFOCOM 2001, vol. 3, pp. 1688–1697 (2001)

[3] Rojas-Cessa, R., Oki, E., Jing, Z., Chao, H.: Cixb-1: combined input-one-cell-
crosspoint buffered switch. In: HPSR 2001, pp. 324–329 (2001)

[4] He, S.M., Sun, S.T., Guan, H.T., Zheng, Q., Zhao, Y.J., Gao, W.: On guaranteed
smooth switching for buffered crossbar switches. IEEE/ACM Transactions on
Networking 16(3), 718–731 (2008)

[5] Oki, E., Jing, Z., Rojas-Cessa, R., Chao, H.J.: Concurrent round-robin-
based dispatching schemes for clos-network switches. IEEE/ACM Trans. on
Networking 10(6), 830–844 (2002)

48 G. Chen et al.

[6] Iyer, S., Awadallah, A., McKeown, N.: Analysis of a packet switch with memories
running slower than the line-rate. In: INFOCOM 2000, vol. 2, pp. 529–537. IEEE
(2000)

[7] Abel, F., Minkenberg, C., Iliadis, I., Engbersen, T., Gusat, M., Gramsamer,
F., Luijten, R.P.: Design issues in next-generation merchant switch fabrics.
IEEE/ACM Trans. Netw. 15(6), 1603–1615 (2007)

[8] Kanizo, Y., Hay, D., Keslassy, I.: The crosspoint-queued switch. In: INFOCOM
2009, pp. 729–737. IEEE (2009)

[9] Radonjic, M., Radusinovic, I.: Impact of scheduling algorithms on performance
of crosspoint-queued switch. Annals of Telecommunications - Annales Des
Télécommunications 66, 363–376 (2011)

[10] Radusinovic, I., Radonjic, M., Simurina, A., Maljevic, I., Veljovic, Z.: A new
analytical model for the cq switch throughput calculation under the bursty
traffic. AEU - International Journal of Electronics and Communications 66(12),
1038–1041 (2012)

[11] Cao, Z., Panwar, S.S.: Efficient buffering and scheduling for a single-chip
crosspoint-queued switch. In: Proceedings of the Eighth ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ANCS 2012, pp.
111–122. ACM, New York (2012)

[12] Cisco crs carrier routing system 16-slot line card chassis system description. Cisco
Systems, Inc. (2012)

[13] Trivedi, K.: Probability and statistics with reliability, queuing, and computer
science applications. Wiley, New York (2002)

[14] Anonymized 2013 internet traces,
https://data.caida.org/datasets/passive-2013/

https://data.caida.org/datasets/passive-2013/

Loss-Rate Driven Network Coding

for Transmission Control

Chaoyuan Chiang and Yihjia Tsai

Dept. of Computer Science and Information Engineering, Tamkang University
No. 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 251, Taiwan (R.O.C.)

{cory.scorpio,eplusplus}@gmail.com

Abstract. As the growth of network based applications and services,
the amount of data transmissions on the network is much more than
ever. Transmission control is an important part of the Internet or other
computer networks today. Network coding can help to optimize the effi-
ciency of data transmissions by generating the redundant data for error
correction. In this paper, we proposed the loss-rate driven coding, LRC,
for transmission control. The goal of proposed mechanism is to minimize
the coding operations. As a result, the power consumption and com-
puting resource requirement can be reduced. Moreover, the proposed
mechanism is compatible with standard TCP and feasible to implement.

Keywords: linear network coding, transmission control, TCP.

1 Introduction

The applications of Internet and other computer networks have become more
and more popular recent years. As a result, the amount of data transmissions is
growing fast. Transmission control is an important issue for Internet and other
computer networks. There are some researches discussed about improving trans-
mission control. We reviewed those works and proposed a new network coding
based transmission control mechanism in this paper.

In the OSI model [12], transmission control implements in the transport layer,
which is also an important part of Internet and other modern computer networks
today. The Transmission Control Protocol, TCP, is one of the most popular
transport layer protocols. TCP provides reliable communication for upper layer
applications by the acknowledgment mechanism. With acknowledgment mecha-
nism, TCP can detect the segment loss and sense the network condition. Once
a segment loosed or timed-out, it represents the network congestion occurred.
TCP would control the transmission rate by adjusting the congestion window
size to avoid network congestion.

TCP was developed for wired networks at beginning. Wired networks are
simple, if the segment loss became often, the network is in congestion. TCP
will reduce the transmission rate once congestion occurs. In the modern network

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 49–60, 2014.
c© IFIP International Federation for Information Processing 2014

50 C. Chiang and Y. Tsai

scenario, more wireless links, more carrier types, more complicated and larger
topologies, there are more reasons caused segment loss or time-out, such as
interference, fading, or temporary fault in the intermediate network device. The
retransmission and congestion window adjustment policy of TCP may decrease
the efficiency of transmission. In other words, TCP cannot reach the optimal
usage of network throughput in some situations. For this issue, there exist some
researches using network coding to improve the usage of network throughput in
TCP transmission.

Network coding was first proposed in 2000 [1], which provides solution for
optimizing network throughput in wireless networks, such as [6]. The major idea
is combining data by XOR operations in broadcasting networks to minimize
the amount of transmissions. A branch of network coding is the linear network
coding [11]. Linear network coding is often applied in guaranteeing the fairness
of peer-to-peer content distribution [2] or generating redundant data for error-
correction [16]. The most interesting part of linear network coding is that it can
distribute a large content into n pieces equally in logical. For peer-to-peer content
distribution, each peer can get the original content by decoding the n received
coded pieces. Consider the transmission in lossy networks, if sender divides the
data into blocks and transmit in linear coding continuously, receiver can decode
and get the original data after receiving any n blocks. The receiver doesnt have
to care the order of blocks. The idea above can be applied in TCP with lossy
networks. We discussed more about this below in related works.

However, coding takes system resources on the devices. The implementations
of linear network coding applied the algebraic operations on Galois Field. The
decoding procedure is more complicated than encoding procedure. Minimizing
the coded data and reducing the decoding works will have better computing effi-
ciency for the devices. In other words, that would be more friendly to embedded
devices with limited system resources. In this paper, we proposed the idea of
loss-rate driven coding. We designed a transmission control mechanism, which
use network coding as redundancy. The amount of redundancy is related to the
sensed loss-rare. In the second section, we reviewed the related works. Then,
we proposed our loss-rate driven coding idea in third section, followed by the
performance evaluation and conclusions.

2 Related Works

2.1 TCP Congestion Control

The Transmission Control Protocol, TCP, was proposed in [5]. TCP is a widely-
used transport layer protocol today. The TCP data unit called segment, the
data from upper layer would be divided into segments and transmit. Since the
bandwidth of network links and the buffer size of network devices are limited,
the packet would be dropped if the data comes faster than the bandwidth of
network link. Once packets have been dropped in the lower layer, the transport
layer segments would be lost or broken. TCP introduced the acknowledgment
mechanism. Sender transmits the segment with sequence number and header

Loss-Rate Driven Network Coding for Transmission Control 51

checksum. Receiver checks the received segment. If the segment is received cor-
rectly, receiver sends an acknowledgement, ACK, to inform the sender. The ACK
contains the sequence number of next segment receiver expected. If the segment
is lost or incorrect, receiver will repeat the same ACK until received the expected
segment correctly. Thus, the completeness of data can be guaranteed.

For higher bandwidth usage, TCP will try to transmit a group of segments
continuously, known as congestion window. The amount of segments in the group
called window size. The window size will be increased when theres no transmis-
sion timed-out or network congestion. TCP will repeat a congestion window
until received next correct ACK. Once the transmission timed-out or congestion
occurs, TCP will reduce the congestion window size, slow down the transmission
rate, to make the segments transmitted correctly.

2.2 Selective ACK

In the TCP congestion window Go-Back-N mechanism, any segment loss or
fault will make sender retransmit all the rest segments in the window, some
segments will be transmitted more than once, which is not quietly efficiently.
The selective ACK, SACK, specified in RFC2018 [10], which allows receiver to
ask sender retransmit specified segments.

The SACK scheme solved the redundant retransmission problem. Receiver
specified the SACK options in the header of ACK. But there still exist extra
costs. Sender takes time and computing resources to process the SACK and
retransmit the specified segments.

2.3 Network Coding

Network coding can help to recover the lost segments. There exist some re-
searches applying network coding for peer-to-peer content distribution, such as
[2]. The most interesting part of network coding in this field is that data can be
uniformly divided into some pieces in logical. That is, if the original divided in
to n blocks, any peer can decode and get the original data after collect n coded
blocks. This characteristic also can be applied on error correction, such as [16].

The network coded TCP, TCP/NC, was proposed by Sundararajan et al,
[13,14,15]. TCP/NC adds a coding layer between IP layer and TCP layer. The
coding layer performance the linear network coding operations to encode or
decode the segments. Kim et al, [8,9], analyzed TCP/NC and concluded that
TCP/NC may have better throughput and better efficiency in lossy networks.
The drawback of TCP/NC is the transmission overhead. The segment header of
TCP/NC is larger than standard TCP. So the performance of TCP/NC has lower
than standard TCP when there is only a few segment loss. Later in 2013, Chan
et al. [3] proposed the adaptive network coded TCP. They focus on adjusting
the size of coding window according to the loss-rate. That is a quiet good idea,
but there is no discuss about the segment header.

52 C. Chiang and Y. Tsai

In this paper, we improved the efficiency of network coding based redundant
mechanism in TCP. Our goal is to minimize the coding operations and get op-
timal performance. We discussed our idea, including the segment header in the
next part below.

3 Loss-Rate Driven Coding

The goal of this research is to minimize the coding operation and coded data.
We named it as loss-rate driven coding, LRC. In the following, we use TCP/LRC
denotes the proposed mechanism, which combined LRC and TCP. The basic idea
LRC is sensing the segment loss rate and using coded segment as redundancy
to recover the lost segments. Moreover, the proposed TCP/LRC is compatible
with standard TCP. We described the details of our method in the following
sub-sections.

3.1 Transmission Model

The sender and receiver both maintain their own coding buffer. The coding buffer
is a cyclic queue, called sender queue, QS, and receiver queue, QR, in sender side
and receiver side, respectively. The data came from upper layer would be packed
into segments in sender side. Then, the sender would transmit the segment and
put a copy into sender queue, QS . After received the segment, receiver would put
a copy into receiver queue, QR, and process the data in the segment for upper
layer. For both of QS and QR, the eldest segment is stored in the first element
while the latest segment stored in the last element. In normal condition, QS and
QR will rotate simultaneously with a little delay, like a tape, shown in Fig. 1.

When the network congestion, segment loss or fault occurs, QS will rotate
faster than QR. And some segments in QR may not store in right order, shown
as Fig. 2. This condition should be fixed. For QR, there should be at least one
segment in right order. The segments stored in QR with the right order are
the candidates of coding head. Once sender detects the loss-rate greater than
the threshold, sender will pause the processing of new data. Then encode the
segments in QS into coded segments and transmit. The first segment in QS is
the coding head. Receiver will receive the coded segments and put them into QR

until the first segment in QR is coding head. That is, the segments stored in the
first element of QS and QR have the same sequence number, shown as Fig. 3.
Then, receiver can decode the coded segments in QR and get the original data.
Thus, QS and QR become synchronized again and the problem has been fixed.

Fig. 4 is the state diagram of proposed TCP/LRC mechanism. The trans-
mission begins from the starting state, similar to the slow start procedure of
standard TCP. The segments will be transmitted in minimal transmission rate,
which will be increased each next round. When QS is fully-filled, it switches to
normal transmission state. Sender will detect segment loss in this state. Once
the segment loss exceeded the threshold, it switches to the coding recovery state.
In the coding recovery state, sender has paused processing new data, and start

Loss-Rate Driven Network Coding for Transmission Control 53

Sender Receiver

D

D

D

D

D

D

D

D

D

D

D

D

segments transmission

data from upper layer data for upper layer

Fig. 1. Both sender and receiver have a cyclic queue with same size, when transmit-
ting under normal condition, the access pointers of two cyclic queue should rotate
simultaneously

Sender Receiver

D6

D3

D5

D4

D1

D2

D2

D1

segments transmission with
some segments loss or fault

data from upper layer data for upper layer

D5

Fig. 2.When segment loss or fault occurs, the access pointer rotation will incompatible,
and there may have out-of-ordered segments is receiver’s queue

to send the linear combination of the segments in QS. Receiver collects the
coded segments and performs the decoding procedure. After recovered the lost
segments, it switches back to normal transmission state.

3.2 Sensing Segment Loss-Rate

The ACK in standard TCP sends the sequence number of next expected segment.
In TCP/LRC, the idea above also works, but with different meaning. Generally,
the problem can be fixed by coding if the amount of lost segment is lower than
the buffer size. As we discussed above, there should be at least one right-ordered
segment in QR. But there may have segments not in the right order, which will
push the right-ordered segments out of queue. For this condition, TCP/LRC
should keep two indicators, the amount of right-ordered segments, Rc, and the
amount of out-of-ordered segments, Rg.

Sender calculates Rc and Rg by the ACKs, and keep monitoring the two
indicators. If Rc is lower than the last segment of QS or Rg is greater than buffer
size, the problem cannot be fixed by coding. Such situation should be avoided. If
sender detected such situation is going to happen, it will pause processing new
data and start sending coded segment.

54 C. Chiang and Y. Tsai

Sender Receiver

D6

D3

D5

D4

D1

D2 D2

D1

transmits coded segments
for recovery

data from upper layer data for upper layer

D5

X

X

X

Fig. 3. The amount of lost segments recovered by coded blocks, performing decode
operations can get the original segments

starting normal
transmission

coding
recovery

Queue full

Recovered

 Treshold exceeded

Fig. 4. State diagram of proposed TCP/LRC mechanism

3.3 Segment Format

Considering the compatibility with standard TCP, we use typical TCP segment
format. The header is briefly shown as Table [1]. There are nine bits for flags in
the TCP header. The three reserved bits generally set to zero in standard TCP.
For identification of LRC, we use one of them as flag. We labelled it as COD
flag here, which will be used to identify TCP/LRC peer when setting up the
connection. If the transmission is in coding recovery state, the COD flag will be
set to identify the coding segment.

For the coding segment, we put the additional information in the URG pointer
field for generating coding coefficients, which has an introduction in next section.
URG mechanism is for urgent data in TCP. When the URG flag is set, it means
the data need process quickly, and the URG pointer denotes the position of the
urgent data. Thus, receiver can process the segment with higher priority. For
the segment lost condition, the urgency is also expired. So here we use the URG
point field to transfer additional information in TCP/LRC. When in normal
transmission state, the urgent data mechanism is still available.

3.4 Encoding Procedure

Linear network coding performs the algebraic operations in Galois Field. Some
researches applied the random linear network coding, which will choose coding
coefficients randomly. Random linear network coding can ensure that the linear

Loss-Rate Driven Network Coding for Transmission Control 55

Table 1. TCP Segment Header

Bit Fields Bit

0 Source port Destination port 31

32 Sequence number 63

64 Acknowledgment number 95

96 Data offset Reserved Flags Window size 127

128 Checksum URG pointer 159

combination has a solution. But it will take bandwidth to transmit the coeffi-
cients to receivers. In TCP/LRC, we use a hash function, H , to generate the
coding coefficients. With the hash function, we only need to put the hash seed
in the header. We made TCP/LRC perform the coding operations in GF (28).
Many researches use GF (28) because each number in GF (28) is a byte. This
makes it feasible for implementation.

When entered the coding recovery state, sender would pick a hash seed, k,
for different coded segment. Then get the n code coefficients for n segments,
as formula (1). And put the linear combination, X , in the payload of coded
segment, as formula (2). The hash seed, k, will filled in the URG pointer field
in the segment header. The sequence number of coding head, D1, will be put
in the sequence number field of coded segment. Thus, receiver can identify the
coded segments as same group.

{C1, C2, . . . , Cn} = H(k) (1)

X = C1D1 + C2D2 + · · ·+ CnDn =

n∑

i=1

(CiDi) (2)

3.5 Decoding Procedure

In linear network coding, n coded segments can be decode and get the original
data by the operations in formula (3). In LRC, we hope the amount of coded
segments is minimized. When received a coded segment, receiver will unpack it
in the buffer and determine whether it has the parts of the coded segment by the
coding head number. If receiver already has the uth segment, part of the coded
segment X , it will do the operation as formula (4) to remove the uth segment
from the coded segment. X ′ denotes the coded segment without the uth segment
and Cu denotes the coding coefficient of X . Because the addition operation in
Galois field can be performed by XOR, adding CuDu equals to remove it from
X . The coding coefficients can be extracted from the hash function, H , with the
hash seed in the URG pointer field of the segment header. Receiver also prepares
a coding coefficient mask, M , once it received the coded block. The mask, M ,

56 C. Chiang and Y. Tsai

is a binary array, or vector, with all zeros. When receiver find out it already has
the uth segment, it will also set theuth bit of M to one.

⎡

⎢
⎣

D1

...
Dn

⎤

⎥
⎦ =

⎡

⎢
⎣

C1
1 · · · C1

n
...

. . .
...

Cn
1 · · · Cn

n

⎤

⎥
⎦

−1

×

⎡

⎢
⎣

X1

...
Xn

⎤

⎥
⎦ (3)

X ′ = X + CuDu (4)

When there are m zeros in M and receiver has received m coded segments
with same coding head, receiver can decode and get the m original segments.
Receiver will re-order the coding coefficients, only use the Ci with M(i) is zero.
And the size of coefficient matrix in formula (3) will be reduced. Then, receiver
can do the decoding operations and get the m original segments.

3.6 Congestion Control

Although network coding can improve the throughput, there still has the band-
width limit of network link. Transmit the segments too fast will cause network
congestion. Standard TCP use the congestion window and ACK for congestion
control. When transmitted an amount of segments, TCP will wait for the correct
ACK before transmit other segments. TCP/NC adds a new layer between TCP
layer and IP layer, so the congestion control is still handling by TCP.

In this paper, LRC also maintains the congestion window mechanism of TCP.
After sender transmitted an amount of segments, it would wait for the ACK
before continues. When entered the coding recovery state, the congestion window
size will be reduced. We are studying for advanced in this issue, to adjust the
transmission more accurate by Rc and Rg. This may become our future work.

4 Performance Evaluation

4.1 Theoretical Induction

The first indicator of performance is throughput, which denotes the amount of
data can be transmitted per time period. For TCP without SACK, we assumed
the average loss probability of each segment is q, and the mean value of window
size is w. The Z denotes the expected amount of actual transmitted segments,
that is, considered the retransmitted or redundant segments. We calculate the
usage of network link like formula (5). According to the Go-Back-N retrans-
mission scheme of TCP, Z will be the equation in formula (6). Our proposed
mechanism can reduce Z to Z ′ shown in formula (7).

amount of original data

expected amount of transmission
=

w

Z
(5)

Z = w +

(
1 + w

2

)

(1− (1− q)w) (6)

Loss-Rate Driven Network Coding for Transmission Control 57

Z ′ = w(1 + q) (7)

Comparing with TCP/NC, our mechanism has no transmission overhead be-
cause we use a hash function to generate the coding coefficients. The seed of
hash function can be filled in the URG pointer of TCP header. The proposed
mechanism does not need extra transmission for coded segments. Moreover, the
proposed mechanism will perform coding operations only in necessary condition,
the computing overhead and power consumption can be minimized.

For the computing complexity, according to formula (2), the complexity of
encoding n segments is O(n2). This complexity level is similar to some searching
and sorting algorithms. So encoding operation is acceptable for most of systems.
The decoding operations in formula (3) have a complexity of O(n3). This is more
complicated than most of other operations and is possible to solve by hardware
decoding in the future. The proposed LRC mechanism minimized the coding
operations, also minimized the extra costs of network coding.

4.2 Packet Loss Model

For the accuracy of simulation, we studied the packet loss model of real computer
networks. The packet losses we discuss here are caused by wireless interference
or fading, or sporadic fault in the network device, not caused by link failed or
network device failed. Hohlfeld et al, [7,4], analyzed the packet loss model by
the Gilbert-Elliott Model in Fig. 5, which is inspired by Markov Model. Each of
the network links is either in good (G) or bad (B) state. The probability of a
correctly-transmitted bit in good state is k, while in bad state is h. On the other
hand, the bit error rates in the two states are 1−k and 1−h, respectively. In the
good state, the probability of switching to bad state is p, staying in good state
is 1− p. In the bad state, the probability of switching to good state is r, staying
in bad state is 1−r. These works discussed the packet loss in networks including
wireless network and mobile network. We used this model for the simulation
network environment.

p

r

1-p 1-r
1-k 1-h
G B

Fig. 5. The Gilber-Elliot Model defines the network link with two states, good (G)
state and bad (B) state

58 C. Chiang and Y. Tsai

4.3 Simulation Results

For simulation, we emulate the lossy network environment by the Gilbert-Elliot
Model. The probability from the good state to the bad state is 0.1, while the
probability from bad state to good state is 0.3. And the bit error rate in the good
state and bad state are 0.000001 and 0.000002 respectively. The content length
is 240,000 bytes while each segment carrying 1200 bytes. There are 200 original
segments in each round. We simulated 20 rounds, after each round, the bit error
rate in both good state and bad state increased 0.000003. We compared the
proposed mechanism, labeled as TCP/LRC here, with TCP/NC and TCP Reno.
Fig. 6 shows the relationship between dropped segments and actual transmitted
segments. As the growth of bit error rate, the amount of dropped segments also
increased after each round. TCP Reno detects segment loss by time-out or triple-
duplicated ACK and discarded the out-of-ordered segments, so the number of
actual transmitted segments was much more than the dropped segments plus
the original segments. TCP/NC and TCP/LRC transmit the linear combination
for the error recovery condition, so the number of actual transmitted segments
equal to the dropped segments plus the original segment.

0 5 10 15 20
0

100

200

300

400

500

600
Transmitted Segments

Simulation Round

S
eg

m
en

ts

dropped
TCP Reno
TCP/NC
TCP/LRC

Fig. 6. Comparison of the exact transmitted segments with the bit error rate increased
after each round

We also compared the total amount of transmitted data in transport layer,
shown as Fig. 7. TCP/NC has additional information for network coding in the
segment. As a result, TCP/NC has to transmit more data. Our TCP/LRC just
uses the standard TCP header, so it will be more efficient when transmitting
large content.

For the computing complexity, Fig. 8 showed that our TCP/LRChas less coded
segments than TCP/NC. The encoding and decoding procedure in TCP/LRC is
minimized. This let TCP/LRC can have lower power consumption and lower com-
puting resource requirement.

Loss-Rate Driven Network Coding for Transmission Control 59

0 5 10 15 20
2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

5 Transmitted Bytes

Simulation Round

B
yt

es

TCP/NC
TCP/LRC

Fig. 7. Comparison of TCP/LRC and TCP/NC by the amount of transmitted data,
in bytes

0 5 10 15 20
0

50

100

150

200

250

300
Coded Segments

Simulation Round

C
od

ed
 S

eg
m

en
ts

TCP/NC
TCP/LRC

Fig. 8. Comparison of TCP/LRC and TCP/NC by the amount of coded segments

5 Conclusions

In this paper, we proposed the loss-rate driven coding, LRC. And combined LRC
with TCP. With this mechanism, the amount of encoding operations and decod-
ing operations can be minimized. The coded segment will be used only if needed.
And the amount of decoding operations is also reduced to the actual required
amount. Thus, this mechanism will be easier to implement in the embedded sys-
tems with limited system resources. We also used the standard TCP segment
header in the proposed mechanism. This can let the implement has higher com-
patibility with standard TCP. For the future works, we are studying about the
congestion control issue. With a more accurate congestion control scheme, we
hope the throughput could be optimized in the future.

60 C. Chiang and Y. Tsai

References

1. Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46, 1204–1216 (2000)

2. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribu-
tion. In: 24th Annual Joint Conference of the IEEE Computer and Communications
Societies, Proceedings IEEE (INFOCOM), vol. 4, pp. 2235–2245 (2005)

3. Chan, Y.-C., Hu, Y.-Y.: Adaptive Network Coding Scheme for TCP over Wire-
less Sensor Networks. International Journal of Computers. Communications and
Control 8(6) (2013)

4. Hasslinger, G., Hohlfeld, O.: The Gilbert-Elliott Model for Packet Loss in Real
Time Services on the Internet, Measuring. In: 14th GI/ITG Conference on Mod-
elling and Evaluation of Computer and Communication Systems (MMB), pp. 1–15
(2008)

5. Postel, J.: RFC793, Transmission Control Protocol (1981)
6. Katti, S., Rahul, H., Hu, W., Katabi, D., Medard, M., Crowcroft, J.: XORs in the

air: practical wireless network coding. IEEE/ACM Trans. Netw. 16(3), 497–510
(2008)

7. Hohlfeld, O.: Stochastic packet loss model to evaluate QoE impairments. PIK-
Praxis der Informationsverarbeitung und Kommunikation 32(1), 53–56 (2009)

8. Kim, M., Klein, T., Soljanin, E., Barros, J., Medard, M.: Modeling Network Coded
TCP: Analysis of Throughput and Energy Cost, arXiv preprint arXiv:1208.3212
(2012)

9. Kim, M., Medard, M., Barros, J.O.: Modeling network coded TCP throughput: A
simple model and its validation. In: Proceedings of the 5th International ICST Con-
ference on Performance Evaluation Methodologies and Tools, pp. 131–140 (2011)

10. Mathis, M., et al.: RFC 2018, Internet Engineering Task Force (IETF) (1996)
11. Li, S.Y., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on

Information Theory 49, 371–381 (2003)
12. Stallings, W.: Handbook of computer-communications standards. The open sys-

tems interconnection (OSI) model and OSI-related standards, vol. 1. Macmillan
Publishing Co., Inc. (1987)

13. Sundararajan, J.K., Jakubczak, S., Medard, M., Mitzenmacher, M., Barros,
J.: Interfacing network coding with TCP: an implementation, arXiv preprint
arXiv:0908.1564 (2009)

14. Sundararajan, J.K., Shah, D., Medard, M., Jakubczak, S., Mitzenmacher, M.,
Barros, J.: Network coding meets TCP: Theory and implementation. Proceedings
of the IEEE 99(3), 490–512 (2011)

15. Sundararajan, J.K., Shah, D., Medard, M., Mitzenmacher, M., Barros, J.: Network
coding meets TCP. IEEE INFOCOM, 280–288 (2009)

16. Zhang, Z.: Linear Network Error Correction Codes in Packet Networks. IEEE
Transactions on Information Theory 54, 209–218 (2008)

Multilayer Perceptron and Stacked Autoencoder

for Internet Traffic Prediction

Tiago Prado Oliveira, Jamil Salem Barbar, and Alexsandro Santos Soares

Federal University of Uberlândia, Faculty of Computer Science, Uberlândia, Brazil,
tiago prado@comp.ufu.br, {jamil,alex}@facom.ufu.br

Abstract. Internet traffic prediction is an important task for many ap-
plications, such as adaptive applications, congestion control, admission
control, anomaly detection and bandwidth allocation. In addition, effi-
cient methods of resource management can be used to gain performance
and reduce costs. The popularity of the newest deep learning methods has
been increasing in several areas, but there is a lack of studies concerning
time series prediction. This paper compares two different artificial neural
network approaches for the Internet traffic forecast. One is a Multilayer
Perceptron (MLP) and the other is a deep learning Stacked Autoencoder
(SAE). It is shown herein how a simpler neural network model, such as
the MLP, can work even better than a more complex model, such as the
SAE, for Internet traffic prediction.

Keywords: Internet traffic, time series, prediction, forecasting, neural
network, machine learning, multilayer perceptron, deep learning, stacked
autoencoder.

1 Introduction

Using past observations to predict future network traffic is an important step
to understand and control a computer network. Network traffic prediction can
be crucial to network providers and computer network management in general.
It is of significant interest in several domains, such as adaptive applications,
congestion control, admission control and bandwidth allocation.

There are many studies that focus on adaptive and dynamic applications.
They usually present some algorithms, that use the traffic load, to dynamically
adapt the bandwidth of a certain network component [1][2][3] and improve the
Quality of Service (QoS) [4]. Several works have been developed using Artifi-
cial Neural Networks (ANN) and they have shown that ANN are a competitive
model, overcoming classical regression methods such as ARIMA [5][6][7][8]. Thus,
there are works that combine these two factors, therefore producing a a predic-
tive neural network that dynamically allocates the bandwidth in real-time video
streams [3].

Initially, the use of neural networks was limited in relation to the number of
hidden layers. Neural networks made up of various layers were not used due to
the difficulty in training them [9]. However, in 2006, Hinton presented the Deep

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 61–71, 2014.
c© IFIP International Federation for Information Processing 2014

62 T.P. Oliveira, J.S. Barbar, and A.S. Soares

Belief Networks (DBN), with an efficient training method based on a greedy
learning algorithm, which trains one layer at a time[10]. Since then, studies have
encountered several sets of good results regarding the use of deep learning neural
networks. Through these findings this study has as its objective to use the deep
learning concept in traffic prediction.

Network traffic is a time series, which is a sequence of data regularly measured
at uniform time intervals. For network traffic, these sequential data are the bits
transmitted in some network device at a certain period on time. A time series
can be a stochastic process or a deterministic one. To predict a time series it is
necessary to use mathematical models that truly represent the statistical char-
acteristic of the sampled traffic. The choice of the prediction method must take
into account the prediction horizon, computational cost, prediction error and
the response time, for adaptive applications that require real-time processing.

This paper analyses two prediction methods that are based on ANN. Eval-
uations were made comparing Multilayer Perceptron (MLP) and Stacked Au-
toencoder (SAE). MLP is a feed-forward neural network with multiple layers
that uses Backpropagation as supervised training. SAE is a deep learning neural
network that uses a greedy algorithm for unsupervised training. The analysis fo-
cuses on a short-term forecast and the tests were made using samples of Internet
traffic time series, which were obtained on DataMarket database [11].

2 Artificial Neural Networks

Artificial Neural Networks are simple processing structures, which are separated
into strongly connected units called artificial neurons (nodes). Neurons are or-
ganized into layers, one layer has multiple neurons and any one neural network
can have one or more layers, which are defined by the network topology and vary
among different network models [12].

Neurons are capable of working in parallel to process data, store experimen-
tal knowledge and use this knowledge to infer new data. Each neuron has a
synaptic weight, which is responsible for storing the acquired knowledge. Net-
work knowledge is acquired through learning processes (learning algorithm or
network training) [12]. In the learning process, the network will be trained to
recognize and differentiate the data from a finite set. After learning, the ANN is
ready to recognize the patterns in a time series, for example. During the learning
process the synaptic weights are modified in an ordered manner until they reach
the desired learning. A neural network offers the same functionality as neurons
in a human brain for resolving complex problems, such as nonlinearity, high par-
allelism, robustness, fault tolerance, noise tolerance, adaptability, learning and
generalization [5][12].

Deep learning refers to a machine learning method that is based on a neu-
ral network model with multiple levels of data representation. Hierarchical lev-
els of representation are organized by abstractions, features or concepts. The
higher levels are defined by the lower levels, where the representation of the low-
levels may define several different features of the high-levels, this makes the data

Internet Traffic Prediction 63

representation more abstract and nonlinear for the higher levels [9][10]. These
hierarchical levels are represented by the layers of the ANN and they allow for
the adding of a significant complexity to the prediction model. This complexity
is proportional to the number of layers that the neural network has. The neural
network depth concerns to the number of composition levels of nonlinear opera-
tions learned from trained data, i.e., more layers; more nonlinear and deeper is
the ANN.

The main difficulty in using deep neural networks relates to the training phase.
Conventional algorithms, like Backpropagation, do not perform well when the
neural network has more than three hidden layers [13]. Besides, these conven-
tional algorithms do not optimize the use of more layers and they do not distin-
guish the data characteristics hierarchically, i.e., the neural network with many
layers does not have a better result to that of a neural network with few layers,
e.g., shallow neural network with two or three layers [14][15].

3 Review of Literature

Several types of ANN have been studied for network traffic prediction. An ad-
vantage of ANN is the response time, i.e., how fast the prediction of future
values is made. After the learning process, which is the slowest step in the use
of an ANN, the neural network is ready for use, obtaining results very quickly
compared to other more complex prediction models as FARIMA [8]. Therefore,
ANNs are better at online prediction, obtaining a satisfactory result regarding
prediction accuracy and response time [5].

3.1 Multilayer Perceptron and Backpropagation

One of commonest architectures for neural networks is the Multilayer Perceptron.
This kind of ANN has one input layer, one or more hidden layers, and an output
layer. Best practice suggests one or two hidden layers [14]. This is due to the
fact that the same result can be obtained by raising the number of neurons in
the hidden layer, rather than increase the number of hidden layers [15].

MLPs are feed-forward networks, where all neurons in the same layer are
connected to all neurons of the next layer, yet the neurons in the same layer
are not connected to each other. It is called feed-forward because the flow of
information goes from the input layer to the output layer. The training algorithm
used for MLP is the Backpropagation, which is a supervised learning algorithm,
where the MLP learns a desired output from various entry data.

3.2 Stacked Autoencoder and Deep Learning

Stacked Autoencoder is a deep learning neural network built with multiple layers
of sparse Autoencoders, in which the output of each layer is connected to the
input of the next layer. SAE learning is based on a greedy layer-wise unsupervised
training, which trains each Autoencoder independently [16][17][18].

64 T.P. Oliveira, J.S. Barbar, and A.S. Soares

The strength of deep learning is based on the representations learned by the
greedy layer-wise unsupervised training algorithm. Furthermore, after a good
data representation in each layer is found, the acquired neural network can be
used to initialize some new ANN with new synaptic weights. This new initialized
neural network can be an MLP, e.g., to start a supervised training if necessary
[9]. A lot of papers emphasize the benefits of the greedy layer-wise unsupervised
training for deep network initialization [9][10][18][19][20]. Therefore, one of the
goals of this paper is to verify if the unsupervised training of deep learning does
actually bring advantages over the simpler ANN models.

4 Experiments and Results

The utilized time series data were gathered on DataMarket and created by R.
J. Hyndman [11]. The experiments were performed from data collected daily,
hourly and at five minute intervals. Altogether, six time series were used, with
them being “A-1d”, “A-1h”, “A-5m”, “B-1d”, “B-1h” and “B-5m”.

These time series used are composed of Internet traffic (in bits) from a private
Internet Service Provider (ISP) with centres in 11 European cities. The data
corresponds to a transatlantic link and was collected from 06:57 hours on 7 June
to 11:17 hours on 31 July 2005. This series was collected at different intervals,
resulting in three different time series: “A-1d” is a time series with daily data;
“A-1h” is hourly data; “A-5m” contains data collected every five minutes.

The remaining time series are composed of Internet traffic from an ISP, col-
lected in an academic network backbone in the United Kingdom. They were
collected from 19 November 2004, at 09:30 hours to 27 January 2005, at 11:11
hours. In the same way, this series was divided into three different time series:
“B-1d” is daily data; “B-1h” is hourly data; “B-5m”, with data collected at five
minute intervals.

The conducted experiments used DeepLearn Toolbox [21], an open source code
of different libraries that cover several machine learning and artificial intelligence
techniques. Some are, Artificial Neural Networks (ANN), Convolutional Neural
Networks (CNN), Stacked Autoencoders (SAE), Convolutional Autoencoders
(CAE) and Deep Belief Networks (DBN). The libraries of DeepLearn Toolbox
are coded using the MATLAB environment tool.

4.1 Data Normalization

Before training the neural network, it is important to normalize the data [8],
in this case, the time series. In addition, for a better calculation and results,
the DeepLearn Toolbox requires that the input data are next to zero. Hence, to
decrease the time series scale the z-score was used to normalize the data. After
that, a sigmoid function was applied, so that the time series values are in the
range [0, 1]. The z-score was chosen as through it the data scale are preserved
and patterns are not changed.

Internet Traffic Prediction 65

Table 1. The time interval and size of each time series

Data Set Time interval Time Series total size Training Set size

A-1d 1 day 51 25
A-1h 1 h 1231 615
A-5m 5 min 14772 7386
B-1d 1 day 69 34
B-1h 1 h 1657 828
B-5m 5 min 19888 9944

The original time series is normalized, generating a new normalized time se-
ries, which will be used for the training. The range of the 6 time series used varies
from 51 values (for the smallest time series, with daily data) to 19888 values(for
the largest time series, with data collected at five minute intervals). During the
experiments the data range for the training set varied greatly, from 25 values
(for the smallest time series) to 9944 values (for the largest time series). The
size for the training set was chosen as that of the first half of the time series, the
other half of the time series is the test set for evaluating the prediction accuracy.
The size of each data set can be seen in Table 1.

4.2 Neural Network Architecture and Topology

For the standard neural network, the MLP was used, with a sigmoid activa-
tion function, a low learning rate of 0.01 and Backpropagation as the training
algorithm. For the deep learning neural network, the SAE was used, also with
sigmoid activation function and a learning rate of 0.01. Higher learning rate ac-
celerates the training, but may generate many oscillations in it, making it harder
to reach a low error. On the other hand, a lower learning rate leads to steadier
training, however is much slower.

This low value for the learning rate was used because, for our purpose, the
training time was not the most important target, in fact, it is the final error
achieved by the artificial neural network. Was also tested different ones, such as
0.5, 0.25 and 0.1, yet as expected, the lowest errors were obtained using 0.01 for
the learning rate.

The training algorithm of SAE is a greedy algorithm that gives similar weights
to similar inputs. Each Autoencoder is trained separately, in a greedy fashion,
then it is stacked onto those already trained; thereby, producing a SAE with
multiple layers. The greedy training algorithm is used to train unlabeled data,
i.e., it does not train the data considering the expected output. On the other
hand, for labeled data such as time series, the greedy training is not sufficient
and it is used as a pre-training to initialize the neural network weights (instead
of a standard random initialization). After that, the Backpropagation algorithm
was used as a fine-tuning for the supervised training [9][13][17][18].

Several tests were carried out varying the ANN topology, both in number of
neurons per layer as in the number of layers. For the MLP, the best performances

66 T.P. Oliveira, J.S. Barbar, and A.S. Soares

Fig. 1. Neural Network Architecture showing the layers, numbers of each layer and the
information feed-forward flow

were obtained with 4 layers, around 10 input neurons, 1 output neuron, 60 and
40 neurons in the hidden layers, respectively, as shown in Fig. 1. It was found
that increasing the number of neurons did not result in better performance, the
average of Root Mean Square Error (RMSE) was found to be similar. However,
for the ANN with 5 or more layers, overly increasing the number of layers was
detrimental to performance.

For the SAE, the best results were found with 6 layers, with 20 input neu-
rons, 1 output neuron, 80, 60, 60 and 40 neurons in each of the hidden layers,
respectively. Increasing the number of neurons of the SAE did not produce bet-
ter results; on average the Normalized Root Mean Square Error (NRMSE) was
very similar. Similar results were found also with 4 layers, like the MLP, whereas
deeper SAE achieved slightly better results. A comparison of the NRMSE of each
prediction model will be shown in Table 2.

4.3 Neural Network Training

The neural network training was carried out in a single batch. This way all
input data of the training set is trained in a single training epoch, adjusting the
weights of the neural network for the entire batch. Tests with more batches (less
input data for each training epoch) were also realized and similar error rates
were found. Nevertheless, for smaller batches, the training took more time to
converge, because a smaller amount of data is trained at each epoch.

Internet Traffic Prediction 67

The training time is mainly affected by the size of the training set and by the
number of neurons of the neural network. The higher the size of the training set
and higher the number of neurons, more time is necessary to train the neural
network.

Fig. 2. A MSE comparison of SAE and MLP at each training epoch, for B-5m time
series

The MLP training lasted 1000 epochs. The SAE training is separated into two
steps. The first one is the unsupervised pre-training, which lasted 900 epochs.
The second step is the fine-tuning that uses a supervised training, which lasted
100 epochs. Fig. 2 shows the first 50 training epochs and their respective errors,
comparing the fine-tuning training of the SAE with the MLP training. It is
possible to observe that, because of the SAE pre-training, the SAE training
converges faster than the MLP training. However, more training epochs are
enough for them to obtain very similar error rates.

Fig. 3 and Fig. 4 show the time series prediction results for the MLP and
SAE, respectively. It is noted that MLP best fits the actual data, nevertheless,
both fared well in data generalization. Both, MLP and SAE, learned the time
series features and used these features to predict data that are not known a
priori.

68 T.P. Oliveira, J.S. Barbar, and A.S. Soares

Fig. 3. A prediction comparison of the MLP at each training epoch for B-5m time
series. It shows the Actual (the original) time series (represented in grey) and the
Predicted one (represented in black). Since the actual and the predicted plot lines are
very similar, it is difficult to see the difference with a low scale image. Yet, it is possible
to see that the predicted values fit very well to the actual values.

Fig. 4. A prediction comparison of the SAE at each training epoch for B-5m time
series. It shows the Actual (the original) time series and the Predicted one. It is noted
that the predicted (represented in black) did not fit well from 1 × 104 to 1.4 × 104

period in time, but for the rest of the series the predicted values fit well to the actual
values.

Internet Traffic Prediction 69

4.4 Main Results

The key idea of deep learning is that the depth of the neural network allows
learning complexes and nonlinear data [9]. However, the use of SAE for time
series prediction was not beneficial, i.e., the pre-training did not bring signifi-
cant benefits to prediction. The best results for the MLP and SAE with their
respective NRMSE are shown in Table 2. Even though the MLP does not have
a significant advantage over the SAE, still, the MLP has achieved better results
for network traffic prediction.

Table 2. A comparison of Normalized Root Mean Squared Error (NRMSE) results

Data Set NRMSE

MLP SAE

A-1d 0.1999 0.3660
A-1h 0.0479 0.0756
A-5m 0.0192 0.0222
B-1d 0.1267 0.2155
B-1h 0.0421 0.0556
B-5m 0.0131 0.0184

In the time series prediction, the SAE method has more complexity than
the MLP, since it has the extra unsupervised training phase, which initializes
the neural network weights for the fine-tuning stage. Even with the additional
complexity, the SAE was slightly inferior. Due to this fact, this approach is not
recommended for time series prediction.

There are works, in the pattern recognition field, where the use of Autoen-
coders are advantageous [20], as they are based in unlabeled data. On the other
hand, there are works, in time series prediction and labelled data, showing that
the Autoencoders approach is worse than classical neural networks [22], such
as MLP and Recurrent ANN. Each of these problems has a better method for
solving it, so it is important to analyse the entry data type before choosing the
most appropriate method to be used.

5 Conslusion

Both types of studied ANN have proven that they are capable of adjusting and
predicting network traffic accurately. However, the initialization of the neural
network weights through the unsupervised pre-training did not bring an im-
provement for time series prediction. The result shows that MLP is better than
SAE for Internet traffic prediction. In addition, the SAE deep neural network
approach reflects on more computational complexity during the training, so the
choice of MLP is more advantageous.

70 T.P. Oliveira, J.S. Barbar, and A.S. Soares

The use and importance of deep neural networks is increasing and very good re-
sults are achieved in images, audio and video pattern recognition [19][20][23][24].
However, the main learning algorithms for this kind of neural network are un-
supervised training algorithms, which use unlabelled data for their training. In
contrast, network traffic and time series, in general, are labeled data, requiring an
unsupervised pre-training before the actual supervised training as a fine-tuning.
Yet, as shown in [24], the DBN and restricted Boltzmann machine (RBM), which
are deep learning methods, can be modified to work better with labeled data, i.e.,
time series data sets.

Future works will focus in other deep learning techniques, like Deep Belief
Nets and Continuous Restricted Boltzmann Machine (CRBM) and other mod-
els of ANN, such as the Recurrent Neural Network (RNN), with others training
algorithms, such as Resilient Backpropagation. Even better results are expected,
since they are more optimized for learning sequential and continuous data. Other
future works will use the network traffic prediction to create an adaptive band-
width management tool. This adaptive management tool will first focus on con-
gestion control through bandwidth dynamic allocation, based on the traffic pre-
dicted. The objective is to guarantee a better QoS and a fair share of bandwidth
allocation for the network devices in a dynamic and adaptive management ap-
plication.

References

1. Han, M.-S.: Dynamic bandwidth allocation with high utilization for XG-PON. In:
16th International Conference on Advanced Communication Technology (ICACT),
pp. 994–997. IEEE (2014)

2. Zhao, H., Niu, W., Qin, Y., Ci, S., Tang, H., Lin, T.: Traffic Load-Based Dynamic
Bandwidth Allocation for Balancing the Packet Loss in DiffServ Network. In: 11th
International Conference on Computer and Information Science (ICIS), pp. 99–104.
IEEE/ACIS (2012)

3. Liang, Y., Han, M.: Dynamic Bandwidth Allocation Based on Online Traffic Pre-
diction for Real-Time MPEG-4 Video Streams. EURASIP Journal on Advances in
Signal Processing (2007)

4. Nguyen, T.D., Eido, T., Atmaca, T.: An Enhanced QoS-enabled Dynamic Band-
width Allocation Mechanism for Ethernet PON. In: International Conference on
Emerging Network Intelligence, pp. 135–140. EMERGING (2009)

5. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale Internet traffic forecasting
using neural networks and time series methods. ExpertSystems: The Journal of
Knowledge Engineering 29, 143–155 (2012)

6. Hallas, M., Dorffner, G.: A comparative study of feedforward and recurrent neural
networks in time series prediction. In: 14th European Meet. Cybernetics Systems
Research, vol. 2, pp. 644–647 (1998)

7. Ding, X., Canu, S., Denoeux, T.: Neural Network Based Models for Forecasting.
In: Proceedings of Applied Decision Technologies (ADT 1995), pp. 243–252. Wiley
and Sons, Uxbridge (1995)

8. Feng, H., Shu, Y.: Study on network traffic prediction techniques. In: Interna-
tional Conference on Wireless Communications, Networking and Mobile Comput-
ing, vol. 2, pp. 1041–1044. WiCOM (2005)

Internet Traffic Prediction 71

9. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine
Learning 2, 1–127 (2009)

10. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets.
Neural Comput. 18, 1527–1554 (2006)

11. Hyndman, R.J.: Time Series Data Library, http://data.is/TSDLdemo
12. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall

PTR, Upper Saddle River (1998)
13. Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of

training deep architectures and the effect of unsupervised pre-training. In: Pro-
ceedings of The Twelfth International Conference on Artificial Intelligence and
Statistics (AISTATS 2009), pp. 153–160 (2009)

14. Villiers, J., Barnard, E.: Backpropagation neural nets with one and two hidden
layers. IEEE Transactions on Neural Networks 4, 136–141 (1993)

15. Hornik, K., Stinchcombe, M., White, H.: Multi- layer feedforward networks are
universal approximators. Neural Networks 2, 359–366 (1989)

16. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and Composing
Robust Features with Denoising Autoencoders. In: Proceedings of the Twenty-fifth
International Conference on Machine Learning (ICML 2008), pp. 1096–1103. ACM,
New York (2008)

17. Unsupervised Feature Learning and Deep Learning. Stanford’s online wiki. Stacked
Autoencoders,
http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

18. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of
deep networks. In: Schlkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural
Information Processing Systems 19 (NIPS 2006), pp. 153–160. MIT Press (2007)

19. Larochelle, H., Erhan, D., Vincent, P.: Deep learning using robust interdependent
codes. In: Dyk, D.V., Welling, M. (eds.) Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics (AISTATS 2009), vol. 5, pp.
312–319 (2009); Journal of Machine Learning Research - Proceedings Track (2009)

20. Ranzato, M.A., Boureau, Y.-L., LeCun, Y.: Sparse Feature Learning for Deep Belief
Networks. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural
Information Processing Systems 20, pp. 1185–1192. MIT Press, Cambridge (2007)

21. Palm, R.B.: DeepLearnToolbox, a Matlab toolbox for Deep Learning,
https://github.com/rasmusbergpalm/DeepLearnToolbox

22. Busseti, E., Osband, I., Wong, S.: Deep Learning for Time Series Modeling. Stan-
ford, CS 229: Machine Learning (2012)

23. Arel, I., Rose, D.C., Karnowski, T.P.: Deep Machine Learning - A New Frontier
in Artificial Intelligence Research [research frontier]. IEEE Computational Intelli-
gence Magazine 5, 13–18 (2010)

24. Chao, J., Shen, F., Zhao, J.: Forecasting exchange rate with deep belief net-
works. In: The 2011 International Joint Conference on Neural Networks (IJCNN),
pp. 1259–1266 (2011)

http://data.is/TSDLdemo
http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
https://github.com/rasmusbergpalm/DeepLearnToolbox

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 72–83, 2014.
© IFIP International Federation for Information Processing 2014

Optimization of Uncore Data Flow on NUMA Platform

Qiuming Luo1,2, Yuanyuan Zhou1, Chang Kong1, Mei Wang3, and Ye Cai1,2,*

1 Guangdong Province Key Laboratory of Popular High Performance Compters
2 College of Computer Science and Software Engineering, SZU, China

3 School of Computer Engineering, Shenzhen Polytechnic, China
{lqm,caiye}@szu.edu.cn, clarkong89@gmail.com

Abstract. Uncore part of the processor has a profound effect, especially in
NUMA systems, since it is used to connect cores, last level caches (LLC), on-
chip multiple memory controllers (MCs) and high-speed interconnections. In
our previous study, we investigated several benchmarks’ data flow in Uncore of
Intel Westmere microarchitecture and found that the data flow of Global Queue
(GQ) and QuickPath Home Logical (QHL) has serious imbalance and
congestion problem. This paper, we aims at the problem of entries’ low
efficiency in GQ and QHL we set up an M/M/3 Queue Model for GQ and
QHL’s three trackers’ data flow, and then design a Dynamic Entries
Management (DEM) mechanism which could improve entries’ efficiency
dramatically. The model is implemented in Matlab to simulate two different
data flow pattern. Experiment results shows that DEM mechanism reduces stall
cycles of trackers significantly: DEM reduces almost 60% stall cycles under
smooth request sequences; DEM mechanism reduces almost 20~30% stall
cycles under burst request sequences.

Keywords: NUMA, Uncore, Data flow, DEM.

1 Introduction

The number of processors or cores of PC servers are increasing with the growing
demand of performance. The memory conflict becomes more and more serious.
Instead of using faster and bigger processor caches, NUMA have solved the memory
bandwidth issues to some extent by using asymmetric hierarchical memory model
and has become the mainstream of modern server architecture. In a NUMA system,
the memory chips are distributed in physics and all this memory shares a global
address space. Accessing the remote memory needs processor interconnection
technology. There are two main processor interconnection technologies currently.
They are, respectively, AMD’s HT (Hyper Transport) [2] and Intel’s QPI (Quick Path
Inter connect) [3]. Obviously, accesses to the local memory are faster than accesses to
remote memory, because accesses to remote nodes must traverse the interconnection.
Because of this, previous optimization work on NUMA platform often focus on

* Corresponding author

 Optimization of Uncore Data Flow on NUMA Platform 73

scheduling the process and moving data from remote to local to maximize the local
accesses. Some of these are based on performance profile after execution [4][5][6],
while others can deal with it during execution dynamically [7][8][9][10][11].

But in recent two years, the studies[12][13][14][15] have shown that
microarchitecture have a great effect on optimizing the memory performance on
NUMA platforms, even under some circumstance decreasing data locality may
procure better performance. In our previous work [14], two 8-way NUMA
architectures with different memory subsystems are experimentally analyzed, this two
8-way NUMA systems have diverse memory access feature because of their different
microarchitecture. Dashti’s work [15] also shows that remote delays are not the most
important source of performance overhead, congestion on interconnection links and in
MCs can dramatically hurt performance.

In our previous studies [1], we have made deep analyze of the inner architecture of
uncore in Westmere processor and explored the data flow of Uncore in NUMA
systems and discussed the unbalance and congestion of Uncore traffic, we will
describe this later in this article. That unbalance might challenge the fixed entry
number of GQ and QHL, which infer a dynamic entries management.

In this paper, we propose DEM (Dynamic Entries Management) mechanism and
verified it efficiency by simulating the data flow using Matlab. We conclude that the
DEM mechanism improve entries’ efficiency dramatically.

The rest of the paper is organized as follows. In section II, we descript uncore
modeling. Section III focuses on DEM algorithm description. Section IV presents our
experiment results and analysis. Our conclusion is in section V.

2 Unbalance and Congestion of Data Traffic of Uncore

We have used the Intel Westmere as the target NUMA platform. In this section we
will introduce the Uncore structure briefly and detail the unbalance and congestion of
data traffic of Uncore in Intel “Westmere”.

2.1 Microarchitecture of Uncore

Uncore is a term used by Intel to describe the functions of non-in-core parts in a
microprocessor. The uncore unit in Intel Westmere is shown in Fig.1. It includes
LLC, QPI, QMC and other components. Cache line requests from the local cores or
from a remote package or the I/O hub are handled by uncore’s GQ. There are 3
trackers in GQ to deal with the requests. One for write requests with 16 entries is
called write tracker, the other one is read tracker for read requests with 32 entries, and
the last one with 12 entries for other socket requests delivered by the QPI named peer
probe tracker. Data access requests that miss the local LLC are sent to the QHL (QPI
home logic) unit to retrieve the data. Such requests are speculative by nature, as a hit
(m) response to a snoop requests to the other caching agents may return the line more
quickly and supersede the request to the local QHL. Again, QHL has 3 queues for
requests from local, remote sockets and IOH, and entries for each queue are 24, 16
and 24, respectively.

74 Q. Luo et al.

Fig. 1. Details of Westmere Uncore

2.2 Unbalance and Congestion of Data Traffic

In our previous work [1], we used Likwid [18] to measure several hardware
performance events which can be classified into two groups: GQ Full and QHL Full,
and Full means entries in trackers are used up and new requests should wait for empty
entries. We measured the unbalance and congestion of data flow in uncore with using
NAS Parallel Benchmark [19] and STREAM Benchmark [20].

After a series of experimental measurements and studies, we found that the
unbalance of GQ’s and QHL’s trackers is serious and the usage rate of entries is low
both for GQ and QHL. Such as GQ, Fig.2 shows the unbalance of GQ’s three
trackers. Each NPB applications run in Class C with 8 threads. We set GQ peer probe
tracker’s full cycles as 1 and normalized the other trackers’ full cycles. Ten is the
exponent in Y-axis. The X-axis lists the ten NPB applications. We can see that the
unbalance of GQ’s three trackers is really serious, the biggest unbalance rate is more
than 800 times happened in FT’s read and write trackers; the smallest unbalance rate
is less than 1/100 times happened in CG’s read and write trackers. And similar things
happened in QHL.

Fig. 2. The unbalance of GQ’s three trackers

 Optimization of Uncore Data Flow on NUMA Platform 75

And also the rate of entries does not match the rate of full cycles of every application
because each application’s memory access pattern is not the same. As for the congestion
of data flow, we found that the Full cycles growth patterns of three trackers were not the
same for both GQ and QHL with threads number increase from 2 to 8.

3 Dynamic Entries Management

In this regard, we propose DEM (Dynamic Entries Management) mechanism as
shown in Fig.5 and Fig.6, all the entries for the three Tracker are managed uniformly.
Compared with FEM (Fixed Entries Management), DEM will improve the efficiency
of the usage of the entries and reduce the number of the stall cycles.

3.1 Modeling Trackers of GQ/QHL

The M/M/3 queuing system is a model of the process that customers get service from
server desk, the two "M" represents the interval of the customers arrive and the
service time needed by customers are exponentially distributed (no memory, random,
or Markov property), and the "3" refers to there are three Server Desk. We use the
M/M/3 queuing system to simulate the flow of data which go through the GQ or
QHL. Both GQ and QHL have three Server Desks to provide services for three
Trackers, for GQ, the trackers are Read tracker, Write tracker and Peer Probe tracker.
There are Local tracker, Remote tracker and IOH tracker for QHL. The data requests
and responses are the customers. Cores, LLC, QPI and QHL will generate customers
to GQ. And for QHL, GQ, QPI and QMC will produce customers. Each customer will
be stored in an entry through a Tracker, then wait for getting service from one of the
three Sever Desks.

In Intel Westmere, the number of entries for each tracker is fixed, as show in Fig.3
and Fig.4. If there is no free entries for one tracker and the newly arriving customers
(data requests and responses) who want to enter into that tracker will have to wait. At
the same time, the components generate customers have to stall cycles until a new
free entry is available, though the other two Trackers might have free entries. We call
this FEM mechanism, as Fig.7 shows.

Fig. 3. GQ FEM M/M/3 queuing model Fig. 4. QHL FEM M/M/3 queuing model

76 Q. Luo et al.

Fig. 5. GQ DEM M/M/3 queuing model Fig. 6. QHL DEM M/M/3 queuing model

3.2 The Implementation of Dynamic Entries Management

In this section we will detail the FEM and DEM algorithm and we take the GQ as an
example to illustrate these algorithms. Cores, LLC, QPI and QHL generate data
requests or data responses to GQ, we call this a new customers’ coming. The
customer with different data access type will be stored in free entries through the
different tracker. Such the customer with data-read request will go through the Read
tracker, and the customer with data-write request will go through the Write tracker.
For FEM, the entries divide into three parts according the type of the tracker, the
number of entries for read tracker is 32, 16 for write tracker and 12 for peer probe
tracker. Therefore, the customers with different type of data access can use the
corresponding entries only. For instance, the customer with the type of data read can
only be store in one of the 32 entries. All the customers stored in the entries will get
service (the data requests or responses will be handled by GQ) from corresponding
Server Desk according FIFO. Flow chart of the FEM algorithm is showed as Fig. 7.

For DEM all the entries are uniform to customer. We treat all the entries as in an
entries buffer pool. In order to make the customer get service from the right Server
Desk, when a new customer comes, a free entries from the entries poll is assigned to
the customer and must mark this assigned entries with the label of the Tracker where
the customer from. Then, the customers with the same label form a queue to get the
service from Server Desk according FIFO. At the end of the service, the entrie which
has been marked must be removed the mark and put back into the entries pool. Flow
chart of the FEM algorithm is showed as Fig.8. In this case, just when all the
entries in the pool are used up will produce Stall Cycles.

 Optimization of Uncore Data Flow on NUMA Platform 77

 Fig. 7. FEM algorithm Fig. 8. DEM algorithm

4 Experiment Results

We adopt M/M/3 system to simulate the flow of data which through the GQ or QHL
by Matlab. We have assumed that the customers arrive according to a Poisson
process, which means the interval time of arrival is exponential distribution. The
probability density function of exponential distribution is showed in Formulas (1) and
the average of probability density function of exponential distribution E[x] =1/λ. We
create a parameter Parameter1 (the value of 1/λ) to represent the average
interval time of arrival, the greater of the value of Parameter1,
the heavier the pressure of the customer’s request. So in this simulation, we adjust the
customer’s request pressure by set the value of Parameter1.

 f(x) = λe-λx . (1)

We also assumed that the time each customer gets service is an exponential
distribution, we use a similar parameter Parameter2 to simulate each customer’s
average service time, we choose a relative middle value 0.6 for Parameter2.

In order to make the comprehensive comparison of the FEM and DEM algorithms,
we simulate two scenarios. One scenario is that the customers are generated gently, it
means the customer’s arrival request pressure is relative stable, another scenario is
that the customers arrive with burst mode. The following content is the result of the
simulation and analysis of the results.

78 Q. Luo et al.

4.1 Smooth Request Sequences

For this scenario, we used two sets of parameters, one for the situation that the
customer’s arrival request pressure is relative low and the entries for each tracker will
not be used up, another for the situation that the request pressure is relative high and
the entries for some trackers will be used up (for FEM). The parameters shows in
Table 1 and Table 2, where the Customer Number represents the number of
customers, and Tracker1, Tracker2, and Tracker3 represent the three Trackers in
GQ or QHL respectively.

Table 1. Parameters of low pressure

 Parameter1 Parameter2 Customer Number

Tracker1 0.5 0.6 200
Tracker2 0.5 0.6 120
Tracker3 0.5 0.6 80

Table 2. Parameters of high pressure

 Parameter1 Parameter2 Customer Number

Tracker1 0.9 0.6 200
Tracker2 0.9 0.6 120
Tracker3 0.9 0.6 80

The result of the simulation about low pressure is showed in Fig.9. We define the

time of the customer’s arrival with no stall cycles as the theoretical arrival time or the
ideal arrival time. In fact, when the entries for customers is used up , the customer
will have to stall some cycles and the following customer’s arrival time will
be pushed back. We define this arrival time as actual arrival time. The X axis is the
sequences of the customers; the Y axis is the time of the customer’s arrival in cycles.
The red curve is the customer’s theoretical arrival time; the blue curve is the
customer’s actual arrival time using FEM and the green curve for using DEM. As the
picture shows, the three curves are coincided, therefore we just can see one green
curve. That means under low pressure, whether use the FEM or DEM, there is no stall
cycles occur and the efficiency of this two arithmetic are the same.

Fig. 9. The time of customer’s arrival of the three Trackers under low pressure

 Optimization of Uncore Data Flow on NUMA Platform 79

Fig.10 shows the results of the simulation about high pressure. We can clearly see that
stall cycles occurred for all the three Trackers, because the red curve is lower than other
two curves in some time. For Tracker1, both FEM and DEM algorithm can provide
enough entries for customers at the beginning, so the green curve covers the blue and red
curve in the beginning. Then the blue curve begin to separate upward, this indicates that
the entries is slowly be used up with the increase of request of customers and some stall
cycles begin to appear for using DEM algorithm. But for FEM, the number of entries for
Tracker1 is relative more (32) and it can continue to meet the requests, so the blue curve
is coincided with the red curve. With the further increase of the requests of customers, the
blue curve begin to separate upward and the growing is faster than green curve. This
indicates that DEM algorithm begins to perform better than the FEM algorithm. It is
because the other Tracker may have free entries, DEM algorithm can use these free
entries for Tracker1. For Tracker2 and Tracker3, because of the entries for them is
relative few, the DEM performs decisive advantage over FEM.

Fig. 10. The time of customer’s arrival of the three Trackers under high pressure

We have also counted the average number of stall cycles of each customer of the
three Trackers. The result is showed in Fig. 11. Compared with FEM, the DEM
reduced the average number of stall cycles by 60 percent.

Fig. 11. Average stall time using FEM and DEM of Smooth request sequences

80 Q. Luo et al.

4.2 Burst Request Sequences

We adjusted the Parameter1 dynamically to simulate the burst scenario. The lowest
black arrow in Fig. 12 shows the trend of customers’ arrival when we adjust
parameter1 and the number below the black arrow is the size of parameter1. Larger
parameter1 indicates the interval of customers’ arrival is smaller, so the decreases of
the slope of the curves mean burst requests occur. The parameters setting is shows in the
table 3.

Table 3. Parameters of burst mode

 Parameter1 Parameter2 Customer Number

Tracker1 0.9（10.0） 0.6 200
Tracker2 0.9（10.0） 0.6 120
Tracker3 0.9（10.0） 0.6 80

Compared with Fig.10 and Fig.12, we can find that the trend of the curves is similar

to Fig.12. For Tracker1, in the same way as high pressure situation, because the entries of
tracker1 is relative more for FEM, the curve of DEM actual arrival time separated upward later
earlier than of FEM. For the three trackers, at the end of the burst, the number of stall cycles of
FEM begins to overtake those of DEM. what is different is that the blue curves and green
curves separate upward earlier in Fig. 12 than in Fig.10. Such as the Tracker2, the blue curve
separates almost at 30 cycles, while in Fig.10 it separates almost at 100 cycles. This is because
the burst occur at beginning of Tracker2, so the entries for Tracker2 is used up rapidly.

Fig. 12. The time of customer’s arrival of the three Trackers under dynamical pressure

For burst mode scenario, the DEM reduced the average number of stall cycles by
20% to 30%. The statistical result is showed in Fig.13.

 Optimization of Uncore Data Flow on NUMA Platform 81

Fig. 13. Average stall time using FEM and DEM of Burst request sequences

5 Conclusion

Uncore component is important for the whole NUMA system, because it is the data
transport center. We have found that serious traffic unbalance or congestion happens
here when using the current FEM mechanism in our previous studies. In this paper,
we proposed DEM mechanism and we used the Matlab to simulate two different data
flow pattern of GQ and QHL. According to the experimental results and our analysis
, we conclude that the DEM reduce almost 60% stall cycles under smooth request
sequences; and reduce almost 20~30% stall cycles under burst request sequences
DEM mechanism. Compared with fixed entries number in each tracker, we think that
dynamic distributing entries according to each tracker’s pressure have more
advantages. The DEM could improve entries’ usage rate and reduce trackers’ stall
time, therefore reduce stalling cycles of the preceding out-of-order instruction
execution pipeline and improve the performance of the whole NUMA system.

In addition, the implementation of DEM may need some additional hardware to
mark the entries and select the entries with the same label to get service by FIFO.

Future work: Our next work is to obtain the memory traces of various
multithreaded applications, so we can testify DEM efficiency on “real” memory
request sequence other than a Poisson process. Then we are going to design DEM
trackers for GQ and QHL in VHDL to verify its functionality and assess its hardware
overhead.

Acknowledgement. The research was jointly supported by the following grants:
China 863-2012AA010239, NSF-China-61170076, Foundation of Shenzhen City
under the numbers JCYJ20120613161137326, JCYJ2012061310222457, and
Shenzhen Polytechnic Foundation 601422K20008

82 Q. Luo et al.

References

1. Luo, Q., Kong, C., Zhou, Y., et al.: Understanding the Data Traffic of Uncore in Westmere
NUMA Architecture. In: 22th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing. IEEE, Turin (2014)

2. Advanced Micro Devices. AMD HyperTransport Technology-based system architecture
[EB/OL]. AMD, Sunnyval (May 2002),
http://www.amd.com/us/Documents/
AMD_HyperTransport_Technology_based_System_
Architecture_FINAL2.pdf

3. Maddox, R.A., Singh, G., Safranek, R.J.: A first look at the Intel QuickPath Interconnect
[EB/OL]. Intel Corporation, Hillsboto (April 28, 2009),
http://www.intel.com/intelpress/articles/
A_First_Look_at_the_Intel(r).QuickPath_Interconnect.pdf

4. Li, H., Tandri, S., Stumm, M., Sevcik, K.C.: Locality and loop scheduling on NUMA
multiprocessors. In: International Conference on Parallel Processing (ICPP). IEEE, New
York (1993)

5. Marathe, J., Mueller, F.: Hardware profile-guided automatic page placement for ccNUMA
systems. In: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM, New York (2006)

6. McCurdy, C., Vetter, J.C.: Memphis: Finding and fixing NUMA-related performance
problems on multi-core platforms. In: International Symposium on Performance Analysis
of Systems & Software (ISPASS). IEEE, New York (2010)

7. Ogasawara, T.: NUMA-aware memory manager with dominant-thread-based copying GC.
In: Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA). ACM, New York (2009)

8. Tikir, M.M., Hollingsworth, J.K.: NUMA-aware Java heaps for server applications. In:
Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, Colorado (2005)

9. Tikir, M.M., Hollingsworth, J.K.: Hardware monitors for dynamic page migration. Journal
of Parallel and Distributed Computing 68(9), 1186–1200 (2008)

10. Verghese, B., Devine, S., Gupta, A., et al.: Operating system support for improving data
locality on CC-NUMA computer servers. In: Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM Press, New York (1996)

11. Wilson, K.M., Aglietti, B.B.: Dynamic page placement to improve locality in CC-NUMA
multiprocessors for TPC-C. In: Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing (SC). ACM/IEEE, New York (2001)

12. Awasthi, M., Nellans, D.W., Sudan, K., et al.: Handling the problems and opportunities
posed by multiple on-chip memory controllers. In: 19th International Conference on
Parallel Architecture and Compilation Techniques(PACT). ACM, Vienna (2010)

13. Majo, Z., Gross, T.R.: Memory System Performance in a NUMA Multicore
Multiprocessor. In: Proceedings of the 4th Annual International Conference on Systems
and Storage (SYSTOR). ACM, New York (2011)

14. Luo, Q., Zhou, Y., Kong, C., Liu, G., Cai, Y., Lin, X.-H.: Analyzing the Characteristics of
Memory Subsystem on Two different 8-way NUMA Architectures. In: Hsu, C.-H., Li, X.,
Shi, X., Zheng, R. (eds.) NPC 2013. LNCS, vol. 8147, pp. 155–166. Springer, Heidelberg
(2013)

 Optimization of Uncore Data Flow on NUMA Platform 83

15. Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lepers, B., et al.: Traffic
management: A holistic approach to memory placement on NUMA systems. In: The 18th
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, Houston (2013)

16. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual
[EB/OL]. Intel Corporation (April 2010),
http://www.intel.com/content/dam/doc/manual/
64-ia-32-architectures-optimization-manual.pdf

17. Yang, R., Antony, J., Rendell, A., Robson, D., Strazdins, P.: Profiling directed NUMA
optimization on Linux systems: A case study of the Gaussian computational chemistry
code. In: The 25th IEEE International Parallel and Distributed Processing Symposium.
IEEE, Anchorage (2011)

18. Treibig, J., Meier, M., Hager, G., Wellein, G.: Poster - LIKWID:Lightweight performance
tools. In: The2011 High Performance Computing Networking, Storage and Analysis.
ACM, Seattle (2011)

19. NasPrallel Benchmark [CP],
http://www.nas.nasa.gov/publications/npb.html

20. STREAM Benchmark [CP], http://www.streambench.org/

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 84–95, 2014.
© IFIP International Federation for Information Processing 2014

APP-LRU: A New Page Replacement Method
for PCM/DRAM-Based Hybrid Memory Systems

Zhangling Wu1, Peiquan Jin1,2, Chengcheng Yang1, and Lihua Yue1,2

1 School of Computer Science and Technology,
University of Science and Technology of China, Hefei, China

2 Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, China
jpq@ustc.edu.cn

Abstract. Phase change memory (PCM) has become one of the most promising
storage media particularly for memory systems, due to its byte addressability,
high access speed, and low energy consumption. In addition, hybrid memory
systems involving both PCM and DRAM can utilize the merits of both media
and overcome some typical drawbacks of PCM such as high write latency and
limited lifecycle. In this paper, we present a novel page replacement algorithm
called APP-LRU (Access-Pattern-prediction-based LRU) for PCM/DRAM-
based hybrid memory systems. APP-LRU aims to reduce writes to PCM while
maintaining stable time performance. Particularly, we detect read/write intensi-
ty for each page in the memory, and put read-intensive pages into PCM while
placing write-intensive pages in DRAM. We conduct trace-driven experiments
on six synthetic traces and one real OLTP trace. The results show that our pro-
posal is able to reduce up to 5 times of migrations more than its competitors.

Keywords: Phase change memory, Page replacement policy, Hybrid memory.

1 Introduction

Recently, the big data concept leads to a special focus on the use of main memory.
Many researchers propose to use a large main memory to improve the performance of
big data processing. However, the increasing capacity of main memory introduces
many problems, such as increasing of total costs and energy consumption [1]. Both
academia and industries are looking for new greener memory media, among which
the Phase Change Memory (PCM) receives much attention [2]. PCM is one type of
non-volatile memories, and provides better support for data durability than DRAM
does. Further, it differs from other media such as flash memory in that it supports byte
addressability. Because of the unique features of PCM, some people argue that PCM
may replace DRAM in the future, as shown in Fig. 1(a). However, PCM has some
limitations, e.g., high write latency, limited lifecycle, slower access speed than
DRAM, etc. Therefore, it is not a feasible design to completely replace DRAM with
PCM in current computer architectures.

A more exciting idea is to use both PCM and DRAM to construct hybrid memory
systems, so that we can utilize the advantages from both media [2, 3]. PCM has the

A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 85

advantages of low energy consumption and high density, and DRAM can afford near-
ly unlimited writes. Specially, PCM can be used to expand the capacity of main
memory, and DRAM can be used as either a buffer for PCM, as shown in Fig. 1(b) or
the secondary main memory like DRAM, as shown in figure 1(c). Presently, both the
architectures illustrated in Fig. 1(b) and (c) are hot topics in academia and industries.
Many issues need to be further explored, among which the most focused issue is the
buffer management schemes for hybrid memory systems involving PCM and DRAM.
The biggest challenge for PCM/DRAM hybrid memory systems is that we have to
cope with heterogeneous media. Traditional management schemes yield some specific
page replacement policies that are designed either for DRAM-only main memory or
for the system shown in Fig. 1(b). However, in this paper we focus on the hybrid
memory systems with the architecture shown in Fig. 1(c).

Fig. 1. Architectures of PCM-based memory systems [4]

The objective of this paper is to design an efficient page replacement scheme for
PCM/DRAM-based hybrid memory systems as shown in Fig. 1(c). We propose a
novel method called APP-LRU (Access-Pattern-Prediction-aware LRU). This method
employs an algorithm to predict the access pattern changes and further uses the access
patterns to reduce writes to PCM and keep stable time performance for PCM/DRAM-
based hybrid memory systems. The main contributions of the paper are summarized
as follows:

(1) We present a new page replacement method named APP-LRU for
PCM/DRAM-based hybrid memory systems. APP-LRU records the access history of
each page using a history table to identify the read and write intensity of pages. As a
consequence, read-intensive pages are stored in PCM and write-intensive pages are
saved in DRAM. Further, we propose an LRU-based on-demand migration algorithm
to move pages between PCM and DRAM. (Section 3)

(2) We conduct trace-driven experiments in a simulated PCM/DRAM-based hybrid
main memory environment under six synthetic traces and one real OLTP trace, and
compare our proposal with several existing methods including LRU, CLOCK-DWF
and Hybrid-LRU. The results show that our proposal reduces up to 5 times of total
migrations more than its competitors. Meanwhile, it maintains comparable run time in
all experiments. (Section 4)

2 Related Work

PCM is a kind of alternative memory devices because of its merits such as high densi-
ty, low idle energy and so on. However, its limited life and long write latency is the

86 Z. Wu et al.

main obstacles when implement traditional main memory management policies on
PCM-based memory system.

There are many researches focus on reducing redundant writes to PCM, such as
enhancing the fine-grained management approach [2, 3] with a Data Comparison
Write (DCW) scheme that utilizes the bit alterability feature of PCM and only updates
the changed bits [5-7]. However, these works are towards hardware design, while this
paper employs a software-based research to reduce PCM writes. Moreover, Using
DRAM to gather data writes are also a commonly used method for reducing the total
number of writes to PCM [1, 8-11]. In this method, PCM is used as main memory,
and thus we have to cope with heterogeneous memories in such hybrid memory sys-
tems. This hybrid architecture brings new challenges to buffer management schemes,
because traditional page replacement policies mainly focus on improving hit ratios,
while new policies for hybrid memory systems have to consider the unique features of
different storage media in addition to keeping high hit ratios.

Recently, several page replacement policies have been proposed for PCM/DRAM-
based hybrid memory systems. The page replacement policy denoted as the “Hybrid-
LRU” method proposed by Hyunchul Seok et al. [10] and CLOCK-DWF proposed by
Soyoon Lee et al. [11] are based on hybrid PCM/DRAM main memory. Hybrid-LRU
monitors the access information of each page, assigns different weights to read and
write operations, and predicts page access patterns. After that, it moves write-
intensive data to DRAM and moves read-intensive data to PCM. However, inappro-
priate placement of a page when it is first read into memory will cause additional
migrations between PCM and DRAM. The main idea of CLOCK-DWF is placing
pages that are going to be updated to DRAM. If the data to be updated is currently
stored in PCM, a migration is triggered to move the data from PCM to DRAM, and if
DRAM is full at the same time, cold data stored in DRAM will be migrated to PCM.
But CLOCK-DWF may cause a lot of unnecessary data migrations between PCM and
DRAM since it often causes migrations if a page to be written is in PCM. As a conse-
quence, both Hybrid-LRU and CLOCK-DWF introduce lots of data migrations be-
tween PCM and DRAM. This situation will degrade the overall time performance of
buffer management schemes, because many additional CPU and memory operations
are introduced.

The LRU approach has been widely used in the buffer management for flash mem-
ory based data management [14, 15]. Our work differs from these works in that we
are mainly towards the architecture shown in Fig. 1(c). There are also some previous
works focusing on hybrid storage systems involving flash memory and magnetic disks
[16, 17]. These studies are orthogonal to our work, as we concentrate on the memory
layer but they focus on the SSD/disk layer shown in Fig. 1.

3 The APP-LRU Method

In this section, we describe the details of APP-LRU. APP-LRU aims for reducing
PCM writes but keeping stable time performance. For a tree-structured index, the leaf
nodes receive more updates than the internal nodes do. Generally, file data accesses
have certain access patterns. On the other side, the access patterns of data are usually

A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 87

stable during a certain time period [12]. This feature is used in our proposal to
improve the performance of buffer management.

The overall architecture of the hybrid memory system that APP-LRU is towards is
shown in Fig. 2. APP-LRU maintains three lists including one LRU list and two sub-
lists (denote as “List-PCM” and “List-DRAM”). The LRU list is used to maintain the
pages in both PCM and DRAM. A page is put in the MRU position of the LRU list
when it is accessed. The structures of both List-PCM and List-DRAM are shown in
Fig. 2. All the pages in List-PCM are divided into several groups, so are those pages
in List-DRAM. The pages in the same group of List-PCM have the same local-write
counts, and the pages in the same group of List-DRAM have the same local-read
counts. The local-read (or local-write) count is the number of read (or write) opera-
tions aggregated since the page is stored in DRAM (or PCM). For example, if a new
page is read from disk to PCM, its local-write count and total read/write count is 0, if
a page is migrated from DRAM to PCM, its local-write count is reset to 0, but total
read/write count does not change. Different groups are ordered by the local-read/write
count of the pages in the groups. The pages in the head group among List-PCM (List-
DRAM) have the maximum write (or read) counts. Whenever a page is read from disk
or moved from DRAM to PCM (or from PCM to DRAM), it is placed to the tail of
List-PCM (or List-DRAM). When a DRAM page is read or updated, its group will be
changed, either from List_PCM to List_DRAM or vice versa. Basically, APP-LRU
employs two algorithms. One is to predict page access patterns and the other is to
perform page replacement and migration. The details are described below.

Fig. 2. Overall architecture of hybrid system

3.1 Page Access Pattern Prediction

Unlike DRAM-only memory systems, a hybrid memory system consists of both PCM
and DRAM. First, storing data with frequent writes in PCM will introduce the prob-
lem of performance degradation, because the write operations to PCM spend much
more time than DRAM does. This will also reduce the lifetime of PCM. Second, read
and write amplification problems will occur because of data migrations between PCM
and DRAM. In order to reduce the number of extra read and write operations caused
by migrations, we propose a page access pattern prediction algorithm to predict the
future assess patterns of pages.

88 Z. Wu et al.

The basic idea of access pattern prediction is to record the read and write counts
for each logical page and then to distinguish read-intensive pages from write-intensive
pages. For this purpose, we first maintain some metadata as shown in Fig. 3.

Fig. 3. Metadata for recording page access information

If a page is selected as a victim to be replaced, we process the recorded metadata
using Equation (1).

).,(

),/(/)(

5001

1

<≤−=

−×+=×+×−=

ααβ

βαα prepreprecur SWRSSWRS

(1)

In Equation (1), R and W are the total counts of read and write operations to the re-
placed page during its staying in the memory. Spre is the ratio of page’s read count to
its write count in the past. Therefore, if the Spre of a page exceeds a certain threshold,
we regard this page as read-intensive. Otherwise, the page is marked as write-
intensive. Since the influence of access histories on the prediction of read and write
intensity is becoming weak with time, we introduce a degrading factor α to adjust
the influence of access histories to the prediction. On the other hand, the current reads
and writes have a big impact on the future access pattern, thus, it is necessary to in-
troduce a factor to reflect the importance of R/W in the prediction, as denoted as β in
(1). It is reasonable to set this factor larger than α because of the recency feature in
data accesses. In our method, we let β = 1−α , and α is smaller than 0.5.

Each page’s Spre is stored in the metadata table, which is used to decide where to
place if the page is accessed again in the future. The metadata table is stored in PCM,
and can be found even after power failure accidents. We limit the memory space used
for metadata table since the memory capacity is still small compared to disk. Howev-
er, the concrete capacity of the metadata table is decided based on the actual environ-
ment. We also use LRU to manage the metadata table in order to remain relatively hot
page access information in the metadata table. In order to alleviate wear out problem,
we introduce a small SRAM to buffer metadata table, and the information stored in
SRAM will be flush to PCM at set intervals. Since this method aims at logical pages,
so we can get the access information from the OS level.

A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 89

3.2 Page Replacement and Migration

In this section, we present the page replacement and migration procedure of APP-
LRU. We maintain a LRU list and two sub-lists. These lists are used to select victims
for replacement, as well as to perform page migrations.

When a page fault occurs, the space allocation for the faulted page is based on the
access history information in the metadata table (if exists). The page allocation algo-
rithm is shown in Algorithm 1. The function get_free_page() in Algorithm 1 return a
free memory page. If this function is called with a parameter dram (or pcm), the func-
tion will allocate a DRAM (or PCM) page (if exist), but if there is no free DRAM (or
PCM) page, the function will allocate a PCM (or DRAM) page (if exist), or allocate
the selected victim page from LRU position of LRU list (Before the victim is evicted,
we calculate its read/write ratio based on Equation (1), and store the value in metadata
table). If the faulted page does not have access histories after looking through the
metadata table (Line 1), we call the function without parameter which means faulted
page has no specific medium type requirement (Line 17). Otherwise, if the read/write
ratio of the faulted page exceeds a certain threshold R_W_Threshold, it means that the
faulted page probably tends to be read and should be placed in PCM, so we call
get_free_page() function with parameter pcm (Line 4). If the selected victim page is
in DRAM, we move the page that is in the head group of List-PCM to the location
occupied by the page to be replaced in DRAM (Line 6 ~ 8). Similarly, if the ratio is
less than the threshold, it means that the faulted page possibly is write-intensive and
should be stored in DRAM (Line 10 ~ 16). As a consequence, we get a free page for
accommodating the faulted page.

Algorithm 1. Page_Allocation
Input: faulted page addr p
Output: an empty memory page q
1: history(p) = get access history of page p in metadata table;
2: if (history(p) ≠ null) then /* the page p has been accessed before*/
3: if (history(p).Scur > R_W_Threshold) then
4: q = get_free_page(pcm);
5: if (q belongs to PCM) then return q;
6: else /*q belongs to DRAM*/
7: select r from the head of List-PCM;
8: move r to q and insert q to the tail of List-DRAM;
9: return q=get_free_page(pcm); /*r is empty, r belongs to PCM*/
10: else
11: q = get_free_page(dram);
12: if (q belongs to DRAM) then return q;
13: else /*q belongs to PCM*/
14: select r from the head of List-DRAM;
15: move r to q and insert q to the tail of List-PCM;
16: return q=get_free_page(dram); /*r is empty, r belongs to DRAM*/
17: return q = get_free_page();

Next, we explain the page replacement algorithm of APP-LRU, as shown in

Algorithm 2. If a requested page is not found in memory, we allocate a new space for
it using Algorithm 1. We also put the page to the MRU position in the LRU list (Line

90 Z. Wu et al.

1 ~ 5). If the page request is a read request and belongs to DRAM, we increment the
read count of the page and adjust the page’s position in List_DRAM. If the page re-
quest is a write request and belongs to PCM, we increment the write count of the
page, set a dirty mark, and adjust the page’s position in List_PCM. (Line 6 ~ 13).

The access pattern of normal data is not likely to change dramatically, so the
page’s read/write ratio can accurately reflect the access tendency after a long time
accumulation based on the theory of statistics. Why we don’t choose the read/write
ratio as the assessment standard of the migration? It is because the read/write ratio of
in memory pages is a short-term computed result, so have no statistical. Even more,
the pages that have a similar read/write ratio value may reflect different access fre-
quency, but the warmer page’s ratio is much more accurate if the moment when they
are read into main memory is close.

Algorithm 2. Page_Replacement

Input : page p logical address, operation type op

1: if (miss) then /* page fault */
2: q= Page_Allocation(p);
3: insert p to q and adjust the position of q in LRU list;
4: else
5: adjust the position of q in LRU;
6: if (op is read) then
7: read_count(p)++;
8: if (p is in DRAM) then
9: adjust the position of q in the List-DRAM;
10: else
11: dirty(p)=1; write_count(p)++;
12: if (p is in PCM) then
13: adjust the position of q in the List-PCM;

4 Experimental Results

In the experiments, we use the LRU policy [13] as the baseline method, and also
compare two different state-of-the-art approaches including CLOCK-DWF [11] and
Hybrid-LRU [10]. Both CLOCK-DWF and Hybrid-LRU are designed for
DRAM/PCM-based hybrid memory systems.

4.1 Experimental Setup

We develop a hybrid memory system simulator to evaluate the performance of page
replacement policies. The system adopts unified addressing mode, DRAM takes the
low-end addresses and PCM takes the high-end addresses. The page size is set to 2
KB. The total size of memory space is constant, and we vary the size of PCM used in
the hybrid memory system ranging from 50% to 86%, which corresponds to the ratio
of PCM to DRAM from 1:1 to 1:6 to evaluate the performance.

A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 91

We use both synthetic and real traces in the experiments, as shown in Table 1.
Memory footprint in the table refers to the amount of different pages that the traces
reference. There are six synthetic traces used with different localities and read/write
ratios. For example, the trace T9182 means that the read/write ratio in this trace is
90% / 10%, i.e., 90% reads plus 10% writes, and the reference locality is 80% / 20%,
indicating that 80% requests are focused on 20% pages. The real trace is a one-hour
OLTP trace in a bank system and contains 470,677 reads and 136,713 writes to a
20GB CODASYL database (the page size is 2KB).

Table 1. Synthetic and real traces used in the experiments

Trace
Memory
Footprint

Read/Write
Ratio

Locality
Total

Accesses
T9182 10,000 90% / 10% 80% / 20% 300,000

T9155 10,000 90% / 10% 50% / 50% 300,000

T1982 10,000 10% / 90% 80% / 20% 300,000

T1955 10,000 10% / 90% 50% / 50% 300,000

T5582 10,000 50% / 50% 80% / 20% 300,000

T5555 10,000 50% / 50% 50% / 50% 300,000

OLTP 51,880 77% / 23% ~ 607,390

4.2 Results on the Synthetic Traces

We use Equation (1) to predict defaulted pages’ access patterns. Before we conduct
the comparison experiments, we have to first determine the appropriate value of β to
minimize the total PCM writes. Fig. 4 shows the total PCM write counts under the
T5555 trace when we vary β from 0.5 to 1. It shows an obvious decrease and increase
trend of PCM writes when the value of β increases, and the write count is minimized
when β is 0.7. Therefore, we set the value of β as 0.7 in the following experiments.

Fig. 4. PCM write counts when varying the parameter β

92 Z. Wu et al.

Figure 5 shows the number of total PCM writes induced by page faults, write oper-
ations of traces and migrations between PCM and DRAM. From the figures, we can
see APP-LRU reduces maximum 11% total PCM writes with few migrate operations
compared to LRU. This is because that APP-LRU can effectively distinguish write-
intensive pages and store them in DRAM, making these pages’ write operations take
place on DRAM at the beginning. By doing so, it not only eliminates needless migra-
tions but also reduce PCM writes. As APP-LRU has no history information to predict
pages’ read/write intensity when a page is first accessed, the improvement is limited,
but we can get much more reduction as time goes by. The gap of PCM write counts
between APP-LRU and LRU increases gradually as PCM/DRAM size ratio increases
that means proposed policy perform much better when the PCM/DRAM ratio increas-
es. However, APP-LRU incurs more PCM writes than CLOCK-DWF in most cases,
that is because the PCM writes in CLOCK-DWF are only incurred by migration and

Fig. 5. Total PCM write counts on synthetic traces

A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 93

page fault, and every write operation from workloads only happens on DRAM no
matter where the page located in, which will induce a large number of migrations
when the write operation is hit in PCM and have a significant effect on memory
access latency.

Figure 6 shows the total migrations between PCM and DRAM of various replace-
ment algorithms. Figure 5 shows CLOCK-DWF incurs minimum PCM writes com-
pared to others, but Fig. 6 shows that it takes much more migrations in most cases
which will introduce extra memory writes and reads. From this figure, both CLOCK-
DWF and Hybrid-LRU incur much more migrations in most cases, but APP-LRU
reduces nearly up to five times total migrations more than CLOCK-DWF. The migra-
tions of our proposal on T9155 and T9182 are a bit larger than CLOCK-DWF. This is
because that the migrations of CLOCK-DWF are only triggered by write operations,
but in T9155 and T9182 there are only 10% write operations.

Fig. 6. Total migrations on the synthetic traces

94 Z. Wu et al.

4.3 Results on the Real OLTP Trace

Figure 7 shows the results on the real OLTP trace. The left part of Fig. 7 shows the
total writes on PCM. The OLTP trace exhibits a read-incentive pattern and its read
locality is much higher compared with write locality. These characteristics make
APP-LRU cannot distinguish the write-intensive page since most pages are read-
intensive with only few write operations. From the figure, we still can identify that
APP-LRU reduce PCM’s writes compared with LRU, which means APP-LRU policy
is effective against reducing trace’s write operations located on PCM. In conclusion,
the APP-LRU algorithm has poor effect on reducing PCM write counts, but is better
than both CLOCK-DWF and LRU. Furthermore, APP-LRU still can reduce the total
PCM write counts as the size of PCM is larger than DRAM.

The right part of Fig. 7 shows total migrations for real OLTP trace. From the fig-
ure, we can see that the migrations of our proposal decrease as the PCM/DRAM ratio
augments, and while the migrations of its competitors grow. Our method can reduce
average 2 times total migrations against its competitors to reduce writes of PCM,
while CLOCK-DWF incurs maximum migrations but cannot obtain any reduction of
the total writes of PCM. The total performance of APP-LRU outperforms both Hybr-
id-LRU and CLOCK-DWF because the miss rate and the large number of migrations
of both Hybrid-LRU and CLOCK-DWF are larger than others.

Fig. 7. PCM write counts and total migrations on the real OLTP trace

5 Conclusion

This paper proposes an efficient page replacement policy called APP-LRU for
PCM/DRAM-based hybrid memory systems. APP-LRU introduces a metadata table
to record the access histories of pages and propose to predict the access patterns of the
pages in the memory. Based on the predicted access patterns, either read-intensive or
write-intensive, APP-LRU determines to put pages in PCM or DRAM. Through com-
prehensive experiments on six synthetic traces and one real trace, we demonstrate that
our proposal can effectively reduce PCM writes with few migrations.

A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems 95

Acknowledgement. This paper is supported by the National Science Foundation of
China (No. 61073039, 61379037, and 61272317) and the OATF project funded by
University of Science and Technology of China.

References

1. Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., Keller, T.W.: Energy
management for commercial servers. IEEE Computer 36(12), 39–48 (2003)

2. Qureshi, M.K., Vijayalakshmi, S., Rivers, J.A.: Scalable high performance main memory
system using phase-change memory technology. In: Proc. of ISCA, pp. 24–33. ACM,
New York (2009)

3. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a scala-
ble DRAM alternative. In: Proc. of ISCA, pp. 2–13. ACM, New York (2009)

4. Chen, S., Gibbons, P.B., Nath, S.: Rethinking database algorithms for phase change mem-
ory. In: Proc. of CIDR, pp. 21–31 (2011)

5. Yang, B.-D., Lee, J.-E., Kim, J.-S., et al.: A Low Power Phase-Change Random Access
Memory using a Data-Comparison Write Scheme. In: Proc. of ISCAS, New Orleans, USA,
pp. 3014–3017 (2007)

6. Zhou, P., Zhao, B., Yang, J., Zhang, Y.: A durable and energy efficient main memory us-
ing phase change memory technology. In: Proc. of ISCA, pp. 14–23. ACM, New York
(2009)

7. Cho, S., Lee, H.: Flip-N-Write: A simple Deterministic Technique to Improve PRAM
Write Performance, Energy and Endurance. In: Proc. of MICRO, pp. 347–357. ACM, New
York (2009)

8. Park, H., Yoo, S., Lee, S.: Power management of hybrid dram/pram-based main memory.
In: Proc. of DAC, pp. 59–64. ACM, New York (2011)

9. Dong-Jae Shin, S.K., Park, S.M.: Kim and K. H. Park. Adaptive page grouping for energy
efficiency in hybrid PRAM-DRAM main memory. In: Proc. of ACM RACS, pp. 395–402.
ACM, New York (2012)

10. Seok, H., Park, Y., Park, K., Park, K.H.: Efficient Page Caching Algorithm with Prediction
and Migration for a Hybrid Main Memory. ACM SIGAPP Applied Computing Re-
view 11(4), 38–48 (2011)

11. Lee, S., Seoul Bahn, H., Noh, S.C.-D.: a write-history-aware page replacement algorithm
for hybrid PCM and DRAM memory architectures. IEEE Transactions on Computers
PP(99), 1 (2013)

12. Liu, S., Huang, X., et al.: Understanding Data Characteristics and Access Patterns in a
Cloud Storage System. In: Proc. of CCGrid, pp. 327–334 (2013)

13. Coffman, E.G., Denning, P.J.: Operating Systems Theory, ch. 6, pp. 241–283. Prentice-
Hall (1973)

14. Jin, P., Ou, Y., Haerder, T., Li, Z.: ADLRU: An Efficient Buffer Replacement
Algorithm for Flash-based Databases. In: Data and Knowledge Engineering (DKE),
vol. 72, pp. 83–102. Elsevier (2012)

15. Li, Z., Jin, P., Su, X., Cui, K., Yue, L.: CCF-LRU: A New Buffer Replacement Algorithm
for Flash Memory. IEEE Trans. on Consumer Electronics 55(3), 1351–1359 (2009)

16. Yang, P., Jin, P., Yue, L.: Hybrid Storage with Disk Based Write Cache. In: Proc. of
DASFAA Workshops 2011, pp. 264–275 (2011)

17. Yang, P., Jin, P., Wan, S., Yue, L.: HB-Storage: Optimizing SSDs with a HDD Write Buf-
fer. In: Proc. of WAIM Workshops 2013, pp. 28–39 (2013)

Towards Relaxed Rollback-Recovery Consistency
in SOA�

Jerzy Brzeziński, Mateusz Hołenko, Anna Kobusińska, Dariusz Wawrzyniak,
and Piotr Zierhoffer

Institute of Computing Science
Poznań University of Technology, Poland

{jbrzezinski,mholenko,akobusinska,dwawrzyniak,
pzierhoffer}@cs.put.poznan.pl

Abstract. Nowadays, one of the major paradigms of distributed pro-
cessing is SOA. To improve the reliability of SOA-based systems, a Re-
ServE service that ensures recovery of consistent processing state, has
been proposed. ReServE introduces a high overhead during failure-free
computing. Thus, in this paper we propose relaxed recovery consistency
models that allow optimization of rollback-recovery in SOA. We propose
their formal definitions, and discuss the conditions under which these
models are provided by ReServE.

Keywords: SOA, web services, fault tolerance, message logging,
rollback-recovery, consistency.

1 Introduction

In the recent years, the rapid growth of development and deployment of service-
oriented systems (SOA) has been observed [8]. Although SOA-based systems
have many advantages, they are also highly error-prone. Failures of SOA com-
ponents, lead to limitations in the availability of services, affecting the reliability
of the whole system. Such a situation is highly undesirable from the viewpoint
of SOA clients, who expect that provided services are reliable and available. To
improve reliability of SOA-based systems and applications, different approaches
may be applied. Among them are: replication, transaction-based forward recov-
ery (which requires the user to explicitly declare compensation actions), and the
rollback-recovery checkpoint-based approach [5].

In many existing SOA systems, in case of service failure, the compensation
procedure is often applied to withdraw the effects of the performed request [2,9].
However, there are situations, when compensation procedure is either impossi-
ble, or it can be prohibitively expensive. In such situations, the rollback-recovery
approach [6], known from the general distributed systems can be applied. Un-
fortunately, the rollback-recovery techniques for general distributed systems do
� This work was supported by the Polish National Science Center under Grant No.

DEC-2011/03/D/ST6/01331

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 96–107, 2014.
c© IFIP International Federation for Information Processing 2014

Towards Relaxed Rollback-Recovery Consistency in SOA 97

not into account specific properties of SOA systems, among which are: the au-
tonomy of nodes, loose-coupling, heterogeneous nature of the environment, the
dynamic nature and the longevity of interactions, and the inherent constant in-
teraction with the outside world. As a consequence, web services should not be
forced to take a checkpoint or to roll back in case of the fault-free execution.
They can also refuse to inform other services on checkpoints they have taken.
Therefore, there is a need for rollback-recovery mechanisms specially tailored for
SOA architectures.

Responding to this need, we proposed ReServE (Reliable Service Environ-
ment), which aims in increasing the SOA fault-tolerance [3,4]. ReServE while
preserving services autonomy, ensures at the same time that in the case of failure
of one or more system components (i.e. web services or their clients), a coher-
ent state of distributed processing is recovered. ReServE focuses on seeking
automated mechanisms that do not require the user intervention in the case of
failures, and are other than transactions or replication. The proposed service can
be used in any SOA environment, though it is particularly well-suited for the pro-
cessing which does not have the transactional character, and for the applications
that do not use the business process engines with internal fault-tolerance mech-
anisms (e.g. BPEL). It also respects the independence of the service providers,
allowing them to implement their own fault-tolerant policies.

ReServE guarantees that the recovered execution is perceived by all partic-
ipants of the processing in a consistent manner. Since, according to our best
knowledge, the notion of a consistent recovery state has not been clearly de-
fined and formalized in the context of the SOA, during recovery we followed
the intuitive approach, by which the recovered state is said to be consistent,
if it reflects the observable behavior of the system before the failure. In this
paper, we clearly define and formalize the notion of a strict SOA-based recov-
ery consistency model, implemented in ReServE until now. Because providing
such a strict recovery consistency introduces a large overhead during the failure-
free computing, we discuss under which conditions a strict recovery consistency
can be relaxed. Consequently, we propose formal definitions of relaxed recovery
consistency models that allow the recovered service state to differ from the one
before the time of failure. We also determine which interactions (and in which or-
der) have to be recovered by ReServE service, to ensure the continuation of the
processing consistent accordingly to the proposed relaxed recovery consistency
models.

The rest of the paper is structured as follows: section 2 presents system model
and basic definitions. Section 3 describes the general idea of ReServE, which
summarizes already presented service, and is included in order to make a pa-
per self-contained. The main contribution of this paper is contained in Sections
4 and 5, where the formal definition of strict consistency model is presented,
and relaxed recovery consistency models are proposed. Next, in Section 6 it
is analyzed how the proposed recovery consistency models are realized within
ReServE service. Finally, Section 7 concludes the paper.

98 J. Brzeziński et al.

2 System Model and Basic Assumptions

Throughout this paper, SOA system model is considered. We focus on REST-
ful web services [10], exposed as sets of resources, and identified by a uniform
resource identifier (URI) mechanism. Resources can be characterized as a set
of data items, which may be simple variables, files, objects of object-oriented
programming language, etc. A client may interact with such services employing
the HTTP protocol operations, with their customary interpretation. Services
are published by service providers Sk ∈ S and accessed by service consumers
(clients) Ci ∈ C. The basic interaction between a client and a service consists
of service invocation (an event at the client side), and its execution (an event
at the server side). The code to be executed, i.e. the implementation of ser-
vice functionality is termed a method. Invocations and executions correspond
to communication events at the protocol level. Invocation starts with sending
a request message from a client to a server, and matching receipt at the server
side. Execution finishes with a reply message sent from the server to the client.
The receipt of the reply completes the invocation. The sequence of interactions
between clients and web services will be called a business process. Both clients
and services are piece-wise deterministic. Services can concurrently process only
such requests that do not require access to the same or interacting resources.
Otherwise, the existence of a mechanism serializing access to resources, which
uniquely determines the order of operations, is assumed.

According to the REST rules, communication in the considered system is
stateless, which means that each request contains all the information necessary
to understand the request, independently of any requests that may have pre-
ceded it. The considered communication channels are reliable (the reliability is
ensured by retransmission of messages and appropriate filtering of duplicates),
but they do not guarantee FIFO property. Additionally, the crash-recovery model
of failures is assumed, i.e. system components may fail and recover after crash-
ing a finite number of times [1]. Failures may happen at arbitrary moments, and
we require any such failure to be eventually detected, for example by a Failure
Detection Service [7]. Furthermore, we assume that each service provider may
use different mechanisms to provide fault tolerance. By a recovery point we will
denote an abstraction describing a consistent state of the service, which can
be correctly recovered after a failure, but we do not make any assumptions on
how and when such recovery points are made (to make a recovery point logs,
checkpoints, replicas and other mechanisms may be used). Each service takes re-
covery points independently. Similarly, the client may also provide its own fault
tolerance techniques to save its state.

3 ReServE — The General Idea

In this section, the design choices and concepts behind ReServE service are
presented. The detailed description of ReServE has already been presented in
[3,4], and is included here in order to make a paper self-contained. Due to the

Towards Relaxed Rollback-Recovery Consistency in SOA 99

fact that interactions between clients and services result in possible resource
state changes, they entail the client-service inter dependencies. Because in SOA
the autonomy of services is assumed, the failure of one process should not in-
fluence the processing of other processes, and should not force them to rollback
when they have not failed. Since service providers do not provide information on
the internal implementation of services, it is not known which events introduce
inter-process dependencies. Therefore, the recovery of a failed service should be
isolated to avoid the cascading rollbacks of other processes.

The architecture of ReServE is shown in Fig. 1. It has a modular construc-
tion, and includes Recovery Management Units (RMU), Client Intermediary
Modules (CIM) and Service Intermediary Modules (SIM). The main task of
RMUs is increasing the reliability of performed business processes. RMUs store
all requests and responses exchanged by business process participants in their
Stable Storage able to survive all failures. As a result, the RMU modules posses
a complete history of communication, which is used during rollback and recov-
ery of business processes. The remaining CIM and SIM units serve as proxies
for clients and servers. They make ReServE transparent to participants of the
communication, and allow to fully control the flow of messages in the system by
intercepting messages issued by clients and servers. Additionally, SIMs monitor
the services status and react in the case of its failure by initiating and managing
the service rollback-recovery procedure.

SIM

RMUN

RMU1

Client B SIM

CIM

CIM

... Service X

Service Y

1

3
5

74,8

2

6

Fig. 1. ReServE architecture

Each service is registered in one RMU (default or master RMU), but the
single RMU can be used by many services. In turn, the client can be registered
simultaneously in many RMUs, but always one of them stores information on
other RMU ’s used by the client. The request issued by a client to a service
is intercepted by client’s CIM , and forwarded to its master RMU (1). If the
required service is registered in RMU , the request is saved in RMU ’s Stable
Storage, and forwarded to the service through its SIM (2). Otherwise, client’s
master RMU obtains the URI of requested service RMU from its SIM (3),
and sends back this information to CIM (4), which reissues the request to a
proper RMU (5, 6). The service processes request and sends the response back
to RMU (7). The response is saved in the Stable Storage and forwarded to the
client through CIM (8). If the RMU module obtains the client’s request, to
which the response has already been saved, then saved response is sent to the
client, and there is no necessity to send the request once again to the service,
which provides exactly-once execution of a client’s request.

100 J. Brzeziński et al.

4 Strict Recovery Consistency Model

In ReServE, the consistent recovery assumes the recovery of all events that
have occurred before the failure in the same order as during the original exe-
cution. In effect, the recovered service reaches the state from before the failure.
This approach lacks proper theoretical foundations — according to our best
knowledge, neither the notion of a consistent recovery state has been clearly
defined and formalized in the context of SOA, nor the requirements of the con-
sistency have been specified. Finding the consistent state of SOA computation
is important for analyzing, testing or verifying properties of these computations.
Thus, the lack of formally specified and recognized consistency requirements for
SOA-compliant processing gravely prohibits the construction of provably correct
rollback-recovery protocols. Therefore, this paper aims at giving the necessary
formal basis for any further in-depth research in this field.

In this section the strict recovery consistency model (AllRequests) that
corresponds to ReServE pessimistic approach is proposed. The failure occur-
rence in this case is fully masked, and the recovery is transparent from the view-
point of clients and services. In the formal definition of this model, the notation
presented below is used.

The set of all methods provided by a service is denoted by M. They ei-
ther modify (possibly also read) or only read the service state (they belong
to sets MM and MR respectively). When a client Ci invokes a service Sj by
sending the x-th request req that refers to a resource res an event denoted by
reqxCi

(Sj , op, res) is produced. The parameter op of this event denotes the type
of method (op ∈ M) to be executed by the service in the result of obtaining
the request. In turn, recv_repxCi

(Sj , res) represents the event produced when
a client Ci obtains from a service Sj the reply rep to its x-th request req; re-
sult of execution of req is return in res. The corresponding events at a service
Sj , are: recv_reqxSj

(Ci, op, res) and repxSj
(Ci, op, res). The former denotes the

event produced when Sj receives the appropriate request from Ci. The latter
represents the event produced when the service Sj has finished the execution
of the request , and sends a reply to Ci. For the sake of the simplicity, if some
element in the above notation is unimportant or obvious in the context, it can be
omitted. The local history of a service Sj is denoted by HSj = E0

jE
1
jE

2
j . . . E

n
j .

Events that occur at service Sj are ordered by relation
Sj

�, called service execu-
tion order. In turn, the relation of events that occurs during service recovery is

represented by
Sj

�, and is called service recovery execution order.
Each time when the failure of service Sj occurs, a crash event denoted by f∗

is produced. In turn, in a moment of recovery a restart event fˆ occurs. Thus,
service state at the moment of event fˆ occurrence is equivalent (in the result of
the performed rollback) to the state saved in the latest recovery point RPSj . We
denote the local history of a service Sj comprising events that occurred after the
service recovery point RPSj was taken, but before the crash event f∗ by H≺f

∗
Sj

.
In turn, the local history of service Sj comprising events that occurred after

Towards Relaxed Rollback-Recovery Consistency in SOA 101

the restart event is denoted by H�f
ˆ

Sj
. Consequently, repSj (Ci, op, res) ∈ H≺f

∗
Sj

denotes the event of sending reply lost due to the failure by a service Sj to a client

Ci, and recv_reqSj (Ci, op, res) ∈ H�t
ˆ

Sj
indicates that the event of receiving

request by service Sj from client Ci was recovered after the restart event fˆ .
Informally, the recovered service state is said to be consistent according to

strict recovery consistency model, if after recovery from a failure, the service state
reflects the execution of all requests obtained from clients and other services,
and performed by this service before its failure. Moreover, the order of recovered
requests is the same as it was before the failure. Below, the formal definition of
AllRequests recovery consistency model is presented:

Definition 1. Let o1, o2 ∈ M be methods provided by a service Sj. The re-
covered service state is consistent according to strict recovery consistency
model (AllRequests), iff for all events recv_reqSj (Ci, o1), recv_reqSj (Ck, o2)
that represent requests obtained by service Sj, and repSj (Ci, o1), repSj (Ck, o2)
that are replies issued by Sj after performing methods o1 and o2, the following
condition holds:

repSj (Ci, o1) ∈ H≺f
∗

Sj
⇒ recv_reqSj (Ci, o1) ∈ H�f

ˆ
Sj
∧

∀repSj (Ci, o1), repSj (Ck, o2) ∈ H≺f
∗

Sj
:: repSj (Ci, o1)

Sj

� repSj (Ck, o2) ⇒
recv_reqSj (Ci, o1))

Sj

� recv_reqSj (Ck, o2)

The above definition says that if a method o1 was performed before the service
failure (i.e. the event of sending a reply after performingo1 belongs to history
H≺f

∗
Sj

of events performed by Sj before the failure), then the method o1 is
recovered. This implies that the event of receiving request that invokes o1 is

applied again after the service restart, and belongs to history H�f
ˆ

Sj
of events

performed by service Sj after its rollback. Moreover, if replies to o1 and o2 were
issued before the failure in a specified service execution order, their execution
order is the same during the recovery. A formal specification allows unambiguous
determination of the set of requests that can not be missed during the recovery,
because they are necessary to meet the recovery consistency model.

5 Relaxed Recovery Consistency Models

Service providers supply clients with a set of methods that allow them to benefit
from the functionality offered by services. Depending on the characteristics of a
service and the nature of its methods, the execution of these methods differently
affects the service state. Some methods are past-operations-aware, i.e. they take
into account the history of service processing in order to modify the service state,
whereas the execution of other methods invalidates the previous service history,
or part of it. Therefore, although some methods modify the service state, they
are irrelevant to the overall service computation due to the method specificity.

102 J. Brzeziński et al.

To illustrate this, let us consider a counter service that provides the following
methods: inc(x) that increases a value of the counter resource by x, dec(x) —
decreasing a value of the counter by x, and set(x), which sets the counter value for
x. Further, let us assume that the following sequence of methods was performed:
inc(5), dec(3), set(7), dec(1). After the failure occurrence only methods set(7),
and dec(1) have to be recovered, because the result of execution of methods
inc(5), and dec(3) was overridden by the execution of a method set(7).

Re-execution of irrelevantmethods can be omitted during the rollback-recovery,
without changing the meaning of processing and its result. Consequently, such
methods also need not to be logged. This implies that some services do not require
a strict recovery consistency model to recover processing perceived as consistent.
Below, we propose relaxed recovery consistency models that allow optimization
of the rollback-recovery. In order to alleviate requirements regarding the consis-
tent processing state, we assume that service provider delivers basic information
on the character of methods it executes during service processing.

Every Modification Recovery Consistency Model. Lessons learned from
the message-passing systems, in which read messages are neglected during the
process rollback-recovery, enabled us to divide methods into lookup and modi-
fying. Methods from the first group do not change the state of a service, so they
can be considered irrelevant from the service point of view, and as such they can
be omitted during the recovery of a service state. In turn, all modifying methods
performed before the failure have to be recovered in the case of a service failure.
Moreover, the order of their execution before the failure have to be maintained
after the recovery. A recovery consistency model that ensures this assumption is
called every modification recovery consistency model (EveryMod).

Definition 2. Let o1, o2 ∈MM be modifying methods provided by a service Sj.
The recovered service state is consistent according to every modification re-
covery consistency model (EveryMod), iff for all events recv_reqSj (Ci, o1),
recv_reqSj (Ck, o2) that represent requests obtained by service Sj, and
repSj (Ci, o1), repSj (Ck, o2) that are replies issued by Sj after performing o1
and o2, the following condition holds:

repSj (Ci, o1) ∈ H≺f
∗

Sj
⇒ recv_reqSj (Ci, o1) ∈ H�f

ˆ
Sj
∧

∀repSj (Ci, o1), repSj (Ck, o2) ∈ H≺f
∗

Sj
:: repSj (Ci, o1)

Sj

� repSj (Ck, o2) ⇒
recv_reqSj (Ci, o1))

Sj

� recv_reqSj (Ck, o2)

EveryMod recovery consistency model loosens AllRequests model by taking into
account only operations that modify service state (o1, o2 ∈ MM) instead of
all operations performed before the failure. EveryMod can be applied to all e-
commerce services. Let us consider an on-line store. Purchasing or returning
products bought in this store changes the amount of available products and the
store’s budget. After a service failure, all performed purchases and returns have
to be recovered. On the other hand, when a client just checks if the item is

Towards Relaxed Rollback-Recovery Consistency in SOA 103

offered by on-line store or how much it costs, then the request corresponding to
above method can be omitted during recovering a service state.

Important Modification Recovery Consistency Model. Let us consider
that among modifying methods provided by a service, there is a set of methods
that are significant for providing a service functionality. The execution of such
methods does not take into account the history of other, previously performed
methods. Therefore, during the rollback-recovery only significant methods have
to be recovered.

A recovery consistency model that differentiates service modifying methods,
and distinguishes a set of methods significant for supplying service functionality
is called important modifications recovery consistent model (ImpMod).
The execution of significant methods does not take into account the history of
previously performed methods, which are not significant. Informally ImpMod
recovery consistency model implicates that all requests of significant methods
have to be recovered. The execution order of recovered requests corresponds
to their execution order before the failure occurrence. When significant methods
have not been executed before the failure, then all modifying requests have to be
recovered. Finally, requests modifying service state invoked after the execution
of the last request of a significant method also have to be recovered.

Definition 3. Let o ∈ MM be modifying methods provided by a service Sj,
and o′ ∈ MS be significant methods provided by Sj , where MS denotes the
set of significant methods MS ⊂ MM . Further let o1, o2 be methods of the
same type (o1, o2 ∈ MS or o1, o2 ∈ MM). The recovered service state is
consistent according to ImpMod recovery consistency model, iff for all
events recv_reqSj (Ci, o), that represent requests obtained by service Sj, and
repSj (Ci, o) that are replies issued by Sj, the following condition holds:

(
∀repSj

(Ci, o′) :: repSj
(Ci, o′) ∈ H≺f∗

Sj

)
⇒ recv_reqSj

(o′) ∈ H�fˆ
Sj

∧
∀repSj

(Ci, o) ∈ H≺f∗
Sj

::[(
�repSj

(Ci, o
′) ∈ H≺f∗

Sj
:: repSj

(Ci, o)
Sj

� repSj
(Ci, o

′)
)

⇒ recv_reqCi
(o) ∈ H�fˆ

Sj

]
∧

(
∀recv_reqSj

(Ci, o1), recv_reqSj
(Ck , o2) ∈ H≺f∗

Sj
:: repSj

(Ci, o1)
Sj

� repSj
(Ck , o2)

)

⇒
(
recv_reqSj

(Ci, o1)
Sj

� recv_reqSj
(Ck , o2)

)

Above definition states that every significant method performed before the fail-
ure is recovered, because when the reply issued after the execution of signifi-
cant method o′ belongs to history H≺f

∗
Sj

of events performed by Sj before the
failure, then the request of method o1 is re-invoked by Sj after its restart,

and belongs to H�f
ˆ

Sj
(first condition). Further, it is said that all modifying

methods o executed before the failure (for which repSj (Ci, o) ∈ H≺f
∗

Sj
) that

were not followed by any significant method o′. In other words, if there exists
no significant method o′ invoked after the invocation of modifying methods o:

104 J. Brzeziński et al.

(

�repSj (Ci, o
′) ∈ H≺f

∗
Sj

:: repSj (Ci, o)
Sj

� repSj (Ci, o
′)
)

, then the invocation of

modifying methods is recovered and belongs to the history H�f
ˆ

Sj
(second condi-

tion). Finally, the execution order during recovery procedure corresponds to the
execution order before the failure.

To illustrate the application of ImpMod recovery consistency model let us
assume that a service provides clients a virtual shopping basket, and supplies
methods to operate on it (add and remove), as well as to finalize electronic
shopping (buy). When a client adds or removes products from the basket, the
amount of available products changes, what is reflected in the state of the on-line
store. After the failure occurrence, when the on-line store restarts its work, the
shopping basket of a client should comprise all products that have been added
to it before the failure (the history of methods performed by a client consists of
a sequence of add and remove). However, when the client finalizes its shopping
the shopping basket is emptied. After recovery the history of performed actions
contains only the information on finalizing shopping (there is just a buy method).

Latest Modification Recovery Consistency Model. Among modifying
methods there can be distinguished those that override the service state, with-
out taking into account the prior history of states. In such case, only the lat-
est executed method is essential for the proper recovery of the service state,
and as such it should be persistent. A recovery consistency model that ensures
this assumption is called latest modification recovery consistency model
(LatestMod).

Definition 4. Let o1, o2 ∈ ML be modifying methods that belong to the set ML

of methods that override a service state, where ML ⊂ MM . The recovered ser-
vice state is consistent according to LatestMod recovery consistency model,
iff for all events recv_reqSj (Ci, o1), recv_reqSj (Ci, o2) that represent requests
obtained by service Sj, and repSj (Ci, o1), repSj (Ci, o2), that are replies issued
by Sj, the following condition holds:

(

∀repSj (Ci, o1), repSj (Ci, o2) ∈ H≺f
∗

Sj
:: repSj (Ci, o1)

Sj

� repSj (Ci, o2)

)

⇒
(

recv_reqSj (Ci, o2) ∈ H�f
ˆ

Sj

)

The key difference between ImpMod and LatestMod recovery consistency mod-
els consists in recovering only the single, latest request performed by the service
before the failure in the case of the LatestMod mode. In contrast for the Lat-
estMod recovery consistency model, in ImpMod a set of requests is recovered.
Continuing the example of the on-line store, let us assume that a client of the
on-line store manages its client’s account profile. A client can change his/her
personal details. Every modification of the client account is binding, so only the
latest modification one is recovered.

Towards Relaxed Rollback-Recovery Consistency in SOA 105

No Modifications Recovery Consistency Model. In case of some services,
the modifying methods can be unheralded from the viewpoint of such services.
This is a case, of all services that mediate in the execution of methods requested
by a client, and act as proxy services. Such services refer requests from clients
to appropriate services providing functionality required by clients. A recovery
consistency model that refers to intermediary services, that only mediate in
the processing between clients and other services, is called no modification
recovery consistency model (NoMod).

Definition 5. Let o1, o2 ∈ MM be modifying methods. The recovered service
state is consistent according to NoMod recovery consistency model, iff for
all events recv_reqSj (Ci, o1), recv_reqSj (Ci, o2) that represent requests obtained
by service Sj, and repSj (Ci, o1), repSj (Ci, o2), that are replies issued by Sj, the
following condition holds:

(
∀repSj (Ci, o1), repSj (Ck, o2) ∈ H≺f

∗
Sj

)
⇒ H�t

ˆ
Sj

= Ø

6 Discussion on the Consistent Recovery Problem

In this section we discuss the realization of the proposed recovery consistency
models in the context of ReServE. In order to recover a service state that is
consistent according to a required recovery consistency model, a set of requests
that should be re-executed after the service failure has to be designated. Also,
the order in which the chosen requests are performed during the service recov-
ery has to be determined. Therefore ReServE service makes some necessary
assumptions, and introduces internal mechanisms, to solve this problem. We
discuss them briefly below.

In order to provide the correct recovery, the requests should be re-executed
in the appropriate order. For this purpose, each reply sent by the service has a
unique identifier, called ResponseId, which is assigned by a service. Relying on
the provided formal specifications of the models presented in section 5, we deter-
mine which messages have to be kept by the RMU and resent to a service, during
its recovery. Since AllRequests model is the most general recovery consistency
model, we only describe the way it differs from other models. Moreover, actions
performed by other modules (specifically SIM) are the same for all consistency
models and are described in [3,4].

AllRequests recovery consistency model requires all requests to be saved. Only
when a service informs about a new recovery point, RMU is allowed to remove
older messages. Having received a request to start recovery process beginning
with a certain message, denoted lowestReqId, RMU resends a set of messages
determined by the following predicate:

toRecover = {reqSj : (repreqSj
∈ SavedReplies∧

repreqSj
.ResponseId ≥ lowestReqId) ∨ (repreqSj

	∈ SavedReplies)}
The toRecover predicate chooses all messages directed to the given service, for

which a reply has been saved with identifier greater or equal to the one requested

106 J. Brzeziński et al.

by the service. Also all requests without an answer kept by RMU are chosen to
be resent. EveryMod recovery consistency model differs from the strict one in
two aspects. Firstly, a receipt of reply allows RMU to forget the content of the
corresponding request. However, for the sake of a client recovery the reply must
be still kept by ReServE. The request, on the other hand, will never be used
again, so it’s content can be safely discarded. To preserve a possibility to recover
client states, the metadata of the requests has to be retained. After a failure, a
set of messages to be re-executed is described by:

toRecover = {reqSj : reqSj}.TheContent ��= ∅ ∧ ((repreqSj
∈

SavedReplies ∧ repreqSj
.ReplyId ≥ lowestReqId)∨ (repreqSj

�∈ SavedReplies))

RMU chooses requests directed to the given service in a similar fashion to
AllRequests algorithm, but now it omits the requests without any content, as
they were deemed irrelevant to the recovery process. ImpMod recovery consis-
tency model is a specific version of EveryMod model. Both models consider only
modifying requests, but ImpMod allows RMU to reduce the amount of repeated
messages even more. Upon receiving of a reply, RMU verifies if the corresponding
request was modifying. If not, it’s content is discarded, as in EveryMod model.
If the request was modifying, it’s importance, declared by the service, is verified.
Receipt of a reply to an important requests causes RMU to discard content of
previous unimportant requests directed to the same resource. A set of messages
to recover after a failure is calculated in the same way as in the EveryMod model.
Since the content of unimportant requests was removed, they won’t become a
part of the recovery process. For even simpler services, supporting LatestMod
recovery consistency model, there is no concept of important modifications. In-
stead, after receiving a reply to a modifying request, RMU clears the content of
a previous request directed to the same resource. A response to a non-modifying
request, as in previous models, triggers clearing of this request’s content. This
way there is at most one request saved for each resource.

7 Conclusions

Although some attempts to increase the fault-tolerance of SOA systems have
been undertaken, the proposed solutions, based on rollback-recovery mechanism,
require costly global recovery coordination, offering very strict consistency of the
recovered processing state. It is clear, based on the past experience, that many
SOA applications could benefit from less restrictive consistency models, allowing
the recovery of the processing state in a more efficient way. But, according to
best authors knowledge, neither the notion of a consistent recovery state has been
clearly defined and formalized in the context of SOA, nor the requirements of the
consistency have been specified. Therefore, this paper has dealt with a problem
of providing consistency models for rollback-recovery of SOA systems. In the
paper, the formal definitions of recovery consistency models were proposed, and
their features were discussed. A formal specifications allowed the unambiguous

Towards Relaxed Rollback-Recovery Consistency in SOA 107

determination of the set of requests that can not be missed during the recov-
ery. The proposed recovery consistency models were applied in the context of
ReServE service. Our future work encompasses carrying out the appropriate
simulation experiments to quantitatively evaluate the overhead of the presented
relaxed rollback-recovery protocols.

References

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

2. Cabrera, L.F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., Thatte, S.:
Web services transactions specifications (2005)

3. Danilecki, A., Hołenko, M., Kobusińska, A., Szychowiak, M., Zierhoffer, P.:
ReServE service: An approach to increase reliability in service oriented systems.
In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 244–256. Springer,
Heidelberg (2011)

4. Danilecki, A., Hołenko, M., Kobusińska, A., Szychowiak, M., Zierhoffer, P.: Ap-
plying message logging to support fault-tolerance of SOA systems. Foundations of
Computing and Decision Science 38(3), 145–158 (2013)

5. Dialani, V., Miles, S., Moreau, L., De Roure, D.C., Luck, M.: Transparent fault
tolerance for web services based architectures. In: Monien, B., Feldmann, R.L.
(eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 889–898. Springer, Heidelberg (2002)

6. Elnozahy, N.E., Lorenzo, A., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34(3),
375–408 (2002)

7. Michal, K., Kobusińska, A., Kobusiski, J.: FAST failure detection service for large
scale distributed systems. In: Proc. of the 17th Euromicro Int. Conf. on Paral-
lel, Distributed and Network-Based Processing (PDP 2009), Weimar, Germany,
pp. 229–236. IEEE Computer Society (February 2009)

8. Laskey, K., Estefan, J.A., McCabe, F.G., Thornton, D.: Reference Architecture
Foundation for Service Oriented Architecture Version 1.0 Committee Draft 02.
OASIS (2009)

9. Marinos, A., Razavi, A.R., Moschoyiannis, S., Krause, P.J.: RETRO: A consistent
and recoverable RESTful transaction model. In: ICWS, pp. 181–188 (2009)

10. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 108–119, 2014.
© IFIP International Federation for Information Processing 2014

A Novel Page Replacement Algorithm for the Hybrid
Memory Architecture Involving PCM and DRAM

Kaimeng Chen1, Peiquan Jin1,2, and Lihua Yue1,2

1 School of Computer Science and Technology,
University of Science and Technology of China, Hefei, China

2 Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences,
Hefei, China

jpq@ustc.edu.cn

Abstract. Recently, the development of phase change memory (PCM)
motivates new hybrid memory architectures that consist of PCM and DRAM.
An important issue in such hybrid memory architectures is how to manage the
pages resisting in heterogeneous memories. For example, when a requested
page is missing in the hybrid memory and the memory has no free spaces, what
pages in which type of memory (PCM or DRAM) should be replaced? This
problem is much different from traditional buffer replacement management,
where they do not consider the special properties of different types of
memories. In particular, differing from DRAM, PCM is non-volatile but it has
lower access speeds than DRAM. Further, PCM has a limited write endurance
which implies that it cannot be written endlessly. Therefore, we have to design
a new page replacement algorithm that can not only maintain a high hit ratio as
traditional algorithms do but also can avoid frequent writes to PCM. In this
paper, aiming to provide a new solution to the page replacement problem in
PCM/DRAM-based hybrid memories, we propose a new algorithm called
MHR-LRU (Maintain-hit-ratio LRU). The objective of our algorithm is to
reduce PCM writes while maintaining a high hit ratio. Specially, it keeps
recently updated pages in DRAM and performs page migrations between PCM
and DRAM. The migrations take into account both page access patterns and the
influences of page faults. We conduct trace-driven experiments and compared
our proposal with some existing algorithms including LRU, LRU-WPAM, and
CLOCK-DWF. The results show that our proposal is able to efficiently reduce
PCM writes without degrading the hit ratio. Thus, our study offers a better
solution for the page replacement issue in PCM/DRAM-based hybrid memory
systems than previous approaches.

Keywords: Page replacement, Phase change memory, Hybrid memory.

1 Introduction

Phase change memory (PCM) is one of the most promising non-volatile memories.
PCM is byte-addressable and a type of random-access memories. Compared with
DRAM, PCM has the advantages of durability, scalability, and low energy

 A Novel Page Replacement Algorithm 109

consumption. Thus, many researchers have proposed to incorporate PCM into the
memory hierarchy of computer systems [1-3]. However, two problems of PCM make
it difficult to totally replace DRAM in current computer systems. First, the write
latency of PCM is about 6 to10 times slower than that of DRAM. Second, PCM has a
worn-out problem because each PCM cell has limited write endurance. Thus, PCM is
not suitable for update-intensive applications. As a summary, Table 1 shows a
comparison between DRAM and PCM.

Table 1. Comparison between PCM and DRAM

Attributes DRAM PCM
Durability Volatile Non-volatile

Read Latency 50 ns 50 ns
Write latency 20 – 50 ns 350 – 1000 ns
Read Energy ~ 0.1 nJ/b ~ 0.1 nJ/b
Write Energy ~ 0.1 nJ/b ~ 0.5 nJ/b

Idle Power ~ 1.3 W/GB ~ 0.05 W
Density Low High (~ 4X DRAM)

Endurance ∞ 10 for write

Therefore, a more practical way to utilize PCM in memory architectures is to use

PCM and DRAM and thus to construct a hybrid memory architecture [4, 5].
Generally, there are two architectures to integrate PCM in DRAM-based main
memory, namely DRAM cache architecture and hybrid memory architecture, as
shown in Fig. 1. The DRAM cache architecture uses PCM as main memory and uses
DRAM as the cache of PCM [4]. The DRAM cache is hidden to the operation system,
like the L1 and L2 caches for CPU. The hybrid memory architecture puts PCM and
DRAM at the same level in main memory [5]. The hybrid memory is regarded as the
union of DRAM and PCM, and both of their storage capacities are used as main
memory. In this situation, all the pages in DRAM and PCM are managed by the
operation system.

Fig. 1. Memory architectures consists of PCM and DRAM

This paper focuses on the hybrid memory architecture. In particular, we
concentrate on the page replacement problem for the hybrid memory architecture.
Traditional page replacement algorithms are designed for DRAM-only main memory

110 K. Chen, P. Jin, and L. Yue

architecture. They are not suitable for the hybrid memory architecture because PCM
and DRAM have different characteristics and the page replacement algorithms have
to be aware of these differences. So far, a few page replacement algorithms for the
hybrid memory architecture are proposed; some of them focus on PCM and DRAM
[6, 7] while others are on flash memory and HDD [10, 11]. The similar idea of the
existing algorithms is to keep write-intensive pages in DRAM and to let read-
intensive pages in PCM so that DRAM can absorb most writes. For this purpose,
specific page migration schemes are introduced in previous algorithms. The basic
process of a page migration is as follows: when a page request comes to the memory,
the page migration algorithm determines whether the requested page needs to be
moved according to its access pattern. The read-intensive page in DRAM is moved to
PCM and the write-intensive page in PCM is moved to DRAM.

However, there are two problems in the existing algorithms for hybrid memory
systems. First, these algorithms always place pages read from disk in PCM and move
read-intensive pages in DRAM to PCM. Because page placement and migration also
incur writes to PCM, always caching read-intensive pages in PCM may lead to
additional writes to PCM especially under read-intensive workloads. Second, moving
a page between PCM and DRAM has to consider the problem that the memory is full.
To accommodate the moved page in the target medium, the previous algorithms have
to choose a victim page to release its space [6, 7]. This has an impact on the hit ratio
of memory request. Thus, compared with conventional algorithms, the existing
algorithms for hybrid memory usually introduce more page faults when processing
memory requests.

Fig. 2. A page fault occurs because of page migration

Fig. 2 shows an example that how page migration can affect the hit ratio. Initially,
both PCM and DRAM are full. For the algorithm with page migration for hybrid
memory, when a page P1 in PCM is migrated to DRAM, P4 in DRAM is selected as a
victim to make space for P1. Then, the read request to P4 misses. For the
conventional algorithm without page migration, both requests to P1 and to P4 hit in
the memory. Because the access latency of hard disk is much slower than the write
access latency of PCM, decreasing hit ratio to reduce write access count on PCM may
lower the overall performance of hybrid memory.

In this paper, we present an efficient page replacement algorithm called MHR-
LRU (Maintain-hit-ratio LRU) for PCM/DRAM-based hybrid memory. The

 A Novel Page Replacement Algorithm 111

algorithm aims to maintain a high hit ratio and to reduce PCM writes for the hybrid
memory. Differing from previous algorithms, our algorithm does not move pages
between PCM and DRAM when page requests arrive. Instead, we perform page
migrations when page faults occur. Thus, the page migrations in our algorithm need
not to release extra pages. This is helpful to maintain a high hit ratio, because
releasing extra pages will lower the hit ratio. Besides, MHR-LRU places write-
intensive pages in DRAM to reduce PCM writes. Under read-intensive workloads,
DRAM is efficiently used to absorb most read requests and to limit the number of
writes to PCM triggered by page placement and page migration.

We perform trace-driven experiments in a hybrid memory simulation environment
to evaluate the performance of MHR-LRU. We use different types of workloads and
conduct comparisons with other algorithms including LRU, LRU-WPAM [6], and
CLOCK-DWF [7]. The results show that our algorithm is able to maintain a high hit
ratio for different workloads and outperform the other three competitors considering
PCM writes.

The remainder of this paper is organized as follows. In Section 2, we sketch the
related work. In Section 3, we present the MHR-LRU page replacement algorithm for
the hybrid memory architecture. Section 4 describes the details about the experiments
and the performance evaluation results. Finally, Section 5 concludes the paper.

2 Related Work

Conventional page replacement algorithms have been designed for DRAM-based
main memory with uniform access latency and unlimited write endurance. Hit ratio is
the key metric to evaluate the performance.

LRU (Least Recently Used) is a conventional page replacement algorithm that has
been widely used. LRU aligns all pages in memory in order of their most recent
reference times. When a page fault occurs and the buffer pool is full, the least recently
used page in memory is selected as a victim. LRU has also been widely used for
buffer management over new types of storage media such as flash memory [12, 13].

Page replacement algorithms for hybrid main memory as shown in Fig. 1(b) should
consider not only the hit ratio but also the number of PCM writes because PCM has
the long write latency and limited endurance.

LRU-WPAM (LRU-With-Prediction-And-Migration) is an LRU-based page
replacement algorithm for hybrid main memory [6]. The algorithm aligns all pages in
hybrid main memory as a LRU queue, and use four monitoring queues: a DRAM read
queue, a DRAM write queue, a PCM read queue and a PCM write queue. Each page
is retained into both LRU list and one of the four queues according to its access
pattern and located memory type. To measure the access pattern of a page in hybrid
memory, the algorithm provides a weight value for each page. Each time a page hits
in the memory, the page’s weight is calculated again according to the type of this
access request, if its weight value is above the threshold, the page will be migrated. If
the memory need to choose a victim to release for receiving the migrated page,
DRAM choose the least recently used page in DRAM read queue and PCM choose
the least recently used page in PCM write queue.

112 K. Chen, P. Jin, and L. Yue

CLOCK-DWF is a CLOCK-based page replacement algorithm for hybrid main
memory [7]. When a page fault occurs, if the request is read, the page is put on PCM;
otherwise the page is put on DRAM. When a page on PCM hits by write request, the
page is migrated to DRAM. To get a free page frame while the memory is full, PCM
use conventional CLOCK algorithm to select a victim page to release [8], but DRAM
migrates a low write frequency page to PCM.

Both LRU-WPAM and CLOCK-DWF release pages in page migration, this would
causes hit ratio degradation. Both of the two algorithms force read-bound pages to
place on PCM, this may incurs higher PCM write count than conventional algorithms.
For these problem, our study present a new method to reduce PCM write count
without sacrificing hit ratio by merging page migration into page replacement process
and just limiting write-bound pages to the DRAM. The details will be given in
Section 3.

3 The MHR-LRU Algorithm

In this section, we present the details of the MHR-LRU algorithm for hybrid main
memory. MHR-LRU aims to reduce the writes to PCM without degrading hit ratio so
as to improve the overall performance of hybrid main memory. In order to accomplish
this goal, we design the scheme that performs the page migration when page
replacement occurs to make write-intensive pages on PCM.

3.1 The Main Idea

The main idea of MHR-LRU algorithm is described as follows:
(1) The algorithm use LRU list to manage pages together in hybrid main memory.

All pages in hybrid memory are aligned in order of their most recent reference time.
When a page fault occurs, the page in the LRU position will be selected as victim no
matter where it locates.

(2) The algorithm uses a special data structure called DWL (DRAM Write-aware
LRU list) to manage pages in DRAM. DWL aligns all pages in DRAM in order of
their most recent write reference time.

(3) When a page fault occurs and the victim has been selected, MHR-LRU check
the page access type and the victim's location, if the page's access request is write and
the victim is located on PCM, MHR-LRU perform page migration: the victim on
PCM is released and the page in the LRU position of DWL is migrated to PCM, then
the requested page is put on DRAM. By doing so, MHR-LRU can get the following
benefits: First, the page migration does not cause extra page release, so it does not
affect the hit ratio; Second, since putting a page from disk on PCM and migrating a
page in DRAM to PCM incur the same amount of write on PCM, compared with
putting the requested page on PCM then performing write operation on it, migrating
an in-DRAM page to PCM and putting the requested page on DRAM for write
operation can immediately reduce the amount of write on PCM; Third, according to
principle of temporal locality, page with the most recently write reference has a
higher possibility to be write again than the page in the LRU position of DWL, this
page migration can reduce the number of future write operation on PCM.

 A Novel Page Replacement Algorithm 113

3.2 The Detailed Algorithm

Fig. 3 shows the detailed algorithm of MHR-LRU. If a requested page is found in
DRAM, the page is also maintained in both the LRU list and DWL. Hence, we check
the type of this page request. If it is a read request, we move the page to the MRU
position of the LRU list. If it is a write request, we move the page to the MRU
position of the LRU list and the MRU position of DWL (Line 1 ~ 7). If the requested
page is in PCM, the page is maintained in LRU list, we move the page to the MRU
position of the LRU list (Line 8 ~ 10).

Algorithm. MHR-LRU(request q)

Input: a page request q
Output: a reference to the requested page
Preliminary: (1) L is the LRU list of the memory, DWL is the DRAM write-aware list.
 (2) p is the requested page.

1: if p is in DRAM then
2: if q is a read request then
3: move p to MRU position of L
4: else
5: move p to MRU position of L;
6: move p to MRU position of DWL;
7: return a reference to p;
8: else if p is in PCM then
9: move p to MRU position of L;
10: return a reference to p;

/*page fault occurs*/
11: else
12: if there is a free frame in hybrid main memory then
13: put p into the free frame;
14: else
15: get victim from LRU position of L;
16: if victim is in PCM and q is a write request then
17: get page m from LRU position of DWL;
18: release victim and migrate m to PCM;
19: put p into the free frame of DRAM;
20: else
21: release victim and put p into the free frame;
22: insert p into MRU position of L;
23: if p is in DRAM then
24: if q is a write request then
25: insert p into MRU position of DWL;
26: else
27: insert p into LRU position of DWL;
28: return a reference to p;

Fig. 3. The detailed algorithm of MHR-LRU

114 K. Chen, P. Jin, and

If a page is missing, we h
memory has free spaces, w
frame (Line 12 ~ 13). If the
the LRU list as victim, if
request, the victim is relea
the page in the LRU posi

Fig. 4.

L. Yue

have to find a free frame to cache the requested page. If
we put the requested page into a randomly-selected f
e memory is full, we select the page in the LRU position

the victim is in PCM and the page's request is a w
sed. We do not put the requested page in PCM but m
ition of DWL to PCM, and put the requested page i

. An example of the MHR-LRU algorithm

f the
free
n of

write
move

into

 A Novel Page Replacement Algorithm 115

DRAM. Otherwise, we just evict the victim for the requested page (Line 14 ~ 21).
After putting the requested page into the hybrid memory, we insert the requested page
to the MRU position of the LRU list. If the requested page is in DRAM, we insert it to
the DWL according to its request type. If the page's request is a write request, it is
inserted to the MRU position of DWL, else it is inserted to the LRU position of DWL
(Line 22 ~ 28).

Fig. 4 gives an example of MHR-LRU. Fig. 4 (a) shows the initial state of the
hybrid memory. The buffer contains P0, P1, P2, P3, P4, P5. P0, P2, P3 are in PCM,
and P1, P4, and P5 are in DRAM. All pages are in LRU list and P1, P4, P5 are in
DWL. Fig. 4 (b) shows the situation of page hits, and Fig. 4 (c) shows the situation of
page faults.

Fig. 4 indicates that, when page faults occur, MHR-LRU selects and releases the
least recently used page, which is similar to the LRU algorithm. This ensures that our
algorithm can have the similar hit ratio as LRU. However, our algorithm does not
release pages when page hits occurs, which is different from LRU-WPAM and
CLOCK-DWF.

4 Performance Evaluation

In this section, we compare our algorithm with LRU, LRU-WPAM, and CLOCK-
DWF. LRU is the reprehensive of traditional page replacement algorithms. LRU-
WPAM and CLOCK-DWF are the recently proposed algorithms for the hybrid
memory architecture.

4.1 Experimental Setup and Datasets

We use simulation experiments to evaluate our algorithm. We design the simulator for
the hybrid memory architecture. In the experiments, the DRAM-to-PCM ratio is set to
1:4 because PCM density is expected to be four times higher than that of DRAM.
Based on the simulator, the compared page replacement algorithms are implemented
and trace-driven experiments are performed for performance evaluation. The
parameters used in LRU-WPAM and CLOCK-DWF are the same as those in the
original papers [6, 7].

We perform our simulation experiments with six types of synthetic traces. These
traces are generated by DiskSim [9]. The characteristics of these traces are given in
Table 2. The locality in Table 2, for example 80% / 20%, means that eighty percent of
total references are focused on twenty percent of the pages.

4.2 Hit Ratios

Hit ratio is a key metric for the performance of page replacement algorithms. First, we
compare the hit ratio of our algorithm with other three ones by varying the size of
memory. We use the number of page faults to measure hit ratio. The results are shown
in Fig. 5.

As Fig. 5 shows, when measures under the workloads with low localities (T9155,
T5555, T1955), the hit ratios of LRU-WPAM and CLOCK-DWF are almost the same

116 K. Chen, P. Jin, and L. Yue

Table 2.Six types of synthetic traces

Type
Total

Reference

Different
Pages

Accessed

Read/Write
Ratio

Locality

T9182 300,000 10,000 90% / 10% 80% / 20%
T9155 300,000 10,000 90% / 10% 50% / 50%
T5582 300,000 10,000 50% / 50% 80% / 20%
T5555 300,000 10,000 50% / 50% 50% / 50%
T1982 300,000 10,000 10% / 90% 80% / 20%
T1955 300,000 10,000 10% / 90% 50% / 50%

Fig. 5. Number of page faults under the six synthetic traces

 A Novel Page Replacement Algorithm 117

as the hit ratio of LRU and MHR-LRU. Because all algorithms are based on temporal
locality, a low locality access pattern leads to very similar hit ratios of four algorithms.
When using the high-locality workloads (T9182, T5582, T1982), with the increase of
the ratio of write operations in workloads, LRU-WPAM and CLOCK-DWF show
higher number of page faults than LRU and MHR-LRU do.

LRU-WPAM and CLOCK-DWF usually release pages when they perform page
migration. As shown in Fig. 2, this page release can introduce page fault. To show the
relationship between page fault and page release, during the experiment, we collect
page release count of LRU-WPAM and CLOCK-DWF under high-locality workloads
that LRU-WPAM and CLOCK-DWF show higher number of page fault. When
page migration occurs and one page in the target medium has been released, the page
release count increases. The result is shown in Fig. 6. As Fig. 6 shows, for LRU-
WPAM and CLOCK-DWF, workloads with high ratio of write operations cause more
pages to be released because of page migrations. This consequently leads to a higher
number of page faults.

 (a) LRU-WPAM (b) CLOCK-DWF

Fig. 6. Number of page releases triggered by page migrations

4.3 Writes to PCM

The writes count to PCM is related to the overall write performance of the hybrid
memory and the lifetime of PCM. In this section, we measure the number of write
operations on PCM incurred by MHR-LRU in comparison with LRU, LRU-WPAM,
and CLOCK-DWF.

Fig. 7 shows the number of PCM writes for LRU, LRU-WPAM, CLOCK-DWF,
and MHR-LRU. MHR-LRU obtains less PCM writes than LRU-WPAM and
CLOCK-DWF do in most cases. Compared with LRU, MHR-LRU reduces 17.45% of
PCM writes on average, and reduces up to 34.1% of PCM writes. The write count
reduction of LRU-WPAM is 1.01% on average, and the best result for write reduction
is 8.69%. CLOCK-DWF is able to reduce averagely 9.82% more writes than LRU.
Specially, MHR-LRU can still reduce 6.5% of PCM writes averagely in the worst
case (under the workload T9155).

118 K. Chen, P. Jin, and L. Yue

Fig. 7. PCM writes under the six synthetic traces

5 Conclusions

PCM has emerged as one of the most promising memories to be used in main memory
hierarchy. A lot of studies propose to construct hybrid memory architectures
involving PCM and DRAM to utilize the advantages of both media. In this paper,
based on such hybrid memory architecture, we propose a new page replacement
algorithm called MHR-LRU to handle the problems incurred by the hybrid memory
architecture. MHR-LRU is able to maintain a high hit ratio and is able to reduce PCM
writes effectively. We conduct trace-driven experiments in a simulation environment
using six types of synthetic traces, and compare our algorithm with three competitors
including LRU, LRU-WPAM, and CLOCK-DWF in terms of different metrics. The
results show that our algorithm outperforms all the other algorithms.

 A Novel Page Replacement Algorithm 119

Acknowledgement. This paper is supported by the National Science Foundation of
China (No. 61073039, 61379037, and 61272317) and the OATF project funded by
University of Science and Technology of China.

References

1. Burr, G.W., Kurdi, B.N., Campbell Scott, J., et al.: Overview of candidate device
technologies for storage-class memory. IBM Journal of Research and Development
52(4-5), 449–464 (2008)

2. Freitas, R.F., Wilcke, W.W.: Storage-class memory: The next storage system technology.
IBM Journal of Research and Development 52(4-5), 439–448 (2008)

3. Benjamin, C.: Lee, Engin Ipek, Onur Mutlu, et al., Architecting phase change memory as a
scalable dram alternative. In: Proc. of ISCA, pp. 2–13 (2009)

4. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory
system using phase-change memory technology. In: Proc. of ISCA, pp. 24–33 (2009)

5. Dhiman, G., Ayoub, R.Z., Rosing, T.: PDRAM: a hybrid PRAM and DRAM main
memory system. In: Proc. of DAC, pp. 664–669 (2009)

6. Seok, H., Park, Y., Park, K.W., et al.: Efficient page caching algorithm with prediction and
migration for a hybrid main memory. ACM SIGAPP Applied Computing Review 11(4),
38–48 (2011)

7. Lee, S., Bahn, H., Noh, S.H.: Characterizing Memory Write References for Efficient
Management of Hybrid PCM and DRAM Memory. In: Proc. of MASCOTS, pp. 168–175
(2011)

8. Corbato, F.J.: A Paging Experiment with the Multics System. In: Honor of P. M. Morse,
pp. 217–228. MIT Press (1969)

9. Bucy, J.S., Schindler, J., Schlosser, S.W., et al.: The disksim simulation environment
version 4.0 reference manual (cmu-pdl-08-101). Parallel Data Laboratory 26 (2008)

10. Yang, P., Jin, P., Yue, L.: Hybrid Storage with Disk Based Write Cache. In: Xu, J., Yu, G.,
Zhou, S., Unland, R. (eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp. 264–275.
Springer, Heidelberg (2011)

11. Yang, P., Jin, P., Wan, S., Yue, L.: HB-Storage: Optimizing SSDs with a HDD Write
Buffer. In: Gao, Y., Shim, K., Ding, Z., Jin, P., Ren, Z., Xiao, Y., Liu, A., Qiao, S. (eds.)
WAIM 2013 Workshops 2013. LNCS, vol. 7901, pp. 28–39. Springer, Heidelberg (2013)

12. Jin, P., Ou, Y., Haerder, T., Li, Z.: ADLRU: An Efficient Buffer Replacement Algorithm
for Flash-based Databases. Data and Knowledge Engineering (DKE) 72, 83–102 (2012)

13. Li, Z., Jin, P., Su, X., Cui, K., Yue, L.: CCF-LRU: A New Buffer Replacement Algorithm
for Flash Memory. IEEE Trans. on Consumer Electronics 55(3), 1351–1359 (2009)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 120–131, 2014.
© IFIP International Federation for Information Processing 2014

HiNetSim: A Parallel Simulator for Large-Scale
Hierarchical Direct Networks*

Zhiguo Fan1,2, Zheng Cao1,**, Yong Su1,2, Xiaoli Liu1, Zhan Wang1,2, Xiaobing Liu1,
Dawei Zang1,2, and Xuejun An1

1 Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences

{fanzhiguo,cz,suyong,liuxiaoli,wangzhan,liuxiaobing,
zangdawei,axj}@ncic.ac.cn

Abstract. As the scale of high performance computer keeps increasing, the
hierarchical high dimension direct network, such as Cray Dragonfly and K
computer 6D mesh, becomes commonly used. In such architecture, the variety of
topologies in each hierarchy leads to the complexity of topology and routing
algorithm. Facing to the high complexity and scalability, parallel network
simulator is the suitable platform to design network architecture efficiently and
study its performance. We design and implement a packet-level parallel network
simulator HiNetSim which can achieve both high accuracy and efficiency. In
addition, the simulator provides flexible interfaces and configuration files for
establishing hierarchical topologies and implementing routing algorithms. As a
demonstration of HiNetSim, studies on flattened butterfly, 4D Torus and a
proposed hierarchical network are given. Evaluation shows that HiNetSim
achieves linear parallel speedup and is capable of simulating the network with
tens of thousands nodes.

1 Introduction

Today, the scale of interconnection network is keeping increasing and is expecting to
hold hundreds of thousands of nodes [1]. To balance the scalability and performance,
the hierarchical direct network architecture corresponding to the communication
locality is widely used. In the hierarchical network, different hierarchies of the
network often possesses different switching capacities, such as IBM BlueGene/Q 5D
torus [2, 3] K tofu nested 6D torus [4] and Cray dragonfly [5]. Facing with different
switching capacities, the network topology varies between different network
hierarchies. In this case, the full system network architecture becomes more
complicated and the fully adaptive routing algorithm is hard to design.

Network simulator is the most commonly used platform to perform the network
evaluation. However, to study the complex hierarchical network efficiently, a network
simulator must fulfill the following requirements.

 * Supported by the National Natural Science Foundation of China under Grant No.61100014.
** Corresponding author.

 A Parallel Simulator for Large-Scale Hierarchical Direct Networks 121

1) Scalability: the network simulator must be capable of simulating large scale
network. Only when the network scale is large enough, can many performance
issues such as load balancing and network congestion show up.

2) Accuracy: the microarchitecture of network devices should also be simulated in
detail, since they have great effect on the full system performance. For example,
the number of virtual channels is a key factor for both the network performance
and deadlock-free routing algorithm.

3) Flexibility: user interfaces should be friendly enough to quickly implement new
architectures (topology and corresponding routing algorithm) for different
hierarchies.

4) Performance: the simulation of the large scale network should be finished in a
reasonable time.

However, most simulators are written with sequential codes and cannot meet the
requirement of scalability and performance, such as BookSim [6], Xmulator [7],
CINSim [8], MINSimulate [9] and INSEE [10]. Some parallel simulators, such as
NSIM [11], simuRed [12] and topaz [13], are limited to a subset of network
topologies and cannot meet the requirement of flexibility. BigNetSim [14] can
perform efficient parallel simulation. However, it is designed with a new language
Charm++ which introduces a long learning curve for users to develop new topologies
and routing algorithms. The Network Simulator (ns) series [15] and DCNSim [16] are
focus on internet system and lack of the micro-architecture details.

In this paper, we design and implement a parallel cycle-accurate network simulator
HiNetSim to perform studies on the complex hierarchical network architecture.
HiNetSim is written in C/C++ and uses a kernel-based framework. The simulation
kernel SimK [17] is in charge of the functions needed by the PDES (parallel discrete
event simulation) including the synchronization and communication mechanism,
simulation task scheduling, and memory management. In this case, users can focus
only on the simulation of network behavior which greatly reduces the developing time
of new network models.

As the building block of hierarchical network, basic network architectures, such as
fat-tree, all-to-all, nD torus, nD mesh, flattened butterfly and etc., have been
implemented in HiNetSim. In addition, HiNetSim provides flexible user interfaces
and configuration files to customize topologies and routing algorithms.

The reset of paper is organized as follows: Section 2 discusses key issues of
designing HiNetSim; Section 3 describes the architecture and implementation of
HiNetSim; Section 4 demonstrates the ability of HiNetSim by simulating some
example networks. Section 5 shows performance result of HiNetSim. Section 6 gives
the conclusion.

2 Key Issues and Design

2.1 Parallelism

In HiNetSim, each network component, such as NIC and switch, is defined as one LE
(Logic Element). LE is the basic element for parallel simulation and scheduling.

122 Z. Fan et al.

Timing synchronization between LEs is the key issue regarding the correctness of
simulation function. We adopted PDES (Parallel Discrete Event Simulation)
mechanism [18] a parallel distributed synchronization mechanism to solve this.

There are two PDES mechanisms: conservative and optimistic. In the conservative
model, events with later time stamp can only be processed after the earlier ones. In the
optimistic one, events with later time stamp may be processed in advance. If an earlier
time stamp arrives, a rollback mechanism is used to guarantee the correctness of
simulation. However, the rollback needs large memory to store undetermined states
and makes the debugging of network simulation much more difficult. To save the
memory usage and shorten the developing time, we apply the conservative
mechanism in HiNetSim.

2.2 Load Balancing

In the parallel simulation, if simulating workloads assigned to different
threads/processes are not balance enough, the parallelism efficiency will be greatly
decreased. To achieve the load balancing, we deploy both static and dynamic
mechanisms.

At the initialization phase of the simulation, a static load balancing mechanism is
used. According to different network topologies, HiNetSim provides an effective
graph allocation strategy to put LEs into the same process based on their
communication affinity. The problem statement of the LE allocation is: given a graph
G with n weighted vertices and m weighted edges, how to divide the vertices into p
sets so that every set has similar sum value of vertex weights and sum value of edge
weights respectively. This problem is known to be NP complete, but there are some
heuristic approximate solutions. We use Chaco (a graph partitioning package) to solve
this problem which works well in partitioning hierarchical network topologies.

At the simulating phase, to achieve sub-millisecond granularity workload
migration, a cooperated migration mechanism is proposed, which combines the merit
of workload sharing and workload stealing. For each thread, our mechanism separates
run_list and mig_list for normal execution and migration. Inside a thread, LEs are
scheduled and stolen as follows:

1) All ready LEs are first put into the run_list. If the affinity flag of the LE indicates
it has just been migrated, it is put to tail, otherwise to head.

2) Check the length of run_list, if it has beyond a threshold, excessive LEs are
moved to the mig_list.

3) Check local run_list, if it is not empty, LEs in it are sent to execute, and LEs in
local mig_list are moved to local run_list. Otherwise, it tries to steal LEs from
remote mig_lists.

2.3 Cycle-Level Accuracy

To guarantee the cycle-level accurate, simulation in flit level may be the best solution.
However, the flit-level simulation introduces plenty of simulation tasks and
eventually leads to poor efficiency. To carry out the large-scale simulation with the
same accuracy within a reasonable time, we use packet-level simulation in virtual cut

 A Parallel Simulator for Large-Scale Hierarchical Direct Networks 123

through switching (VCT). In addition, VCT is the most commonly used switching
technology. Our process of the packet-level simulation is:

1) When the first flit of a packet arrives at one switch, the switch accepts it only if
there is enough space for the whole packet in its receiving queue.

2) The switch selects one packet from its receiving queues based on certain
arbitration algorithm and calculates the flow control credit to check whether the
receiving side has enough space to accept it.

3) If the flow control credit is enough, then the switch sends out the packet flit by
flit until the last one is sent out.

In simulation, we assume that all switches in an interconnection network have the
same bandwidth. If we define the length of flit as L, the bandwidth of switch as BW,
TR (w, k) and TS (w, k) as the time stamps of switch w receiving and transmitting the
kth flit respectively, TC as the time of arbitration delay, routing delay, flow control
and etc., then the TS (w, k) can be described as:

TS(w,0) = TR(w,0) + Tc k = 0
TS(w,k) = TS(w, k-1)+L/BW 1≤ k ≤ n . (1)

As shown in the equation (1), TS (w, n) can be determined when TR (w, 0) and Tc is
known. If we assume that all the ports of switches in an interconnection network have
the same bandwidth, then TS (w, n) = TR (w, 0) + Tc + (n-1) × L/BW. Therefore,
instead of simulating all the flits, the performance result can be obtained by
simulating only the first flit and the last flit of each packet. Such simplification can
accelerate the simulation without any loss of accuracy.

2.4 Flexibility

Network topology, routing algorithm, and flow control mechanism are tightly coupled
with each other. In addition, many configurable parameters in network devices are
only working with certain topologies and routing algorithms. Thus, achieving the
flexibility of supporting various kinds of network architecture is rather difficult.

We implement a hierarchical structure to separate the simulation of
microarchitecture of the network device and mechanisms for full simulated network
(flow control and routing algorithm) from each other. Hierarchical structure is widely

Fig. 1. LE hierarchical architecture

124 Z. Fan et al.

used in computer filed, such as operating systems, network, and etc. In HiNetSim, we
borrow this idea and implement the LE with three layers. As shown in Figure 1:

 Universal_LE Model: takes charge of the scheduling of LE and defines the work
flow of simulated network device including sending, receiving, arbitration and etc.
The model does not implement any parameters or mechanisms of the target network.
 Framework Model: simulates the device micro-architecture including DMA,

crossbar, buffers, routing unit and flow control unit and etc.. It also performs the
function of performance statistics.
 User Model: implements the mechanisms of packet initialization, flow control

and routing algorithm.

3 Implementation

3.1 HiNetSim Architecture

As is shown in Figure 2, in HiNetSim, LEs (can be switch or NIC) are connected with
each other following the target network topology and SimK as the simulation kernel
schedules LEs into execution and performs the synchronization and communication
between LEs. Regarding a new network architecture, users can build the simulation
from following four aspects: topology, routing algorithm, flow control mechanism,
and switch/NIC micro-architecture. HiNetSim has implemented several well-known
network architectures including fully connected, n-dimension torus, flattened
butterfly, fat tree and etc. So, users can easily build their hierarchical networks by
reusing codes of the implemented networks in proper network hierarchies.

Fig. 2. HiNetSim architecture

3.2 Topology Generation

There are two independent topologies establishing modules: basic module and
customized module. Basic module implements the configuration of our implemented
topologies, including fully connected, torus, fat tree, and etc., while the customized
module is used to configure user defined hierarchical topologies. To construct a
topology, user can either write codes with HiNetSim’s APIs (for complicated regular
topologies) or describe the topology in configuration files (for irregular topologies).

 A Parallel Simulator for Large-Scale Hierarchical Direct Networks 125

3.3 Routing Mechanism

Since the routing algorithm is always tightly combined with topology, four routing
mechanisms are supported to achieve the best flexibility:

1) Source address routing: fill the destination port vector (record the destination
port number in each hop) in the packet structure.

2) Table-based routing: fill the address-to-port mapping table in each switch /router
structure.

3) Dimension order routing: especially for n-dimension mesh and torus topologies,
fill the packet structure with the description of dimension ordering and fill the
dimension-to-port mapping table in each switch/router structure;

4) Zone routing [3]: an adaptive routing mechanism for direct networks, fill the
zone identification, destination address and guidance bits of dimension ordering
in the packet structure and fill the zone masks in each switch/router structure.

3.4 Flow Control Mechanism

HiNetSim implements the credit-based flow control mechanism as the default option.
In PDES, two LEs are usually running at different timestamps, so we must buffer the
flow control packet in a dedicated queue in the destination LE and pop it out when
the destination LE has reached the timestamp of the flow control packet. To simplify
the implementation without violating PDES synchronization policy, each flow control
packet contains two different timestamps: one indicates the time to use the credit and
the other one is the timestamp of the source LE for passing the flow control packet to
the destination LE.

3.5 Simulation of Network Devices

HiNetSim simulates the detailed micro-architectures of NIC and switch. The router in
HPC interconnection network is built from several NICs and a switch. As shown in
Fig. 3, the NIC model contains seven modules: trace generator (generating artificial
traffic patterns, such as uniform random, tornado, bit reversal and etc.), North Bridge
(simulation of the I/O bus), DMA model (simulation of a RDMA engine), route
generator (generating routing information to be carried with packets), receiver
(receiving packets and putting them in the receiving buffers), transmitter (transmitting
packet out) and flow control.

Fig. 3. NIC model Fig. 4. Switch model

126 Z. Fan et al.

Fig. 4 shows an input-queuing switch model in HiNetSim. It contains five
modules: receiver (receiving packets and putting them into corresponding virtual
channels), transmitter (performing the output arbitration and transmitting packet out),
crossbar (for each transmitter, selecting proper packets to send out), routing control
(calculating destination port based on current routing mechanism), and flow control.
Parameters such as the number and depth of virtual channels, receiving delay,
arbitration strategy (round-robin, matrix arbiter or priority) and delay, internal bus
bandwidth and etc. are configurable.

4 Simulation Examples

In this section, we perform simulations on both basic networks (flattened butterfly and
4D torus) and a proposed large-scale hierarchical network (4.5D Torus shown in
Section IV.C) to demonstrate the simulation capability of HiNetSim.

4.1 Flattened Butterfly (FB): 1024 Nodes

Fig. 5 shows the topology of the two dimensions flattened butterfly [19]. In each row
and column, switches are fully interconnected with each other. Table 1 shows 4
different kinds of configurations of 1024 nodes flattened butterfly, including 2 to 4
dimensions. First column in Table 1 shows the net name we called in our simulation.
Configuration column shows the number of nodes per dimension, and the last column
shows the number of nodes per switch directly connected with. We use VOQ (Virtual
Output Queuing) microarchitecture and uniform random traffic [20-22].

Table 1. 1024 nodes fattened butterfly

Name Configurations # of nodes per switch
FB1 8×8 16
FB2 16×16 4
FB3 8×8×8 2
FB4 4×4×4×4 4

Fig. 6 shows the performance of flattened butterfly under different configurations.

Network FB1 achieve much lower throughput (0.46) than others, because it is a
flattened butterfly with oversubscription that connects 16 nodes per switch (standard
fattened butterfly 8×8: 8 nodes per switch). On the contrary, network FB2 and FB3
can achieve throughputs up to (0.91~0.92) with very low latency, because these they
are connecting with less nodes than the standard flattened butterfly (standard flattened
butterfly 8×8×8: 8 nodes per switch, 16×16: 16 nodes per switch). Network FB4 is a
standard flattened butterfly with high link occupation can achieve the throughput of
0.81. Users can perform these simulations by simply configuring the number of
dimension and the number of nodes per dimension.

 A Parallel Simulator for Large-Scale Hierarchical Direct Networks 127

...

...

............

...

...

...
...

...
...

... ...

......

NIC

Switch

...

...

Throughput
0.0 0.2 0.4 0.6 0.8 1.0

L
at

en
cy

(C
yc

le
s)

0

200

400

600

800

1000

1200

1400

1600

FB1
FB4
FB3
FB2

Fig. 5. Flattened butterfly topology Fig. 6. Throughput vs. Latency: FB

4.2 4D Torus: 4096 Nodes

We simulate the 4D Torus network at the 4096 nodes scale (8 × 8 × 8 × 8: each
dimension contains 8 nodes) and study the effect of virtual channels on network
performance. One VC is used as the escape channel in these simulations. In addition,
dimension order routing (DOR) and uniform random traffic is used.

Throughput

0.1 0.2 0.3 0.4 0.5 0.6 0.7

L
at

en
cy

(C
yc

le
s)

0

1000

2000

3000

4000

5000

6000

7000

8000

2 VC
3 VC
4 VC

Fig. 7. Throughputs vs. Latency: 4D torus with different number of VCs

As shown in Fig. 7, with 2 VCs, the network throughput is 0.51. With 3 and 4 VCs,
throughputs can increase to 0.63 and 0.65 respectively. The improvement is achieved
by reducing the head-of-line (HOL) blocking. However, because of the limitation of
using DOR algorithm, the throughput is difficult to reach 0.7.

4.3 D Torus Network: A Hierarchical Network

We proposed a 4.5D Torus network to show the simulation of hierarchical network.
The 4.5D Torus topology aims to optimize local communication and build large-scale
network with low radix routers. As is shown in Fig. 8 (a), the basic building block of
network is the 8-port router (2 ports for the host, 1 port for I/O, and 5 for
interconnection). As shown in Fig. 8 (b), 4 fully connected routers form a Superblock
(8 nodes). The remaining 8 ports of the Superblock are used for external
interconnection. Fig. 8 (c) shows the standard 4D torus topology built with

128 Z. Fan et al.

Superblocks. Since the interconnection inside Superblock is only for local
communication, we treat it as 0.5D dimension. The network is of full-system 4D torus
plus local 0.5D, so we name it 4.5D Torus.

Throughput
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

L
at

en
cy

(C
yc

le
s)

0

2000

4000

6000

8000
Node Number = 624
Node Number = 2048
Node Number = 5000
Node Number = 10368
Node Number = 19208
Node Number = 32768

Fig. 8. Topology of 4.5D Torus Fig. 9. Throughput vs. Latency: 4.5D torus

This simulation uses zone routing mechanism and 4 virtual channels (including 2
escape VCs). We set the virtual channel’s buffer to 4096Byte and MTU (Maximum
transmission Unit) to 1024Byte. We perform the simulation with a traffic that contains
70% intra-superblock communication, 20% neighbor-superblock communication
within 3 hop counts, and 10% to the remaining superblocks.

Table 2. Configurations of 4.5D torus

A×B×C×D # of Superblocks # of Nodes

3×3×3×3 81 648
4×4×4×4 256 2,048
5×5×5×5 625 5,000
6×6×6×6 1,296 10,368
7×7×7×7 2,401 19,208
8×8×8×8 4,096 32,768

We simulate the 4.5D torus with different scales (648~32,768 nodes). As shown in

Table 2, the first column shows the dimension length of A, B, C, and D. The other two
columns show the number of superblocks and nodes (8 nodes per superblock).

As shown in Fig. 9, when network scale is small (e.g. 648 nodes), the throughput can
reach to 0.75. As the network scale increases, the throughput keeps decreasing. When
the number of nodes is 32,768, the throughput is only 0.56. The throughput decrement
is mainly caused by the network load imbalance introduced by DOR routing algorithm.
The ability of gathering network load imbalance information is very important for a
simulator. To get heavily loaded devices or paths, HiNetSim provides detailed
performance statistics for each network device and even each port. By comparing the
throughput of each node, the bottleneck of network can be easily found out. We use
HiNetSim to analyze the network load of 4.5D torus with 32,768 nodes. 3D graphic can
compare only the loads of two dimensions, so we show the load balancing with three
combinations of dimensions: A and B, B and C, C and D.

 A Parallel Simulator for Large-Scale Hierarchical Direct Networks 129

From Fig.10 (a) and (b), we can see that throughputs of B, C and D dimensions have
very small variations. Fig.10 (c) shows that A dimension is load imbalanced as the
throughput varies from 0.2 to 0.7. Some nodes are heavily loaded (exceed the saturation
point of a router with 2VCs) in A dimension and become the bottleneck. Such
imbalance is mainly caused by the DOR algorithm (A dimension first).

0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8

1
2 3 45678

1234567
T

hr
ou

gh
pu

t

B D
im

e n s i o
n

C D im e n s io n

0 .2
0 .3
0 .4
0 .5
0 .6
0 .7

0 .8

1
2

3
4

5
678

1234567

T
hr

ou
gh

pu
t

C D
im

en
s io

n

D D im en sio n

0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8

0 .2
0 . 3
0 . 4
0 . 5

0 . 6

0 .7

0 . 8

1
2

3
4

5
6 78

1234567

T
hr

ou
gh

pu
t

A
 D

im
e n s i o

n

B D i m e n s i o n

Fig. 10. Load balancing condition of 4.5D torus network

5 Performance Evaluations on HiNetSim

This section evaluates the performance of HiNetSim on a 12-core Intel machine. The
configuration of system is listed in Table 3.

Table 3. Experiment environment

CPU type Xeon X5675
CPU number 2
Memory 96GB
OS CentOS 6.3
Compiler gcc 4.46
Library Pthread

Table 4. Network types and configurations

Network Types # of Switch numbers # of Nodes
4.5D Torus 576 (3×3×4×4×4) 1152

Flattened Butterfly 64 (8×8) 1024
Fat Tree 320 (m=16,n=3) 1024
4D Torus 1296 (6×6×6×6) 1296

The performance of HiNetSim is evaluated with simulations of different types of

networks. Table 4 shows the network type and configuration of each network. These
networks are in the similar scale (1024~1296 node). All these simulations are using
1024Byte packets and 100% inject rate. The parallel speedup is calculated as:
execution time on single core / execution time on multiple cores.

As shown in Fig. 11, HiNetSim can achieve linear speedup as the number of
processor cores increases. Even super-linear speedup 15.6 is obtained when
simulating 1,024 nodes flattened butterfly. The speedup is mainly related with the

130 Z. Fan et al.

number of LEs: the fewer the LEs, the less communication and cache miss. So, 1024
nodes flattened butterfly with the fewest LEs can achieve super-linear speedup.

Number of Cores
0 2 4 6 8 10 12 14

Sp
ee

du
p

0

2

4

6

8

10

12

14

16

18
1152 Node 4.5 D Torus
1024 Node Flattened Butterfly
1024 Node Fat Tree
1296 Node 4 D Torus

Fig. 11. Speedup of various networks

Node Numbers
625 1296 2401 4096 6561 10000 20736 28561 50625 65536

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

0.01

0.1

1

10

100

8

Fig. 12. Memory consumption of HiNetSim

Regarding the large scale network simulation, memory consumption is also an
important issue. Fig. 12 shows the memory consumption of simulating 4D Torus
which involves lots of LEs. When simulating no more than 10,000 nodes, less than
8GB memory is used. 8GB memory is easy to be fulfilled even in a personal laptop.
When simulating 65,536 nodes, 72GB memory is used, which is also easy to get for a
dual-processor blade server. So, with good parallel speedup and acceptable memory
consumption, HiNetSim is capable of simulating large interconnection networks.

6 Conclusions and Future Work

HiNetSim is a parallel simulator that simulates large scale hierarchical
interconnection networks with high efficiency, accuracy and flexibility. We use
packet level simulation to guarantee the simulation efficiency, but still achieve the
same accuracy as flit level. To shorten the development time of the simulation on new
hierarchical network architectures, we provide flexible topology configuration,
general purpose routing algorithm interfaces, and simulations of many commonly
used networks. In this paper, we demonstrate the function of HiNetSim by simulating
flattened butterfly, 4D Torus and a hierarchical network 4.5D Torus. Evaluation
shows that HiNetSim can achieve linear parallel speedup. In addition, it can perform
the simulation of 10,000 nodes network with less than 8GB memory and 65,536
nodes network with 72GB memory.

References

1. Top500 list, http://www.top500.org
2. Chen, D., Eisley, N.A., Heidelberger, P., Senger, R.M., Sugawara, Y., Kumar, S., Salapura,

V., Satterfield, D.L., Steinmacher-Burow, B., Parker, J.J.: The IBM Blue Gene/Q
interconnection fabric. IEEE Micro 32(1), 32–43 (2012)

3. Chen, D., Eisley, N.A., Heidelberger, P., Senger, R.M., Sugawara, Y., Kumar, S., Salapura,
V., Satterfield, D.L., Steinmacher-Burow, B., Parker, J.J.: The IBM Blue Gene/Q
interconnection network and message unit. In: Proc. SC Int. Conf. High Perform. Comput.,
Netw., Storage Anal., pp. 1–10 (2011)

 A Parallel Simulator for Large-Scale Hierarchical Direct Networks 131

4. Ajima, Y., Takagi, Y., Inoue, T., Hiramoto, S., Shimizu, T.: The Tofu Interconnect. IEEE
Micro 32(1), 21–31 (2012)

5. Kim, J., Dally, W.J., Scott, S., Abts, D.: Cost-Efficient Dragonfly Topology for Large-Scale
Systems. IEEE Micro 29(1) (January 2009)

6. BookSim 2.0, http://nocs.stanford.edu/booksim.html
7. Nayebi, A., Sarbazi-Azad, H., Shamaei, A., Meraji, S.: XMulator: An Object Oriented

XML-Based Simulator. In: Proceedings of the First Asia International Conference on
Modelling & Simulation, Phuket, Thailand, pp. 128–132 (2007)

8. Tutsch, D., Ludtke, D., Walter, A., Kuhm, M.: CINSim: A Component-based
Interconnection net-work Simulator for Modeling Dynamic Reconfiguration. In: ESM
2005: European Conference on Modeling and Simulation, Riga, Latvia, pp. 32–39 (2005)

9. Tutsch, D., Brenner, M.: MINSimulate – A Mul-tistage Interconnection Network Simulator.
In: ESM 2003: European Simulation Multiconference: Foundations for Successful
Modeling & Simulation, Notingham, SCS, pp. 211–216 (2003)

10. Ridruejo Perez, F. J., Miguel-Alonso, J.: INSEE: An interconnection network simulation
and evaluation environment. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 1014–1023. Springer, Heidelberg (2005)

11. Miwa, H., Susukita, R., Shibamura, H., et al.: NSIM: An Interconnection Network
Simulator for Extreme-Scale Parallel Computers. IEICE Transactions on Information and
Systems v E94-D(12), 2298–2308 (2011)

12. Pardo, F., Boluda, J.A.: SimuRed: A flit-level event-driven simulator for multicomputer
network performance evaluation. Computers & Electrical Engineering 35(5), 803–814
(2009)

13. Abad, P., et al.: Topaz: An open-source interconnection network simulator for chip
multiprocessors and supercomputers. In: Intl Symposium on Networks-on-Chip, NOCS
(2012)

14. Bignetsim, http://charm.cs.illinois.edu/research/bignetsim
15. ns-3, http://www.nsnam.org/
16. Hu, N., Fu, B., Sui, X., Li, L., Li, T., Zhang, L.: DCNSim: a unified and cross-layer

computer architecture simulation framework for data center network research. In:
Proceedings of the ACM International Conference on Computing Frontiers (CF 2013),
Article 19, 9 pages (2013)

17. Xu, J., Chen, M., Zheng, G., Cao, Z., Lv, H., Sun, N.: SimK: a parallel simulation engine
towards shared-memory multiprocessor. Journal of Computer Science and
Technology 24(6), 1048–1060 (2009)

18. Fujimoto, R.M.: Parallel discrete event simulation. Communications of the ACM 33(10),
30–53 (1990)

19. Kim, J., Dally, W.J., Abts, D.: Flattened butterfly: a cost-efficient topology for high-radix
networks. ACM SIGARCH Computer Architecture News. 35(2) (2007)

20. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Morgan
Kaufmann, San Francisco (2004)

21. Dally, W.J.: Virtual-channel flow control. In: International Symposium on Computer
Architecture, pp. 60–68 (1990)

22. Duato, J.: Deadlock-free adaptive routing algorithms for multicomputers: evaluation of a
new algorithm. In: Proceedings of the Third IEEE Symposium on Parallel and Distributed
Processing, pp. 840–847 (1991)

Wire Length of Midimew-Connected Mesh

Network

Md Rabiul Awal1,�, M. M. Hafizur Rahman1, Rizal Mohd Nor1,
Tengku Mohd Bin Tengku Sembok2, Yasuyuki Miura3, and Yasushi Inoguchi4

1 Department of Computer Science, KICT, IIUM,
Jalan Gombak, Kuala Lumpur, 50728, Malaysia

2 Cyber Security Center, National Defense University Malaysia,
Kuala Lumpur, 57000,Malaysia

3 Graduate School of Technology, Shonan Institute of Technology,
1-1-25, Tsujido Nishikaigan, Fujisawa, Kanagawa, Japan

4 Research Center for Advanced Computing Infrastructure, JAIST,
Nomi-Shi, Ishikawa 923-1292, Japan

{rabiulawal1,tmtsembok}@gmail.com, {hafizur,rizalmohdnor}@iium.edu.my,
miu@info.shonan-it.ac.jp, inoguchi@jaist.ac.jp

Abstract. Midimew connected Mesh Network (MMN) is a Minimal
DIstance MEsh with Wrap-around links (midimew) network. In this pa-
per, we present the architecture of MMN and evaluate the total wire
length of MMN, TESH, mesh, and torus networks. It is shown that the
proposed MMN possesses simple structure and moderate wire length.
The total wire length of MMN is slightly higher than that of mesh net-
work and lower than that of 2-D torus network. Overall performance
suggests that, MMN is an optimal network among these networks.

Keywords: Massively Parallel Computers, Interconnection Network,
MMN, and Total Wire Length.

1 Introduction

Current trend [1] suggests that, the demand for computation power is increas-
ing rapidly and found as constant over the last half century. Massively parallel
computer (MPC) is introduced to meet this demand. Nevertheless, the scaling
of MPC is increasing as well. In nearby future, MPC will contain 10 to 100
millions of nodes [2] in a single system with computing capability at the tens of
petaflops or exaflops level. In MPC, interconnection network dominates the sys-
tem performance [3, 4]. In relation, hierarchical interconnection network (HIN)
is a plausible alternative way to interconnect the future generation MPC [5] sys-
tems. Nevertheless, the performance of proposed HIN does not yield any obvious
choice of a network for MPC. Among a lot of HINs, several k-ary n-cube based
HIN have been proposed [6–9] for better performance.

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 132–143, 2014.
c© IFIP International Federation for Information Processing 2014

Wire Length of MMN 133

The scaling of the processor is an arising concern with the attributes of high
performance. Application driven technology trends pressing the geometry of sil-
icon fabrication technology. This advancements make the transistor very small
and allow greater transistor densities. Eventually, MPC with more than million
nodes is feasible with current and future technology. Hence, the functionality be-
comes more complex of a MPC system with the shrinking geometry. As a matter
of fact, interconnection network becomes the steering point, in the context of
power dissipation and cost. In an MPC system, more than 50% of total power
dissipated by the interconnection network. Also, the cost of MPC is related to
the communication links of the network. In other words, interconnection net-
work is composed of nodes and wires. Hence, the network is wire limited [10] on
a VLSI surface. Wire length determines the communication delay [11–13] of the
network. It also indicate the network size on a VLSI surface. Total wire length of
network indicates the average locality of links of the network. It also explores the
ease of Network-on-Chip implementation of the network. Therefore wire length
is an influential factor for the network [14].

Midimew-connected Mesh Network (MMN) [15] was proposed to improve per-
formance of fixed degree network while keeping the diameter short which is still
desirable [7, 16]. Basic module of MMN is 2-D mesh and higher level network
are midimew [17] network. Hence, MMN offers simple and hierarchical structure
and this translate to the ease of VLSI implementation. The focus point of this
paper is to explore the feasibility of VLSI implementation of MMN in terms of
wire length. We compare the total wire length with several fixed degree network.
For fair comparison we consider degree 4 networks only.

The remainder of the paper is organized as follows. In Section 2, we present
the basic architecture of the MMN. Wire length evaluation is discussed in Section
3. Finally, in Section 4, we conclude this paper.

2 Architecture of the MMN

Midimew connected Mesh Network (MMN) is a hierarchical interconnection net-
work. Multiple basic modules (BM) are hierarchically interconnected to form a
higher level network of MMN. Architecturally the MMN consists of two ma-
jor parts, the basic module (BM) and higher level networks. The BMs act as
the basic building blocks of MMN whereas higher level networks determines the
construction of MMN from BMs.

Basic Module is the basic building blocks of MMN. BM of MMN is a 2D-mesh
network of size (2m×2m). BM consists of 22m processing elements (PE). PEs are
arranged in 2m rows and 2m columns, where m is a positive integer. Considering
m = 2, a BM of size (4 × 4) is portrayed in Figure 1. Each BM has 2(m+2) free
ports at the contours for higher level interconnection. These free ports are used
as communication links for higher levels and denoted by q. All Intra-BM links
are done by free ports of the interior nodes. All free ports of the exterior nodes,
either one or two, are used for inter-BM links to form higher level networks. In
this paper, BM refers to a Level-1 network.

134 M.R. Awal et al.

3,0 3,3

0,0 0,3

2,3

1,31,0

2,0

3,1 3,2

2,1 2,2

1,1 1,2

0,1 0,2

5 H_in 5 H_out

4 H_in 4 H_out

3 H_out

2 H_out

3 H_in

2 H_in

3 _outD 5 _outD2 _outD 4D_out

2D_in 3D_in5D_in4D_in

Free ports for higher
level interconnections

H Horizontal in incoming
D Diagonal out outgoing

5H_out: Horizontal outgoing links for level 5

Fig. 1. Basic Module of MMN

Successive higher level networks are built by recursively interconnecting 22m

immediate lower level subnetworks in a (2m × 2m) midimew network. In a
midimew network, one direction (either horizontal or vertical) is symmetric tori
connected and other direction is diagonally wrap-around connected. We have
assigned the vertical free links of the BM for symmetric tori connection and
horizontal free links are used for diagonal wrap-around links.

As portrayed in Figure 2, considering (m = 2) a Level-2 MMN can be formed
by interconnecting 2(2×2) = 16 BMs. Similarly, a Level-3 network can be formed
by interconnecting 16 Level-2 sub-networks, and so on. Each BM is connected
to its logically adjacent BMs. It is useful to note that for each higher level
interconnection, a BM uses 4 × (2q) = 2q+2 of its free links, 2(2q) free links
for diagonal interconnections and 2(2q) free links for horizontal interconnections.
Here, q ∈ {0, 1,,m},, is the inter-level connectivity. q = 0 leads to minimal
interlevel connectivity, while q = m leads to maximum interlevel connectivity.

A MMN(m,L, q) is constructed using (2m×2m) BMs, has L levels of hierarchy
with inter-level connectivity q. In principle, m could be any positive integer value.
However, if m = 1, then the network degenerates to a hypercube network and if
m ≥ 3, the granularity of the family of networks is coarse. If m = 2, then it is
considered the most interesting case, because it has better granularity than the
large BMs. In the rest of this paper we consider m = 2, therefore, we focus on a
class of MMN(2,L,q) networks.

The highest level network which can be built from a (2m×2m) BM is Lmax =
2m−q + 1 with q = 0 and m = 2, Lmax = 5, Level-5 is the highest possible level.
The total number of nodes in a network having (2m × 2m)) BMs is N = 22mL.
If the maximum hierarchy is applied then number of total nodes which could be
connected by MMN(m,L,q) is N = 22m(2m−q+1). For the case of (4×4) BM with
q = 0, a MMN network consists of over 1 million nodes.

Wire Length of MMN 135

Level 2 Network
(Midimew)

Level 1 Network
(MESH)

Level 3 Network
(Midimew)

Basic Module

Fig. 2. Higher Level Networks of MMN

3 Wire Length Evaluation

Efficient use of wires is important to accomplish required performance from an
interconnection network. Here we assume that all networks have a 2D-planar
implementation and each node is implemented in one tile area. The width and
height of a node depends upon its underlying CMOS technology. As the network
consists of tiles (nodes), eventually the wire length depends on the size of tile.
Let us consider, the tile height is x and tile width is y, hence tile area is xy. All
the tiles are interconnected by wires to construct an interconnection network.
For simplicity, we can consider total wires of the network are of two direction,
Vertical and Horizontal direction. For Vertical and Horizontal direction, the wire
length depends on the tile height and width respectively. Wire length between
two particular nodes is the number of tiles needs to pass to interconnect the
nodes. Consequently, total wire required to connect all the nodes of a network
is the number of total tiles needs to be passed and can be expressed as,

Wire Length = T ile distanceX + T ile distanceY

T ile distance = # of tiles×# of groups

Here # of groups indicate the total number of same patterned communication
links. For example, in a (4×4) 2D-mesh network, there are 4 columns and 4 rows
with 16 nodes. So, in this network, # of groups for both vertical and horizontal
directions is 4.

136 M.R. Awal et al.

It is convenient to point out that, each node used in MMN have a router.
These routers are used to interconnect all nodes, either directly or indirectly by
the communication links. This interconnection network is implemented by direct
wires. To evaluate the total wire length, we have calculated the length of the
wires used to connect all the routers.

The communication links used to interconnect nodes are considered as bidi-
rectional links. That is, each link is used for data in and data out by sharing
the time. Therefore, each link contains just one wire to transfer data. For the
intercommunication among nodes, unidirectional links can considered as well
which contain multi wire for each link. Now, the point of using this type of links
is, unidirectional links are faster than bidirectional links as they contain more
channels for data passing. Thus, use of unidirectional links can improve the per-
formance by saving time. Nevertheless, unidirectional links also require at least
double wire than that of bidirectional links. As a result, unidirectional links in-
crease the wire length, wiring complexity and cost of the network. On the other
hand, use of bidirectional links save additional expenses and implement area of
the network. Hence, for low cost, high performance network, bidirectional links
are more appropriate.

We evaluated the total wire length of 2D-mesh, 2D-torus, TESH (2,2,0) and
MMN (2,2,0). We have considered 45 nm technology to define the nodes size.
According to 45nm technology [18], the tile height is 5.2 mm and tile width is
3.6 mm. Thus the tile size is 18.72 mm2. So the node height, width and size
are same as tiles. The wire length between two nodes suggests the number of
tiles to be passed. So wire length between two nodes in horizontal direction is
the product of number of tiles needs to be passed and tile width. Similarly for
vertical direction, wire length is the product of number of tiles needs to be passed
and tile height.

Hence, with the considered tile size, wire length between two neighbor nodes
in horizontal direction is 3.6 mm and for vertical direction is 5.2 mm. For a 2D-
mesh network, wire length depends on the grid size in vertical and horizontal
direction. For example, in a (Nx × Ny) 2D-mesh network, wire length in one
group in horizontal direction is (Nx − 1)× tilewidth. Again for total Nx groups
wire length is Nx× ((Nx− 1)× tilewidth). Correspondingly, for total Ny groups
Ny × ((Ny − 1)× tileheight) is the wire length in vertical direction. Thus, for a
(4 × 4) 2D-mesh network, wire length in vertical direction is 10.8 mm. With 4
groups and space for system interface, input/output (I/O), message class (MC),
wire length in vertical direction is (10.8 × 4) + 4.9 = 48.1 mm. Similarly for
horizontal direction, wire length is 63 mm and total wire length is 111.1 mm.
Figure 3(a) shows the wire length of a 4 × 4 mesh network. The wire length of
a 16× 16 (256 nodes) mesh is evaluated in same pattern and it is 211.75 cm.

In a 2D-torus network, with the mesh links, additionally there are wrap around
torus links for both vertical and horizontal direction. Like mesh, 2D-torus is also
dimension size dependent. For a (NX ×NY) 2D-torus network, two neighboring
nodes in horizontal direction has the wire length of 3.6 mm, the width of a tile
and in vertical direction wire length is 5.2 mm, the height of a tile. wire length of

Wire Length of MMN 137

19.3 mm
2
1
.4

m
m

Space for
system interface

+I/O + MC

(a) (b)

62.5 mm

8
3
.8

m
m

Router

19.3 mm
2
1
.4

m
m

(c)

3.6mm

5
.2

m
m

MMN_256.EPS

Fig. 3. Illustration of (a) 4×4 mesh, (b) 4×4 torus and (c) 256 nodes TESH Network

138 M.R. Awal et al.

3.6 mm

5.
2

m
m

Space for
system interface
+ I/O + MC

Router

20
.8

m
m

83.8
m

m
14.4 mm

62.5mm

Fig. 4. 256 nodes MMN

Wire Length of MMN 139

the wrap around links in horizontal direction isNX−1. Again in vertical direction,
the wire length is NY−1. Number of groups are equal to NX and NY . Figure
3(b) is showing a 4× 4 2-D torus network. In horizontal direction wire length is
21.6 mm. # of groups is 4, therefore 86.4 mm is the wire length in horizontal
direction. Similarly in vertical diction wire length of each group is 31.2 mm, for
4 groups, it is 124.8 mm. Finally with the reserved space for system interface,
input/output (I/O), message class (MC) total wire length is 216.7mm for a 4×4
2-D torus network. Wire length of a 16× 16 (256 nodes) 2-D torus is calculated
in a same manner and it is 422.95 cm in total. In Figure 3(b) a 4× 4 2-D torus
network is depicted.

TESH network is a hierarchical interconnection network with multiple basic
modules. The basic module is a 2-D mesh network. Hence it is convenient to
find out the wire length in basic modules, then calculate the connecting links for
higher levels. The wire length of a 4× 4 basic module is 105.6 mm which gives
1689.6mm for 16 basic modules. In higher level links to horizontal direction wire
length is 345.6 mm for 4 groups and 499.2 mm wire length for vertical direction.
So in total the wire length of a 256 nodes TESH network is 253.99 cm. Figure
3(c) demonstrates the wire length of a 256 nodes TESH network.

Like TESH, Wire length of MMN evaluated by calculating the wires in BMs
and in higher levels. Wire length in BMs of MMN is determined by the number
of links in horizontal direction and in vertical direction and exactly equal to
TESH, 1689.6 mm for 16 4 × 4 basic modules. Nevertheless, the links of higher
levels is different from TESH. Higher level links of MMN are composed of wrap
around and diagonal links. Each wraparound links has length of 54 mm which
compute 216 mm wire length for 4 wrap around links. 4 diagonal links have
length of 120 mm, 120 mm, 109.6 mm, and 109.6 mm. The rest inter BM links
gives 480 mm. Hence 263.43 cm is the total wire length of a 256 nodes MMN.
Figure 4 illustrates the wire length of a 256 nodes MMN.

The wire length dominates the initial system cost of networks. Networks with
much wire eventually results a high installation cost and a large VLSI area which
responsible for poor performance. In correlation, diameter indicates the worst
case scenario of a network and has direct influence on the overall static network
performance. Hence, the product of total wire length and diameter is a good
criteria to get the static operating cost of the network. We can express the static
operating cost as follows,

Cstatic = L×D

Here, Cstatic represents the static operating cost, L for total wire length and
D stands for diameter. It is already mentioned that, we have considered the links
as bidirectional links. Hence, calculation of the links are the wire length. This
calculation is valid for bidirectional links only.

Cost is one of the important parameter for evaluating an interconnection net-
work. Though the actual cost of a system depends on the implemented hardware
and the physical network in total but total wire length and diameter effect the
performance metrics of the network including message traffic density, fault toler-
ance and average distance. Low diameter impose low cost, small space and better

140 M.R. Awal et al.

performance, while high diameter requires high cost, large space, and poor per-
formance. Therefore, the static operating cost is a good criterion to indicate the
relationship between cost and performance of a network. Hence, it can give a
pre-idea about the network before installation. The evaluation of Total Wire
Length and static operating cost of various networks are tabulated in Table 1,

Table 1. Comparison of Total Wire Length of Various Networks

Network Wiring Complexity Total Wire Length (cm) Static Operating Cost

2D-Mesh 480 211.75 6652.5

2D-Torus 512 422.95 6767.2

TESH(2,2,0) 416 253.99 5333.79

MMN(2,2,0) 416 263.43 4478.31

From Table 1, it is clear that 2D-mesh network can be constructed with min-
imum amount of wires among the networks, 211.75 cm in total. On the other
hand, 2D-torus network contains maximum 422.95 cm of wires to interconnect
all nodes of it. Total wire length for TESH (2,2,0) is 253.99 cm and in case of
MMN (2,2,0), it is slightly higher than that of TESH network, 263.43 cm. The
static network performance of different networks are shown in Table 2[15]. For
fair comparison we consider degree 4 networks only.

2D-mesh is a very simple network. It is very easy to construct and does not
contain any wrap around links. So 2D-mesh results least amount of wire length
in total, but the performance of mesh keeps the network under the table. The
diameter of mesh network is 30. Hence, this large diameter results the network
ending with relatively high static operating cost 6652.5. It is higher than TESH,
MMN and less than 2-D torus network.

2-D torus network presents better performance than that of others. 2D-torus
network consists of 2D-mesh and warp around torus links. The wrap around links
are equal to the sum of column and row numbers. It has Nx +Ny wrap around
links where the network size is Nx × Ny. These long wrap around links results
a significant amount of wires. Therefore, 2-D torus network possess maximum
wire length among the networks. Though the diameter of 2-D torus is better than
other networks which is 16, there is no wonder that it includes the maximum
static operating cost among the networks which is 6767.2.

TESH (2,2,0) is a hierarchical network. It has optimized architecture combined
of 2-D mesh and 2-D torus network. Hence, the wiring complexity and total
wire length both are optimized for this network. As a result, TESH network has
smaller diameter than mesh network and slightly higher than MMN and 2-D
torus network. But, TESH require less wire than 2-D torus network. Eventually,
TESH has less static operating cost than mesh and 2-D torus network and higher
than MMN and it is 5333.79.

Like TESH (2,2,0), MMN (2,2,0) is also a hierarchical network. MMN has the
combination of mesh and midimew networks for the architecture. Now, mesh is

Wire Length of MMN 141

Layer 1 with active PE/Nodes

Layer 2

Layer 3

Layer 4

Fig. 5. Metal layers to implement MMN

the simplest network among all grid networks and midimew network has mini-
mum diameter among all degree 4 networks. Hence, MMN is a perfect example
of optimized network. So, naturally MMN has optimized diameter and total wire
length. It possess less amount of communication links. Also the communication
links increase with higher levels only not with the grid size. Therefore, MMN
has better static operating cost than mesh, 2-D torus and TESH network and
that is 4478.31.

Table 2. Comparison of Static Network Performance of Various Networks [15]

Network Node Diameter Average Ark Bisection
Degree Distance Connectivity Width

2D-Mesh 4 30 10.67 2 16

2D-Torus 4 16 8 4 32

TESH(2,2,0) 4 21 10.47 2 8

MMN(2,2,0) 4 17 9.07 2 8

The MMN can be implemented either on a 2-D or 3-D metal plane. For
the case of 2-D plane, the network can be implemented on one metal layer
only. In this case the implemented network will have a lot of jump crossing
junction among the links. Jump crossing links cause serious affects. Therefore,
multiple layers is a solution to avoid jump crossing of links. We have implemented

142 M.R. Awal et al.

the MMN on 4 layer 2-D plane [19]. Figure 5 depicts the metal layers used to
implement the MMN.

Despite the fact that MMN consumes more wires to be constructed than
mesh and TESH network, MMN has smaller diameter than mesh and TESH
[15]. As a result, MMN possesses better static operating cost. Hence, among
these networks, MMN is the optimal network in the context of static network
performance and required wire to implement the network.

4 Conclusion

The architecture and wire length of the MMN have been discussed in detail. In
addition the wire length evaluation of 2-D mesh, 2-D torus and TESH are also
explored and compared with MMN as well. It is shown that the MMN possess
a simple architecture, composed of 2-D mesh and midimew network. From the
wire length evaluation, it is clear that, the MMN presents moderate wire length
in total with fixed degree nodes. The total wire length of MMN is slightly higher
than that of 2-D mesh and TESH network. However total wire length of MMN is
far lower in comparison with 2-D torus. This paper focused on the architectural
structure and wire length evaluation. Issues for future work include wire length
evaluation of MMN in a 3-D environment.

Acknowledgments. This work is partly supported by FRGS13-065-0306, Min-
istry of Education, Government of Malaysia. The authors would like to thank
the anonymous reviewers for their constructive comments and suggestions on
the paper which have helped to improve the quality of the paper.

References

1. Koomey, J.G., Berard, S., Sanchez, M., Wong, H.: Assessing trends in the electrical
efficiency of computation over time. In: IEEE Annals of the History of Computing
(2009)

2. Beckman, P.: Looking toward exascale computing. In: 9th International Conference
on Parallel and Distributed Computing, Applications and Technologies, p. 3 (2008)

3. Yang, Y., Funahashi, A., Jouraku, A., Nishi, H., Amano, H., Sueyoshi, T.: Recur-
sive diagonal torus: an interconnection network for massively parallel computers.
IEEE Transactions on Parallel and Distributed Systems 12, 701–715 (2001)

4. Rahman, M.M., Hafizur., J.X., Masud, M.A., Horiguchi, S.: Network performance
of pruned hierarchical torus network. In: 6th IFIP International Conference on
Network and Parallel Computing, pp. 9–15 (2009)

5. Abd-El-Barr, M., Al-Somani, T.F.: Topological properties of hierarchical intercon-
nection networks: a review and comparison. J. Elec. and Comp. Engineering 1
(2011)

6. Lai, P.L., Hsu, H.C., Tsai, C.H., Stewart, I.A.: A class of hierarchical graphs
as topologies for interconnection networks. J. Theoretical Computer Science 411,
2912–2924 (2010)

Wire Length of MMN 143

7. Liu, Y., Li, C., Han, J.: RTTM: a new hierarchical interconnection network for
massively parallel computing. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W.
(eds.) HPCA 2009. LNCS, vol. 5938, pp. 264–271. Springer, Heidelberg (2010)

8. Rahman, M.M.H., Horiguchi, S.: HTN: a new hierarchical interconnection net-
work for massively parallel computers. IEICE Transactions on Information and
Systems 86(9), 1479–1486 (2003)

9. Jain, V.K., Ghirmai, T., Horiguchi, S.: TESH: A new hierarchical interconnection
network for massively parallel computing. IEICE Transactions on Information and
Systems 80, 837–846 (1997)

10. Dally, W.J.: Performance Analysis of k-ary n-cube Interconnection Networks. IEEE
Trans. on Computers 39(6), 775–785 (1990)

11. Chi-Hsiang, Y., Parhami, B., Emmanouel, A., Varvarigos, E.A., Hua Lee, H.: VLSI
layout and packaging of butterfly networks. In: Proceedings of the Twelfth Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 196–205 (2000)

12. Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection net-
works. In: Proceedings of Design Automation Conference, pp. 684–689 (2001)

13. Parhami, B.: Introduction to parallel processing: algorithms and architectures,
vol. 1. Springer (1999)

14. Parhami, B., Kwai, D.M.: Challenges in Interconnection Network Design In the
Era of Multiprocessor and Massively Parallel Microchips. In: Proc. Int’l Conf.
Communications in Computing, pp. 241–246 (2000)

15. Awal, M.R., Rahman, M.H., Akhand, M.A.H.: A New Hierarchical Interconnec-
tion Network for Future Generation Parallel Computer. In: Proceedings of 16th
International Conference on Computers and Information Technology, pp. 314–319
(2013)

16. Camarero, C., Martinez, C., Beivide, R.: L-networks: A topological model for reg-
ular two-dimensional interconnection networks. IEEE Transactions on Comput-
ers 62, 1362–1375 (2012)

17. Puente, V., Izu, C., Gregorio, J.A., Beivide, R., Prellezo, J., Vallejo, F.: Improving
parallel system performance by changing the arrangement of the network links. In:
Proceedings of the 14th International Conference on Supercomputing, pp. 44–53
(2000)

18. Howard, J., Dighe, S., Vangal, S.R., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V.,
Konow, M., Riepen, M., Gries, M., Droege, G., Larsen, T.L., Steibl, S., Borkar, S.,
De, V.K., Wijngaart, R.V.D.: A 48-core IA-32 processor in 45 nm CMOS using on-
die message-passing and DVFS for performance and power scaling. IEEE Journal
of Solid-State Circuits 46(1), 173–183 (2011)

19. Awal, M.R., Rahman, M.H.: Network-on-Chip Implementation of Midimew-
Connected Mesh Network. In: Proceedings of 14th International Conference on
Parallel and Distributed Computing, Applications and Technology, pp. 265–271
(2013)

Benchmarking the Memory Hierarchy

of Modern GPUs

Xinxin Mei, Kaiyong Zhao, Chengjian Liu, and Xiaowen Chu

Department of Computer Science, Hong Kong Baptist University
{xxmei,kyzhao,cscjliu,chxw}@comp.hkbu.edu.hk

Abstract. Memory access efficiency is a key factor for fully exploiting
the computational power of Graphics Processing Units (GPUs). How-
ever, many details of the GPU memory hierarchy are not released by the
vendors. We propose a novel fine-grained benchmarking approach and
apply it on two popular GPUs, namely Fermi and Kepler, to expose the
previously unknown characteristics of their memory hierarchies. Specif-
ically, we investigate the structures of different cache systems, such as
data cache, texture cache, and the translation lookaside buffer (TLB).
We also investigate the impact of bank conflict on shared memory ac-
cess latency. Our benchmarking results offer a better understanding on
the mysterious GPU memory hierarchy, which can help in the software
optimization and the modelling of GPU architectures. Our source code
and experimental results are publicly available.

1 Introduction

GPUs have become popular parallel computing accelerators; but their further
performance enhancement is limited by the sophisticated memory system [1–6].
In order to reduce the default memory access consumption, developers usually
utilize some specially designed memory spaces empirically [3–5]. It is necessary
to have a clear and comprehensive documentation on the memory hierarchy.
Despite the need, many details of memory access mechanism are not released by
the manufacturers. To learn the undisclosed characteristics through third-party
benchmarks becomes compelling.

Some researchers benchmarked the memory system of earlier GPU architec-
tures [7–10]. They studied the memory latencies and revealed cache/translation
lookaside buffer (TLB) structures. According to reports from vendor, recent gen-
erations of GPUs, such as Fermi, Kepler and Maxwell show significant improve-
ment on memory access efficiency [11–16]. The memory hierarchies are different
from those of earlier generations. To the best of our knowledge, a state-of-art
work remains vacant.

In this paper, we explore the memory hierarchies of modern GPUs: Fermi and
Kepler. We design a series of benchmarks to investigate their structures. Our
experimental results confirm the superiority of recent architectures in memory
access efficiency. Our contributions are summarized as follows:

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 144–156, 2014.
c© IFIP International Federation for Information Processing 2014

Benchmarking the Memory Hierarchy of Modern GPUs 145

Table 1. Comparison of NVIDIA Tesla, Fermi and Kepler GPUs

Generation Tesla Fermi Kepler
Device GeForce GTX 280 GeForce GTX 560 Ti GeForce GTX 780

Compute Capacity 1.3 2.1 3.5

Shared Memory
size: 16 KB size: 16/48 KB size: 16/32/48 KB
bank No: 16 bank No: 32 bank No: 32
bank width: 4 byte bank width: 4 byte bank width: 4/8 byte

Global Memory
non-cached cached in L1&L2

cached in L2 or read-only
data cache

L1 cache size: 64 KB sub-
tract shared memory size;
L2 cache size: 512 KB

L1 cache size: 64 KB sub-
tract shared memory size;
L2 cache size: 1536 KB

size: 1024 MB size: 1024 MB size: 3071 MB
Texture Memory per-TPC texture units per-SM texture units per-SM texture units

1. We develop a novel fine-grained P-chase benchmark to expose GPU cache
and TLB features.

2. Based on the benchmark, we find a number of unconventional designs not
disclosed by previous literatures, such as the special replacement policy of Fermi
L1 data cache, 2D spacial locality optimized set-associative mapping of texture
L1 cache and the unequal L2 TLB sets.

3. Our source code and experimental results are publicly available.1

The remainder of this paper is organized as follows. Section 2 introduces some
background knowledge of GPU memory hierarchy. Section 3 presents our fine-
grained benchmark design. Section 4 discusses the microarchitecture of various
memory spaces of Fermi and Kepler. We conclude our work in Section 5.

2 Background: Modern GPU Memory Hierarchy

In the popular GPU programming model, CUDA (compute unified device archi-
tecture), there are six memory spaces, namely, register, shared memory, constant
memory, texture memory, local memory and global memory. Their functions are
described in [14–18]. In this paper, we limit our scope to the discussion of three
common but still mysterious ones: shared memory, global memory and texture
memory. Specifically, we aim at disclosing the impact of bank conflict on shared
memory access latency, and the cache mechanism and latency of global/texture
memory.

In Table 1, we compare the memory characteristics of the Tesla GPU discussed
in [8, 9] and our two targeting GPU platforms. The compute capacity is used
by NVIDIA to distinguish the generations. The Fermi devices are of compute
capacity 2.x, and the Kepler devices are of 3.x. The two GPU cards we use,
MSI N560GTX-Ti Hawk (repack of GeForce GTX 560 Ti) and GIGABYTE
GeForce GTX 780 (repack of GeForce GTX 780), are of compute capacity 2.1
and 3.5 respectively. As we can find in Table 1, the most distinctive difference
is the global memory. On Tesla devices, the global memory access is non-cached
while on Fermi devices, it is cached in both L1 and L2 data cache. Kepler has

1 http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html

http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html

146 X. Mei et al.

L2 Cache

ALU * 192

DPU * 64

SFU * 32

Tex Units * 16

Shared Memory/
L1 Data Cache

Read-Only Data Cache

DRAM

Stream Multiprocessor (SM) * 12

DRAM DRAM...

Fig. 1. Block Diagram of GeForce
GTX 780

1-2

Set 1 Set 2 Set 3
1-2

7-8

3-4

9-10

5-6

11-12

34
Set Word

Memory address =

Data:

2-Way Set-Associative Cache

2 1 0

Way 1:
Way 2:

The organization of traditional 3-set set-associative cache
(in word order): assume the cache size is 48 bytes, i.e. 12
words, and each cache line contains 2 words.3-4

5-6
7-8
9-10
11-12
13-14
15-16
17-18
19-20
21-22
23-24

Fig. 2. Traditional Set-Associative Cache

L1 data cache; but it is designed for local memory accesses rather than global
memory accesses. Besides L2 data cache, Kepler global memory accesses can
be cached in read-only data cache for compute capacity 3.5 or above. It is also
notable that modern GPUs have larger shared memory spaces and more shared
memory banks. Tesla shared memory size is fixed as 16 KB. On Fermi and Kepler
devices, shared memory and L1 data cache share a total of 64 KB memory space.
The texture memory is cached in all generations. Tesla texture units are shared
by three streaming multiprocessors (SMs), namely a thread processing cluster
(TPC). However, Fermi and Kepler texture units are per-SM.

As shown in Fig. 1, the shared memory, L1 data cache and the read-only data
cache are on-chip, i.e., they are within SMs. L2 cache and DRAMs are off-chip.
The L2 cache is accessed by all the SMs, and a GPU board has several DRAM
chips.

For ease of reference, we also review some fundamentals of cache systems. The
cache backs up a piece of main memory on-chip to offer very instant memory
accesses. Due to the performance-cost tradeoff, the cache sizes are limited. Fig.
2 shows the structure of a traditional set-associative cache. Data is loaded from
main memory to cache at the granularity of a cache line. Memory addressing
decides the location in the cache of a particular copy of main memory. For set-
associative cache, each line in the main memory is mapped into a fixed cache set
and can appear at any cache ways of the corresponding set. For example, in Fig.
2, word 1-2 can be in way 1 or way 2 of the first cache set. If the required data is
stored in cache, there is a cache hit, otherwise a cache miss. When the cache is
full and a cache miss occurs, some existing contents in the cache is replaced by
the required data. One popular replacement policy is least-recently used (LRU),
which replaces the least recently accessed cache line. Modern architectures usu-
ally have multi-level and multi-functional caches. In this paper, we discuss the
data cache and TLB (cache for virtual-to-physical memory translation page ta-
bles). Previous cache studies all assume a cache model of equal cache sets, typi-
cal set-associative addressing and LRU replacement policy [7–10, 19, 20]. Based
on our experimental results, such model is sometimes incorrect for GPU cache
systems.

Benchmarking the Memory Hierarchy of Modern GPUs 147

3 Methodology

3.1 Shared Memory Bank Conflict: Stride Memory Access

GPU shared memory is divided into banks. Successive words are allocated to
successive banks. If some threads belonging to the same warp access memory
spaces in the same bank, bank conflict occurs.

for (i =0; i <= i t e r a t i o n s ; i++) {
data=threadIdx . x∗ s t r i d e ;
i f (i==1) sum = 0 ; //omit co ld miss
s t a r t t ime = c l ock () ;
repeat64 (data=sdata [data] ;) ; //64 times of s t r i d e access
end time = c l ock () ;
sum += (end time − s t a r t t ime) ;

}

Listing 1. Shared Memory Stride Access

To study the impact of bank conflict on shared memory access latency, we
utilize the stride memory access introduced in [15]. We launch a warp of threads
on GPU. Listing 1 is the kernel code of our shared memory benchmark. We
multiply the thread id with an integer, called stride, to get a shared memory
address. We do 64 times of such memory accesses and record the total time
consumption. This consumption is actually the summation of 63 times of shared
memory access and 64 times of clock() overhead. We then calculate the aver-
age memory latency of each memory access. If a bank conflict occurs, average
memory latency is much longer.

3.2 Cache Structure: Fine-Grained Benchmark

The P-chase benchmark is the most classical method to explore cache memory
hierarchy [7–10, 19, 20]. Its core idea is to traverse an array A by executing j =
A[j] with some stride. The array elements are initialized with the indices of the
next memory access.We measure the time consumption of a great number of such
memory accesses and calculate the average consumption of each access. Listing
2 and Listing 3 give the P-chase kernel and the array initialization respectively.
The memory access pattern can be inferred from the average memory access
latency. The smallest memory latency indicates cache hit and bigger latencies
indicate cache misses.

For simplicity, we define the notations for cache and P-chase parameters in
Table 2. Note that we access GPU memory k times but only N/s array elements
are accessed (k >> N/s). Memory access pattern is decided by the combination
of N and s [19].

Saavedra et al. varied both N and s in one experiment to study CPU memory
hierarchy [19, 20]. Volkov et al. applied the same method on a G80 GPU [7].
Wong et al. developed the footprint experiment: fixing s and varying N , to study
the multi-level caches one by one of a Tesla GPU [8, 9]. Recently, Meltzer et al.
used both Saavedra’s and Wong’s footprint experiment to investigate Fermi L1

148 X. Mei et al.

and L2 data cache structure [10]. They utilized Saavedra’s method to get an
overall idea and then analyzed each cache structure with footprint experiment.
Experimental results based on the two methods coincided with each other per-
fectly in [10]. However, we got different results of cache line size of texture L1
cache when we applied the two methods. What happened?

The problem is caused by the usage of total or average time consumption.
It indicates the existence of cache miss, but little information on the miss per-
centage or the causes of cache miss. In order to get all the information, we need
to know the full memory access process. Motivated by the above, we design a
fine-grained benchmark utilizing GPU shared memory to display the latency of
every memory access.

s t a r t t ime = c l ock () ;
for (i t =0; i t<i t e r a t i o n s ; i t++){

j=A[j] ;
}

end time=c l ock () ;
//average memory latency

tva lue=(end time−s t a r t t ime) /
i t e r a t i o n ;

Listing 2. P-chase Kernel

for (i =0; i<a r r a y s i z e ; i++){
A[i]=(i+s t r i d e)%a r r a y s i z e

;
}

Listing 3. Array Initialization

g l o b a l void KernelFunction (. . .) {
// dec lare shared memory space

s h a r e d unsigned int s t va l u e [] ;
s h a r e d unsigned int s i nd ex [] ;

for (i t =0; i t<i t e r a t i o n s ; i t++) {
s t a r t t ime=c l ock () ;
j=my array [j] ;

// s tore the element index
s i nd ex [i t]= j ;
end time=c l ock () ;

// s tore the access la tency
s tv a l u e [i t]=end time−s t a r t t ime ;
}

}

Listing 4. Fine-grained P-chase Kernel

Listing 4 gives the kernel code of our fine-grained benchmark. We launch one
thread on GPU devices each time. By repeatedly executing j = my array[j],
the thread visits the array elements whose indices are multiples of s. For ease
of analysis, we also record the visited array indices. We time each procedure of
reading the array element and storing the index into the shared memory. Because
the CUDA compiler automatically omit meaningless data readings, we need to
write the shared memory with the updated index, namely the index of the next
element rather than of the current one [15]. In addition, for operations of calling
clock() and writing shared memory are synchronous, to get convincible memory
latency, we need to imbed writing shared memory in the timing. Although this
brings extra measurement error, the error is relatively small compared with the
memory latency and does not affect the disclosure of memory structures.

Specifically, we apply our benchmark with strategies below to get the cache
characteristics. N and s are calculated on every word (i.e., the length of an
unsigned integer) basis.

(1) Determine C: s = 1. We initialize N with a small value and increase it
gradually until cache misses appear. C equals the maximumN where all memory
accesses fit in the cache.

Benchmarking the Memory Hierarchy of Modern GPUs 149

Table 2. Notations for Cache and P-chase Pa-
rameters

Notation Description Notation Description
C cache size N array size
b cache line size s stride size
a No. of cache sets k iterations

Array size: N

C C+b C+2b C+ab

1st cache set
misses

1st - 2nd cache
sets misses

1st – ath cache
sets misses

Ca
ch

e
m

iss
es

Fig. 3. Cache Miss Patterns of Vari-
ous N

(2) Determine b: s = 1. We begin with N = C + 1 and increase N gradually
again. When N < C + b + 1, only memory accesses to the first cache set are
missed. If N = C + b + 1, memory accesses to the second cache set are also
missed. Based on the increase of missed cache lines, we can find b.

(3) Determine a: s = b. We start with N = C and increaseN at the granularity
of b. The cache miss patterns are decided by N , as shown in Fig. 3. Every
increment of N causes cache misses of a new cache set. When N > C +(a− 1)b,
all cache sets are missed. We can get a from cache miss patterns accordingly.
The cache associativity, i.e., number of cache ways, equals C/(ab).

(4) Determine cache replacement policy. In our fine-grained benchmark, we
set k > N/s so that we traverse the array multiple times. Because the array
elements are accessed in order, if the cache replacement policy is LRU, then the
memory access process should be periodic. For example, given a cache shown in
Fig. 2, N = 13 and s = 1, the memory access pattern is repeated every 13 data
loadings: whenever we visit the ith array element, it is fixed as a cache miss/hit.
If the memory access process is aperiodic, then the replacement policy cannot
be LRU. Under this circumstance, we set N = C + b, s = b, and follow the full
memory access process with a considerable k. All cache misses belong to the first
cache set. Because we also have information of accessed array indices, we can
find which cache line is replaced of every cache miss. Based on this method, we
get the particular Fermi L1 data cache replacement policy.

In addition, we design a special array initialization with non-uniform strides.
We are motivated to exhibit as many memory latencies as possible within one
experiment, similar with [19]. We apply this initialization on studying various
global memory latencies. We manually fill the array elements with the indices
rather than execute Listing 3.

To conclude, we propose a fine-grained benchmark that utilizes GPU shared
memory to store all memory access latencies. This benchmark enables exhaustive
study of GPU cache structures. We explore the global memory and texture mem-
ory hierarchy with our fine-grained benchmark. We also design a sophisticated
array initialization to exhibit various memory latencies within one experiment.

Experimental Platform: the CPU is Intel CoreTM i7-3820 @3.60 GHz with
PCI-e 3.0. Our operating system is a 64-bit CentOS release 6.4. CUDA run-
time/driver version is 5.5. We use CUDA compiler driver NVCC, with options
-arch=sm 21 and -arch=sm 35 to compile all our files on Fermi and Kepler
devices respectively.

150 X. Mei et al.

0

32

1 2 31

63

32 banks

4 byte
stride = 2, 2-way bank conflict

thread ID

0

16

1

17

2

18

15

31

Fig. 4. Fermi Shared Memory Banks

0 2 4 8 16 32
0

300

600

900

1,200

Stride / #-Way Bank Conflict

M
e
m
o
ry

la
te
n
c
y
(c
lo
ck

c
y
c
le
s)

Fig. 5. Latency of Fermi Bank Con-
flict

4 Experimental Results

4.1 Shared Memory

GPU shared memory is on-chip and non-cached. In many CUDA applications,
researchers utilize shared memory to speed up memory accesses [3–5]. However,
based on our experimental results, the shared memory access can be slower than
global memory access if there are considerable bank conflicts. In this section, we
investigate the impact of bank conflict on shared memory access latency.

Fig. 4 illustrates a 2-way bank conflict caused by stride memory access on
Fermi architecture. The bank width is 4-byte. E.g., word 0 and word 32 are
mapped into the same bank. If the stride is 2, thread 0 and thread 16 will
visit word 0 and word 32 respectively, causing a bank conflict. The way of bank
conflict equals the greatest common divisor of stride and 32. There is no bank
conflict for odd strides.

In Fig. 5, we plot the average shared memory latency of Fermi. If stride is 0,
i.e., the data is broadcasted [15], memory latency is about 50 cycles. Memory
latency increases to 88 cycles for 2-way bank conflict, and 1210 cycles for 32-way
bank conflict. The increment indicates that memory loads of different spaces in
the same bank are executed sequentially. GPU kernel efficiency could be seriously
degraded when there are considerable bank conflicts.

Kepler shared memory outperforms Fermi in terms of avoiding bank conflicts
[18]. Kepler improves shared memory access efficiency by introducing the 8-byte
wide bank. The bank width can be configured by calling cudaDeviceSetShared-
MemConfig() [15]. Fig. 6 gives a comparison of memory mapping between the
two modes: 4-byte and 8-byte. We use 32-bit data so that each bank row contains
two words. In 8-byte mode, 64 successive integers are mapped into 32 succes-
sive banks. In 4-byte mode, 32 successive integers are mapped into 32 successive
banks. Different from Fermi, bank conflict is only caused by two or more threads
accessing different bank rows.

Fig. 7 shows the Kepler shared memory latency with even strides of both
4-byte and 8-byte modes. When stride is 2, there is no bank conflict for either 4-
byte or 8-byte mode, whereas there is 2-way bank conflict on Fermi. When stride

Benchmarking the Memory Hierarchy of Modern GPUs 151

0
64

8 byte

128

1
65
129

2
66
130

3
67
131

4
68
132

5
69
133

6
70
134

7
71
135

8
72
136

9
73
137

62
126
190

63
127
191

Kepler shared memory: 8-byte mode, stride = 6

0
64

4 byte

128

32
96
160

1
65
129

33
97
161

2
66
130

34
98
162

3
67
131

35
99
163

4
68
132

36
100
164

31
95
159

63
127
191

Kepler shared memory: 4-byte mode, stride = 6

0

16

thread ID

11

27

6

22

0

11

1

12

22

21

Fig. 6. Kepler Shared Memory Access: 4-Byte Bank v.s. 8-Byte Bank (Stride=6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

50

100

150

200

250

300

350

400

450

500

stride

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

4−byte mode
8−byte mode

Fig. 7. Latency of Kepler Shared Memory: 4-Byte Mode v.s. 8-Byte Mode

is 4, there is 2-way bank conflict, half as Fermi. When stride is 6, there is 2-way
bank conflict for 4-byte mode but no bank conflict for 8-byte mode. We illustrate
this situation in Fig. 6. For 4-byte mode, half of the shared memory banks are
visited. Thread i and thread i + 16 are accessing separate rows of the same
bank (i = 0, ..., 15). For 8-byte mode, 32 threads visit 32 banks without conflict.
Similarly, 8-byte mode is superior to 4-byte mode for other even strides whose
number is not a power of two.

In summary, Kepler can provide higher shared memory access efficiency by
the following two ways. First, compared with Fermi, 4-byte mode Kepler shared
memory can halve the chance of bank conflict. Second, 8-byte mode further
reduces bank conflict.

152 X. Mei et al.

4.2 Global Memory

The CUDA term, global memory, includes physical memory spaces of DRAM, L1
and L2 cache. Previous studies show that there are two levels of TLB: L1 TLB
and L2 TLB to support GPU virtual memory addressing [7–9]. In this section, we
first exhibit memory latencies of various access patterns. We visit global memory
spaces with non-uniform strides to collect as many access patterns as possible
within one experiment. We then focus on the architectures of micro units, such
as L1 data cache and TLB.

Table 3. Global Memory Access Latencies of Various Patterns

Pattern 1 2 3 4 5 6
Kepler 230 236 289 371 734 1000

Fermi: L1 enabled 116 404 488 655 1259 –
Fermi: L1 disabled 371 398 482 639 1245 –

Pattern 1 2 3 4 5 6
Data cache hit hit hit miss miss miss
L1 TLB hit miss miss hit miss miss
L2 TLB – hit miss – miss miss

Global Memory Latency. We collect global memory latencies of six access
patterns in Table 3. Fermi global memory accesses are cached in both L1 and L2
data cache. The L1 data cache can be manually disabled by applying compiler
option -Xptxas -dlcm=cg. We measure the memory latencies with Fermi L1 data
cache both enabled and disabled, as listed in the last two rows of left side table.

Note that Kepler gets a unique memory access pattern (pattern 6 in Table
3) of page table context switching. We find that when a kernel is launched on
Kepler, only memory page entries of 512 MB are activated. If the thread visits a
page entry that is inactivated, the hardware needs a rather long time to switch
among the page tables. This is so-called page table “miss” in [10].

View from Table 3, on Fermi devices, if the data is cached in L1, the L1 TLB
miss penalty is 288 cycles. If data is cached in L2, the L1 TLB miss penalty is 27
cycles. Because the latter penalty is much smaller, we infer that physical memory
places of L1 TLB and L2 data cache are close. Similarly, physical memory places
of L1 TLB and L2 TLB are also close, which means that L1/L2 TLB and L2
data cache are off-chip shared by all SMs.

We can also find that unless the L1 data cache is hit, caching in L1 does not
really save time. For four out of five patterns, enabling L1 data cache is about 6
or 15 clock cycles slower than disabling it.

Another interesting finding is that unless Fermi L1 data cache is hit, Kepler is
about 1.5-2 times faster than Fermi although it does not utilize L1 data cache.
Kepler has much smaller L2 data cache memory latency, L2 data cache miss
penalty and L1/L2 TLB miss penalty. It confirms the superiority of Kepler in
terms of memory access efficiency.

Fermi L1 Data Cache. We list the characteristics of Fermi L1 data cache
and some other common caches in Table 4. Fermi cache can be either 16 KB or
48 KB, and we only report the 16 KB case in this paper due to limited space.
According to [10], cache associativity is 6 if it is configured as 48 KB .

Benchmarking the Memory Hierarchy of Modern GPUs 153

Table 4. Common GPU Cache Characteristics

Parameters
Fermi L1 data

cache
Fermi/Kepler L1

TLB
Fermi/Kepler L2

TLB
Fermi/Kepler

texture L1 cache
N 16 KB 32 MB 130 MB 12 KB
b 128 byte 2 MB 2 MB 32 byte
a 32 1 7 4

LRU no yes yes yes

Way
1

Line 1 – 32

Way
2

Line 33 – 64

Way
3

Line 65 – 96

Way
4

Line 97 - 128

32 sets

Fig. 8. Fermi L1 Cache Mapping

16 18 20

0

50

100

Array size (KB): stride = 128 byte

C
a
ch

e
m
is
s
ra

te
(%

)

non-LRU cache

typical cache

Fig. 9. Miss Rate of Non-LRU Cache

Set 1
Set 2

17 entries
8 entries

Set 3 8 entries
Set 4 8 entries
Set 5 8 entries
Set 6 8 entries
Set 7 8 entries

7 sets

Fig. 10. Kepler/Fermi L2 TLB Struc-
ture

130 132 134 136 138 140 142 144

0

50

100

Array size (MB): stride = 2 MB

C
a
ch

e
m
is
s
ra

te
(%

)

unequal sets

equal sets

Fig. 11. Miss Rate of Unequal-Set Cache

One distinctive feature of Fermi L1 cache is that its replacement policy is not
LRU, because the memory access process is aperiodic. We apply our fine-grained
benchmark on arrays varying from 16 KB to 24 KB to study the replacement
policy. Fig. 8 gives the L1 cache structure based on our experimental results. L1
cache has 128 cache lines mapped into way 1-4. Of all 32 sets, one cache way
has triple the chance to be replaced than other three ways. It is updated every
two cache misses. In our experiment, way 2 is replaced most frequently. The
replacement probabilities of the four cache ways are 1

6 ,
1
2 ,

1
6 ,

1
6 respectively.

Fig. 9 shows the effect of the non-LRU replacement policy. The y-axis label,
cache miss rate, is obtained from dividing the missed cache lines by the total
cache lines. For the traditional cache, the maximum cache miss rate should be
100% [9, 19] yet the non-LRU Fermi cache has a maximum miss rate of 50%
based on our experimental result.

154 X. Mei et al.

Fermi/Kepler TLBs. Based on our experimental results, Fermi and Kepler
have the same TLB structure: L1 TLB is 16-way fully-associative and L2 TLB
is set-associative with 65 ways. The L2 TLB has unequal cache sets as shown in
Fig. 10.

We plot the L2 TLB miss rate in Fig. 11. For the traditional cache, the miss
rate increases linearly while the measured miss rate increases piecewise linearly:
N = 132 MB causes 17 missed entries at once and varying N from 134 MB to
144 MB with s = 2 MB causes 8 more missed entries each time. Thus the big
set has 17 entries, while the other six sets have 8 entries.

4.3 Texture Memory

Texture memory is read-only and cached. Fermi/Kepler texture memory also
has two levels of cache. Here we discuss texture L1 cache only.

Table 5. Texture Memory Access Latency

Device
Texture cache Global cache

L1 hit L1 miss, L2 hit L1 hit L1 miss, L2 hit
Fermi 240 470 116 404
Kepler 110 220 – 230

Texture L1 Cache. We bind an unsigned integer array to linear texture, and
fetch it with tex1Dfetch(). We measure the texture memory latency of both
Fermi and Kepler as listed in Table 5. The Fermi texture L1 cache hit/miss
consumption is about 240/470 clock cycles and Kepler texture L1 cache hit/miss
consumption is about 110/220 clock cycles. The latter one is about two times
faster.

In Table 5, we also find that Fermi texture L1 cache access is much slower than
global L1 data cache access. In contrast, Kepler texture memory management is
of low cost.

In addition, our experimental results suggest a special set-associative address-
ing as shown in Fig. 12. The 12 KB cache can store up to 384 cache lines.
Each line contains 8 integers/words. 32 successive words/128 successive bytes
are mapped into successive cache sets. The 7-8th bits of memory address de-
fine the cache set, while in traditional cache design, the 5-6th bits define the
cache set. Each cache set contains 96 cache lines. The replacement policy is
LRU. This mapping is optimized for 2D spatial locality [14]. Threads of the
same warp should visit close memory addresses to achieve best performance,
otherwise there would be more cache misses.

5 Conclusions

In this paper, we have explored many unexposed features of memory system of
Fermi and Kepler GPUs. Our fine-grained benchmark on global memory and

Benchmarking the Memory Hierarchy of Modern GPUs 155

1-8

9-16

17-24

25-32

33-40

41-48

129-136

3065-3072

Set 1 Set 2 Set 3
1-8

9-16

17-24

25-32

129-136

33-40

41-48

49-56

57-64

2969-2976

65-72

Set 4
97-104

3001-3008 3033-3040 3065-3072

89-96 121-128

4-05678
Set Word

Memory address =

Data:

4-Set Texture L1 Cache:

96 lines

384 lines

Fig. 12. Fermi & Kepler Texture L1 Cache Optimized Set-Associative Mapping

texture memory revealed some untraditional designs used to be ignored. We also
explained the advantage of Kepler’s shared memory over Fermi. We consider our
work inspiring for both GPU application optimization and performance model-
ing. However, our work still has two limitations. First, we restrict ourselves to
single thread or single warp memory access. The memory latency could be much
different due to the multi-warp scheduling. Second, due to our preliminary ex-
perimental results on L2 cache investigation, the L2 cache design is even more
complicated. Our fine-grained benchmark is incapable of L2 cache study due to
the limited shared memory size. We leave these two aspects for our future study.

Acknowledgement. This research work is partially supported by Hong Kong
GRF grant HKBU 210412 and FRG grant FRG2/13-14/052.

References

1. Li, Q., Zhong, C., Zhao, K., Mei, X., Chu, X.: Implementation and analysis of AES
encryption on GPU. In: 2012 IEEE 14th International Conference on High Perfor-
mance Computing and Communication 2012 IEEE 9th International Conference
on Embedded Software and Systems (HPCC-ICESS), pp. 843–848 (2012)

2. Chu, X., Zhao, K., Wang, M.: Practical random linear network coding on GPUs.
In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.) NETWORKING
2009. LNCS, vol. 5550, pp. 573–585. Springer, Heidelberg (2009)

3. Li, Y., Zhao, K., Chu, X., Liu, J.: Speeding up K-Means algorithm by GPUs.
Journal of Computer and System Sciences 79, 216–229 (2013)

156 X. Mei et al.

4. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, pp. 79–84. ACM (2009)

5. Zhao, K., Chu, X.: G-BLASTN: accelerating nucleotide alignment by graphics
processors. Bioinformatics (2014)

6. Mei, X., Yung, L.S., Zhao, K., Chu, X.: A measurement study of GPU DVFS on
energy conservation. In: Proceedings of the Workshop on Power-Aware Computing
and Systems, vol. (10). ACM (2013)

7. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, vol. (31).
IEEE Press (2008)

8. Papadopoulou, M., Sadooghi-Alvandi, M., Wong, H.: Micro-benchmarking the
GT200 GPU. Computer Group, ECE, University of Toronto, Tech. Rep. (2009)

9. Wong, H., Papadopoulou, M.M., Sadooghi-Alvandi, M., Moshovos, A.: Demysti-
fying GPU microarchitecture through microbenchmarking. In: 2010 IEEE Inter-
national Symposium on Performance Analysis of Systems & Software (ISPASS),
pp. 235–246. IEEE (2010)

10. Meltzer, R., Zeng, C., Cecka, C.: Micro-benchmarking the C2070. In: GPU Tech-
nology Conference (2013)

11. NVIDIA Corporation: Fermi Whitepaper (2009)
12. NVIDIA Corporation: Kepler GK110 Whitepaper (2012)
13. NVIDIA Corporation: Tuning CUDA Applications for Kepler (2013)
14. NVIDIA Corporation: CUDA C Best Practices Guide - v6.0 (2014)
15. NVIDIA Corporation: CUDA C Programming Guide - v6.0 (2014)
16. NVIDIA Corporation: Tuning CUDA Applications for Maxwell (2014)
17. Micikevicius, P.: Local Memory and Register Spilling. NVIDIA Corporation (2011)
18. Micikevicius, P.: GPU performance analysis and optimization. In: GPU Technology

Conference (2012)
19. Saavedra, R.H.: CPU Performance Evaluation and Execution Time Prediction Us-

ing Narrow Spectrum Benchmarking. PhD thesis, EECS Department, University
of California, Berkeley (1992)

20. Saavedra, R.H., Smith, A.J.: Measuring cache and TLB performance and their
effect on benchmark runtimes. IEEE Transactions on Computers 44, 1223–1235
(1995)

Parallel CYK Membership Test on GPUs

Kyoung-Hwan Kim1, Sang-Min Choi1, Hyein Lee1, Ka Lok Man2,
and Yo-Sub Han1,�

1 Department of Computer Science, Yonsei University, Seoul, Republic of Korea
{kyounghwan,jerassi,hyein,emmous}@cs.yonsei.ac.kr

2 Department of Computer Science and Software Engineering,
Xian Jiaotong-Liverpool University, Suzhou, China

ka.man@xjtlu.edu.cn

Abstract. Nowadays general-purpose computing on graphics process-
ing units (GPGPUs) performs computations what were formerly handled
by the CPU using hundreds of cores on GPUs. It often improves the per-
formance of sequential computation when the running program is well-
structured and formulated for massive threading. The CYK algorithm is
a well-known algorithm for the context-free language membership test
and has been used in many applications including grammar inferences,
compilers and natural language processing. We revisit the CYK algo-
rithm and its structural properties suitable for parallelization. Based on
the discovered properties, we then parallelize the algorithm using differ-
ent combinations of memory types and data allocation schemes using a
GPU. We evaluate the algorithm based on real-world data and herein
demonstrate the performance improvement compared with CPU-based
computations.

Keywords: Parallel Computing, Context-Free Language Membership
Test, CYK Algorithm, GPU Programming, CUDA.

1 Introduction

Graphics Processing Unit (GPU) computing involves the use of a GPU to im-
prove general-purpose scientific applications, that were formerly handled by
a CPU. A GPU consists of processors with different instruction set architec-
tures (ISAs). GPUs designed with massively parallel single instruction multiple
threads (SIMT) are many-core processors that provide an effective performance
through low-latency and high-bandwidth. The limits of program scalability are
often related to some combination of memory bandwidth saturation, memory
contention, imbalanced data distribution or data structure/algorithm interac-
tions. For a better performance, researchers and developers have therefore
suggested particular data structures and formulated problems specifically for
massive threading. They executed massive threads by leveraging shared mem-
ory resources including [7,23]. There are a few tools that support general pur-
pose computing for GPUs such as the Compute Unified Device Architecture

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 157–168, 2014.
c© IFIP International Federation for Information Processing 2014

158 K.-H. Kim et al.

(CUDA) [18] and Open Computing Language (OpenCL) [13]. We considered the
Cocke-Younger-Kasami (CYK) algorithm [6,12,22], which is popular for several
application domains such as RNA secondary structure prediction [4] and gram-
matical inference [17], and implement parallel CYK algorithms using GPUs. Note
that the runtime of the CYK algorithm is O(|G|n3), where n is the length of
an input string and |G| is the size of the input context-free grammar (CFG) [1].
Namely, the runtime of the CYK algorithm is closely related to the size of the
grammar and the length of the input string. We investigated the possible gram-
mar mapping methods for hundreds of cores in a GPU, which may give rise to
an overall performance improvement of the CYK algorithm. In particular, we
considered three mapping methods: rule-based, left-variable sorting and right-
variable sorting mappings. We applied each mapping to different architectural
features of GPUs such as zero-copy host memory, page-locked memory, shared
memory and texture memory. We then evaluated the algorithm for different
combinations of mapping methods and features. We ran our experiments on
NVIDIA GPUs (GTX560Ti) with 384 cores using the dataset from the Berkeley
parser [16] and Penn Treebank [14].

In Section 2, we revisit previous research on the parallelization of the CYK
algorithm. We then recall CFG and the CYK algorithm in Section 3. We de-
scribe three mapping methods and four memory structures in Section 4. We
then present our experimental results and an analysis from applying the four
memory structures to each mapping method in Section 5. Finally, some conclud-
ing remarks regarding this research are given in Section 6.

2 Related Work

The CYK algorithm allows us to determine whether an input string is in an
input context-free language. The algorithm has been widely used in several do-
mains such as parsing, grammatical inference and bioinformatics. The CYK algo-
rithm is a classical dynamic programming algorithm and there have been many
attempts to parallelize it depending on the applications used. Table 1 shows
previous studies.

3 CFG Membership Test

We briefly recall the definition of context-free languages and the CYK algo-
rithm. For more details on these topics, the reader is referred to Hopcroft and
Ullman [10].

3.1 Context-Free Languages

A CFG G is specified by the tuple G = (V,Σ, P, S), where V is a set of variables,
Σ is a set of terminals, P is a set of production rules and S is the start symbol.
Given a CFG G = (V,Σ, P, S) , let αAβ be a string derived from S where A ∈ V

Parallel CYK Membership Test on GPUs 159

Table 1. Related work on the parallel CYK implementation

Authors Year Summary

Takashi et al. [19] 1997 They suggested an agenda-based parallel CYK parser on
a distributed-memory parallel machine that consists of 256
nodes (single processors). This approach uses a specific par-
allel language and parallelizes the CYK algorithm by allo-
cating each cell of the CYK matrix into a processor.

Bordim et al. [3] 2002 They studied the CYK algorithm on field programmable gate
arrays (FPGAs) and developed a hardware generator that
creates a Verilog HDL source performing CYK parsing for a
given CFG. Their approach considers 2,048 production rules
and 64 variables in an input CFG and shows a speedup factor
of almost 750×.

Johnson [11] 2011 The author examined the CYK algorithm for a dense prob-
abilistic context-free grammars (PCFG) and constructed a
dense PCFG with 32 variables and 32,768 production rules
with random probability. The author reported an 18.4×
speedup obtained on NVIDIA Fermi s2050 GPUs, and sug-
gested a reduction method in one block for calculating the
probability.

Dunlop et al. [8] 2011 They presented a matrix encoding of CFGs using a multi-
plication method for a matrix low-latency parallelized CYK
algorithm. They encoded the grammars of CFG in a ma-
trix form in which the rows are the left-hand side variable
of the production and the columns are the right-hand side
variables (pairs in CNF).

Yi et al. [21] 2014 They proposed an efficient parallel CYK algorithm for natu-
ral language parsing of PCFG on GPUs. A PCFG is a CFG
in which each production is augmented with the probabil-
ity. Their algorithm assigns each production rule of an input
PCFG to each core in a GPU and finds the valid parsing
rules quickly.

and α and β are strings from (V ∪Σ)∗. When A→ γ, we say that A is rewritten
to γ and denote this derivation step by ⇒ symbol: namely, αAβ ⇒ αγβ. When
there are zero or more steps of derivation, we denote this step by

∗⇒ symbol. The
language L(G) of G is then a set of terminal strings derived from the start symbol

S; namely, L(G) = {w ∈ Σ∗ | S ∗⇒ w}. We can say that a CFG G = (V,Σ, P, S)
is in Chomsky Normal Form (CNF) if every production rule in P is either of
form A → BC or A → a, where A,B,C ∈ V and a ∈ Σ [5]. It is well-known
that every CFG can be transformed in to CNF [10]. From now on, we assume
that an input CFG is in CNF.

160 K.-H. Kim et al.

Procedure 1. CYK Algorithm

1: procedure CYK Algorithm(G = (V,Σ, P, S), w)
2: initialize table M [n][n + 1][|V |]; � |V | is size of variables
3: n = length of input string w
4: for i = 0 to n− 1
5: if {A ∈ V | A→ wi ∈ P}
6: M [i][i + 1][A] = T � Initialize with terminal rules
7: end for
8: for len = 2 to n
9: transitionRule(M,n, len,G); � Procedure 2
10: end for
11: if M [0][n][S] = T

12: return true
13: else
14: return false
15: end if
16: end procedure

3.2 CYK Algorithm

Given an input string w = w1w2 · · ·wn ∈ Σ∗ and a CFG G = (V,Σ, P, S),
the CYK algorithm, which is based on the bottom-up dynamic programming,
determines whether w is in L(G). The algorithm constructs a triangular table M

in which each cell M [i−1][j][A], for A ∈ V , is T if A
∗⇒ wiwi+1 · · ·wj in G. Once

all of M is computed, the algorithm checks whether M [0][n][S] = T.

Procedure 2. transitionRule
1: procedure transRule(M,n, len, G = (V,Σ, P, S))
2: for i = 0 to n− len do � Start Index
3: j = i+ len; � End Index
4: foreach production A→ BC ∈ P
5: for split = i+ 1 to j − 1
6: if M [i][split][B] =T do
7: if M [split][j][C] =T do
8: M [i][j][A] =T;
9: end foreach
10: end for
11: end procedure

First, we initialize the bottom level of the table using the terminal rules (line
5 and 6). The algorithm then proceeds to repeatedly apply all binary rules and
builds up for the table using Procedure 2. As illustrated in Procedure 1, the
algorithm fills up M and checks whether M [0][n][S] is T.

Fig. 1 illustrates the CYK table M for the string w = cabac with respect to
a CFG G = {{S,A,B,C}, {a, b, c}, P, S}, where P = {S → AB | b, A → CB |
AA | a,B → AS | b, C → BS | c}.

Parallel CYK Membership Test on GPUs 161

T

0

T

0

0
T

0
0

0
T

0
0

0
0

0
0

T

0

0
0

0
0

0
T

0
0

T

0

T

0

T

0

0
T

0
0

0
0

0
T

0
0

0
0

T

0

T

0

T

0

T

0

0
T

0
0 T

0

T

0

c a b a b

Execution order

S
A

B

C

1

2

3

4

5

y

4

3

2

1

0

x

Fig. 1. An example of the CYK table for an input string, cabab

4 Our Approaches and Implementations

We next discuss the different implementations of Procedure 2 that account for
the bulk of the overall execution time for the CYK algorithm. We consider three
thread mappings, memory types for data access, and two data transfer methods.

4.1 Three Types of Thread Mappings

One of the important factors for designing parallel algorithms is how to map the
input data to the threads for fast parallel processing. We consider the possible
mappings of the grammar rules to the threads for the table cells or variables
of the CYK algorithm. We select grammar rules for thread mapping instead of
variables. Since the number of variables is usually fewer than the number of
threads, it is possible to fail to provide enough parallelism to fully utilize the
massive number of threads in GPUs. In addition, a load imbalance exists because
of differences in the number of rules for each variables and it leads to different
branches and degrades the performance. We can reduce the load imbalance by
mapping the rules to the threads. There are three mapping methods used: rule-
based, left-variable sorting (LVS) and right-variable sorting (RVS) mappings.

1. Rule-Based Mapping: We noticed that the foreach (line 4) loop in Pro-
cedure 2 is suitable for parallelization. We therefore simply map all rules in
the input grammar to all available threads as described in Procedure 3.

2. RVS Mapping: The RVS mapping is to sort the production rules in a
CFG, according to the first variable of the right-hand side (RHS) in the pro-
duction rules. The left figure in Fig. 2 shows an example of RVS. The main
reason for introducing RVS mapping is to reduce the thread divergence. In
Procedure 2, we first check whether the two variables on the RHS exist in
each cell. If they exist, we store them in the current cell. Thread-divergence
occurs since each rule has different first variables in the RHS. For example,
when some threads that have the first RHS variable satisfying an if-condition
to enter the if-statement, other threads must wait until the statement ends.

162 K.-H. Kim et al.

Procedure 3. RuleandRVSTR
1: procedure RuleandRVSTR(M,n, len,G = (V,Σ, P, S))
2: for i = 0 to n− len do in parallel � Mapping to Thread Block
3: j = i+ len;
4: shared bool shVar[|V |];
5: foreach production A→ BC ∈ P in parallel
6: � Mapping to Thread
7: for split = i+ 1 to j − 1
8: if M [i][split][B] = T do
9: if M [split][j][C] = T do
10: shVar[|A|]= T;
11: end foreach
12: for A ∈ V in parallel
13: M [i][j][A] =shVar[|A|];
14: end for
15: end procedure

This situation degrades the performance since some threads must wait for
the others. Thus, in the variable-based mapping of algorithm, we avoid this
type of divergence by sorting the first-right variables in the production rules.

Fig. 2. An example of RVS and LVS

3. LVS Mapping: The LVS mapping first sorts all production rules in a CFG,
to the left-hand side (LHS) variable of the rules. The right figure in Fig. 2
shows examples of LVS: (a) and (b) are the production rules before and after
LVS, respectively. We group the rules that have the same LHS variables. The
purpose of LVS is to concurrently access variables with a set of rules that
have the same LHS value. When we store the variables in Procedure 4, we
aim to improve the performance by storing the sorted variables into single
variable.

4. Adding Dummy: If we use dummy rules in RVS mapping, we could im-
prove the overall performance since some threads may not need to wait on
line 6 in Procedure 2. In LVS mapping, we use dummies because each warp
has only one LHS value, which allows us to save a LHS value to one memory

Parallel CYK Membership Test on GPUs 163

Procedure 4. LVSTR
1: procedure LVSTR(M,n, len, G = (V,Σ, P, S))
2: for i = 0 to n− len do in parallel � Mapping to Thread Block
3: j = i+ len;
4: shared int shVar[|W |]; � |W | is size of warps
5: foreach production A→ BC ∈ P in parallel
6: � Mapping to Thread
7: for split = i+ 1 to j − 1
8: if M [i][split][B] = T do
9: if M [split][j][C] = T do
10: shVar[w]= T; � w is warp number
11: end foreach
12: for thread tw ∈ each warp w in parallel
13: M [i][j][shV ar[|w|]]=T;
14: end for
15: end procedure

storage. By adding dummies, the memory access may be increased. However,
we obtain performance improvement by reducing thread divergence and shar-
ing one LHS value in each thread blocks. If the grammars are not ordered
by LHS or RHS, the adding dummies is effective, since the performance im-
provement is greater than the overhead from the additional memory access.
We describe this tendency and the results of adjusting this method to our
implementation in the experimental results, in Section 5

4.2 Two Types of Memory for Data Access

In GPU programming, data are usually allocated and accessed in global memory.
Since the access speed of global memory is slow, reducing access is important
for high-performance. We therefore use texture memory and shared memory to
reduce access.

– Texture Memory: Texture memory is read-only memory and is allocated
by calling a binding API in CUDA. Unlike global memory, texture memory
provides caching and reads all threads in a kernel. If the memory is frequently
accessed, it becomes more efficient since it has a faster access speed than
global memory. On the other hand, it has an overhead caused from binding
the device data after the memory allocation is initiated from the host.

– Shared Memory: Shared memory is a memory block that can be accessed
by all threads within a block. It is much faster than local and global memory.
We use this memory in rule-based and RVS mapping by following two steps:
First, we allocate the variables and their number to the shared memory and
store them before saving them directly to the table. We then restore these
variables to the global memory. These steps differ from those of Procedure 3.
Since all threads in the same warp have the same LHS variable because of
deploying dummy rules, we can save one variable instead of all variables in

164 K.-H. Kim et al.

the shared memory. Therefore, LVS mapping need smaller space than rule-
based and RVS mapping. We add the following processes to Procedure 3 in
order to implement LVS mapping; we allocate the shared memory based on
the number of threads in a block and warp, and save the variables in the
memory and restore them into the global memory.

4.3 Two Types of Data Transfer Methods

We transfer the input grammar from the host to the device before we start the
membership test. After computation, we need to transfer the top cell of table,
which is a set of variables deriving the input string, from device to host to
verify the test. The data transfer between two devices often causes the degraded
performance in GPU programming. It is crucial to reduce the data transfer time
between the devices. We use the following two methods to improve the speed:

– Page-locked Host Memory: We generally allocate the data to the page-
locked host memory. A page-locked buffer, also called pinned memory, save
all data in physical memory. We can improve the speed of the data movement
using page-locked host memory since this memory does not use paging.

– Zero-copy Host Memory: The zero-copy host memory enables GPUs
to access host memory directly without transferring data to the device. In
addition, GPUs can read and write data simultaneously in the host memory,
which is not possible in a traditional PCI bus.

5 Experimental Results

We apply previous approaches to GPU. The details of the experimental platform
are as follows: CPU is Core i3 3.10Ghz, RAM is 8GB, GPU is GTX 560 Ti and
its memory is 1GB. The number of SM and SP are respectively 8 and 384. Shared
Memory/SM is up to 48KB and L1 cache/SM is up to 512KB.

We use grammars by Petrov et al. [16] for our experiment. These gram-
mars have been widely used for evaluating the performance of parsing with
CFGs [2,9,20]. They suggested various methods such as splitting and merging
variables for a high parsing performance. Because of splitting and merging rules,
there are 1,043 variables and 1,725,570 binary rules for parsing in the resulting
CFGs.

Since we only consider CFGs instead of PCFGs for the CYK algorithm, we
ignore these splitting and merging variables in the experiment. We merge the
same word class variables into a single variable. Therefore, we have 98 variables
and 3,840 binary rules. We use Section 23 of the WSJ portion of the Penn Tree-
bank [14] as our benchmark set.1 The sequential version of the CYK algorithm
was written in C. It requires 53, 987 ms per sentence. We compare the execution
time of various implementations of the CYK algorithm in CUDA based on the
thread mapping methods and different memory access patterns.

1 In the benchmark set, an input string is a sentence, and the length of the input
string is the number of words in the sentence.

Parallel CYK Membership Test on GPUs 165

 3.5

 4.5

 5.5

 6.5

 7.5

 8.5

+

+

+ +
+

+

+

+

+ +

+

+

+

+

+

+

+

Sp
ee

du
p

Different thread mappings, data access methods, and data transfer methods

Fig. 3. Speedup of different implementations of a parallel CYK algorithm using differ-
ent thread mapping methods, data access methods, and data transfer methods

Fig. 3 and Table 2 shows the speedup of the different parallel CYK algorithm
implementations on a GTX 560 Ti.

– M: Three thread mapping methods
– R: Rule-based mapping
– D: Deploying dummy rules to RVS and LVS mapping
– P : Page-locked host memory
– Z: Zero-copy host memory
– SH: Storing data in shared memory
– T : Placing grammar rules in texture memory

For each test, we randomly selected 1,000 sentences for the benchmark set and
measure the runtime. We repeated this test 100 times and computed the average
runtime for each case.

– Five Mapping Methods: We first implement rule-based, LVS and RVS
mappings. We then add dummy rules to LVS and RVS mappings.

1. R: Rule-based mapping shows an 8.20× speedup.
2. RVS: The use of RVS shows an 8.18× speedup, which is similar to the

result of rule-based mapping.
3. RVS +D: Once we add dummies to RVS, the size of the grammar in-

creases by 46% to 5,632 compared with the original size of 3,840. Since
the size of grammar increases, there might be a more frequent memory
accesses in the kernel. However, we achieved a slightly improved per-
formance of 8.26×, because of reducing thread divergence. Note that
an advantage is achieved from all threads passing the first if-statement
without any idle time.

166 K.-H. Kim et al.

4. LVS: LVS shows a poorer performance than R, with an 8.10× speedup.
Since we sort the production rules according to the LHS variables, some
rules that have different first RHS variables are processed in the same
warp concurrently, which causes frequent thread divergences than R.

5. LVS +D: When we add dummy rules, the grammar size increases by
21% to 4,630 compared with 3,840. The overhead becomes signification,
so it shows only an 8.08× speedup, which is slower thanM.

Table 2. Speedups of different implementations of a parallel CYK algorithms by dif-
ferent thread mapping methods, data access methods, and data transfer methods

M M+ P M+ Z M+ SH M+ SH+ P M+ SH+ Z
R 8.20 7.58 3.77 7.85 8.06 4.02
RVS 8.19 7.98 3.90 7.92 8.16 4.05
LVS 8.10 8.06 3.89 7.52 8.14 3.95

RVS +D 8.26 7.63 3.90 7.93 7.68 3.96
LVS +D 8.08 7.82 3.85 8.42 7.29 3.63

M+ S M+ T + P M+ T + SH M+ T + SH+ P
R 7.38 7.00 8.04 6.48
RVS 7.38 7.00 7.65 6.48
LVS 7.47 7.01 7.64 6.57

RVS +D 7.45 7.45 7.58 6.45
LVS +D 7.40 7.07 7.56 6.48

– Page-Locked Host Memory: Since our program uses a relatively small
amount of memory, the page-locked host memory method shows a slower
runtime compared with the memory allocation without a page-lock. This
is because the paged-locked host memory has its own memory allocation
function, which is slower than the traditional memory allocation function.

– Zero-Copy Host Memory: M+ Z and M+ SH + Z show speedup of
4×, which is worse thanM, since the use of zero-copy host memory is very
costly in our implementation as small amount of data are frequently moved.

– Shared Memory: In the case of shared memory, only LVS +D + SH shows
a performance improvement. Since LVS +D + SH allocates shared memory
according to the number of warps in each block, it can effectively utilize
shared memory. This gives rise to a speedup of 8.42× at maximum. Note
that the GTX 560 Ti has an L1 cache with a Fermi architecture [15]. We
also observe that the other mappings have a shared memory table array in
L1 cache and they also need more shared memory in proportion to the size
of the variables and more access to the memory than those for LVS +D
mapping. The other mappings using shared memory therefore degrade the
performance.

– Texture Memory: For texture memory, we observe a slower speed than
the case without texture mapping for two reasons: First, the GPUs must
fetch data from texture memory by calling a special fetch operation, which
delays the process overall. Second, the texture memory is optimized for 2D
data [18], whereas our data is a 1D string.

Parallel CYK Membership Test on GPUs 167

We also compared the implementation of a previous study by Yi et al [21]. Since
their implementation is for parsing PCFG, it requires an additional operation to
calculate the probability, atomic operation, and so on. We therefore cannot com-
pare their implementation directly. The speedup of the fastest implementation
of their work is 4.37×. This result is worse than our result 8.42×. This means
that our result is more appropriate for a CFG membership test.

6 Conclusions

We explored a design for parallelizing the CYK algorithm. We analyzed differ-
ent methods for thread mapping, data access using various types of memories
and data transfer based on the memory design concepts. We then compared the
different implementations of the CYK algorithm on a GTX560Ti. Our contribu-
tions can be summarized as follows:

– We evaluated various implementations of CYK on a GPU
– We utilized a memory access pattern in a warp using shared memory

The fastest implementation of the algorithm when using a GPUs is from
LVS +D + SH mapping when the number of rules is relatively small (in our
test case, it was almost 8k), i.e., left-variable sorting while deploying dummy
rules with shared memory. This implementation is 8.42× faster than the se-
quential C version. However, the experimental results showed that except for
LVS +D mapping, using shared memory is slower than using global memory
because the data are already in the L1 cache on the GTX560Ti using the 3, 841
production rules of the benchmark grammar. Using page-locked and zero-copy
host memory results in more overhead, and compared to its benefit, it worsens
the performance. We believe that these observations will be helpful for designing
a fast parallel CYK algorithm for use on GPUs.

References

1. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling (1972)
2. Bodenstab, N., Dunlop, A., Hall, K., Roark, B.: Beam-width prediction for efficient

context-free parsing. In: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pp. 440–449 (2011)

3. Bordim, J.L., Ito, Y., Nakano, K.: Accelerating the CKY parsing using fPGAs.
In: Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552,
pp. 41–51. Springer, Heidelberg (2002)

4. Cai, L., Malmberg, R.L., Wu, Y.: Stochastic modeling of RNA pseudoknotted
structures: a grammatical approach. Bioinformatics, 66–73 (2003)

5. Chomsky, N.: On certain formal properties of grammars. Information and Control,
137–167 (1959)

6. Cocke, J.: Programming languages and their compilers: Preliminary notes (1969)
7. D’Agostino, D., Clematis, A., Decherchi, S., Rocchia, W., Milanesi, L., Merelli,

I.: Cuda accelerated molecular surface generation. Concurrency and Computation:
Practice and Experience 26(10), 1819–1831 (2014)

168 K.-H. Kim et al.

8. Dunlop, A., Bodenstab, N., Roark, B.: Efficient matrix-encoded grammars and low
latency parallelization strategies for CYK. In: Proceedings of the 12th International
Conference on Parsing Technologies, pp. 163–174 (2011)

9. Foster, J.: “cba to check the spelling” investigating parser performance on discus-
sion forum posts. In: Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 381–384 (2010)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation (1979)

11. Johnson, M.: Parsing in parallel on multiple cores and GPUs. In: Proceedings of the
Australasian Language Technology Association Workshop 2011, pp. 29–37 (2011)

12. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free
languages. Technical report, Air Force Cambridge Research Laboratory (1965)

13. Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29
(2008), http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

14. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated cor-
pus of english: The Penn Treebank. Computational Linguistics 19(2), 313–330
(1993)

15. Nvidia Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. Technical report, Nvidia Corporation (2009)

16. Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and
interpretable tree annotation. In: Proceedings of the 21st International Conference
on Computational Linguistics, pp. 433–440 (2006)

17. Sakakibara, Y.: Learning context-free grammars using tabular representations.
Pattern Recognition 38(9), 1372–1383 (2005)

18. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming, 1st edn. Addison-Wesley Professional (2010)

19. Takashi, N., Kentaro, T., Taura, K., Tsujii, J.: A parallel CKY parsing algorithm
on large-scale distributed-memory parallel machines. In: Proceedings of the 5th
Pacific Association For Computational Lingustics, pp. 223–231 (1997)

20. Weese, J., Ganitkevitch, J., Callison-Burch, C., Post, M., Lopez, A.: Joshua 3.0:
syntax-based machine translation with the thrax grammar extractor. In: Proceed-
ings of the 6th Workshop on Statistical Machine Translation, pp. 478–484 (2011)

21. Yi, Y., Lai, C.-Y., Petrov, S.: Efficient parallel CKY parsing using GPUs. Journal
of Logic and Computation 24(2), 375–393 (2014)

22. Younger, D.H.: Recognition and parsing of context-free languages in time n3. In-
formation and Control 10, 189–208 (1967)

23. Vu, V., Cats, G., Wolters, L.: Graphics processing unit optimizations for the dy-
namics of the HIRLAM weather forecast model. Concurrency and Computation:
Practice and Experience 25(10), 1376–1393 (2013)

http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

Designing Coalescing Network-on-Chip

for Efficient Memory Accesses of GPGPUs

Chien-Ting Chen1, Yoshi Shih-Chieh Huang1, Yuan-Ying Chang1,
Chiao-Yun Tu1, Chung-Ta King1, Tai-Yuan Wang1, Janche Sang2,

and Ming-Hua Li3

1 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
2 Department of Computer and Information Science, Cleveland State University,

Cleveland, OH, USA
3 Information and Communications Research Laboratories,
Industrial Technology Research Institute, Hsinchu, Taiwan

Abstract. The massive multithreading architecture of General Purpose
Graphic Processors Units (GPGPU) makes them ideal for data parallel
computing. However, designing efficient GPGPU chips poses many chal-
lenges. One major hurdle is the interface to the external DRAM, par-
ticularly the buffers in the memory controllers (MCs), which is stressed
heavily by the many concurrent memory accesses from the GPGPU.
Previous approaches considered scheduling the memory requests in the
memory buffers to reduce switching of memory rows. The problem is
that the window of requests that can be considered for scheduling is too
narrow and the memory controller is very complex, affecting the critical
path. In view of the massive multithreading architecture of GPGPUs
that can hide memory access latencies, we exploit in this paper the novel
idea of rearranging the memory requests in the network-on-chip (NoC),
called packet coalescing. To study the feasibility of this idea, we have
designed an expanded NoC router that supports packet coalescing and
evaluated its performance extensively. Evaluation results show that this
NoC-assisted design strategy can improve the row buffer hit rate in the
memory controllers. A comprehensive investigation of factors affecting
the performance of coalescing is also conducted and reported.

Keywords: Network-on-chip, general-purpose graphic processors unit,
memory controller, latency hiding, router design.

1 Introduction

Modern General Purpose Graphic Processors Units (GPGPUs) have over ten to
hundred times more computing power than general purpose processors [15,19].
GPGPUsare thuswell suited for highperformancecomputing [14,16,20].AGPGPU
typically containsmany streaming multiprocessors (SMs), sometimes referred to as
shader cores, each is composed of many small streaming processors (SPs).

A warp, consisting of multiple threads, is the basic unit of scheduling on a
SM. Multiple warps can be assigned to a SM and synchronized only within the

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 169–180, 2014.
c© IFIP International Federation for Information Processing 2014

170 C.-T. Chen et al.

SM. When a warp is blocked due to memory access, other ready warps may
be executed so that the SM is not idle. The amount of time when a warp is
context-switched out until it is scheduled for execution again is known as the
slack time [21]. If the slack time is longer than memory access time, the latency
in memory accesses is effectively hidden.

The massive multithreading architecture of GPGPUs makes them ideal for
data parallel computing. However, the many concurrently memory accesses out
of data parallel computing also severely stress the memory, particularly the
buffers in the memory controllers (MCs). The problem is made even worse due
to the many-to-few-to-many traffic patterns [4] in GPGPUs, which is from many
SMs to few MCs and then back to many SMs.

As DRAM cells are typically organized in a two-dimensional array and to
access a cell, a whole row of cells need to be loaded into the row buffer first,
previous approaches to improving memory performance in GPGPUs focus on
scheduling memory requests in the request queue in MCs to increase the row
buffer hit rate [11,18]. The problem is that the window of requests that can
be considered for scheduling is too narrow and the memory controller becomes
complicated, affecting the critical path [22].

In view of the latency-hiding capability of GPGPUs, we exploit in this paper
the novel idea of rearranging the memory requests in the network-on-chip (NoC),
called packet coalescing. The idea is to merge memory requests destined for the
same row of the memory in the routers of the NoC. In this way, the many memory
requests from the different SMs may be merged to a few large packets along the
path. When they arrive at the MC, memory requests are already in proper order
for continuous row buffer hits. Note that packets may be delayed in the NoC
for coalescing opportunity. However, the gain in faster memory accesses may
more than compensate the delays. To study the feasibility of this idea, we have
designed an expanded NoC router that supports packet coalescing and evaluated
its performance extensively.

The contributions of this paper are as follows:

– We propose the novel idea of coalescing and reordering memory requests in
the NoC in a distributed manner to improve the row buffer hit rate of the
memory controllers.

– We design an enhanced NoC that supports packet coalescing.
– We provide an in-depth evaluation of the proposed architecture, investigate

possible sources of inefficiency, and study ways to mitigate the problems.

2 System Design

To study the feasibility of packet coalescing, we present in this section an ex-
panded NoC router based on a typical five-stage pipeline, which consists of Input
Buffering (IB), Routing Computation (RC), Virtual-channel Allocation (VA),
Switch Allocation (SA), and Link Traversal (LT) [7,8]. To extend the router
for packet coalescing, a number of components are added: Coalescer, Scheduler,
Detector and Grant Holder. They are mainly implemented in the IB and SA
stages.

Designing Coalescing Network-on-Chip 171

MC1
Bank1,Row1

MC2
Bank1,Row6

MC2
Bank2,Row7

MC3
Bank3,Row1

Merged Table

Packet Wait Time

…
.

Crossbar

SA

VA

GH

Output
Channels

Detector

VC0

VC1
Dedicated
for Big
Packet

Input
Port

Scheduler

…..

Coalescer

Fig. 1. The extended router microarchitecture for packet coalescing

Packet
Type

MC #
Bank #
Row #

Available
Slack Time

Original
Head Flit Payload

Head Flit Body Flit

Normal Packet: only one packet
Big Packet: coalescing several packets

Fig. 2. Extended packet format for packet coalescing

2.1 Router Microarchitecture

Fig. 1 shows the proposed router microarchitecture. To match the extended
router, the packet format should also be modified as shown in Fig. 2. The first
field, Packet Type, indicates whether the packet is a normal packet or a coalesced,
long packet. The second field contains information of the destination of the
request to the row of a memory bank. This information is used to decide whether
two packets can be merged together or not.

– Detector : When the router receives a head flit indicating it is a read re-
quest, Detector decides for how long the packet should wait for coalescing.
The decision is affected by factors such as the router location, the routing
algorithmth, available slack time of the packet, number of available warps,
and GPGPU architecture. For example, if a router is closer to the memory
controller, it will see more packets that could be coalesced, and thus it is

172 C.-T. Chen et al.

nature to hold a packet longer there. Detailed strategies will be discussed
later.

– Coalescer : If it is decided that a packet should wait for coalescing, then Co-
alescer stores this packet to the Merged Table. The Merged Table is indexed
by the MC id, bank id, and row id. When packets are stored in the Merge
Table, their packet type is changed to Big Packet, as Figure 2 shows. If a new
packet arrives that can be merged with another packet already in the Merged
Table, the headers of the two packets are merged with an updated packet
size and available slack time. Their payloads are concatenated together to
form the payload of the new packet.

– Scheduler : Scheduler checks in every cycle if there is any packet in the Merged
Table whose held time has expired. Such packets contains the memory re-
quests destined to the same row of the same bank in the same memory
controller. They will be removed from the Merged Table and placed in the
virtual channel to be sent to the next hop. Strategies to schedule these big
packets will be discussed in the next section.

– Grant Holder : To avoid a Big Packet from being transferred apart due to
the fairness mechanism of the Switch Allocation pipeline stage, the Grant
Holding (GH) mechanism is added to let a Big Packet hold the grant until
the entire packet is transferred.

2.2 Design Issues

One important design issue is where the packets should wait for opportunities of
coalescing and for how long. The simplest idea is to delay every request packet
for a fixed time in each router on the path to the MC. However, since all the
packets are delayed for a fixed time interval in the routers, the overall traffic
pattern will remain the same. A better strategy is to distribute the allowable
delays of a packet wisely among the routers along its path to the destination
MC. Since packets that can be merged are all destined to the same MC, the
routers closer to the MC should have a higher probability of seeing packets that
can be merged. Therefore, we can allocate more delays to the routers closer to
the MC. This is called the dynamic slack distribution policy.

Specifically, we employ a design parameter, called Fixed Delay per Hop and
multiply it with the number of hops in the path from the requesting SM to the
destination MC. This gives the total delay that the packet will experience along
the path. The amount of delay in each router on the path is then calculated as
shown below. The idea is to allocate one portion of the total delays on the first
router, two portions on the second router, and so on.

(Fixed Delay per Hop × Total Hop Count)× Traversed Hop Count
∑Total Hop Count

i=1 i
(1)

Another issue is the head-of-line problem in the memory request queue that
unavoidably arises when memory requests to the same rows are grouped to-
gether [10,12]. Modern DRAM chips are usually organized into banks, and mem-
ory requests to different banks can be serviced concurrently. These requests are

Designing Coalescing Network-on-Chip 173

queued in the memory request queue in the MC and served in a FCFS fashion.
Any scheduling scheme, including packet coalescing, that attempts to increase
row buffer hits will necessarily group the memory requests to the same DRAM
row together in the request queue. However, this would inversely block requests
to other banks, reducing the bank level parallelism. Therefore, advanced mem-
ory scheduling schemes are often complemented with mechanisms such as banked
FIFO, in which each bank has its own request queue.

3 Evaluation

We use GPGPU-Sim [5], a cycle-accurate many-core simulator, to evaluate the
proposed packet coalescing mechanism. The microarchitecture parameters used
in the evaluations are shown in Table 1. Eleven benchmark programs are used
in our evaluation, including three from GPGPU-Sim. The benchmark programs
are shown in Table 2. The proposed packet coalescing mechanism is compared
with two MC-side buffer scheduling methods: FIFO and FR-FCFS [11,18], where
FIFO is used as the baseline. The design parameter, Fixed Delay per Hop, is set
to 5 cycles. Note that, being a NoC-side solution, packet coalescing can be used
together with FIFO or FR-FCFS.

3.1 Row Buffer Miss Rate

Packet coalescing aims to reduce the row buffer miss rate by rearranging memory
requests in the NoC. A lower row buffer miss rate implies faster memory accesses.
Fig. 3 shows the performance in terms of row buffer miss rate.

From the figure, we can see that packet coalescing, when used together with
FR-FCFS (denoted FR+dynamic), can reduce the row buffer miss rate by 78.75%
over that of pure FIFO. When compared with FIFO and FR-FCFS, packet coa-
lescing can further improve row buffer miss rate by 8.7% and 2.87% respectively.

Table 1. Microarchitecture parameters of GPGPU-Sim

Parameter Value

Number of Shader Cores 28

Warp Size 32

Number of Threads/Core 1024

Number of Registers/Core 16384

NoC Topology / Routing Mesh / Dimension-Order

NoC Virtual Channel 1

NoC Virtual Channel Buffer 8

NoC Flit Size 32

Memory Controller 8

DRAM Request Queue 32

Memory Controller Scheduling Scheme FR-FCFS / FIFO / Banked-FIFO

GDDR3 Memory Timing tCL=9, tRP=13, tRC=34,
tRAS=21, tRCD=12, tRRD=8

174 C.-T. Chen et al.

Table 2. Benchmark programs

Benchmark Label Suite

AES Encryption AES [5]

Graph Algorithm: Breadth-First Search BFS Rodinia[6]

Coulombic Potential CP Parboil[2]

3D Laplace Solver LPS [5]

LIBOR Monte Carlo LIB 3rd Party[5]

MUMmerGPU MUM 3rd Party[5]

Neural Network NN [5]

N-Queens Solver NQU [17]

Ray Tracing RAY 3rd Party[5]

Weather Prediction WP 3rd Party[5]

BlackScholes Simulation BlackScholes Nvidia [1]

91.34%

81.62%

78.75%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

AES BFS CP LIB LPS MUM NN NQU RAY WP BlackScholes avg.

FIFO FIFO+dynamic FR FR+dynamic

Fig. 3. Row buffer miss rate

The performance of individual benchmarks varies. The figure shows that bench-
marks such as LIB, NN, and RAY can achieve a lower miss rate, because the
injection patterns of these benchmarks are suitable for coalescing. However, WP
does not perform well because the coalescing probability of WP is relatively low
compared with other benchmarks. Benchmarks such as AES and NQU have a
low packet injection rate to the NoC, and thus are hard to be improved.

The improvement in row buffer miss rate translates into improvement in
DRAM accesses, as shown in Fig. 4. The figure shows a more than 25% re-
duction in the DRAM access time in average. This is because our design will
delay packets in the NoC to rearrange their arrival sequence in the memory
controllers. Thus, the average memory fetch time is higher than the baseline.
However, if we deduct the average NoC traverse time from the average memory
fetch time to get the average DRAM access time, our design does reduce the
DRAM access time as shown in the figure.

Designing Coalescing Network-on-Chip 175

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%
100.0%

FIFO FIFO+MergeTable

Fig. 4. Average DRAM access time

3.2 Instructions per Cycle

Next, we evaluate the overall performance of the system in terms of instruc-
tions per cycle (IPC) to see whether the improvement in DRAM accesses can
translate into overall performance improvement. The results are shown in Fig. 5.
Unfortunately, the IPC of the whole system does not improve much. Apparently,
the performance gain in DRAM accesses is not enough to compensate the loss
due to the delay in the NoC for packet coalescing. This can be verified in Fig. 5
with the configuration FIFO+extra5cycle, in which no packet coalescing is per-
formed but every packet is delayed 5 cycles on each hop. In other words, this
configuration will suffer from the delay in NoC but does not get any benefit from
packet coalescing. From the figure, it can be seen that our approach did get some
performance gain over FIFO+extra5cycle but not enough to compensate for the
cost of delays in NoC.

3.3 Factors Affecting Performance

There are many factors affecting the overall performance of our design. These
factors can be classified into two main categories. One category is related to
application characteristics and the other is related to microarchitecture. These
factors will be discussed below.

Application Characteristics. An important application characteristic is the
number of available warps in the application. Packet coalescing is based on
the assumption that applications have a sufficient amount of warps to hide the
longer NoC latency due to coalescing. As shown in Fig. 6, most benchmarks only
have 5 or few available warps in average. As the number of available warps is

176 C.-T. Chen et al.

93.01%

99.74%

144.37%
132.77%

50.00%

70.00%

90.00%

110.00%

130.00%

150.00%

170.00%

190.00%

210.00%

AES BFS CP LIB LPS MUM NN NQU RAY WP BlackScholes avg.

FIFO FIFO+extra5cycle FIFO+dynamic FR FR+dynamic

Fig. 5. Overall performance in terms of IPC

12.47
11.04

8.2

2.4

4.29

16

5.4

0.8

2.5
1.07

2

10.04

0
2
4
6
8

10
12
14
16
18

Fig. 6. Available warps of benchmark programs

proportional to the slack time [21], our design suffers from a lack of slack time
to hide the overhead in the delay in NoC.

On the other hand, benchmarks such as AES, BFS, MUM, and BlackScholes
have a relatively higher number of available warps. For these applications, we
examine their coalescing probability, shown in Fig. 7. We can see that MUM
only has a coalescing probability of 0.1 for a packet to merge with another. This
probability is too low for effective packet coalescing. Furthermore, we found out
that the benchmark programs doe not have enough number of memory requests
to benefit from our design.

Router Microarchitecture. Modern DRAM chips are usually composed of
many banks. Bank level parallelism thus plays an important role in DRAM
accesses. Traditional memory controllers will queue the memory requests in the
memory request queue and, if the requests are to access different memory banks,
these requests can be serviced in parallel. As a result, the utilization of the banks

Designing Coalescing Network-on-Chip 177

46.82%
41.88%

52.76%

34.02%

55.03%

10.67%

61.62%

95.56%

27.17%

76.62%

10.12%

46.57%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

AES BFS CP LIB LPS MUM NN NQU RAY STO WP avg.

AES BFS CP LIB LPS MUM NN NQU RAY STO WP avg.

Fig. 7. Coalescing probability of benchmark programs

increases and the DRAM access latency is improved. Now, when we coalesce
packets in the NoC, the memory requests going to the same memory bank will
be grouped together, effectively serializing the accesses to the memory banks
and resulting in the Head-of-Line problem.

A straightforward but effective solution is to distribute the memory request
queue to each bank, or banked FIFO. Each bank has an independent request
queue to buffer the memory requests to that bank. The overall performance of
our design coupled with banked FIFO is shown Fig. 8. The figure shows that
BFS and BlackScholes have better performance than the baseline architecture.
BFS can improve the performance by about 2-3% and BlackScholes by 16-17%.

139.94%
156.68% 142.98%

173.38%

70.00%
90.00%

110.00%
130.00%
150.00%
170.00%
190.00%
210.00%

FIFO FIFO+dynamic BFIFO BFIFO+dynamic FR FR+dynamic

Fig. 8. Overall performance with banked FIFO

178 C.-T. Chen et al.

Even though banked FIFO can mitigate the Head-of-Line problem, the prob-
lem can still occur if the FIFO queue is too small. For example, suppose there are
two packets heading to bank 2, followed by four packets heading to bank 0. As-
sume that the FIFO buffer in bank 0 can only hold two packets. Thus, the other
two packets heading to bank 0 will be blocked in the interface queue between
NoC and memory controller. These packets will further block other packets no
matter which banks they are heading.

A simple solution is to enlarge the FIFO queue in each bank. As mentioned
above, BFS is one of the benchmarks that suffer from the Head-of-Line problem.
Thus, BFS is studied here and the results are shown in Fig. 9. The performance
is evaluated using overall IPC and the metric bank idle time. From Fig. 9(a),
we can see that the baseline architecture with the enlarged queues can improve
the overall IPC by about 6%. Our design with enlarged queues can improve the
overall IPC by about 9%. Obviously, there is an additional 3% improvement
from eliminating the Head-of-Line problem.

100%

106%
102%

111%

90%

95%

100%

105%

110%

115%

BFS

BFIFO+QueueSize4

BFIFO+QueueSize32

BFIFO+QueueSize4+dynamic

BFIFO+QueueSize32+dynamic

100%
87%

112%
93%

0%

20%

40%

60%

80%

100%

120%

BFS

BFIFO+QueueSize4

BFIFO+QueueSize32

BFIFO+QueueSize4+dynamic

BFIFO+QueueSize32+dynamic

(a) Overall IPC (b) Bank idle time

Fig. 9. Overall IPC and bank idle time with enlarged BFIFO queue

It is also interesting to note from Fig. 9(b) that the bank idle time drops
19% using our design with the banked FIFO, which is better than the baseline
architecture with banked FIFO (13%). This further proves that the Head-of-Line
problem does exist in configurations with small queues, and enlarging the queues
of banked FIFO can eliminate the problem.

4 Related Works

To increase memory access efficiency, out-of-order scheduling such as FR-FCFS
[12,13,18] has been studied extensively. Unfortunately, it requires a complex
structure [3]. So far, there are very few works investigating memory scheduling
in a massively parallel, many-core accelerators. Some works consider moving
memory access scheduling out of the memory controller into the on-chip network
and GPGPU shader core. For example, Yuan et al. [22] observed that memory
requests sent from shader cores to DRAM will be disrupted by the NoC. Thus,

Designing Coalescing Network-on-Chip 179

they proposed a NoC arbitration scheme called Hold Grant to preserve the row
buffer access locality of memory request streams. In [10], the idea of superpackets
is proposed for the shader core to maintain row buffer locality for the memory
requests out of the core. While these works focus on maintaining the row buffer
locality from a single shader core, our work exploit the coalescing opportunity
across the cores inside the NoC. Our design leverages the many-to-few-to-many
traffic pattern [4] in GPGPU to merge packets from different shader cores.

In [5], Bakhoda et al. showed that non-graphics applications tend to be more
sensitive to bisection bandwidth than latency, also known as bandwidth-sensitive
and latency-insensitive. The slacks of memory accesses are also studied in [9,21].
In [9], memory latency hiding resulting from critical paths is investigated in
the traditional SMP systems. The concept of GPGPU packet slack is presented
in [21] to detour packets for energy saving. Our design differs in that packet slack
time is used to merge packets destining to the same row in DRAM to improve
memory access performance.

5 Conclusions

In this paper, we propose a novel NoC design that merges memory requests from
different GPGPU cores destining to the same row in the DRAM. This in essence
offloads the scheduling of memory requests from the memory controllers to the
interconnection network. As a result, our design promotes in-network processing
rather than in-memory processing. A rudimentary router with coalescing logic is
presented, and the design is evaluated with GPGPU-Sim. The evaluation results
show that our preliminary design performs similarly as FR-FCFS on row buffer
hit rate. However, it suffers from the delays in the NoC waiting for coalescing.
As a result, the overall IPC performance cannot be improved much. Possible
sources of inefficiencies are analyzed and discussed. More research is needed to
optimize the current the design to achieve the best performance.

Acknowledgements. This work was supported in part by the National Sci-
ence Council, Taiwan, under Grant 102-2220-E-007-025 and by the Industrial
Technology Research Institute, Taiwan.

References

1. Nvidia gpu computing sdk suite,
https://developer.nvidia.com/gpu-computing-sdk

2. Parboil benchmark suite, http://impact.crhc.illinois.edu/parboil.php
3. Ausavarungnirun, R., Chang, K., Subramanian, L., Loh, G., Mutlu, O.: Staged

memory scheduling: Achieving high performance and scalability in heterogeneous
systems. In: Proceedings of the 39th International Symposium on Computer Ar-
chitecture, pp. 416–427. IEEE Press (2012)

4. Bakhoda, A., Kim, J., Aamodt, T.: Throughput-effective on-chip networks for many-
core accelerators. In: Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium onMicroarchitecture, pp. 421–432. IEEEComputer Society (2010)

https://developer.nvidia.com/gpu-computing-sdk
http://impact.crhc.illinois.edu/parboil.php

180 C.-T. Chen et al.

5. Bakhoda, A., Yuan, G., Fung, W., Wong, H., Aamodt, T.: Analyzing cuda work-
loads using a detailed gpu simulator. In: Proceedings of IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 163–174.
IEEE (2009)

6. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S., Skadron, K.: Ro-
dinia: A benchmark suite for heterogeneous computing. In: Proceedings of IEEE
International Symposium onWorkload Characterization (IISWC), pp. 44–54. IEEE
(2009)

7. Dally, W.: Virtual-channel flow control. IEEE Transactions on Parallel and Dis-
tributed Systems 3(2), 194–205 (1992)

8. Dally, W., Towles, B.: Principles and practices of interconnection networks. Morgan
Kaufmann (2004)

9. Das, R., Mutlu, O., Moscibroda, T., Das, C.: Aérgia: A network-on-chip exploiting
packet latency slack. IEEE Micro 31(1), 29–41 (2011)

10. Kim, Y., Lee, H., Kim, J.: An alternative memory access scheduling in many-
core accelerators. In: 2011 International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 195–196. IEEE (2011)

11. Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip mul-
tiprocessors. In: Proceedings of the 40th IEEE/ACM International Symposium on
Microarchitecture, pp. 146–160. IEEE Computer Society (2007)

12. Mutlu, O., Moscibroda, T.: Parallelism-aware batch scheduling: Enhancing both
performance and fairness of shared dram systems. In: ACM SIGARCH Computer
Architecture News, vol. 36, pp. 63–74. IEEE Computer Society (2008)

13. Nesbit, K., Aggarwal, N., Laudon, J., Smith, J.: Fair queuing memory systems. In:
Proceedings of the 39th IEEE/ACM International Symposium on Microarchitec-
ture, pp. 208–222. IEEE (2006)

14. Nickolls, J., Dally, W.: The gpu computing era. IEEE Micro 30(2), 56–69 (2010)
15. NVIDIA: Nvidia’s next generation cuda compute architecture: Fermi (2009)
16. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: Gpu com-

puting. Proceedings of the IEEE 96(5), 879–899 (2008)
17. Pcchen: N-queens solver,

http://forums.nvidia.com/index.php?showtopic=76893

18. Rixner, S., Dally, W., Kapasi, U., Mattson, P., Owens, J.: Memory access schedul-
ing. In: Proceedings of the 27th International Symposium on Computer Architec-
ture, pp. 128–138. IEEE (2000)

19. Sanders, J., Kandrot, E.: CUDA by example: An introduction to general-purpose
GPU programming. Addison-Wesley Professional (2010)

20. Stone, J., Gohara, D., Shi, G.: Opencl: A parallel programming standard for het-
erogeneous computing systems. Computing in Science and Engineering 12(3), 66
(2010)

21. Yin, J., Zhou, P., Holey, A., Sapatnekar, S., Zhai, A.: Energy-efficient non-minimal
path on-chip interconnection network for heterogeneous systems. In: Proceedings
of the 2012 ACM/IEEE International Symposium on Low Power Electronics and
Design, pp. 57–62. ACM (2012)

22. Yuan, G., Bakhoda, A., Aamodt, T.: Complexity effective memory access
scheduling for many-core accelerator architectures. In: Proceedings of the 42nd
IEEE/ACM International Symposium on Microarchitecture, pp. 34–44. IEEE
(2009)

http://forums.nvidia.com/index.php?showtopic=76893

Efficient Parallel Algorithms for Linear

RankSVM on GPU

Jing Jin and Xiaola Lin

School of Information Science and Technology,
Sun Yat-sen University, Guangzhou, China

jinj5@mail2.sysu.edu.cn, linxl@mail.sysu.edu.cn

Abstract. Linear RankSVM is one of the widely used methods for learn-
ing to rank. Although using Order-Statistic Tree (OST) and Trust Re-
gion Newton Methods (TRON) are effective to train linear RankSVM on
CPU, it becomes less effective when dealing with large-scale training data
sets. Furthermore, linear RankSVM training with L2-loss contains quite
amount of matrix manipulations in comparison with that with L1-loss,
so it has great potential for achieving parallelism on GPU. In this paper,
we design efficient parallel algorithms on GPU for the linear RankSVM
training with L2-loss based on different queries. The experimental re-
sults show that, compared with the state-of-the-art algorithms for the
linear RankSVM training with L2-loss on CPU, our proposed parallel
algorithm not only can significantly enhance the training speed but also
maintain the high prediction accuracy.

Keywords: Parallel Computing, GPU Computing, GPU sorting, Linear
RankSVM, Learning to Rank.

1 Introduction

As a promising parallel device for general-propose computing, Graphics Process-
ing Unit (GPU) not only provides tens of thousands of threads for applications
with data-level or task-level parallelism, but also shows superb computational
performance on floating point operations in comparison with the current multi-
core CPUs [1]. Additionally, combining with Compute Unified Device Architec-
ture (CUDA) programming model [2] released by NVIDA in 2007, quite a lot of
existing applications can be conveniently programmed and ported to GPUs. Es-
pecially, the machines learning algorithms can be highly parallelizable on GPUs
since they typically contain a large number of matrix manipulations [3].

According to the Chapelle et. al. [4], state of the art learning to rank models
can be categorized into three types: pointwise methods such as [5], [6], pairwise
methods such as [7], [8], [9], and listwise methods such as [10], [11]. Among these
models, RankSVM, which can be consider as a special case of Support Vector
Machine (SVM) [12], is a widely used pairwise approach for leaning to rank.
There exists two types of RankSVMs: linear RankSVM [13], [14], [15], [16], [17]
and nonlinear RankSVM [18], [19]. Although both of them have been extensively
studied, the lengthy training remains a challenging issue.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 181–194, 2014.
c© IFIP International Federation for Information Processing 2014

182 J. Jin and X. Lin

Given a set of training label-query-instance tuples (yi, qi,xi), yi ∈ K ⊂ R,
qi ∈ Q ⊂ Z, xi ∈ R

n, i = 1, · · · , l, where K is the set of possible relevance levels
with |K| = k, Q is the set of queries with |Q| = m, l is the total number of
training instances and n is the number of features for each training instance, as
well as a defined set of preference pairs : P ≡ {(i, j) | qi = qj , yi > yj} with p ≡
|P|, where (i, j) indicates (xi,xj) for short, then the objective function f(w) of
linear RankSVM with L2-loss is presented by:

f(w) = min
w∈Rn

1

2
wTw + C

∑
(i,j)∈P

max(0, 1−wT (xi − xj))
2 (1)

where w ∈ R
n is a vector of parameters, C > 0 is a regularization parameter.

The goal of RankSVM is to learn w such that wTxi > wTxj if (i, j) ∈ P .
Although there have been many serial algorithms for linear RankSVM, how-

ever, there is no empirical research exists on this issue for achieving linear
RankSVM on some parallel systems. Moreover, on the one hand, although the
linear RankSVM training using TRust regiON Newton methods (TRON) [20]
instead of Cutting Plane Method (CPM) may obtain more quick convergence
speed, it becomes less effective when dealing with the large-scale training data
sets; on the other hand, the linear RankSVM with L2-loss contains more matrix-
matrix or matrix-vector operations over that with L1-loss, so training linear
RankSVM with L2-loss can be accelerated effectively on GPU. This motivates
us to design efficient GPU algorithms to train linear RankSVM with L2-loss.

The main contributions of this paper can be summarized as follows: (1) We de-
fine a new rule of how to determine the preference pairs in terms of the different
queries (Please see Definition 1); (2) Based on the new rule, we propose a paral-
lel algorithm P-SWX for linear RankSVM training with L2-loss; (3) We propose
an efficient GPU sorting algorithm, GPU-quicksorting, that can sort multiple
sequences within a single GPU kernel. Meanwhile, we conduct extensive com-
parison experiments to prove the effectiveness of our proposed algorithms. To
the best of our knowledge, this is the first work that achieves RankSVM training
on GPU.

The rest of the paper is organized as follows: In Section 2, we briefly introduce
the basic principle of linear RankSVM with L2-loss we are interest in solving,
as well as its effective solution TRON. Section 3 is mainly devoted to designing
parallel algorithms P-SWX and GPU-quicksorting on GPU to accelerate training
speed of the linear RankSVM with L2-loss. Experiments, which indicate the
performance of our proposed algorithms, are given and analysed in Section 4.
Finally, Section 5 summarizes the conclusion of this project and points the future
research work.

2 Linear RankSVM Training with L2-loss

This section briefly introduces the linear RankSVM training with L2-loss by
using TRON.

Efficient Parallel Algorithms for Linear RankSVM on GPU 183

2.1 Linear RankSVM Traing with L2-loss by Using Trust Region
Newton Method

Typically, TRON can be viewed as an effective Newton method to solve the
optimization problem f(w), the primary goal of which, at the d-th iteration, is to
find awd+1 so that f(wd+1) is less than f(wd). To update wd bywd+1 = wd+v,
TRON takes an improved Conjugate Gradient (CG) method to find an optimal
direction v ∈ R

n by iteratively minimizing Fd(v) which is the second-order
Taylor approximation of f(wd+1)− f(wd).

Fd(v) ≡ ∇f(wd)Tv +
1

2
vT∇2f(wd)v

minv Fd(v) subject to ‖v‖ ≤ Δd

(2)

where Δd is the size of the trust region, and ∇f(wd) and ∇2f(wd) are indicated
the first and second order differential function of f(w), respectively. Apparently,
TRON contains two levels iterations, inner iterations and outer iterations. The
inner one is the CG iterations which are used to find an optimal v within the
trust region iteratively for updating w, while the outer one is Newton Method
which is applied to generate a more optimal w for f(w). The whole framework
of TRON can be clearly presented by Algorithm 1. Our setting for updating Δd

follows the work done by Lin et al. [21]. But for the stopping condition, we follow
that of TRON in the package LIBLINEAR1 [22] to check if the gradient is small
enough compared with an initial gradient shown as follows.

‖∇f(wd)‖2 ≤ εs‖∇f(w0)‖2 (3)

where w0 is the initial iteration and εs is the stopping tolerate given by users.

Algorithm 1. Trust Region Newton Method

Input w0 ← 0, maximum outer iterations N
Output wd

1: Initialize Δ0 ← 0 and d← 0
2: while d ≤ N do
3: //The while-loop indicates the whole outer iterations.
4: if ‖∇f(wd)‖2 ≤ εs‖∇f(w0)‖ then
5: return wd

6: else
7: Apply CG iterations (inner iterations) until subproblem (2) is solved or

v reaches the trust-region boundary.
8: Update wd and Δd to wd+1 and Δd+1 respectively.
9: d← d+ 1
10: end if
11: end while

1 http://www.csie.ntu.edu.tw/~cjlin/liblinear/liblinear-1.94.tar.gz

http://www.csie.ntu.edu.tw/~cjlin/liblinear/liblinear-1.94.tar.gz

184 J. Jin and X. Lin

Optimizing f(w) by TRON refers to computing ∇f(w) and ∇2f(w). How-
ever, the ∇2f(w) doesn’t exist because ∇f(w) is not differentiable. To derive a
faster method to calculate ∇2f(w)v, Lee et.al. [16] has explored the structure
of ∇2f(w)v by defining some expressions as follows.

SV(w) ≡ {(i, j) | (i, j) ∈ P , 1−wT (xi − xj) > 0}
SV+

i ≡ {xj | (j, i) ∈ SV(w)}
SV−i ≡ {xj | (i, j) ∈ SV(w)}
pw ≡ |SV(w)|

(4)

β+
i ≡

∣
∣SV+

i

∣
∣ , α+

i ≡
∑

xj∈SV+
i

xT
j v, γ

+
i ≡

∑

xj∈SV+
i

wTxj

β−i ≡
∣
∣SV−i

∣
∣ , α−i ≡

∑

xj∈SV−
i

xT
j v, γ

−
i ≡

∑

xj∈SV−
i

wTxj

(5)

Following the above definitions, Lee et.al. [16] converted f(w) and ∇f(w)
and ∇2f(w)v into following expressions.

f(w) =
1

2
wTw + C(AwXw − ew)

T (AwXw − ew)

=
1

2
wTw + C(wTXT ((AT

wAwXw)− (2AT
wew)) + pw) (6)

∇f(w) = w + 2CXT ((AT
wAwXw)− (AT

wew)) (7)

∇2f(w)v = v + 2CXT (AT
wAwXv) (8)

where X indicates [x1, · · · ,xl]
T , Aw ∈ R

pw×l is a matrix indicated by:

Aw ≡

· · · i · · · j · · ·
...
⎡

⎣

⎤

⎦(i, j) 0 · · · 0 +1 0 · · · 0 −1 0 · · · 0
...

ew ∈ R
pw×l is a vector of ones. Four of XTAT

wAwXv, AT
wew, pw and AT

wAwXw,
according to the derivation done by Lee et al. [16], can be computed by:

XTAT
wAwXv = XT

⎡

⎢
⎣

(β+
1 + β−1)xT

1 v − (α+
1 + α−1)

...
(β+

l + β−l)xT
l v − (α+

l + α−l)

⎤

⎥
⎦

AT
wew =

⎡

⎢
⎣

β−1 − β+
1

...
β−l − β+

l

⎤

⎥
⎦ , pw =

l∑

i=1

β+
i =

l∑

i=1

β−i

Efficient Parallel Algorithms for Linear RankSVM on GPU 185

AT
wAwXw =

⎡

⎢
⎣

(β+
1 + β−1)wTx1 − (γ+

1 + γ−1)
...

(β+
l + β−l)wTxl − (γ+

l + γ−l)

⎤

⎥
⎦

If all β+
i , β

−
i , α+

i , α
−
i , γ

+
i and γ−i are already calculated, then computing

∇2f(w)v in terms of (8) would cost O(ln + n), where O(ln) is for computing
XTAT

wAwXv and O(n) is for vector addition. Similarly, the computations of
∇f(w) and f(w) both cost O(ln + n) if all β+

i , β−i , γ+
i and γ−i are computed

already. Furthermore, ∇2f(w)v can be viewed as the computational bottlenecks
since it refers to not only the CG iteration but also the outer iteration of TRON.
According to the definitions of SV+

i and SV−i , computing all parameter variables
in (5) requires to determine whether 1 − wT (xi − xj) or 1 − wT (xj − xi) is
greater than zero. So sorting all wTxi before CG iterations of TRON must be
a reasonable way to do a quick decision. If all wTxi is sorted already, then
computing the all parameter variables in (5) by DCM may cost O(lk) [23]. If
taking advantage of favourable searching performance of OST, then the O(lk)
term is would be reduced to O(llog(k)) [15]. Therefore, by using TRON along
with OST, the total computation complexity of linear RankSVM training with
L2-loss is equal to (O(llogl) +O(ln+ llog(k) + n)× average #CG iterations)×
#outer iterations, where the O(llogl) term is the cost of sorting all wTxi.

3 Novel Parallel Algorithms for Linear RankSVM
Training with L2-loss on Graphic Processing Units

In this section, we devote to designing efficient parallel algorithms for training
linear RankSVM with L2-loss on GPU.

3.1 Efficient Parallel Algorithm for Computing Hessian-Vector
Product on Graphic Processing Units

As shown in (5), each xi has one-to-one relationship with the parameters β+
i , β

−
i ,

α+
i , α

−
i , γ

+
i and γ−i . So we can assign a thread to calculate these variables that

correspond to xi. Although this rough parallel method can effectively achieve
data-level parallelism on GPU, each assigned thread has to execute O(l) steps,
which is less effective over DCM (O(lk)) or OST (O(llog(k))) if k is small.

However, according to definition of P , xi and xj can combine into a preference
pair if and only if qi = qj holds true. Hence, all xi (or all yi) can be divided
into m subsets because of existing m different queries in Q. We assume that
for a query Q(t) ∈ Q, where t = 1, · · · ,m, Xt = [xt1, · · · ,xt|Xt|] and Yt =
[yt1, · · · , yt|Yt|] indicate the corresponding subsets of the training instances and
labels respectively.

Theorem 1. If all xi (or all yi) are divided into m subsets Xt (or Yt) in terms
of m different queries Q(t), t = 1, · · · ,m, then any two of Xt (or Yt) are inde-
pendent of each other.

186 J. Jin and X. Lin

Proof. According to SV+
i and SV−i , computing the parameter variables corre-

sponding to xi (or yi) only refers to all xj (or all yj) satisfying qj = qi. Therefore,
it implies that any two of Xt (Yt) are independent of each other.

According to Theorem 1, if xi ∈ Xt and yi ∈ Yt, then computing the pa-
rameters β+

i , β
−
i , α+

i , α
−
i , γ

+
i and γ−i corresponding to xi should go through

only the subsets Xt and Yt but not all xi and all yi , which can reduce the
computation complexity significantly. Meanwhile, we should sort all subsets
wTXt = [wTxt1, · · · ,wTxt|Xt|] independently, instead of all wTxi. Moreover,
if all Xt (or all Yt) are obtained already, then computing f(w), ∇f(w), and
∇2f(w)v based on SV(w) is not suitable any more because it refers to all xi

and all yi.

Definition 1. For a query Q(t), the rule of how to determine the preference
pairs (i, j), 1 ≤ i ≤ |Xt| , 1 ≤ j ≤ |Xt| , i �= j, is defined as SVt(w) ≡ {(i, j) |
1−wT (xti − xtj) > 0} with pt ≡ |SVt(w)|.

The SVt(w) is similar but essentially different from SV(w) because it only
involves the data information related to Q(t). So if all Xt (or all Yt) are obtained
already, then the expressions of (4) and (5) should be transformed into (9) and
(10) respectively.

SV+
ti = {xtj | ytj > yti, 1−wT (xtj − xti) > 0}

SV−ti = {xtj | ytj < yti, 1−wT (xti − xtj) > 0} (9)

β+
ti =

∣∣SV+
ti

∣∣ , α+
ti =

∑

xtj∈SV+
ti

xT
tjv, γ

+
ti =

∑

xtj∈SV+
ti

wTxtj

β−
ti =

∣∣SV−
ti

∣∣ , α−
ti =

∑

xtj∈SV−
ti

xT
tjv, γ

−
ti =

∑

xtj∈SV−
ti

wTxtj

(10)

Accordingly, f(w)v, ∇f(w) and ∇2f(w) have to be converted into:

f(w) =
1

2
wTw + C(ÃwX̃w − ew)

T (ÃwX̃w − ew)

=
1

2
wTw + C(wT X̃T ((ÃT

wÃwX̃w)− 2(ÃT
wew)) +

m∑

t=1

pt) (11)

∇f(w) = w + 2CX̃T ((ÃT
wÃwX̃w)− (ÃT

wew)) (12)

∇2f(w)v = v + 2CX̃T (ÃT
wÃwX̃v) (13)

where X̃ = [X1, · · · , Xm]T , Ỹ = [Y1, · · · , Ym], Ãw ∈ R
(

m∑

t=1
pt)×l

is as similar as

Aw, pt =
|Xt|∑

i=1

β+
ti =

|Xt|∑

i=1

β−ti . Of course, combined with (9) and (10), ÃT
wÃwX̃v,

ÃT
wÃwX̃w and ÃT

wew can be computed by:

Efficient Parallel Algorithms for Linear RankSVM on GPU 187

ÃT
wÃwX̃v =

⎡

⎢
⎣

(β+
11 + β−11)x

T
11v − (α+

11 + α−11)
...

(β+
m|Xm| + β−m|Xm|)x

T
m|Xm|v − (α+

m|Xm| + α−m|Xm|)

⎤

⎥
⎦

ÃT
wÃwX̃w =

⎡

⎢
⎣

(β+
11 + β−11)w

Tx11 − (γ+
11 + γ−11)

...
(β+

m|Xm| + β−m|Xm|)w
Txm|Xm| − (γ+

m|Xm| + γ−m|Xm|)

⎤

⎥
⎦

ÃT
wew =

⎡

⎢
⎣

β−11 − β+
11

...
β−m|Xm| − β+

m|Xm|

⎤

⎥
⎦

According to Theorem 1, it needs to assign m thread blocks to compute
all parameter variables shown in (10) in parallel on GPU. Moreover, each xti

corresponds to β+
ti , β

−
ti , α

+
ti, α

−
ti , γ

+
ti and γ−ti , so do such computation can ef-

fectively achieve data-level parallelism on GPU in terms of the Definition 1.
Assume that, for the t-th query Q(t), wTX ′t indicates the sorted wTXt, i.e.,
wTX ′t = [wTxtπ(1), · · · ,wTxtπ(|Xt|)] satisfying wTxtπ(1) ≤, · · · ,≤ wTxtπ(|Xt|),
X ′tv = [xT

tπ(1)v, · · · ,xT
tπ(|Xt|)v] and Y ′t = [ytπ(1), · · · , ytπ(|Xt|)]. Then, we map

three of wTX ′t, X
′
tv and Y ′t into the t-th thread block of GPU jointly for paral-

lel computing.
Based on the above discussions, we propose an efficient parallel algorithm,

P-SWX, to compute parameter variables shown in (10) on GPU. The specific
steps of P-SWX are clearly shown in Algorithm 2 in which the threads in the
t-th thread block should execute at most O(|Xt|) steps. Let lL 	 l indicates the
largest |Xt|, then the threads on GPU should execute at most O(lL) steps.

However, to get more favourable training speed, the matrix operations, includ-
ing matrix-matrix products, matrix-vector products and vector additions, should
be calculated by respectively adopting Segmm, Sgemv and Saxay subroutines in
CUBLAS [24]. So if all parameter variables shown in (10) are calculated already,
then computing ∇2f(w)v, ∇f(w) and f(w) on GPU by invoking CUBALS may
be a more reasonable choice. Although P-SWX and CUBLAS may effectively im-
prove the training speed of linear RankSVM with L2-loss, the sorting costs on
CPU, O(llogl) term, is still high when addressing large-scale training data sets.

3.2 Efficient GPU Sorting for Linear RankSVM Training with
L2-loss

As discussed in 3.1, we should assigning m thread blocks to sort all wTXt con-
currently on GPU. As the subscript i of each wTxti needs to be applied in the
next operations such as the operations in Algorithm 2, we should keep the sub-
script i of each wTxti. Thus, we should convert each wTxti into a corresponding

188 J. Jin and X. Lin

Algorithm 2. P-SWX: m thread blocks should be assigned on GPU

Input Y ′
t ∈ R

|Xt|, wTX ′
t ∈ R

|Xt|, X ′
tv ∈ R

|Xt| and t = 1, · · · ,m
Output β+

tπ(i), β−
tπ(i), α+

tπ(i), α−
tπ(i), γ+

tπ(i) and γ−
tπ(i) (t = 1, · · · ,m and π(i) =

1, · · · , |Xt|).
1: Initialize:β+

tπ(i) ← 0, β−
tπ(i) ← 0, α+

tπ(i) ← 0, α−
tπ(i) ← 0, γ+

tπ(i) ← 0 and γ−
tπ(i) ← 0,

(t = 1, · · · ,m and π(i) = 1, · · · , |Xt|)
2: j ← 1
3: while j ≤ |Xt|, xtπ(j) ∈ SV+

tπ(i), π(i) = 1, · · · , |Xt| and t = 1, · · · ,m do

4: α+
tπ(i) ← α+

tπ(i) + xT
tπ(j)v

5: β+
tπ(i) ← β+

tπ(i) + 1

6: γ+
tπ(i) ← γ+

tπ(i) +wTxtπ(j)

7: j ← j + 1
8: end while
9: j ← |Xt|
10: while j ≥ 1, xtπ(j) ∈ SV−

tπ(i), π(i) = 1, · · · , |Xt| and t = 1, · · · ,m do

11: α−
tπ(i) ← α−

tπ(i) + xT
tπ(j)v

12: β−
tπ(i)

← β−
tπ(i)

+ 1

13: γ−
tπ(i) ← γ−

tπ(i) +wTxtπ(j)

14: j ← j − 1
15: end while

struct node that contains two elements value and id. Taking a wTxti for exam-
ple, the value and id of its corresponding struct node store the value of wTxti

and i, respectively.
In computer memory,wT X̃T is always stored instead of allwTXt, thusw

T X̃T

should be converted into a struct sequence dpri, and each wTXt corresponds to
a subsequence dprit of dpri. Apparently, how to locate the boundaries of each dprit

in dpri is crucial to achieve the sorting in parallel on GPU. Thus, we define a
struct parameter workset with two elements beg and end to record the bound-
aries of each subsequence in dpri, where beg and end store starting position and
ending position of a subsequence respectively. Taking the t-th subsequence dprit

for example, both beg and end of workset(t) can be calculated by using following
expression.

workset(t) =

{
beg = 1 + |X1|+ · · ·+ |Xt−1|
end = |X1|+ |X2|+ · · ·+ |Xt| (14)

According to the above discussions and work done by D. Cederman et al. [25],
we propose an efficient GPU sorting, GPU-quicksorting, by using an auxiliary
buffer daux which is as large as dpri. The basic principle of such a GPU sorting
are primarily broken down into two steps. The first one is that if the |Xt|, in
the t-th thread block, is larger than a user-defined minsize, then the dprit would
be partitioned into two sub-sequences by a randomly selected pivot; if not, the
dprit would be sorted directly by bitornic sorting [26]. The second one is that the
each divided subsequence, generated in the first step, with the size ≤ minsize

Efficient Parallel Algorithms for Linear RankSVM on GPU 189

would be sorted by bitornic sorting, while those/that with the large size should
be further divided by the first step until the size of each new divided subsequence
has been ≤ minsize. The specific steps of GPU-quicksorting are presented in
Algorithm 3.

Theoretically, our proposed GPU-quicksorting would be an efficient GPU sort-
ing algorithm since it can make full use of the unique properties of GPU to sort
multiple sequences in parallel within a single GPU Kernel. Consequently, by
using Algorithm 1, Algorithm 2, Algorithm 3 and CUBLAS, we can design an
efficient GPU implementation P-SWXRankSVM to train linear RankSVM with
L2-loss on GPU.

4 Performance Evaluation

In this section, we set two state-of-the-art applications OSTRankSVM2 and
DCMRankSVM as the comparison tools to evaluate P-SWXRankSVM in our
experimental tests. The OSTRankSVM is an effective method that solves the
linear RankSVM training with L2-loss by TRON along with OST, while DCM-
RankSVM is another effective method that solves the linear RankSVM training
with L2-loss by TRON along with DCM.

There are six real world training data sets, the size of each of which is clearly
presented in Table 1, that are used in our experimental tests. We set C, εs
and minsize to be 1, 10−5 and 64 respectively. It is unclear yet if it is the best
option, but certainly we would like to try custom setting first. The measurements
are carried out in a single server with four Intel(R) Xeon(R) E5620 2.40GHz
four-core CPUs and 32GB of RAM running Ubuntu 9.04(64 bit). The graphics
processor used is a NVIDA Tesla C2050 card with 448 CUDA cores, and the
frequency of each CUDA core is 1.15 GHz. The card has 3GB GDDR5 memory
and a memory bandwidth of 144 GB/s. Besides, the CUDA driver and runtime
versions used in our experiments are both 5.0, and only one Tesla C2050 card is
used in all benchmark tests.

Table 1. Training Data Sets

Data Set l n k |Q| p lL

MQ2007-list 743,790 46 1,268 1,017 285,943,893 1,268
MQ2008-list 540,679 46 1,831 471 323,151,792 1,831
MSLR-WEB10K 723,421 136 2 6,000 31,783,391 809
MSLR-WEB30K 2,270,296 136 5 18,919 101,312,036 1,251
MQ2007 42,158 46 2 1017 246,015 147
MQ2008 9,630 46 3 471 52,325 121

2 http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/ranksvml2_exp-1.3.tgz

http://www.csie.ntu.edu.tw/~cjlin/papers/ranksvm/ranksvml2_exp-1.3.tgz

190 J. Jin and X. Lin

Algorithm 3. GPU-quicksorting(GPU kernel)

Input workset, m, dpri and daux

1: bx← xblockid //xblockid : the ID number of thread block

2: if bx ≤ m then

3: beg, end← workset(bx).beg, workset(bx).end

4: if end− beg < minsize then

5: daux(beg → end)← dpri(beg → end)

6: bitonic(daux(beg → end), dpri(beg → end)) //Sort the data.

7: else

8: push both beg and end to workstack

9: while workstack �= ∅ do

10: daux(beg → end)← dpri(beg → end)

11: pivot ← random(daux(beg → end)) //Select a pivot randomly.

12: ltthreadid , gtthreadid ← 0, 0 //threadid : the ID number of threads

13: for i← beg + threadid, i ≤ end, i← i+ threadcount do

14: if daux(i).value ≤ pivot.value and pivot.id �= daux(i).id then

15: ltthreadid ← ltthreadid + 1

16: else

17: gtthreadid ← gtthreadid + 1

18: end if

19: end for

20: Cumulative Sum : lt0, lt1, lt2, · · · , ltsum ← 0, lt0, lt0 + lt1, · · · ,
threadcount∑

i=0

lti

21: Cumulative Sum : gt0, gt1, gt2, · · · , gtsum ← 0, gt0, gt0 +

gt1, · · · ,
threadcount∑

i=0

gti

22: lp, gp← beg + ltthreadid, end − gtthreadid+1

23: for i← beg + threadid, i ≤ end, i← i+ threadcount do

24: if daux(i).value ≤ pivot.value and pivot.id �= daux(i).id then

25: dpri(lp) ← daux(i).value, lp ← lp + 1 //Write the data to the left

of pivot.

26: else

27: dpri(gp) ← daux(i).value, gp← gp−1 //Write the data to the right

of pivot.

28: end if

29: end for

30: for i← beg + ltsum + threadid, i < end− gtsum, i← i + threadcount do

31: dpri(i)← pivot

32: end for

33: pop both beg and end from workstack

34: if |dpri(beg → (beg + ltsum))| ≤ minisize then

35: daux(beg → (beg + ltsum))← dpri(beg → (beg + ltsum))

36: bitonic(daux(beg → (beg + ltsum)), dpri(beg → (beg + ltsum)))

37: else

38: push both beg and beg + ltsum to workstack

39: beg, end← beg, (beg + ltsum)

40: end if

41: if |dpri((end − gtsum)→ end)| ≤ minisize then

42: daux((end− gtsum)→ end)← dpri((end− gtsum)→ end)

43: bitonic(daux((end− gtsum)→ end), dpri((end− gtsum)→ end))

44: else

45: push both (end− gtsum) and end to workstack

46: beg, end← (end− gtsum), end

47: end if

48: end while

49: end if

50: end if

Efficient Parallel Algorithms for Linear RankSVM on GPU 191

4.1 Performance Evaluation for P-SWXRankSVM

The specific performance comparisons among DCMRankSVM, OSTRankSVM
and P-SWXRankSVM with respect to the different training data sets are pre-
sented in Table 2. As shown in the table, the OSTRankSVM performs bet-
ter than OSTRankSVM, which mainly relies on the superior property of OST
(O(llog(k))) in reducing the computation complexity compared to DCM (O(lk)).
As expected, the P-SWXRankSVM has greater speedup performance over both
of DCMRankSVM and OSTRankSVM when addressing the large-scale train-
ing data sets. Apparently, such efficient speedup for P-SWXRankSVM mainly
depends on that P-SWXRankSVM can make full use of the great computation
power of GPU based on our designing.

Table 2. Performance Comparison among DCMRankSVM, OSTRankSVM, P-
SWXRankSVM

Data Set
DCMRankSVM OSTRankSVM P-SWXRankSVM

Training Training Training
Speedup

Time(s) Time(s) Time(s)

MQ2007-list 380.51 203.02 22.46 16.94x/9.04x
MQ2008-list 493.12 276.46 37.17 11.81x/7.44x
MSLR-WEB10K 2791.22 2481.35 276.11 10.11x/8.99x
MSLR-WEB30K 19449.65 17019.16 939.38 20.70x/18.12x
MQ2007 12.67 10.18 5.90 2.18x/1.73x
MQ2008 0.67 0.48 1.37 0.49x/0.35x

Moreover, to analyse the convergence performance of DCMRankSVM, OS-
TRankSVM and P-SWXRankSVM in more detail, we investigate the relative
difference η to the optimal function value shown as:

η =

∣
∣
∣
∣
f(w)− f(w∗)

f(w∗)

∣
∣
∣
∣ (15)

where the w∗ is the optimum of (1), and the εs is also set to be 10−5.
The measured results involving convergence speed with respect to the different

training data sets are clearly illustrated in Figure 1. From the figure, we can ob-
serve that the OSTRankSVM converges faster than DCMRankSVM as training
time goes, but the convergence speed of OSTRankSVM is not marked enough
over that of DCMRankSVM as training time goes if the data sets have a small k.
This may be because OST becomes more efficient over DCM if k is large enough.
As expected, P-SWXRankSVM can converge much faster than both of DCM-
RankSVM and OSTRankSVM. However, it is special for ”MQ2008”. The reason
for this case relies on that if the data sets with small size can’t effectively utilize
the great computation power of GPU, so invoking P-SWXRankSVM to train the
small data set, such as ”MQ2008”, would cost too much time in launching GPU
kernels and communicating between CPU and GPU, rather than in computing.

192 J. Jin and X. Lin

0 100 200 300 400
10

−6

10
−4

10
−2

10
0

Traing Time (Seconds)
(a) MQ−2007−list

η

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

Training Time (Seconds)
(b) MQ−2008−list

η

0 500 1000 1500 2000 2500 3000
10

−6

10
−4

10
−2

10
0

Training Time (Seconds)
(c) MSLR−WEB10K

η

0 0.5 1 1.5 2

x 10
4

10
−6

10
−4

10
−2

10
0

Training Tims (Seconds)
(d) MSLE−WEB30K

η

0 5 10 15
10

−6

10
−4

10
−2

10
0

Training Time (Seconds)
(e) MQ2007

η

0 0.5 1 1.5 2
10

−6

10
−4

10
−2

10
0

Training Time (Seconds)
(f) MQ2008

η

DCMRankSVM
OSTRankSVM
P−SWXRankSVM

DCMRankSVM
OSTRankSVM
P−SWXRankSVM

DCMRankSVM
OSTRankSVM
P−SWXRankSVM

DCMRankSVM
OSTRankSVM
P−SWXRankSVM

DCMRankSVM
OSTRankSVM
P−SWXRankSVM

DCMRankSVM
OSTRankSVM
P−SWXRankSVM

Fig. 1. A Convergence speed comparison among DCMRankSVM, OSTRankSVM,
P-SWXRankSVM

4.2 Prediction Performance Evaluation for P-SWXRankSVM

If an optimum w∗ of (1) is obtained, then we need to evaluate that such a w∗ is
whether good or not for doing prediction. In general, checking Pairwise Accuracy
(PA) [27] is very suitable for measuring the prediction performance of pairwise
approach such as RankSVM. Thus, we choose PA as the measurement in here.

PA ≡ | {(i, j) |∈ P ,w
∗Txi > w∗Txj} |
p

(16)

The specific measured results are presented in Table 3 clearly. As shown in
the table, training linear RankSVM with L2-loss by using anyone of these im-
plementations would result in almost same prediction performance, which effec-
tively proves that P-SWXRankSVM not only can accelerate the linear RankSVM
training with L2-loss significantly but also guarantee the prediction accuracy.
However, please note that such a case can be explained as follows: In essence,
four of DCM, OST, P-SWX and GPU-quicksorting are devoted to improving
the training speed of the linear RankSVM with L2-loss, thus they, theoretically,
couldn’t influence the prediction accuracy.

Efficient Parallel Algorithms for Linear RankSVM on GPU 193

Table 3. Measured Pairwise Accuracy of DCMRankSVM, OSTRankSVM, P-
SWXRankSVM

Data Set
Pairwise Accuracy (PA)

DCMRankSVM(%) OSTRankSVM(%) P-SWXRankSVM(%)

MQ2007-list 81.11 81.11 81.11
MQ2008-list 82.11 82.11 80.72
MSLR-WEB10K 61.25 61.04 60.43
MSLR-WEB30K 60.96 60.79 60.45
MQ2007 70.59 70.59 70.60
MQ2008 80.24 80.24 80.24

5 Conclusion and Future Work

In this paper, we have proposed two efficient parallel algorithms P-SWX and
GPU-quicksorting to accelerate the linear RankSVM training with L2-loss on
GPU. To sum up, to design efficient parallel algorithms for the linear RankSVM
training with L2-loss, we not only divide all training instances xi and labels
yi into several independent subsets in terms of different queries, but also rede-
fine a new rule of how to determine the preference pairs (i, j). Just because of
this, our proposed parallel algorithms can achieve both task-level and data-level
parallelism effectively on GPU. Since this is the initial work to design GPU
implementations for training linear RankSVM with L2-loss on a single GPU,
there are still many challenges that should to be addressed to further explore
their multiple GPU implementations. So, the next extension of this work will use
multiple GPU devices to solve even larger training problem in parallel fashion.

Acknowledgement. We would like to thank all anonymous referees for their
valuable comments. This research is partially supported by the National Nat-
ural Science Foundation of China under Grants No. 60773199, U0735001 and
61073055.

References

1. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: Gpu
computing. Proceedings of the IEEE 96(5), 879–899 (2008)

2. Nvidia, C.: Compute unified device architecture programming guide (2007)
3. Steinkraus, D., Buck, I., Simard, P.: Using gpus for machine learning algorithms.

In: Proceedings of the Eighth International Conference on Document Analysis and
Recognition, pp. 1115–1120. IEEE (2005)

4. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. Journal of
Machine Learning Research-Proceedings Track 14, 1–24 (2011)

5. Fuhr, N.: Optimum polynomial retrieval functions based on the probability ranking
principle. ACM Transactions on Information Systems (TOIS) 7(3), 183–204 (1989)

194 J. Jin and X. Lin

6. Cooper, W.S., Gey, F.C., Dabney, D.P.: Probabilistic retrieval based on staged
logistic regression. In: Proceedings of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 198–210.
ACM (1992)

7. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm
for combining preferences. The Journal of Machine Learning Research 4, 933–969
(2003)

8. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hul-
lender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd
International Conference on Machine Learning, pp. 89–96. ACM (2005)

9. Quoc, C., Le, V.: Learning to rank with nonsmooth cost functions. Proceedings of
the Advances in Neural Information Processing Systems 19, 193–200 (2007)

10. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Ranking, boosting, and model adap-
tation. Tecnical Report, MSR-TR-2008-109 (2008)

11. Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to rank by optimizing ndcg
measure. In: Advances in Neural Information Processing Systems, pp. 1883–1891
(2009)

12. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

13. Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural svms.
Machine Learning 77(1), 27–59 (2009)

14. Sculley, D.: Large scale learning to rank. In: NIPS Workshop on Advances in Rank-
ing, pp. 1–6 (2009)

15. Airola, A., Pahikkala, T., Salakoski, T.: Training linear ranking svms in linearith-
mic time using red–black trees. Pattern Recognition Letters 32(9), 1328–1336
(2011)

16. Lee, C.P., Lin, C.J.: Large-scale linear ranksvm. Neural Computation, 1–37 (2014)
17. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with svms. Information

Retrieval 13(3), 201–215 (2010)
18. Yu, H., Kim, Y., Hwang, S.: Rv-svm: An efficient method for learning ranking svm.

In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009.
LNCS, vol. 5476, pp. 426–438. Springer, Heidelberg (2009)

19. Kuo, T.M., Lee, C.P., Lin, C.J.: Large-scale kernel ranksvm.
20. Conn, A.R., Gould, N.I., Toint, P.L.: Trust region methods, vol. (1). Siam (2000)
21. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region newton method for logistic re-

gression. The Journal of Machine Learning Research 9, 627–650 (2008)
22. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for

large linear classification. The Journal of Machine Learning Research 9, 1871–1874
(2008)

23. Joachims, T.: A support vector method for multivariate performance measures.
In: Proceedings of the 22nd International Conference on Machine Learning,
pp. 377–384. ACM (2005)

24. Nvidia, C.: Cublas library programming guide, 1st edn. NVIDIA Corporation
(2007)

25. Cederman, D., Tsigas, P.: A practical quicksort algorithm for graphics processors.
In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 246–258.
Springer, Heidelberg (2008)

26. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, April 30-May 2, pp. 307–314. ACM (1968)

27. Richardson, M., Prakash, A., Brill, E.: Beyond pagerank: machine learning for
static ranking. In: Proceedings of the 15th International Conference on World Wide
Web, pp. 707–715. ACM (2006)

A Real-Time Scheduling Framework

Based on Multi-core Dynamic Partitioning
in Virtualized Environment

Song Wu, Like Zhou, Danqing Fu, Hai Jin, and Xuanhua Shi

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{wusong,zhoulike,fdq1989,hjin,xhshi}@hust.edu.cn

Abstract. With the prevalence of virtualization and cloud computing,
many real-time applications are running in virtualized cloud environ-
ments. However, their performance cannot be guaranteed because cur-
rent hypervisors’ CPU schedulers aim to share CPU resources fairly and
improve system throughput. They do not consider real-time constraints
of these applications, which result in frequent deadline misses. In this
paper, we present a real-time scheduling framework in virtualized envi-
ronment. In the framework, we propose a mechanism called multi-core
dynamic partitioning to divide physical CPUs (PCPUs) into two pools
dynamically according to the scheduling parameters of real-time virtual
machines (RT-VMs). We apply different schedulers to these pools to
schedule RT-VMs and non-RT-VMs respectively. Besides, we design a
global earliest deadline first (vGEDF) scheduler to schedule RT-VMs.
We implement a prototype in the Xen hypervisor and conduct experi-
ments to verify its effectiveness.

Keywords: Virtualization, Real-time scheduling, Multi-core, Cloud
computing.

1 Introduction

Cloud computing is a rapidly emerging paradigm that cloud resources in data
centers are leased by users on demand. Cloud data centers, such as Amazon’s
Elastic Compute Cloud (EC2) [1], use virtualization technology to provide such
on-demand infrastructure services. In cloud data centers, a physical machine
(PM) always hosts many virtual machines (VMs), and various kinds of applica-
tions are running in these VMs. Many of them have real-time constraints, such
as streaming server, VoIP server, and real-time stream computing platforms.

Although more and more real-time applications run in virtualized cloud en-
vironments, their performance is hardly guaranteed [11][13][18]. The main rea-
son is that virtualization adds an additional layer, called hypervisor such as
Xen [8], between guest operating systems (guest OSes) and underlying hardware.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 195–207, 2014.
c© IFIP International Federation for Information Processing 2014

196 S. Wu et al.

CPU schedulers in hypervisors are not optimized for real-time applications, such
as Xen’s default Credit scheduler [9].

Previous studies [13][16][18] present some solutions to support real-time ap-
plications in virtualized environments. However, they are not good enough for
these applications and cloud environments. RT-Xen [16] does not support VMs
with multiple virtual CPUs (VCPUs). Schedulability analysis is important in
real-time scheduling, but these studies [13][18] do not analyze their schedulabil-
ity. More importantly, all these solutions favor the RT-VMs running real-time
applications, which may affect the performance of non-real-time applications and
violate the performance isolation guaranteed by cloud platforms.

Aiming at these problems, this paper presents a real-time scheduling frame-
work based on multi-core dynamic partitioning. First, it divides PCPUs into two
pools dynamically by taking non-uniform memory access (NUMA) architecture
into account according to the scheduling parameters of RT-VMs. It allows RT-
VMs to run on a pool and non-RT-VMs to run on the other pool, which brings
good performance isolation. Second, we design a global earliest deadline first
(vGEDF) scheduler to schedule RT-VMs. Moreover, we implement a working
prototype of the real-time scheduling framework in the Xen hypervisor, named
Risa, and evaluate its effectiveness through experiments.

In summary, the main contributions of this paper are as follows.

– We present a real-time scheduling framework to support real-time applica-
tions in virtualized environment. The framework provides good performance
isolation through multi-core dynamic partitioning.

– Considering the domination of multi-core processors in server market, we
present the vGEDF scheduler to schedule RT-VMs, which can support real-
time applications well and take full advantage of multi-core processors.

– We implement a prototype in the Xen hypervisor, and conduct experiments
to verify its effectiveness. The experimental results show that our framework
can support real-time applications well, reduce operation expense caused by
manual operations in VM management, and improve CPU utilization.

The rest of this paper is organized as follows. Section 2 presents the design
of the real-time scheduling framework in detail. We explain the experimental
environment and show the experimental results in Section 3. Section 4 briefly
surveys the related work. Finally, Section 5 concludes this paper.

2 Design of Real-Time Scheduling Framework

In this section, we present the design of our real-time scheduling framework,
which is shown in Fig. 1. In the framework, PCPUs are partitioned into two
pools (i.e. rt-pool and non-rt-pool) automatically according to the scheduling
parameters of RT-VMs. We apply our vGEDF scheduler to rt-pool to schedule
RT-VMs and the Credit scheduler to non-rt-pool to schedule non-RT-VMs. In
the following, we first describe how to partition PCPUs automatically. Then, we
propose the design of the vGEDF scheduler.

A Real-Time Scheduling Framework 197

RT-VM

Hypervisor

Hardware

Credit scheduler

non-rt-pool

vGEDF scheduler

Dynamic partitioning module

rt-pool

Applications

Guest OS

VCPU VCPU...

non-RT-VM

Applications

Guest OS

VCPU VCPU...

Domain0

Applications

Guest OS

VCPU VCPU...

PCPU PCPUPCPU PCPU PCPU PCPU...

Fig. 1. The real-time scheduling framework

2.1 Multi-core Dynamic Partitioning Mechanism

In the multi-tenant cloud environment, a PM hosts many VMs that run various
kinds of applications from different customers. However, a single CPU sched-
uler cannot support all the applications well. For example, although the Credit
scheduler supports CPU-intensive and memory-intensive applications well, it is
not suitable for real-time applications. Accordingly, the schedulers optimized for
real-time applications [12][13][16][18] always favor these applications, which may
affect the performance of non-real-time applications. Moreover, an important
requirement of multi-tenant cloud environment is performance isolation. As a
result, it is a challenge to support real-time applications while minimizing the
impact on non-real-time applications running on the same PM. In this paper,
we present the multi-core dynamic partitioning mechanism to meet this goal.

Currently, although administrators can divide PCPUs into multiple pools
and apply different schedulers to these pools manually, this method is not fit
for cloud environment. The reasons are as follows. On one hand, administra-
tors need to estimate the requirements of RT-VMs, and statically allocate peak
number of PCPUs to a pool, which probably results in resource over-provision
and increases operation expense. On the other hand, when the requirements of
RT-VMs change, administrators need to manually change the number of PCPUs
allocated to the pool. Otherwise, the performance of real-time applications may
not be guaranteed any more. Our multi-core dynamic partitioning mechanism
addresses these drawbacks well.

If a PM has RT-VMs, the real-time scheduling framework partitions PCPUs
into two pools automatically and applies different schedulers to these pools to
schedule RT-VMs and non-RT-VMs respectively. So, first of all, we need to
determine how many PCPUs should be allocated to rt-pool. Then, we allocate
corresponding PCPUs to rt-pool by taking NUMA architecture into account.

198 S. Wu et al.

How Many PCPUs Should Be Allocated to Rt-Pool. For the convenience
of description, we define some variables as follows:
– Ci: the worst-case execution time of the ith task.
– Ti: the inter-arrival period of the ith task (assumed to be equal to the relative

deadline).
– NP : the number of PCPUs should be allocated to rt-pool.
– NRT : the number of RT-VMs in a PM.
– NVi: the number of VCPUs of the ith RT-VM.
– pi: the period parameter of the ith RT-VM, which indicates the relative

deadline.
– si: the slice parameter of the ith RT-VM, which represents the worst-case

execution time.

According to the schedulability test of EDF scheduling [14], a set of real-time
tasks is schedulable only if its total utilization does not exceed 100%.

n∑

i=1

Ci

Ti
≤ 1 (1)

In virtualized environments, in order to guarantee the schedulability of RT-
VMs in multi-core platforms, the scheduling parameters of RT-VMs and the
number of PCPUs must satisfy the following equation:

NRT∑

i=1

si ×NVi

pi
≤ NP (2)

Hence, derived from (2), NP can be calculated by (3). Actually, NP is the
minimal number of PCPUs should be allocated to rt-pool. It has a strong re-
lationship with the scheduler applied to rt-pool. Equation (3) defines how to
calculate NP for the vGEDF scheduler. Our real-time scheduling framework can
be easily extended to support other real-time schedulers. The only thing needed
to be done is to define how to calculate NP .

NP =

⌈
NRT∑

i=1

si ×NVi

pi

⌉

(3)

How to Partition PCPUs. Cloud is a highly dynamic environment. Vari-
ous operations are happened in a short time period, such as VM creation, VM
destroy, and VM reconfiguration. As a result, NP is changing as time goes on.
Considering such dynamic characteristic, we design a multi-core dynamic par-
titioning algorithm to support cloud environment. All the operations that may
change NP trigger the algorithm to allocate adequate number of PCPUs to rt-
pool. The pseudo-code of the algorithm is shown in Algorithm 1.

A Real-Time Scheduling Framework 199

Algorithm 1. Multi-core Dynamic Partitioning Algorithm

1 prev NP ← num pcpus(rt pool);
2 foreach vm in the list of RT-VMs do
3 new num← new num+ (vm.nvcpus ∗ vm.slice)/vm.period;
4 end
5 NP ← ceil(new num);
6 delete timer;
7 if NP > prev NP then
8 partition(non rt pool, rt pool,NP − prev NP);
9 else if NP < prev NP then

10 set timer to call partition(rt pool, non rt pool, prev NP −NP);
11 end

First, the algorithm reads the scheduling parameters of RT-VMs and calcu-
lates NP (line 2∼5). Then, it compares NP with the previous one. If NP is
greater than the previous one, the algorithm allocates more PCPUs to rt-pool
immediately. On the contrary, if it is less than the previous NP , the algorithm
shrinks rt-pool. However, the shrink operation is not executed instantly, because
it may cause fluctuation. For example, administrators may destroy a RT-VM
belonging to a customer and create the other RT-VM for the other customer
immediately. If the algorithm shrinks rt-pool immediately, it needs to expand
rt-pool after the shrink. In order to avoid such fluctuation, we adopt a delayed
shrink manner, which uses a timer to delay the shrink operation (line 6∼11).

Nowadays, an increasing number of new multi-core systems use the NUMA ar-
chitecture. There are multiple memory nodes in modern NUMA systems, and the
access latency of local nodes is shorter than that of remote nodes. Aimed at such
characteristic, our multi-core dynamic partitioning algorithm takes the NUMA
architecture into account when we partition PCPUs. It preferably allocates

Algorithm 2. NUMA-aware Partitioning Algorithm

1 prev num← num pcpus(rt pool);
2 if prev num == 0 and dst pool == rt pool then
3 select pcpu on which a RT-VM currently running or previously run;
4 remove pcpu from src pool;
5 add pcpu to dst pool;
6 pcpu num← pcpu num− 1;

7 end
8 local node← the local node associated with dst pool;
9 while pcpu num! = 0 do

10 remove pcpu from src pool that belongs to local node or other nodes if all
PCPUs in local node are allocated to dst pool;

11 add pcpu to dst pool;
12 pcpu num← pcpu num− 1;

13 end

200 S. Wu et al.

PCPUs belonging to a NUMA node to rt-pool instead of randomly selected PC-
PUs. The pseudo-code of the algorithm is shown in Algorithm 2, which shrinks
src pool and expands dst pool. If rt-pool is empty, the algorithm selects the PCPU
on which a RT-VM currently running or previously run, and allocates this PCPU
to rt-pool (line 2∼7). Then, it gets the NUMA topology of the PM and finds the
local node associated with dst pool (line 8). Finally, the algorithm preferably
allocates PCPUs belonging to this node to dst pool. If all the PCPUs belonging
to this node are allocated to dst pool, the algorithm picks PCPUs from other
nodes and allocates them to dst pool (line 9∼13).

2.2 vGEDF Scheduler

Schedulability analysis is important in real-time scheduling. However, previous
solutions [13][18] do not analyze their schedulability. In this paper, we design
the vGEDF scheduler based on EDF scheduling algorithm, whose schedulability
is analyzed by previous studies [7].

Nowadays, multi-core processors have dominated server markets. Schedulers
must take full advantage of the multi-core processors. The Simple Earliest Dead-
line First (SEDF) scheduler [9] is not suitable for cloud environments because of
the lack of load balance among multi-cores. On the contrary, our vGEDF sched-
uler supports real-time applications in multi-core platform well through global
queues. Its architecture is shown in Fig. 2.

v21

v31

global queues

RunQ

WaitQ

ExtraQ

p1

rt-pool

head

v11

v41

v12

v51

v22

v32

p2 p3 p4

Fig. 2. Architecture of vGEDF

In the real-time scheduling framework, the vGEDF scheduler is applied to
rt-pool. All the PCPUs in rt-pool share three global queues: runnable queue
(RunQ), waiting queue (WaitQ), and extra queue (ExtraQ). Each VM also has
following scheduling parameters: pi, si, and xi. The meaning of pi and si is
described in Section 2.1. xi is a boolean value to indicate whether a VM can get
extra CPU time (i.e. work-conserving mode). The scheduler inserts VCPUs into
these queues according to their scheduling parameters. If a VCPU has remaining

A Real-Time Scheduling Framework 201

CPU slice in current period, it is inserted into RunQ. Otherwise, it is inserted
into WaitQ or ExtraQ according to the value of xi of the VCPU. The priority
of a VCPU is calculated according to their deadlines: the earlier the deadline,
the higher the priority. VCPUs in RunQ are sorted by their priorities, and the
VCPU in the head of RunQ has the highest priority. ExtraQ is used to support
work-conserving mode.

Algorithm 3. vGEDF Scheduling Algorithm

1 handle the bookkeeping for current in RunQ or ExtraQ;
2 update queues(RunQ, WaitQ);
3 snext ← CandidatePick(RunQ);
4 if snext == NULL then
5 snext ← CandidatePick(ExtraQ);
6 if snext == NULL then
7 return idle vcpu[cpu] ;
8 end

9 end
10 ret.task ← snext.vcpu;
11 snext.picked ← 1;
12 return ret.task ;

The pseudo-code of the vGEDF scheduling is shown in Algorithm 3. The
scheduler first conducts bookkeeping for the current running VCPU and updates
the parameters of VCPUs in RunQ andWaitQ (line 1∼2). Then, it picks a VCPU
from RunQ or ExtraQ to run (line 3∼10). For the convenience of bookkeeping
and updating queues, the picked VCPU is still in the queues. Therefore, when a
VCPU is picked to run, we need to mark it as picked (line 11).

Because our vGEDF scheduler picks the VCPU from global queues to run, a
VCPU may run on several PCPUs in a short time period, which may increase
cache misses. We present some approaches to reduce cache misses. On one hand,
the multi-core dynamic partitioning mechanism preferably allocates PCPUs be-
longing to a NUMA node to rt-pool and these PCPUs share the last-level cache.
The vGEDF scheduler applied to rt-pool will not increase the last level cache
misses if all the PCPUs in rt-pool belong to a NUMA node. On the other hand,
in order to further mitigate the impact of cache misses, we present a cache-aware
pick algorithm (shown in Algorithm 4), which takes cache affinity into account,
to reduce L1 and L2 cache misses.

Besides, although the vGEDF scheduler uses global queues to manage VCPUs,
the scalability is not a problem for the scheduler. This is because schedulers that
use global queues can also scale to a certain number of PCPUs. Moreover, only
a part of applications running in cloud environment is real-time applications.
As a result, our framework allocates a small amount of PCPUs to rt-pool and
only these PCPUs share the global queues. Even a PM has many PCPUs and
all these PCPUs should be allocated to rt-pool, the scalability problem can also
be addressed by our framework through partitioning multiple real-time pools.

202 S. Wu et al.

Algorithm 4. CandidatePick Algorithm

1 ret ← NULL;
2 foreach vcpu in queue do
3 if vcpu.cpu mask¤t pcpu! = 0 then
4 if vcpu.processor! = current pcpu&&((vcpu.picked == 1&&vcpu! =

current)||vcpu is cache hot) then
5 continue;
6 end
7 ret ← vcpu;
8 break;

9 end

10 end
11 return ret ;

3 Performance Evaluation

We implement a working prototype of the proposed real-time scheduling
framework in Xen-4.2.1, called Risa. In this section, we evaluate the effective-
ness of Risa through several experiments. We first describe the experimental
environment, and then present the experimental results.

3.1 Experimental Environment and Methodology

Our evaluations are conducted on a server which has two quad-core 2.4GHz
Intel Xeon CPUs, 24GB memory, 1TB SCSI disk, and 1Gbps Ethernet card. We
use Xen-4.2.1 as the hypervisor and CentOS 5.5 distribution with the Linux-
2.6.32.40 kernel as the OS. The network I/O of a VM is handled via a software
bridge in Domain0. Unless otherwise specified, the configurations of VMs running
on the server are as follows: 1VCPU, 1GB memory and 8GB virtual disk. Our
experiments are targeted at understanding the effect of each component of Risa.

How to Evaluate the Effect of Multi-core Dynamic Partitioning Mech-
anism. As described in Section 2.1, a practical way to support different kinds of
applications simultaneously and provide performance isolation in multi-tenant
cloud environment is to partition PCPUs into multiple pools and to apply dif-
ferent schedulers to these pools. As a result, we conduct experiments under two
multi-core partitioning mechanisms.

One is the multi-core dynamic partitioning mechanism of Risa, which can
manage rt-pool automatically according to the scheduling parameters of RT-
VMs. The other is the multi-core static partitioning mechanism. It uses cpupools,
a new feature of Xen since Xen 4.2, to partition PCPUs into rt-pool and non-rt-
pool, but in a static method. It allocates the peak number of PCPUs to rt-pool
manually according to the estimation of the requirements of RT-VMs before the
creation of them, and deletes rt-pool when all the RT-VMs are destroyed.

A Real-Time Scheduling Framework 203

How to Evaluate the Effect of the vGEDF Scheduler. When we eval-
uate the vGEDF scheduler, we conduct experiments under four strategies to
demonstrate the advantages of the vGEDF scheduler. We dedicate four PCPUs
to Domain0 to handle communication and interrupts for other VMs, which iso-
lates Domain0 to all other domains. Fourteen VMs (VM1∼VM14) are running
on the other PCPUs. VM1 hosts testing real-time applications and the others
are interfering VMs which run lookbusy [4]. The details of these strategies are
as follows.

baseline is the default configuration in cloud environment that only the Credit
scheduler is adopted to schedule VMs.

Risa is our framework. In this strategy, seven VMs (VM1∼VM7) are set as
RT-VMs. The scheduling parameters of VM1 are set as (pi=5ms, si=1ms). The
others are set as (pi=10ms, si=2ms). Therefore, Risa allocates two PCPUs to rt-
pool according to (3) and applies the vGEDF scheduler to rt-pool automatically.

sp+SEDF uses the multi-core static partitioning mechanism to simulate an
environment like Risa. It partitions PCPUs into two pools and allocates two
PCPUs to rt-pool manually, and the SEDF scheduler is adopted to schedule
RT-VMs in rt-pool. Because it does not support load balance among multiple
PCPUs, the distribution of these RT-VMs is as follows: a PCPU hosts four
RT-VMs (VM1∼VM4) and the other hosts three RT-VMs (VM5∼VM7).

sp+SEDF(overload) is similar with sp+SEDF, except that a PCPU is over-
loaded. Because the SEDF scheduler does not support load balancing among
multiple PCPUs, it is possible that a PCPU is overloaded while the other has
slight load. This strategy is used to simulate such situation that a PCPU hosts
six RT-VMs (VM1∼VM6) and only one RT-VM (VM7) runs on the other PCPU.

3.2 Effect of Multi-core Dynamic Partitioning Mechanism

In this test, we evaluate the effect of the multi-core dynamic partitioning mech-
anism. We launch two non-RT-VMs with 8 VCPUs on the server and each runs
eight hungry loop applications as non-real-time applications, which can exhaust

Fig. 3. Total CPU utilization of non-RT-VMs under different partitioning strategies.
Risa uses dynamic partitioning, and sp means static partitioning.

204 S. Wu et al.

the available CPU resources. We monitor the total CPU utilization of these VMs,
which is the performance metric in this test. A shell script is running to create
and destroy RT-VMs as time goes on, and the tasks of this script are as follows.
1) at time t1, it creates two RT-VMs and sets their scheduling parameters as
(pi=10ms, si=6ms); 2) at time t2, it changes si of a RT-VM to 2ms; 3) at time
t3, it destroys these RT-VMs. In the multi-core static partitioning mechanism,
the first thing needs to be done is to estimate the number of PCPUs which
should be allocated to rt-pool. Then, two PCPUs are allocated to rt-pool before
the creation of RT-VMs according to (3). Finally, rt-pool is destroyed at t3 and
the number of PCPUs of non-rt-pool is increased (it cannot be increased auto-
matically when rt-pool is destroyed). Moreover, RT-VMs need to be assigned to
rt-pool by administrators explicitly. In the multi-core dynamic partitioning, the
only thing needs to be done is to run the shell script. The test results are shown
in Fig. 3.

From the test results, we can observe that Risa automatically reduces the
number of PCPUs of rt-pool at time t2. This is because the needed number
of PCPUs of rt-pool turns to 1 according to (3) when the script adjusts the
scheduling parameter of the RT-VM. Besides, because Risa adopts a delayed
shrink manner, the increase of CPU utilization at t3 under Risa is 15 seconds
(implementation defined) later than sp. As a result, compared to the multi-core
static partitioning mechanism, the multi-core dynamic partitioning mechanism
of Risa can reduce operation expense and improve CPU utilization.

3.3 Effect of vGEDF Scheduler

In this test, we perform two experiments to evaluate the effectiveness of the
vGEDF scheduler of Risa. They are conducted under different guest OSes. One
is general purpose operating system (GPOS). The other is real-time operating
system (RTOS), which is designed to serve real-time application requests.

(a) Average PESQ of concurrent calls (b) Statistics of 50 concurrent calls

Fig. 4. Call quality under different strategies

A Real-Time Scheduling Framework 205

Experiments with VoIP Server Running in GPOS. Voice over Internet
Protocol (VoIP) server is a typical soft real-time application. Asterisk [2] is a
famous and open source telephone private branch exchange. In this test, we use
Asterisk to conduct experiments to evaluate the vGEDF scheduler of Risa.

We use VM1 to host Asterisk, and run SIPp [6] on a machine in the same LAN
as a VoIP client. We start up several concurrent calls that range from 5 to 50 to
simulate the real world environment, and measure call quality with the ITU-T
PESQ (Perceptual Evaluation of Speech Quality) metric [15], which ranges from
0 to 4.5. Typically, if the value is greater than 4, it means that the VoIP service
has good quality. The test results are shown in Fig. 4.

Seen from Fig. 4(a), Risa is the best among these scheduling strategies, and
the call quality is guaranteed under Risa. This is because Risa is designed for
real-time applications and takes full advantage of underlying multi-core proces-
sors. The Credit scheduler is a proportional fair share scheduler and does not
consider real-time constraints. Thus, it even cannot guarantee the call quality
with small concurrent calls. With the increase of concurrent calls, the SEDF
scheduler cannot support the VoIP server any more. This is because the SEDF
scheduler cannot make full use of multi-core processors. Besides, the call quality
under the strategy of sp+SEDF(overload) is very low, which also shows the im-
portance of load balancing among multiple PCPUs. Compared with the Credit
scheduler, Risa achieves 68.1% improvement in call quality according to the av-
erage PESQ when we start up 50 concurrent calls. Accordingly, compared with
the SEDF scheduler, Risa enhances the call quality by 13.7%.

Moreover, Fig. 4(b) shows the statistics of the call qualities of 50 concurrent
calls under different strategies. We find that call quality is very steady under
Risa, which is crucial for the VoIP server to provide stable services.

Experiments with Cyclictest Running in RTOS. Cyclictest [3] is a widely
used real-time testing tool, which can evaluate kernel latencies of real-time Linux
kernel. In this test, we use cyclictest to conduct experiments under a RTOS
to demonstrate whether Risa supports the RTOS and hardware-assisted VMs
(HVMs).

Table 1. Cyclictest test results under different strategies

Strategy Min Latencies (us) Avg Latencies (us) Max Latencies (us)

Credit 5 5862 181559

sp+SEDF 0 3224 58634

Risa 0 2342 55700

The guest RTOS is CentOS 5.5 with Linux-2.6.32.40 kernel plus PREEMPT-
RT patch [5], which is installed in a HVM. We replace VM1 in the four strategies
with the HVM, and use cyclictest to evaluate the kernel latency of the RTOS
by collecting data for 500,000 times. However, we observe that the RTOS is not
responded under the strategy of sp+SEDF(overload) because of the features of

206 S. Wu et al.

the HVM. As a result, the experimental results only include three strategies,
which are shown in Table 1. From the test results, we can find that the kernel
latency is the smallest under Risa. Compared with the Credit scheduler and the
SEDF scheduler, the kernel latency is reduced by 60% and 27.4% according to the
average latencies, respectively. However, the reduction on maximum latencies is
small compared to the SEDF scheduler. This is because both SEDF and vGEDF
are based on the EDF scheduling algorithm.

4 Related Work

Hu et al. [10] present an I/O scheduling model of VM based on multi-core
dynamic partitioning. They divide PCPUs into three subsets, and apply an
identical scheduler with different strategies to these subsets. However, real-time
scheduling is much more complex than I/O scheduling. Designing different sched-
ulers for various subsets is more suitable for supporting real-time applications.

Lee et al. [13] introduce a concept named laxity to denote the scheduling la-
tency that a VM desires. The VCPU of a VM running soft real-time applications
is inserted into the middle of run queue according to its laxity so that it can be
scheduled within its desired deadline. Kim et al. [12] present an approach to
reallocate credits for the VMs running client-side multimedia applications adap-
tively according to their qualities. Our previous work [17][18] proposes a parallel
soft real-time scheduling algorithm, which addresses real-time constraints and
synchronization problems simultaneously, to support parallel soft real-time ap-
plications in virtualized environment. Hwang et al. [11] design a soft real-time
scheduling to support virtual desktop infrastructures. However, all these stud-
ies lack the schedulability analysis, which is important for real-time scheduling.
RT-Xen [16] presents a hierarchical real-time scheduling framework for Xen, but
it only supports single core VMs.

5 Conclusion

In this paper, we present a real-time scheduling framework based on multi-core
dynamic partitioning in virtualized environment. If the system has RT-VMs,
PCPUs are partitioned into two pools (rt-pool and non-rt-pool) automatically
according to the scheduling parameters of RT-VMs. rt-pool uses the vGEDF
scheduler, which takes full advantage of multi-core processors, to schedule RT-
VMs. Non-RT-VMs are scheduled by the Credit scheduler in non-rt-pool. We
implement a prototype in the Xen hypervisor and evaluate its effectiveness. The
experiments results show that Risa supports real-time applications well, reduces
operation expense, and improves CPU utilization.

Acknowledgments. The research is supported by National Science Foundation
of China under grant No.61232008, National 863 Hi-Tech Research and Devel-
opment Program under grant No.2013AA01A208, Doctoral Program of MOE
under grant 20110142130005, EU FP7 MONICA Project under grant No.295222,
and Chinese Universities Scientific Fund under grant No. 2013TS094.

A Real-Time Scheduling Framework 207

References

1. Amazon’s Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
2. Asterisk, http://www.asterisk.org/
3. Cyclictest, https://rt.wiki.kernel.org/index.php/Cyclictest
4. Lookbusy - a synthetic load generator, http://www.devin.com/lookbusy/
5. Real-Time Linux Wiki, https://rt.wiki.kernel.org
6. SIPp, http://sipp.sourceforge.net/
7. Baker, T.P.: An analysis of edf schedulability on a multiprocessor. IEEE Trans.

Parallel Distrib. Syst. 16(8), 760–768 (2005)
8. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proc. SOSP 2003,
pp. 164–177 (2003)

9. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three cpu schedulers in
Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42 (2007)

10. Hu, Y., Long, X., Zhang, J., He, J., Xia, L.: I/O scheduling model of
virtual machine based on multi-core dynamic partitioning. In: Proc. HPDC 2010,
pp. 142–154 (2010)

11. Hwang, J., Wood, T.: Adaptive dynamic priority scheduling for virtual desktop
infrastructures. In: Proc. IWQoS 2012 (2012)

12. Kim, H., Jeong, J., Hwang, J., Lee, J., Maeng, S.: Scheduler support for video-
oriented multimedia on client-side virtualization. In: Proc. MMsys 2012, pp. 65–76
(2012)

13. Lee, M., Krishnakumar, A.S., Krishnan, P., Singh, N., Yajnik, S.: Supporting soft
real-time tasks in the Xen hypervisor. In: Proc. VEE 2010, pp. 97–108 (2010)

14. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (JACM) 20(1), 46–61 (1973)

15. Rix, A.W., Beerends, J.G., Hollier, M.P., Hekstra, A.P.: Perceptual evaluation of
speech quality (pesq)-a new method for speech quality assessment of telephone
networks and codecs. In: Proc. ICASSP 2001, vol. 2, pp. 749–752 (2001)

16. Xi, S., Wilson, J., Lu, C., Gill, C.: RT-Xen: Towards real-time hypervisor scheduling
in Xen. In: Proc. EMSOFT 2011, pp. 39–48 (2011)

17. Zhou, L., Wu, S., Sun, H., Jin, H., Shi, X.: Supporting parallel soft real-time
applications in virtualized environment. In: Proc. HPDC 2013, pp. 117–118 (2013)

18. Zhou, L., Wu, S., Sun, H., Jin, H., Shi, X.: Virtual machine scheduling for parallel
soft real-time applications. In: Proc. MASCOTS 2013, pp. 525–534 (2013)

http://aws.amazon.com/ec2/
http://www.asterisk.org/
https://rt.wiki.kernel.org/index.php/Cyclictest
http://www.devin.com/lookbusy/
https://rt.wiki.kernel.org
http://sipp.sourceforge.net/

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 208–219, 2014.
© IFIP International Federation for Information Processing 2014

Automatic Data Layout Transformation
for Heterogeneous Many-Core Systems

Ying-Yu Tseng, Yu-Hao Huang, Bo-Cheng Charles Lai, and Jiun-Liang Lin

Department of Electronics Engineering, National Chiao-Tung University
1001 Da-Hsueh Rd, Hsinchu, Taiwan

{yingyu.ee99,pcco001.ee99}@nctu.edu.tw,
bclai@mail.nctu.edu.tw, qazhphphphp3@gmail.com

Abstract. Applying appropriate data structures is critical to attain superior per-
formance in heterogeneous many-core systems. A heterogeneous many-core
system is comprised of a host for control flow management, and a device for
massive parallel data processing. However, the host and device require different
types of data structures. The host prefers Array-of-Structures (AoS) to ease the
programming, while the device requires Structure-of-Arrays (SoA) for efficient
data accesses. The conflicted preferences cost excessive effort for programmers
to transform the data structures between two parts. The separately designed
kernels with different coding styles also cause difficulty in maintaining pro-
grams. This paper addresses this issue by proposing a fully automated data
layout transformation framework. Programmers can maintain the code in AoS
style on the host, while the data layout is converted into SoA when being trans-
ferred to the device. The proposed framework streamlines the design flow and
demonstrates up to 177% performance improvement.

Keywords: heterogeneous systems, data layout transformation, many-core,
GPGPU.

1 Introduction

Heterogeneous many-core systems have demonstrated superior performance by
leveraging the benefits from processing units with different characteristics. A hetero-
geneous system consists of a host and a device, where the host takes charge of
sophisticated algorithm flow while the device performs massively parallel data
processing [10]. Fig. 1 illustrates a widely adopted architecture of modern heteroge-
neous many-core systems. The system applies high-end CPUs as the host, and a
GPGPU (General Purpose Graphic Processing Unit) as the device. CPUs perform
control flow management and enable ease of programming, while GPGPUs support
massive parallel execution to achieve high throughput data processing. Tasks of an
application can then be dispatched to the best-suited processing resources to achieve
efficient and high performance computing.

Automatic Data Layout Transformation for Heterogeneous Many-Core Systems 209

The heterogeneity of the system has caused disparate design philosophy and resul-
tant execution behavior between the host and device. A common design flow divides
an application into two parts. The control of the execution flow is taken care of by
the host processor, while the part with massive parallelism is transferred to the many-
core engines on the device for high throughput computing. Since the massive parallel
computation usually poses intensive data accesses, developing a proper data structure
for the corresponding many-core device is a critical performance factor.

The preferred data structures of tasks are different on the two sides of the system.
The programming paradigm of the host processor usually applies conventional object-
oriented scheme, which tends to pack the associated elements of the same object into
the same class. This scheme enhances both code readability and maintainability.
However, the same data layout scheme does not provide efficient data accesses to the
throughput processors on the device side.

Fig. 2 illustrates an example of multi-object operations on GPGPUs. This operation
has been widely applied to various applications, such as image processing. As in Fig.
2, there are three types of data elements, R, G, and B. The application can simulta-
neously operate on the data belonging to the same type, and would process the data of
different types in turns. An object can be represented by combining the associated
data from different types. For example, a pixel in an image consists of color elements
from red, green, and blue. To have better code readability, programmers tend to pack
the elements for the same object into the same class. Such data layout is referred as
the Array-of-Structure (AoS). However, AoS is not an efficient data layout for
GPGPUs. The parallel tasks in a GPGPU are clustered into execution groups, called
warps. Tasks in a warp perform the same operation on different data points. To enable
efficient data accesses, the data elements of the same type are required to be arranged
in a consecutive manner. This data layout scheme is referred as Structure-of-Arrays
(SoA). Programmers need to transform the data layout from AoS to SoA before pass-
ing the execution to the device side. However, SoA is usually against the intuition of
understanding an object, and makes the code hard to maintain. This issue has involved
the tradeoff of programmers between the performance on devices and the readability

Fig. 1. The organization of a heterogeneous many-core system

210 Y.-Y. Tseng et al.

and maintainability of codes. The former would degrade the benefits of heterogeneous
many-core systems, while the latter would significantly burden programmers.

This paper proposes an automatic data layout transformation framework to stream-
line the design flow as well as alleviate the overhead. The data is maintained as AoS
structure on the host, and automatically transformed into the ASTA (Array-of-
Structure-of-Tiled-Arrays) structure [1] during the data transfer from the host to
device. ASTA arranges data into tiled arrays, which can be more effectively utilized
by a GPGPU. The proposed framework involves the design of several novel hardware
modules. The hardware Data Layout Transformer performs the data layout transfor-
mation to ASTA during the data transfer on the PCIe interface. In this way, the run-
time overhead of data layout transformation can be hidden. When receiving the data
on the device, a pipelined adapter is implemented to transpose the data efficiently.
Specialized load and store units are also developed to translate the assigned data ad-
dresses to the target addresses. The proposed framework enables automatic data
layout transformation between the host and device, and is transparent to programmers.
The experimental results have demonstrated up to 177% performance improvement
with the proposed framework.

The rest of the paper is organized as follows. Section 2 discusses the related work
of data accesses of heterogeneous many-core systems. Section 3 introduces the hard-
ware data layout transformation framework proposed in this paper. Section 4 shows
the simulation results and analyzes the performance enhancement. Section 5 will con-
cludes this paper.

2 Related Works

A heterogeneous system has applied disparate design philosophy and resultant execu-
tion behavior between the host and device. The corresponding data structure of an
application also needs to be adapted to the characteristics and requirements of the
system. GPGPUs on the device side have implemented memory coalescing, which
combine consecutive data accesses into a single transaction. It has been demonstrated
that to retain the benefit provided by memory coalescing, the data structure needs to
be arranged as the SoA scheme [1][2][3][8].

The data layout transformation has been studied on both CPUs and GPGPUs. For
CPUs, Karlsson [4] discussed an in-place transposition way and Gustavson and

Fig. 2. The data layout of AoS style and SoA style

Automatic Data Layout Transformation for Heterogeneous Many-Core Systems 211

Swirszcz [5] proposed an OpenMP-based approach. On GPGPUs, early researches
gave the out-of-place transposition way and the performance was limited due to the
ineffective usage of GPGPU DRAM [6]. The Dymaxion framework proposed by Che
et al. [7] is a library-based software approach. It performs data transformation on the
CPU side and overlaps with data transfers on PCI-e. Since the data transformation is
performed by CPUs, the transformation speed is limited by the CPU memory band-
width. Sung et al. [1] proposed another library-based approach that uses in-place
algorithm transforming data layout from AoS to ASTA (Array-of-Structure-of-Tiled-
Arrays) on GPGPUs. The ASTA arranges data into tiled arrays, which can be more
effectively utilized by a throughput processor. An in-place marshaling algorithm
was also developed for transforming the data layout, and has demonstrated to be fast-
er than the optimized traditional out-of-place transformations while avoiding doubling
the GPGPU DRAM usage. However, this software approach induces runtime over-
head of transforming the data layout.

This paper proposes a hardware-based data layout transformation framework that
is transparent to programmers. With the proposed hardware modules, the data layout
transformation and address translation have been fully automated. The programmer
can benefit from the low overhead transformation, and also be able to enhance the
productivity by using the more intuitive SoA object-oriented code in both CPUs and
GPGPU kernels.

3 Hardware Data Layout Transformation Framework

To achieve the best performance on a heterogeneous many-core system, programmers
are required to take considerable effort to transform the data layout to enable data

 (a) (b)

Fig. 3. (a) The hardware modules of the data layout transformation. (b) Design flow with the
proposed data layout transformation framework.

212 Y.-Y. Tseng et al.

accesses for the throughput processor on the device side. This paper proposes a fully
automated data layout transformation framework to streamline the design flow as well
as alleviate the overhead. This paper applies the proposed data transformation on a
widely adopted heterogeneous system with CPU-GPGPU organization to demonstrate
the fundamental functions and attained benefits.

3.1 Overview of System and Design Flow

The proposed data layout transformation consists of two hardware modules. As
shown in Fig. 3(a), the first module is the Data Layout Transformer (DL Transformer)
that is cascaded to the PCIe interface. The DL Transformer transforms the AoS data
structure from the host to the ASTA structure, and stores the new data structure into
the DRAM of the GPGPU. The second module is the specialized load/store (LD/ST)
unit in GPGPUs. These LD/ST units are able to translate the data access addresses
automatically for programmers. With the proposed hardware modules, the design
flow of the heterogeneous program is illustrated in Fig. 3(b). Programmers maintain
the more readable AoS codes for both GPGPU and CPU kernels. The AoS data struc-
ture can avoid discrete data layout with better code readability. Programmers only
need to specify the AoS data structure that would be used by the parallel kernels on
the device GPGPU. A simple function can be added to the current available compiler
to recognize these data structures, and automatically send these data to the hardware
DL Transformer. The appropriate PTX code for GPGPU will be generated to control
the data receiving and address translation on the GPGPU side. By inserting the special
flag into the PTX code, the load/store unit would access the data through a hardware
address translator to get the transformed addresses.

Fig. 4. The ASTA data layout

3.2 ASTA Data Layout

Fig. 4 illustrates Array of Structure of Tiled Array (ASTA) data layout proposed by
Sung et al. [1]. It is a type of AoS data structure optimized for GPGPUs. To achieve
efficient data accesses on GPGPUs, it is not necessary to apply the SoA data layout
since only tasks in the same warp will be executed concurrently. Therefore, one can
only adjoin the data elements required by a warp to achieve the same data access effi-
ciency as SoA. In ASTA, a tile refers the data elements of the same type that have
been allocated consecutively. The tiles of different data types will join together and
form a mini AoS structure, named a chunk. The ASTA data layout is an array of these
chunks. The hardware DL Transformer proposed in this paper also utilizes ASTA data

Automatic Data Layout Transformation for Heterogeneous Many-Core Systems 213

layout on GPGPUs. With ASTA, the design of DL Transformer no longer needs to
gather all the same elements together. This paper also proposes a pipeline design of
DL Transformer that can achieve higher performance with low hardware complexity.

3.3 Data Layout Transformer

Fig. 5 illustrates the data layout transformation on the proposed DL Transformer
module. The DL Transformer is designed to transform the AoS data layout to ASTA
style while transferring data from CPUs to GPGPUs. Because the procedure between
different chunks is independent, the following discussion will focus on one chunk.
First, the buffer A in DL Transformer gathers a new chunk from PCIe. As it finishes
receiving the entire chunk, it will send the chunk to the next stage of buffer B. The
data layout of this chunk will be transformed from AoS to ASTA tile by tile. It is
done by K iterations, where K is the number of data elements in a class. The first ite-
ration is generating the first tile of this chunk. A set of multiplexers is controlled by K
to determine which elements to form a new tile. In each cycle of this iteration, the
first bit of these selected elements is sent to buffer C and the data in both buffer B and
C are shifted by one bit simultaneously. Until all bits in buffer C are ready, the new
tile will be sent to buffer D so that buffer C can do the next iteration of gathering the
next tile. The buffer D is used to store the tile to the DRAM in a GPGPU.

Fig. 5. Procedure of data layout transformation

Due to the limited bandwidth of PCIe and the concern of hardware cost, the itera-
tion between buffer B and C should be separated by some proper number of cycles.
The execution cycles of these stages of one chunk workload is shown in Table 1. The
design of the pipeline structure is more efficient when the execution cycles of these
stages are the same. That is, the multiplexer between buffer B and C should transfer
(/ bits in each cycle to balance the latency. The parameter W is the
length for a tile. For example, the bandwidth is 128bit/transaction and W is 32, DL

214 Y.-Y. Tseng et al.

Transformer should have 4 copies of multiplexer sets to transfer 4 bits, and the data in
both buffer B and C are also shifted by 4 bits simultaneously.

Another transformation needed in our module is to transform the ASTA back to
AoS when the data is transferred from a GPGPU to a CPU. The function can be
achieved easily by reversing the flow of the previous transformation. The data will be
sent from the GPGPU DRAM to Buffer D, and the multiplexer can be replaced by a
decoder or de-multiplexer.

A possible design issue happens when the size of the whole array is not a multiple
of W. It makes the last chunk of this array incomplete. To solve this issue, we choose
to pad redundant bits to make the size of chunk as multiples of W. It will slightly in-
crease the memory usage of the array. However, the number of objects of an array is
usually much larger than W, and this overhead becomes negligible.

Table 1. Execution cycles in different stages

Stage Cycles
PCIe to buf-

fer A
8/

buffer B to C 8/ _ _
3.4 Specialized Load and Store Unit

The specialized load/store (LD/ST) unit is proposed to automatically translate the
original data address to the target data address (ASTA). This LD/ST module relieves
the programmers from reorganizing the complex transformed data accesses when
programing GPGPU kernels. When performing the transformation from AoS to
ASTA, the transformed addresses can be obtained by the following equations (1) and
(2). Equation (1) derives the index of the datum (Index) from Addr_origin and
Addr_begin. With Index, one can calculate the transformed data address (′) by
adding three offsets to the beginning of the array (Addr_begin). The offsets are re-
spectively listed in equation (2a), (2b), and (2c). Equation (2a) represents the element
index in its tile while equation (2b) gives the offset by the order of tile in the chunk.
The chunk offset is represented by equation (2c) as well. With Addr_begin and these
three offsets, one can translate an address to the transformed ASTA style data address. _ _ / (1)

′ _ ⁄ % (2a) % (2b) ⁄ ⁄ (2c)

Automatic Data Layout Transformation for Heterogeneous Many-Core Systems 215

4 Experiment Results

This section compares the performance of the proposed DLT framework. The expe-
riment setup will be shown in section 4.1. Section 4.2 will illustrate the performance
with no hardware delay time. Section 4.3 will explore the impact of different lengths
of a tile, and section 4.4 will discuss the performance effect when adding hardware
delays.

4.1 Experiment Setup

The performance of the proposed data layout transformation framework is verified
with GPGPU-Sim, a cycle-accurate performance simulator for GPGPU [9]. The archi-
tecture parameters of GPGPU-Sim are configured to model NVIDIA GTX480, which
consists of 15 streaming multiprocessors. Each warp contains 32 concurrent threads.
The benchmarks used in this paper are listed in Table 2. The Black-Scholes bench-
mark is adopted from CUDA SDK [11] and the other two benchmarks are from Par-
boil Benchmark suite [12].

Table 2. Descriptions of test benchmark

Benchmarks Description
Black-Scholes This benchmark evaluates fair call and put prices for

a given set of European options by Black-Scholes
formula.

LBM A fluid dynamics simulation of an enclosed, lid-
driven cavity, using the Lattice-Boltzmann Method.

SPMV Computes the product of a sparse matrix with a dense
vector. The sparse matrix is read from file in coordi-
nate format, converted to JDS format with configura-
ble padding and alignment for different devices.

4.2 Performance Comparison with Different Data Layouts

Fig. 6 shows the normalized performance of designs with different data layout
schemes. The CUDA_AoS and CUDA_ASTA apply only AoS and ASTA data struc-
tures respectively. The CUDA_AoS_DLT runs the CUDA_AoS on the platform with
the proposed DLT framework. Note the performance is measured with no translator
delay time. One can observe that CUDA_ASTA outperforms CUDA_AoS mainly
because the GPGPU can access data efficiently with ASTA data structure. The
benchmarks LBM and BlackScholes show more significant performance gain because
these two applications pose regular data access behavior. In these applications, warps
generate multiple accesses to the same cache line or adjacent memory locations, and
therefore the performance benefits more from the ASTA structure. The SPMV
benchmark, on the other hand, has irregular data access behavior. In this case, the
ASTA data layout only provides minor performance gain.

Although having better performance, CUDA_ASTA applies the data structure that
is not intuitive to programmers. Transforming the coding styles between AoS and

216 Y.-Y. Tseng et al.

ASTA requires extra programming effort. The proposed DLT automatically trans-
forms the data layout from AoS to ASTA without changing the coding style of kernel
functions. An interesting observation is that the CUDA_AoS_DLT even outperforms
CUDA_ASTA in all the benchmarks. This is because the coding of AoS structure has
fewer instructions in the kernel function than the ASTA structure. The AoS data
layout needs only one array pointer to manipulate the whole data while the ASTA
data layout needs as many array pointers as the number of arrays. The code of ASTA
style needs to pass more parameters into the kernel function and also requires more
instructions to calculate the addresses of different structure elements. These overheads
are not involved in the proposed DLT hardware since the code still retains the AoS
data layout. Therefore the CUDA_AoS_DLT can return better performance than
CUDA_ASTA.

Fig. 6. The normalized performance of designs with different data layout schemes

4.3 Impact of Different Lengths of a Tile

Fig. 7 shows the normalized performance when the tile length is changing from 16, 32,
to 64. The tile length is the parameter W discussed in section 3. This is an important
factor since it affects not only the amount of transformer buffers and multiplexers but
also the performance of the ASTA layout. The design with ASTA layout behaves like
AoS layout when the parameter W is small. One can notice that the performance with
W = 16 is worse than 32 and 64. However, increasing the W from 32 to 64 does not
return more performance enhancement. This is because the performance does not gain
further benefit from applying larger W, while the overhead of supporting larger W
starts compromising the performance.

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

cuda_AoS

cuda_ASTA

cuda_AoS_DLT

Automatic Data Layout Transformation for Heterogeneous Many-Core Systems 217

Fig. 7. The normalized performance of designs with different tile lengths (parameter W)

4.4 Performance Effect When Adding Hardware Delays

The proposed DLT framework uses hardware modules to perform the automatic data
layout transformation. The experiments so far did not take hardware delays into
account. Fig. 8 shows organization of the arithmetic units for data layout transfor-
mation. This paper models these modules in the GPGPU-Sim. The address translator
hardware is added into the streaming multiprocessor (SM) of the simulator. The
address of GTX480 is 32bit and therefore the parameter K is 5bit. In this case, the
translator needs a divider, a multiplier, and three 32-bit adders. The divider needs to
support 32-bit divided by 5-bit, and the multiplier should support 32-bit multiplied by
5-bit. The delay of the hardware is estimated based on the integer ALU from the
GTX480 configuration file. The latency of the DLT is modeled as 75 cycles in the
simulator. Note that the PCIe module between CPUs and GPGPUs is not imple-
mented in GPGPU-Sim. Fig. 9 shows the performance when the hardware delay is
concerned. As shown in Fig. 9, the proposed design has achieved up to 177% perfor-
mance improvement.

Fig. 8. Hardware architecture of address translator

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

BlackScholes LBM SPMV

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

16

32

64

218 Y.-Y. Tseng et al.

Fig. 9. The normalized performance of designs with hardware delays

5 Conclusion

This paper proposes a fully automated data layout transformation framework to help
streamline the design flow as well as alleviate the overhead. Our programmer-friendly
framework is composed of Data Layout Transformer and specialized Load/Store Unit.
Our proposed framework is evaluated using three different applications with multiple
input datasets. The results have demonstrated to achieve up to 177% performance
improvement while retaining good program readability and maintainability.

References

1. Sung, I.-J., Stratton, J.A., Hwu, W.-M.W.: DL: A Data Layout Transformation System for
Heterogeneous Computing. In: Proc. IEEE InPar, San Jose, pp. 513–522 (May 13, 2012)

2. Jang, B., Schaa, D., Mistry, P., Kaeli, D.: Exploiting Memory Access Patterns to Improve
Memory Performance in Data-Parallel Architectures. Proc. IEEE Transactions on Parallel
and Distributed Systems 22(1) (January 2011)

3. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: optimizing memory access patterns for
heterogeneous systems. In: Proc. SC, pp. 13–13 (2011)

4. Karlsson, L.: Blocked in-place transposition with application to storage format conversion.
Technical report (2009)

5. Gustavson, F., Karlsson, L., Kagström, B.: Parallel and cache-efficient in-place matrix sto-
rage format conversion. ACM Transactions on Mathematical Software

6. Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA (January 2009)
7. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: optimizing memory access patterns for

heterogeneous systems. In: Proc. SC, p. 13 (2011)
8. CUDA C programming guide, http://docs.nvidia.com/cuda/

cuda-c-programmingguide/index.html

0
0.2
0.4
0.6
0.8
1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

cuda_AoS

cuda_ASTA

cuda_AoS_DLT75

Automatic Data Layout Transformation for Heterogeneous Many-Core Systems 219

9. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing CUDA
Workloads Using a Detailed GPGPU Simulator. In: Ispass 2009: IEEE International Sym-
posium on Performance Analysis of Systems and Software, pp. 163–174 (2009)

10. Garland, M., Grand, S.L., Nickolls, J.: Parallel Computing Experiences with Cuda. IEEE
Computer Society (2008)

11. GPU Computing SDK,
 https://developer.nvidia.com/gpu-computing-sdk

12. Parboil Benchmarks,
http://impact.crhc.illinois.edu/Parboil/parboil.aspx

mpCache: Accelerating MapReduce with Hybrid

Storage System on Many-Core Clusters

Bo Wang1, Jinlei Jiang1,2, and Guangwen Yang1

1 Department of Computer Science and Technology
Tsinghua National Laboratory for Information Science and Technology (TNLIST)

Tsinghua University, Beijing 100084, China
bo-wang11@mails.tsinghua.edu.cn, {jjlei,ygw}@tsinghua.edu.cn

2 Technology Innovation Center at Yinzhou
Yangtze Delta Region Institute of Tsinghua University

Zhejiang 314006, China

Abstract. As a widely used programming model and implementation
for processing large data sets, MapReduce does not scale well on many-
core clusters, which, unfortunately, are common in current data centers.
To deal with the problem, this paper: 1) analyzes the causes of poor
scalability of MapReduce on many-core clusters and identifies the key
one as the underlying low-speed storage (hard disk) can not meet the re-
quirements of frequent IO operations, and 2) proposes mpCache, a SSD
based hybrid storage system that caches both Input Data and Localized
Data, and dynamically tunes the cache space allocation between them to
make full use of the space. mpCache has been incorporated into Hadoop
and evaluated on a 7-node cluster by 13 benchmarks. The experimen-
tal results show that mpCache gains an average speedup of 2.09 when
compared with the original Hadoop, and achieves an average speedup of
1.79 when compared with PACMan, the latest in-memory optimization
of MapReduce.

1 Introduction

The human society has stepped into the big data era where applications that
process terabytes or petabytes of data are common in science, industry and com-
merce. Usually, such applications are termed IO-intensive applications, for they
spend most time on IO operations. Workloads from Facebook and Microsoft Bing
data centers show that IO-intensive phase constitutes 79% of a job’s duration
and consumes 69% of the resources [2].

MapReduce [5] is a programming model and an associated implementation
for large data sets processing on clusters with hundreds or thousands of nodes.
Due to its scalability and ease of programming, MapReduce has been adopted
by many companies, including Google [5], Yahoo, Microsoft [9], and Facebook
[20].

Although MapReduce scales well with the increase of server number, its per-
formance, however, improves less or even remains unchanged with the increase

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 220–233, 2014.
c© IFIP International Federation for Information Processing 2014

Accelerating MapReduce with Hybrid Storage System 221

of CPU-cores per server. Figure 1 shows the execution time of self-join with
varied CPU-cores per server on a 7-node cluster, in which the line with pluses
denotes the time taken by Hadoop and the line with squares denotes the time
in an ideal world. As the number of CPU-cores increases, the gap between the
plus-line and square-line gets wider and wider. The fundamental reason behind
this is that the underlying low-speed storage (hard disk) can not meet the re-
quirements of MapReduce frequent IO operations: in the Map phase, the model
reads in raw input data to generate set of intermediate key-value pairs, which are
then written back; Shuffle phase, the model reads the intermediate data out from
the disk once again and sends to corresponding nodes which Reduce tasks are
scheduled on. In addition, during the whole execution of jobs, temporary data is
also written to local storage when memory buffer is full. Although more tasks are
concurrently running as more CPU-cores equipped, the IO speed of the storage
system which backs MapReduce remains unchanged and can not meet the IO
demand of high-concurrency tasks, resulting in the unchanged performance of
MapReduce. Unfortunately, it is common that servers in data centers are often
equipped with a large quantity of CPU-cores (referred to as many-core).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 4 5 6 7 8 9 10 11 12 13 14 15 16

E
x
e
c
u
ti

o
n
 T

im
e

The number of CPU-cores per Server

Performance Gap

Hadoop
Ideal Hadoop

Fig. 1. Execution time of self-join running with varied number of CPU-cores per server
using settings in Section 3 with 60GB Input Data

To overcome the bottleneck of low speed storage, caching data in memory is
an effective way to improve IO-intensive applications. Indeed many studies have
been done on in-memory cache [6] [13]. With the volume of memories scales
with hardware technology, it seems more feasible to cache data in memory to
provide high IO speed. However, caching data in memory inevitably occupies
additional memories and drops down the task parallelism degree (that is the
number of concurrent running tasks). What’s more, some machine-learning al-
gorithms such as k-means and term-vector are memory-intensive that consume

222 B. Wang, J. Jiang, and G. Yang

very large volume of memories. For these applications, task parallelism degree
drops significantly due to insufficient memories, leaving some CPU-cores idle.
Although adding more memories could alleviate the situation, the volume of
data scales even faster. Taking cost into consideration, it is not cost-effective to
provide high IO speed by in-memory caching.

Flash memory based Solid State Drive (SSD), emerges as an ideal storage
medium for building high performance storage systems. However the cost of
building a storage system completely with SSDs is often above the acceptable
threshold in most commercial data centers. Even considering the price-drop
trend, the average cost per GB of SSDs is still unlikely to reach the level of
hard disks in the near future [8]. Thus, we believe that in most systems, SSDs
should not be simply viewed as a replacement for the existing HDD-based stor-
age, but instead SSDs should be a means to enhance it.

Taking all the concerns discussed above into consideration, we proposed mp-
Cache, SSD based hybrid storage system, to support MapReduce scalable on
many-core clusters, which not only provides high IO for IO-intensive applica-
tions but also maintains task parallelism degree of memory-intensive jobs. The
contributions of our paper are as follows.

– We propose a new approach, called mpCache, to cache both Input Data
and Localized Data to speedup the IO-intensive phases. We also devise an
algorithm to dynamically tune the allocations between Input Cache and Lo-
calized Cache to make full use of the cache and provide better performance.

– We propose an algorithm to replace Input Cache efficiently, taking replace-
ment cost, data set size, access frequency, all-or-nothing into consideration
for better performance.

– Extensive experiments are conducted to evaluate mpCache. The experiment
results shows that mpCache gets an average speedup of 2.09 when com-
pared with original Hadoop and achieves an average speedup of 1.79 when
compared with PACMan.

The rest of this paper is organized as follows. Section 2 describes the key ideas
and algorithms of mpCache. Section 3 shows the experimental results. Section 4
reviews the related work and the paper ends in Section 5 with some conclusions.

2 mpCache Design

As shown in Figure 2, mpCache adopts a master-slave architecture with one
mpCache Master and several mpCache Slaves. mpCache Master acts as a co-
ordinator to globally manage mpCache slaves to ensure that a job’s input data
blocks, which are cached on different mpCache slaves, present in an all-or-nothing
manner, for some prior research work [2] found that a job is sped up only when
inputs of all tasks are cached. mpCache Slave tunes the cache space allocation
between Input Cache and Localized Cache, and serves cached blocks.

mpCache Master consists of two components–Dynamic Space Manager and
Replace Arbitrator. Dynamic Space Manager is responsible for collecting the

Accelerating MapReduce with Hybrid Storage System 223

Fig. 2. mpCache architecture

information of allocation of dynamic space from each mpCache Slave and record
into history data with job type and input data set size. Replace Arbitrator lever-
ages the cache replacement scheme.

mpCache Slave seats on each data node and consists of two components–
Dynamic Space Tuner and Cache Master. Dynamic Space Tuner is correspond-
ing to tuning the space allocation between Input Cache and Localized Cache.
Cache Master ’s role is to serve cached blocks and cache new blocks. Cache
Master on each data node intercepts the data reading requests from Map task,
checking whether the requested data block cached. If does, Cache Master servers
the data request from cache and request to Replace Arbitrator of mpCache Mas-
ter for the block’s hit. If the requested block is not cached and cache space does
not have sufficient space to hold it, Cache Master will send replace request to Re-
place Arbitrator and evicts cached blocks to make room for new cache according
to the return information from Replace Arbitrator.

2.1 Optimal Allocation Determination

Dynamic Space Tuner divides the whole cache space into three parts, i.e., Input
Cache, Dynamic pool, and Localized Cache. Since the distributed file systems
(e.g., GFS [7] and HDFS [17]), which back MapReduce applications up, store
data as blocks, we divide Dynamic pool into blocks. When caching input data,
free Dynamic pool blocks are allocated to Input Cache when Input Cache is full.
As the execution of job going, Dynamic Space Tuner constantly monitors the
used Localized Cache size. When Localized Data size exceeds Localized Cache
size, Dynamic Space Tuner checks if there are free blocks in Dynamic pool, if not
Dynamic Space Tuner excludes cached input data from Dynamic pool using the
same scheme described in Section 2.2, then allocates blocks of Dynamic pool to

224 B. Wang, J. Jiang, and G. Yang

Localized Cache one by one. All the Dynamic pool blocks allocated to Localized
Cache are withdrawn back when Localized Cache used ratio is below the guard
value (in our implementation, guard value is set to 0.5).

2.2 Input Data Cache Model

Admission Control Policy. We use an admission control policy to decide
whether or not it is worthwhile caching an object in the first place. We use an
auxiliary cache which maintains the identities of input data sets from different
jobs. For each object in this auxiliary cache we also maintain time-stamps of the
last access, measured both in terms of the number of data set accesses and time.

Using the admission control policy, we would like to ensure that at the ith

iteration the potential incoming input data jdi is popular enough to offset the
loss of the input data it displaces. So we process as follows: If there is enough
free space for jdi, we simply put jdi into the main cache. Otherwise, we check
if jdi occurs in the auxiliary cache. If it does not, jdi is not put into the main
cache. However, we put jdi into the auxiliary cache in accordance with LRU
rules. On the other hand, if jdi does occur in the auxiliary cache, then we
determine if the decision which the replacement policy heuristic makes would
be profitable. That is we compare the value 1/Size(jdi)Δjdii (Δjdii is at the
ith iteration the number of accesses since the last time jdi was accessed) with
the sum

∑
j 1/(Size(jdj)Δjdj i) of the set of candidate outgoing data blocks. We

admit jdi only if it is profitable to do so.

Main Cache Replacement Scheme. We now describe the data replacement
scheme of the main cache. With the data set in the main cache we associate a
frequency Fr(jd) counting how many times jd was accessed since the last time
it entered the main cache. We also maintain a priority queue for the data sets in
the main cache. When a data set of a job is inserted into the queue, it is given
priority Pr(jd) computed in the following way:

Fr(jd) = Blocks Access(jd)/Size(jd) (1)

Pr(jd) = Full + Clock + Fr(jd)/Size(jd) (2)

where Blocks Access(jd) is the number of accesses of all blocks of data set
jd ; Fr(jd) is the frequency count of data set jd; Full is a bonus value for the
data set which have all the blocks cached in the main cache (due to the all-
or-nothing characteristic of MapReduce cache [2]); Clock is a running queue
”clock” that starts at 0 and is updated, for each evicted data set jdevicted, to
its priority in the queue, Pr(jdevicted); and Size(jd) is the number of blocks
of data set jd. When mpCache Master receives update message from mpCache
Slave, we use Algorithm 1 described below to update Pr(jd) of the data set
to which the update message corresponding. To Del is a list of tuples such as
< data node,blocksevicted >.

Accelerating MapReduce with Hybrid Storage System 225

Algorithm 1. Main Cache Replacement Scheme

1: if the request for the block bk a hit update then
2: get the data set jd, to which bk belongs.
3: Clock do not change.
4: Blocks Access(jd) increased by one.
5: Pr(jd) is update using Equation 1∼2 and jd is moved according in the queue.
6: else
7: if the request does not need replace then
8: bk is cached.
9: else
10: identify mpSlave where the request comes from.
11: identify data node where mpSlave seated on.
12: if To Del list contains data node then
13: return blocksevicted to mpSlave, mpSlave evicts blocksevicted and cache bk.
14: else
15: identify the data set jdevicted to evict, which has the lowest priority
16: Clock is set to Pr(jdevicted).
17: set blocksevicted to all the blocks of jdevicted.
18: return blocksevicted to mpSlave, which evicts blocksevicted and cache bk.
19: identify all the data nodes allnodes which store blocksevicted.
20: for dn ∈ allnodes do
21: add < dn, blocksevicted > to To Del.
22: end for
23: end if
24: end if
25: Blocks Access(jd) increased by one.
26: if all the blocks of jd are cached then
27: Full = BONUS V ALUE.
28: else
29: Full = 0.
30: end if
31: Pr(jd) is computed using Equation 2 and jd is enqueued accordingly.
32: end if

3 Evaluation

We implement mpCache by modifying Hadoop distributed file system HDFS
(version 2.2.0) and use YARN (version 2.2.0) to execute the benchmarks.

3.1 Platform

The cluster used for experiments consists of 7 nodes. Each node has two eight-
core Xeon E5-2640 v2 CPUs running at 2.0GHz, 20MB Intel Smart Cache, 32GB
DDR3 RAM, one 2TB SATA hard disk and two 160GB SATA Intel SSDs con-
figured as RAID0. All the nodes run Ubuntu 12.04, have a Gigabit Ethernet
card and connect to a Gigabit Ethernet switch. Since our SSD cache space is
160*2=320GB on each node, which is large enough to hold most of the input

226 B. Wang, J. Jiang, and G. Yang

data set, and in real data centers, the input data of jobs is TB or even PB
magnitudes, we only use 80GB cache in our experiment.

3.2 Benchmarks

We use 13 benchmarks released on PUMA [1], covering shuffle-light, shuffle-
medium, and shuffle-heavy categories. We vary the input data size of each bench-
mark to 20 classes. As the input data size has Zipf-like frequency distributions
[11], we set a chosen probability to each data size using Equation 3.

f(k; s,N) =
1/ks

∑N
i=1 1/i

s
(3)

Table 1 summarizes the characteristics of the benchmarks in terms of input
data size (data of the right three column is when k=10), data source, the number
of Map/Reduce tasks, shuffle size, and execution time on Hadoop.

Shuffle-light cases have very little data transfer in shuffle phase, including grep,
histogram-ratings, histogram-movies, and classification. Shuffle-heavy cases, the
shuffle data size of which is very large (as shown in Table 1, almost the same
volume as the input data size), include k-means, self-join, adjacency-list, ranked-
inverted-count, and tera-sort. The shuffle data size of shuffle-medium cases is be-
tween shuffle-light and shuffle-heavy, including word-count, inverted-index, term-
vector, and sequence-count.

Table 1. Input data size of benchmarks. (k=1,2,. . . ,20) and characteristics

Benchmark
Input

size(GB)
Data source

#Maps &
#Reduces

Shuffle
size(GB)

Map&Reduce time
on Hadoop(s)

grep k*4.3 wikipedia 688 & 40 6.9∗10−6 222&2

histogram-ratings k*3 netflix data 480 & 40 6.3∗10−5 241&5

histogram-movies k*3 netflix data 480 & 40 6.8∗10−5 261&5

classification k*3 netflix data 480 & 40 7.9∗10−3 286&5

word-count k*4.3 wikipedia 688 & 40 0.318 743&22

inverted-index k*4.3 wikipedia 688 & 40 0.363 901&6

term-vector k*4.3 wikipedia 688 & 40 0.384 1114&81

sequence-count k*4.3 wikipedia 688 & 40 0.737 1135&27

k-means k*3 netflix data 480 & 4 26.28 450&2660

self-join k*3 puma-I 480 & 40 26.89 286&220

adjacency-list k*3 puma-II 480 & 40 29.38 1168&1321

ranked-inverted-count k*4.2 puma-III 672 & 40 42.45 391&857

tera-sort k*3 puma-IV 480 & 40 31.96 307&481

When submitting job to the cluster, we randomly select a job from the 13
benchmarks, and we choose input data size according to the attached probability.

3.3 Experimental Results

Comparison with Hadoop and PACMan. We compare the execution time
of benchmarks on mpCache with that on both Hadoop and PACMan. We run the
benchmarks on mpCache, Hadoop, and PACMan separately and get the average
value.

Accelerating MapReduce with Hybrid Storage System 227

PACMan uses memory to cache input data, the bigger the cache size is, the
more data is cached in memory, causing the faster Map phase. However, in
YARN, the concurrent running tasks number is relative to the available CPU-
cores and free memory. Using too much memory for cache will decrease the
parallelism degree of the tasks. We set the memory cache size to 12GB as rec-
ommended in PACMan [2].

Figure 3 shows the normalized execution time of Map/Reduce phase. For
shuffle-light jobs grep, histogram-movies, histogram-ratings, and classification,
the execution time is short (about 241s, 253s, 279s, and 304s of Hadoop when
k=10), most of the time is spending on data IO, caching the input data of
Map accelerates the execution of Map phase significantly (gets a speedup of
2.42 times of Map phase averagely). The Reduce phase time of mpCache is
almost the same as that of Hadoop for three reasons: i) The Reduce phase of
shuffle-light jobs is vert short (about 2s, 4s, 4s, and 5s when k=10); ii) Shuffle-
light jobs have very little shuffle data (less than 10 MB); iii) The localized
data size is very small (less than 1 MB), thus, caching localized data has little
acceleration. The job execution time of shuffle-light jobs on mpCache gets a
speedup of 2.23 times, averagely. When running on PACMan, each task runs well
with 1GB memory, thus PACMan and mpCache gets the same parallelism degree
of the tasks. Although PACMan’s memory cache provides a fast IO than SSD
cache of mpCache, mpCache size is much bigger than PACMan’s memory cache
size, mpCache’s auxiliary cache scheme also prevents too frequent replacement,
causing a higher hit ratio than PACMan does. Therefore, PACMan gets an
average speedup of 2.17 times, which is slightly lower than mpCache.

For shuffle-medium jobs word-count, inverted-index, term-vector, and sequence-
count, the execution time is longer than shuffle-light jobs(about 779s, 932s, 1209s,
and 1174s), the acceleration of caching Map input data is also smaller (gets a
speed of 1.25 times of Map phase averagely). The shuffle data size of these jobs
is about 318∼737MB, and the localized data size is 1∼3GB, thus, caching local-
ized data has bigger acceleration of Reduce phase than that of shuffle-light jobs,
getting a average speed up of 1.60 times of Reduce phase. The job execution time
of shuffle-medium jobs on mpCache gets a speed up of 1.25 times, averagely.When
running on PACMan, word-count and inverted-index run well with 1GB memory,
thus the speedup is roughly the same as mpCache. term-vector task needs at least
3GB memory, thus the parallelism degree is 10 on Hadoop and mpCache, while
6 on PACMan, causing the performance of PACMan drops to 0.762 of Hadoop.
sequence-count needs at least 2GB memory, thus the parallelism degree is 16 on
Hadoop and 10 on PACMan, causing the performance of PACMan drops to 0.868
of Hadoop.

For shuffle-heavy jobs k-means, self-join, adjacency-list, ranked-inverted-index,
and tera-sort, the shuffle data size and localized data size is very big, thus caching
Map input data and localized data both reduce the Map&Reduce phase time
significantly. The Map time of k-means, self-join, ranked-inverted-index, and tera-
sort is shorter than that of adjacency-list, thus the front three jobs get a speedup
of 1.82∼2.69, while, the adjacency-list Map time is longer (1168s), thus, getting

228 B. Wang, J. Jiang, and G. Yang

a speedup of only 1.04 times. Since the localized data size of shuffle-heavy jobs
is the biggest of the three types, caching localized data accelerates the Reduce
phase most, getting a speedup of 3.87 times of Reduce phase. The job execution
time of shuffle-heavy jobs on mpCache gets a speed up of 2.65 times, averagely.
When running on PACMan, self-join, adjacency-list, ranked-inverted-index, and
tera-sort need 2 GB memory for each task, thus the parallelism degree is 10 on
PACMan, and get an average performance of 0.981 of Hadoop. k-means bench-
mark clusters input data into 4 clusters, thus Reduce tasks number is set to 4.
The Reduce phase of k-means is a heavy part (2660s of 3087s), and needs at
least 8GB memory for each task. Therefore, the Map phase time is 2.46 times
of Hadoop, and Reduce time is the same as Hadoop, causing a performance of
0.808 of Hadoop.

 0

 0.5

 1

 1.5

 2

grep
histogram

-rating

histogram
-m

ovies

classification

w
ord-count

inverted-index

term
-verctor

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

N
o
rm

al
iz

ed
 J

o
b
 E

x
ec

u
ti

o
n
 T

im
e

Hadoop Map
Hadoop Reduce

PACMan Map
PACMan Reduce

mpCache Map
mpCache Reduce

Fig. 3. Job execution time comparison with Hadoop and PACMan

PACMan used 12GB memory for data cache and got considerable perfor-
mance using MapReduce v1 of Hadoop, the task parallelism degree of which was
configured by ”slots” number. And slots number was set as constant value in
configuration files, both Hadoop and PACMan used the same configuration, thus
the same task parallelism degree. However, in MapReduce v2–YARN, the con-
current running task number is determined by free CPU-cores and free memory,
allocating memory for data cache inevitably reduce the task parallelism degree of
some jobs. In our cluster, each node contains 16 CPU-cores and 32GB memory,
PACMan used 12GB for memory cache, thus the memory left for computing is
20GB. When running ”1GB jobs” (which consume 1GB memory for each task,
such as grep, histogram-rating, histogram-movies, classification, word-count, and
inverted-index) on PACMan, the task parallelism degree is 16, which is the same
as that of Hadoop and mpCache. Therefore, PACMan gets a better performance
than Hadoop and almost the same as mpCache. For other jobs, each task needs

Accelerating MapReduce with Hybrid Storage System 229

 0

 0.5

 1

 1.5

grep
histogram

-rating

histogram
-m

ovies

classification

w
ord-count

inverted-index

term
-verctor

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

N
o
rm

al
iz

ed
 J

o
b
 E

x
ec

u
ti

o
n
 T

im
e

Hadoop Map
Hadoop Reduce

PACMan Map
PACMan Reduce

mpCache Map
mpCache Reduce

Fig. 4. Job execution time comparison with Hadoop and PACMan on 8 CPU-cores

at least 2GB memory (3GB for term-vector, and 6GB for k-means), which results
in the task parallelism degree of PACMan drop to 10 (6 of term-vector, and 3 of
k-means). Although PACMan’s memory cache could significantly speedup Map
phase IO, the drop of task parallelism degree slows down the job worse, thus as
illustrated in Figure 3, PACMan even performs worse than Hadoop of these ”at
least 2 GB” jobs.

For all these benchmarks, mpCache gains an average speedup of 2.09 when
compared with the original Hadoop, and achieves an average speedup of 1.79
when compared with PACMan.

In order to trade off the influence of memory cache of PACMan, we also do
an experiment using only 8 CPU-cores of each node for Hadoop, PACMan, and
mpCache. As shown in Figure 4, when using only 8 CPU-cores, most of the
benchmarks run with the same task parallelism degree on Hadoop, mpCache,
and PACMan(except term-vector and k-means). For shuffle-light jobs, mpCache
and PACMan run with the same task parallelism degree, speedups over Hadoop
are 1.74 and 1.67, separately. For shuffle-medium jobs, word-count and inverted-
index is 1GB-task job, getting speedups over Hadoop of 1.12 and 1.08. term-
vector is 3GB-task job, when running on Hadoop and mpCache, task parallelism
degree is 8, while, running on PACMan is 6, causing a high Map phase time than
Hadoop. Thus, the whole performance of PACMan is still worse than Hadoop.
For shuffle-heavy jobs, the localized data size is also very big, mpCache caches
both input data and localized data, resulting in an average speedup of 1.63
times of Map phase, while PACMan gets an average speedup of 1.35 times of
Map phase. mpCache’s caching localized data also gets an average speedup of
2.09 times of Reduce phase, while PACMan does not affect the Reduce phase.
For all the benchmarks, mpCache gets an average speedup of 1.62 times, while,
PACMan gets an average speedup of 1.25 times.

230 B. Wang, J. Jiang, and G. Yang

Sensitivity to Cache Size. We now evaluate mpCache’s sensitivity to cache
size by varying the available cache size of each mpCache Slave between 5GB and
160GB. The experimental results are shown in 3 sub-figures, i.e., Figure 5(a),
Figure 5(b), and Figure 5(c), corresponding to the 3 categories of benchmarks.

Figure 5(a) shows the effect of cache size on Shuffle-light benchmarks. These
benchmarks all have very little shuffle date and very short Reduce phase (the
Reduce phase is no longer than 2.1% of the whole time), thus, the Localized
Cache occupies little space and most of the space is allocated to Input Space, the
speedup of these benchmarks is mostly due to the caching of Input Data. When
the cache size is 5GB per node, the speedup is very small due to insufficient space
to hold Input Data. As the cache size increases, the speedup rises significantly
and getting the maximum point when the cache size is about 90GB.

Figure 5(b) shows the effect of cache size on Shuffle-medium benchmarks.
These benchmarks have some volume of shuffle data (no more than 1GB), both
Map and Reduce phase could be accelerated by caching Localized Data. When
the cache size per node is 5GB, all the Localized Data is cached, thus Reduce
phase gets an average speedup of 59.99%. However, the Reduce phase only oc-
cupies 3.43% of the whole time, resulting in the speedup of the whole job of only
1.40%. As the cache size increases, the speedup increases due to the reduction
of Map phase time and getting the maximum speedup when the cache size is
about 100GB.

Figure 5(c) shows the effect of cache size on Shuffle-heavy benchmarks. These
benchmarks have very large volume of shuffle data, resulting in the Localized
Data space occupies as large as 32GB when running tera-sort with 30GB Input
Data. Thus ,when the cache size is below 40GB, most of the cache is allocated
to Localized Cache, and the speedup is due to caching Localized Data.

4 Related Work

MapReduce Optimization on Multi-core Server. With the emerging of
multi-core systems, MapReduce frameworks were also proposed and optimized
on multi-core server [15][19][18]. All of these frameworks are designed for a single
server, of which [18] mainly focused on graphics processors and [15][19] were
implemented on symmetric-multiple-processor server. Obviously, these single-
node frameworks could only process gigabytes of data at most and are stretched
so thin to handle terabytes or petabytes of data.

MapReduce Optimization via In-Memory Cache. PACMan [2] and
HaLoop [3] cached input data in memory to reduce IO cost of hard disks and
optimize performance. Since the task parallelism degree of new generation of
MapReduce (e.g., YARN) is more concerns about free memory. Caching data
in memory consumes additional memory and cuts down the task parallelism,
thus leading to low performance for some memory-intensive jobs. Due to limita-
tion of memories and the large volume of Localized Data, PACMan only cached
Input Data, thus only Map phase was improved. However, many MapReduce

Accelerating MapReduce with Hybrid Storage System 231

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

S
p
e
e
d
u
p
 o

v
e
r

H
a
d
o
o
p

Cache per Node(GB)

grep
histogram-rating
histogram-movies
classification

(a) Shuffle-light

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

S
p

e
e
d

u
p

 o
v

e
r

H
a
d

o
o

p

Cache per Node(GB)

word-count
inverted-index
term-verctor
sequence-count

(b) Shuffle-medium

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

S
p
e
e
d
u
p
 o

v
e
r

H
a
d
o
o
p

Cache per Node(GB)

k-means
self-join
adjacency-list
ranked-inverted-index
tera-sort

(c) Shuffle-heavy

Fig. 5. The effect of cache size on mpCache

232 B. Wang, J. Jiang, and G. Yang

applications consist of heavy Reduce phase (e.g., k-means and tera-sort), our
caching Localized Data also significantly improves Reduce phase and gets better
acceleration of the whole job.

IO Optimization via SSD Cache. Yongseok et al. [12] proposed balancing
data in cache and update cost for optimal performance of SSD. Hystor [4], Prox-
imal IO [16], SieveStore [14], and HybridStore [10] used SSD as the cache of hard
disks. However, these works only cache small files (e.g., size below 200KB), and
only work for a single node. mpCache works in unison of all the nodes and makes
use of relatively complex and efficient eviction scheme to make better support
for MapReduce.

5 Conclusion

As a widely used programming model and implementation for processing large
data sets, MapReduce does not scale well on many-core clusters due to the IO re-
striction of storage. Emerging of SSD provides a good trade off between cost and
performance and caching data in SSD also prevents the problem of in-memory’s
degradation of computing parallelism degree. In this paper, we proposed mp-
Cache, an SSD-based universal caching system for MapReduce, which caches
both Input Data and Localized Data to speed up all the IO-consuming phases–
Read, Spill, and Merge. We implemented mpCache in Hadoop and evaluated
it on a 7-node cluster. The results show that mpCache can get a speedup of 2.09
times over Hadoop, and 1.79 times over PACMan.

Acknowledgment. This Work is co-supported by National Basic Research
(973) Program of China (2011CB302505), Natural Science Foundation of
China (61170210), and National High-Tech R&D (863) Program of China
(2011AA01A203).

References

1. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.: Puma: Purdue mapreduce
benchmarks suite (2012), http://web.ics.purdue.edu/~fahmad/benchmarks.htm

2. Ananthanarayanan, G., Ghodsi, A., Wang, A., Borthakur, D., Kandula, S.,
Shenker, S., Stoica, I.: Pacman: Coordinated memory caching for parallel jobs.
In: Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation, NSDI 2012, p. 20. USENIX (2012)

3. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: Efficient iterative
data processing on large clusters. Proceedings of the VLDB Endowment 3(1-2),
285–296 (2010)

4. Chen, F., Koufaty, D.A., Zhang, X.: Hystor: making the best use of solid state
drives in high performance storage systems. In: Proceedings of the International
Conference on Supercomputing, ICS 2011, pp. 22–32. ACM (2011)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

http://web.ics.purdue.edu/~fahmad/benchmarks.htm

Accelerating MapReduce with Hybrid Storage System 233

6. Feeley, M.J., Morgan, W.E., Pighin, E., Karlin, A.R., Levy, H.M., Thekkath, C.A.:
Implementing global memory management in a workstation cluster. ACM (1995)

7. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. ACM SIGOPS
Operating Systems Review 37, 29–43 (2003)

8. Handy, J.: Flash memory vs. hard disk drives - which will win?,
http://www.storagesearch.com/semico-art1.html

9. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. ACM SIGOPS Operating Sys-
tems Review 41(3), 59–72 (2007)

10. Kim, Y., Gupta, A., Urgaonkar, B., Berman, P., Sivasubramaniam, A.: Hybrid-
store: A cost-efficient, high-performance storage system combining ssds and hdds.
In: 2011 IEEE 19th International Symposium on Modeling, Analysis & Simula-
tion of Computer and Telecommunication Systems, MASCOTS 2011, pp. 227–236.
IEEE (2011)

11. Knuth, D.E.: The art of computer programming, vol. 3. Addison-Wesley, Reading
Mass. Pearson Education (2005)

12. Oh, Y., Choi, J., Lee, D., Noh, S.H.: Caching less for better performance: Balancing
cache size and update cost of flash memory cache in hybrid storage systems. In:
Proceedings of the 10th USENIX Conference on File and Storage Technologies,
FAST 2012, p. 25. USENIX (2012)

13. Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C., Leverich, J., Mazières,
D., Mitra, S., Narayanan, A., Parulkar, G., Rosenblum, M., et al.: The case for
ramclouds: scalable high-performance storage entirely in dram. ACM SIGOPS Op-
erating Systems Review 43(4), 92–105 (2010)

14. Pritchett, T., Thottethodi, M.: Sievestore: a highly-selective, ensemble-level disk
cache for cost-performance. In: Proceedings of the 37th Annual International Sym-
posium on Computer Architecture, ISCA 2010, pp. 163–174. ACM (2010)

15. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating
mapreduce for multi-core and multiprocessor systems. In: IEEE 13th International
Symposium on High Performance Computer Architecture, HPCA 2007, pp. 13–24.
IEEE (2007)

16. Schindler, J., Shete, S., Smith, K.A.: Improving throughput for small disk requests
with proximal i/o. In: Proceedings of the 9th USENIX Conference on File and
Storage Technologies, FAST 2011, pp. 133–147. USENIX (2011)

17. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file sys-
tem. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies,
MSST 2010, pp. 1–10. IEEE (2010)

18. Stuart, J.A., Owens, J.D.: Multi-gpu mapreduce on gpu clusters. In: 2011 IEEE
International Parallel & Distributed Processing Symposium, IPDPS 2011,
pp. 1068–1079. IEEE (2011)

19. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix++: modular mapreduce for shared-
memory systems. In: Proceedings of the Second International Workshop on MapRe-
duce and Its Applications, pp. 9–16. ACM (2011)

20. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proceedings of the VLDB Endowment 2(2), 1626–1629 (2009)

http://www.storagesearch.com/semico-art1.html

Online Mechanism Design for VMs Allocation

in Private Cloud

Xiaohong Wu1, Yonggen Gu1, Guoqiang Li2,�, Jie Tao1, Jingyu Chen3,
and Xiaolong Ma4

1 School of Information and Engineering, Huzhou University, Zhejiang, 313000, China
2 School of Software, Shanghai Jiao Tong University, Shanghai, 200240, China
3 Institute of Computer Application Technology, Hangzhou Dianzi University,

Zhejiang, China
4 School of Information Management and Engineering,

Shanghai University of Finance and Economics, Shanghai, China

Abstract. Resource allocation mechanism plays a critical role towards
the success of cloud computing. Existing allocation mechanisms in public
cloud is unsuitable for private IaaS cloud because they either cannot
maximize the sum of users’ value, or provide no service guarantee. This
paper proposes a novel online, model-free mechanism that makes different
allocations for flexible jobs and inflexible jobs. Users presenting job are
incentivized to be truthful not only about their valuations for VM units,
but also about their arrival, departure and the character of jobs (flexible
or inflexible). We simulate the proposed online mechanism using data
from RICC, showing that, compared with the mechanism which adopts
same allocation method for all jobs, using our mechanism leads to high
social welfare and percentage of served users.

Keywords: mechanism design, incentive compatible, resource reserva-
tion, greedy allocation.

1 Introduction

With the development of cloud computing technology, Infrastructure-as-a-Service
(IaaS) has gained popularity in recent years due to the flexibility, scalability and
reliability. For a private IaaS cloud, the objective of resource allocation is to max-
imize the efficiency of resources. That is, the IaaS private cloud provider needs to
find an optimum resource allocation for all users in order to maximize the social
welfare which is the sum of users value.

Existing allocationmechanisms in public IaaS cloud are pay-as-you-go and bid-
based allocation. Pay-as-you-go is a first-come first-serve allocation mechanism
which does not concern about the value of an allocation. In fact, the efficiency of an
allocation can be improved if the cloud allocates VMs to users with higher valua-
tion by knowing user-centric valuation. Amazon [1] has used bid-basedmechanism
in spot instance market to make up for this shortcoming, where users periodically

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 234–246, 2014.
c© IFIP International Federation for Information Processing 2014

Online Mechanism Design for VMs Allocation in Private Cloud 235

submit bids to the provider, who in turn posts a series of spot prices. Users gain
resource access, until the spot price rises above their bids. Thus, due to the dy-
namic changing of the spot price, it provides no service guarantee to those jobs
which should be completed by VMs during multiple time unit periods.

To overcome above shortcomings in existing mechanisms, we are motivated to
design a new auction mechanism for VM allocation in private IaaS cloud which is
presented as an online greedy allocation with reservation(OGAWR) mechanism.
The OGAWR mechanism has three characteristics compared with the auction in
spot instance. First, the auction in our online mechanism is carried out in each
time unit as long as user comes, while the auction in spot instance is carried
out in each period that includes multiple time units. Second, OGAWR mecha-
nism will provide service guarantee, that is, each job which should be processed
during multiple time units will not be terminated before it is completed. Third,
especially, we use different allocation methods of VMs for the flexible jobs and
inflexible jobs. Flexible jobs refer to those jobs that the users only care about
whether they could be completed before their deadline, and the process details
are ignored. For example, a finance firm has to process the daily stock exchange
data for guaranteeing the trading in next day. Obviously, the finance firm only
cares about whether the job can be finished before the next trading day, and
does not care about how the job is processed. Contrarily, inflexible jobs refer to
those jobs that must be processed continuously when they start to be processed.

The rest of paper is organized as follows. In section 2 we discuss related
work. After formalizing the problem model in Section 3, in section 4 we design
an online greedy allocation with reservation(OGAWR) mechanism, and analyze
the properties of OGAWR mechanism in section 5. The experiment evaluation
are showed in section 6. Finally, conclusions appear in section 7. Due to the lack
of space, we omit proofs of lemmas and theorems; these can be found in the
extended version [16].

2 Related Work

The resources allocation in cloud computing is an important topic because it is
closely related to the revenue of both cloud users and providers. Many literatures
have conducted the studies focusing on this topic, and there are two main lines
of research for this problem. One of these investigates the VMs allocation by
solving an optimization problem. These works focus on the optimization of object
functions, but generally without considering any strategic behaviours among
users (e.g., the VM allocation approach for spot markets in paper [9]). The other
is game theory based approach to analyze and design a reasonable mechanism.
For instance, a cloud resource allocation approach based on game theory [7]
is proposed, and assumes that the allocation would start after all users submit
their request. Combinatorial auctions are supposed to apply in VMs allocation in
some literatures [8] [10] [11], and all these work only consider resource allocations
in one time unit and restrict their discussions in a single offline auction period.
However, in cloud computing, the cloud users arrive and leave randomly, so the
statistic analysis and design based on game theory are not suitable for it.

236 X. Wu et al.

Online mechanism is an important expansion of mechanism theory in the
multi-agent and economics literature, generally applied in dynamic environment,
which is consistent with the environment characters in cloud computing. Accord-
ing to the research on online mechanism, there are two frameworks of research
in this field. One of these is model-based approach which aims for developing
online variants of Vickrey-Clarke-Groves (VCG) mechanisms [3] [4]. These works
rely on a model of future availability, as well as future supply (e.g., Parkes and
Singh [3] use an MDP-type framework for predicting future arrivals). The other
is model-free approach which requires fewer assumptions, and makes comput-
ing allocations more tractable than the first one (e.g., the online mechanism in
electric vehicle charging in [5]).

The online mechanisms have been used in cloud computing [12] [13] [14]. [14]
only introduces an online mechanism framework for cloud resources allocation
without detail allocation algorithm. The online mechanism in [12] is a resource
allocation approach for batch jobs, and the value functions for users are con-
tinuous. Zaman et al [13] design a truthful mechanism that allocates the VMs
to users by greedy allocation, and allows those allocated users continuously use
those VMs for the entire period requested.

Based on those works in [12] [13] [14], we also aim to design an online truthful
mechanism for VMs allocation. Further, we pay attention to the following points:

1. In our model, a user requests one VM for multiple time units to finish the job
during the arrival-departure interval. According to the demand in process
time, all jobs are classified into two classes: flexible jobs and inflexible jobs.

2. We choose different allocation methods for the two classes of jobs, and espe-
cially design a discontinuous resource allocation based on reservation-ratio
for the flexible jobs, by which the distribution of workload of users can be ad-
justed at their arrival-departure interval and the total workloads processed
in cloud will be improved.

3. We focus on all the users with single-valued preference. That is, each user
could get a non-zero constant value brought by the job only if it could be
finished completely.

3 Modeling and Notations

We consider a private cloud provider who provides only one type of VM instances,
and the total number of VM instances is denoted by C. Consider discrete time
periods T = 1, 2, ..., indexed by t and possible infinite.

An agent presents a user i who submits its job to the cloud randomly, which
can be characterized by the ’type’ θi = (ai, di, li, ei, Vi) ∈ Θi, where Θi is its
type space. Here, ai and di present the arrival and departure time of agent i,
and li is its total computation workload, i.e, the job size. Assume that each
agent requires at most one VM in one time unit. The workload li is the number
of time units for which agent i requires one VM. The last component of θi is Vi,
the value agent i obtains if its job is completed, and Vi ≥ 0.

Online Mechanism Design for VMs Allocation in Private Cloud 237

As described in section 1, the jobs are classified into flexible jobs and inflexible
jobs. In order to distinguish the job classes, a character parameter ei is used to
point out the agent is flexible (ei = 1) or inflexible (ei = 0).

We define πi = (πai

i , πai+1
i , ..., πdi

i) as the allocation for agent i. πt
i = 1 if

agent i is allocated one VM at time t ∈ [ai, di], otherwise π
t
i = 0. The allocation

result for agent i is denoted by Ai.

Ai(πi) =

{
1 if Σt∈[ai,di]π

t
i ≥ li and πt

i ≤ 1

0 otherwise
(1)

Each agent i is characterized by a valuation function vi defined as follows:

vi =

{
Vi if Ai = 1

0 otherwise
(2)

The challenge of the cloud provider is to make allocation decisions πt dynami-
cally while trying to maximize the sum of agents value. The problem is described
as follows:

maxΣvi

s.t πt
i ≤ 1

Σn
i=1π

t
i ≤ C, t ∈ T

(3)

4 The Online Greedy Allocation with Reservation

4.1 Description of Mechanism

In this section we design a model-free online mechanism for the above setting.
The number of idle VMs at time t is denoted by s(t). The definition of greedy

allocation is as follows.

Definition 1. (Greedy allocation) At each step t allocate the s(t) VMs to the
active agents with the highest valuations.

If all agents request one VM only for one time unit, greedy allocation with
appropriate payment could constitute a truthful mechanism [2]. However, in the
case of multiple time units demands, according to equation (2), whether agent
i could get the value Vi is decided by all of its allocation in period [ai, di]. That
is, the value brought by one VM at some time unit cannot be decided at first, so
greedy allocation for each time unit can not be performed. In order to maintain
incentive compatibility, we extend the greedy allocation policy by allowing the
system to reserve VMs for agents. By such allocation approach, the agent is not
only allocated one VM at current time t but also reserved one VM for multiple
time units in future period. We define unit valuation as the valuation of one VM
per unit time, and it is expressed as Vi/li to each agent i.

238 X. Wu et al.

Fig. 1. An example for multi-time unit demand(C = 1)

Definition 2. (Online greedy allocation with reservation(OGAWR)) At each
step t allocate the s(t) VMs to the active agents with the highest unit valua-
tions, at the same time, make the VM reservation for allocated agent i during
period [t+ 1, di] if li > 1.

Consider an example with 3 time units and 3 agents in Fig. 1, where θ1 =
(1, 3, 2, 1, 10), θ2 = (1, 3, 2, 1, 8), θ3 = (2, 3, 1, 1, 3) showing the agents arrival,
departure, job size, job class and valuation. Suppose furthermore that C = 1,
and we sort the agents by their unit valuation Vi/li. Because agent 1 has the
highest unit valuation at time 1, OGAWR method would allocate the VM to
agent 1, and reserve one VM for it. Since it is a flexible job (e1 = 1), there are
two choices for reserving: reserving at time 2 or at time 3. In Fig. 1, the VM in
time unit 2 is chosen to reserve for agent 1, so there is no idle VM to be allocated
at time 2. At time 3, although agent 2 has higher unit valuation than agent 3,
the VM is still allocated to agent 3, because agent 2 has no sufficient time to
finish the job at that time.

It is worth to note that OGAWR might not be performed in some cases. That
is, an agent with highest unit valuation cannot be allocated although there is
sufficient time from departure for process. In the above example, suppose that
the VM in time unit 3 is reserved for agent 1 at time 1. In that case, at time 2,
although agent 2 has higher unit valuation than agent 3 and there is sufficient
time to process, agent 2 still cannot be allocated. The reason for this result
is that the supply in future is less than that in current time. Therefore, the
OGAWR can be realized only if it makes ’non-increasing reserving’.

Definition 3. (non-increasing reserving) Non-increasing reserving refers to a
class of reserving schemes which always satisfies s(t) ≤ s(t+ 1) ≤ s(t+ 2) ≤ ...
after allocation at each time t.

In OGAWR mechanism, the agent participating the allocation at time t sat-
isfies three conditions:(1)It arrives before time t. (2)Its departure time is longer
than t + li − 1. (3)It is still unallocated. The OGAWR mechanism consists of
allocation rule and payment rule described as follows.

Online Mechanism Design for VMs Allocation in Private Cloud 239

– Allocation Rule. At each time t, it makes allocation as follows.
Stage 1 Greedy allocation: Allocate the s(t) VMs using greedy allocation,
breaking ties at random.
Stage 2 Non-increasing reservation: Make non-increasing reservation for
agents who are allocated in stage 1 if necessary. If one VM is reserved for
agent i at time k, πk

i = 1.
Let θt = (θ1, θ2, ..., θn) denote the set of agent types participating the alloca-
tion at time t, and πt denotes the decision policy at time t. The mechanism
makes a sequence of allocation decisions (π1, π2, ...), and πt includes all those
agents allocated at time t.

– Payment Rule. We design a critical payment which is equal to the critical
value for allocated agents, and the definition of critical value is as follows.
Given type θi = (ai, di, li, ei, Vi), the critical value for agent i is defined as

V c
(ai,di,li,ei)

(θ−i) =

⎧
⎪⎨

⎪⎩

min V ′i s.t. Ai(θ
′
i, θ−i) = 1,

for θ′i = (ai, di, V
′
i)

∞ no such V ′i exists

(4)

where θ−i = (θ1, θ2, ..., θi−1, θi+1, ...).
We define payment policy pi(θ) as

pi(θ) =

{
V c
(ai,di,li,ei)

(θ−i) if Ai = 1

0 otherwise
(5)

4.2 The Algorithm Design of OGAWR Mechanism

In this section, the algorithm based on the proposed rules for allocation and
payment is designed. First, we introduce two reserving methods for inflexible
agents and flexible agents respectively.

Continuous reserving: Continuous reserving is suitable for inflexible agents,
which is similar to the allocation in MOVMPA mechanism proposed in paper
[13]. If agent i wins the auction at time t, one VM will be reserved continuously
for it in next li − 1 units. That is, πk

i = 1, k = t+ 1, ..., t+ li − 1, if πt
i = 1.

Discontinuous reserving based on reservation-ratio(Discontinuous reserving):
This reserving method reserves one VM for agent i in next li−1 time units with
lowest reservation-ratio, and reserve the VM in earliest time unit if there are
multiple time units with same reservation-ratio.

Reservation ratio denoted by r(k) is the ratio of the number of reserved VMs
to total capacity C at future time k expressed as r(k) = s(k)/C. Obviously, r(k)
is changed with time.

For inflexible agents, continuous reserving and discontinuous reserving both
could be used. Since discontinuous reserving can adjust the distribution of users’
workload, so in our mechanism we choose discontinuous reserving for inflexible
agents. The steps of the allocation algorithm at time t are as follows:

Step 1. Sort all agents which participate the allocation at time t in non-
increasing order of Vi/li.

240 X. Wu et al.

Table 1. Allocation algorithm: Allocate

Input: θt, St, t
Output: St, πt, A

1: if s(t) = 0, goto end
2: sort all θt ⊆ Θ in non-increasing order of Vi/li
3: (πt, A) = greedyallocate(θt, St)
4: sort all i ∈ πt in non-decreasing order of di
5: for each i ∈ πt

6: if ei = 1
7: (πi, S

t) = DiscontinuousReserve(li − 1)
8: else
9: (πi, S

t) = ContinuousReserve(li − 1)
10: end if
11: end for
12: St+1 ← St \ {s(t)}
13: end

Step 2. Allocate s(t) idle VMs to s(t) agents with highest valuation, breaking
ties at random.

Step 3. Choose a suitable reserving method for each agent allocated at step
2. Continuous reserving is chosen if ei = 0, and discontinuous reserving is
chosen if ei = 1.

Define a status vector St = (s(t), s(t + 1), s(t + 2), ..s(t + m − 1)) as the
VM supplies in period [t, t+m− 1] before allocation at time t, where s(t+ k) is
denoted as the supply at future time (t+k) ∈ T , and m satisfies s(t+m−1) < C

and s(t +m) = C. For computing critical value, we define v
(m)
−i,t to be the mth

highest of unit valuations Vj/lj from all agents j in θt, j �= i. Then v
s(t)
−i,t , for

supply s(t), is the lowest value that is still allocated a unit, if agent i were not

present not only at current t but also before t. Henceforth, we refer to v
(s(t))
−i,t as

the marginal clearing value of the idle VM for agent i at time t.
OGAWR Mechanism runs in each time unit t, and the algorithm is described

as follows:

Step 1. According to the allocation rule of OGAWR, the allocation is performed
based on St, θt, which generates an allocation set πt and a new status set
St+1 , and updates allocation result A.

Step 2. For each agent i who got its first unit at step 1, the critical value for

agent i at time t is computed using equation vci,t = v
s(t)
−i,t. Then, we execute

a suppositional allocation in which i is not present, and get suppositional
results πt

−i and St+1
−i .

Step 3. For each i who got the allocation before time t and t ≤ di − li + 1,
according to the suppositional result St

−i which suppose that i had been not

present before t, we compute the critical value for agent i as vci,t = v
s−i(t)
−i,t .

We also execute a suppositional allocation in which i is not present based
on the suppositional status St

−i, and get suppositional results πt
−i and St+1

−i .

Online Mechanism Design for VMs Allocation in Private Cloud 241

Table 2. Mechanism algorithm: OGAWR

Input: t, θt = {θ1, θ2, ..., θn}, St

Output: St+1, πt, pi, A

1: πt = ø
2: if s(t) = 0, goto end
3: (St+1, πt, A)=Allocate(θt, St, t)
4: for each πi ∈ πt do

5: vci,t = v
s(t)
−i,t

6: (St+1
−i , πt

−i, A−i)=Allocate(θt−i, S
t, t)

7: end for
8: for each i /∈ πtand Ai = 1 and t ≤ di − li do

9: vci,t = v
s−i(t)

−i,t

10: (St+1
−i , πt

−i, A−i) = Allocate(θt−i, S
t−1
−i , t)

11: end for
12: for each i: t = di − li + 1
13: if Ai = 0, pi = 0
14: else pi = min

t∈[ai,di−li+1]
vci,t · li

15: end for
16: end

Step 4. For each i who satisfies t = di − li, the payment pi is computed. If
Ai = 0, the payment pi is zero, otherwise the payment can be computed as

pi = (min
t∈[ai,di−li+1]

vci,t) · li

Lemma 1. The payment in above algorithm is a critical payment. That is,
(min
t∈(ai,di−li+1)

vci,t) · li = V c
(ai,di,Vi,li,ei)

(θ−i) for each allocated agent i.

5 Analysis of OGAWR Mechanism

We assume no early-arrival no late-departure misreports with ai ≤ a′i ≤ d′i ≤ di,
because generally agent i don’t know its type until ai and the value of agent will
be zero if it is finished after di. We also assume no less job size misreports with
l′i ≥ li because the agent i will have no sufficient time to process if l′i < li.

Definition 4. (Monotonic with resource demand) An allocation policy is mono-
tonic with resource demand li if for any arrival-departure interval [ai, di], any
valuation Vi and any job size report l′i ≥ li , we have Ai(ai, di, Vi, l

′
i) = 1 ⇒

Ai(ai, di, Vi, li) = 1.

Definition 5. (Monotonic with arrival-departure interval) An allocation pol-
icy is monotonic with arrival-departure time if for any job size li, any valua-
tion Vi and any arrival-departure time report a′i ≥ ai and d′i ≤ di , we have
Ai(a

′
i, d
′
i, Vi, li) = 1⇒ Ai(ai, di, Vi, li) = 1.

242 X. Wu et al.

Lemma 2. The allocation policy in OGAWR mechanism is monotonic with re-
source demand and arrival-departure interval.

Next, we discuss about whether an agent would get more utility by misreport
ei. First, an inflexible agent would not misreport ei = 1 because discontinuous
allocation for this class job will cause zero value. Second, we find there is no dif-
ference in allocation and payment to flexible agent between reporting ei = 1 and
reporting ei = 0. For allocation, due to the greedy allocation and non-increasing
reserving, whether an agent can be allocated is only decided by the order of
its valuation and not related to ei. For payment, according to the critical value
equation(4), the critical value of agent i would not changes when ei changes, and
the payment of the agent is equal to the critical value which is also not related
to ei. We assume that each agent is rational, that is, the agent will choose to
report true type when misreport cannot improve its utility.

Theorem 1. The OGAWR mechanism is incentive compatible with no-early ar-
rival, no-late departure misreports and no less job size misreports.

We define the competitive ratio on social welfare as follows. An auction mech-
anism M is c−competitive with respect to the social welfare if for every bidding
sequence θ , EM (θ) ≥ Eopt(θ)/c. Accordingly, c is the competitive ratio of M.
Where, EM is the sum of agents value in mechanism M, and Eopt denotes the
sum of agents value by the optimal algorithm.

Assume that VM to all agents has a same maximal unit valuation vmax and
same minimal unit valuation vmin, i.e, vi ∈ [vmin, vmax]. Define N = vmax

vmin
. At

the same time, we assume the maximal job size is L and L ≥ 2.

Theorem 2. OGAWR mechanism has a competitive ratio on social welfare
C·N ·(L+1)

2 .

6 Evaluation and Simulation

As analysed above, the competitive ratio c of OGAWR mechanism might be
very large because it is decided by L and N . That is, it may lead to very low
social welfare at the worst case. In this section, we will present the simulation
results and compare the OGAWR mechanism with two allocation methods. one
is an offline optimal approach designed under the assumption that we know
all the agents valuation beforehand and completely ignore the allocation time
constraint in [ai, di]. Although it is not reasonable that OGAWR mechanism
is compared with the offline allocation without time constraint, we can under-
stand the actual level of proposed mechanism on social welfare and percentage
of served agents by comparing the curves. The other method compared is a good
online mechanism (MOVMPA) designed in paper [13]. The main difference be-
tween MOVMPA mechanism and OGAWR mechanism is that MOVMPA uses
continuous allocation for each agent.

Same as [13], the input data of the experiments are collected from the Parallel
Workload Archive [15], which collect many workload logs from large scale parallel

Online Mechanism Design for VMs Allocation in Private Cloud 243

systems in various places around the world. We select 10 thousands continuous
records from log RICC-2010-2. In the log, the minimal time unit recorded is sec-
ond. In our experiment, we choose 10 minutes as one time unit, and all records
selected are distributed randomly from time 0 to time 8000. Each record corre-
sponds to one task, and the information of a task includes arrival time , wait
time, runtime, number of allocated processors, etc. Each task is processed by at
most 8 thousands processors. According to the number of allocated processors k,
a task can be divided into k subtasks each of which must be processed serially in
one processor. That is, one subtask requests at most one VM in each time unit
which is consistent with the assumption in our model. Let each agent present one
subtask(also is one job). After the step of task decomposition, there are about
285 thousands agents in these records.

Next, we discuss how the type of agent θ = (ai, di, li, ei, Vi) can be got. First,
ai and li can be got from the log, where the real arrival time of the record is ai
and the runtime can be converted to the size li. As described above, if k agents
are generated from one same record, they will have same arrival time and job
size. Second, we produce the other information di and Vi. Assume that the dead-
line and the valuation are exponential distribution. Deadline di and valuation
Vi/li are computed as di = ai + li + li · exp(davg) and Vi/li = exp(vavg). Fi-
nally, the parameter ei is generated randomly. The table II shows the simulation
parameters.

Table 3. Simulation Parameters

Type Notaion Value Parameter

Arrival time ai form workload archive

departure time di ai + li + li · exp(davg) davg = 2

job size li from workload archive

valuation Vi Vi/li = exp(vavg) vavg = 50

job character (flexible) ei 1 or 0, generate randomly

Fig. 2 and 3 shows the distribution of all those records we selected. Fig. 2
shows the number of arrival subtasks at each time unit, while Fig. 3 is the size
distribution of all agents.

Before running of the mechanism, we initialize the supply, the total number of
VMs, which is closely related to the allocation results. we define an initial supply
C0 is equal to average requirement for each time unit, i.e., C0 = Σn

i=1li/|T |,
where |T | = 8000 is total time units we select.

Fig. 4 shows the social welfare, the sum of agents value with different C, and
C changes continuously from C = 0.5 · C0 to C = 1.5 · C0 . First, we note that
the trends for the two scenarios in OGAWR mechanism are different C when
supply is low and close to C = 0.5 ·C0, the OGAWR mechanism results only in
a small overall improvement in social welfare, However, when it grow to more
than C0, there is a very obvious improvement. Especially, when C = 1.5 · C0,
the social welfare in OGAWR mechanism is very close to it in the condition of
offline allocation, while it still keep a low level in MOVMPA mechanism.

244 X. Wu et al.

Fig. 2. Distribution of arrival time Fig. 3. Distribution of job size

Fig. 4. The number of competed jobs un-
der three mechanisms

Fig. 5. The sum of agents value under
three mechanisms

With respect to the number of completed jobs of individual agents, the results
are shown as Fig. 5. The percentage of completed jobs increases with the increase
of supply in all allocation approaches, and in OGAWR, it is obviously higher
than that in MOVMPA when they are in the same supply capacity.

7 Conclusion

In this paper, we propose an online VM allocation mechanism for private IaaS
cloud resources, whose goal is to improve the social welfare. We construct a
online resource allocation model in which jobs are divided into two classes: in-
flexible jobs and flexible jobs. Then, an online greedy allocation with reserva-
tion(OGAWR) mechanism under the dynamic cloud environment is designed
and proved truthfully. We also performed extensive experiments to observe the
results of the mechanism. The results show that, from the aspects of improving
social welfare and the number of completed jobs, OGAWR is better than the
mechanism which allocates the inflexible agents as well as flexible agents.

For future work we plan to consider several issues. First, in this paper we
assumed all agents need only one VM per time unit, but in the future we plan to
extend the allocation model to deal with multiple VMs demands per time unit.

Online Mechanism Design for VMs Allocation in Private Cloud 245

Second, it would be interesting to design model-based mechanism and compare
the performance with the model-free online mechanism proposed in this paper.
Finally, we also plan to study online mechanism design for public IaaS cloud in
future work, where the goal of mechanism is to maximal the revenue of cloud
provider.

Acknowledgments. The workload log from the RICC cluster was graciously
provided byMotoyoshi Kurokawa. ThisWork was supported by the National Nat-
ural Science Foundation ofChina (61170029,61100052,61373032, 91318301),Zhe-
jiang Provincial Natural Science Foundation of China under Grant No. Y1111000,
and Zhejiang Provincial Science and Technology Plan of China under Grant No.
2013C31097.

References

1. Amazon. Amazon EC2 spot instances,
http://aws.amazon.com/ec2/spot-instances/

2. Nisan, N. (ed.): Algorithmic game theory. Cambridge University Press (2007)
3. Parkes, D.C., Singh, S.: An MDP-Based approach to Online Mechanism Design.

In: Proc. of NIPS 2003 (2003)
4. Gershkov, A., Moldovanu, B.: Efficient sequential assignment with incomplete in-

formation. Games and Economic Behavior 68(1), 144–154 (2010)
5. Gerding, E.H., Robu, V., Stein, S., et al.: Online mechanism design for electric ve-

hicle charging. In: Proceeding of the 10th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2011), pp. 811–818 (2011)

6. Nahir, A., Orda, A., Raz, D.: Workload Factoring with the Cloud: A Game-
Theoretic Perspective. In: Proceedings of the 31st Annual Joint Conference of the
IEEE Computer and Communications Societies. Networking (INFOCOM 2012),
pp. 2566–2570. IEEE Society (2012)

7. Wei, G., Vasilakos, A.V., Zheng, Y., et al.: A game-theoretic method of fair resource
allocation for cloud computing services. The Journal of Supercomputing 54(2),
252–269 (2010)

8. Zaman, S., Grosu Combinatorial, D.: auction-based allocation of virtual machine
instances in clouds. Journal of Parallel and Distributed Computing 73(4), 495–508
(2013)

9. Zhang, Q., Gurses, E., Boutaba, R.: Dynamic resource allocation for spot markets
in cloud computing environments. In: 2011 Fourth IEEE International Conference
on Utility and Cloud Computing (UCC), pp. 178–185. IEEE (2011)

10. Danak, A., Mannor, S.: Resource allocation with supply adjustment in distributed
computing systems. In: Proceeding of the 30th International Conference on Dis-
tributed Computing Systems (ICDCS), pp. 498–506. IEEE (2010)

11. Wang, Q., Ren, K., Meng, X.: When cloud meets eBay: Towards effective pricing
for cloud computing. In: Proceedings of the 31st Annual Joint Conference of the
IEEE Computer and Communications Societies. Networking (INFOCOM 2012),
pp. 936–944. IEEE Society (2012)

http://aws.amazon.com/ec2/spot-instances/

246 X. Wu et al.

12. Jain, N., Menache, I., Naor, J(S.), Yaniv, J.: A truthful mechanism for value-based
scheduling in cloud computing. In: Persiano, G., et al. (eds.) SAGT 2011. LNCS,
vol. 6982, pp. 178–189. Springer, Heidelberg (2011)

13. Zaman, S., Grosu, D.: An Online Mechanism for Dynamic VM Provisioning and
Allocation in Clouds. In: Proceeding of the 5th International Conference on Cloud
Computing (CLOUD), pp. 253–260. IEEE (2012)

14. Zhang, H., Li, B., Jiang, H., et al.: A framework for truthful online auctions in
cloud computing with heterogeneous user demands. In: Proceedings of the 32st
Annual Joint Conference of the IEEE Computer and Communications Societies.
Networking (INFOCOM 2012), pp. 1510–1518. IEEE Society (2012)

15. Feitelson, D.G.: Parallel Workloads Archives: Logs,
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

16. Wu, X., Gu, Y., Li, G., et al.: Online Mechanism Design for VMs allocation in Pri-
vate Cloud, http://basics.sjtu.edu.cn/~liguoqiang/paper/Onlinefull.pdf

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://basics.sjtu.edu.cn/~liguoqiang/paper/Onlinefull.pdf

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 247–256, 2014.
© IFIP International Federation for Information Processing 2014

Threshold Based Auto Scaling of Virtual Machines
in Cloud Environment

M.K. Mohan Murthy, H.A. Sanjay, and Jumnal Anand

Nitte Meenakshi Institute of Technology, Bangalore
{maakem,sanju.smg,anandsbj1989}@gmail.com

Abstract. Cost effectiveness is one of the reasons behind the popularity of
Cloud. By effective resource utilization cost can be further reduced and
resource wastage can be minimized. The application requirement may vary over
time depending on many factors (for instance load on the application); user may
run different types of application (a simple MS word to complex HPC
application) in a VM. In such cases if the VM instance capacity is fixed there is
a high possibility of mismatch between the VM capacity and application
resource requirement. If the VM capacity is more than the application resource
requirement then resource will be wasted; if the VM capacity is less than the
application resource requirement then the application performance will degrade.
To address these issues we are proposing threshold based auto scaling of virtual
machines in which VMs will be dynamically scaled based on the application
resource utilization (CPU and Memory). Using our approach effective resource
utilization can be achieved.

Keywords: Cloud Computing, Auto Scaling, Virtual Machines.

1 Introduction

In cloud paradigm software, infrastructure, and platform are given as services. In this
work we are considering infrastructure (Virtual Machine). IaaS providers provide
Virtual Machine (VM) to end user. User will use VM instance to host/run his
applications and he will pay some amount as per the SLA (Service Level Agreement).
Many organizations moving towards private cloud; effective resource utilization, cost
reduction, and easy maintenance are some of the reasons behind this. Employees in
the organization will get the VM instances. They have to login to these instances to
use them. Whether it is commercial cloud or private cloud following two scenarios
are possible

1.1 Scenario 1: User Hosts Different Application on the VM

User may use VM to host different applications from a simple MS word to complex
accounting software. If the VM instance is static (normally this will be the case) user
has to select VM instance in such a way to match the application which has the
maximum resource requirement. In this case for instance if the user uses the VM to

248 M.K.M. Murthy, H.A. Sanjay, and J. Anand

run his application which has the maximum requirement only for 2 hours in a day
then in remaining 22 hours resource will be wasted. If the application resource
requirement is more than the VM then it leads to application performance
degradation.

1.2 Scenario 2: Application Requirement Vary over Time

Consider a database application which needs more resource when the transactions are
happening. If the transactions are not there it doesn’t need high resources. In case of
the static VM instance this will lead to resource wastage.

Migration of application from one VM to another address’ above mentioned issues
but it is having many disadvantages. It is time consuming, tedious, not cost effective,
and error prone. If VM is dynamically scaled according to the application requirement
resource wastage can be minimized.

To address the above mentioned issues we have developed and tested threshold
based auto scaling of VM mechanism, in which the VM is auto configured according
to the application requirement. In threshold based auto scaling the resource utilization
of the VM is monitored. If they exceed the predefined threshold values then VM
capacity will be increased or decreased dynamically without shutting them down
according to the need, which minimizes resource wastage.

1.3 Up-Scaling

In this work we have considered RAM and CPU utilization of the VM. As the
resource requirement of the application increases, the RAM and CPU utilization of
the VM increases. At some point the application resource requirement will become
more when compare to VMs capacity as a result performance of the application
degrades and ultimately it will hang. To avoid this problem when the CPU and
Memory utilization of the VM crosses the predefined maximum threshold value we
will increase the RAM and CPU capacity of the VM.

1.4 Down-Scaling

As the resource requirement of the application decreases, the RAM and CPU
utilization of the VM decreases. This will lead to resource wastage since the VM
capacity is not fully utilized. To avoid resource wastage when the CPU and Memory
utilization of the VM crosses the predefined minimum threshold value we will
decrease the RAM and CPU capacity of the VM. Monitoring and scaling of RAM and
CPU of the VM are two independent tasks.

Rest of the paper is organized as follows section 2 gives brief description about the
related work; section 3 explains the threshold based auto scaling of VM; section 4
describes the algorithms used to upscale/downscale the VM; section 5 talks about the
experimental setup and results, followed by conclusion.

 Threshold Based Auto Scaling of Virtual Machines in Cloud Environment 249

2 Related Work

There are couple of efforts related to dynamic resource provisioning in cloud
environment. In [1] auto-scaling of the VM instances with respect to the load, where
load is defined as number of jobs submitted and the deadline and budget to complete
the submitted jobs are considered. In the proposed system the VM must be rebooted
after scaling it. So there will be time delay and performance degradation. In some
scenarios rebooting of VM is not acceptable.

In [2] a novel architecture is presented for the dynamic scaling of web applications
based on thresholds in a virtualized cloud computing environment. This work
illustrates the scaling approach with a front-end load balancer for routing and
balancing user requests. Web applications are deployed on web servers installed in
virtual machine instances. In [3] a cloud computing architecture is constructed with a
front-end load balancer, a virtual cluster monitor system and an auto-provisioning
system. The front-end load balancer is utilized to route and balance user requests to
cloud services deployed in a virtual cluster. The virtual cluster monitor system is used
to collect the statistics of the usage of physical resources in each virtual machine in
the virtual cluster. The auto-provisioning system is used to dynamically provision the
virtual machines based on the number of the active sessions or the use of the
resources in the virtual cluster.

In the works [2] [3] front end load balancer is used for load balancing on virtual
machines. In these works a new instance of VM is added to the VM cluster if the
resource utilization crosses the upper threshold. If the utilization is below the lower
threshold then VM instances are removed from the cluster. In these works scaling of
the VM based on the hosted application requirement is not addressed. In [4] a model-
driven engineering approach is presented to optimize the configuration, energy
consumption, and operating cost of cloud auto-scaling infrastructure to create greener
computing. This work concentrates on energy consumption and budget constraints. In
this work pre-configured static VM instances are used. This will lead to resource
wastage as well as application performance degradation.

In all of these works cloud is scaled by adding new VMs. They are not considering
auto scaling of a single VM which is required in the scenario where user will be using
a VM to run his applications in private or public cloud. Our work is about to auto
scale a VM based on the threshold values.

3 Threshold Based Auto Scaling of VM

Application requirement may change over time and also user may host different
applications (which have different resource requirement) on the VM. In these cases
fixed VM capacity may lead to resource wastage or application performance
degradation. This can be addressed by dynamically scaling the VM according to the
hosted application requirement. In threshold based auto scaling the resource
utilization of the VM is monitored. If they exceed the predefined threshold values
then VM capacity will be increased or decreased dynamically according to the need
without shutting down the VMs, which minimizes resource wastage. High level
system overview is shown in figure 1.

250 M.K.M. Murthy, H.A. Sanjay, and J. Anand

Fig. 1. Auto Scaling system overview

Auto-scaling system has the following components

3.1 Monitor

The monitor component monitors the VMs; it reads the CPU and Memory utilization
and passes this data to Decision Maker component. It uses Xen APIs to get the CPU
and Memory utilization of the VMs. It sends request for the CPU and Memory
utilization of VMs to the XCP using Xen APIs. By default it monitors all the active
VMs or we can make it to monitor only specific VMs by configuring the
corresponding values in config.properties. The time interval to send the request to
XCP to get the VMs statistics can be configured in config.properties.

When the Monitor module starts it will read all the configuration properties from
the config.properties and monitors the VMs as per the values set to different property
parameters in config.properties file.

3.2 Decision Maker

Decision maker module gets the VM statistics from Monitor module and it also read
the threshold values from the config.properties file, compares against the VM
statistics and decides whether to up/down scale the VM and conveys this decision to
VM configuration module. The information passed to the VM configuration module
includes the VM ID which should be scaled, whether scaling should happen to RAM
or CPU and how much scaling should happen. All the threshold values and scaling
values (helps in to take the decision of how much scaling should happen) are
configurable which are stored in the config.properties file.

There is a possibility that VM’s CPU and RAM utilization may exceed the
threshold value for few seconds and again come back to the normal values. If the
monitor module gets these values it will trigger up/downscaling of the RAM/CPU of
the VM. In the next iteration monitor module gets the normal values again this
triggers down/up-scaling of the RAM/CPU of the VM which results in unnecessary
up/down scaling of VMs. To avoid this problem we have introduced configurable
properties called cpuiteration (min and max) and memoryiteration (min and max).

Monitor

C

VM VM VM

Decision

Maker

config.properties

VM

Configuration

 Threshold Based Auto Scaling of Virtual Machines in Cloud Environment 251

Any positive integer value from 0 to n can be set to the cpuiteration and
memoryiteration. Both are independent of each other, min memoryiteration and min
cpuiteration are used in case of down-scaling, max memoryiteration and max
cpuiteration are used in case of up-scaling. The Decision Maker initiates
up/downscaling only if the RAM and CPU utilization of the VM exceeds the
threshold values in the successive number of iterations specified in the cpuiteration
(min and max) and memoryiteration (min and max) .

4 Scaling Algorithms

We have written two separate algorithms for memory scaling and CPU scaling.
The working principle of both the algorithms is same.

In case of the memory scaling algorithm each VM’s memory utilization (Mx) is
read and compared with max memory threshold value (Mmx). If Mx is greater than or
equal to Mmx then the max memory utilization counter (MTx) is increased and min
memory utilization counter (MTm) is reset.

4.1 Memory Scaling

Step 1: for each VMx Read Memory utilization Mx
Step 2: if the Mx>=Mmx
 - Increment the MTx for the VMx
 - Reset MTm for the VMx
else if Mx<=Mmn
 - Increment the MTm for the VMx
 - Reset MTx for the VMx

Step 3: if MTx>TTMt and if free memory available
 - initiate the VM up-scaling for memory
 - go to step 5
else if MTm >TTMt
 - initiate the VM down-scaling for memory
 - go to step 5
Step 4: Go to Step 1
Step 5: Reset the MTx and MTm
Step 6: Go to Step 1

4.2 CPU Scaling

 Step 1: for each VMx Read CPU utilization Cx
Step 2: if the Cx>=Cmx
 - Increment the CTx for the VMx
 - Reset CTm for the VMx
 else if Cx<=Cmn

252 M.K.M. Murthy, H.A. Sanjay, and J. Anand

 - Increment the CTm for the VMx
 - Reset CTx for the VMx
Step 3: if CTx>TTCt and if computing resources available
 - initiate the VM up-scaling for CPU
 - go to step 5
 else if CTm >TTCt
 - initiate the VM down-scaling for CPU
 - go to step 5
Step 4: Go to Step 1
Step 5: Reset the CTx and CTm
Step 6: Go to Step 1

VMx - Virtual Machine identifier
Mmx - Memory maximum threshold defined
Mmn - Memory minimum threshold defined
Cmx - CPU maximum threshold defined
Cmn - CPU minimum threshold defined
T – Time interval defined to read the Memory, CPU utilization of VMs
TTMt - Time threshold counter defined for Memory.
TTCt - Time threshold counter defined for CPU.
CTx - Max CPU iteration count.
MTx - Max memory iteration count.
CTm - Min CPU iteration count.
MTm - Min memory iteration count.
Cx - CPU utilization of VMx
Mx - Memory utilization of VMx

5 Experimental Setup and Results

A Cloud Environment is set up using Xen Cloud Platform (XCP) [5]. XCP includes
Xen Hypervisor, Xen API tool-stack, vSwitch etc. XCP is an open source enterprise-
ready server virtualization and cloud computing platform. Many of the existing IaaS
providers are using the customized XEN to create the virtualization infrastructure.
XCP delivers the Xen hypervisor with support for a range of guest operating systems
including Windows and Linux network and storage support, management tools in a
single, tested installable image, which is also called XCP appliance. It also supports
the dynamic scaling of virtual machine. XCP APIs are used to get the memory and
CPU utilization statistics of the VMs and to up-scale and down-scale the VMs.

5.1 Memory Scaling

XCP supports two types of memories: static and dynamic. Each will have minimum
and maximum range. The static memory maximum defines the maximum amount of
physical memory that the guest operating system can address from the time the guest

 Threshold Based Auto Scaling of Virtual Machines in Cloud Environment 253

boots up until the time the guest shuts down again. It is not possible to change static
memory when the VM is running. In case of the dynamic memory it is possible to
increase/decrease the range when the VM is running. XCP provides a feature called
dynamic memory controller. Using the following API’s provided by the XCP we
increase/decrease the dynamic memory within the valid range whenever required.

xe vm-param-set uuid=<uuid> memory-dynamic-{min, max};

uuid is the identifier which uniquely identifies a VM.

5.2 CPU Scaling

CPU scaling can be done by either modifying the CPU cap or CPU weight. The CPU
cap optionally fixes the maximum amount of CPU a domain will be able to consume.
The cap is expressed in percentage of one physical CPU: 100 is 1 physical CPU, 50 is
half a CPU, 400 is 4 CPUs, etc... The default, 0, means there is no upper cap [5]. CPU
weight of a VM decides how much CPU is allocated to that VM. A domain with a
weight of 512 will get twice as much CPU as a domain with a weight of 256 on a
contended host. Legal weights range from 1 to 65535 and the default is 256 [5]. In our
work we have used the CPU cap to scale the CPU allocated to VM. The following
API provided by the XCP is used.

xe vm-param-set uuid<uuid> VCPUs-params:cap=<value>

The Cloud Server is setup on a 4 Core Machine with Intel Xeon W3250 processor

with 2.67 GHz, 12 GB of DDR3 RAM, 1 TB Hard disk with 7200 RPM. The desktop
machine which is used to monitor the VMs for memory and CPU utilization of the
application has the Intel Core2 Duo processor with 2.66 GHz clock speed, 1 GB of
RAM, 500 GB hard disk, connected over an Ethernet LAN. CentOS 5.7 Operating
System is used.

To generate load on VMs we have used both computing intensive programs and
memory intensive programs. Once the programs are started the CPU and memory
utilization of the VMs will increase. We have set the scaling factor for memory as
1.25 and for CPU it is 2. The utilization count is set to 3 minutes i.e. if the resource
usage exceeds the upper threshold value for 3 minutes continuously, then the
corresponding VMs will be allocated more resources as specified in the scaling factor
(up-scaling). If the resource usage is below the lower threshold value for 3 minutes
continuously, then the resource will be de-allocated from the VM as per the scaling
factor (down-scaling).

We have setup the threshold values as follows
Upper threshold – 80%, Lower threshold – 25%

Figure 2 and 3 shows memory up-scaling and downscaling respectively. Figure 4
and 5 shows CPU up-scaling and downscaling respectively. Since we have set the
utilization count to 3 minutes, we can observe the scaling at 4th minute in all the cases.

254 M.K.M. Murthy, H.A. Sanjay, and J. Anand

Fig. 2. Memory up-scaling

Fig. 3. Memory down-scaling

 Threshold Based Auto Scaling of Virtual Machines in Cloud Environment 255

Fig. 4. CPU up-scaling

Fig. 5. CPU down-scaling

Following is our observations

 Downscaling minimizes the resource wastage.
 Up-scaling make sure that the application performance is not compromised.
 Choosing the right threshold values is very important for the success of our

approach.

A lower threshold value result in fluctuation of the VM capacity and a higher
threshold value makes our algorithms less responsive to the change in resource
utilization of the VM.

256 M.K.M. Murthy, H.A. Sanjay, and J. Anand

6 Conclusion

By adopting effective resource utilization techniques resource wastage can be
minimized. Our threshold based auto-scaling is one such technique in which VM is
dynamically scaled as per the application resource requirement, thereby minimizing
the resource.

Selecting proper threshold values is very important factor in the success of our
approach. A lower threshold value leads to frequent change in VM configuration and
a higher value reduces the responsiveness of VM to adapt to the new resource
requirement. We can use several techniques to find out optimum threshold values
such as history based, mathematical model etc. In future we are planning to build a
feedback based system to dynamically scale the VM according to the application
requirement. At present our dynamic scaling system is threshold based where
threshold values are static and predefined. In feedback based system we will monitor
the application’s resource utilization and it will be used as feedback to define the
threshold values.

References

1. Mao, M., Li, J., Humphrey, M.: In: Schwarz, T.S.J., Miller, E.L.: Cloud Auto-scaling with
Deadline and Budget Constraints. Department of Computer Science University of Virginia
Charlottesville, VA, USA 22904 {ming, jl3yh, humphrey}@cs.virginia.edu (2011)

2. Chieu, T.C., Mohindra, A., Karve, A.A., Segal, A.: Dynamic Scaling of Web Applications
in a Virtualized Cloud Computing Environment. In: 2009 IEEE International Conference on
e-Business Engineering (2009)

3. Hung, C.-L., Hu, Y.-C., Li, K.-C.: Auto-Scaling Model for Cloud Computing System. Dept
of Computer Science & Information Engineering, Providence University {clhung, ychu,
kuancli}@pu.edu.tw

4. Doughertya, B., Whiteb, J., Schmidta, D.C.: Model-driven Auto-scaling of Green Cloud
Computing. Institute for Software Integrated Systems, Vanderbilt University, Campus Box
1829 Station B, Nashville, TN 37235, Email:{briand,schmidt}@dre.vanderbilt.edu bECE,
302 Whitemore Hall, Virgnia Tech, Blacksburg, VA 24060, Email:julesw@vt.edu

5. http://wiki.xen.org/XCP_Design_and_Architecture

A Novel Resource Provisioning Model

for DHT-Based Cloud Storage Systems

Jingya Zhou1,2 and Wen He2

1 School of Computer Science and Technology, Soochow University,
215006 Suzhou, P.R. China

jyz@seu.edu.cn
2 School of Computer Science and Engineering, Southeast University,

211189 Nanjing, P.R. China
wenhe@seu.edu.cn

Abstract. Cloud storage providers build a distributed storage system
by utilizing cloud resources located in data centers. The interactions
among servers in a DHT (Distributed Hash Table)-based cloud storage
system depend on the routing process, and its execution logic is more
complicated. Hence, how to allocate resources to not only guarantee ser-
vice performance (e.g., data availability, response delay), but also help
service providers to reduce cost became a challenge. To address this chal-
lenge, this paper presents a novel resource provisioning model for cloud
storage systems. The model utilizes queuing network for analysis of both
service performance level and cost calculation. Then the problem is de-
fined as a cost optimization with performance constrains, and a novel
algorithm is proposed. Furthermore, we implemented a DHT-based stor-
age system on top of an infrastructure platform built with OpenStack.
Based on real-world traces collected from our system, we show that our
model could effectively guarantee the target data availability and re-
sponse delay with lower cost.

1 Introduction

Cloud storage utilizes cloud technologies to build storage systems based on IT
resources located in datacenters, and provides customers with data storage, data
sharing, data access and management, and so on. Recently cloud storage services
have attracted more and more attention from both academia and industry [1][2].
One of the most attractive features of cloud storage is the ability to provide
customers with convenient data access services without worrying about data loss.
When customers use services they are mainly concern about data availability
and response delay. The former represents the probability that customers can
successfully access the target data, and the latter refers to the time required
for the system to respond to requests. Both of them directly affect the service
level that customers experienced, and become the preferred performance metrics
discussed in this paper.

High amount of concurrent access requests is another feature of cloud stor-
age, which makes storage providers choose to build distributed storage systems

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 257–268, 2014.
c© IFIP International Federation for Information Processing 2014

258 J. Zhou and W. He

based on P2P structure (e.g., Dynamo [1], Cassandra [2]). It is a type of shared
nothing architecture (SNA) [3], in which each server has its own disk for storage.
DHT mechanism is responsible for both storing data to all servers and requests
routing. It can provide an ”always-on” experience as the continuous growth of
system scale. Due to the distributed nature of systems, customers’ requests need
to be matched and forwarded among many servers after they arrive at systems.
There are many interactions among servers during requests being processed.
Different from multi-tier web applications, servers interact sequentially layer by
layer according to the hierarchy, while the interactions occurred in cloud storage
systems depend on the routing process and are more complicated. Hence how
to model the relationship between service performance and resource provision-
ing becomes a challenge. In addition, cloud storage systems are based on the
infrastructure services offered by IaaS providers, for example, Dropbox chooses
IT resources that come from Amazon as its servers to store data and deal with
requests [4]. Storage providers only pay for resources that are needed according
to the current amount of access requests, which will reduce cost.

We explore the problem from the cloud storage provider’s point of view. The
overall cost paid by a storage provider mainly includes server cost, storage cost
and traffic cost. As mentioned above, this paper mainly concerns access perfor-
mance, so we make assumptions that all data have been stored in the system, and
then the storage cost has been fixed. Most traffic is generated by both retrieving
data from datacenter and geo-replication across multi-datacenter. Traffic cost
caused by retrieving data can be reduced by data compression techniques, while
traffic cost caused by geo-replication depends on the specific replication scheme.
Both of them are outside the scope of this paper. Therefore, the cost discussed
here mainly refers to server cost, and the final objective of resource provisioning
is to generate the server level resource demands to minimize cost while satisfying
performance requirements. In this paper we propose a novel model to achieve
server level resource provisioning with optimal cost-performance trade-off. Our
proposed model strives to rent just enough resources for systems to minimize
resource waste, while avoiding performance degradation.

2 Related Work

Jing et al. [5] proposes a novel resource auto-scaling scheme that try to find
the optimal number of VMs by modeling system as a M/M/m queue so as to
achieve cost-latency trade off. However, It assume a simple scenario that VMs run
independently, and the interactions among VMs are not considered completely.
Ferretti et al. [6] designs a middleware architecture for resource management
that aims to satisfying quality of service (QoS) requirements as well as optimizing
resource utilization. It only provides a common framework for analysis, and does
not optimize for addressing a specific execution logic.

For multi-tier applications, Jing et al. [7] focuses on how to minimize cost while
satisfying response delay constraint. It employs a flexible hybrid queuing model
that consists of one M/M/c queue and multiple M/M/1 queues to determine the

A Novel Resource Provisioning Model for DHT-Based Cloud Storage 259

number of VMs at each tier. Different from layer-by-layer research ideas, Lama et
al. [8] suggests employing fuzzy theory to guide server provisioning and designs
a model-independent fuzzy controller, so as to minimize VMs while guarantee
end-to-end response delay. The works in [7][8] are based on the assumption that
VMs are identical, but usually IaaS providers provide various types of VMs.
Furthermore, the assumption of single VM type results in coarse-grained resource
provisioning and limited cost optimization.

Zhu et al. [9] creates a resource provisioning model by employing M/G/1 queu-
ing system, and develop meta-heuristic solutions based on the mixed tabu-search
optimization algorithm to solve the provisioning problem. It only take response
delay into consideration, and focus on the maximization of IaaS provider’s profit
which is different from the goal of this paper. By considering budget constraint as
well as response delay, Zhu et al. [10] presents a feedback control based dynamic
resource provisioning algorithm for maximizing application QoS.

For cloud storage services, customers’ requests usually should be matched
and forwarded among many servers after they arrive at systems. The interac-
tions among servers depend on the routing process, and do not be executed in
accordance with the fixed order. Hence the interactions occurred in cloud storage
systems are complicated and lack of an effective resource provisioning model for
characterization. Zhang et al. [11] presents a resource management algorithm for
cloud storage systems. The proposed algorithm aims to achieve load balancing by
using two types of operation, i.e., merge operation and split operation. However,
such an algorithm does not consider server interactions during the execution of
services, and only consider load balancing as performance metrics. This paper
explores the resource provisioning model based on the execution logic of cloud
storage services. We consider two performance metrics in the model, i.e., data
availability and response delay, and strive to optimize cost as well as guarantee
performance.

3 Resource Provisioning Model

3.1 System Model

Cloud storage systems run on the infrastructure of datacenter, and the system
overview is described by Figure 1. Cloud storage providers rent servers from IaaS
providers and build the system by organizing servers into a distributed network,
so that the system can store massive data in a distributed manner. When cus-
tomers’ requests arrive at the system, they are dispatched to servers and will
be processed according to DHT mechanism. It is assumed that the data have
been stored in the system, and then the primary performance metrics concerned
by customers should be data availability, denoted by Psuc which represents the
probability that customers can successfully access the target data, and response
delay, denoted by R which represents the time required for the system to re-
spond to requests. This paper strives to research on resource provisioning from
the cloud storage provider’s point of view. Our problem is how to generate a re-
source provisioning demand according to the current customers’ requests, so that

260 J. Zhou and W. He

… …

…

……

Fig. 1. Cloud storage system overview

it can meet performance metrics while optimize economic metrics. The resource
provisioning demand consists of three parameters, i.e., the number of servers,
the processing capacity of each server, and cost.

3.2 Resource Provisioning Problem

To tackle the above problem, we need to establish a resource provisioning model.
As we know, cloud storage system is distributed, when it receives requests it will
dispatch them to servers randomly. The server matches the received requests
with the data stored upon it. If match success, server will return results directly,
otherwise server will forward requests to the next one according to DHT rules
till finding the target data. Servers interact with each other through forwarding
requests. For better describing this kind of interactions, we propose a resource
provisioning model based on queuing network. As shown in Figure 2, the system
consists of N servers, and each one is modeled as an M/G/1/k queue with
independent general execution time distribution. The request arrivals are poisson
with rate λ1. Servers are classified and charged by processing capacity, e.g.,
the processing capacity of server i is represented by μi (μmin ≤ μi ≤ μmax),
where μmax, μmin are the upper bound and lower bound respectively. The cost
of server is represented by the function of processing capacity f(μi). Due to the
limit of processing capacity, server cannot simultaneously receive and process an
unlimited number of requests. As requests increase, the length of queue becomes
larger, which results in a higher response delay. To avoid high response delay,
we set up a size limit k for each queue. When the length of queue reaches k,
the workload of server will be saturated, and then the new arrived requests will
be denied. Once a request is denied, the customer’s access will fail, and as a
consequence the data availability will decrease. The formal definition of resource
provisioning problem is described as follows:

Given that the thresholds of performance metrics (i.e., data availability and
response delay) are P ∗suc and R∗, and the threshold of server rejection rate is

A Novel Resource Provisioning Model for DHT-Based Cloud Storage 261

M/G/1/k

. . .

. . .
Fig. 2. Queuing network model for resource provisioning

Fig. 3. An example of request forwarding

P ∗rej . The server cost is f(μi) that is a non-decreasing function of μi, and the
request arrival rate is λ1. We need to generate the optimal resource provisioning
demand (N , μ, Cost(μ)) that meets performance metrics while optimize server
cost. In the demand, N represents the number of servers, μ represents the vector
of server’s processing capacities, and Cost(μ) is the sum of server cost. i.e.,

Min Cost(μ) =
N∑

i=1

f(μi)

s.t. (1) Psuc ≥ P ∗suc
(2) R ≤ R∗

(3) Prej ≤ P ∗rej
(4) μmin ≤ μi ≤ μmax

(1)

In cloud storage systems, customers’ requests can be satisfied within O(logN)
hops forwarding according to DHT rules, so that the mean match rate at each
hop is at least 1/(logN + 1). Assume that the mean rejection rate of server is
Prej , then

Psuc =

logN∑

j=0

A(j)B(j)
j + 1

logN + 1
(2)

where A(j) = (1− Prej)
j+1 represents the probability that the request arrives

at the j + 1th server after it finish j hops forwarding without being denied,

while B(j) =
j∏

m=0
(1 − m

logN+1) represents the probability that the request has

not been matched at previous j servers. The probability of being matched suc-
cessfully at the j + 1th server is j+1

logN+1 . Assume that the request stops at the

262 J. Zhou and W. He

j + 1th server, and then there exists three cases, as shown in Figure 3: (i) The
request is not matched at the j + 1th server. Then the request is forwarded to
the j + 2th server, and is denied by the server. The probability of such case
should be B(j + 1)Prej . (ii) The request is matched successfully at the j + 1th
server. The probability of such case should be B(j) j+1

logN+1 . (iii) The request has
arrived at the last hop, i.e., j = logN . The probability of such case should be
A(logN)B(logN). Combining the above cases, we conclude that the mean hop
counts of request can be represented by

H =
logN−1∑

j=0

(
A(j) · B(j)((1 − j+1

logN+1)Prej +
j+1

logN+1)j
)

+A(logN)B(logN) · logN
(3)

We can deduce the mean number of forwarded messages in the same way:

M =
logN−1∑

j=0

(
A(j) ·B(j)

(
(1− j+1

logN+1)Prej · (j+1) + j+1
logN+1 · j

))

+ A(logN)B(logN) · logN
(4)

As described by Figure 2, the arrival rate of servers consists of both the
requests λ1 issued from customers and the forwarded requests λ2, and λ2 =
λ1M . So the mean arrival rate can be calculated by λ1/N . It is noted that the
probability of receiving requests depends on the access frequency of data stored
on server. Qi(0 < Qi < 1) is used to represent the access frequency of server i,
and then the arrival rate of forwarded requests at server i should be λ2,i = Qiλ2.
For server i, the arrival rate can be represented by

λ(i) = λ1,i + λ2,i (5)

Response delay consists of two parts, i.e., the mean time required to forward
the request, denoted by T , and the mean sojourn time at a server, denoted by
W . Thus the mean response delay should be

R = T ·H +W · (H + 1) (6)

We should deduce the sojourn time by analyzing M/G/1/k queuing system.
This paper chooses to use two-moment approximation approach [13] that is based
on diffusion theory [14]. The key idea of approach is concluded that the discrete
queuing process is approximated to a continuous diffusion process. The rejection
rate of server i equals the probability of having k requests in the queue, i.e.,

Pk,i =
ρ
(Φi+2k)/(2+Φi)
i (ρi−1)
ρ
2(Φi+k+1)/(2+Φi)
i −1

where Φi =

√

ρie−s
2
i s

2

i −
√

ρie−s
2
i

(7)

ρi = λ(i)/μi represents the service intensity of server i, and si represents the co-
efficient of variation of the service process. The mean rejection rate is calculated
by

A Novel Resource Provisioning Model for DHT-Based Cloud Storage 263

Prej =
1

N

N∑

i=1

Pk,i (8)

Because server may deny the incoming requests, the effective arrival rate at
server i should be less than λ(i), and can be represented by λe(i) = λ(i)(1−Pk,i).
Thus the probability of empty workload at server i is given by

P0,i = 1− λe(i)

μi
=

(ρi − 1)

ρ
2(Φi+k+1)/(2+Φi)
i − 1

(9)

The probability that there are j requests waiting in the queue of server i is
ρjiP0,i, and then the mean number of requests waiting in the queue of server i
should be

Li =
k−1∑

j=0

jρj
i
P0,i + kPk,i (10)

Based on Little’s Formula [12], the sojourn time at server i is represented by
Wi = Li/λe(i). Therefore, the mean sojourn time is given by

W =
1

N

N∑

i=1

Wi (11)

3.3 Solution

Recall that the cloud storage provider’s greatest concern is to maximize profit
(e.g., by minimizing cost) while providing high quality service (e.g., by guaran-
teeing data availability and response delay). The resource provisioning is defined
as a non-linear cost optimization problem with performance constraints from the
cloud storage provider’s point of view. By solving the problem, we can achieve
the optimal resource demands for system resource provisioning. The previous
works only focus on the optimization of number of servers. However, in practice
the minimal number of servers does not reflect the lowest cost. In our solution,
we are not only trying to answer how many servers need to rent, but also answer
what the capacities vector of these servers is. μ is used to represent the vector
of server capacities, while N is the number of rented servers, and is also the
dimension of capacities vector. We should determine the feasible range of N at
the first step.

Substitute P ∗suc and P ∗rej in constraints (1) and (3) into equation (2), then
we can obtain the value of N that satisfies constraints (1) and (3), denoted
by N ′. In the same way we can obtain the value of N , denoted by N ′′ that
satisfies constraints (2) and (3) by substituting R∗ and P ∗rej in constraints (2)
and (3) into equation (6). It is noted that the server rejection rate Pk,i is the
non-increasing function of μi, then substitute μmax(μmin) in constraint (4) and
Pk,i = P ∗rej into equation (7), we can deduce the maximal (minimal) arrival rate
λmax(λmin). Combine equations (4) and (5) together, we find that λ(i) is related

264 J. Zhou and W. He

to total customers’ requests arrival rate λ1, rejection rate Prej and the number
of servers N . By substituting λ1, P

∗
rej and λmax(λmin) into equation (5), we can

achieve the feasible range of N , denoted by [N1, N2] that satisfies the threshold
of rejection rate. In order to satisfy all constraints, the feasible range should be
trimmed by N ′ and N ′′. Proposition 1 shows us the proof of feasible range of N .

Algorithm Resource provisioning

Input
λ1: the total customers’ requests arrival rate
μmax: the upper bound of processing capacity
μmin: the lower bound of processing capacity
Qi: the access frequency of server i
T : the mean time required to forward the request
Output
Opt solution(N,μ,Cost (μ)): the optimal resource demands
1. Calculate N ′ by subjecting P ∗

suc and P ∗
rej to equation (2);

2. Calculate N ′′ by subjecting R∗ and P ∗
rej to equation (6);

3. Calculate λmax(λmin) by subjecting μmax (μmin) and Pk,i = P ∗
rej to equation (7)

4. Calculate N1 (N2) by subjecting μmax (μmin), P
∗
rej and λ1 to equation (5)

5. Nmin = max (N ′, N1, N
′′), Nmax = max (N ′, N2);

6. Opt solution (N, μ,Cost (μ)) = NLP OPT (Nmin);
7. if Nmin �= Nmax

8. for N = Nmin + 1toNmax

9. solution (N, μ,Cost (μ)) = NLP OPT (N);
10. if solution(N, μ,Cost (μ)) is better than Opt solution(N,μ, Cost (μ))
11. Opt solution (N,μ,Cost (μ)) = solution (N,μ,Cost (μ));
12. end if
13. end for
14. end if
15. return Opt solution (N,μ, Cost (μ));

Proportion 1. In the server provisioning problem, the feasible range of number
of servers that satisfies all constraints is [max (N ′, N1, N

′′), max (N ′, N2)].

Proof: Prej is a non-increasing function of N by analyzing equations (7) and
(8). If N ′ ≤ N1, the lower bound of N , denoted by Nmin, takes the value of N1

for satisfying constraint (3). Otherwise, Nmin takes the value of N ′ for satisfying
constraint (1). In addition, R is a non-increasing function of N by analyzing
equation (6) (T is much smaller when compared with W). In order to satisfying
constraints (2), Nmin takes the value of N ′′, i.e., Nmin = max (N ′, N1, N

′′). As-
sume the optimal value N∗ < Nmin, and then it will result in that one constraint
or all of constraints cannot be satisfied. Therefore, N1 should take the value of
max (N ′, N1, N

′′).
In the same way, if N ′ ≤ N2, the upper bound of N , denoted by Nmax,

takes the value of N2 for satisfying constraint (3). Otherwise, Nmax takes the
value of N ′ for satisfying constraint (1), i.e., Nmax = max (N ′, N2). Assume

A Novel Resource Provisioning Model for DHT-Based Cloud Storage 265

the optimal value N∗ > Nmax, and the corresponding optimal cost is Cost∗ =
N∗∑

i=1

f(μi), (μmin ≤ μi ≤ μmax). Then all constraints can be satisfied, and N2 is

located in the feasible range. The corresponding cost Cost N2 = N2f(μmin), but
Cost N2 < Cost∗, which conflicts with the assumption. Therefore, Nmax should
take the value of max (N ′, N2).

To solve the optimization problem, an novel algorithm is proposed, called
Resource provisioning. In the algorithm, lines 1-5 are used to compute the
feasible range of N , and then for each N in the feasible range, lines 6-15 use
NLP OPT(N) to solve the sub-optimization problem with the fixed value ofN .

There are non-linear functions in constraints, so that the sub-optimization
problem is a non-linear programming problem which can be formalized as follows:

Min Cost(μ) =
N∑

i=1

f(μi)

s.t. (1) g1(μ) =P ∗suc − Psuc ≤ 0
(2) g2(μ) =R−R∗ ≤ 0
(3) g3(μ) =Prej − P ∗rej ≤ 0
(4) g4(μ) =μmin − μi ≤ 0
(5) g5(μ) =μi − μmax ≤ 0

(12)

In this paper we use augmented lagrangian approach to solve the problem.
By introducing slack variable zj , the inequality constraints become equality con-
straints, i.e., gj(μ)−z2j = 0, j = 1, 2, 3, 4, 5. We design the augmented lagrangian
function, as follows:

F (μ, γ, c) = Cost(μ) +
1

2c

5∑

j=1

{
[max{0, γj + cgj(μ)}]2 − γ2

j

}
(13)

where γ is multiplier vector, c is penalty factor, and z2j = 1
c max {0, γj + cgj(μ)}.

Thus the problem is transformed into a simple unconstrained optimization prob-
lem, i.e., Min F (μ, γ, c). The solution of non-linear programming can be obtained
by iteratively solving unconstrained optimization problem.

4 Experimental Evaluation

4.1 Experiment Setup

We implemented a DHT-based cloud storage system on top of project Volde-
mort which is an open source implementation of Dynamo. The infrastructure
platform is constructed on top of a cluster of 14 IBM HS22 blade servers which
are connected in a 1Gbps LAN. These underlying resources are managed by
an infrastructure platform built with OpenStack. Servers in our system can be
classified as control servers and storage servers. The former is in charge of dis-
patching requests to storage servers, recording run-time log, and performance
statistics. The latter is in charge of processing the incoming requests.

266 J. Zhou and W. He

7 14 21 28
100

200

300

400

Date

M
ea

n
nu

m
be

r o
f r

eq
ue

st
s

pe
r

se
co

nd

25/11 01/12 08/12 15/12 22/12

(a)

0 1440 2880 4320 5760 7200 8640 10080
50

100

150

200

250

300

350

Date

N
um

be
r o

f r
eq

ue
st

s
pe

r
se

co
nd

(b)

 25/11 26/11 27/11 28/11 29/11 30/11 01/12

Fig. 4. Distribution of service performance levels

4.2 Trace-Driven Evaluation

We collected real-world traces from November 25, 2013 to December 22, 2013.
Figure 4(a) reports the requests received by the system during the period. The
mean number of requests per second became larger as the growth of customers
scale from 337 to 512. It reflects a weekly pattern that the amount of concurrent
visits is lower on weekends. A daily pattern is reflected by Figure 4(b). There
are two peaks appeared in the morning and afternoon separately, and the trough
appears at noon and midnight. Note that request for files larger than 4MB will
be split into several requests, so the actual arrival rate of requests will be higher.

The amount of concurrent visits was too low to evaluate our provisioning
scheme. We reprocessed the traces by adding the last three weeks dataset to the
first week. Then we used LoadRunner [15] to test our system. The most common
resource provisioning approach is based on Utilization-oriented Principle (UoP)
[16]. The UoP approach tries to reduce cost by improving resource utilization
(i.e., equals ρ) to a predetermined range. We choose UoP approach to compare
with our scheme, and the ranges are set as [60%, 70%] and [80%, 90%]. The
thresholds of P ∗suc, R

∗ and P ∗rej are set as 99%, 200ms and 0.3%. The process-
ing capacity depends on the type of VM. We measured the capacities through
deploying each type of VM in our system, and the values are 224, 535 and 1372.

Figure 5 shows separately the CDF of Psuc/P
∗
suc, R/R∗ and Prej/P

∗
rej . It

is concluded from equations (7) and (8) that the rejection rate has a positive
correlation with utilization rate. For UoP [60%, 70%] approach concerned, the
mean utilization rate are restricted in a low level without large variations, which
results in a low level of rejection rate without large variations. When the rejec-
tion rate is low, the data availability is so high that we can neglect the influence
of other factors on data availability. For UoP [80%, 90%] approach concerned,
if the arrival rate is low, system could maintain a high level of both utilization
rate and rejection rate. As the arrival rate increases, in order to satisfy perfor-
mance constraints, both utilization rate and rejection intend to decrease. Note
that compared with the threshold, our scheme can achieve much closer data
availability and response delay.

Figure 6 describes the comparison of hourly server cost by using different pro-
visioning approaches. UoP approach is sensitive to ρ∗. It appears to be relatively

A Novel Resource Provisioning Model for DHT-Based Cloud Storage 267

conservative when ρ∗ is in the interval [60%, 70%]. Then excessive provisioning
of resources results in a much higher performance level than the threshold level.
Furthermore, UoP approach pays 72.9% higher cost than our scheme, i.e., the
higher cost in exchange of the higher performance level. When ρ∗ is in the inter-
val [80%, 90%], it pays 31.8% higher cost than our scheme. Hence the cost can be
reduced by increasing ρ∗, however, excessive increase in ρ∗ will greatly increase
rejection rate. As a consequence, the data availability decreases and becomes
lower than the threshold.

The fixed number of types of VMs indicates the number of processing ca-
pacities available for selection is small. Therefore, the practical efficiency of our
algorithm became high, and the mean execution time was 2.37 seconds.

1 1.005 1.01 1.015

0

0.2

0.4

0.6

0.8

1
CDF of Psuc/P*suc

Psuc/P*suc

CD
F

Our sheme
UoP[60%, 70%]
UoP[80%, 90%]

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
CDF of R/R*

R/R*
0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1
CDF of Prej/P*rej

Prej/P*rej

Fig. 5. Comparison of distribution of service performance levels

0 24 48 72 96 120 144 168
0

0.5

1

1.5

Date

S
er

ve
r

co
st

Our scheme
UoP[60%, 70%]
UoP[80%, 90%]

 25/11 26/11 27/11 28/11 29/11 30/11 01/12

Fig. 6. Comparison of server cost

5 Conclusions

In this paper, we explore the resource provisioning from cloud storage provider’s
point of view, and propose a novel resource provisioning model. The model con-
siders the complex interactions among servers during system running by using
queuing network, and captures the relationship between performance metrics
and the allocated resources. Then based on the model, the resource provisioning
problem is defined as a cost optimization with performance constraints. We put

268 J. Zhou and W. He

forward solution algorithms for solving the optimization problem. We have built
a DHT-based storage system in our campus network. Based on real-world traces
collected from system, the experimental results demonstrate that the proposed
scheme can reduce cost while guaranteeing both data availability and response
delay.

References

1. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., et al.: Dynamo: Amazon’s Highly Available Key-value Store. In: ACM Symp.
Operating Systems Principles (SOSP 2007), pp. 205–220. ACM Press (2007)

2. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44, 35–40 (2010)

3. Stonebraker, M.: The Case for Shared Nothing. IEEE Database Engineering
Bulletin 9, 4–9 (1986)

4. Idilio, D., Marco, M., Maurizio, M.-M., Anna, S., Ramin, S., Aiko, P.: Inside
Dropbox: Understanding Personal Cloud Storage Services. In: ACM Conf. Internet
Measurement Conference (IMC 2012), pp. 481–494. ACM Press (2012)

5. Jing, J., Jie, L., Quan, Z.-G., Dong, L.-G.: Optimal Cloud Resource Auto-Scaling
for Web Applications. In: IEEE/ACM Symp. Cluster, Cloud and Grid Computing
(CCGrid 2013), pp. 58–65. IEEE CS Press (2013)

6. Ferretti, S., Ghini, V., Panzieri, F., Pellegrini, M., Turrini, E.: QoS-Aware Clouds.
In: IEEE Conf. Cloud Computing (CLOUD 2010), pp. 321–328. IEEE CS Press
(2010)

7. Jing, B., Liang, Z.-Z., Xiong, T.-R., Bo, W.-Q.: Dynamic Provisioning Modeling for
Virtualized Multi-tier Applications in Cloud Data Center. In: IEEE Conf. Cloud
Computing (CLOUD 2010), pp. 370–377. IEEE CS Press (2010)

8. Lama, P., Xiao, B.-Z.: Efficient Server Provisioning with Control for End-to-End
Response Time Guarantee on Multitier Clusters. IEEE Trans. Parallel and Dis-
tributed Systems 23, 78–86 (2012)

9. Zhu, Z., Bi, J., Yuan, H., Chen, Y.: SLA Based Dynamic Virtualized Resources
Provisioning for Shared Cloud Data Centers. In: IEEE Conf. Cloud Computing
(CLOUD 2011), pp. 630–637. IEEE CS Press (2011)

10. Zhu, Q., Agrawal, G.: Resource Provisioning with Budget Constraints for Adap-
tive Applications in Cloud Environments. In: ACM Symp. High Performance
Distributed Computing (HPDC 2010), pp. 304–307. ACM Press (2010)

11. Zhang, C., Chen, H.-P., Gao, S.-T.: ALARM: Autonomic Load-Aware Resource
Management for P2P Key-Value Stores in Cloud. In: IEEE Conf. Dependable,
Autonomic and Secure Computing, pp. 404–410. IEEE CS Press (2011)

12. Gross, D., Shortle, J.-F., Thompson, J.-M., Harris, C.-M.: Fundamentals of queue-
ing theory, 4th edn. John Wiley & Sons (2008)

13. MacGregor, S.-J.: Properties and performance modelling of finite buffer M/G/1/K
networks. Computers & Operations Research 38, 740–754 (2011)

14. Tijms, H.: Heuristics for finite-buffer queues. Probability in the Engineering and
Informational Sciences 6, 277–285 (1992)

15. HP LoadRunner Tutorial (2010)
16. AWS Elastic Beanstalk, http://aws.amazon.com/elasticbeanstalk/

http://aws.amazon.com/elasticbeanstalk/

BIDS: Bridgehead-Employed Image Distribution

System for Cloud Data Centers

Zhongzhao Wang1, Yuebin Bai1,�, Kun Cheng1, Jihong Ma2, Duo Lv3,
Yuanfeng Peng4, and Yao Ma1

1 School of Computer Science, Beihang University, Beijing 100191, China
2 Handan Polytechnic College, Handan 056000, China

3 Department of Computer Science, Arizona State University,
Tempe, AZ 85281, USA

4 Department of Computer Science, Pennsylvania University, Philadelphia,
PA 19104, USA

Abstract. To provide elastic cloud services with QoS guarantee, it is
essential for data centers to provision Virtual Machine(VM) instances
rapidly. Due to bandwidth bottleneck of centralized model, the P2P-like
distribution schemes are recently adopted. However, most of them just
focus on the transmission speed, but ignore the impact on network band-
width, especially for cloud data centers which are connected by Wide
Area Network(WAN). In this paper, we propose a bridgehead-employed
VM image distribution system(BIDS), which aims to minimize the repet-
itive data flows of WAN while speeding up the image distribution. In
BIDS, we also design a version based image sharing mechanism, which
tries to make a balance between efficiency and management complexity.
Besides, we implement a Remote Management Console(RMC). The final
evaluation shows that BIDS is of high efficient and low overhead.

Keywords: virtual machine(VM), image distribution, bridgehead,
cloud data centers.

1 Introduction

Generally speaking, cloud data centers keep plenty of VM images. For good sys-
tem elasticity and scalability, it is critical for the cloud data centers to provision
VM images fast, even in the case of massive concurrent requests. In order to
eliminate the bottleneck of conventional centralized model, researchers recently
proposed BitTorrent-like distribution model[1,2]. This model relieves the bur-
den on storage servers, but it just allows VM instances that start from the same
image files to share chunks. Prior studies[3,4] have shown that different VM
images could still have lots of common chunks. Then Peng et al.[5] proposed a
cross-image distribution model, called VDN. VDN is a complete sharing model.
It means that image chunks can be shared among any VM instances regardless

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 269–280, 2014.
c© IFIP International Federation for Information Processing 2014

270 Z. Wang et al.

of image types. But we must be aware of the fact that VDN had made the sys-
tem indexing unit, eg., lookup, publish, etc, changed from images to chunks. So
VDN has a complex index structure and expensive computing cost. In addition,
all current known distribution models mainly focus on distribution speed, but
ignore the impact on network bandwidth. We all know that cloud data centers
usually consist of multi data centers which are deployed in different regions and
connected by WAN. Because WAN often refers to low bandwidth and long de-
lay, it’s inexpedient to treat WAN and Local Area Network(LAN) equally in the
image distribution system.

In this paper, we propose a bridgehead-employed VM image distribution sys-
tem(BIDS), which aims to minimize the repetitive data flows of WAN while
speeding up the image file distribution. Different from VDN and other simi-
lar paradigms, BIDS has several novel features. First, we introduce bridgehead
mechanism in the distribution model. Here we assume that the cloud data cen-
ters consist of multi Independent Data Centers(IDCs) and all these IDCs are
connected via WAN. In each IDC, we specify some Designated Bridgehead(DB)
hosts to decrease the bandwidth consumption of inter-IDCs. Second, we propose
version-based image sharing scheme, which tries to make a balance between
efficiency and management complexity. And Delta files are used to speed up
distribution and optimize storage of each physical host. Third, we implement a
Remote Management Console to facilitate the management of image resources
in cloud data centers.

The rest of the paper is organized as follows. Sect. 2 describes the design
principle of BIDS and Sect. 3 presents the detailed implementation. Sect.4 eval-
uates our proposed model. We discuss the related work in Sect. 5, followed by
conclusions in Sect. 6.

2 Design Principle of BIDS

In designing the BIDS distribution framework, our primary objective is to max-
imize the amount of VM image data that is available within one IDC or on
nearby IDCs when the image is needed.

2.1 Execution Mechanism of Bridgehead Mode

We all know that WAN has a characteristic of low bandwidth and long delay. So
when one IDC own a image file, it’s improper to allow the hosts in other IDCs
to ”download” the image data arbitrarily. We should find a way which can speed
up image file distribution while minimizing WAN bandwidth consumption. In
this paper, we introduce the concept of bridgehead. In each IDC, we specify
some particular hosts, called DBs. Here the DB is just a normal host except
for the ability of sharing image data with other IDCs. In BIDS, the ordinary
hosts are forbidden to exchange image data with other IDCs’ hosts directly.
When a ordinary host must have to obtain image data from other IDCs, it will
send request to DB(s) firstly. Here the DBs form the upper-level distribution

Bridgehead-Employed Image Distribution System for Cloud Data Centers 271

network. All the inter-IDC image data transmission is accomplished via this
network. Thus, the inter-IDC image data exchange can be completely restricted
within DBs. The waste of WAN bandwidth caused by plenty of repetitive data
flows can be avoided.

A6

A1
A2

A3
A4

A5

B5

C1

C2
C3

C4

C5C6

C7

B1

B2

B3 B4

D1

D2

D3

D4

D5

D6

D7

Inter-IDC
data flow

Intra-IDC
data flow

Legend

IDC A

IDC B

IDC C

IDC D

WAN

Fig. 1. The brief diagram of bridgehead employed distribution mode

Now, we briefly illustrate the bridgehead mechanism by an example. Figure 1
shows a skeleton diagram of BIDS distribution process. The host A5, A6, B5,
C6, C7, D7 are DB nodes and they form a upper-level network. Now suppose
that host A1 own a image file X, host A2, A3, B2, B3, B4, C3, C5, D3, D5, D6
need to get image X. For A2, A3, they belong to the same IDC with A1, so they
can get image data from A1 directly. Meanwhile, A2, A3 can share the image
data they have already obtained. In such scenario, host A5, A6 are just normal
hosts. They make no sense for image distribution. For B2, B3, B4, they can’t get
image data from A1 directly. In this case, the DB node B5 has to communicate
with A5 for image data. Then host B2, B3, B4 get image data from B5. Of
course, they can also share the obtained data with each other. Note that the
data transmission between DBs, between DB and hosts can proceed in parallel.
Analogously, IDC C, IDC D have similar processing. Here, host C7, D7 may be
able to obtain image file X from multi DBs simultaneously.

As you can see from Fig. 1, A6 and C6 are DB hosts, but they don’t participate
in the distribution of image X. They can be viewed as normal hosts in this
scenario, but they perhaps play a role of DB in other image distribution. In
BIDS, the distribution of one image usually corresponds to a special hierarchical
network view. In this view, part of DBs form upper-level network. A DB host may
play a role of DB in one view, but act as a normal host in another view. The role
of DB depends on the host list constructed by GIS(General Index Server, detail
in Sect. 2.2). This dynamic, non-immobilized scheme can improve distribution
efficiency, and at the same time, avoid performance bottleneck problem caused
by static scheme.

272 Z. Wang et al.

2.2 Efficient Collaborative Sharing

In cloud data centers, metadata management is one key factor of affecting the
performance and efficiency. Here, the metadata consists of the list of hosts who
have certain images. In BIDS, in order to manage massive metadata, we set up a
particular server, called GIS. In GIS, it stores information about hosts, images,
and the relationships between hosts and images, between IDCs and hosts. Besides
these, GIS also needs to keep the information about Delta files, more details can
be found in Sect.2.3. Figure 2 illustrates the work flow of Publish and Lookup.

Host GIS DBs DBs in other
IDCs

No image file lookup

Host_list

Only DB_list Request

DB_list

lookup

Request image data

Data transmissionData transmission

Update DB_list

Complete transmission
Complete transmission

Image information

Return flag

Publish

Lookup

Fig. 2. The sequence char of Publish and Lookup

In BIDS, when a host, including DB, has obtained a new image, or upgraded
an old image, it will execute the publish process. Then GIS will do some update
operation. For another case, when a host, including DB, needs to get a image,
it will execute the lookup process. In Fig. 2, we can see that the lookup result
just contains DB hosts. This informs the requester that the request image is
stored in other IDC(s). So the requester send request(s) to the specified DB(s).
After that, the data transmission between DBs, between DB(s) and host begin.
During the transmission, the DB(s) may communicate with GIS periodically
to get the latest host information. Note that centralized structure may turns
into the bottleneck of reliability. But it can be resolved easily by mature duplex
backup technology.

Distribution Security. For the hosts within one IDC, because they are de-
ployed in LAN, the malicious nodes outside the network are unable to interact

Bridgehead-Employed Image Distribution System for Cloud Data Centers 273

with these hosts. In addition, the host themselves can also reject the local re-
quests because of authorization failed, invalid request, or just in order to guar-
antee the user service. For inter-IDC distribution, because all the DB nodes are
designated by administrators with unique DB IDs, it’s impossible for malicious
nodes to pose as DBs to grab image files.

2.3 Image Version Management

Crossing-image sharing already become an indispensable part of improving per-
formance. But allowing data sharing among any images, like VDN[5] does, often
brings up high system overhead. In another aspect, Satyanarayanan et al.[6]
show that if a set of images is based on the same major version of operating
system, the similarity is high(more than 50%). Peng.c et al.[5] have concluded
that the most popular images can contribute to more than 85% of all instances.
So it’s quiet common that users’ VM requests may mainly focus on several types
of images. Here each type of image may contain many versions.

Consequently, we propose a version-based image sharing scheme. In this
scheme, VM instances that belong to different versions can share their data.
Here, we use Delta file to record the difference between images that derived
from the same base images, but belong to different versions. In this way, a VM
instance can quickly upgrade to newer version with just one Delta file. And the
host can quickly build a new image with just one Delta file if it already owns
some version of the base image. Of course, it is also feasible for a host to run
multi VM instances with just one image file and a series of delta files. In BIDS,
Delta file information, relationships between Delta files and image versions are
stored in GIS. Thus, when a host needs to upgrade its image to certain version,
it can quickly find which Delta file is needed and where to find the Delta file.

Image Storage. In BIDS, we employ a distributed storage mechanism. We set
up a local storage server in each IDC. These servers act as image ”providers”.
Note that the DB and storage server play a similar role to some extent. The
DB can totally act as a storage server and we have done in this way for system
testing. However, if the DB is not employed for storage, its useless, outdated, or
duplicate image files can be removed by administrators via RMC.

2.4 Remote Management Console

In order to facilitate the management of all the image files, we design a man-
agement console. Note that RMC is mainly used for image file management, not
a sophisticated resource management platform, like RHEV[7]. To be specific,
RMC mainly achieve the following functions.

– Network Information Statistics: In order to facilitate the administrator to
know running status of cloud data centers, RMC communicates with GIS pe-
riodically to maintain some global statistic information. Alternatively, RMC
display these information by the graph way.

274 Z. Wang et al.

– Distribution Control: RMC could control hosts remotely, like limiting ”up-
load”, ”download” speed, switching sharing status. Besides, RMC could also
be used to designate or change IDCs’ DBs, designate some hosts to publish
images, or manipulate hosts to ”download” certain image files automatically.

– Image Management: In BIDS, we adopt flexible storage mechanism. Images
may be stored in ordinary hosts and DBs. After long-time running, the hosts
may store some old, or useless images. RMC can be used to remove images
according to certain policies, like oldest, rerely used, or just randomly.

3 Components Implementation of BIDS

In this section, we present the details of components implementation of BIDS.

3.1 Architecture of GIS

GIS is one of key component of BIDS. It holds the running information of the
whole system and makes corresponding responses for each arrived request. Fig-
ure 3 shows the main function modules of GIS.

Message Listening

Host_Conn
Management

Request1 Request2 RequestN

Resource
Information

Information
Statistics

Host_list
Management

Relationship

Conn1
Conn2

Resource
Update

Data
Backup

Dispatcher

R
esource
Search

RMC_Conn
ManagementConn1

Conn2

Delta_file
Management

Delta_file
Information

Relationship

Fig. 3. Architecture of GIS

Host Conn and RMC Conn Modules are mainly used for handling interactions
with other components. These two modules need to maintain the information
of each received connection. Normally, these two modules may deal with plenty
of connection requests concurrently. Resource Search Module is responsible for
locating resource position rapidly. Here, we propose an improved hash function
which bases on the implementation of Python Dictionary. In Host list Manage-
ment Module, we design lots of filter policies which apply to pick out the optimal

Bridgehead-Employed Image Distribution System for Cloud Data Centers 275

host list. With the host list, the requester can obtain image data with a mini-
mum cost. Information Statistics Module mainly in response to the RMC’s re-
mote commands. The other modules are responsible for managing images, hosts,
Delta files and image versions information.

3.2 Architecture of Host Service Part

This component is the core of BIDS, all the real image data distribution is
accomplished via this part. At runtime, this component needs to communicate
with GIS, RMC and other hosts. Figure 4 shows the major modules of this part.

Message Listening

GIS_Conn
Management

Reply1 ReplytN

Host_list
Mangement

Conn1
Conn2

Host
Management

Dispatcher

Host_Conn Management
Conn1

Conn2

Buffer
Management File

Synchroniz
ationFile

Pipe

Version
Managem

ent

RMC_Conn
Management

Conn1
Conn2

Image
Files

Request1 RequestN

Fig. 4. Architecture of Host Service Part

Similar to SIN, we implement three Conn Modules. Besides, we implement
Node Management Module in response to operation instructions sent by RMC.
Host list Management Module can identify the locally stored image information,
and publish the image information to the GIS if necessary. It also can manage
the host list received from GIS and guide the host where to obtain the required
image data. File Synchronization Module mainly achieve:(i)build delta file; (ii)
merge for the target file. For Version Management Module, it is mainly used
to control procedure of version operation. Buffer Management and File Pipe
Modules accomplish memory mapping mechanism: the file data is mapped into
the memory pages directly. This method can make user process access file data
directly and avoid inefficient data copy between user space and kernel space like
the conventional file read mode does.

276 Z. Wang et al.

3.3 Architecture of RMC

In BIDS, RMC is implemented based on WEB using MVC design pattern. Its
framework can be broadly divided into five layers: View Layer, Model Layer,
Service Layer and Persistence Layer. Figure 5 shows the hierarchy architecture
of RMC. Using such hierarchy, on the one hand, can decrease interdependence
among modules and bring convenience to developers. On the other hand, it can
achieve code reuse.

Login Node Tree File List

Communication Data Tools

TCP
Socket

I/O
Ring

Message
Process

Format
Check

Format
Conversion Draw

Statistics

Data
Acquisition

Login
Page

Index
Page

Statistics
Page

Message ObjectsData Objects

View
Layer

Control
Layer

Business
Layer

Persistence
Layer

Fig. 5. Architecture of RMC

4 Evaluation

In this section, we compare BIDS with the model that does not perform the
”bridgehead” mechanism. But in other aspects, it has similar collaborative shar-
ings as BIDS does. We call it Baseline. We use provision time and WAN band-
width consumption as performance metrics. Meanwhile, the influence of delay
variation on BIDS’s performance is also evaluated.

In order to better exhibit the BIDS’s performance, we construct a simplified
cloud data center network with a small amount of physical hosts. Within each
IDC, we assign 200Mbps for intra-IDC links. All the physical hosts are connected
via switches. For Inter-IDC, we construct diverse WAN environment by adjusting
bandwidth size and delay time. The testing VM image can vary from 450MB to
4GB. Considering that the testing network size is small, it’s improper to assign
WAN bandwidth in the order of Gbps as real cloud data center does. Thus, we
limit the bandwidth value to a small range.

4.1 Provision Time

In this part, we set up four IDCs act as ”provider”. About eight hosts in another
IDC request image data in a random order. The WAN delay is set to 15ms.

Bridgehead-Employed Image Distribution System for Cloud Data Centers 277

For WAN bandwidth, some typical WAN types, like CAT-3 cable, CAT-4 cable,
E-3 Europe and others, are emulated in the test. We repeated test, while varying
the size of VM images:450MB, 1.6GB and 4GB. We record time each host takes,
the final average results are shown in Fig. 6.

(a) 450MB (b) 1.6GB (c) 4GB

Fig. 6. Provision time for VM images over time using Baseline

Here, we make the following observations. First, the provision times both de-
crease as the WAN bandwidth increases. But the rate of decline in BIDS is lower.
The reason is that Baseline’s bandwidth variation will affect all the requesters.
But in BIDS, it only affects largely on DB nodes and has little influences on the
requesters. Second, when the bandwidth is low, the performance gain of BIDS is
significant, as much as 7x speedup. That’s because BIDS fully utilizes the advan-
tage of locality and high-speed LAN makes the image data quickly distributed
to each host. But in Baseline, requesters have to put up with the low efficient of
WAN. Third, when the bandwidth increases to certain degree, the decline rate
in BIDS become quietly low. The reasonable explanation is that as bandwidth
increases, the key factor of affecting performance in BIDS has changed from
bandwidth to DB’s distribution efficiency. But we have to say that BIDS is still
quiet efficient, especially when the available bandwidth is low. Note that we can
improve BIDS’s performance manyfold by employing additional DBs.

4.2 Bandwidth Consumption

An efficient distribution model should keep low bandwidth consumption while
improving distribution performance. In BIDS, we achieve it by decreasing the
repetitive data flows of cross-IDCs. In this subsection, we analysis the bandwidth
consumption of the two distribution models. Considering that each image file is
divided into fixed-length chunks for distribution, we evaluate the bandwidth con-
sumption through the statistical number of image chunks which are transferred
via WAN. In this part, we employ the same test environment as Sect. 4.1 does.
We conduct multiple tests, Fig. 7 shows the final statistical results.

It’s obvious that BIDS has a fixed bandwidth consumption which comes from
DB. Because just single DB node is employed for image distribution in our

278 Z. Wang et al.

(a) 450MB (b) 1.6GB (c) 4GB

Fig. 7. WAN bandwidth consumption under different image file size

tests, the consumption value is changeless, but the bandwidth consumption for
Baseline is quiet high. Considering that the image data sharing within IDC is
faster than inter-IDC transmission, the request hosts within same IDC will own
the same image data after some time running. Then they must have to require the
chunks from other IDCs via WAN, which leads to high bandwidth consumption.
In another aspect, we can see that the WAN bandwidth consumption reduces
gradually as the bandwidth increases. The reason is that higher bandwidth makes
it more possible for hosts to obtain chunks from the hosts within the same IDC.

4.3 Delay

In this subsection, we evaluate the influences of system performance when dif-
ferent delay time is assigned to WAN. Similar to Sect. 4.1, the provision time
is employed as evaluation metric. Three typical delay times are adopted in our
test:10ms, 30ms, 50ms. The testing results are shown in Fig. 8.

(a) 450MB (b) 1.6GB (c) 4GB

Fig. 8. Influence of delay variation on BIDS’s provision time

As you can see from Fig. 8, delay variation doesn’t bring about remarkable
changes on provision time. The reason is as follows. In BIDS, chunk data is trans-
ferred in a pipelined manner. The receiver does not have to return acknowledge

Bridgehead-Employed Image Distribution System for Cloud Data Centers 279

messages until a complete chunk is received. Then MD5 checksums of chunks
are used to ensure the correctness of transmission. We know that delay acts on
distribution only when plenty of message exchange happen among hosts. But
in BIDS, message exchange occurs only when the host needs to request new
chunks, or retransmit error received chunks, or send checksums. But these only
make up a small part of total distribution. Therefore, delay has limited influence
on system performance.

5 Related Work

Nowadays, improving distribution efficiency of VM instances has great influence
on the overall system performance. Therefore, many efforts have been made
on this topic and lots of novel solutions are proposed.Among these researches,
Schmidt et al.[8] discussed several distribution methods, including unicast, mul-
ticast, BitTorrent-like distribution. Wartel et al.[9] also proposed BitTorrent-like
distribution model. In their model, they treat an entire VM image file as a Bit-
Torrent seed file. Then Chowdhury et al.[10] revised the BitTorrent protocol and
presented an architecture called Orchestra that controls both inflow and outflow
data transmission to optimize performance. BJorkqvist et al[11] proposed a tow-
tier network topology ignoring different network connections among edge nodes
and this solution can reduce the retrieval latency for data centers. Different from
the above distribution mechanisms, Peng et al.[5] proposed a more efficient shar-
ing mechanism via utilizing common chunks in different VM images. Zhu et al[12]
designed a new distribution mechanism called Twinkle. Twinkle reduces provi-
sioning time by speeding up the initialization of VM instances using demand
predication and partial page lunch. Epstein et al[13] focused on data placement
on centralized storage servers. They tried to minimize the provision time via the
optimization of staging schedules.

6 Conclusions

In cloud data centers, the low bandwidth and long delay of WAN is an impor-
tant factor of affecting distribution. In this paper, we propose bridgehead mode
to minimize the repetitive data flows of WAN while speeding up the image file
distribution. Meanwhile, we design the version based collaborative sharing mech-
anism to speed up the image distribution and RMCmake the administrators easy
to manage all the image files. Final tests show that our system is efficient.

Acknowledgements. This work is supported by the National Science Founda-
tion of China under Grant No.61340031,61073076,and61202425, Ph.D. Programs
Foundation of Ministry of Education of China under Grant No.20121102110018,
and Key Technology R&D Program of Hebei Province, China under Grant No.
13200326D.

280 Z. Wang et al.

References

1. Chen, Z., Zhao, Y., Miao, X., Chen, Y.: Rapid provisioning of cloud infrastruc-
ture leveraging peer-to-peer networks. In: Proceeding of 29th IEEE International
Conference on Distributed Computing Systems Workshops (ICDCS), Washington,
DC, pp. 22–26 (2009)

2. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I.: Managing data transfers in
computer clusters with orchestra. In: Proceeding of the ACM SIGCOMM 2011
Conference (SIGCOMM 2011), New York, pp. 98–109 (2011)

3. Reimer, D., Thomas, A., Ammons, G., Mummert, T.: Open black boxes: using
semantic information to combat virtual machine image sprawl. In: Proceeding of
the 4th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE), New York, pp. 111–120 (2008)

4. Jin, K., Miller, E.L.: The effectiveness of deduplication on virtual machine disk
images. In: Proceeding of the Israeli Experimental Systems Conference (SYSTOR),
New York, vol. (7) (2009)

5. Peng, C., Kim, M., Zhang, Z., Lei, H.: VDN: Virtual Machine Image Distribution
Network for Cloud Data Centers. In: Proceeding of IEEE INFOCOM (INFOCOM
2012), Orlando, pp. 181–189 (2012)

6. Satyanarayanan, M., Richter, W., Ammons, G., Harkes, J.: The case for content
search of vm clouds. In: IEEE 34th Computer Software and Applications Confer-
ence Workshops (COMPSACW), Seoul, pp. 382–387 (2010)

7. RHEV: Red Hat Enterprise Virtualization,
http://www.redhat.com/products/cloud-computing/virtualization

8. Schmidt, M., Fallenbeck, N., Smith, M., Freisleben, B.: Efficient distribution of
virtual machines for cloud computing. In: 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), Pisa, pp. 567–574
(2010)

9. Wartel, R., Cass, T., Moreira, B., Roche, E.: Image distribution mechanisms in
large scale cloud providers. In: 2th IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom), Indianapolis, pp. 112–117 (2010)

10. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I.: Managing data transfers in
computer clusters with orchestra. In: Proceedings of the ACM SIGCOMM 2011
Conference (SIGCOMM 2011), New York, pp. 98–109 (2011)

11. Bjorkqvist, M., Chen, L.Y., Zhang, X.: Minimizing retrieval latency for content
cloud. In: Proceedings of the IEEE INFOCOM (INFOCOM 2011), Shanghai,
pp. 1080–1088 (2011)

12. Zhu, J., Jiang, Z., Xiao, Z.: Twinkle: A fast resource provisioning mechanism for in-
ternet services. In: Proceedings of the IEEE INFOCOM (INFOCOM 2011), Shang-
hai, pp. 802–810 (2011)

13. Epstein, A., Lorenz, D.H., Silvera, E., Shapira, I.: Virtual appliance content dis-
tribution for a global infrastructure cloud service. In: Proceedings of IEEE INFO-
COM(INFOCOM 2010), San Diego, pp. 1–9 (2010)

http://www.redhat.com/products/cloud-computing/virtualization

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 281–293, 2014.
© IFIP International Federation for Information Processing 2014

A Broker-Based Self-organizing Mechanism
for Cloud-Market

Jie Xu and Jian Cao*

School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University, Shanghai, 200240, China

{xujieasd,cao-jian}@sjtu.edu.cn

Abstract. Cloud computing becomes an increasingly popular computing
paradigm which leads to an increasingly sophisticated and growing influence of
the social business model for cloud computing. A robust and orderly operating
mechanism is the foundation of the maturity and stability of cloud commerce
market. Since the cloud commerce negotiation is a dynamic and adaptive
process, an approach of self-organizing based on multi-agent systems is
proposed to achieve the required macroscopic properties of locally interacting
agents in cloud market. The novel establishes a three-layered self-organizing
multi-agents mechanism to support cloud commerce parallel negotiation
activities. Purpose of our work is simulating the mechanism to follow the trend
of development in line with economic market rules between cloud consumer
and cloud provider. The experimental results indicate that the multi-agents
system is successful in handling the commerce negotiation and completing
expected requirements.

Keywords: cloud computing, multi-agent systems, self-organizing.

1 Introduction

Cloud computing [1][2] is the development of distributed computing, parallel
computing and grid computing. It can be defined as [3] “a large-scale distributed
computing paradigm that is driven by economies of scale, in which a pool of
abstracted, virtualized, dynamically-scalable, managed computing power, storage,
platforms, and services are delivered on demand to external customers over the
internet.” Similar with the utility service as water, gas, and electricity in daily life,
cloud consumer pay service providers for their usage of cloud utility services [4]. The
business model of cloud computing bears a strong resemblance to the social
commercial model. Cloud consumer select from cloud provider market to find a most
satisfied provider and cloud provider wish its service to be mostly accepted to obtain
the maximum profit.

However, most of cloud consumers are not experienced enough to obtain the best
selection from cloud market. They simply trust the quality information published by
cloud provider. Another issue is that it’s inconvenient for an individual to compare

* Corresponding author.

282 J. Xu and J. Cao

around from the numerous providers. Therefore, it is necessary to propose a
scheduling and resource allocation mechanism for cloud services market to achieve a
stable market adaptation [5].

Holland and Miller [7] suggest studying economic systems as complex adaptive
systems which containing adaptive agents, networked. Similarly, to maintain the
stability of cloud market, we propose a broker-based self-organizing mechanism
based on multi-agents to simulate the operating mechanism of cloud market in this
novel. The mechanism enables a set of broker agents as third party services to
handling the negotiation between cloud consumers and cloud providers.

Mechanism we proposed borrows the ideology of “invisible hand [6]”, posed by
Adam Smith, which reveals that individuals only consider their own interests in
economic life. Driven by “invisible hand”, producers seek to maximize profits and
consumers pursuit to maximize utility. The broker agent is designed to obtain the
instinctive behavior of both consumers and providers. This broker-based mechanism
will keep the system changing its internal structure without explicit external command
as it is dynamically changeable. As system executing conducts, cloud market forms
differentiation and the entire system keeps in general equilibrium.

Hence, the intention of this mechanism we designed mainly involves three aspects:
1) Establish and implement a negotiation tunnel between cloud consumer and cloud
provider via broker agent. 2) Maximum to meet customer and provider needs and
devise a protocol to keep the cloud market self-organized under a healthy
competition. 3) Gradually refining cloud market segmentation so that each cloud
provider could make its market positioning precisely.

The broker-based self-organizing framework and communicating stratagem will be
introduced in section 3. The detail self-organizing mechanism will be elaborated in
section 4. The research simulation and the respective results are described in section
5. Section 6 concludes the paper.

2 Related Work

The research of cloud commerce model and mechanism for cloud computing have
been widely studied in recent years. In [8] authors proposed computational economy
as a metaphor for effective management of resources and application scheduling.
They suggested that market-oriented resource management is necessary to regulate
the supply and demand of cloud resources at market equilibrium, and discussed some
representative economy-based systems. In [5], authors presented a vision of 21th
century computing and described an architecture of market-oriented clouds which
contains cloud consumer, cloud provider and cloud allocator to manage cloud
resource. But both of the authors did not mention an explicit, appropriate and usable
mechanism or algorithm for cloud resource allocation.

Not many cloud commerce mechanisms have been used as a solution for scalable
cloud resource management. Existing cloud market based negotiation model such as
“auctions model” [9][10] and “recommendation model” [11], all focus on the
cooperation quality between cloud service markets and individual cloud consumer.
Author in [12][13][14] proposes a cloud commerce negotiation model based on multi-
agent systems. The negotiation model consists of provider agents and consumer

 A Broker-Based Self-organizing Mechanism for Cloud-Market 283

agents acting on behalf of resource providers and consumers, and a set of broker
agents coordinating the negotiation between consumer agents and provider agents.

3 Broker-Based Self-organizing on Cloud Commerce

3.1 Broker-Based Self-organizing Framework

Agents play a major role of negotiating, communicating and decision making between
providers and consumers in loud computing model [12][13]. Cloud users can access
cloud market through multi-agent system to find a sensible and optimal decision.

Fig. 1. Broker-based negotiation Framework of cloud computing

Fig 1 demonstrates the architecture of Broker-based cloud computing. The multi-
agent system consists of three portions: consumers, providers and brokers. Consumer
agents and provider agents are acting to be responsible for cloud users and cloud
providers from cloud market. Each cloud provider has a set of properties such as
“service using price”, “virtual machine CPU” to evaluate its service quality. We
define , , … to describe a service with its properties with each value of p refers to the objective assessment of the corresponding property. Cloud requesters
also have a set of properties to describe the demanding of cloud users, which are
defined as , , … . Broker agents play roles like intermediaries between
consumer agent and provider agent. Their fundamental responsibility is matching the
properties of consumers and providers and achieves maximum benefits for both sides.

Consumer

Agent
User Broker

Agent

Provider

Agent

Cloud

Market

284 J. Xu and J. Cao

Two types of many-to-many negotiation activities are handled: consumer agents
negotiate with broker agents for satisfying cloud user requests and provider agents
negotiate with broker agents for cloud market management and differentiation.

3.2 Broker Agent Properties and Characteristics

Broker agent, can be regarded as a set of service agents, which is the integrated
services body of cloud services managing, takes care of coordination, mediation and
communication. Broker agent is based on the conception of BDI agent [21], with
beliefs, desires and intentions. Desires are goals or expectations and judgments on the
state of the environment. The desire of broker agent corresponds with the desire of
cloud market. Intentions refer both to an agent’s commitments to its desires and its
commitment to the plans selected to achieve those goals. The intentions of broker
agents are matching and recommending the most appropriate cloud provider to the
current user. Beliefs are facts representing what an agent believes about the world.
Several properties and beliefs will be considered in that self-organizing system, both
natural and artificial.

 Transaction: Transaction [15] reflects the total traffic of broker agents. Every

request from user agents will be recorded. Once the number of such request meet
some certain condition, a filtering service mechanism will begin to work.
Transaction is the key point for broker agents to adjust their internal topology
with provider agents.

 Sale and Failure History: Just like merchants count how many goods they sell
to their clients in modern business, every provider agent should record the
number of successful cooperation with consumers. A successful cooperation is
called a sale. Provider with high sales indicates that it gains a warm welcome
from its clients. In other words, it owns a high possibility to be successfully
recommended to consumers. On the contrary, consumers don’t always accept the
recommended providers. There exists unsuccessful cooperation. The failure
record can be learned by broker agent with learning mechanism to avoid the
same type of unsuccessful cooperation happening again. Both success and
failure record history are important indicators for agent filter and mining.

 Satisfaction: Consumer will score for service provider as feedback when it
successfully cooperates with a provider. The satisfaction of a cloud provider is
the average value of scores from consumers which is defined as:
 Sat ∑

The satisfaction of a service provider reflects its popularity and quality to some
extent. It also plays an important role on cloud market differentiation.

 A Broker-Based Self-organizing Mechanism for Cloud-Market 285

3.3 Multi-agent Communication Mechanism

The task of multi-agent computing process can be regarded as a process to match
consumer’s request with resources of cloud providers. Consumer agent, broker agent
and provider agent handles different problem respectively, and the detailed
mechanism will be discussed in Section 4.

Fig. 2. Multi-Agent communication functional processes

 Consumer agent: represents for cloud consumer, its function mainly involves: 1)
Representing cloud user’s requirement into formalization. 2) Contacting some
broker agents and selecting the most satisfied provider. 3) Combing a single
service with corresponding broker agent’s outputs and returning evolution value.

 Broker agent: a coordinator between consumer agent and provider agent, its
work includes: 1) Establishing communication tunnels for both consumer agent
and provider agent. 2) Matching consumer requests with managed providers and
recommending the most appropriate one 3) learning and filtering from
cooperation records between consumer agents and provider agents to enhance
the success rate and evolution value of discovering cloud resources.

 Provider agent: administrator of a set of cloud resources. It manages the
interface of cloud resources. It accepts the requests from broker agents and
transforms the corresponding output to the corresponding cloud services.

Consumer Broker Provider

Managing

Requesting Receiving

Matching

Recommendation Selection

Evaluation Recording Cooperation

Filtering

Re-organization Re-managing

Initial

Stage

Cooperation

Stage

Learning

Stage

Condition

Meets

Tunnel

286 J. Xu and J. Cao

Fig 2 illustrates the communication function process of multi-agent system with
three stages. First of all, initial stage performs an original state of agent registration.
As communication tunnel constructed, the connections between broker agents and
provider agents are randomly established. Cooperation stage shows the complete
procedure of how broker agents negotiate with both consumer agents and provider
agents to accomplish successful collaborations between buyers and sellers. And
learning stage carries out when the broker transaction reaches a certain condition.
This stage is designed to classify the quality of collaboration between consumers and
providers. With classification and filtering, broker agents will gain the preference of
consumer groups and adjust their internal compositions for an improvement of user
satisfaction and higher rate of successful cooperation.

4 Self-organizing Model and Algorithm

4.1 Consumer Model

“Consumer First”, from Marshall Field, as a marketing concept, should be traced back
to the late 19's Marshall Field's department store. The concept tells us that the
consumer is the principal part of commercial trading. It is very important to make an
accurate definition for consumer model closer to consumer’s request.

Behaviors and requirements vary from consumer to consumer. Yet there always
exists a group of consumers, their interests and demands are similar to each other. For
example some cloud consumers prefer “cheap” service while others are inclined to
high performance. Hence the same type of consumer owns identical user preference
and each type of the consumer should have a preference function to show its
satisfaction of a cloud provider which we defined as preference(s):

 Perference s · 1

Here pv is the weight coefficient for each property vector. The value of pv depends on the realistic user type. When consumer receives the recommended

cloud providers from broker, it will refer to its preference and choose the most
satisfactory service for cooperation.

In traditional commerce, consumer always tends to cooperate with the provider
once it used, but it would also like to try other provider it seldom used. We define a
choose function for the probabilistic of a broker service chosen by consumer.

 1 _

Here B_serive denotes the number of cooperation between consumer agent

and broker agent i. N is the number of broker agent in the multi-agent system.

 A Broker-Based Self-organizing Mechanism for Cloud-Market 287

And service is the total number of cooperation between consumer and all brokers.
On the basis of the regulations we’ve discussed above, we proposed our consumer
model running mechanism using the algorithm below:

Algorithm 1. Consumer Model Running Mechanism
Sending

1. Get user property U p , p , p … p

2. For each Broker i

3. Calculate the chosen probability Pro

4. End for

5. Chosen_Broker[] three Broker with maximum Pro value

6. For each chosen broker i

7. Send_request(Chosen_Broker[i], request_content)

8. End for

Receiving

1. When receive recommendation from broker agent A

2. Calculate Perference s

3. If all three recommendation recieved

4. Chosen_Provider top rate Perference s provider

5. Cooperate(Chosen_Provider, evolution)

6. Feedback(Corresponding_Broker, evolution) 7. End if

User requirements are always changing, but the overall demand follows with
certain rules for a certain type of consumer. Hence, user property in our user model is
a set of uncertain vectors based on user preference.

4.2 Service Selection and Response Model

When customer selecting merchandise in shops, many factors are taken into
consideration to find the most satisfied goods: whether the goods match his needs,
whether it sells well, or what are the comments from other customers. Service
selection and response model simulates the consumer psychology of customer. The
function is defined to represents a provider’s recommended probability
which mainly involve three factors: matching indicator, sales indicator and
satisfaction. The probability formula is defined as follows:
 · · ·∑∑ ∑1

288 J. Xu and J. Cao

denotes the cosine similarity [16] of properties between recommended
provider and target user. indicates the rank and popularity of a provider where

 denotes the total number of providers agent managed by broker agent.
Hence, the function signifies the combination of the three indicators
where , , are corresponding weight coefficients.

After broker agent receives the request from consumer agent, it firstly calculates
the recommended probability of each provider agents in its managing list. Secondly it
chooses the provider with the highest value and recommend to consumer and then
wait for consumer’s feedback. A decision threshold is very necessary to distinguish
feedbacks from positive and negative examples with the response evaluation value.

4.3 Learning Model

A notable feature of free market is that buyers and sellers do not coerce each other, in
the sense that they obtain each other's property rights without physical force.
Correspondingly, our multi-agent system is designed to maintain in accordance with
the market discipline. Hence, the intention for the filtering and learning mechanism
mainly involve two aspects:

 Excluding service provider of poorer quality: a poor quality service provider
means provider has few successful cooperation records or even seldom be made
inquiries from consumers. This kind of provider does not meet the needs of
cloud market. They shall be eliminated in the competition of other providers

 Establishing market position: with the increasing number of access requests from
consumers, broker agent will learn to know the customer type it mainly orients
and the provider service of favorable managing. That is, broker agent gains
knowledge of the consumer’s selection pattern. As learning mechanism
conduction, a market differentiation gradually appears. It mainly performs that a
certain broker majors in a particular type of providers. And the total cloud
market is partitioned by broker agents according to consumer preferences.

The learning mechanism contains three steps as follows:

 Step 1, Eliminating: broker agents first re-group the managed provider agents in
a descending order according to Sail and then delete the provider services from
manage-list which fall behind others by a certain percentage.

 Step 2, Modeling: screening all success and failure cooperation from the record
and constructing a training set based on a certain machine learning method
which we will talk about later.

 Step 3, Selecting: selecting unsaturated provider agents from cloud service
market based on the training model constructed in step 2. Broker will continue
searching the qualified provider until it reaches its managing limitation.

We choose ID3 decision tree [17][18] for consumer preference filtering and
classification. We choose the attribute of user property as the decision tree’s attribute.
The information gain is defined to measure the quantitative of the worth of an
attribute for a most useful choice of classifying examples. And the entropy is defined

 A Broker-Based Self-organizing Mechanism for Cloud-Market 289

to characterize the purity of an arbitrary collection of examples. The detail definition
[20] shows blow:

, | || |

5 Experimental Evaluation

The simulation environment of our experiment is established based on java agent
Development Framework (JADE) [20]. As many performance indicators of cloud
service will influence cloud consumers’ choices, we considerate five indicators to
represent the capability of a cloud service: {service cost, service CPU, service
storage, bandwidth, service response time}. Each of them is valued based on its
performance level ranging from 1 to 10. Contemporary, the service property
represents the interest of a group of particular person, also known as the preference of
the consumer.

To evaluate the performance of our self-organizing mechanism, the expecting
result of the experimental includes three fields: 1) a cloud market differentiation takes
shape. 2) With the conduction of learning mechanism, success rate between consumer
and provider performs a remarkable improvement. 3) As the adjustment time grows,
the satisfaction feedback from consumer agent also has been significantly improved.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

br
ok

er
 a

ge
nt

 n
um

be
r

adjustment time

 Price
 CPU
 Storage
 Bandwidth
 ResponseTime

Fig. 3. Cloud market differentiation revolution

Fig 3 illustrates the cloud market differentiation evolution from one set of
experiment, where 20 broker agents collaborate to connect and negotiate with
consumers and providers. The work division of broker agents was ambiguous at first.
After about 10 adjustment steps, a clear division of labor gradually appears. That
phenomenon verifies the first expectation we’ve talked about above.

290 J. Xu and J. Cao

Fig 4 and Fig 5 shows the comparison empirical result of three different strategies:
self-organizing mechanism contains complete three modules (CMLM), strategy
without learning mechanism (CM), no consumer and learning mechanism (NM).
From the comparison, we see that both success rate and satisfaction performs a
significant improvement under our mechanism with adjustment time grows, which is
in full compliance with the second and the third experiment expectation. When we
remove the consumer mechanism and learning mechanism, the cloud market is
keeping chaos as performance of success rate and satisfaction doesn’t change at all.

Note that when we only eliminate the learning mechanism, there is still an
improvement for both success rate and satisfaction. In fact, consumers can find their
most satisfied provider through numerous times of attempts, but the process is slowly.
Hence, we can conclude that the learning mechanism improve the efficiency of cloud
market differentiation and stability.

-2 0 2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

su
cc

es
s

ra
te

adjustment time

 CMLM
 NM
 CM

-2 0 2 4 6 8 10 12 14 16

0.2

0.3

0.4

0.5

0.6

sa
tis

fa
ct

io
n

adjustment time

 CMLM
 NM
 CM

Fig. 4. Success rate with/without consumer
mechanism and learning mechanism

Fig. 5. Satisfaction with/without consumer
mechanism and learning mechanism

-2 0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

su
cc

es
s

ra
te

adjustment time

 threshold0.4
 threshold0.6
 threshold0.5

0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

sa
tis

fa
ct

io
n

adjustment time

 threshold0.4
 threshold0.5
 threshold0.6

Fig. 6. Success rate in different threshold Fig. 7. Satisfaction in different threshold

 A Broker-Based Self-organizing Mechanism for Cloud-Market 291

-2 0 2 4 6 8 10 12 14 16

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
su

cc
es

s
ra

te

adjustment time

 transaction30
 transaction60
 transaction90

-2 0 2 4 6 8 10 12 14 16

0.2

0.3

0.4

0.5

0.6

0.7

sa
tis

ca
tio

n

adjustment time

 transaction30
 transaction60
 transaction90

Fig. 8. Success rate in different transaction Fig. 9. Satisfaction in different transaction

Fig 6 to Fig 9 shows the empirical result of our self-organizing mechanism in
different measurements. We set up two sets of variables {decision threshold and
broker transaction} which we think may have influence in Algorithm performance.

Broker agents adjust their management constructions based on their average
transaction number. The experimental truth is the higher of the transaction number,
the more rapid increase of the success rate and satisfaction’s improvement. Because a
higher transaction number indicates that consumer agents access broker agent for
more times. But it doesn’t mean we should choose a high value for transaction
number. We always wish that the market system can achieve a stable and orderly state
in a short time. Yet the high value transaction number implies more time is waste
before learning and classification mechanism.

Decision threshold is a parameter to classify positive and negative examples.
Apparently, the cooperation record could be easily classified into positive example set
when we set up a lower decision threshold. Fig 6 and Fig 7 illustrates this point:
threshold with 0.4 performances slightly better in both satisfaction and success rate.
But the performance of threshold with 0.5 and 0.6 are not very different. That because
there exists a satisfaction critical value. Practically, the satisfaction value always
reaches a critical value in all of our experiments.

The reason for the phenomenon is caused by the criteria inconsistent between
consumer accepting and broker recommending. Consumer agents choose provider
agents for cooperation of most preference values. But Broker agents recommend
providers mainly based on property matching as they do not know the preference of
an individual agent. Note that the preference formula and the matching formula are
not corresponding. We show the ideal mathematical expectation of satisfaction below:

 E ∑ preference sP E|Positive E | ES_ · S_pvP E

Here Positive E means the set of positive example and ES_ is the

mathematical expectation of consumer property . In ideal state, consumer agents
accept all recommendation from broker agents, which indicates that satisfaction is the
average value of all preference values feedback from successful cooperation. And also

292 J. Xu and J. Cao

in ideal situation, the provider recommended from broker agent exactly matches the
consumer agent’s request. Therefore, the feedback preference directly related to the
value of consumer properties.

6 Conclusions and Future Work

With the tremendous growing number of web cloud service and the sharp increasing
demands from cloud users, establishing an integrated, scalable and fully distributed
framework and strategy of the cloud market becomes an important issue. The
significance of our work is that: 1) we borrow the idea of free commercial market in
modern cloud computing systems. 2) We proposed a broker-based self-organizing
mechanism to simulate the progress of cloud market conduction. And the simulation
experiment performs a highly stable and auto-adapt market system that both cloud
consumer and cloud provider achieve a win-win development.

As a satisfaction critical value exists in our model, we will focus on the
improvement of service selecting and response mechanism in our strategy in the
future. To avoid the criteria inconsistent of consumer accepting mechanism and
broker recommending mechanism, a more reasonable matching strategy should be
taken into consideration in our future work.

Acknowledgements. This work is partially supported by China National
Science Foundation (Granted Number 61272438), Research Funds of Science
and Technology Commission of Shanghai Municipality (Granted Number
14511107702, 12511502704).

References

1. Armbrust, M., et al.: A view of cloud computing. Communications of the ACM 53(4),
50–58 (2010)

2. Weiss, A.: Computing in the Clouds. netWorker 11(4), 16–25 (2007)
3. Twenty Experts Define Cloud Computing,

http://cloudcomputing.syscon.com/
4. Foster, I., et al.: Cloud Computing and Grid Computing 360-Degree Compared. In: Grid

Computing Environments Workshop, pp. 1–10 (2008)
5. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computingutilities. In: High Performance Computing
and Communications, pp. 5–13 (2008)

6. Invisible Hand Theory,
http://www.ecocommerce101.com/invisible-hand-theory.htm

7. Holland, J.H., Miller, J.H.: Artificial adaptive agents in economic theory. American
Economic Review 81(2), 365–370 (1991)

8. Buyya, R., Abramson, D., Venugopal, S.: The Grid Economy. Proceedings of the
IEEE 93(3), 698–714 (2005)

9. Song, B., Hassan, M.M.: EN Huh A novel Cloud market infrastructure for trading service.
Computational Science and Its Applications, pp. 44–50 (2009)

 A Broker-Based Self-organizing Mechanism for Cloud-Market 293

10. Grosu, D., Das, A.: Auction-based resource allocation protocols in grids. In: The 16th
IASTED International Conference on Parallel and Distributed Computing and Systems,
pp. 20–27 (2004)

11. Han, S.-M., Mehedi Hassan, M., Yoon, C.-W., Lee, H.-W., Huh, E.-N.: Efficient service
recommendation system for cloud computing market. In: Ślęzak, D., Kim, T.-h., Yau, S.S.,
Gervasi, O., Kang, B.-H. (eds.) GDC 2009. CCIS, vol. 63, pp. 117–124. Springer,
Heidelberg (2009)

12. Sim, K.M.: Agent-Based Cloud Commerce. Industrial Engineering and Engineering
Management, 717–721 (2009)

13. Sim, K.M.: A market-driven model for designing negotiation agents. Comput. Intell. 18(4),
618–637 (2002)

14. Sim, K.M.: Towards Complex Negotiation for Cloud Economy. Advances in Grid and
Pervasive Computing, 395–406 (2010)

15. Klos, T.B., Nooteboom, B.: Agent-based computational transaction cost economics.
Journal of Economic Dynamics and Control, 503–526 (2001)

16. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, pp. 499–501.
Addison-Wesley (2005)

17. Quinlan, J.R.: induction of decision trees. Machine Learning 1(1), 81–106 (1986)
18. Quinlan, J.R.: Decision trees and multi-valued attributes. In: Hayes, Michie, & Richards,

Mechine intelligence, vol. 11, pp. 305–318. Oxford University Press, Oxford (1988)
19. Mitchell, T.M.: Machine Learning, pp. 38–56. McGraw-Hill (1997)
20. JADE document, http://jade.tilab.com/
21. Georgeff, M., Pell, B., Pollack, M., et al.: The Belief- Desire-Intent ion Model of Agency.

In: Proc of the 5th Workshop on Agent Theories, Architectures, and Language, pp. 1–10
(1999)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 294–305, 2014.
© IFIP International Federation for Information Processing 2014

Group Participation Game Strategy for Resource
Allocation in Cloud Computing

Weifeng Sun1, Danchuang Zhang2, Ning Zhang1, Qingqing Zhang1, and Tie Qiu1,*

1 School of Software, Dalian University of Technology
116621 Dalian Liaoning, China

{wfsun,qiutie}@dlut.edu.cn, zhang_ning@mail.dlut.edu.cn,
zhang901140@163.com

2 Meteorological Administration of Dalian
116621 Dalian Liaoning, China
zhangdanchuang@163.com

Abstract. Based on the characteristics of cloud—resources belonging to the
same institution and independent resource pool, we proposed a model for the
complex task-resource and task-task interactions in cloud by game theory, and
proved the existence of Nash equilibrium in the game. In this game model,
every task selects resources by itself, rather than the resources are allocated by
cloud system. We propose two cloud resource allocation game models—CT-
RAG and CS-RAG. A new cloud resource allocation strategy—Group Partici-
pation Game Strategy (GPGS) is proposed based on these two game models.
We also find out and analyze the equilibrium state of the game with GPGS.
The theory analysis shows that GPGS can reduce the total cost of the system
in the condition that all tasks/subtasks are rational. Simulation compares Nash,
GPGS, Opt and “Round-Robin”. The results of evaluation show that the GPGS
is better.

Keywords: Cloud computing, resource allocation, game theory, Nash
equilibrium.

1 Introduction

Recently, the cloud computing[1] has brought another innovation in IT industry.
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources that can be rapidly
provisioned and released with minimal management effort or service provider interac-
tion[2]. Cloud computing can now be delivered as services over the internet. For
example, CloudCast[3] provides the short-term weather forecasts depending on cloud
computing services. The superiority of cloud computing compared to other parallel
computing is the concept of resource pool. The resource pool is a virtual set of re-
sources with discretionary combination and allocation, which can be expanded, allo-
cated and recycled dynamically. The resources of cloud are diverse, like compute,

* Corresponding author.

 Group Participation Game Strategy for Resource Allocation in Cloud Computing 295

storage, bandwidth, and so on. The cloud providers rent the resources to users and
charge by the time or other metrics. For example, for Google App Engine [4], the
Stored Data is charged by per gigabytes monthly.

However, the present pricing mechanisms and resource allocation strategies are far
from optimal. When cloud system is in a high load state, the existing algorithms (e.g.
FIFO, Round-Robin etc.) can’t achieve good performance. This problem will become
more and more prominent with the increase of cloud users. Moreover, the cloud users
aim to reduce the turnaround time and payment of the tasks, and the cloud providers
aim to improve the performance of the whole system. Hence, resource allocation in
cloud is a very important issue for not only the whole system but also every task.

It is generally accepted that game theory is effective to solve many issues in comput-
er science, such as in grid resource allocation [5], node stimulation in wireless networks
and P2P networks[6] [7].The basic elements of a game include: player, action, payoff,
information, strategy, outcome and equilibrium. In practice, a game is defined to model
the issue to be solved with the basic elements, and the purpose is to find the Nash Equi-
librium by game analysis. Nash equilibrium is a stable state with strategy set of all play-
ers. John F. Nash has proved that every game has Nash equilibrium [8]. Consequently,
game theory can be applied to solve many issues in computer science. In cloud, the
system manages and schedules different sources with the form of resource pool by vir-
tualization, and the tasks of different users compete for these resources. So it is reasona-
ble to define a game for cloud resource allocation. By setting a series of reasonable
allocation strategies, we can adjust the Nash equilibrium state of this game. And these
may improve the performance and load balancing of system.

In this paper, we combine the cloud resource allocation with game theory, and pro-
pose a new resource allocation strategy in cloud. It can minimize the total cost by
change the payoff of each player, analyze the process and the result of the equilibrium
state, and prove the allocation strategy we proposed can reduce the total cost of the
system.

The main contributions of this paper are:

• We propose a new cloud resource allocation game model and a new resource
allocation strategy GPGS based on the overall interests assuming that all tasks are
rational;

• We proved the existence of Nash equilibrium and GPGS equilibrium in GPGS;
• Analysis demonstrates that the GPGS equilibrium state achieved from GPGS has

smaller total cost of the whole system.

2 Related Work

With the development of cloud, traditional resource allocation strategy is no longer
suitable in cloud computing environment, [9] compare the difference of resource allo-
cation between cloud computing and traditional environments. That is:

• Divide the independent resource pool, allocate and release different physical and
virtual resources according to the need of tasks dynamically;

• Provide and release the resources flexibly and fast;
• Cloud system need to optimize the use of resource automatically.

296 W. Sun et al.

Cloud computing and grid computing are similar. Game theory has been widely
used in the research of grid resource allocation problems [10] [11].Combined with the
characteristics of cloud computing resource allocation, game theory can also be ap-
plied to solve the problem of resource allocation in cloud computing. [12] proposed a
cloud resource allocation strategy in continuous double auction framework based on
Nash equilibrium which can allocation the resources in the cloud environment effec-
tively. [13] proposed a cloud resource allocation strategy based on the evolutionary
game, achieving a minimum cost by change the resource selection strategy individual-
ly. [14] proposed a market-based resource allocation strategy, experiments results
show that this strategy could achieve the Nash equilibrium and a balance between
supply and demand effectively.

There are few papers which considered the conflict between the rationality of each
task and the total cost of the system. Usually, the allocation strategies of tasks in
cloud environments aim at the overall optimal system cost in the process of resource
selection. If a task is always considering itself to obtain a better payoff, then we call it
rational task. Rational tasks can change their strategies to enhance their own payoffs,
however raising the overall system costs at the same time. In this paper, on condition
that all tasks/subtasks are rational, we present a new cloud resource allocation game
model and proposed a new strategy based on the overall interests. The system can
achieve the minimum total cost while all tasks select resources base on this strategy.
And all tasks can obtain maximum payoff in the game.

3 Resource Allocation Game Model and Nash Equilibrium

In this section, a Cloud Task-Resource Allocation Games (CT-RAG) is proposed and
defined. CT-RAG models the resource allocation in cloud computing and captures the
task-resource and task-task interactions. Next, it shows the existence of Nash equili-
brium and the defect in an instance of CT-RAG because of the task rationality. This
paper considers the tasks which clients submit during some time as a batch. There-
fore, the resource allocation strategy of CT-RAG is considered as a static scenario.
We leave the real-time situation to future work.

3.1 Resource Allocation Game Modeling

In our model, the tasks act the player of a CT-RAG. The resource allocation deter-
mines the strategy of the tasks (players). In other words, task obtains the payoff by
means of selecting different resources. In this paper, there are several assumptions
about CT-RAG as follow:

1. Subtask is defined as the smallest execution unit in a cloud. Every task can be se-
parated by several same or similar subtasks. And all the subtasks of different tasks
have the same requirement of resource and execution time on a determinate re-
source. The subtasks of one task are independent. One task finished implies that all
the subtasks of this task are finished.

2. There is only one kind of resource (e.g. CPU) in this model. The tasks or subtasks
are charged base on execution time. It means that tasks or subtasks have to pay to

 Group Participation Game Strategy for Resource Allocation in Cloud Computing 297

cloud provider based on the expense function. The execution time will increase
with the increase of task number on one resource.

3. All tasks or subtasks are rational. It means that the only thing tasks considered is
how to increase their own payoff, rather than how to increase the system’s payoff.

4. The cost of one task is composition of execution time and the expense of price
charged by resource. The execution time of a task is the sum of all subtasks’ execu-
tion time. In this work, the cost of one task is a sum with the weight of execution
time and expense. And we defined the ratio is 1:1.

cost = completion time + expense . (1)

Suppose there are m tasks S= (S1, S2, ..., Sm) and n resources R= (R1, R2, ..., Rn) in
the cloud. All the tasks and subtasks simultaneously use the resources of cloud. There
is no limit to the amount of subtasks executed on one resource. For each subtask, the
execution time would enhance with the increase in amount of subtasks executed on
the same resource.

Each task Si∈S can be divided into xi subtasks, therefore the task-resource interac-
tions can be considered as task-task interactions. Each subtask can only execute on
one resource. Assume that the amount of all subtasks is M, which is ∑m

i =1xi=M.
Each resource Rj∈R is associated with an expense function fj(·) (fj∈IR+) and single
execution time tj of each subtask. fj(y) is the expense of every subtask when there are
y subtasks executed on resource Rj. This paper assumes that fj is a monotonic increas-
ing function and y·fj is also a monotonic increasing function. The vector f = (f1, f2, ...,
fn) shows the expense functions of all the resources in the cloud. By changing the
expense function of each resource, various resources can be distinguished in the
cloud. Such as the increase of fj’ can result in the decrease of yj, and yj is the amount
of subtask executed on resource Rj at Nash equilibrium. Obviously,∑m

i =1xi=∑n
j =1yj=M is

obtainable. The costs (completion time and expense) of each subtask executed on the
same resource are consistent. The vector t = (t1, t2, ..., tn) denotes the execution time of
all the resources in the case of one resource only executes one subtask. The comple-
tion time of each subtask on resource Rj equals the product of the execution time tj
and yj of this resource, which is Tj= yj×tj.

The expense function of each resource represents an abstraction of expense when the
task or subtask is executing on the resource, and is proportional to the ability of the
resource. All tasks must pay the money for the execution on the selected resources, this
is where expense occurs. On the condition that the cloud defines the expense function of
each resource according to its ability, the priority of each task can be distinguished by
given them different amount of money. But in our paper, there is no limit of the amount
of money for each task. We leave the discussion of it to future work.

In this paper, the allocation interaction between tasks and resources is represented
as a global resource allocation matrix A. Matrix A is composed of m rows, one for
each task, and n columns, one for each resource (Fig. 1(a)). aij=q indicates that q sub-
tasks of task Si are allocated to resource Rj, and aij=0 indicates there are not any sub-
tasks allocated to resource Rj. Global resource allocation matrix A is also regarded as
a m-dimensional vector (a1, a2, ..., am)T. ai is the strategy adopted by task Si in
CT-RAG and is given by the vector (ai1, ai2, ..., ain). The feasibility of the global
resource allocation matrix A depends on the following conditions:(1) ∑n

j =1 aij=xi and

298 W. Sun et al.

(2) aij≥0 ∀i,j. Similarly, there is a subtask-resource allocation matrix B. It can reflect
the allocation interaction between subtasks and resources (Fig. 1 (b)). In CT-RAG,
each subtask can only execute on one resource, so bij can only be two values bij=0 or
bij=1 and there is only one “1” in each row (strategy of each subtask).

The 3-tuple (S, A, P) represents a Cloud Task-Resource Allocation Game (CT-
RAG). In CT-RAG, the player is task, and the strategy of Si is the i-th row of matrix
A— (ai1, ai2, ..., ain). The vector P= (P1, P2, ..., Pm) is the payoff of all players (tasks),
and Pi is the reciprocal of the cost Ci of task Si. Pi and Ci is shown as Formula (2).
And the performance of the whole system is reflected by the total cost C which is the
sum of the cost of all tasks according to Formula (2).

(a) (b)

Fig. 1. Allocation matrixes of tasks-resources and subtasks-resources: (a) tasks-resources ma-
trix A ;(b)subtasks-resources matrix B

.

(2)

The cloud system aims to minimize the total cost C, and every task also tries to de-
crease its own cost Ci by altering the strategy.

3.2 Nash Equilibrium in CT-RAG

CT-RAG has a Nash equilibrium certainly like other games. In CT-RAG, each task
always tries to reduce its own cost by altering strategy continually according to the
strategies of others. This dynamic process with continuous changing can’t be stop
until the system is in a stable state. In other words, all tasks can’t reduce its cost by
changing its strategy. This state is the Nash equilibrium of CT-RAG.

Theorem 1: If all the expense functions of CT-RAG are linear, the Nash equilibrium
of CT-RAG is not unique. And there is the same zj, zj=∑

m
i

=1 aij, in all Nash equili-
briums.

Proof: In Nash equilibrium of CT-RAG, no task has motivation to change the stable
state. It means the cost of subtask executed on each resource is the same. If a new
subtask need to execute, its cost is the same whichever resource it selected. Assume

11 12 1 1

21 22 2 2

1 2

1 2

n

n

m m mn m

n

a a a x

a a a x

A

a a a x

y y y M

 =

11 12 1

21 22 2

1 2

1 2

1

1

1

n

n

M M Mn

n

b b b

b b b

B

b b b

y y y M

 =

1

1

1 1

(())

1 1 (())

(())

n

i i j j j j jj

n

i i i j j j j jj

m n

i j j j j ji j

C a T y f y

P C a T y f y

C a T y f y

=

=

= =

= × × +

= = × × +

= × × +

 Group Participation Game Strategy for Resource Allocation in Cloud Computing 299

that the amount of subtask executed on each resource is (z1, z2, …, zn). This can be
express as follow for each resource:

.
(3)

Since ti, fi, M is given, the homogeneous linear system consisting of n equations in
n unknowns can be solved. There is the same zj, zj=∑

m
i

=1 aij, in all Nash equilibriums.
Therefore, a resource allocation matrix A is Nash equilibrium if it satisfies the follow-
ing properties: (1) ∑n

j
=1 aij=xi, (2) ∑m

i
=1 aij=zj and (3) aij≥0 ∀i,j. So the Nash equili-

brium of CT-RAG is not unique.

Theorem2. If CT-RAG has linear expense function then the total cost of any Nash
equilibrium is at most 4/3 times as much as the total cost of theory optimal [15].

The proof of theorem 2 is shown in [16]. The gap of the two total cost is caused by
the rationality of tasks. In most instances, the strategy change of one task can result in
the cost increase of other tasks and the total cost C.

4 The Group Participation Game Strategy

To reduce the influence mentioned in section 3, we proposed a new resource alloca-
tion Group Participation Game Strategy (GPGS). Every task/subtask selects its
strategy according to GPGS by itself. It ensures the cost of the whole system at Nash
equilibrium is close to the global optimum. In this section, we assume the expense
function is linear. Other cases of expense function exceed the scope of this paper, and
linear expense function is feasible for cloud to adjust the Nash equilibrium. In this
section, a Cloud Subtask-Resource Allocation Games (CS-RAGs) is proposed and
defined firstly. The players of CS-RAGs are subtasks, rather than tasks. The analysis
of total cost belongs to CT-RAGs is similar as that of CS-RAGs, so we can calculate
the amount of subtasks executed on each resource (Y1, Y2, …, Yn). Then all tasks
select the resources in order according to this vector.

4.1 CS-RAGs and Nash Equilibrium

The 3-tuple (s, B, p) represents a Cloud Subtask-Resource Allocation Game (CS-
RAG). CS-RAG is a sequential game, and every subtask selects its strategy one by
one. In CS-RAG, the player is subtask. si represents the i-th subtask, and the strategy
of si is the i-th row of matrix B— (bi1, bi2, ..., bin). Every subtask can only be allocated
to one resource, so the strategy of si is also represented as wi, wi∈Z and 1≤wi≤n, it
means the subtask has been allocated to resource Rwi. The vector p= (p1, p2, ..., pM) is
the payoff of all players (subtasks), and p is the reciprocal of the cost ci of subtask si.
ci and the total cost C is shown as follow:

.

(4)

1 1 1 1

1

(1) (1) (1) (1)n n n n

n

jj

t z f z t z f z

z M
=

+ + + = = + + +
 =

1 1

()

()

i i i i

i i i i

i w w w w

M M

i w w w wi i

c T y f y

C c T y f y
= =

= × +

 = = × +

300 W. Sun et al.

And the payoff of every subtask is defined as follow:

 . (5)

As the analysis above, CS-RAG also has Nash equilibrium, and it is not unique.
We can get the number of subtask on every resource in Nash equilibrium of the game
with M subtasks and n resources according to formula (3), (4), (5).

 . (6)

4.2 Spillover Effect or Externality

Consider the situation that m tasks compete for two resources R1 andR2.Assuming that
number of all subtasks is M. Each subtask has only two choices—R1 or R2. Strategy of
subtask si depends on the strategy of other M-1 subtasks; and strategy of each subtask
will have an impact on other subtasks, which is called spillover effect. Supposing
there are y subtasks which choose R1, the cost of each subtask isc1(y), and M-y sub-
tasks which chooseR2, the cost of each subtask is c2(y), then the total cost of the sys-
tem is as Formula (7)

. (7)

If subtask si choose R2 at beginning, and change the strategy to choose resource R1,
then the number of subtasks which choose R1 rise to y+1.The cost of si change from
c2(y)to c1(y+1), and the total cost of the system is as Formula (8).

. (8)

The difference between C(y) and C(y+1) is the increment of total payoff.

 . (9)

The first itemc1(y+1)-c2(M-y)in Formula (9) is the payoff alteration of strategy
changer, called the marginal private gain. When the change of one subtask affects
other subtasks, the payoff alteration of other subtasks is called marginal spillover
effect, which is the second and third item of Formula (9). The spillover effect leads to
the payoff conflict between tasks and the whole system.

4.3 The Group Participation Game Strategy (GPGS)

Because of the subtask rationality, Nash equilibrium of CS-RAG can’t minimize the
total cost. Thus this paper proposes a group participation game strategy (GPGS) to
adjust CS-RAG, and all players in this game must observe this strategy. There are
three regulations of resource allocation strategy GPGS:

Regulation 1: xi is subtask number of task Si. Task S1, S2, ..., Sm are sequenced accord-
ing to xi. Assuming that S1, S2, ... , Sm is a sequential vector and S1is the task with least

1 1 ()
i i i iw w wi i wT y fp c y× += =

()1 1
(() / ()) / (() (1/))

n n

j j h h h j j h hh h
Y M b b t a t a t a

= =
′ = − − + + +

1 2
() () () ()C y yc y M y c y= + −

1 2
(1) (1) (1) (1) (1)C y y c y M y c M y+ = + + + − − − −

1 2 1 1 2 2
(1) () ((1) ()) ((1) ()) (1)((1) ())C y C y c y c M y y c y c y M y c M y c M y+ − = + − − + + − + − − − − − −

 Group Participation Game Strategy for Resource Allocation in Cloud Computing 301

subtasks. The regulation of resource selecting for all tasks is: S1 selects x1 resources
firstly. The next is S2, and Sm is the last one. All the subtasks will be executed syn-
chronously when all tasks have already selected resources.

Regulation 2: c1, c2, ... , cn are the cost of subtask on each resource. Every task selects
resource according to the vector c1, c2, ..., cn, and it can be calculated by this:

. (10)

In this paper, fj(·) is linear, so cj can also be expressed as follow:

. (11)

Regulation 3: The payoff of every subtask is defined as follow:

. (12)

When some subtask is selecting resource, λ is the number of subtask which has
already selected this resource, and cΔ is the increment of every subtask on this re-
source.

In practice, tasks select resources according to these three regulations, and it can be
seen as a CT-RAG with GPGS. The game with GPGS will converge to equilibrium
state. And we call it GPGS equilibrium in this paper. We attempt to ensure the total
cost of the GPGS equilibrium is close to optimal.

4.4 The Theory Analysis of GPGS

The aim of cloud computing resource allocation is achieving the least overall cost. So
the cloud computing resource allocation game can be regard as group game, and it is
appropriate that analyze the whole interest of cloud resource allocation by group
game theory. In group game, the strategy every player selected is not necessarily
known. The group game analysis focus on the player number of each strategy. We can
judge the performance of an allocation strategy by comparing the gap between the
Nash equilibrium and the GPGS equilibrium.

In CT-RAG, task Si can be divided into xi subtasks, so it has Cxin strategies. It is
complicated to analyze the overall interest by the unit of task. In this paper, the over-
all interest of all tasks is the same as the overall interest of all the subtasks, and every
subtask only has n strategies. Therefore, the overall interest of collective action can be
discussed by the unit of subtask. Then the analysis of CT-RAG turns into the analysis
of CS-RAG. First, spillover effect or externality will be described in CS-RAG. Next,
an example of m tasks and two resources will be given in order to show the conver-
gence process of Nash equilibrium. At last, the gap of the total cost between the Nash
equilibrium and the GPGS equilibrium will be deduced with liner expense function by
a general example. In this section, the increasing of overall interest is replaced by the
decreasing the total cost.

We have already analyzed the Nash equilibrium of CS-RAG in section 4.1.
The primary difference between CS-RAG and CS-RAG with GPGS is the definition
of payoff. In CS-RAG with GPGS, the payoff is defined as the reciprocal of ci+λcΔ.

()j j j j jc Y t f Y= × +

()j j j j j jc Y t a Y b= × + × +

1 ()i ip c cλ Δ= +

302 W. Sun et al.

If some subtask intends to enhance its own payoff, it is necessary to reduce not only
its cost, but also the impact of its strategy on other subtasks. Therefore, the rationality
is combined with the interest of whole system.

The convergence process of GPGS equilibrium is almost the same as Nash equili-
brium. Every subtask chooses the strategy which can maximize its own payoff. At the
same time, it can minimize the whole cost. We can get it from the definition of payoff
easily.

In the example of m tasks composed of M subtasks and two resources we men-
tioned in section 4.1, the equilibrium state will change with the increase of GPGS
strategy in the game. The total cost can be represented by this:

.
(13)

The GPGS equilibrium is the state with minimum total cost. So we can get the val-
ue of y:

. (14)

We can calculate the total cost in the two states and the difference between them:

.

(15)

Consider the general situation. Assuming there are m tasks composed of M sub-
tasks and n resources. GPGS equilibrium is the state which can minimize the whole
cost. And it can be shown as follow:

. (16)

Where Yj″ is the number of subtasks on resource Rj in GPGS equilibrium.
It can be solved by Lagrange Multipliers method. The process of the solution is

shown as follow:
Introduce a function: If C is the minimum, it means. And we get a system of linear

equations of n unknowns:

.

(17)

Therefore, we can get the solution of the GPGS equilibrium:

. (18)

By the above analysis, there is a less total cost of the system in CS-RAG with
GPGS, although all players aim to enhance their own payoff. In practice, the resource

1 2

1 1 1 2 2

2 2
2

() () ()

((() ()))

C y c y M y c y

t a b t a M y b M yy y

= × + − ×

= + + + + × − + × −× ×

2 2 2 1 1 2 1 2(() 0.5()) / ()y M t a b b t t a a= + + − + + +

2 2 2
2 2 2 2 2 2 2 2 1 1 2 1 2

2 2 2 2
2 2 2 2 2 2 2 2 1 2 1 1 2 1 2

2
2 1 1 2 1 2

() (() ()()) / ()

() (() ()() ()) / 4()

() / 4()

Nash

GPGS

Nash GPGS

C M t a Mb M t a M t a b b t t a a

C M t a Mb M t a M t a b b b b t t a a

C C b b t t a a

= + + − + + + − + + +

= + + − + + + − + − + + +

− = − + + +

1 1
 () 0 ,1

n n

j j j j j j jj j
min C Y t a Y b Y M y M j n

= =
′′ ′′ ′′= × + × + = ≤ ≤ ≤ ≤

1 1

1 2

1 12(0

2(0

)

)
n n

n

n n

t Y b

t Y b

Y Y Y M

a

a

λ

λ

′′+ + =

′′+ + =

′′ ′′ ′′+ + + =

+

 +

1 1
((() / 2())) / (() 1/ ())

n n

j j h h h j j h hh h
Y M b b t a t a t a

= =
′′= − − + + +

 Group Participation Game Strategy for Resource Allocation in Cloud Computing 303

allocation scheme is every player select resource by itself according to GPGS, rather
than the resource provider allocate integrally.

5 Experimental Evaluation

In this paper, we implement the evaluation test to verify the feasibility and perfor-
mance of our resource allocation strategy. In cloud environment, resource usually
consists of virtual resource pools and physical resources. These resources can be se-
lected by each user dynamically as required. Physical host is the most common cloud
computing node resource. In GPGS, resources are selected by each task based on
group game to reduce the total system cost and improve the efficiency.

The aim of a resource allocation is obtain the best performance of the whole sys-
tem. The total cost is an important index of the performance of the system. We com-
pare the total cost of the Nash, Optimal, “Round-Robin” and GPGS by the model we
proposed in section 3.1. “Round-Robin” has already been used well in system like
Hadoop. In the “Round-Robin” method, all resources are numbered from 1 to n. when
a task wants to execute with k resources, it is scheduled on the next k resources, as a
Round-Robin manner.

In practice, there are sorts of resources in cloud. And we can distinguish these re-
sources by different expense function in our model. We used two different examples
to analyze different strategies:

• The capacities of all resources are similar. It means the expense function of them is
similar too, and the functions are all linear.

• The gap between the capacities of different resources is large. They have obvious
different linear expense function.

Fig. 2. The Comparison of total cost with homogeneous resources in different strategies

304 W. Sun et al.

Fig. 3. The Comparison of total cost with heterogeneous resources in different strategies

For comparing the performance of different resource allocation strategies, we used
five host resources with heterogeneous expense function. We recorded the total cost
of each resource allocation strategies when the number of subtask is from 200 to
1000.Fig. 2 compares the performance of the various strategies with homogeneous
resources, and Fig. 3 compares the performance of the various strategies with hetero-
geneous resources. In both two cases, the total cost of GPGS is less the „Round-
Robin‰ obviously. When the expenses of different resources are quite different, the
total cost of GPGS is less than NashÊs, and it is quite close to OptÊs.

6 Conclusion and Future Work

In this paper, we proposed a new resource allocation game model in cloud. Further,
we demonstrated the existence of Nash equilibrium in the game and found that Nash
equilibrium can’t reduce the total cost. For reduce the total cost, we proposed a new
cloud resource allocation strategy—group participation game strategy (GPGS), and
compared the difference between Nash equilibrium state and GPGS equilibrium state
in the game. By the analysis of the difference between the two states, we concluded
that rational tasks lead to the increase of total cost. The gap between Nash equilibrium
and GPGS equilibrium was shown by means of a special example. Simulations com-
pared the total and load balance between Nash, Optimal, “Round-Robin” and GPGS.
The result showed GPGS can reduce the total cost effectively.

However, limited to the page limit, we don’t analyze the load balance and the task
fairness deviation which represents the fairness of tasks. In addition, the game in this
paper is static, and different subtasks are relative in many cases of cloud resource
allocation. We do not take these into consideration in this paper. In future work, we
will talk about the analysis the load balance and the task fairness deviation, and we
will take the dynamic resource allocation strategy into consideration.

Acknowledgments. This work is supported in part by Natural Science Foundation of
China under grant No. 61103233, 61202442, 61202443.

 Group Participation Game Strategy for Resource Allocation in Cloud Computing 305

References

1. Jadeja, Y., Modi, K.: Cloud computing - concepts, architecture and challenges. In: Interna-
tional Conference on Computing, Electronics and Electrical Technologies, pp. 877–880
(2012)

2. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute of
Standards and Technology (2011)

3. Krishnappa, D.K., Irwin, D., Lyons, E., Zink, M.: CloudCast: Cloud computing for
short-term mobile weather forecasts. In: IEEE International, Performance Computing and
Communications Conference, pp. 61–70 (2012)

4. Google app engine, http://appengine.google.com/
5. Yaghoobi, M., Fanian, A., Khajemohammadi, H., Gulliver, T.A.: A non-cooperative game

theory approach to optimize workflow scheduling in grid computing. In: Pacific Rim Con-
ference on Communications, Computers and Signal Processing, Victoria BC, pp. 108–113
(2013)

6. Michiardi, P., Molva, R.: A collaborative reputation mechanism to enforce node coopera-
tion in mobile ad-hoc networks. In: Proceedings of the IFIP TC6/TC11 6th Joint Working
Conference on Communications and Multimedia Security, Deventer, The Netherlands,
pp. 1072–1121 (2002)

7. Wang, T.-M., Lee, W.-T., Wu, T.-Y., Wei, H.-W., Lin, Y.-S.: New P2P Sharing Incentive
Mechanism Based on Social Network and Game Theory. In: International Conference on
Advanced Information Networking and Applications Workshops, Fukuoka, pp. 915–919
(2012)

8. Nash, J.: Non-cooperative Games. Annals of Mathematics 54, 289–295 (1951)
9. Foster, I., Zhao, Y., Raicu, I., Lu, S.Y.: Cloud Computing and Grid Computing 360-degree

compared. In: Grid Computing Environments Workshop, Austin TX, pp. 1–10 (2008)
10. Li, Z.J., Cheng, C.T.: An Evolutionary Game Algorithm for Grid Resource Allocation un-

der Bounded Rationality. Concurrency and Computation: Practice and Experience 9,
1205–1223 (2009)

11. Caramia, M., Giordani, S.: Resource allocation in grid computing:An economic model.
WSEAS Transactions on Computer Research 3, 19–27 (2008)

12. Guiran, C., Chuan, W., Yu, X.: Efficient Nash Equilibrium Based Cloud Resource Alloca-
tion by Using a Continuous Double Auction. In: International Conferenceon Computer
Design and Applications, Shenyang China, pp. 94–99 (2010)

13. Wei, G., Vasilakos, A.V., Zheng, Y., Xiong, N.: A game-theoretic method of fair resource
allocation for cloud computing services. The Journal of Supercomputing 54, 252–269
(2010)

14. You, X.D., Wan, J.: ARAS-M: Automatic Resource Allocation Strategy based on Market
Mechanism in Cloud Computing. Journal of Computers 6, 1287–1296 (2011)

15. Jalaparti, V., Nguyen, G.D., Gupta, I., Caesar, M.: Cloud Resource Allocation Games.
Technical Report, University of Illinois (2010),
http://hdl.handle.net/2142/17427

16. Roughgarden, T., Tardos, E.: How bad is selfish routing. Journal of the ACM 49, 236–259
(2002)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 306–320, 2014.
© IFIP International Federation for Information Processing 2014

Towards Optimal Collaboration of Policies
in the Two-Phase Scheduling of Cloud Tasks

Cong Xu1,2, Jiahai Yang1,2, Di Fu1,2, and Hui Zhang1,2

1 Institute for Network Sciences and Cyberspace, Tsinghua University,
Beijing 100084, China

2 Tsinghua National Laboratory for Information Science and Technology (TNList),
Tsinghua University, Beijing 100084, China

xucong10@mails.tsinghua.edu.cn, {yang,hzhang}@cernet.edu.cn,

fudi@bupt.edu.cn

Abstract. The use of virtualization technology makes software applications
more scalable and cost effective when they are deployed over cloud computing
platforms, but virtualization technology also brings challenges to task
scheduling over cloud. The commonly used list scheduling schemes split the
scheduling process into two phases: ordering and dispatching. However,
majorities of recent researches about scheduling of cloud tasks concentrate on
optimizing the schedulers’ performance in one phase, but seldom consider the
collaborations of scheduling policies used in different phases. This paper
summarizes some representative ordering and dispatching policies used in list
schedulers, models the execution processes of these ordering and dispatching
policies using Stochastic Petri Nets (SPN), and simulates the list scheduling
process of cloud tasks. Based on the modeling and experimental results, we
further evaluate which composition of ordering and dispatching policies
provides optimal performance in the two-phase scheduling process of cloud
tasks.

Keywords: list scheduling, ordering policy, dispatching policy, Stochastic Petri
Net, queuing theory.

1 Introduction

Cloud computing service providers are interested in improving the task scheduling
mechanisms to provide better Quality of Service (QoS) to their users. However, with
the increasing scale of cloud computing platform, a single cloud may host and provide
more and more diverse services, which brings new challenges to the scheduling of
cloud tasks. The dynamicity of virtual environment [1], diversity of software
applications [2] and elasticity of cloud services [3] exacerbate the dynamicity and
complexity of the scheduling mechanisms: a cloud task’s processing rate tends to
have significant variations since the virtual resources allocated to the same task may
be different. Hence, how to optimally dispatch the task requests to the proper virtual
resources for processing is an important issue. Moreover, there will also be times

 Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks 307

when a task’s arrival rate is greater than its maximum possible processing rate, then
how to determine an optimal task execution order to reduce the peak load of a cloud
computing platform is another significant issue.

List schedulers [4] are widely used in the dynamic scheduling of cloud tasks. As
shown in Fig. 1, a list scheduler splits the scheduling process into two phases: one is
the ordering phase, where tasks are sorted according to a specific ordering policy; the
other is the dispatching phase, where tasks are dispatched to the allocated virtual
resources (VMs) for processing according to a specific dispatching policy. The
existing studies on task scheduling over cloud mostly concentrate on improving the
schedulers’ performance in one phase, such as optimizing the task processing
sequence in the first phase to minimize the overall response time [4-11]; or optimizing
the assignment of the task requests to the VMs to improve the utilization of cloud
resources [12-18] and to ensure the fairness of each task [19-21]. However, only few
researches have further studied the optimal collaboration of ordering and dispatching
policies in different phases [22].

Fig. 1. Two-phase task scheduling process in a cloud computing platform

This paper summarizes some representative ordering and dispatching policies which
are widely used in both industry and academic communities. Using Stochastic Petri Nets
(SPN), we theoretically and consistently model the execution processes of these ordering
and dispatching policies for the first time, and analyze the performance of a list scheduler
under different compositions of policies. Based on the modeling and experimental
results, we further evaluate which composition of ordering and dispatching policies
provide optimal performance in the two-phase scheduling process of cloud tasks.

The rest of this paper is organized as follows. Section 2 summarizes representative
ordering and dispatching policies. Section 3 proposes a Stochastic Petri Net model to
describe the scheduling process, studies some features of different ordering and
dispatching policies and analyzes the performance of a list scheduler under different
ordering and dispatching policies. Section 4 evaluates the performance of the list
scheduler under different collaborations of ordering and dispatching policies. Section
5 concludes the paper.

308 C. Xu et al.

2 Scheduling Policies in the Two Phases

This section summarizes some representative ordering and dispatching policies used
in the list scheduler of cloud computing platforms. These policies are commonly used
in both industry and academic communities.

2.1 Ordering Policies in the First Phase

When the average task arrival rate exceeds the platform’s processing rate, the
unhandled tasks will be stalled in the scheduling queue, and the platform tends to be
overloaded. At this time, an appropriate ordering policy is needed to determine an
optimal task processing sequence to slow down the growth rate of the scheduling
queue. The commonly used ordering policies are listed below:

Random Ordering Policy: This policy randomly chooses one type of the cloud tasks
for processing. All the tasks have equal chances to be scheduled in this policy, which
achieves better fairness of tasks.

First in First Out (FIFO) Policy: This is a simple and widely used ordering policy,
which makes the tasks to be executed in the order they arrived. This policy ensures all
the tasks suffer almost the same waiting delay in the ordering phase.

Shortest Remaining Time First (SRTF) Policy: This policy ensures the smallest
task in the scheduling queue to be scheduled first [5], aiming to improve the
responsiveness of the scheduler when the load is heavy.

Longest Remaining Time First (LRTF) Policy: This policy ensures the largest task
in the scheduling queue to be scheduled first, aiming to improve the throughput of the
scheduler.

Myopic MaxWeight Policy: This policy can be viewed as an improvement of SRTF
or LRTF policy. Neither SRTF nor LRTF policy is a starvation-free ordering since the
large sized tasks under SRTF or the small sized tasks under LRTF are likely to wait
forever when the load is heavy [22]. To solve this problem, a weight is assigned to
each task in the scheduling queue in this policy, and the value of a task’s weight is the
task’s size (for LRTF) or task’s execution rate (for SRTF) multiplies its waiting time.
This policy schedules the task with the maximum weight first, which ensures the tasks
suffering long waiting time have chances to be processed.

2.2 Dispatching Policies in the Second Phase

The dispatching policies assign tasks to virtual resources for processing. An
appropriate dispatching policy optimizes the resource utilization of a cloud platform
and further improves the performance of the scheduler. The commonly used
dispatching policies are listed below:

Random Routing Policy (RR): This policy randomly dispatches a task to one of the
VMs for processing, which ensures each allocated VM has an equal chance to process
a task.

 Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks 309

Shortest Queue Routing Policy (SQR): This policy dispatches a task to the VM with
the shortest processing queue, which achieves better fairness by balancing the load on
each VM [19, 20].

Shortest Expected Delay Routing Policy (SEDR): This policy dispatches a task to
the VM with the shortest processing delay, which can be viewed as a generalization of
the SQR policy for homogeneous servers [12].

Overall Shortest Expected Delay Routing Policy (OSEDR): This policy dispatches
a task to the appropriate VM to keep the overall processing delay of a server
minimum [21], it optimizes the sum of the execution delays of all the tasks on each
server.

3 Modeling and Analysis of Scheduling Policies

In this section, we describe the list scheduling process using the SPN model. By
modeling different ordering and dispatching policies, we formulate some performance
metrics (e.g. average resource utilization of a service). Furthermore, we evaluate the
performance of a list scheduler according to our modeling results.

Fig. 2. SPN model of the two-phase task scheduling process

3.1 Description of Scheduling Process Using SPN Model

Fig. 2 shows the SPN model of the two-phase list scheduling process shown in Fig. 1.
It describes a scenario that a cloud computing platform comprises m servers, and
processes n types of different tasks. Some important notations and definitions used in
the SPN model and subsequent derivations are illustrated in Table 1. The scenario
considered here is dynamic or online scheduling of small sized tasks onto a fixed non-
preemptive cloud system.

310 C. Xu et al.

Table 1. Summary of Key Notations and Definitions

Notations Definitions

Ci. Timed transition, indicates the arrvial of task i

λi Poisson arrival rate of the task i

Li.
Free choice conflict transition, decides if task i can be buffered in the global

scheduling queue

WQi Place, indicate a logical sub scheduling queue of task i

WQi(t) Length of logical sub scheduling queue WQi at time t

Di
Free choice conflict transition, decides if task i can be processed under a specific

ordering policy

Pi[D(t)] Probability that a request of task i passes Di at time t

Mi Transportation of task i from global scheduling queue to a specific VM for processing

Fij
Free choice conflict transition, decides if task i can be dispatched to the allocated VM

located on server j

Pij[F(t)] Probability that requests of task i pass transition Fij at time t

TQij Processing queue of task i on server j

TQij(t) Length of processing queue TQij at time t

lmax Maximum length of each processing queue

λij Arrival rate of task i to its processing queue on server j

Sij Timed transition, indicates the processing of task i on server j

μij Processing rate of task i on its allocated VM located on server j

ρij Utilization of the VM allocated to task i on server j

Tavg Average completion time of a task

ρavg(i) Average resource utilization of task i

ρworst(i) Worst case resource utilization of task i

For analytic tractability, we assume the arrival of task i satisfies Poisson
distribution with mean rate λi. After arriving, a token representing task i in the SPN
will come to place AQi and decide if it can pass through transition Li to be buffered in
the global scheduling queue. For analytic tractability, we assume that the size of the
global scheduling queue is properly set to avoid task losses.

An ordering policy determines the value of Pi[D(t)], which is the probability that a
request of task i in the scheduling queue can be handled at time t. To accurately
describe the ordering policies, we assume that there exists a sub logical scheduling
queue WQi which buffers the arrived requests for task i. Suppose the arrival rate of
task i changes to λi after the token passes through transition Li, then λi =λi Pi[D(t)].

A dispatching policy determines the enabling function of each transition Fij, which
further determines the value of Pij[F(t)]. Pij[F(t)] is the probability that a request of
task i is dispatched to a VM located on server j for processing. Finally, the arrival rate
of task i to its processing queue TQij on server j is: λij=λi Pij[F(t)] =λi Pi[D(t)] Pij[F(t)].

 Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks 311

Then the tasks in the processing queue will be serially processed by the program
running on the corresponding VM, which is similar to the scenario described in
M/G/1 model. For analytic tractability, we assume the processing rate of each task i
on server j is exponentially distributed with mean value μij, and the tasks’ sizes are
sorted in ascending order from task 1 to task n. Suppose the VMs on the same server
have the same configuration, then the execution rates of the tasks dispatched to the
same server satisfy: μ1j ≥ μ2j ≥ …≥ μnj (1 ≤ j ≤ m).

Since the utilization metrics and responsiveness metrics are the most frequently
used metrics to evaluate the performance of a scheduling policy, we derive the
expressions of average resource utilization and average completion time of task i
based on existing modeling results introduced in queue theory [24]:

1 1

lim [()] [()]
()

m m i i ijij t
avg

j j ij

P D t P F t
i

m m

λρ
ρ

μ
→∞

= =

⋅
= = (1)

max max

max max

1 1
max

1 1
1 1 1 1

[()] (1) (1) (1)1
lim

1 [()] [()](1) 1
(1)

1

l ln m n m
ij ij ij ij ij

avg l lt
i j i jij i i ij ij ij

ij
ij

E TQ t l
T

mn P D t P F t
mn

ρ ρ ρ ρ
ρ λ ρ ρ

λ
ρ

+ +

+ +→∞= = = =

− − + −
= =

− − + −
−

−

(2)

1 1

, , [()] 1 [()] 1
n m

i ij
i j

i j P D t P F t
= =

∀ = =

The value of ρavg(i) and Tavg are determined by the value of Pi[D(t)] and Pij[F(t)].
Hence, we need to derive the expressions of Pi[D(t)] and Pij[F(t)] under different
ordering and dispatching policies.

3.2 Modeling of Ordering Policies

First, we derive the expressions of Pi[D(t)] in the steady-state under different ordering
policies.

Random Ordering Policy. Since this policy randomly chooses one type of the cloud
tasks for processing, the probability is time-independent, so the expression of Pi[D(t)]
in the steady-state is:

[()] lim [()] 1 /i it
P D t P D t n

→∞
= =

FIFO Policy. Using FIFO policy, the value of Pi[D(t)] in the steady-state is positively
correlated to the arrival rate of task i [24]. Thus:

1

lim [()] /
n

i i jt
j

P D t λ λ
→∞ =

=

SRTF Policy. This policy ensures the smallest task in the queue to be scheduled first.
Using this policy, if task i is to be processed, then the logical scheduling queue of task
1 to task i-1 should be empty, hence the expression of Pi[D(t)] is:

312 C. Xu et al.

1

1

[()] [() 0] [() 0]
i

i j i
j

P D t P WQ t P WQ t
−

=

= = ⋅ >∏

Consider the steady-state, if the logical scheduling queue of task j is not empty,
then at least one of this task’s processing queue is full. Therefore, we get:

max max
1 1

lim [() 0] [lim ()], lim [() 0] 1 [lim ()]
m m

j js j js
t t t t

s s

P WQ t P TQ t l P WQ t P TQ t l
→∞ →∞ →∞ →∞

= =

= = < > = − <∏ ∏

Based on the modeling results of M/G/1 model, we derive the expression of
Pi[D(t)] in the steady-state:

max max

max max

1

1

1

1 1
1 1 1

lim [()] lim [() 0] [() 0]

(1) (1)
[1 ()]

1 1

i

i j it t
j

l lm i m
js js is is

l l
s j sjs is

P D t P WQ t P WQ t

ρ ρ ρ ρ
ρ ρ

−

→∞ →∞
=

−

+ +
= = =

= = ⋅ >

− −= ⋅ −
− −

∏

∏∏ ∏

LRTF Policy. This policy ensures the largest task in the scheduling queue to be
scheduled first. Similar to the derivation in SRTF policy, we get the expression of
Pi[D(t)] in the steady-state:

max max

max max

1

1 1
1 1 1

lim [()] lim [() 0] [() 0]

(1) (1)
[1]

1 1

n

i j i
t t

j i

l lm n m
js js is is

l l
s j i sjs is

P D t P WQ t P WQ t

ρ ρ ρ ρ
ρ ρ

→∞ →∞
= +

+ +
= = + =

= = ⋅ >

− −= ⋅ −
− −

∏

∏ ∏ ∏

Myopic MaxWeight Policy. This policy determines the weight of a task based on a
task’s size and waiting time. To approximately model a task’s waiting time, we
assume that the waiting time of task i is positively correlated to WQi(t), (If the first
task in WQi cannot be handled, all the followed tasks will be blocked. So the queue
length reflects the waiting time of the first task). Based on SRTF policy, the
expression of Pi[D(t)] under Myopic MaxWeight policy should be modified as:

1

11

[()] ([() 0] [() 0]) () / ()
i n

i j i i k
kj

P D t P WQ t P WQ t WQ t WQ t
−

==

= = ⋅ > ⋅ ∏

Then the expression of Pi[D(t)] in the steady-state can be derived as follows:

max max

max max

max

1

11

1

1 1
1 1 1

1
max

1 1 1

lim [()] lim [() 0] [() 0] () / ()

(1) (1)
[1]

1 1

(1)
/ () [

1 1

i n

i j i i k
t t

kj

l lm i m
js js is is

l l
s j sjs is

lm m m
is is

is is
s s s is

P D t P WQ t P WQ t WQ t WQ t

l
m

ρ ρ ρ ρ
ρ ρ

ρ ρρ ρ
ρ

−

→∞ →∞ ==

−

+ +
= = =

+

= = =

= = ⋅ > ⋅

− −= ⋅ −
− −

+− − −
− −⋅

∏

∏∏ ∏

 max

max

max

1

1
max

1
1 1 1 1

]

(1)
{ / () []}

1 1

l
is

ln m m m
ks ks

ks ks l
k s s s ks ks

l
m

ρ
ρ ρρ ρ

ρ ρ

+

+

+
= = = =

+− − −
− −

Based on the above derivations, we get the specific expressions of Pi[D(t)] under
different ordering policies, which is the foundation of further evaluations.

 Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks 313

3.3 Modeling of Ordering Policies

In the second phase, we need to formulate Pij[F(t)] in the steady-state under different
dispatching policies.

Random Routing Policy (RR). This policy randomly dispatches a task to one of the
m allocated VMs for processing, so the probability is time-independent:

[()] lim [()] 1/ij ijt
P F t P F t m

→∞
= =

Shortest Queue Routing Policy (SQR). This policy dispatches a task to the VM with
the shortest processing queue. The probability Pij[F(t)] can be formulated as:

1
, ()

|| () ||[()]

0 , ()
ij

if j SQR F
SQR FP F t

if j SQR F

 ∈=
 ∉

1() { | () ((),..., ())}ij i imSQR F j TQ t Min TQ t TQ t= =

Consider the steady-state, the probability that task i is dispatched to VM located on
server j is positively correlated to its expected processing rate on server j. Therefore,
the expression of Pij[F(t)] in the steady-state is:

1

lim [()] /
m

ij ij is
t

s

P F t μ μ
→∞ =

=

Shortest Expected Delay Routing Policy (SEDR). This policy dispatches a task to
the VM with the shortest processing delay. Pij[F(t)] can be formulated as:

1
, ()

|| () ||[()]

0 , ()
ij

if j SEDR F
SEDR FP F t

if j SEDR F

 ∈=
 ∉

1 1() { | () / (() / ,..., () /)}ij ij i i im imSEDR F j TQ t Min TQ t TQ tμ μ μ= =

Consider the steady-state, the probability that task i is dispatched to VM located on
server j is positively correlated to the square of its processing rate on server j.
Therefore, the expression of Pij[F(t)] in the steady-state is:

2 2

1

lim [()] /
m

ij ij is
t

s

P F t μ μ
→∞ =

=

Overall Shortest Expected Delay Routing Policy (OSEDR). This policy dispatches
a task to the appropriate VM to keep the overall processing delay of a server
minimum. The probability Pij[F(t)] can be formulated as:

1
, ()

|| () ||[()]

0 , ()
ij

if j OSEDR F
OSEDR FP F t

if j OSEDR F

 ∈=
 ∉

1 1
1 1 1

() { | () / (() / ,..., () /)}
n n n

ij ij i i im im
i i i

OSEDR F j TQ t Min TQ t TQ tμ μ μ
= = =

= =

This policy minimizes the sum of all the tasks’ processing delays on a server,
aiming to improve the overall execution time of a server. However, in the scenario
described in Fig. 1, the VMs located on the same server will process different tasks

314 C. Xu et al.

simultaneously; hence the optimization goal should be the processing delay of the
slowest task, but not the sum of processing delays. This policy may be not applicable
in the scheduling of cloud tasks, hence will not be modeled in the following context.

3.4 Performance Analysis of Scheduling Policies

Substitute the expressions of Pi[D(t)] and Pij[F(t)] into formula (1), we can calculate
the value of ρavg(i), which can be further used to evaluate the performance of different
collaborations of ordering and dispatching policies. Some useful conclusions are
illustrated below:

Based on the modeling results, we prove that SEDR and SQR optimize the
utilization of each task in average and worst cases respectively, no matter what
ordering policy they are collaborated with.

Optimizing the average resource utilization of task i is to minimize the value of
ρavg(i). Substitute the expression of Pij[F(t)] into (1), we get the expressions of ρavg(i)
under different dispatching policies:

SQR:

2
2

21 1 1

1

() /
m m m

iji i
avg ij ijm

j j j
ij ij

j

i
m m

μλ λρ μ μ
μ μ= = =

=

= ⋅ = ⋅

(3)

SEDR:
1 1 1

() [/ ()] /
m m m

i
avg ij ij ij i ij

j j j

i
m

λρ μ μ μ λ μ
= = =

= ⋅ =

(4)

Calculate the value of (4)-(3):
1

2 2 2

1 1 1 1 1

2 2 2

1 1 1 1 1 1

() ()
1

() 0

m m m m m

ij ij ij ij ik
j j ji i k i

avg i i im m m m m m

ij ij ij ij ij ij
j j j j j j

m

i
m m m

μ μ μ μ μ
λρ λ λ λ

μ μ μ μ μ μ

−

= = = = = +

= = = = = =

− −
Δ = ⋅ − ⋅ = ⋅ = ⋅ ≥

Thus, SEDR policy provides better resource utilization of a task than SQR policy
in average case. Similarly, we can prove that SEDR policy provides better resource
utilization of a task than the other dispatching policies shown in this paper. Due to the
space limitation, we omit the proof details here.

On the other hand, in the worst case, a request of task i is likely to be blocked in
the scheduling queue when task i’s processing queue with the heaviest load is full.
Hence the worst case resource utilization of task i is determined by the utilization of
task i’s VM on the heaviest load:

1

1

lim [()] lim [()]
() { ,..., }

i i i imt t
worst

i im

P F t P F t
i Max

λ λ
ρ

μ μ
→∞ →∞=

An optimal scheduling policy should minimize the value of ρworst(i). We know
ρworst(i) gets the minimum value when:

 Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks 315

1 1 2 2lim [()] / lim [()] / ... lim [()] /i i i i im imt t t

P F t P F t P F tμ μ μ
→∞ →∞ →∞

= = = (5)

To satisfy (5), the expression of Pij[F(t)] should be:

1

lim [()] /
m

ij ij is
t

s

P F t μ μ
→∞ =

=

(6)

We find that (6) is the same as the expression of Pij[F(t)] under SQR policy. Hence
SQR dispatching policy provides optimal utilization of tasks in the worst case.

Next, we prove that, when the requests of different tasks are arriving uniformly,
SRTF is the optimal ordering policy to collaborate with SEDR in the average case,
while LRTF is the worst ordering policy to collaborate with SEDR.

Average resource utilization of all the tasks can be expressed as follows:

 1 1 1

lim [()] [()]1
()

n n m i i ij
t

total avg
i i j ij

P D t P F t
i

n mn

λ
ρ ρ

μ
→∞

= = =

⋅
= = (7)

Since the dispatching policy SEDR is chosen, the value of Pij[F(t)] is determined.
The requests of different tasks are uniformly arrived, so the value of λi is basically
identical. And we have assumed μ1j ≥ μ2j ≥ …≥ μnj, hence we get:

1 2
1 1 12

1 1 1
...

m m m

n
j j jij j nj

λ λ λ
μ μ μ= = =

≤ ≤ ≤

And the value range of ρtotal should be:

1
1 1 1 11

lim [()] lim [()]1 1m m m mij ij
t t

total n
j j j jj nj

P F t P F t

mn mn
λ ρ λ

μ μ
→ ∞ → ∞

= = = =

⋅ ≤ ≤ ⋅

At this time, the value of ρtotal is minimum when:

1lim [()] 1, lim [()] 0, 2i
t t

P D t P D t i n
→∞ →∞

→ → ∀ ≤ ≤

And the value of ρtotal is maximum when:

lim [()] 1, lim [()] 0, 1 1n i
t t

P D t P D t i n
→∞ →∞

→ → ∀ ≤ ≤ −

In the average case, the processing queue is not full, hence:

1 0 1 , 1ij i n j mρ− >> ∀ ≤ ≤ ∀ ≤ ≤

By calculating the value of Pi[D(t)] under different ordering policies, we get the
following conclusions:

 The value of P1[D(t)] in the steady-state is closest to 1 under the SRTF
ordering policy, which indicates that SRTF is the optimal ordering policy to
cooperate with SEDR

 The value of Pn[D(t)] in the steady-state is closest to 1 under the LRTF
ordering policy, which indicates that LRTF is not an appropriate ordering
policy to achieve optimal resource utilization.

316 C. Xu et al.

 The value of Pi[D(t)] is fixed under the FIFO ordering policy, which indicates
that FIFO is a moderate ordering policy.

 P1[D(t)] also gets the maximum value under the Myopic MaxWeight ordering
policy, but the value is not so close to 1 compared with the value of P1[D(t)]
under the SRTF policy. Thus, using Myopic MaxWeight policy, we can also
achieve relatively good resource utilization in the average case, but it is not
the best choice.

If the requests of different tasks are not uniformly arrived, similarly we can prove
that the optimal ordering policy to collaborate with SEDR should satisfy:

1 2
1 1 1 11 2

1 1 1 1
lim [()] 1 { , ,... }

m m m m

i i n
t

j j j jij j j nj

P D t Minλ λ λ λ
μ μ μ μ→∞ = = = =

→ ∀ =

However, in the worst case, the processing queue is nearly full, and when a request
of task i is blocked in the scheduling queue, it will not be processed. So, there is a
probability that:

1
1 1

1m

j j

λ
μ=

→ ∞

At this time, SRTF is not the optimal ordering policy since:

1
1 1

1
{ lim [()] } , lim [()] 1

n m

i it t
i j ij

P D t if P D tλ
μ→∞ →∞= =

⋅ → ∞ →

And Myopic MaxWeigtht is an optimal ordering policy to cooperate with SQR,
since it reduces the value of P1[D(t)], but also keep it maximum. The collaboration of
Myopic MaxWeight ordering and SQR dispatching has been proved to be throughput
optimal elsewhere [22, 25].

Using our model, we can also evaluate the average responsiveness of the tasks
under different collaborations of ordering and dispatching policies, by substituting the
expressions of Pi[D(t)] and Pij[F(t)] into (2) and comparing the value of Tavg. Due to
the space limitation, we omit the evaluation of other performance metrics here.

4 Experiments and Evaluations

In this section, we realize different collaborations of ordering and dispatching policies
in the scheduling process of cloud tasks. Based on the experimental results, we
evaluate the performance of the list schedulers and validate our modeling results.

We simulate the scenario where a cloud computing platform comprises N servers,
and processes tasks with 5 different sizes (i.e. 5 types of tasks). The tasks simulated
here are the simple character counting tasks, thus we can approximately predict the
processing time of a task according to the task’s size. The task scheduling process
simulated in our experiment is the same as shown in Fig. 1. The arrival rate of task i
satisfies Poisson distribution with mean rate λi, and the requests of different tasks are

 Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks 317

uniformly arrived, thus λ1 = λ2 =…= λ5. The tasks’ sizes are sequenced in ascending
order, hence the processing rate of each task on the platform satisfies: μ1j ≥ μ2j ≥…≥

μ5j (1≤ j≤ N). The simulation time is set long enough (1000 time units) to make the
scheduling process reach its steady-state.

Since the utilization metrics reflect the throughput of a system, we record the
percentage of processed tasks at each time point to evaluate the throughput of the
platform. To make our simulation more convincible, we simulate dynamic scheduling
of tasks onto a large scale cloud system with 500 servers (N=500). Twenty-five list
schedulers work together to order the arrived tasks and dispatch them to 2500 VMs
located on the 500 cloud servers.

Fig. 3 shows the throughput of the cloud computing platform at each time point
under different collaborations of ordering and dispatching policies. We simulated the
collaborations of all the dispatching policies introduced in this paper and ordering
policies FIFO (shown in Fig. 3A), SRTF (shown in Fig. 3B), LRTF (shown in Fig.
3C) and Myopic MaxWeight (shown in Fig. 3D).

We can see from Fig. 3A-3D that, no matter what ordering policy is used, SQR and
SEDR dispatching policies achieve better throughput to the cloud platform among the
four dispatching policies. This phenomenon validates our modeling results in Section
3 that SEDR and SQR achieve better resource utilization of a task in the scheduling
process.

We also notice that the scheduling results using OSEDR is not effective:
sometimes, the scheduling results of OSEDR are even no better than Random policy.
The reason of this phenomenon is that optimizing the sum of execution delays on a
server is not reasonable in cloud computing platforms just as previously discussed in
Section 3, since the VMs co-located on the same cloud server can process different
tasks simultaneously, the applicable dispatching policy is to optimize the execution
delay of the slowest task on a server.

Although the platform achieves better throughput using SEDR and SQR policies,
there are still some differences in the scheduling results. Using SEDR policy, the
throughput is the best in the initial and middle periods of the scheduling (typically
from time unit 1-600), but the throughput will then drop down below SQR policy; on
the other hand, using SQR policy, the throughput of the platform rises to the best in
the final period of the scheduling. This fact can be explained using the conclusions
presented in Section 3: SEDR is the optimal dispatching policy to collaborate with in
the average case, hence it provides best throughput in the initial and middle periods
when the task loads are not heavy enough. However, when it comes to the final
periods of the scheduling, the accumulated unhandled tasks will affect the scheduling
results, and the scenario will be changed from the average case scheduling to the
worst case scheduling. According to our conclusions in Section 3, SQR is the
utilization optimal dispatching policy in the worst case; it explains the phenomenon
that using SQR, the platform gets the best throughput in the final period of the
scheduling.

318 C. Xu et al.

 A B

 C D

Fig. 2. Throughput of the cloud platform under different collaborations of ordering and
dispatching policies

Comparing the results shown in Fig. 3A-3C, we find that the collaboration of
SRTF ordering and SEDR dispatching achieves best throughput in the initial and
middle scheduling periods; the collaboration of FIFO and SEDR performs
moderately; and the collaboration of LRTF and SEDR performs worst. This fact
confirms to our modeling results that SRTF is the optimal ordering policy to
cooperate with SEDR in the average case when the task requests are uniformly
distributed, while LRTF is the worst policy to collaborate with.

We notice from Fig. 3B and 3C that, using SRTF and LRTF policy, the throughput
will suffer attenuation at a specific time point (around time unit 400-500 for LRTF,
700-800 for SRTF). This is because SRTF and LRTF are not starvation-free
orderings: some tasks have already been stalled in the scheduling queue even if their
processing queues are not full; to make things worse, if the shortest (for SRTF) or
longest (for LRTF) remaining time tasks are blocked, all the arrived tasks at this time
point will not be processed, which will dramatically attenuate the system’s throughput
close to zero at this time point. However, we can see in Fig. 3D that Myopic
MaxWeight policy solves the throughput attenuation problem by improving the SRTF
policy. The collaboration of Myopic MaxWeight and SQR provides best throughput

 Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks 319

in the final period of scheduling (after time unit 700), which theoretically and
experimentally validate the conclusion that the collaboration of Myopic MaxWeight
ordering and SQR dispatching is the utilization optimal list scheduling policy in the
worst case.

5 Conclusion

We briefly summarize some representative ordering and dispatching policies which
are commonly used in both industry and academic communities, model the execution
processes of these ordering and dispatching policies using the SPN model, and apply
different collaborated scheduling policies to schedule cloud tasks in simulation
environment. Based on the modeling and experimental results, we have evaluated that
SEDR and SQR are utilization optimal dispatching policies to collaborate with in the
average case and worst case scheduling respectively; the collaboration of SRTF
ordering and SEDR dispatching achieves optimal throughput in the average case,
while the collaboration of Myopic MaxWeight ordering and SQR dispatching
achieves optimal throughput in the worst case.

References

1. Marty, M., Hill, M.: Virtual Hierarchies to Support Server Consolidation. In: Proceedings
of the 34th Annual International Symposium on Computer Architecture, pp. 46–56 (2007)

2. Speitkamp, B., Bichler, M.: A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Transactions on Services
Computing, 266–278 (2010)

3. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data
centers. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 577–578 (2010)

4. Burkimsher, A., Bate, I., Indrusiak, L.S.: A survey of scheduling metrics and an improved
ordering policy for list schedulers operating on workloads with dependencies and a wide
variation in execution times. In: Future Generation Computer Systems (2012, 2013)

5. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed
Systems, 260–274 (2002)

6. Lu, X., Sitters, R.A., Stougie, L.: A class of on-line scheduling algorithms to minimize
total completion time. Operations Research Letters 31(3), 232–236 (2003)

7. Laili, Y., et al.: A Ranking Chaos Algorithm for dual scheduling of cloud service and
computing resource in private cloud. Computers in Industry, 448–463 (2013)

8. Oracle: N1 grid engine 6 administration guide—configuring the share-based policy (2010),
http://docs.oracle.com/cd/E19080-01/n1.grid.eng6/
817-5677/i999588/index.html

9. Östberg, P.O., Danie, E., Erik, E.: Decentralized scalable fairshare scheduling. Future
Generation Computer Systems, 130–143 (2013)

10. Chang, H., Kodialam, M., Kompella, R.R., et al.: Scheduling in mapreduce-like systems
for fast completion time. In: Proceedings of IEEE INFOCOM Conference, pp. 3074–3082
(2011)

320 C. Xu et al.

11. Chen, F., Kodialam, M., Lakshman, T.V.: Joint Scheduling of Processing and Shuffle
Phases in MapReduce Systems. In: Proceedings of IEEE INFOCOM Conference (2012)

12. Lui, J.C.S., Richard, R.M., Don, T.: Bounding the mean response time of the minimum
expected delay routing policy: an algorithmic approach. IEEE Transactions on
Computers 44(12), 1371–1382 (1995)

13. Albers, S.: Better bounds for online scheduling. In: Proceedings of the 29th Annual ACM
Symposium on Theory of Computing (STOC 1997), New York, USA, pp. 130–139 (1997)

14. Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for scheduling
continuous job streams. In: Proceedings of the 9th Annual ACM–SIAM Symposium on
Discrete Algorithms, SODA 1998, Philadelphia, PA, USA, pp. 270–279 (1998)

15. Kong, X., Lin, C., Jiang, Y., Yan, W., Chu, X.: Efficient dynamic task scheduling in
virtualized data centers with fuzzy prediction. Journal of Network and Computer
Applications 34(4), 1068–1077 (2011)

16. Calheiros, R.N., Ranjan, R., Buyya, R.: Virtual machine provisioning based on analytical
performance and qos in cloud computing environments. In: IEEE ICPP (2011)

17. Yuan, Y., Wang, H., Wang, D.: On Interference-aware Provisioning for Cloud-based Big
Data Processing. In: IEEE 20th International Workshop on Quality of Service 2013
(IWQoS 2013) (June 2013)

18. Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral: Dynamically
Managing Power, Performance, and Adaptation Cost in Cloud Infrastructures. In: IEEE
ICDCS 2010 (June 2010)

19. Mitzenmacher, M.: The power of two choices in randomized load balancing. Ph.D.
dissertation, University of California at Berkeley (1996)

20. He, Y.T., Down, D.G.: Limited choice and locality considerations for load balancing.
Performance Evaluation 65(9) (2008)

21. Lin, C., Shan, Z., Yang, Y.: Integrated schemes of request dispatching and selecting in
Web server clusters. In: Proceedings of Conference on Software: Theory and Practice, 16
th World Computer Congress 2000 (WCC 2000), Beijing, China (August 2000)

22. Maguluri, S.T., Srikant, R., Ying, L.: Stochastic models of load balancing and scheduling
in cloud computing clusters. In: Proceedings of IEEE INFOCOMM Conference (2012)

23. Khan, A.A., McCreary, C.L., Jones, M.S.: A comparison of multiprocessor scheduling
heuristics. In: IEEE International Conference on Parallel Processing (ICPP) (1994)

24. Kleinrock, L.: Queueing Systems. Theory, vol. I, p. 187. John Wiley & Sons, New York
(1975)

25. Maguluri, S.T., Srikant, R.: Scheduling Jobs with Unknown Duration in Clouds. In: IEEE
INFOCOM Conference (2013)

Gossip Membership Management

with Social Graphs for Byzantine Fault
Tolerance in Clouds�

JongBeom Lim1, Joon-Min Gil2, Kwang-Sik Chung3, Jihun Kang1,
Daewon Lee4, and Heonchang Yu1,��

1 Department of Computer Science Education, Korea University, Seoul, Korea
{jblim,k2j23h,yuhc}@korea.ac.kr

2 School of Computer & Information Communications Engineering,
Catholic University of Daegu, Daegu, Korea

jmgil@cu.ac.kr
3 Department of Computer Science, Korea National Open University, Seoul, Korea

kchung0825@knou.ac.kr
4 Department of General Education, SeoKyeong University, Seoul, Korea

daelee@skuniv.ac.kr

Abstract. As computer systems have become more complex and dy-
namic, unstructured and decentralized techniques serve as basic build-
ing blocks in large-scale systems such as cloud computing systems. In
particular, we consider a gossip-based algorithm, one of the unstruc-
tured overlay construction techniques. In this paper, we propose a mem-
bership management mechanism using the gossip-based algorithm with
social graphs for the Byzantine fault tolerance problem. Experimental
results show that our membership management mechanism copes with
Byzantine nodes effectively in a scalable way without a bottleneck in
dynamic computing environments, requiring only n ≥ 2f + 1 nodes.

1 Introduction

In recent years, the epidemic or gossip-based communication model has been em-
ployed in many applications in large-scale distributed systems and cloud com-
puting systems. These applications include information dissemination [1], [2],
clock synchronization [3], mutual exclusion [4], deadlock detection [5], termina-
tion detection [6], video streaming service [7], and BitTorrent (Tribler) [8]. In
cloud computing environments, nodes can join or leave the system at will by
virtue of virtualization technology [9]. Because of the characteristics of typical
cloud computing environments, that is, the overlay network is often not fully
connected and is constantly changing, the existing communication models are
not able to suitably address reliability and scalability problems [10]. Therefore,

� This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea goverment (MEST) (No. NRF-2012R1A2A2A02046684).

�� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 321–332, 2014.
c© IFIP International Federation for Information Processing 2014

322 J. Lim et al.

as cloud computing matures, the gossip-based communication model has re-
ceived significant attention because of its inherent ability to handle the dynamic
behavior of nodes or resources [11].

Because modern gossip-based protocols use local view, which is a membership
table that contains a small number of neighbor nodes, rather than maintain-
ing full membership information of the system, the uniformity of peer sampling
has become an important basic factor for evaluating the protocol. In this re-
gard, several membership management mechanisms of the gossip-based protocols
have been devised [12], [13], [14] to maintain the uniformity of peer sampling.
Although biased peer sampling may not influence the correctness of the gossip
protocol, it leads to performance degradation for applications. Furthermore, ma-
licious or Byzantine nodes may subvert the system even though the number of
Byzantine nodes is sufficiently small, and therefore, existing membership man-
agement mechanisms are not suitable for preserving the uniformity of random
sampling.

In this paper, we propose a membership management solution over social
graphs in the presence of Byzantine nodes. Although previous solutions focus
on the uniform sampling of nodes, including Byzantine nodes, we endeavor to
sample nodes within the set of correct nodes disregarding Byzantine nodes from
local views. In brief, when a correct node encounters a suspicious (Byzantine)
node, the correct node does not accepting the membership information of the
suspicious node and leverages the pre-existing social graph for membership man-
agement.

The rest of this paper is organized as follows. We describe the gossip proto-
col, social graph, and Byzantine fault tolerance problem with related work in
Section 2. In Section 3, we provide our system model and algorithms for mem-
bership management using social graphs. We present the results of performance
evaluation in Section 4. Then, we conclude the paper in Section 5.

2 Related Work

An epidemic or gossip protocol is a method to communicate among uniquely
identifiable nodes in a cycle-based fashion, inspired by the spread of disease. Dis-
eases such as airborne diseases, contagious diseases, or HIV can be spread when
individuals encounter others through networking connections. Another analogy
of a gossip protocol can be found in the social behavior of persons. For example,
if person P has just been updated for some data, P is willing to spread that
information to other persons. Subsequently, P will contact some neighbors and
try to push the data. In contrast, if person P has not yet obtained new data, P
wants to be updated and P will try to obtain the data by pulling other neighbors.
A gossip protocol guarantees message delivery with a high probability even if
failures occur because of its inherent properties [15]. Refer to [16] and [17] for a
correctness proof of the gossip protocol. The simplest form of the gossip protocol
comes in two states: susceptible and infected. This form of the gossip protocol
is called the SI model [18]. In the gossip protocol, each node maintains little

Gossip Membership Management with Social Graphs 323

membership information, which is called local view, instead of full membership
information in the system. Hence, the overlay network can be greatly simplified.
At each cycle, a node selects o(fanout) gossip targets from its local view and
then communicates with the gossip targets using one of the following methods:
(1) push mode, (2) pull mode, and (3) push-pull mode.

As for membership management of the gossip protocol, several schemes have
been proposed. In [12], the authors proposed the view-shuffling operation, where
pairs of nodes regularly and continuously swap portions of their local views. Un-
fortunately, the naive version of the view-shuffling operation has some drawbacks
in that the overlay network may be partitioned in some cases. Hence, an enhanced
version of view shuffling has been proposed [13]. The difference between naive
view shuffling and enhanced view shuffling is that in the enhanced version, when
swapping local views, the initiator includes the id of the gossip target in the
sent view, which will be included to the local view of the gossip target, and then
replaces the id of the gossip target with its own id before transmission. This
modification results in the uniformity of random sampling even when starting
from a non-uniform distribution of nodes in the local views [19].

In Newscast [14], each node performs a view-swapping operation periodically,
keeping only the most up-to-date local view entries of the union of the two
local views. This idea is based on the assumption that nodes exhibit dynamic
behavior, and therefore, the probability of existing in the local views of two
nodes is high for newly joined nodes. In Brahms [20], the authors proposed a
Byzantine-resilient and uniform peer sampling algorithm based on view shuffling,
requiring multiple samplers and validators, where a unique hash function is used
in each. Because of this, to obtain a uniform sample for a sampler, a sufficiently
long sequence of shuffle operations is required. Moreover, the uniformity is valid
only for one instance. In other words, another sequence of shuffling operations
needs to be performed for another instance.

On the other hand, the membership management proposed in this paper does
not require multiple samplers at each node, and the additional overhead for
uniformity is minimized. Furthermore, the uniformity of local views is always
evolving as the number of gossip cycles increases, retaining the previous uni-
formity regardless of different instances of membership management operations.
In addition, as discussed, we endeavor to sample nodes within the set of cor-
rect nodes disregarding Byzantine nodes from local views, unlike the previous
solutions, which focus on the uniform sampling of nodes including Byzantine
nodes.

We consider social graphs to enhance the uniformity of peer sampling, dis-
regarding Byzantine nodes. An informal definition of a social graph is a graph
representation of an overlay network, of which every two nodes with a social
relationship are connected through an overlay. In a typical gossip protocol, the
overlay network is constructed only by local views of nodes. In addition to this,
if Node A has relationships with Node G and Node H, Node A has an outdegree
of seven (if the gossip protocol uses push mode).

324 J. Lim et al.

Assume that Node A has data informative to its neighbors (i.e., nodes in a
social view), but the data are sensitive and private. In such a case, Node A
does not want to expose the data to nodes (although the data are beneficial
to the nodes) other than its neighbors. Similarly, if Node A has sent sensitive
and private data to its neighbor (Node G), Node A requires that Node G not
send the data because the social relationships are not transitive. We note that
the social relationships are symmetric. That is, if Node A trusts Node G, Node
G also trusts Node A. We note that even though Node A and G have a trust
relationship, they may not have contact information between them. For instance,
if Node A contacts Node G, which does not have Node A in its own contact list,
Node G will recognize Node A, and vice versa.

We use these properties of social graphs to solve the Byzantine fault tolerance
problem. As far as confidentiality and privacy are concerned, explicit mecha-
nisms should be employed when using social graphs. Because we focus on the
Byzantine fault tolerance problem, these confidentiality and privacy mechanisms
are beyond the scope of this paper. Several studies have been devoted to these
mechanisms [21], [22].

3 Proposed Membership Management

In this study, we propose an enhanced version of gossip membership manage-
ment with social graphs. The basic idea of our proposed solution is to utilize an
existing social relationship in order to increase the expectations of the correct
nodes in local views. More precisely, when a node encounters a suspicious node,
the node utilizes its social neighbors to replace the suspicious node with a trust-
worthy node. As gossip cycles progress, a correct node may contact a Byzantine
node, which outputs an incorrect decision value. In this case, we let the correct
node perform a membership management algorithm that we provide. The pseu-
docode of the algorithm is provided in Section 3.2. In brief, in our membership
management, the correct node contacts its social neighbor and then retrieves the
social view of one of the social neighbors. Afterwards, the correct node replaces
the Byzantine node information in the local view with the retrieved information.

One of the simplest forms that solve the Byzantine consensus problem is based
on broadcast primitives. In this approach, the leader periodically sends a broad-
cast message to every node in the system, and then the leader waits until it
receives all of the acknowledgements. Next, the leader performs the consensus
algorithm to decide whether consensus is reached. If consensus is not reached
(because some distributed computations are not finished), the leader sends an-
other broadcast message. The drawbacks of this approach are: (1) the leader
should remain stable during the whole epoch (single point of failure), (2) the
message complexity of the algorithm is O(n2) (scalability problem), (3) it is not
good at handling the dynamism of the system (not churn-resilient), and (4) no
node (except for the leader) knows the system-wide information (not globally
optimized).

Gossip Membership Management with Social Graphs 325

To solve the global optimization problem, one can use gossip algorithms based
on a broadcast primitive. In such a case, at each cycle, every node sends its local
information to every other node in the system. Although the broadcast-based
algorithms require fewer gossip cycles to reach consensus, the message complexity
of the algorithms is O(n2) at each cycle. Unlike the previous approaches, our
solution is not based on the broadcast primitive or the leader and is able to
properly address the scalability problem in terms of the number of nodes even
in the presence of Byzantine nodes. Furthermore, as gossip cycles progress, the
system-wide information is distributed across the nodes in the system. To the
best of our knowledge, several previous studies have dealt with the Byzantine
fault tolerance problem in a dynamic system. The implicit assumptions of some
previous studies are: no Byzantine nodes exist in the system, and the system is
static (i.e., nodes are not allowed to join or leave).

3.1 System Model

There is a set of nodes or processes and all the nodes are functionally equivalent
to each other. Henceforth, we use the terms “node” and “process” interchange-
ably. There is no notion of global memory. Therefore, message passing is the
only way to communicate in the system. Communication channels are reliable
but are not restricted to FIFO. In terms of failures, we assume that any node
can be subject to Byzantine failures (i.e., they arbitrarily deviate from the spec-
ification of the algorithm intentionally or inadvertently, outputting an incorrect
decision value by definition). In the worst case, a malicious Byzantine node per-
forms covert activities in collusion with other Byzantine nodes to hinder or delay
the objectives of other correct nodes. To prevent identification forgery, we use a
digital signature scheme that uses public and private keys to sign and verify a
message. That is, a node signs a message with a private key before transmission
to a gossip target, and a receiver verifies a message using a public key of a sender.
This guarantees the identity and the reputability of the signatory.

For Byzantine consensus, we consider the interactive consistency problem [23],
where n ≥ 2f + 1. In the problem in the presence of Byzantine nodes, each node
sends and receives its DecisionVector by gossiping and checks DecisionVector
in order to reach the consensus. If over half of the DecisionVector has non-
empty elements, and their values are identical, the nodes can conclude the con-
sensus value. We assume that Byzantine nodes exhibit malicious behavior. To
be more precise, they send an empty DecisionVector except for their own ele-
ments. This behavior is the best effort of malicious Byzantine nodes, if we use a
cryptographic scheme for DecisionVector.

3.2 Detailed Algorithms

To realize our proposed scheme, an additional data structure is required (i.e.,
social view). In our scenario, however, the additional overhead resulting from the
data structure is marginal because the size of the social view is small compared
to that of the local view. Recall that the size of the local view is significantly

326 J. Lim et al.

Algorithm 1. Management of social view for P i

1 begin at each cycle
2 if Pi makes a new social neighbor Pj then
3 if socialView Pi is full then
4 if there is Pk that has less friendship than Pj then
5 socialView Pi ← socialView Pi – Pk;
6 socialView Pi ← socialView Pi ∪ P j ;

7 else
8 socialView Pi ← socialView Pi ∪ P j ;

9 if Pi breaks up with Pj then
10 socialView Pi ← socialView Pi – P j ;

less than that of the membership information of the system. We note that we
consider the size of the social view a global system parameter with the same
value for all nodes. In the following algorithms, a subscript indicates the owner
of the data structure. We assume that P i is a correct node in the algorithms.

Algorithm 1 shows the pseudocode for social view management. At each cy-
cle, P i manages its social view (socialView) based on relationships with other
nodes. If P i has a new social neighbor P j , it tries to add P j to socialView

(line 2-8). During this phase, P i checks the empty slot for P j . If no empty slot is
available in socialView (line 3), it tries to find Pk that has less friendship than
that of P j (line 4). If there is Pk that meets the condition, it replaces Pk with P j

(line 5-6). If an empty slot is available in socialView, it adds P j to socialView

(line 8). When P i breaks up with P j , it removes P j from socialView (line 10).
We assume that no correct node deviates from the specification of the pro-

tocol. The gossip-based protocol consists of two threads: an active thread that
initiates communication at each cycle and a passive thread that waits for in-
coming messages. The proposed membership management mechanism uses the
Byzantine consensus algorithm running in the system. By inspecting the result
of the decision value of the encountered node, individual nodes differentiate cor-
rect nodes and Byzantine nodes. When a correct node encounters a suspicious
node, the correct node does not accept the membership information of the sus-
picious node and performs the membership management algorithm proposed in
this paper. Furthermore, we assume that correct nodes do not violate trust rela-
tionships with others. In other words, no correct node will intentionally disclose
membership information and create friendships with Byzantine nodes.

A full analysis of criteria determining friendships is out of the scope of this
paper, because it depends on the specific characteristics of the applications using
the gossip protocols. In fact, we can use an application-specific criterion that
works best for the application. For example, Gossple [24] uses a set item cosine
similarity metric to measure the friendships between nodes. If we apply the set
item cosine similarity to measure the friendships, a node that has the larger
metric value can replace the existing node. In addition, the application may

Gossip Membership Management with Social Graphs 327

have a threshold value to determine the friendships for nodes. In this case, a
node can remove (break up) one of the friends in socialView when a metric
value between the two nodes is below the threshold value.

For the active thread of the gossip protocol, each time P i selects a gossip
target P j it checks the decision value of P j . We note that the verify() function
returns true when two input parameters are identical; otherwise, it returns false.
If verify() returns true, it assigns true to the activate variable. If the protocol
is in push mode, P i includes its own id in the sendingView and then sends this
view to P j. If the protocol is in pull mode, it tries to receive the sendingView

from P j and then updates its local view with the received view.
When the verify function returns false, P i neither sends its view informa-

tion to P j nor receives the view information from P j because sendingView

from P j may contain harmful information that pollutes the local view of P i

with Byzantine nodes. At this stage, P i sets the activate variable to false and
then selects one of the social neighbors from its socialView. After selecting
the social neighbor, P i tries to receive the socialView of the social neighbor.
Then, P i selects Pk, that is, one of the nodes from the socialView of the so-
cial neighbor. Afterwards, P i replaces P j with Pk in its localView. If P i has
no social neighbor, or rand function returns null, Pk cannot be inserted into
localView. For brevity, this checking procedure is omitted. Lastly, P i performs
the ByzantineConsensusAlgorithm() function or not, based on the activate

value.
For the passive thread of the gossip protocol, whenever P i is selected from

another node P j it first checks requestType. If requestType is for a local view,
P i compares the decisionValue of P j with its own value. If the two values are
coherent, it accepts the sendingView of P j and updates its local view with the
received view in push mode. If the protocol is in pull mode, P i includes its own
id in sendingView and sends the view to P j. If requestType is for the social
view, and P j is a friend, P i sends its socialView to P j .

4 Evaluation

In this section, we provide performance results of our membership management
mechanism using social graphs. We do not include Shuffling [12] and News-
cast [14] because those methods cannot tolerate Byzantine nodes even if the
number of the Byzantine nodes is negligible. In our observation, Shuffling places
less than 30% of the correct nodes in decision vectors on average when perform-
ing the Byzantine consensus algorithm if the Byzantine probability is 0.1, and
the shuffle ratio is 50%. Newscast can be considered as view shuffling with a
shuffle ratio of 100%. In other words, Newscast is more vulnerable to Byzantine
nodes compared to Shuffling.

4.1 Experimental Settings

Table 1 shows the parameters and their values used in the evaluations. We note
that the numbers in parentheses are the default values unless specified otherwise.

328 J. Lim et al.

Table 1. Evaluation parameters and their values (numbers in parentheses are the
default values unless specified otherwise)

Parameter Value

Number of nodes 104

Gossip mode Push-pull

Size of local view 20

Size of social view 8

Fanout 1

Gossip cycles per instance 20

Byzantine probability 0.1, 0.2, 0.3, (0.4)

Because we need at least f + 1 correct nodes, the Byzantine probability is
not configured to be higher than 0.5. Note also that because the probability
is a measure of the expectation that an event will occur, the actual number of
Byzantine nodes will be different from the number calculated with the Byzantine
probability parameter.

Starting with the initial overlay network and local views in the presence of
Byzantine nodes, we show how our membership management based on social
graphs improves the uniformity of peer sampling. Then, we detail the effects
on the local view to show how our proposed solution can improve the occur-
rence of correct nodes in local views. We note that we only show the results for
correct nodes in the system because the results for Byzantine nodes are mean-
ingless. Lastly, to show the scalability of the proposed approach, we present per-
formance results by increasing the number of nodes exponentially. There were
three objects for comparison: the default Byzantine consensus algorithm with-
out membership management (NoMgmt), membership management performing
random node sampling when a node encounters Byzantine nodes (Previous); and
our membership management with social graphs when the social view size is 8
(Social(8)).

4.2 Performance Results

One of the design goals of our membership management is to reduce the pos-
sibility that a correct node contacts Byzantine nodes. Thus, we measured the
number of Byzantine nodes in the local view to see how effectively our proposed
membership management copes with Byzantine nodes. We assume that local
views of individual nodes contain gossip partners selected at random from the
system. Therefore, Byzantine nodes are in the local views of the correct nodes.
Figures 1, 2, and 3 show the normalized percentages of Byzantine nodes in local
views.

Figure 1 shows the results of the first instance. Because NoMgmt has no fa-
cility to perform membership management, the number of Byzantine nodes in
local views is the same during the whole execution of the Byzantine consensus
algorithm. Compared with Previous and Social(8), the percentage of Byzantine

Gossip Membership Management with Social Graphs 329

(a) Byzantine probability: 0.1 (b) Byzantine probability: 0.2

(c) Byzantine probability: 0.3 (d) Byzantine probability: 0.4

Fig. 1. Normalized percentage of Byzantine nodes in local views (first instance)

(a) Byzantine probability: 0.1 (b) Byzantine probability: 0.2

(c) Byzantine probability: 0.3 (d) Byzantine probability: 0.4

Fig. 2. Normalized percentage of Byzantine nodes in local views (second instance)

nodes in local views decreases as the gossip cycle proceeds in both methods,
whereas Social(8) results in a greater reduction in the number of Byzantine
nodes in local views than Previous in late cycles. It is interesting to note that
in early cycles, Social(8) has a higher percentage of Byzantine nodes in local
views than Previous. The reason for this phenomenon is that some nodes have

330 J. Lim et al.

(a) Byzantine probability: 0.1 (b) Byzantine probability: 0.2

(c) Byzantine probability: 0.3 (d) Byzantine probability: 0.4

Fig. 3. Normalized percentage of Byzantine nodes in local views (third instance)

no social neighbors. In other words, when P i tries to select socialNeighbor,
this cannot be accomplished because the node has no social neighbors. Simi-
larly, if P i, who has some social neighbors, tries to receive socialView from
socialNeighbor, it is possible that socialNeighbor has no social neighbors
except P i. In this case, no local view exchange is executed.

Figure 2 shows the results of the second instance. As in Figure 1, NoMgmt
shows no change in the Byzantine nodes in local views. As the gossip cycle pro-
ceeds, and the Byzantine probability increases, Social(8) has a lower percentage
than Previous and always outperforms Previous. By the specification of the algo-
rithms, the nodes have a greater chance to exchange their local views when they
encounter Byzantine nodes frequently. In this regard, there is a trade-off between
the number of Byzantine nodes and the probability of exchanging local views.
When the number of Byzantine nodes is small, the probability of performing
membership management is low. Conversely, if the number of Byzantine nodes
is large, the probability of performing membership management is high, and
there are a number of local view slots to be changed.

Figure 3 shows the results of the second instance. As in Figures 1 and 2,
Social(8) outnumbers Previous in the total reduction of Byzantine nodes, and
the performance gap is greater with a larger Byzantine probability. At cycle 20,
the percentages of Byzantine nodes in local views for Previous (resp. Social(8))
are approximately 7.49% (resp. 6.31%), 10.47% (resp. 6.69%), 14.02% (resp.
7.32%), and 18.64% (resp. 7.69%) when the Byzantine probability is 0.1, 0.2, 0.3,
and 0.4, respectively. This means that our proposed membership management
has 1.19, 1.56, 1.92, and 2.42 times fewer Byzantine nodes in local views then
Previous when the Byzantine probability is 0.1, 0.2, 0.3, and 0.4, respectively.

Gossip Membership Management with Social Graphs 331

5 Conclusion

In this paper, we have presented a membership management mechanism based on
social relationships on the gossip overlay for the Byzantine fault tolerance prob-
lem. Rather than utilizing a traditional control method, where the centralized
medium monitors the system and performs corrective functions, we let each node
perform membership management with social graphs in a self-organizing way.
Our self-organized construction of membership management using social graphs
provides scalability, reliability, and resiliency in the presence of Byzantine nodes.
The experimental results show that our membership management mechanism for
Byzantine fault tolerance is globally optimized as the gossip cycle proceeds. Fur-
thermore, our proposed membership management surpasses existing methods
and effectively eliminates Byzantine nodes in the view of other nodes.

References

1. Lim, J., Lee, J., Chin, S., Yu, H.: Group-based gossip multicast protocol for efficient
and fault tolerant message dissemination in clouds. In: Riekki, J., Ylianttila, M.,
Guo, M. (eds.) GPC 2011. LNCS, vol. 6646, pp. 13–22. Springer, Heidelberg (2011)

2. Antulov-Fantulin, N., Lancic, A., Stefancic, H., Sikic, M.: Fastsir algorithm: A fast
algorithm for the simulation of the epidemic spread in large networks by using
the susceptible–infected–recovered compartment model. Information Sciences 239,
226–240 (2013)

3. Iwanicki, K., van Steen, M., Voulgaris, S.: Gossip-based clock synchronization for
large decentralized systems. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006.
LNCS, vol. 3996, pp. 28–42. Springer, Heidelberg (2006)

4. Lim, J., Chung, K.-S., Chin, S.-H., Yu, H.-C.: A gossip-based mutual exclusion
algorithm for cloud environments. In: Li, R., Cao, J., Bourgeois, J. (eds.) GPC
2012. LNCS, vol. 7296, pp. 31–45. Springer, Heidelberg (2012)

5. Lim, J., Suh, T., Yu, H.: A deadlock detection algorithm using gossip in cloud com-
puting environments. In: Han, Y.H., Park, D.S., Jia, W., Yeo, S.S. (eds.) Ubiquitous
Information Technologies and Applications. Lecture Notes in Electrical Engineer-
ing, vol. 214, pp. 781–789. Springer, Netherlands (2013)

6. Lim, J., Chung, K.S., Gil, J.M., Suh, T., Yu, H.: An unstructured termination de-
tection algorithm using gossip in cloud computing environments. In: Kubátová,
H., Hochberger, C., Daněk, M., Sick, B. (eds.) ARCS 2013. LNCS, vol. 7767,
pp. 1–12. Springer, Heidelberg (2013)

7. Chu, Y.H., Ganjam, A., Ng, T.S.E., Rao, S.G., Sripanidkulchai, K., Zhan, J.,
Zhang, H.: Early experience with an internet broadcast system based on overlay
multicast. In: Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC 2004, p. 12. USENIX Association, Berkeley (2004)

8. Zeilemaker, N., Capotă, M., Bakker, A., Pouwelse, J.: Tribler: P2p media search
and sharing. In: Proceedings of the 19th ACM International Conference on Multi-
media, MM 2011, pp. 739–742. ACM, New York (2011)

9. Mahajan, K., Makroo, A., Dahiya, D.: Round robin with server affinity: A vm
load balancing algorithm for cloud based infrastructure. Journal of Information
Processing Systems 9(3), 379–394 (2013)

332 J. Lim et al.

10. Matos, M., Sousa, A., Pereira, J., Oliveira, R., Deliot, E., Murray, P.: Clon: Overlay
networks and gossip protocols for cloud environments. In: Meersman, R., Dillon,
T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 549–566. Springer,
Heidelberg (2009)

11. Wuhib, F., Stadler, R., Spreitzer, M.: A gossip protocol for dynamic resource man-
agement in large cloud environments. IEEE Transactions on Network and Service
Management 9(2), 213–225 (2012)

12. Stavrou, A., Rubenstein, D., Sahu, S.: A lightweight, robust p2p system to handle
flash crowds. IEEE Journal on Selected Areas in Communications 22(1), 6–17
(2004)

13. Voulgaris, S., Gavidia, D., Steen, M.: Cyclon: Inexpensive membership manage-
ment for unstructured p2p overlays. Journal of Network and Systems Manage-
ment 13(2), 197–217 (2005)

14. Tölgyesi, N., Jelasity, M.: Adaptive peer sampling with newscast. In: Sips, H.,
Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 523–534.
Springer, Heidelberg (2009)

15. Ganesh, A., Kermarrec, A.M., Massoulie, L.: Peer-to-peer membership manage-
ment for gossip-based protocols. IEEE Transactions on Computers 52(2), 139–149
(2003)

16. Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based member-
ship protocol. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Principles of Distributed Computing, PODC 2005, pp. 292–301. ACM, New York
(2005)

17. Gurevich, M., Keidar, I.: Correctness of gossip-based membership under message
loss. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, PODC 2009, pp. 151–160. ACM, New York (2009)

18. Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York
(2010)

19. Busnel, Y., Beraldi, R., Baldoni, R.: On the uniformity of peer sampling based on
view shuffling. Journal of Parallel and Distributed Computing 71(8), 1165–1176
(2011)

20. Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: Byzantine
resilient random membership sampling. Comput. Netw. 53(13), 2340–2359 (2009)

21. Schiavoni, V., Riviére, E., Felber, P.: Whisper: Middleware for confidential com-
munication in large-scale networks. In: 2011 31st International Conference on Dis-
tributed Computing Systems (ICDCS), pp. 456–466 (2011)

22. Singh, A., Urdaneta, G., van Steen, M., Vitenberg, R.: Robust overlays for privacy-
preserving data dissemination over a social graph. In: 2012 IEEE 32nd International
Conference on Distributed Computing Systems (ICDCS), pp. 234–244 (2012)

23. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

24. Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The gossple
anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010.
LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010)

An Ensemble Multivariate Model for Resource
Performance Prediction in the Cloud

Jean Steve Hirwa� and Jian Cao

Shanghai Jiao Tong University
Department of Computer Engineering

800 Dongchuan Road, Minhang District, Shanghai 200240,
P.R. China

hirwasteve@hotmail.com, cao-jian@sjtu.edu.cn

Abstract. In cloud environment, multiple resources performance pre-
diction is the task of predicting different resources by considering the
differences from multiple task inferences based on the historical values
to make effective and certainty judgmental decisions for the future val-
ues. One resource performance prediction can conclude the performance
of another, which implies dependency (i.e., multi-resources) or indepen-
dency (i.e., one resource), but that cannot be directly confirmed accu-
rately. We use time series algorithms to investigate possible approaches,
which can greatly assist us to analyze and predict the future values based
on previously observed values. The goal of this paper is to review the
theory of the common several models of multivariate time series, and to
emphasize the practical steps to take in order to fit those models to real
data and evaluate the outcome. Moreover, ensemble-learning algorithms
are applied to the best-fit models to improve performance. Finally, we
will discuss the results.

Keywords: Time series, Statistics, Ensemble learning.

1 Introduction

In cloud computing [2], since applications complete for resources with unknown
workloads from other users, resources contention causes host load and availability
to vary over time [3], and makes the load prediction problem even more harder.
The host can be viewed as a collection of resources i.e., CPU, memory usage and
I/O. If one of the components in cloud computing will not work or at least will
execute below par, cloud computing will never work. Certain support measures,
for example [6], have to be implemented to prevent any form of downtime.

� The authors thank the reviewers for their valuable comments and effort to im-
prove this paper. This work is partially supported by China National Science
Foundation (Granted Number 61073021, 61272438), Research Funds of Science and
Technology Commission of Shanghai Municipality (Granted Number 11511500102,
12511502704).

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 333–346, 2014.
c© IFIP International Federation for Information Processing 2014

334 J.S. Hirwa and J. Cao

The behavior of cloud computing is highly dynamic [3], wherein the only way
the process would be possible is through proper interaction of the application
and hardware. Historical data can provide an adequate amount of information
for modeling and predicting components in cloud computing behaviors [14]. In
[15], [16], [1] the accuracy of prediction is subject to the choice of model chosen,
which in turn may be limited by characteristics of the time series observations
and the availability of labeled training data.

The available literature on Forecasting consider time series predictions of the
status of distributed systems resources both CPU and available memory [1], [2],
[4], [9], and their predictions are based on historical information provided by
monitoring systems. In [7], and [13], they have evaluated and compared uni-
variate and multivariate normality, and performance by applying graphical and
statistical procedures. Obviously, it makes sense to put all available resources into
consideration, which would provide more information rather than investigating
each resource independently. Ensemble learning methods would be applied to
the best fit models, in order to improve performance [11].

2 Related Work

Previously, research into resource prediction has focused on determing appropi-
ate predictive models for a single or multiple resources [1], [8] for host behavior.
Therefore, this work is mainly focused on multivariate model approach.

For example in [5], they proposed a new means of characterizing correlated
workload patterns across Virtual Machines (VMs) resulted from the dependen-
cies of applications running on them. Their applied multiple time series approach,
and the workload was analyzed at the group level rather than at the individual
VM level.

In [1], they proposed a multi-resource prediction model (MModel) that uses
both the autocorrelation (a single resource) and the cross correlation (between
two resources such as CPU and Memory usage). And their adaptation approaches
were able to adapt to changing characteristics of the resources, especially for
highly dynamic resources and long time predictions.

In [9], the approach focuses on the usage prediction for a specific node between
CPU and Memory. They have found out that using both resources data can im-
prove the forecasting performance. Moreover, a number of other techniques have
been taken into account, from many and different factors of a cloud environment
[3], [6], and [14].

In this investigation, regardless unstable behaviors may exist among resources
[9] and interdependence, all resources available are taken into consideration as
they can provide more information than any other autonomous resources. The
idea of ensemble learning approaches is not new [11] [24], [27], but we intended
to improve the outcome from the best fit models.

EM Model for Resource Performance Prediction in the Cloud 335

3 Prediction Theory and Techinques

In this work, we choose few models, which work better with univariate and
multivariate time series similitaniously. In general, random variables may be un-
correlated but highly dependent [19]. But if a random vector has a multivariate
normal distribution then any two or more of its components that are uncor-
related are independent. This implies that any two or more of its components
that are pairwise independent are independent. But it is not true that two ran-
dom variables that are separately, normally distributed and uncorrelated are
independent.

Formally, dependence refers to any situation in which random variables do
not satisfy a mathematical condition of probabilistic independence. Correlation
can be considered as any departure of two or more random variables from in-
dependence, but technically it refers to any of several more specialized types of
relationship between mean values.

3.1 Prediction Theory

In many situations, it is desirable or necessary to transform a time series data set
before using the sophisticated methods [21], [22]. Since we have nonstationary
data, an approriate preliminary transformation of the data to get stationarity
might succed in stabilizing the variance and then we might use one of the familiar
time series models.

Even if some models can be applied directly to nonstationary time series
without requiring a preliminary transformation of the data [17], in this case
study, univariate functions can be applied point-wise to multivariate data to
modify their marginal distributions. It is also possible to modify some attributes
of a multivariate distribution using an appropriately constructed transformation
[21]. Details for techniques to transform and analyze stationality are introduced
in [22].

In the prediction of time series, based on the correlations over time and among
the variables, we can estimate the future behavior of time series by using various
information extracted from current and past observations [22]. In this study we
are looking for an approach which would provide us more accurate information
in term of correlation from the previous and current observations comparatively.

3.2 Prediction Techniques

In our research process, we proposed two commonly used algorithms for our
study and investigation:

Stable Vector Autoregressive Model. The vector autoregression (VAR)
model is one of the most successful, flexible, and easy to use models for the
analysis of multivariate time series. [18], [20]. Forecasts from VAR models are
quite flexible because they can be made conditional on the potential future paths

336 J.S. Hirwa and J. Cao

of specified variables in the model, see [20], [18]. In its basic form, a VAR consists
of a set of d endogenous variables Yt = (Y1t, . . . , Ykt, . . . , Ydt) for k = 1, . . . , d. A
VAR model of order p (Stable Vector Autoregressive Model VAR(p)) is a special
case represented by:

Yt = v + φ1Yt−1 + · · ·+ φpYt−p +Wt, (1)

with Ai are (d × d) coefficient matrices for i = 1, . . . , p, and where Wt is a
Gaussian white noise and d-dimensional process with E(Wt) = 0. The VAR(p)
process is stationary, which means, Yt generates stationary time series with time
invariant mean, variance and covariance structure given sufficient starting values.

det(Id −A1z − · · · −Apzp) �= 0 for |z| ≤ 1. (2)

If the solution of the above equation has a root for z = 1, then either some or
all variables in the VAR(p) process are integrated of order 1, i.e., I(1). It might
be the case, that cointegration between the variables does exist [28].

The stability of emprical VAR(p) process can be analyzed by considering the
companion and calculating the eigenvalues of the coefficient matrix, and can be
represented by:

ξt = Aξt−1 + vt, (3)

Once a VAR(p) model has been estimated [18], the next step is to go for
further analysis. Causal inference and forecasting are based upon Wold moving
average decomposition for stable VAR(p) processes, which is given below as:

Yt = φ0Wt + φ1Wt−1 + φ2Wt−2 + . . . , (4)

with φ0 = Id and φs can be computed recursively according to;

φs =
∑

j=1

sφs−jAj for s = 1, 2, . . . , (5)

where Aj = 0 for j > p.
Therefore, forecasts for horizons h ≥ 1 of an emprical VAR(p) process can be

generated recursively according to;

YT+h|T = A1YT+h−1|T + · · ·+ApYT+h−p|T , (6)

where YT+j|T = YT+j for j ≤ 0.

Dynamic Linear Models. Dynamic Linear Models (DLM) are represented as
a special case of general state space models, being linear and Gaussian e.g., [23],
[25]. State-space models can be used for modeling univariate or multivariate time
series, also in presence of non-stationarity, structural changes, irregular patterns.

Estimation and forecasting can be obtained recursively by the well know
Kalman filter [25], and the first important class of state space models is given

EM Model for Resource Performance Prediction in the Cloud 337

by Dynamic Linear Models (DLM), which are represented by the following two
equations:

Yt = Ftθt + vt, vt ∼ Nm(0, Vt)

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt), (7)

where Gt and Ft are matrices and (vt) and (wt) are two independent white noise
sequences, with mean zero and covariance matrices Vt and Wt respectively. Yt

equation is named observation equation and θt equation is named state equation.
Moreover, it is assumed that θ0 has a Gaussian distribution.

θ0 ∼Mp(m0, C0), (8)

for some non-random vector m0 and matrix C0, and it is independent on (vt)
and (wt). In contrast to (7), the general state space model can be provided in
the form:

Yt = Ft(θt, vt)

θt = Gt(θt−1, wt), (9)

with arbitrary functions Ft and Gt, it is therefore more flexible. Linear state
space models specify ft and gt as linear functions, and Gaussian linear models
add the assumptions of Gaussian distributions. Model details summary; filtering,
smoothing and forecasting [23], [25].

4 Ensemble Learning Approach

Ensemble learning is a machine learning paradigm where multiple learners are
trained to solve the same problem [26], [27], and it performs better than single
learning model and discovers regularities in dynamic. Generally, it is primar-
ily used to improve the (classification, prediction, function approximation, etc.)
performance of a model, or reduce the likelihood of an unfortunate selection of
a poor one.

The bagging approach is being taken into consideration for this study. It is
a device intended for reducing the prediction error of learning algorithms. And
following, a brief process of a bagging algorithm:

– Bagging method:
• Create many data sets by bootstrapping or cross validation.
• Create one decision tree for each data set.
• Combine decision trees by averaging or voting final decisions.
• Primarily reduces model variance rather than bias.

– Results:
• On average, better than any individual tree.

338 J.S. Hirwa and J. Cao

Therefore, given a data set S = (x1, y1), . . . , (xN , yN) of size N , where xn ∈ X ,
yn ∈ Y = {0, 1}, M base models hm, bagging constructs M classifiers with
bootstrap replicas Sm of S, where Sm is obtained by drawing examples from
original the data set S with replacement, usually having the same number of
examples as S. The diversity among the classifiers is introduced by independently
constructing different subsets of the original data set [10], [12]. After constructing
ensembles, the prediction of the class of a new example is given by majority
voting.

Algorithm 1. Ensemble learning algorithm
Input: S,M
1: for m = 1, 2, . . . ,M do
2: Sm = Sample with replacement (S,N)
3: Train a base learner hm → Y using Sm

4: end for
Output: H(x) = argmaxy∈Y

∑M
m=1 I(hm(x) = y)

Moreover, it has been proved by [24] that the perfomance of bagging has good-
ness and badness. It does not simply reduce variance in its averaging process.
But instead, it takes multiple random samples (with replacement) from train-
ing data set, and uses each of those samples to construct a separate model and
separate predictions for test set, which in the end, those predictions are then
averaged to create a more accurate and final predictive value. As result, it may
underperform its ensemble members. In such situation, reweighting on training
set is applicable to some of the learning algorithms.

Algorithm 2. Improved Ensemble learning algorithm
1: Initialize base models hm for all m ∈ 1, 2, . . . ,M
2: for all training examples do
3: for m = 1, 2, . . . ,M do
4: Set w = poisson (1) // a random variable w has poison distribution
5: Update hm with the current examples with weight w
6: Anytime output:
7: return:H(x) = argmaxy∈Y

∑M
m=1 I(hm(x) = y)

Finally, we evaluate the outcome and investigate if an Ensemble Learning
Alg. 1 underperformed its previous ensemble members. Furthermore, in order
to reduce prediction errors, an Improved Ensemble Learning Alg. 2 should be
applied afterward. The results and discussion are given in Section6.

EM Model for Resource Performance Prediction in the Cloud 339

Table 1. An overview of ensemble learning algorithm

Y → model1 ↘

Y → . . . →∑→ Yens(t)

Y → modelm ↗

5 Evaluation Techniques

The datasets are localized from different datasets collected from different time
sets. To conduct the numerical analysis, the dataset are selected from 2 different
clusters and 3 variables are chosen from each cluster with the same time set
and host: CPU, Memory usage and I/O. Furthermore, 1000 observations were
randomly taken for each study separately. We analyze and investigate our data
dependently and independently to reach our goal.

The models used for our study have many parameters, and they may be dif-
ficult to interpret due to complex interactions and feedback between variables
in the model. As a result, we tried to find common various types of structural
analysis, but putting more emphasize into correlation relationships Moreover, our
samples are transformed stationary and normally distributed, i.e., Y ∼ N(0, σ2);
each variable Y is independent and identically distributed with mean zero, stan-
dard deviation σ2, normal variate, in order to maintain the same condition for
a good investigation.

The Root Mean Square Error (RMSE) is moslty applied to measure the dif-
ference between values predicted by a model and the values actually observed
from the environment that is being modelled, and those differences are residuals.
The RMSE of a model prediction with respect to the estimated variable Ymodel
is defined as the square root of the mean squared error:

RMSE =

√∑n
i=1(Yobs,i − Ymodel,i)2

n
=

√∑n
i=1(residuals)

2

n
(10)

A granger causality analysis has been also carried out in order to assess
whether there is any potential predictability power of one indicator for the other.
A granger causality requires that the series has to be covariance stationary [18],
[28], so an Augmented Dickey-Fuller test has been calculated. For all of the series
the null hypothesis H0 of non stationarity can be rejected at a 5% confidence
level. A granger causality is normally tested in the context of linear regression
models [29].

Finally, an Ensemble learning algorithm has been introduced, see Table 1, it
involves combining multiple predictions derived by different techniques in order
to create a stronger overall prediction. In [27] an ensemble with two techniques
that are very similar in nature will perform more poorly than a more diverse
model set. In this situation, we select the best performed model from each group
and combine it with best from a different group.

340 J.S. Hirwa and J. Cao

Table 2. Ensemble learning outcome for multivariate data (Initially = Initial state,
Ensemb. = Ensemble learning approach, and Impr. Ens. = Improved Ensemble learning
approach)

Time Ensemble: CPU and Memory Ensemble: CPU and I/O
Initially Ensemb. Impr. Ens. Initially Ensemb. Impr. Ens.

Cl.1
60 sec 1.0850 1.0456 0.9171 1.0968 1.0719 0.9640

10 min 1.0410 1.0211 0.9694 1.0467 1.0223 0.9290
60 min 1.0403 1.0251 0.9492 1.1083 1.0776 0.9742

Cl.2
60 sec 1.1431 1.1295 0.9855 1.0697 1.0661 0.9980

10 min 1.0758 1.0412 0.9346 1.0692 1.0579 0.9872
60 min 1.0516 1.0167 0.9281 1.0698 1.0592 0.9563

6 Discussion

We have selected our dataset from 2 different clusters and each cluster we only
study one host. We have chosen 3 variables from each cluster with the same time
set and host: cpu, memory usage and I/O.

The first step is to analyze the accuracy; by looking onto RMSE, it shows
that mostly, a multivariate model always has to provide promising results over
its univariate counterparts. Surprisingly, few cases of univariate series performed
better, as shown in Tables 5-12, (all numbers in bold). For VAR(p); once we
increase the value of p-lags, more we have a better outcome from multivariate
model and it distiguishes itself from its equivalent univariate, as provided in
Tables 5-8. This might be different from a DLM Model, where the results stay
constant Tables 9-12. Once we set an initial p-lag value "1" to both selected
multivariate algorithms (VAR(p) and DLM); VAR(p) performed poorly than its
coequal univariate, but while increasing the p-lag value, a multivariate model
outperformed its univariate model.

Compare both used models, we came to the conclusion that it depends on
the condition of the initial values of the parameters. At the time p-lag was set
to "1", DLM model Fig. 1-(a) performed well than VAR(p) model Fig. 1-(b),
but once VAR(p) increased its p-lag values Fig. 2-(a) and 2-(b), it performed
much better. Therefore, we cannot conclude directly that this model is better
than another without looking into its initial state. Generally speaking, VAR(p)
would be a promissing model once a p-lag is much higher in our situation Fig.
2-(b).

We had a look at Granger causality whether there is any potential predictabil-
ity of one indicator for the other. It is hard to judge, but in general more chances
will be given to CPU. Tables 3 and 4, show that the granger causality value have
changed in disorder, which does not make any sense at all. And we conclude that,
it is always beneficial if we may apply Granger Causality for each initial Models’
conditions independently to find out a variable has a potential predictability,
without making a general and fixed conclusion.

EM Model for Resource Performance Prediction in the Cloud 341

(a) DLM model overall Residuals (CPU,
Memory, IO)

(b) VAR(p) model Residuals: p-lag "1"
(CPU, Memory, and IO)

Fig. 1. DML and VAR(p) models for multivariate data

(a) VAR(p) model Residuals: p-lag "10"
(CPU, Memory, and IO)

(b) VAR(p) model Residuals: p-lag "20"
(CPU, Memory, and IO)

Fig. 2. VAR(p) models for multivariate data

Finally, as seen above multivariate models are promising approaches. If we
want to make effective use of information extracted from them, it may always
be beneficial to combine the best performed models from each group to obain
the best overall and highest performance accuracy Table 2.

342 J.S. Hirwa and J. Cao

Table 3. Cluster-1: Granger Causality

Time Granger: CPU and Memory Granger: CPU and I/O
cpu-memory memory-cpu cpu - I/O I/O - cpu

p = 1
60 sec 0.0825 0.3053 0.2835 1.0385

10 min 0.5562 1.0261 0.1984 1.4754
60 min 0.8310 1.0622 0.5492 1.0950

p = 10
60 sec 1.6182 2.1973 0.0765 0.0514

10 min 1.4778 0.6243 0.9124 0.5372
60 min 1.0580 0.6848 1.3795 0.8603

p = 20
60 sec 0.3008 0.0601 0.2541 2.6377

10 min 0.9812 0.6081 1.5446 1.4462
60 min 1.1616 0.7966 1.3042 1.2351

Table 4. Cluster-2: Granger Causality

Time Granger: CPU and Memory Granger: CPU and I/O
cpu-memory memory-cpu cpu - I/O I/O - cpu

p = 1
60 sec 0.2696 0.7267 0.2333 0.4009

10 min 1.0079 2.3926 0.4070 1.1025
60 min 0.8015 1.3143 0.7693 0.9387

p = 10
60 sec 0.7965 0.0346 0.2333 1.4252

10 min 0.6610 0.8483 0.5458 1.0681
60 min 0.8015 1.0465 0.7770 0.8215

p = 20
60 sec 0.0653 2.5657 0.2036 1.8821

10 min 0.9035 1.5681 0.6837 1.1332
60 min 0.8310 1.0750 0.6173 1.0845

7 Conclusion

In this work we provide a more comprehensive look at the issue of investigating
performance by using more appropriate statistical tests of comparative predictive
ability. Moreover, we compare univariate versus multivariate models to provide
evidence based real data experiments. We conclude that, in general multivariate
outperform univariate counterparts. However, we cannot just conclude the best
multivariate model because as seen from the results, it all depends on the initial
condition of each model.

This was not enough, we have applied a granger causality to find out if there is
any potential predictability of one indicator for the other, and we conclude that
CPU has many chances than other resources, but it cannot always be a definitive
conculsion according to the unstable results have been evaluated. Therefore, as
multivariate contains more information, it might be reasonable to take advantage
of ensemble learning approach and apply it to the best fit models to improve the
performance from different groups.

EM Model for Resource Performance Prediction in the Cloud 343

References

1. Liang, J., Nahrstedt, K., Zhou, Y.: Adaptive Multi-Resource Prediction in Dis-
tributed Resource Sharing Environment. In: IEEE International Symposium on
Cluster Computing and the Grid, pp. 293–300 (2004)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing.
Communications of the ACM 53(4) (April 2010)

3. Yang, R., Van Der Mei, R.D., Roubos, D., Seinstra, F.J., Bal, H.E.: Resource
optimization in distributed real-time multimedia applications. Multimedia Tools
and Applications 59(3) (August 2003)

4. Hu, R.D., Jiang, J.F., Liu, G.M., Wang, L.X.: Efficient Resources Provisioning
Based on Load Forecasting in Cloud. In: The 10th International Conference on
Services Computing (July 2013)

5. Khan, A., Yan, X.F., Tao, S., Anerousis, N.: Workload Characterization and Pre-
diction in the Cloud: A Multiple Time Series Approach. In: Network Operations
and Management Symposium (NOMS), pp. 1287–1294 (April 2012)

6. Antonescu, A.F., Braun, T.: Improving Management of Distributed Services Us-
ing Correlations and Predictions in SLA-Driven Cloud Computing Systems. In:
Conference Proceeding, 14th IEEE/IFIP Network Operations and Management
Symposium (NOMS), Krakow, Poland (May 2014)

7. Burdenski, T.: Evaluating Univerariate, Bivariate, and Multivariate Normality Us-
ing Graphical and Statistical Procedures. ERIC, 61 (April 2000)

8. Dinda, P.A.: Design, Implementation, and Performance of an Extensible Toolkit
for Resource Prediction in Distributed Systems. IEEE Transactions on Parallel and
Distributed Systems 17(2) (February 2006)

9. Tan, J., Dube, P., Meng, X.Q., Zhang, L.: Exploiting Resource Usage Patterns
for Better Utilization Prediction. In: 31st International Conference on Distributed
Computing Systems Workshops, pp. 20–24 (June 2011)

10. Xiao, D.Z., Cao, S., Wong, F.: Optimization of bagging classifiers based on SBCB
algorithm. Machine Learning and Cybernetics (ICMLC) 1, 262–267 (2010)

11. Chitra, A., Uma, S.: An Ensemble Model of Multiple Classifiers for Time Series
Prediction. International Journal of Computer Theory and Engineering 2(3) (June
2010)

12. He, Q., Zhuang, F.Z., Zhao, X.R., Shi, Z.Z.: Enhanced Algorithm Performance
for Classification Based on Hyper Surface using Bagging and Adaboost. Machine
Learning and Cybernetics 6, 3624–3629 (2007)

13. Williges, R.C., Willinges, B.H.: Univariate and Multivariate Evaluation of
Computer-Based Data Entry. In: Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting, vol. 25(1), pp. 741–745 (October 1981)

14. Guim, F., Goyeneche, A., Corbalan, J., Labarta, J., Terstyansky, G.: Grid comput-
ing performance prediction based in historical information. In: Proceedings of the
7th IEEE/ACM International Conference on Grid Computing (2006)

15. McGovern, A., Rosendahl, D.H., Brown, R.A., Droegemeier, K.K.: Identifying Pre-
dictive Multi-dimensional Time Series Motifs: An Application to severe weather
prediction. Data Mining and Knowledge Discovery 22(1-2), 232–258 (2011)

16. De Gooijer, J.G., Hyndman, R.J.: 25 Years of Time Series Forecasting. Interna-
tional Journal of Forecasting 22(44:1), 443–473 (2006)

17. Kugiumtzis, D., Bora-Senta, E.: Simulation of Multivariate Non-Gaussian Autore-
gressive Time Series with Given Autocovariance and Marginals. Similation and
Modelling Practice and Theory, Elsevier (March 2014)

344 J.S. Hirwa and J. Cao

18. Lutkepohl, H.: New Introduction to Multiple Time Series Analysis, New York, pp.
13–26, 31-39, 41, 90-100, 102-106. Springer (2006)

19. Ebrahini, N., Hamedani, G., Soofi, E.S., Volkmer, H.: A Class of Models for Un-
correlated Random Variables. Journal of Multivariate Analysis 101(8) (September
2010)

20. Hamilton, J.: Time Series Analysis. Princeton University Press, Princeton (1994)
21. Rehfeld, K., Marwan, N., Heitzig, J., Kurths, J.: Comparison of Correlation Anal-

ysis Techniques for Irregularly Sampled Time Series. Nonlinear Processes in Geo-
phusics 18, 389–404 (2011)

22. Kitagawa, G.: Introduction to Time Series Modeling, pp. 8–29. CRC Press, Boca
Raton (2010)

23. West, M., Harrison, J.: Bayesian Forecasting and Dynamic Models, 2nd edn.
Springer, New York (1997)

24. Grandvalet, Y.: Bagging equalizes influence. Journal of Machine Learning 55(3)
(June 2004)

25. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods, vol. 24.
Oxford University Press (June 2001)

26. Dietterich, T.G.: Approximation Statistical Tests for Comparing Supervised Clas-
sification Learning Algorithms. Neural Computation 10(7), 1895–1923 (2006)

27. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

28. Engle, R.F., Granger, C.W.J.: Cointegration and Error Correction: Representation,
Estimation, and Testing. Economica 55(2), 251–276 (1987)

29. Zhidong, B., Wong, W.K., Zhang, B.: Multivariate linear and nonlinear causality
tests. Mathematics and Computers in Simulation 81(1), 5–17 (2010)

8 Appendix

Table 5. Cluster-1: VAR(p) model "CPU and Memory usage"

Time Multivariate Univariate
RMSE Cov RMSE Cov

cpu-memory cpu-memory cpu memory cpu memory
p = 1

60 sec 0.9743 0.0105 0.9631 0.9833 0.9304 0.9718
10 min 0.9857 -0.3560 0.9756 0.9976 0.9527 0.9983

60 min 0.9811 -0.0169 0.9657 0.9862 0.9441 0.9908
p = 10

60 sec 0.9652 0.0105 0.9631 0.9833 0.9304 0.9718
10 min 0.9767 -0.3560 0.9756 0.9976 0.9527 0.9983
60 min 0.9696 -0.0169 0.9657 0.9862 0.9441 0.9908

p = 20
60 sec 0.9600 0.0105 0.9631 0.9833 0.9304 0.9718

10 min 0.9665 -0.3560 0.9756 0.9976 0.9527 0.9983
60 min 0.9610 -0.0169 0.9657 0.9862 0.9441 0.9908

EM Model for Resource Performance Prediction in the Cloud 345

Table 6. Cluster-2: VAR(p) model "CPU and Memory usage"
Time Multivariate Univariate

RMSE Cov RMSE Cov
cpu-memory cpu-memory cpu memory cpu memory

p = 1
60 sec 0.9789 0.0167 0.9645 0.9904 0.9426 0.9820

10 min 0.9924 -0.0012 0.9601 1.0211 0.8524 0.5819
60 min 0.9660 0.0530 0.9866 0.9841 0.9743 0.9719

p = 10
60 sec 0.9681 0.0167 0.9645 0.9904 0.9426 0.9820

10 min 0.9857 -0.0012 0.9601 1.0211 0.8524 0.5819
60 min 0.9728 0.0530 0.9866 0.9841 0.9743 0.9719

p = 20
60 sec 0.9561 0.0167 0.9645 0.9904 0.9426 0.9820

10 min 0.9737 -0.0012 0.9601 1.0211 0.8524 0.5819
60 min 0.9660 0.0530 0.9866 0.9841 0.9743 0.9719

Table 7. Cluster-1: VAR(p) model "CPU and I/O"

Time Multivariate Univariate
RMSE Cov RMSE Cov

cpu-I/O cpu-I/O cpu I/O cpu I/O
p = 1

60 sec 1.0078 0.0032 0.9818 1.0177 0.9649 1.0687
10 min 1.0147 -0.0198 0.9955 1.0321 0.9920 1.0680
60 min 0.9810 -0.0094 0.9845 0.9770 0.9702 0.9554

p = 10
60 sec 0.9951 0.0032 0.9818 1.0177 0.9649 1.0687

10 min 1.0030 -0.0198 0.9955 1.0321 0.9920 1.0680
60 min 0.9690 -0.0094 0.9845 0.9770 0.9702 0.9554

p = 20
60 sec 0.9829 0.0032 0.9818 1.0177 0.9649 1.0687

10 min 0.9897 -0.0198 0.9955 1.0321 0.9920 1.0680
60 min 0.9592 -0.0094 0.9845 0.9770 0.9702 0.9554

Table 8. Cluster-2: VAR(p) model "CPU and I/O"

Time Multivariate Univariate
RMSE Cov RMSE Cov

cpu-I/O cpu-I/O cpu I/O cpu I/O
p = 1

60 sec 1.0040 -0.0619 1.0421 0.9597 1.0871 0.9347
10 min 1.0095 -0.0365 1.0252 0.9850 1.0521 0.9896
60 min 0.9851 -0.0125 1.0271 0.9456 1.0560 0.8957

p = 10
60 sec 0.9959 -0.0619 1.0421 0.9597 1.0871 0.9347

10 min 1.0040 -0.0365 1.0252 0.9850 1.0521 0.9896
60 min 0.9811 -0.0125 1.0271 0.9456 1.0560 0.8957

p = 20
60 sec 0.9837 -0.0619 1.0421 0.9597 1.0871 0.9347

10 min 0.9878 -0.0365 1.0252 0.9850 1.0521 0.9896
60 min 0.9734 -0.0125 1.0271 0.9456 1.0560 0.8957

346 J.S. Hirwa and J. Cao

Table 9. Cluster-1: DML model "CPU and Memory usage"

Time Multivariate Univariate
RMSE Cov RMSE Cov

cpu-memory cpu-memory cpu memory cpu memory
p = 1

60 sec 1.0432 0.0026 1.0429 0.7815 1.0871 0.9623
10 min 0.9931 0.0161 0.9911 0.9965 0.9855 0.9924

60 min 1.0024 0.0273 1.0026 0.9307 1.0046 0.8657

Table 10. Cluster-2: DML model "CPU and Memory usage"

Time Multivariate Univariate
RMSE Cov RMSE Cov

cpu-memory cpu-memory cpu memory cpu memory
p = 1

60 sec 0.9780 0.0209 0.9769 1.0066 0.9560 1.0143
10 min 0.9383 0.0357 0.9390 0.9820 0.8809 0.9634

60 min 1.0126 -0.0015 1.0120 0.9966 1.0243 0.9925

Table 11. Cluster-1: DML model "CPU and I/O"

Time Multivariate Univariate
RMSE Cov RMSE Cov

cpu-I/O cpu-I/O cpu I/O cpu I/O
p = 1

60 sec 1.0412 -0.0619 1.0429 0.9673 1.0871 0.9347
10 min 1.0020 -0.0051 1.0018 1.0113 1.0030 1.0220
60 min 0.9770 0.0322 0.9768 1.0290 0.9545 1.0579

Table 12. Cluster-2: DML model "CPU and I/O"

Time Multivariate Univariate
RMSE Cov RMSE Cov

cpu-I/O cpu-I/O cpu I/O cpu I/O
p = 1

60 sec 1.0070 0.0299 1.0036 1.0085 1.0139 1.0165
10 min 1.0172 -0.0171 1.0172 1.0266 1.0339 1.0554
60 min 0.9513 0.0076 0.9509 0.9409 1.9042 0.8852

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 347–356, 2014.
© IFIP International Federation for Information Processing 2014

Prediction-Based Optimization
of Live Virtual Machine Migration

Changyuan Chen and Jian Cao*

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
changych@sjtu.edu.cn, cao-jian@cs.sjtu.edu.cn

Abstract. Virtual Machine (VM) migration is an important technology to
support Infrastructure as a Service (IaaS). Traditional pre-copy and post-copy
strategies could function well in LAN but will need considerable time to migrate
between remote hosts in WAN. In this paper, we propose a prediction-based
strategy to optimize cloud VM migration process over WAN. In this strategy,
information about size increments of snapshots is used to determine appropriate
time points for migration in order to reduce the downtime during migration.
Specifically, we utilize Markov Chain Model to predict the future increasing
speed of snapshots. The experiments on KVM showed our approach could
achieve satisfying results.

1 Introduction

Cloud computing helps enterprises take advantage of resources provided by large cloud
service vendors. Typically, enterprises need to expand their IT capabilities during
workload peaks; meanwhile migrating a VM to a cloud is a cost-efficient choice. As a
result, attention is being attracted to live VM migration.

The entire process of VM migration can be divided into three stages: the pre-copy,
the down time and the synchronization stage [1]. During the pre-copy stage, a VM
keeps running while the modified data is transferred [2]. After that, the VM shuts down
and synchronizes the latest data [3]. In post migration, the VM resumes on the
destination host before all the modified data is transferred [4]. So data on both sides
should be synchronized. The durations of these three periods are important metrics and
most of the migration strategies are designed for optimizing these metrics.

There are three classic basic algorithms for VM migration, namely pure stop-copy,
pre-copy and post-copy algorithm. Pure stop-copy algorithm is designed to shut down
the VM and copy all its state to the destination host [5, 6, 7]. Although pure stop-copy
algorithm can minimize the total migration time, it creates long down time. In order to
reduce the down time, pre-copy algorithm is widely used. For example, Khaled Z.
presents a pre-copy based algorithm on-line (OL) to provide minimal downtime [2].
Post-copy algorithm is another way to reduce the down time during VM migration.
Michael designs a post-copy based strategy using adaptive pre-paging across a

* Corresponding author.

348 C. Chen and J. Cao

Gigabit LAN [8]. Pre-copy algorithm and post-copy algorithm could reduce down time,
but they both require a high bandwidth environment like LAN.

From the strategies above, we learn that the strategy to reduce the down time during
VM migration is a critical issue. Lots of strategies work well in LAN, where the need of
high bandwidth is meet. But they could hardly perform well in WAN. In this paper, we
propose a prediction-based migration strategy, aiming to minimize the down time
during VM migration. The prediction-based strategy could initiatively learn the VM’s
state and select the optimal points to complete the migration. While a VM running on a
host, snapshots are taken and transferred to the destination host iteratively. Every time
one snapshot is transferred, we predict an increasing curve of snapshot sizes using
Markov Chain. Based on the prediction, we can capture the growth platform, which is
the optimal time to finish the whole migration.

The rest of this paper is organized as follows. In the following section, we describe
some related work about our problem. Then, we analyze the characteristics of
snapshots on KVM platform in Section 3. Section 4 discusses the actual design and
implementation of our migration strategy. Section 5 describes the experiments and their
results. Finally, we draw some conclusions and describe the future work.

2 Related Work

VM migration technology enables most of the cloud services to work for a surge of
customers. Lots of achievements about VM migration have been gained in recent years.
XenMotion [9] is the migration module in Xen which adopts a pre-copy algorithm to
address the issue, and VMotion [10] developed by VMware also allows a running VM
to be moved from one host to another. They both aim at the LAN environment [11].
Especially, Xen implements live migration but it requires shared storage between hosts
[12]. But migration in LAN can no longer meet the demand, so in this paper we propose
a VM migration strategy which is adapted for WAN.

Liu proposed a novel approach to provide fast, transparent VM migration for both
LAN and WAN environments, which is called CR/TR-Motion[11]. Liu’s experiments
demonstrated that CR/TR-Motion works well in LAN environment, but its
performance in WAN is unsatisfactory. Timothy presented architecture, namely
CloudNet, as a cloud framework with a VPN based network infrastructure to provide
VM migration in WAN [13]. He optimizes the cost for transferring storage and VM
memory in WAN environment, but CloudNet he implemented is built on the base of
VPN. As is known, most VM migrations work in the general Internet environment, and
we can hardly transfer data through VPN. On contrary, the VM migration strategy we
propose is suitable for the general Internet environment. In our strategy, we make use of
the incremental characteristic of snapshots and use pre-copy mechanism to reduce the
down time during migration. In order to get the minimum snapshot increment during
migration, we propose a prediction-based strategy using Markov chain as a theoretical
basis. VM snapshot is a collection of all the states of the VM, including storage data,
memory pages and CPU states. So we propose a prediction strategy to forecast the
growth trends of VM snapshots, which will help to optimize the down time during
migration.

 Prediction-Based Optimization of Live Virtual Machine Migration 349

3 Prediction-Based Model

In this section we describe our prediction-based model, which will smooth the way to
our migration strategy. Two core aspects will be presented in the following
sub-sections: snapshot size growth and the prediction model.

3.1 The Growth of the Size of a Snapshot

VM snapshots are files containing storage data, memory pages and CPU states at some
time. A traditional snapshot at time is defined as SŊ M , where represents
the storage data, M represents the memory pages and represents the CPU state. An
incremental snapshot means the differences between the current and the former ones.
So an incremental snapshot created at time is defined as SŊ SŊ , and
all the states of a VM at time is SŊ .

3.2 The Prediction Model for Snapshot Size Growth

The growth of the size of a snapshot can be modeled as a time series and we try to
find a prediction model to predict its future trend. We adopt Markov Chain as the
prediction model.

Markov Chain and Transition Matrix. A Markov Chain is a mathematical system
that undergoes transitions from one state to another on a state space [15]. It is a random
process that the next state depends on the current one. The growth curve of snapshot
size is a time series with some regular characteristic (Fig. 1 to Fig. 4).

Fig. 1. No extra program on VM Fig. 2. CPU intensive program on VM

Fig. 3. IO intensive program on VM Fig. 4. Network intensive program on VM

350 C. Chen and J. Cao

In order to analyze and f
capture the continuous disc
window represents a size o
compose a status, which is
the learning data and the m
will be detailed in the evalu

Step 1. We extract pattern
Markov Chain. Patterns ar
which represents a cluster o
historical data using a patte
Then we make up the pat
patterns. We define patter
representing the size of
determined by the size

M = , whi

rows R , , … … ,C , , … … , repre
matrix means a probability
in the transition m:

Step 2. In this step we formM. The growth of the snap1 is a size incr
from to . The lates
matched pattern will
meets such condition
calculate ,, , … …
status that satisfies the cond
curve , , … … ,

So far, we make a predic
curve , , … … , ,

forecast the increasing curve, we set an n-sized window
crete states of n as a status (Fig. 5). Each state in an n-si
of an incremental snapshot in a time slot, and the n sta
the base unit in our model. Optimal value of n depends

migration platform. The optimal value we set in experime
uation section.

Fig. 5. N-sized window

ns using n-sized window and build transition matrix us
re some typical snapshots growth sub-sequences, each
of original growth curves. We extract the patterns from
rn fusion model which is based on Euclidean distance [1
ttern set, = , , … … , , where N is the number
rn , , … … , , in which is a single s
an incremental snapshot. The length of pattern
of the window. The transition matrix is defined

ich stores all the transition probabilities. In the matrix,

 represent the current statuses while the colum
esent the following one. So each value in the transit
from one status to the successor. For instance, the r
matrix is , , , … … , , wh
.

malize the prediction process based on the transition ma
pshot size can be represented as L , , … … , , e
rement while the curve L represents the snapshot grow
t status is , , … … , , . The b
be found according to , where is a pattern t, . Here, we use Euclidean distance
. Then we will forecast the next sta… , , according to (Fig. 6). The status
dition . After that we get the n

, where the state is what we predict.
ction. We can repeat the predictions to obtain a long fut, , … … , , … … .

w to
ized
ates
s on
ents

sing
h of

the
14].
r of
tate
 is
as

the

mns
tion
row
here

atrix
each
wing
best
that
e to
atus
is a

new

ture

 Prediction

Fig. 6. Iterative predictio

We find the curve someti
the last transmission durin
segments, which we call th
meaning the whole size incr
curve with length , a , 1 , is the gro

4 Prediction-Base

During migration the effi
bandwidth. We define an i
which represents the growi

: an incremental snapsh
We consider the process

Snapshot is created a

being transmitted at and
Thus, at time , t
snapshots are transmitted to

4.1 Feedback-Based M

Based on the prediction mo
feedback based migration (F
transmit the base image and
model. Second, to capture
Third, to adjust the predict
down the VM and synchron

Predicting snapshot incr
describe the snapshots trans
bandwidth, a period that t
captured using depth-first s

-Based Optimization of Live Virtual Machine Migration

on process Fig. 7. Part of migration process

imes go steep and sometimes go slow, so we could perfo
ng slow segment. Therefore, we need to identify th

hem growth platforms. We define ∑
rement from time to . Given a length of period an
segment that meets the condition ,

owth platform of .

ed Migration Strategy

iciency depends on the snapshots’ sizes with a gi
increasing curve of a snapshot as L , , … … ,
ing size of a snapshot. The element in L is the size
hot at . Part of the migration is as follows (Fig. 7).
s starts at time with and a given stable bandwid

at . Let ∆t and ∆ , snapshot st

 completes at . At the same time, the VM keeps runni
the next snapshot will be transmitted. And so fo
o the destination host until the VM shuts down.

Migration Strategy

odel described above, we propose a VM migration strate
FM) strategy. It is mainly composed of four steps. First
d forecast a snapshot increasing curve using the predict
the time when the incremental snapshot is the small

ted curve according to real-time feedback. Finally, to s
nize the status when it reaches the time we predicted.
reasing curve is described in section 3, this section wo
smission process. Given a snapshot size growth curve an
the smallest incremental snapshot is generated could
earch and greedy algorithm, which is described here.

351

orm
hese

,
nd a

ven
,

e of

dth .
tarts

ing.
orth,

egy:
t, to
tion
lest.
shut

ould
nd a
d be

352 C. Chen and J. Cao

Algorithm 1. Feedback-based migration algorithm

Input : a snapshot size growth curve p_list and a base_size

Output : finish_t, the proper point to shut down the VM

FindFinishTime (p_list, base_size)

begin

 min_size = MAX finish_t = 0

 DFFind(p_list, base_size, 0)

 return finish_t

end

DFFind (p_list, base_size, start_t)

begin

 if(base_size == 0)

 min_size = 0 tf = start_t

 return

 current_size = base_size

 while current_size not reach finish time

 update next_t and next_size

 DFFind(p_list, sub_size, start_t + next_t)

 if(min_size > next_size)

 min_size = next_size finish_t = start_t + next_t

end

The algorithm FindFinishTime (FFT) would find the finish time of the migration
with O time. Every time an incremental snapshot is transmitted, a predicted curve
and a real-time would be compared. If the two curves match, the migration will work as
predicted. Otherwise, a new predicted curve would be made and another finish time
would be calculated. FM strategy works efficiently if the prediction is accurate. But
when the predicted curve deviates from the actual curve, the finish time should be
calculated every time a snapshot is transmitted. Thus, the efficiency would be lower.
And an enhanced strategy is proposed below.

4.2 Adjustment-Based Migration Strategy

We enhance the former strategy by adding the adjustment factors during prediction and
propose another strategy: adjustment based prediction (AM) strategy.

Every time we make prediction, the times of continuously repeated patterns is
recorded. Once the time exceeds the threshold (one single pattern repeats for more than m times, which will be detailed in evaluation), we get the second popular status as the
next status instead of the most popular one. The complexity of the algorithm is O ,
and the length of the increasing curve is . The algorithm improves the prediction
efficiency, and the transmission is the same as FM strategy.

 Prediction

Algorithm 2. Adjustme

Input : markov_matrix

Output : p_list, the

Predict(markov_matrix

begin

 current_size = base

 build history_list

 while not reach fin

 pattern = getPatt

 if pattern_time >

 pattern = getFol

 next_status = pre

 update p_list and

 if pattern equals

 pattern_time ++

 pattern = next_pa

 return p_list

end

5 Experiments

In this section, we presen
experimental platform we u
KVM as the virtualization l

We extract a pattern set
that the length of a pattern
lengths of patterns to comp
select 50 as the pattern leng

Fig. 8. Pattern length ex

Considering migration
strategy fixed number iterat
minimize the whole migrati
reduce the down time, but i

-Based Optimization of Live Virtual Machine Migration

ent-based migration algorithm

x, a base_size

predicted curve

x, base_size)

e_size p_list = null pattern_time = 0

from current

nish time

ern(history_list)

 threshold

llowPattern(history_list)

dictNextStatus(markov_matrix)

d history_list

 next_pattern

attern

nt an evaluation of our prediction-based migration. T
used is built between SJTU, China and UFL, USA. We
layer and lib-virt as the control layer.
through learning from history data. In Section 3, we kn

n will affect the migration. In Fig. 8, we choose differ
pare the prediction accuracy and the efficiency. Finally,
gth according to our experiment.

xperiment Fig. 9. Down time on iteration number

over WAN, the strategy pure stop-copy (PSC) and
tions (FNI) are suitable. We find that the PSC strategy
ion time while its down time is long. The FNI strategy
t depends on the iteration numbers (Fig. 9).

353

The
use

now
rent
 we

r

the
can
can

354 C. Chen and J. Cao

The FNI strategy cannot detect the size of snapshot automatically. Fig. 9 reveals that
snapshots become smallest during the 5th iteration. The FNI strategy cannot minimize
the down time, since the iterations number is fixed. Compared with PSC and FNI
strategies, FM and AM strategies can minimize the down time. We evaluate the
performance of FM and AM strategies, compared with PSC and FNI strategies. In Fig.
10 to Fig. 13, we analyze the performance with different types of snapshots.

Fig. 10. Result on CPU intensive program Fig. 11. Result on memory intensive program

Fig. 12. Result on network intensive program Fig. 13. Result on IO intensive program

From the figures above, we know that the network and IO intensive snapshots reflect
the real performance about our strategy. What’s more, we consider the size of the base
image as a factor in our evaluation. In Fig. 14 and Fig. 15, we give a performance
comparison using FM and AM strategies with PSC and FNI strategies.

Fig. 14. Down time with 500M base image Fig. 15. Down time with 1G base image

VMs in evaluation run different programs, including CPU intensive, memory
intensive, network intensive and IO intensive programs. In addition, two sizes of base
image are considered. In evaluation, four migration strategies are taken, and the
migration iterations from 1 to 4 are selected in FNI strategy. PSC strategy always
produces a constant down time and the down time varies for FNI strategy. We can see
that FM and AM work well and stably in all cases with almost zero down time.

 Prediction-Based Optimization of Live Virtual Machine Migration 355

As mentioned above, FM strategy is less efficient than AM strategy whenever the
predicted curve deviates from the actual curve. AM strategy could adjust the predicted
result so that the predicted curve matches the actual curve better. Here, we set m 5 as
the threshold to avoid patterns repetition considering the snapshots size and bandwidth
in our evaluation platform. The prediction times of AM strategy is fewer, and the
effective prediction ratio is higher. Effective Prediction Ratio is defined as EPR⁄ , where is the times of correct prediction and is the
times of total prediction. In fig.16, it is indicated that the EPR of AM strategy is higher
in different types of VMs and it is 21.1% higher than FM strategy overall.

Fig. 16. EPR comparison between FM and AM strategies

6 Conclusion and Future Work

In this paper, for optimizing VM migration over WAN, we propose a prediction-based
strategy which can forecast the increasing curve of snapshots about VMs. Our main
contribution is to predict the increments of VM snapshot and select the proper segment
to shut down the VM which minimizes the VM down time. Compared with two
migration strategies, the evaluation shows that our PB strategy works well and stably
during migration, which minimizes the down time among all the strategies.

In the future, there are two parts of work we can focus on. First, more migration
metrics can be considered like the whole migration time and the bandwidth limitation.
Second, we could split the snapshot finer, such as dirty page in memory and storage.

Acknowledgement. This work is partially supported by China National Science

Foundation (Granted Number 61073021, 61272438), Research Funds of Science and

Technology Commission of Shanghai Municipality (Granted Number 14511107702,

12511502704).

References

1. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:
Live Migration of Virtual Machines. In: NSDI 2005 (2005)

2. Ibrahim, K.Z., Hofmeyr, S.A., Iancu, C., Roman, E.: Optimized pre-copy live migration for
memory intensive applications. In: SC 2011, p. 40 (2011)

356 C. Chen and J. Cao

3. Ma, F., Liu, F., Liu, Z.: Live virtual machine migration based on improved pre-copy
approach. In: ICSESS 2010, pp. 230–233 (2010)

4. Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual machines.
Operating Systems Review 43(3), 14–26 (2009)

5. Kozuch, M., Satyanarayanan, M.: Internet suspend/resume. In: Proc. IEEE Workshop on
Mobile Computing Systems and Applications, Washington, DC, USA, pp. 40–46 (2002)

6. Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S.: Optimizing the migration of
virtual computers. ACM SIGOPS OSDI 2002, 377–390 (2002)

7. Whitaker, A., Cox, R.S., Shaw, M., Gribble, S.D.: Constructing Services with Interposable
Virtual Hardware. In: NSDI 2004, pp. 169–182 (2004)

8. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using adaptive
pre-paging and dynamic self-ballooning. In: VEE 2009, pp. 51–60 (2009)

9. Nelson, M., Lim, B.H., Hutchins, G.: Fast Transparent Migration for Virtual Machines.
In: Proc. USENIX Ann. Technical Conf., pp. 391–394 (April 2005)

10. Nelson, M., Lim, B.H., Hutchins, G.: Fast Transparent Migration for Virtual Machines.
In: Proc. USENIX Ann. Technical Conf., pp. 391–394 (April 2005)

11. Liu, H., Jin, H., Liao, X.: Live Virtual Machine Migration via Asynchronous Replication
and State Synchronization. IEEE Trans. Parallel Distrib. Syst. 22(12), 1986–1999 (2011)

12. Williams, D., Jamjoom, H., Weatherspoon, H.: The Xen-Blanket: virtualize once, run
everywhere. In: EuroSys 2012, pp. 113–126 (2012)

13. Wood, T., Ramakrishnan, Prashant, K.K., Shenoy, J.: CloudNet: dynamic pooling of cloud
resources by live WAN migration of virtual machines. In: VEE 2011, pp. 121–132 (2011)

14. Yang, D., Cao, J., Fu, J.: A pattern fusion model for multi-step-ahead CPU load prediction.
Journal of Systems and Software 86(5), 1257–1266 (2013)

15. Geyer, C.J.: Practical markov chain monte carlo. Statistical Science, 473–483 (1992)

Control Protocol and Self-adaptive Mechanism

for Live Virtual Machine Migration over XIA�

Dalu Zhang��, Xiang Jin, Dejiang Zhou, Jianpeng Wang, and Jiaqi Zhu

Department of Computer Science and Technology, Tongji University,
Shanghai, China
daluz@acm.org,

{jinxiang8910,dejiang zhou,wangjianpeng4321,garyzjq}@163.com

Abstract. FIA (Future Internet Architecture) is supported by US NSF
for future Internet designing. XIA is one of the projects which comply
with clean slate concept thoroughly. Meanwhile, virtual machine migra-
tion technique is crucial in cloud computing. As a network application,
VM migration should also be supported in XIA. This paper is an experi-
mental study aims at verifying the feasibility of VM migration over XIA.
We primarily present intra-AD (Administrative Domain) and inter-AD
VM migration with KVM instances. The procedure is achieved by a mi-
gration control protocol which is suitable for the characters of XIA archi-
tecture. Moreover, an elementary self-adaptive mechanism is introduced
to maintain VM connectivity and connection states. It is also beneficial
for VM migration in TCP/IP network. Evaluation results show that our
solution well supports live VM migration in XIA and all the communi-
cations leading to VM can be kept uninterrupted after migration.

1 Introduction

For decades, Internet has become one of the most useful tools in our daily life.
It achieved great flourish because of large quantity of applications and various
kinds of media. However, TCP/IP network at present is suffering from serious
issues such as difficulties on scalability, mobility and security problems. This
leads to the emergence and development of future network.

XIA is one of the FIA projects supported by US NSF in 2010. It is also one
of the FIA-NP (Next Phase) projects announced in May 2014. XIA [1] aims
at getting rid of TCP/IP concepts. Network, host, service and content can be
abstracted as principals. New principal types can be defined for special use, even
if they have not been natively supported [2]. Network address is replaced by
DAG (Directed Acyclic Graph), which is flexible for addressing. In addition,
fallback allows communicating entities to choose an alternative action if intent
node is unreachable. Addresses are managed by name service, which provides a
mapping converting human-readable names to DAGs.

� Supported by the NSF of China (No. 61073154).
�� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 357–368, 2014.
c© IFIP International Federation for Information Processing 2014

358 D. Zhang et al.

Virtualization is necessarily a key technology in cloud computing, which allows
to run multiple operating systems on a single platform, utilizing host’s expensive
resources independently, such as CPU cycles and memory space. Data centers
can achieve load balancing, host maintenance, energy management or disaster
recovery [3] by VM migration.

Extensive research has been carried out on VMs with shared-storage [4], but
shared-storage VMs cannot be applied in all scenarios [5]. For example, a user
may not necessarily have access to a particular data center permanently. If a
shared virtual disk is allocated through network, abnormal latency would oc-
cur. Thus, we prefer full VM migration, during which virtual disk is transferred
as well as memory and CPU information. We choose KVM since block (stor-
age) migration is intrinsically supported. KVM is a full virtualization solution
frequently used in research area. KVM module is integrated in the kernel of com-
mon Linux distributions. However, direct kernel modules access is not permitted
for users. This issue can be solved by QEMU which is also a piece of open-source
virtualization software and is adopted as a management tool in user space.

In this paper, we first design VM migration platform in two different situa-
tions, in a single AD and between ADs. Since VM migration in XIA network
is quite different to that in TCP/IP network, we adopt VM migration control
protocol to manage migration procedure. Moreover, a current-network based
self-adaptive mechanism is introduced to keep up all the connections leading to
VM. We can achieve VM migration over XIA with the control protocol and self-
adaptive mechanism. The experimental results demonstrate that VMs can get
migrated with downtime no longer than 2s for full migration over XIA network.

Virtualization is necessary to maintain unified management for various cloud
computing platforms, even in future data centers. It is also beneficial to keep
user diversity and application isolation. Therefore, virtual machine will be in
existence for a long period of time in the future. As a typical application in
future networks, it should also be well supported in XIA. Base on the research
about VM migration over traditional TCP/IP network, we try to study VM
migration techniques in future Internet. On the one hand, it can test whether
VM migration is supported in XIA. On the other hand, in comparison with
the technologies used for VM migration in TCP/IP network, it is beneficial to
perfect the design of future networks.

The rest of this paper is organized as follows: In Sect. 2 we discuss related
work. In Sect. 3, we introduce the VM migration system design and migration
modules processing migration. After that, we demonstrate the control protocol
and self-adaptive mechanism to achieve VM migration in Sect. 4. Sect. 5 further
discusses the experimental results. Some special issues and future works are
discussed in Sect. 6 and Sect. 7 concludes this paper.

2 Related Work

Most of recent researches on VM migration are dedicated in studying the mech-
anisms of VM migration and factors that trigger it. In general, VM migration

Control Protocol and Self-adaptive Mechanism 359

method can be mainly classified as pre-copy [6], post-copy [7]. There are also
some optimizations based on pre-copy algorithms, such as transferring bitmaps[8]
or log file [9] of dirty pages, or delivering “hot pages” in final round [10] to min-
imize the number of pages being transferred.

In TCP/IP network, an important issue is to get the migrated VM noticed
by all the network elements after migration. It can be achieved by generating
an unsolicited ARP reply on destination host, advertising location change of
VM. But the fact is that this method may not be effective in all scenarios. If
source host and destination host are in different subnets, some hosts or routers
would not receive the ARP messages broadcasted by the migrated VM because
of network isolation.

In order to solve the problem, lots of researches has been carried out, which can
be classified into two categories. One is based on the concept of mobile IP. Article
[11] presented to build a tunnel between original address and the new address
so as to keep all the communications that have been set up before. In addition,
dynamic DNS is utilized to record address update, so clients can connect to
VM by obtaining the new address after VM migration. Network agents [12] are
presented to be set in both source and destination subnet with ARP agents
maintained on. The ARP agent in source subnet will broadcast ARP messages
to advertise the information of VM’s new location. But the limitation is that
clients should locate in source subnet, otherwise, they cannot receive the ARP
messages. Mobile IPv6 is introduced in [13], one of the benefits is that hosts
supporting Mobile IPv6 can bypass the tunnel and connect to the VM through
route optimization mode.

The other method depends on overlay network. In [14], source and destination
network of VM migration procedure are repartitioned into the same VPN. ARP
message can be forwarded at VPN level to update Ethernet switch mappings
at both sites. This will help to redirect network traffic to VM’s new location.
In ViNe [15], hosts can be addressed by virtual network addresses first. Overlay
network methods require to build virtual network before migration occurs, while
in fact VM migration is triggered by some particular factors, virtual networks
should be reorganized for migration each time since the source and destination
network may not be constant.

We seldom find research about VMmigration technologies over future Internet
architectures. Therefore, it is contributory for us to conduct virtual machine
migration research on XIA. It is contributive for the design of future networks.

3 System Design

3.1 Testbed Design

Our research goal can be summarized as four rules which we name as “four any”,
that is, VMs can be deployed on any physical host and be migrated to any one,
name service can run on any host in the network and any of the applications
should not be interrupted during VM migration.

360 D. Zhang et al.

(a) Intra-AD (b) Inter-AD

Fig. 1. VM migration testbed design in XIA network, (a) is the testbed in single AD
and (b) is a typical testbed for VM migration between different ADs

The XIA prototype is developed base on software router click[16]. Common
routers in TCP/IP network can’t be recognized in XIA because of the differences
in protocol formats. As a solution, XIA routers are realized by physical machines
with two or more NICs. Name service is necessary for host address query in XIA.
Any host can run as name server and provide global name resolution service.
When the addresses of hosts or services are changed, they should be registered
to name server.

AD is introduced in XIA to partition the network. It is convenient for network
management. A VM in different AD will obtain different addresses as the AD
number is changed. Therefore, inter-AD VM migration is more complex than
that in a single AD. We propose two VM migration testbeds, in single AD and
between ADs, concerning the issue of whether DAG has to be changed. Fig.
1a shows the testbed of VM migration in single AD. HOST A, HOST B and
HOST C represent the source host, destination host and client host respectively.
HOST VM depicted in dashed box denotes the virtual machine to be migrated.
Name service runs on HOST A because it can be put on any hosts. ROUTER 1
indicates a XIA router, routing and forwarding packets. In Fig. 1b, the topo-
logical structure is partitioned into two independent ADs and each XIA router
manages its AD respectively. Name service still runs on HOST A. All the hosts
or services can register their DAG-style addresses to name service.

3.2 Migration Control Modules

We attempt to conduct VM migration in XIA network with now available virtu-
alization product KVM and take the advantages of CHUNK provided in XIA for
data delivery. The whole structure of VM migration consists of three modules
and their relationship are shown in Fig. 2.

Migration Data Sending and Receiving. There are four migration modes
in KVM. Among them, tcp mode is primarily used for VM migration in TCP/IP
network by default. In exec mode, migration data are read and sent to standard
I/O by the sender, while on the receiver side KVM hypervisor obtains data from

Control Protocol and Self-adaptive Mechanism 361

Fig. 2. Data flow between different modules for exec mode VM migration

standard I/O and then reload VM, no matter how data are transferred. Tcp
mode cannot be adopted here since TCP connection is not supported in XIA.
We choose to get KVM migration run in exec mode.

Migration Data Transfer. Three data transmission methods are provided
in XIA, namely STREAM, DGRAM and CHUNK. STREAM is connection ori-
ented and provides reliable transmission, just as TCP in TCP/IP protocol stack.
Correspondingly, DGRAM is connectionless like UDP. Concept of CHUNK is
widely used in content-centric future Internet architectures, especially XIA and
NDN. All the data should be divided into chunks when transmitting in CHUNK
mode. CID of a chunk is obtained by hash of the whole content block, so it
can get self-verified. Network traffic is well controlled because each transaction
is originated by the receiver and the sender just need to put the data that are
required into content cache.

CHUNK mode is quite reliable because of its error control and intrinsic traffic
control mechanisms though it is connectionless. We employ it as a transmission
method for VM migration in XIA. When migration data are sent to standard
I/O, migration sending process acquires and delivers them to the destination
host. Meanwhile, receiving process accepts the chunks and writes them into
standard I/O. The details of chunk mode data transmission procedure and the
control protocol for its management will be introduced in Sect. 4.1.

Migration Test and Verify. In order to test whether VM migration procedure
is live or not, we propose to run some applications in VM. Since traditional
applications cannot work efficiently in XIA network environment, a calculation
application (expressed as Cal in the context) is introduced, which is developed
with APIs provided in XIA. A calculation server daemon runs in VM, calculating
and verifying Goldbach conjecture (every even number can be expressed as a sum
of two prime numbers). A client process runs on client host (HOST C in Fig. 1),
acquiring answers from server and printing them onto screen.

We propose to use Xping provided in XIA prototype as a way for downtime
evaluation. For example, if time interval of Xping packets is set as Δt and n
packets are dropped during downtime, we can get informed that downtime mea-
sured is (n ± 1) ∗Δt, that means the downtime is n ∗Δt with deviation of Δt.
This is quite accurate if value Δt is small enough.

362 D. Zhang et al.

Fig. 3. Detailed working process of VM migration control protocol

4 Control Protocol and Self-adaptive Mechanism

We present a migration control protocol to manage the VM migration procedure
in XIA. Since keeping the migrated VM accessible is significant, we introduce
the self-adaptive mechanism for network work recovery after VM migration.

4.1 VM Migration Control Protocol

Fig. 3 shows the process of data transmission. Control messages are delivered by
STREAM because it is simple and reliable. The destination site starts a stream
socket first and binds it to a migration service. The socket is in listening state,
waiting for connection of migration data sender host. After connection is set up,
the source host (sender) will notify the destination host (receiver) of CIDs of the
chunks that needed to be delivered. The destination host will construct messages
to request for these chunks. The receiver then acknowledges for this round of
transmission if the data are check to be correct and the sender continues its
data transmission procedure till nothing to be delivered. If the data sender is
sure of the end of migration, a “DONE” message will be sent out to announce
the termination of VM migration.

4.2 Self-adaptive Mechanism

In implementation of VM migration in WAN of TCP/IP network, VM will get
unreachable after being migrated to destination subnet. There are mainly three
challenges. Firstly, the IP address obtained before migration belongs to the
source subnet and it can’t be recognized in new subnet, even the destination

Control Protocol and Self-adaptive Mechanism 363

Fig. 4. An simple example of XIA address expressed in the DAG form (src indicates
a virtual source of DAG. AD is a 160-bits number identifying an AD. Similarly, HID
and SID are 160-bits identifiers presenting a host or a service).

host which the VM lies on is not aware of the existence of VM. Secondly, if a
new address is acquired, e.g. by DHCP, it is also difficult to get the new address
information propagated to the whole Internet. Thirdly, all the communications
related to the migrated VM should be recovered and the communications set up
afterward must be routed to the right location.

Therefore, we present self-adaptive mechanism after VM is resumed on desti-
nation host. In order to solve the above-mentioned problems, self-adaptive pro-
cedure mainly focuses on three aspects, namely VM mobility perception, new
location notification and traffic redirection.

Migration Perception. One basic precondition for VM migration accomplish-
ment and traffic recovery is that migration of VM should be detected as soon as
possible. A general solution is to intercept and capture signals from the hyper-
visor when particular event occurs. In XIA network, this goal can be achieved
conveniently. XIA gateway router inside an AD broadcast beacons periodically
which contain identifiers of the AD and router. Any host that receive the broad-
cast packets can easily determine which AD they belong to at present.

New Location Notification. Addresses in XIA are expressed by DAG and a
simple form is depicted in Fig. 4. This structure is constructed with all kinds
of IDs that are necessary, so it is convenient for re-construction. AD should be
changed when a VM is migrated to a new AD, and a new DAG form address
should be re-registered to name service as soon as VM migration is detected.
Additionally, since a router is to manage the AD it locates in, the VM should
also make itself noticed by the gateway router in the destination AD and the
router will append its routing table with an entry directing to the VM.

Traffic Redirection. Network traffic related to VM should be resumed after
it is migrated to destination host. Most of the researches that studying live
VM migration in WAN adopt agents on source host and tunnels between agent
and VM. Neither is needed when it comes to XIA because of its particular
characteristics. Information contained in either source or destination address
field of XIP layer header is not yet IP, but DAG instead. Lastnode field stores
an identifier that indicates the node which is last processed by router. When a
router receives a packet, it first checks Lastnode field and then processes the nodes
afterward. Thus, a packet is routed and forwarded based on the information of
a particular node in DAG, not DAG as a whole.

364 D. Zhang et al.

According to the analysis, we can take some modifications to the routing
tables of routers on the migration path. In this way, packets forwarding to VM
are still able to be delivered correctly according to “HID” routing entries, even
though “AD” information is changed. We just have to change the next-hop field
of VM’s HID entry to make the path directing to the new location. If a router
in source AD receives a packet with VM’s obsolete DAG as destination address,
it will direct the packet to next hop router which is nearer to destination host.
For example, if ROUTER 1 in Fig. 1 receives a packet with VM’s original DAG,
this packet should be routed to ROUTER 2 according to the routing table that
has been modified and finally it will arrive at VM because ROUTER 2 knows
the location of VM exactly.

The rules of routing table in XIA also bring some troubles. When a VM is
running on source host, a HID entry is added into it with the host’s HID as
destination and next hop address. Similarly, there is also an entry pointing to
VM’s HID in source host’s routing table. This will lead to trouble as both of these
entries can’t get modified automatically and packets will be routed incorrectly
when VM is migrated. Therefore, these two entries should be deleted in order
to keep connectivity between source host and VM.

5 Implementation and Evaluation

We carry out VM migration over XIA network with the testbeds depicted in
Section 3. With the evaluation results, we can easily get to know the deficiencies
of our design and get improvement in next phase. We do not focus on iteration
phases during migration or factors that trigger migration. Therefore, we don’t
need to take any modifications to QEMU-KVM. This is beneficial to make the
current virtualization products flourish in the future when future networks such
as XIA takes the place of TCP/IP. VM is configured with 4GB virtual disk and
640MB physical memory for full migration. The size is necessary for installation
of XIA software. Hosts are configured with Intel core I3 processor and 8GB RAM.
Computers with multiple network interface cards are used as XIA routers. All
the physical hosts and VM are running Ubuntu 12.04 with kernel 3.5.0. Source
code of XIA prototype v1.1 is obtained from Github.

5.1 Comparison of Migration Modes

First of all, it is necessary to compare migration performance in tcp and exec
modes so as to get the differences between them. We implement exec mode data
transmission by using SOCK STREAM sockets in TCP/IP network, comparing
to the default tcp method. Two kinds of workload along with calculation appli-
cation we developed are introduced, which are widely used in network research
areas.

Dbench: an open source benchmark tool to generate I/O workloads, simulating
a variety of real file servers. We choose it as an I/O intensive application.

Control Protocol and Self-adaptive Mechanism 365

Netperf: a benchmark that can be used to measure the performance of many
different types of networks. Here we run it as a workload inside VM and it does
not communicate with clients because of limitations of protocol stack.

Fig. 5 shows the total migration time and downtime of VM migration in
two modes with different VM workload. We can get concluded from comparison
that total migration time and downtime will increase obviously if we use exec
mode for migration with same workload, especially downtime. As a self-defined
transmission method, the throughput of exec mode transmission is slightly lower
than that of tcp. Thus, migration method selection affects the performance and
we will complete exec mode VM migration over XIA for a comparison to that
over TCP/IP network.

Fig. 5. Total migration time and downtime of two migration mode (tcp and exec)

5.2 Connectivity Test

We test VM migration in exec mode over both TCP/IP and XIA networks.
Processing programs is required for data sending and receiving with sockets
provided in TCP/IP and XIA networks respectively. A calculation service always
runs in the VM for connectivity test. We just take one application as an example
because VM will be unreachable in WAN as a matter of experience, no matter
which kind of workload it takes along.

First of all, the service runs in VM never get interrupted during the migration
procedure. Xping drops several packets during downtime but recovers soon after
VM’s resuming on destination host. Both connection-oriented and connection-
less services will not be interrupted during VM migration, even without agents
or tunnels used for network recovery in WAN of TCP/IP network.

Total migration time and downtime of above experiments are demonstrated
in Table 1. We can conclude that full VM migration in LAN of TCP/IP network
takes the least total migration time and downtime. When it comes to WAN,
the VM and its services are all inaccessible after it has been migrated to the

366 D. Zhang et al.

Table 1. Performance of VM migration in different networks

Intra-AD Inter-AD
total time downtime total time downtime

TCP/IP 6.5 min 1 s - -
XIA 14 min 1.2 s 15 min 1.2 s

Table 2. Migration performance in XIA network with different workload

Intra-AD Inter-AD
total time downtime total time downtime

Calculation 14 min 1.2 s 15 min 1.2 s
Dbench 12 min 1.0 s 13 min 1.5 s
Netperf 12 min 1.7 s 14 min 1.7 s

destination subnet. The migrated VM has kept the original IP address and this
can’t be recognized in a different subnet.

In XIA network, VMmigration can be achieved successfully though the perfor-
mance isn’t so good. Downtime is about 0.2s longer than that in TCP/IP while
total migration time is about twice longer. The long time is probably caused
by chunk cache mechanism in XIA routers. Chunks that are passing through a
router would be cached for future use. The router will search its cache when
a chunk request comes and it will deliver this chunk to client if found, or it
will continues to forward this request. Thus the time cost for chunk search will
sharply increase chunk transmission time. It can also reduce network through-
put to some extent. Lots of effort has to be made for performance optimization
in XIA. We have made some modifications to the cache algorithms, that is, to
release the first chunk in the cache when extra space is required, which reduces
total migration time and downtime sharply.

5.3 Workload Test

We evaluate VM migration performance in XIA with different workloads, repre-
senting typical server applications in today’s data centers. Experimental results
are shown in Table 2.

Calculation is CPU-intensive and network-intensive because it calculates re-
sults and delivers the data rapidly. Both netperf and dbench can be regarded
as I/O intensive. We can see in Fig. 6 that total migration time varies little
between the migrations in intra-AD and inter-AD. In contrast, migration of VM
with dbench has the largest downtime variation. Among the applications listed,
VM running netperf and dbench suffers longer downtime while the calculation
application has longer total time. We can draw a conclusion that network inten-
sive services will suffer longer total migration time, while downtime is longer for
I/O intensive services.

Control Protocol and Self-adaptive Mechanism 367

Fig. 6. Total migration time and downtime of VM migration in XIA network with
different workload test

6 Future Works

This paper takes the first step towards the research of VM migration over XIA
and our future studies will base on the testbeds designed. There are still many
open issues that need to be further explored.

First of all, though we have achieved VMmigration over XIA, the performance
isn’t so ideal. Performance optimization is an urgent matter. We hope to reduce
total migration time and downtime in XIA to be as short as in TCP/IP. Another
research point is migration strategies such as load balancing. Besides, we can
study VM migration in more future Internet architectures in order to find one
that is most suitable for future demand.

7 Conclusion

This paper designs experimental testbeds in future Internet prototypes compar-
ing against VM migration in LAN and WAN of TCP/IP network. We propose
KVM virtual machines to be migrated with independent sending and receiving
programs. Data are transmitted in chunks and this procedure is managed by
a migration control protocol. We then introduce a self-adaptive mechanism in
order to solve the application interruption problem after VM is migrated, espe-
cially among ADs. All the traffics directed to VM can be recovered even if they
are still using original VM addresses. Evaluation results show that VMs can be
migrated in XIA networks successfully with downtime in the acceptable range.
Performance improvement can leave for future research.

Acknowledgments. The authors are sincerely grateful for the technical sup-
port from Prof. Peter Steenkiste and Mr. Dan Barrett in Carnegie Mellon Uni-
versity and financial support from Shanghai INGEEK Information Technology
Co. Ltd.

368 D. Zhang et al.

References

1. Han, D., Anand, A., Dogar, F., et al.: XIA: Efficient Support for Evolvable Inter-
networking. In: 9th NSDI. USENIX Association, Berkeley (2012)

2. Anand, A., Dogar, F., Han, D., et al.: XIA: An architecture for an evolvable and
trustworthy Internet. In: Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, Article No. 2. ACM, New York (2011)

3. Kang, T.S.: Tsugawa. M., Fortes, J., et al.: Reducing the Migration Times of Multi-
ple VMs onWANs Using a Feedback Controller. In: IPDPSW, pp. 1480–1489. IEEE,
Piscataway (2013)

4. Al-Kiswany, S., Subhraveti, D., Sarkar, P., et al.: VMFlock: virtual machine co-
migration for the cloud. In: 20th International Symposium on High Performance
Distributed Computing, pp. 159–170. ACM, New York (2011)

5. Comer, D.: A future Internet architecture that supports Cloud Computing. In: 6th
International Conference on Future Internet Technologies, pp. 79–83. ACM, New
York (2011)

6. Ibrahim, K.Z., Hofmeyr, S., Iancu, C., et al.: Optimized pre-copy live migration for
memory intensive applications. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–11. ACM, New York (2011)

7. Michael, R.H., Umesh, D., Kartik, G.: Post-copy live migration of virtual machines.
ACM SIGOPS Operating Systems Review 43(3), 14–26 (2009)

8. Luo, Y.W., Zhang, B.B., Wang, X.L., et al.: Live and incremental whole-system mi-
gration of virtual machines using block-bitmap. In: IEEE International Conference
on Cluster Computing, pp. 99–106. IEEE, Piscataway (2008)

9. Liu, H.K., Jin, H., Liao, X.F., et al.: Live migration of virtual machine based
on full system trace and replay. In: High Performance Distributed Computing,
pp. 101–110. ACM, New York (2009)

10. Fei, M., Feng, L., Zhen, L.: Live virtual machine migration based on improved
pre-copy approach. In: Software Engineering and Service Sciences (ICSESS),
pp. 230–233. IEEE, Piscataway (2011)

11. Bradford, R., Kotsovinos, E., Feldmann, A., et al.: Live Wide-Area Migration of
Virtual Machines Including Local Persistent State. In: 3rd International Conference
on Virtual Execution Environments, pp. 169–179. ACM, New York (2007)

12. Silvera, E., Sharaby, G., Lorenz, D., et al.: IP Mobility to Support Live Migration
of Virtual Machines across Subnets. In: SYSTOR 2009, Article No. 13 (2009)

13. Harney, E., Goasguen, S., Martin, J., et al.: The Efficacy of Live Virtual Machine
Migrations over the Internet. In: 2nd International Workshop on Virtualization
Technology in Distributed Computing, pp. 8–14. ACM, New York (2007)

14. Wood, T., Ramakrishnan, K.K., Shenoy, P., et al.: CloudNet: Dynamic Pooling
of Cloud Resources by Live WAN Migration of Virtual Machines. In: 7th VEE,
pp. 121–132. ACM, New York (2011)

15. Tsugawa, M., Riteau, P., Matsunaga, A.: User-level Virtual Networking Mecha-
nisms to Support Virtual Machine Migration over Multiple Clouds. In: GLOBE-
COM Workshops, pp. 568–572. IEEE, Piscataway (2010)

16. Kohler, E., Morris, R., Chen, B., et al.: The Click modular router. ACM Transac-
tions on Computer Systems 18(3), 263–297 (2000)

Efficient Live Migration of Virtual Machines

with a Novel Data Filter

Yonghui Ruan, Zhongsheng Cao, and Yuanzhen Wang

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

caozhongsheng@126.com

Abstract. Live migration of virtual machines (VM) is useful for re-
source management of data centers and cloud platforms. The pre-copy
algorithm is widely used for memory migration. It is very efficient to
deal with the memory migration of read-intensive workloads. But for
write-intensive workloads, the pre-copy’s straightforward iteration strat-
egy will become inefficient. In this paper, we propose a novel data filter
to improve the pre-copy algorithm in this inefficient situation. In each
round of iteration, the data filter forecasts the pages which will be sub-
sequently dirtied, and then filters them from the send list. This prevents
the pages from being repeatedly transmitted, thus reducing migration
time and bandwidth resource consumption. Meanwhile, the data filter
also checks if the previously filtered pages should be re-added to the
send list. This ensures that the downtime will not be increased. Experi-
mental results show that the improved algorithm effectively reduces the
amount of migrated data, while keeping the downtime at the same level.

1 Introduction

Live migration of virtual machines (VM) is a powerful tool which allows for the
relocation of VM between different physical hosts [1, 3–6, 9, 15, 20]. The whole
software stack can be consistently transferred, while the continuous execution of
the workload is guaranteed. Live VM migration provides considerable flexibility
for many tasks of data centers and cloud platforms, including load balancing,
online maintenance and fault management of the system [12, 14], and physical
server integration [13], etc.

Live VM migration involves migrating the VM’s memory data, network con-
nection and virtual devices. In practice, the VM image file is usually stored in
a network-attached storage (NAS) device. Therefore the disk storage does not
need to be migrated. In this paper, we focus on the memory migration issues.

The pre-copy algorithm is a widely used memory migration approach which
consists of two phases: an iteration phase and a stop-and-copy phase. In the
iteration phase, the memory pages are copied to the destination in an iterative
way, while the VM is still running at the source. This phase continues until
either a maximum iteration count is reached, or a sufficient number of pages are
synchronized, whichever comes first. Then, in the stop-and-copy phase, the VM
is suspended and the remaining pages are copied to the destination.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 369–382, 2014.
c© IFIP International Federation for Information Processing 2014

370 Y. Ruan, Z. Cao, and Y. Wang

In each round of the iteration phase, the pre-copy’s iteration strategy tries to
transmit all the pages which have not yet been synchronized. If a transmitted
page is subsequently dirtied, it is re-sent in the next round. When encountered
with write-intensive workloads, this strategy will cause a lot of repeated trans-
missions, which waste bandwidth resources and can not improve the downtime.

In this paper, we propose a novel data filter to improve the pre-copy algorithm
in this inefficient situation. In each round, the data filter forecasts the pages
which will be subsequently dirtied, and then filters them from the send list.
This prevents the pages from being repeatedly transmitted, thus reducing the
migration time and bandwidth resource consumption. Meanwhile, previously
filtered pages will be reconsidered, to see if they can be added to the send list.
Therefore, our migration algorithm can still transmit as many pages as possible
in the iteration phase. This ensures that the downtime will not be increased.

The core of the data filter is a forecasting algorithm, which is used to forecast
dirty pages in the iteration phase. To reduce the cost of analyzing the high
rate input data stream of memory write, we propose a state transition model
of memory write based on the analysis of the principle of locality. Furthermore,
we propose the concept of the local writable working set (LWWS) to facilitate
the analysis of the memory write behavior in a local time period. Based on
these conceptions, we designed an applicable forecasting algorithm with sufficient
forecasting accuracy.

We implement our algorithm based on Xen virtualization software and run
experiments on a variety of workloads. Experimental results show that our algo-
rithm effectively reduces bandwidth resource consumption, while achieving the
same level of downtime.

The main contributions of this paper are as follows:

– We propose a state transition model to analyze memory write pattern, and
propose the concept of the local writable working set to facilitate the analysis
of memory write behavior in a short time period.

– We propose a novel data filter based on the state transition model and the
local writable working set to improve the pre-copy’s iteration strategy.

– We present the improved pre-copy algorithm, show detailed analysis of the
algorithm, and provide a thorough evaluation using a variety of workloads.

The rest of the paper is organized as follows. Section 2 provides a survey of
related literature, section 3 describes the data filter, section 4 describes the live
migration process with our algorithm, section 5 evaluates our algorithm with a
variety of workloads, and section 6 concludes this paper.

2 Related Work

Nicolae et al. [10] propose an approach of live virtual disk migration. For a disk
I/O intensive workload, the local storage is required. Therefore, the migration
of massive data in the virtual disk is involved in the live VM migration. While
different from their study, we consider the general case of a shared storage struc-
ture, in which the VM accesses the virtual disk data through a NAS.

Efficient Live Migration of Virtual Machines with a Novel Data Filter 371

The pre-copy algorithm is widely used for memory migration. In the study of
Clark et al. [1], the concept of the writable working set (WWS) is proposed. They
track dirty pages under various workloads during normal operational phase of
VM, and use this information to adjust the network rate for optimization. The
WWS in their research is extended to the LWWS to facilitate the analysis of the
memory write behavior in a short time period.

Liu et al. [6] propose a live migration algorithm called CR/TR-Motion that is
based on checkpointing/recovery and trace/replay technology. Their algorithm
sends the logs of execution trace instead of memory pages to achieve good migra-
tion efficiency for both LAN and WAN environments. The idea of forecasting and
filtering in our algorithm can not be applied in combination with their method,
since the trace/replay technology processes VM operations but not the memory
pages.

Jo et al. [20] propose a technique to reduce the migration time while keeping
the downtime to a minimum. They track the I/O operations between the VM
and the NAS to maintain a map of the pages that reside on the storage device.
For these pages, the memory-to-disk map is transmitted instead of the data
itself. So these pages can be directly obtained from the NAS after the map is
transmitted. As less pages are transmitted, the migration time is saved. On the
other side, our algorithm largely improves bandwidth resource consumption and
maintains the downtime at the original level.

There are many other approaches which optimize memory migration process,
such as memory compression [4], migration throttling [1, 2, 9], and DSB(Dynamic
Self-Ballooning) [3]. These studies try to optimize migration without changing
the pre-copy algorithm itself. As a result, the data filter can be used in combi-
nation with these approaches to get better performance.

3 Data Filter

In this section we present the design of the data filter. As shown in figure 1,
The data filter filters the original send list of each round to make a new send
list. The source then sends pages to the destination according to the new list.
Meanwhile, the pages that are filtered and updated in current round form the
send list of the next round.

The core of the data filter is a forecasting algorithm, which forecasts dirty
pages in the iteration phase. Below we introduce the state transition model of
memory write, the framework of our forecasting algorithm.

3.1 State Transition Model of Memory Write

Given an observation period, let the frame number of dirty pages be the input. To
forecast which pages are going to be dirtied in a given time interval, a forecasting
model based on the analysis of the input data is needed.

Assume a workload with 1GB/sec rate of memory access, where the propor-
tion of memory write is 10%. With a 4KB page size, 25.6K pages are dirtied

372 Y. Ruan, Z. Cao, and Y. Wang

New send list

Filtered pages

New send list

Copy to the
destination

Pages updated
during round i

Source

Destination

Send list Send list

Round i Round (i+1)

Data filter Data filter

Fig. 1. Data filter

per second. That is, the input data stream has a rate of over 26,000 data points
per second. In fact, some workloads may have even faster rates of memory write.
The live migration task cannot afford the cost of analyzing such a high rate data
stream.

In order to cope with this difficulty, we note that most of the repeated trans-
missions are actually caused by the frequently modified pages. This suggests
that a forecasting model can be built by analyzing these frequent pages, which
usually account for a small part of the VM memory.

A straightforward way to do this is to count how many times each memory
page is modified during a normal operational phase of the VM, and identify
the frequent pages among all the memory pages. However, the frequent pages
which are analyzed in this way are the global frequent pages and almost useless.
Because once they are filtered, there is no way to re-add them to the send list.
If all of them are filtered, the downtime may be increased. But if only part of
them are filtered, there may be many repeated transmissions which cause waste
of bandwidth resources.

To avoid these disadvantages, a dynamic forecasting model based on the anal-
ysis of the frequent pages in a local time period is needed. To build such a model,
the best knowledge we have is the principle of locality. The temporary locality
principle states that if a page is currently being accessed, it is likely to be ac-
cessed again in the near future. The spatial locality principle states that the
pages that will soon be accessed are close to the page that is currently being
accessed. Based on these two principles, we infer that within a short time du-
ration, the pages which are frequently accessed are more likely to concentrate in
some local regions of memory space.

If we only consider memory write, the frequently modified pages will still
gather in the same regions. Furthermore, if the observation period lasts for a
long time, we’ll find different groups of “hot spot” regions appearing in different
short time durations. These groups of hot spot regions can be seen as states of
memory write.

Assume that the VM’s memory space is divided into a certain number of
continuous linear regions of equal length. Within a given short time duration,
we use a group of hot spot regions to describe a memory write state. When the

Efficient Live Migration of Virtual Machines with a Novel Data Filter 373

time duration of a state has passed, it may stay or convert to a different state. If
the state transition rules are also defined, the state transition model of memory
writes is determined.

The state transition model is useful in that it helps to simplify the problem of
the dirty page forecasting to the memory write state forecasting. Considering the
example in the beginning of this section. For a 50ms time duration of each state,
the input data stream will have a rate of only 20 states per second. Meanwhile,
this rate is independent of the load characteristics.

3.2 Local Writable Working Set

The state transition model is used to predict hot spot regions of memory write.
However, each hot spot region may also contain rarely modified pages, which
should not be filtered. Therefore, the model needs to be further refined.

In the pre-copy algorithm implemented by Xen [1], Clark et al. proposed the
concept of the writable working set. It is the set of the global frequently modified
pages of the iteration phase. In order to avoid repeated transmission and achieve
a better migration performance, these pages should be transferred via the stop-
and-copy phase. To refine the state transition model, we extend the writable
working set to the local writable working set.

Definition 1. Local Writable Working Set (LWWS). In the state transition
model, each state corresponds to a group of hot spot regions. The frequently
modified pages within these regions constitute a local writable working set.

Compared to the WWS, a LWWS is a set of frequently modified pages in a
local time period. The LWWS has two useful properties.

Property 1. If a LWWS is associated with a frequent state, then it is a subset
of the WWS.

If a state frequently occurs in the iteration phase, the pages of the correspond-
ing LWWS will be the global frequent pages. In other words, these pages also
belong to the WWS. Therefore, the LWWS is actually a subset of the WWS.

Property 2. If a LWWS is associated with a infrequent state, then the pages
of it are infrequent pages.

Although a LWWS contains frequent pages under a corresponding state, the
“frequent” pages related to the infrequent state will still be rarely modified.
According to properties 1 and 2, the set of the LWWSs covers both frequent and
infrequent pages of memory write.

3.3 Markov Model

In the above discussion, we present the framework of the forecasting model. In
this section we discuss the implement of it.

We start from determining how to describe the transition rules between the
memory write states. There are many factors that may affect the transition rules,
including but not limited to system architecture, load characteristics, resource

374 Y. Ruan, Z. Cao, and Y. Wang

usage, etc. It involves extensive analytical work to learn how these factors affect
the transition rules, and this is beyond the scope of this paper.

We use an alternative probabilistic method that is easier to implement and
understand. The state transition process is considered as a stochastic process,
where the state depends on previous states in a non-deterministic way.

In order to reduce the algorithm cost, we further simplify the model into two
aspects. Firstly, we assume that the state transition process has the Markov
property. So the state transition model becomes a Markov model. Secondly,
when a group of hot spot regions is observed, only the hottest region is used
to describe the corresponding state. Meanwhile, other hot spot regions are still
recorded and associated to the state. In this way, we do not need to worry about
the state explosion problem in practice.

Build the Markov Model: At the normal operational stage of the VM, we use
the shadow page table to track dirty pages. Within a given duration, we identify
a group of hot spot regions of memory writes, record all the dirty pages, and
use the hottest region to describe a memory write state. We also record all the
state transitions in a state transition matrix. When the modeling time is over,
we calculate the LWWS of each state by identify the frequent pages among all
the recorded dirty pages. Finally, the set of the calculated LWWSs alone with
the state transition matrix are outputted and used for forecasting dirty pages in
the migration process.

Figure 2 shows the 4 different state distribution of the experimental workloads.
Xen was running on a machine with a two quad-core 2.13GHz Inter Xeon CPU.
We start each workload in one virtual machine with 1GB RAM and 2 VCPU.
The dirty bitmap is read every 50ms to identify a state. The size of the state
space is 256, and the size of each region is 4MB. During the whole observation
period, a total of 12,000 states are identified. More detailed information about
the workloads can be found in section 5.1.

From this data we observe that the state distribution varies between the
different workloads. For each workload, there is a group of states which have
high frequency of occurrence. These frequent states represent the memory write
pattern of each workload. When we treat each state as a local feature of memory
write and learn transition rules between different states, we are able to make a
fine grained prediction.

A key challenge of applying the Markov model is keeping the time-effectiveness
of it, since the workload behavior may change with time. If the workload behavior
changes during the migration process, there is no time to rebuild the Markov
model. In this case, the data filter is disabled, and the original pre-copy algorithm
is performed. In the following discussion, we assume that the memory write
pattern does not change during the migration process.

Maintain the Markov Model: After we build the Markov model, we calculate
the probability distribution of states and state transitions. Then, we perform a
periodically sampling to test whether the current memory write pattern complies
with the established Markovmodel. More specifically, we check the sampling data

Efficient Live Migration of Virtual Machines with a Novel Data Filter 375

(a) TPC-C benchmark

(b) Linux kernel build

(c) Memory write loop (512MB)

(d) Data compress using gzip

Fig. 2. Distribution of memory write states

to see if it obeys the probability distribution of states and state transitions that
are calculated before. If these examinations fail, the Markov model is considered
to be out of date and is rebuilt.

4 Live Migration with Improved Pre-copy Algorithm

4.1 Performance Metrics

We use the downtime, the migration time and the amount of migrated data to
evaluate the performance characteristics of the VM migration algorithm.

Downtime: Overall suspend time of the VM during the migration process.
The migration downtime measures the availability of the VM during the mi-

gration process. An ideal optimization method should not cause the downtime
to be increased.

Migration Time: Overall time of the VM migration.
The migration time is the interval between the time migration is initiated and

the time the VM is consistently migrated to the destination.

Amount of Migrated Data: Total number of memory pages transferred during
the migration process.

We use this metric to measure bandwidth resource consumption of the VM
migration. It should be as low as possible on the premise of the unchanged
downtime.

376 Y. Ruan, Z. Cao, and Y. Wang

4.2 Migration Algorithm

This section presents the improved pre-copy algorithm. Figure 3 shows the
pseudo-code of the algorithm (line 2-12) and the data filter (line 13-23).

1. let N := memory size of VM

2. MigrationAlgorithm(iterclue, itercount, duration)
3. let iter := 1
4. let unsyn := N
5. let dirtylist := set of all VM pages; filterlist := empty set
6. while iter < itercount and unsyn > iterclue do
7. let sendlist := dirtylist + filterlist
8. set (sendlist, filterlist) := DataFilter(sendlist, duration)
9. set dirtylist := SendData(sendlist)
10. set unsyn := length(filterlist) + length(dirtylist)
11. iter++
12. Stop-and-copy()

13. DataFilter(sendlist, duration)
14. let LWWS := empty set
15. let filterlist := empty set
16. let sendtime := length(sendlist) / netrate()
17. let curr := current identified state
18. while sendtime >= duration
19. set (curr, LWWS) := Forecast(curr)
20. set filterlist := filterlist + LWWS
21. set sendtime:= sendtime – duration
22. set sendlist := sendlist – filterlist
23. return(sendlist, filterlist)

Fig. 3. Improved pre-copy algorithm

In line 2, the parameter ‘iterclue’ is the threshold of the number of the re-
maining pages which have not yet been synchronized. When the stop-and-copy
phase starts, this number is directly proportional to the downtime. The param-
eter ‘itercount’ is the maximum iteration count. The parameter ‘duration’ is the
time duration for each memory write state.

In the migration algorithm, the pages that are dirtied and filtered in each
round are recorded in the ‘dirtylist’ and ‘filterlist’. In line 7, we use these two
sets to calculate the ’sendlist’. It contains the pages which have not yet been
synchronized in the beginning of each round. In line 9, the function SendData()
transmits all the pages in the sendlist and returns dirty page set during the
transmission process.

The data filter forecasts and filters dirty pages during the transmission time
of the given ‘sendlist’. In line 16, the function netrate() calculates network rate
(number of pages transmitted per second). The variable ‘sendtime’ is the trans-
mission time of the pages in the ‘sendlist’. In line 17, the variable ‘curr’ is set to
an identified state. In line 19, based on the identified state, the future states are
forecasted using the state transition matrix. Each forecasted state is assigned to
the ‘curr’ and used for forecasting in the next loop. Then, the pages of the cor-
responding LWWS is added to the ‘filterlist’ in line 20. As previously discussed,

Efficient Live Migration of Virtual Machines with a Novel Data Filter 377

the state transition matrix and all the LWWSs are outputted after the Markov
model is built.

5 Experiment

5.1 Test Setup

Our experimental platform consists of 3 identical physical servers, each with
a two quad-core 2.13GHz Inter Xeon E5606 CPU, 4GB DDR RAM and Intel
82576 Gigabit Network Connection. The migrated VM is configured to use 2
VCPU and 1024MB of RAM. Xen-3.3.0 is used as the virtual machine monitor.
The guest kernel is Linux 2.6.18, and the host kernel is a modified version of
Linux 2.6.18 for both the source and the destination. Storage is accessed via
iSCSI protocol from the third physical server configured as a NAS.

We implement the improved algorithm based on Xen virtualization software.
The experiments use the following workloads:

TCP-C Benchmark: Mysql database and the open source test tool DBT2
[16] are used for the experiment. DBT2 is an implementation of the TPC’s
TPC-C Benchmark specification. We use a 60 warehouses dataset and 40 client
connections. The Mysql database version is 5.1.7, with default settings.

Linux Kernel Build: The second experiment runs a system call intensive load
— kernel compilation of Linux 2.6.18.

Memory Write Loop: We write a simple C program that writes constantly to
a 256MB region and a 512MB region of memory.

Data Compression with gzip and bzip2: The test data is approximately
7GB of the XML text dump of the English version of Wikipedia [21] on June
4th, 2013, history 4 (approximately 7GB after decompressing with bzip2). We use
the command ‘gzip’ and ‘bzip2’ to compress the data with the best compression
ratio.

Unixbench: It’s a fundamental high-level Linux benchmark suite that inte-
grates CPU, file I/O, process spawning and other workloads. The following tails
are performed: Load system with concurrent shell scripts, compiler through-
put, recursion, dhrystone2 using register variables, arithmetic, pipe throughput,
pipe-based context switching, process creation, and execl throughput.

To reduce the effect on other ongoing network services hosted on the source
host, we limit the network bandwidth to 500Mbit/sec for the migration daemon.
In all cases, the existing parameters of the pre-copy algorithm are set as default.
For the improved algorithm, the observation interval is set to 50ms. For each
workload, the VM migration of the two algorithms is started at the same time
point.

5.2 Overhead of Data Filter

Table 1 shows the time cost for building the Markov model and applying the
data filter. For the Markov model, the sampling interval of each state is 50ms,

378 Y. Ruan, Z. Cao, and Y. Wang

and the computation time is about 10ms. It takes about 60ms in all to identify
and record a state. In each round of iteration, the data filter has to spend 50ms
in waiting for the sampling results of the dirty page bitmap. After that, it takes
a short time to forecast and filter dirty pages. From the third column of table
1 we can see that the time cost of the data filter is between 1.6 to 2 seconds.
Noted that the maximum iteration count is 30 by default in Xen, it takes a total
of 1.5 seconds to wait for the sampling results.

Let N be the memory size of the VM, let S be the size of the state space. After
some simple optimizations, the space cost to record the state transition matrix,
the LWWSs and some intermediate results is O(N+S2) (2.79MBmemory space is
used in our implementation). In the migration process, the space cost of the data
filter is also O(N + S2) (1.63MB memory space is used in our implementation).

Table 1. Time cost of the Markov model and the data filter

Workloads
Time cost for modeling
(millisecond per state)

Time cost of the
data filter (millisecond)

TPC-C benchmark 59.735 1673

kernel-build 59.642 1636

gzip 58.232 1640

bzip2 59.982 1667

MW(512MB) 59.973 2000

MW(256MB) 59.987 1972

Unixbench 59.721 1662

5.3 Migration Performance for Different Size of State Space

We first evaluate the migration performance of the improved algorithm with
different size of the state space. The experiment uses the TPC-C benchmark.

Figure 4 (a), 5 (a), 6 (a) show the downtime, the migration time and the
amount of transferred pages of the original pre-copy algorithm and the improved
algorithm with 64, 128, 256, 512 and 1024 states. From this figure we observe
that when the size of the state space is set to 256 (the region size is 4MB), we
obtain the best migration performance.

When a smaller size is used, the performance is worse because the correspond-
ing regions are getting larger. The more a region covers memory pages, the more
difficult the corresponding state transfers to other states in memory write pro-
cess. This makes it hard to reconsider transmitting the previously filtered pages
to maintain a low downtime. At one extreme, the whole memory space contains
only one region and our forecasting algorithm becomes a static method. In this
case, there is no way to re-add the filtered pages to the send list of each round.

On the other side, the size of the state space should not be set too large. If the
memory region covers few pages, more than one region may be full with dirty
pages during the time duration of each state. At the other extreme, each region

Efficient Live Migration of Virtual Machines with a Novel Data Filter 379

contains only one memory page. It is difficult for the forecasting algorithm to
identify the real memory write state in this situation. Therefore, the forecasting
accuracy will be reduced and the performance will be worse.

The following experiments are focused on comparison between the pre-copy
algorithm and the improved algorithm with 256 states.

(a) Pre-copy and improved algorithm with
different size of state space

(b) Pre-copy and improved algorithm with
256 states

Fig. 4. Comparison of downtime

(a) Pre-copy and improved algorithm with
different size of state space

(b) Pre-copy and improved algorithm with
256 states

Fig. 5. Comparison of migration time

(a) Pre-copy and improved algorithm with
different size of state space

(b) Pre-copy and improved algorithm with
256 states

Fig. 6. Comparison of total transferred pages

380 Y. Ruan, Z. Cao, and Y. Wang

5.4 Downtime

Figure 4 (b) shows the migration downtime for the six remaining workloads,
where “MW” refers to the memory write loop workload. First we notice that in
the memory write loop workloads, the downtime of the two algorithms is nearly
the same. Compared to approximately 8 seconds and 4 seconds downtime, a
difference of dozens of milliseconds can be ignored.

Among the other four workloads, the improved algorithm has more down-
time than the original pre-copy algorithm. More precisely, the downtime of the
improved algorithm increases by 5.5% on average with respect to the pre-copy
algorithm. This shows the data filter efficiently maintains the same level of down-
time. In the worst case (the kernel-build workload), the improved algorithm has
more 21ms downtime than the original pre-copy algorithm. Compared to the
total 305ms downtime achieved by the pre-copy algorithm, we can still consider
that the two algorithms have the same level of downtime. Therefore, the down-
time is not significantly increased because of the data filter.

5.5 Migration Time and Amount of Migrated Data

Figure 5 (b) and 6 (b) show the migration time and the total transferred pages
for the six workloads run. For the memory write loop workloads, we see excellent
performance of the improved algorithm: both the duration and the bandwidth
resources are significantly reduced with nearly no increase in the downtime. In
fact, the artificial workloads have regular memory write patterns, which are
easy to be captured by the data filter. Although their constant and high dirty
rates cause the poor performance of the pre-copy algorithm, they are the ideal
workloads for the data filter to show its efficiency.

For the rest of the four workloads, the improved algorithm achieves 73.5MB
to 236.1MB reduction in the amount of migrated data compared to the pre-copy
algorithm. When it comes to the migration time, the improvement is 0.2 to 1.6
seconds. This is because the data filter spends time in forecasting and filtering
dirty pages, as shown in table 1.

6 Conclusion

In this paper we propose and implement an improved algorithm of the pre-copy.
When encountered with write-intensive workloads, the improved algorithm is
able to provide efficient live migration of VM.

In the iteration phase, the improved algorithm employs a new data filter at the
beginning of each round to filter the pages which are likely to be modified in the
subsequent rounds. To do this, a lightweight forecasting algorithm is proposed to
forecast dirty pages generated during the iteration phase. We extend the concept
of the writable working set to the local writable working set, and propose a state
transition model. This model largely reduces the algorithm cost, while ensuring
the forecasting accuracy. With the data filter, the original send list of each round

Efficient Live Migration of Virtual Machines with a Novel Data Filter 381

is filtered. After that, the pages of the new send list are sent to the destination.
Unlike any other optimization methods, the improved algorithm still tries to send
as many pages as possible in the iteration phase, instead of simply postponing
to send them in the stop-and-copy phase.

In the future, we plan to find a way to efficiently shorten the migration time
of the live VM migration. On the other side, we also plan to find a more so-
phisticated model than the Markov model. Based on the complex model, the
same level of the migration time and the bandwidth resource consumption as
the stop-and-copy algorithm, and the same level of the downtime as the pre-copy
algorithm can be achieved.

References

1. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: NSDI, pp. 273–286 (May
2005)

2. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In: SIGMOD, pp. 301–312 (June
2011)

3. Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual ma-
chines. SIGOPS Oper. Syst. Rev. 43(3), 14–26 (2009)

4. Jin, H., Deng, L., Wu, S., Shi, X., Pan, X.: Live virtual machine migration with
adaptive memory compression. In: Cluster, pp. 1–10 (August-September 2009)

5. Song, X., Shi, J., Liu, R., Yang, J., Chen, H.: Parallelizing live migration of virtual
machines. In: VEE, pp. 85–96 (May 2013)

6. Liu, H., Jin, H., Liao, X., Hu, L.: Live migration of virtual machine based on full
system trace and replay. In: HPDC, pp. 101–110 (June 2009)

7. Deshpande, U., Wang, X., Gopalan, K.: Live gang migration of virtual machines.
In: HPDC, pp. 135–146 (June 2011)

8. Ma, Y., Wang, H., Dong, J., Li, Y., Cheng, S.: Efficient Live Migration of Virtual
Machine with Memory Exploration and Encoding. In: CLUSTER, pp. 610–613
(September 2012)

9. Liu, Z., Qu, W., Liu, W., Li, K.: Xen live migration with slowdown scheduling
algorithm. In: PDCAT, pp. 104–107 (December 2010)

10. Nicolae, B., Cappello, F.: A Hybrid Local Storage Transfer Scheme for Live Mi-
gration of I/O Intensive Workloads. In: HPDC, pp. 85–96 (June 2012)

11. Shetty, J., Anala, M.R., Shobana, G.: A Survey on Techniques of Secure Live Migra-
tion of Virtual Machine. International Journal of Computer Applications 39(12),
34–39 (2012)

12. Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive Fault Toler-
ance for HPC with Xen Virtualization. In: ICS, pp. 23–32 (June 2007)

13. Nathuji, R., Schwan, K.: VirtualPower: Coordinated Power Management in Virtu-
alized Enterprise Systems. SIGOPS Oper. Syst. Rev. 41(6), 265–278 (2007)

14. Jhawar, R., Piuri, V., Santambrogio, M.: Fault Tolerance Management in Cloud
Computing: A System-Level Perspective. IEEE Syst. J. 7(2), 288–297 (2013)

15. Nelson, M., Lim, B.H., Hutchins, G.: Fast Transparent Migration for Virtual Ma-
chines. In: USENIX ATC, pp. 391–394 (April 2005)

16. Database Test Suite, http://sourceforge.net/apps/mediawik-i/osdldbt/

http://sourceforge.net/apps/mediawik-i/osdldbt/

382 Y. Ruan, Z. Cao, and Y. Wang

17. Kumar, S., Schwan, K.: Netchannel: A VMM-level Mechanism for Continuous,
Transparent Device Access During VM Migration. In: VEE, pp. 31–40 (March
2008)

18. Shea, R., Liu, J.: Performance of Virtual Machines Under Networked Denial of
Service Attacks: Experiments and Analysis. IEEE Syst. J. 7(2), 335–345 (2013)

19. de Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Fore-
cast. 22(3), 443–473 (2006)

20. Jo, C., Gustafsson, E., Son, J., Egger, B.: Efficient Live Migration of Virtual Ma-
chines Using Shared Storage. In: VEE, pp. 41–50 (May 2013)

21. Enwiki Dump Progress, http://dumps.wikimedia.org/enwi-ki/

http://dumps.wikimedia.org/enwi-ki/

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 383–394, 2014.
© IFIP International Federation for Information Processing 2014

Energy-Efficient and Adaptive Algorithms
for Constructing Multipath Routing

in Wireless Sensor Networks

Shaohua Wan

School of Information and Safety Engineering,
Zhongnan University of Economics and Law, 430073 Wuhan, China

shwanhust@gmail.com

Abstract. In this paper, we design and implement a k-multipath routing
algorithm that allows a given source node send samples of data to a given sink
node in a large scale sensor networks. Construction and dynamic selection of
alternative routing structures, for the purpose of extending the networks
lifetime, while providing a balance between QoS(Quality of Service)
requirements and the minimization of the variance of the energy. The proposed
multipath routing algorithm tries to keep multipath as node disjoint routes. Our
view is that balancing load distribution while meeting acceptable delays for
applications can lead to significant power savings. The simulation results
demonstrate that our multipath routing algorithm can not only achieve load
balancing, but also can be help to prolong the life-span of network, compared
with the shortest path routing(single path routing SPR).

1 Introduction

Wireless Sensor networks are composed of hundreds, or possibly thousands of tiny
low-cost nodes which, once deployed in a particular physical environment, can
measure various values of interest, perform some limited computation and
communicate with other in order to achieve a desired task in a cooperative manner.
Sensor networks can be deployed in large geographic areas to actively monitor a
variety of operations ranging from long-term ones (e.g., security alerts) to short-term
ones with high degree of dynamics (disaster management). A major research problem,
critical to the real world operation of sensor networks, is to design networks that are
efficiently and dynamically adaptable to the energy and QoS requirements. The main
goal of the proposed research will be to develop energy- efficient and adaptive
algorithms for constructing routing trees.

An important aspect of energy-efficiency is performing in-network aggregation
while routing data from source sensors through intermediate nodes in the network.
Servicing an aggregate query, say Qi, involves disseminating the query from a given
sink si, that requested it to all the target sensing nodes relevant for its processing; and
sending the results from each of the target nodes back to the sink. An effective way of
disseminating the queries and gathering the query answer is using a tree structure

384 S. Wan

rooted at the sink. Once the tree is constructed, each of its nodes has a dual role:
forward the answer-sets measured by the children towards the sink; and perform some
local aggregation of the data, in order to reduce the communication overhead.

The rest of the paper is organized as follows. In section 2, we provide related work
into the area of multipath routing for wireless sensor networks. We model the query
component and formulate the general construction point-to-point routes problem in
section 3. Section 4 discusses route establishment, data transmission and route
maintenance of the k-multipath routing. Based on simulation results, section 5
presents a detailed analysis of load distribution, energy consumption, lifetime for both
multipath and the shortest path routing mechanisms. Section 6 concludes the paper.

2 Related Work

There has been recent research on distributed algorithms for construction of low-
weight connected sub graphs and spanners in the context of wireless sensor
networks(motivated by energy-efficient routing and fault- tolerant deployment)
[1,2,3,4,5,9,10,11]. There has been little work on localized and distributed
construction of routing trees for data aggregation in wireless sensor networks. Li et al.
give a local algorithm to construct a low-weight sub graph (called as k-Local MST)
that has many desirable properties: connectivity, sparseness, spanner, bounded degree,
and planarity; but it is not a tree. A structure is low weight if its total edge length is
within a small constant factor of the total edge length of the minimum spanning tree.
Since the structure is not a tree, it is not suitable for query applications where an
aggregation tree is needed. However, low weight structures and spanners, in
particular, are useful in reducing the complexity of the underlying graph. The tree
construction algorithms can be run on “top” of such spanner structures. MST cannot
be constructed in a purely localized manner, i.e., each node cannot determine which
edge is in the defined structure by using only the information of the nodes within
some constant hops.

Data aggregation has been studied extensively [6, 7, 8]. The main motivation is to
minimize the transmission of packets containing individual measurements whenever
the semantics of the application needs a summarized picture of the environment, e.g.,
a weighted sum of the signals, and allows for functional decomposition when
calculating the statistical values. When the data based on the actual measurements is
categorical, even pattern identification techniques can be used for aggregation.
Important parameters that impact data aggregations in wireless sensor networks has
been addressed from the perspective of database-like query processing and, recently,
the energy efficiency of node clustering with data aggregation trees has been studied.

The focus is on efficient processing of a mix of aggregate queries and not on
constructing the routing trees themselves in an energy-efficient fashion. In contrast,
the objective of our research is to construct such trees considering the evolution of
the network as a sequence of generated queries with different semantics and adapting
the routing structures both in the sense of constructing a new one and modifying the
existing ones.

 Energy-Efficient and Adaptive Algorithms for Constructing Multipath Routing 385

3 Query Model and Problem Formulation

3.1 Query Model

Users need to be able to interact with the sensor network, typically by connecting to a
(sink) node and submitting queries of interest for which the network must provide
accurate answers in a timely manner. While the most common, standard query
specification language is SQL, which is typically used in database systems, it has also
been adopted in wireless sensor network application based on the abstraction that the
network represents, in fact, a largely distributed database system. However, specific
aspects that distinguish a typical database from a sensor network infrastructure
brought modifications to SQL and the most recognized SQL-specification
for wireless sensor network is TinySQL. Regardless of the query specification
language, a wireless sensor network needs to provide mechanisms for query
processing that are both energy and bandwidth conscious. For example, as we have
shown in the following, it is imperative, for resource usage efficiency, that a sensor
network to implement a triggering (or similar) mechanism in order to better
implement monitoring queries (continuous queries). The typical SQL style is as
follows: a network user connects to one of the sink nodes, formulates and submits a
query of the following form:

Q: SELECT ALL/MIN/MAX/AVG (measurement)
 FROM Region (R1(x1, y1, ... , xn, yn))
 WHERE Condition (measurement)
 FOR Lifetime
 SAMPLE EVERY Sampling Interval

R1 represents the geographical bounds of the region in which the samples for the
query are to be collected from. If R1 is not explicitly specified, it defaults to the entire
sensor network deployment area. Sampling interval indicates the frequency each node
must acquire the measurements and ship the data towards the sink. The sensor must
stop sensing and sending the data towards the sink node after the lifetime period
expires. We only consider the sink node is outside of region R1.

Figure 1 gives an illustration of this case that we will exclusively consider.
Therefore, we will have to construct point-to-point routes from the aggregation root
node, which is situated inside the sampling region, to the ultimate destination, the sink
node. The aggregation results should be shipped along with these paths.

3.2 Problem Formulation

Sensor nodes that are outside the sampling region are also important as they might be
used in data-relay duties, making the connection between the producer, in the
sampling region, and its consumer, the sink node. For each source-destination pair, a
single (shortest) path is always discovered and used for data transmission, as seen in
Figure 1, the aggregated information will be sent to the sink through the bold
intermediate nodes. Obviously, in wireless sensor network, with a high density of
nodes the shortest paths connecting any pair of nodes tend to be very close to the line
segment connecting those two nodes. Hence, that area close to the line segment will

386 S. Wan

be very likely to develop hot-spots, which is the situation we are trying to avoid in the
first place. The fact that these nodes are overused is one of the major causes for hot
spots. This paper provides a new multipath protocol for mitigating the sensor network
hot- spot problem, considering load balancing as well as quality of data.

4 K-Multipath Routing Algorithm

4.1 Route Establishment

We assume that each node knows its location and the location of its neighbors. This
simulator provides us with the heartbeat algorithm, which is already implemented and
executed in the first hour of the simulation, and finds the neighbors for us.

Fig. 1. Sink node is physically located outside the sampling region

The algorithm for constructing the routing structure should be as follows. For a
given source-sink pair of nodes, the sink will unicast on a shortest path routing (along
a straight imaginary line) the query request to the source node. Subsequently, based
on the query specification, referring to Figure 2, we will draw a segment orthogonal
to source-sink line segment. We will split the segment in k places, which will
correspond to k intermediate destination points (breakpoints) of the paths between the
sink and the source. The distance between two consecutive paths on the line which is
orthogonal to the source-sink segment will be equal. For each line segment, we
forward the data packet using nodes closest to the line segment. Since we have k
breakpoints for a given source-sink pair, we will establish k multipath to offer more
opportunities for regulating the traffic over the network.

Multipath routing protocol can try to find node disjoint, link disjoint, or non-
disjoint routes. Node disjoint routes, also known as totally disjoint routes, have no
nodes or links in common. Link disjoint routes have no links in common, but may
have nodes in common. Non-disjoint routes can have nodes and links in common.
Since we assume the whole topology is known, finding node-disjoint multiple paths is
not a difficult task. Figure 2 shows an example of how to construct k-multipath which
are node-disjoint routes given a source-sink pair of nodes. As can be seen in this
Fig., that k-multipath from source to sink does not interfere with each other except

 Energy-Efficient and Adaptive Algorithms for Constructing Multipath Routing 387

that they share the resources at source and sink. To the best of my knowledge, even if
the multiple paths are node-disjoint, transmissions along the routes may interfere if
some nodes among the routes are in the same collision domain. When we establish
multiple paths, it is important to establish paths that are as independent as possible to
ensure the least interference between the paths.

Fig. 2. K-multipath routing protocol model

The theoretical principle is adopted in our approach relies on the concept of
Bezier curves, developed by Paul de Casteljau (1959) and independently by
Pierre Bezier (1962). In its general form, a Bezier curve of a given set of n+1 points:
Pi (i＝0, 1, 2……n), and a parameter t∈[0, 1], is defined as:

 (1)

Where Bi,n(t) Bernstein polynomials, defined as:

 (2)

Sum to one for any t in [0, 1],

() 1
..0

= =
t

ni

n

iB
 (3)

For 3 control points, n = 2,

() () ()
2

2

10
1221 ptpttpttp +−+−= (4)

For 4 control points, n = 3,

() () () ()
3

3

2

2

1

2

0

3

13131 ptpttpttpttp +−+−+−= (5)

() () ()
() ()

3

3

2

23

1

23

0

23

33

363133

pp

pp

ttt

tttttttp

++−+

+−++−+−= (6)

() () ()
() ()133

36333

010

2

210

3

3210

ppp

ppppppp

++−+
+−++−+−=

t

tttp (7)

If we regroup the equation by terms of exponents of t, we get it in the standard
cubic form. This form is very good for fast evaluation, as all of the constant terms

)()(,

0

tBPtp
ni

n

i

i
=

=

ini

ni
tt

ini

n
tB

−−
−

=)1(
)!(!

!
)(

,

388 S. Wan

(a, b, c, d) can be recomputed. The cubic equation form obscures the input geometry,
but there is a one-to-one mapping between the two and so the geometry can always be
extracted out of the cubic coefficients.

()
()
()
()
()

0

10

210

3210

23

33

363

33

pd

ppc

pppb

ppppa

dcba

=
+−=

+−=
+−+−=

+++= ttttp

(8)

() []

⋅

−
−

−−

=

⋅=

3

2

1

0

23

0001

0033

0363

1331

1

p

p

p

p

d

c

b

a

d

c

b

a

ttttp

(9)

We can rewrite the equations in matrix form. This gives us a compact notation and
shows how different forms of cubic curves can be related. It also is a very efficient
form as it can take advantage of existing 4x4 matrix hardware support. For example,
given three points P0, P1, and P2, a quadratic Bezier curve is the path traced by the
equation (4) as shows in Figure 3.

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5

P0

P1

P2

(1-t)P0 + tP1

(1-t)P1 + tP2

(1-t)2P0 + 2t(1-t)P1 + t2P2

Fig. 3. Construct a Bezier curve from given three points

The curve passes through the first, P0 and last vertex points, Pn. The tangent vector
at the starting point P0 must be given by P1 – P0 and the tangent Pn given by Pn – Pn-1.
The properties of the Bernstein polynomials ensure that all Bezier curves lie in the
convex hull of their control points. Hence, even though we do not interpolate all the
data, we cannot be too far away. Figure 4 describes convex polygon formed by
connecting the control points

Fig. 4. Curve resides completely inside its convex hull

We have relied on the flexibility of the Bezier curves in order to overcome some of
the cause of premature lifetime termination: lack of appropriate workload balancing in
the most critical of the network-around the sink and source nodes. By using the Bezier

 Energy-Efficient and Adaptive Algorithms for Constructing Multipath Routing 389

curve as the trajectory model, we are able to control the coverage of the sink/source
nearby nodes implicated in the routing and attain, in a practical setting, a near 100%
utilization of them. Figure 2 shows that the routing coverage, for workload balancing,
by means of trajectory-based alternating routes, in comparison with the ones which
provide routes that approximate, to some degree, the shortest path routing.

The route’s information, which is represented through a Bezier curve, must be
transmitted from node for the routing purposes. A node, however, needs only to
communicate the coordinates of the control points in order to be able to generate an
entire Bezier curve, no matter its shaped and length. This property will save both time
and energy, a clear advantage of using parametric curves such as Bezier. Moreover,
not only on curve can be computed from a set of control points, but an entire family
of curves can be also generated, based on the affine property of Bezier curves, which
will prove benefit when managing multiple routes between two source-sink points.
Bezier curves add flexibility to the routes. If we consider two fixed endpoints, the
shape of the curve can be adjusted by using the remaining control points. Figure 5
shows the type of shapes Bezier trajectories can take by simply relocating these
control points given the source-sink endpoints p0 and p1.

Fig. 5. Linear, quadratic and cubic

4.2 The Analysis of Finding Multiple Node- Disjoint Paths

Due to the independence of the paths, disjoint paths have been received considerable
attention in the recent literature. The main reason is that disjoint paths offer certain
advantages over non-disjoint paths. When using non-disjoint routes, a single link or
node failure can result in multiple routes to fail while in node or link disjoint routes, a
link failure will only cause a single route to fail. What is more, both the nodes and the
wireless links are error-prone, which leads to multiple paths that share those nodes
and links to fail in non-disjoint paths. Hence, node-disjoint paths can provide the
highest degree fault-tolerance.

Many algorithms to find node-disjoint paths make use of request/reply cycles.
Typically, a source node initiates a route discovery procedure by broadcasting a Route
Request packet, and then this ROUTE REQUEST message is flooded to the entire
network. Contrary to the above general algorithm, our k-multipath algorithm to build
node-disjoint routes does not generate too much RREQ/RREP packets and then
increases the routing overheads. Instead, we fully make use of geometrical knowledge
to discover routes. According to the Fig. 2, all the coordinates of k breakpoints can be
more easily calculated, in a segment orthogonal to source-sink line segment. In each
of k-1 surrounded regions, we only construct one route from the source node to the
sink node. Those intermediate nodes in one route are selected in a way that they

390 S. Wan

should be closest to source-sink line segment. This is easily explained by the fact that
it takes more time to deliver packets along the path farther away from the source-sink
line segment. Multiple paths may present differences in the end-to-end delay of each
path. Such scenarios require that data coming from different flows needs to be
buffered till the flow from the path with the highest delay arrives for reordering the
data correctly. This solution poses another problem, as high speed memory is
extremely expensive, and therefore we should minimize the differential delay. In our
simulation, we don’t need to consider packet reordering.

5 Performance Evaluation

Our simulation setting is as follows. We create 500 nodes uniformly deployed in a
2×2km2 area, which use 802.11 protocol at the MAC layer, and the heartbeat node
discovery protocol in order to determine the neighbors. We randomly pick up one pair
of nodes as source-sink nodes from the physical terrain, and we don’t consider the
characteristic of the mobility of the nodes. Although how the number of the paths
affects the performance remains unknown, there are 5 paths to be used in the
simulation. We choose a path randomly from the multiple paths with the same
probability. Moreover, we try to keep the number of paths odd.

We study two different ways to use the multiple paths. In one method, called
multipath routing 1, we choose a path randomly from the multiple paths with the same
probability. The other method, called multipath routing 2, is to choose a path with a
probability inversely proportional to the length of the path. We vary the sampling rate
in order to observe the effects of packet loss in the nodes due to the interferences
among the multipath. We will compare the performance of the shortest path routing
and multipath routing in different aspects. We evaluate the performance according to
the following metrics:

•The load distribution: This metric provides the average relayed traffic in packets as
function of the distance to the network center, in accordance with the Pham and
Perreau’s analytical model [3]. We use load distribution as a metric to evaluate the
load balancing.
•Average energy consumption: The energy consumption is averaged over all nodes in
the network.
•The lifetime extension: The metric studied is the number of hours of communication
achieves when 1 percent, 25 percent, 50 percent, and 100 percent of the nodes die
using multipath routing and the shortest path routing.
•Query Turn-Around Time: A measure of the initial responsiveness of the query; the
time lapsed from the moment the query is submitted to the network by the user until
the very first data-packet is received at the user. This will measure and penalize the
multipath-construction algorithm with a high set-up time.

These measures are intended to provide insight into the ability of the protocols to
route packets to their intended destination, and the energy efficiency of the protocols
in accomplishing that task. The routing overhead is defined as the ratio of the number
of routing messages generated by a routing protocol to the number of received data

 Energy-Efficient and Adaptive Algorithms for Constructing Multipath Routing 391

packets at the destinations. This metric is a measure of how many routing messages
are needed to receive one data packet. It captures the efficiency of the routing
protocol. Since the routing overhead is similar and much lower between multipath and
the shortest path routing in our simulation, we don’t present the results of routing
overhead in this paper.

Figure 6 portrays the load distribution of the two protocols as function of the
distance from the network center. In our simulation, the center is the midpoint of
the segment between a pair of source-sink nodes. With the increase of the distance to
the center, there is a much more slight decrease of the load for the multipath routing
while the load is greatly reduced for the shortest path routing. This simulation shows
that our multipath routing can achieve better load balancing. This result can be
explained by the fact that the traffic of the network is evenly regulated to the different
paths while the single path always chooses the geographic-based shortest path, which
will unfairly distribute more loads to the nodes along this optimal route than their
neighboring nodes. According to this Figure, we conclude that the shortest path is
likely to be overloaded because this route is across or very close to the center. In
addition, due to the fact that we adopt load balancing policy, theoretically, all the
nodes should experience approximately the same loads in the multipath routing 1,
however, there exists a smooth decrease of the loads as the distance increases. The
possible reason is that those packets that travel through longer routes are dropped due
to more latency.

Still, we notice that as the distance from the network center increases, the number
of average load for multipath routing 2 drops faster than multipath routing 1. This can
be explained that multipath routing 2 is to choose a path with a probability inversely
proportional to the length of the path. In other words, the further the distance to the
center, the lower the probability that the nodes are used to relay the packets.
Moreover, since our load balancing policy is not optimal, those nodes close to the
optimal route have to be assigned more traffic in comparison with ones at the rear.
Nevertheless, it is important to stress the fact that our multipath routing outperforms
the shortest path routing in terms of load balancing.

0

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450

Distance from the network center (m)

A
ve

ra
ge

 lo
ad

 (p
ac

k
et

s)

Shortest Path Routing K-Multipath Routing 2 K-Multipath Routing 1

Fig. 6. The average load distribution as function of distance from the network center

Figure 7 portrays the average energy consumption of the three protocols as
function of the number of the hours of communication. Clearly, both two multipath
routing have smaller energy consumption than that of the shortest path routing. This
demonstrates that both multipath routing can distribute the traffic load more fairly

392 S. Wan

than the shortest path routing. This result can be explained by the fact that the traffic
of the network is evenly regulated to the different paths while the single path always
chooses the geographic-based shortest path, which will unfairly distribute more loads
to the nodes along this optimal route than their neighboring nodes. According to this
Figure, we conclude that the nodes along this shortest path are likely to be overused
because this route is only one. Therefore, the energy of those nodes on this route will
drop faster than the other nodes. Moreover, we also notice that there exists a slightly
improvement of energy consumption between multipath routing 1 and multipath
routing 2, even compared to the shortest path routing. This is because the nodes, even
with no routing tasks, have to passively listen to neighboring nodes' radio
transmission, which inevitably consumes battery energy. Even though our multipath
routing is not optimal, it is important to stress the fact that our multipath routing
outperforms the shortest path routing in terms of energy consumption.

0

10

20

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30 35 40 45

Time of Communication(h)

T
he

 E
ne

rg
y

of
 C

on
su

m
pt

io
n(

%
)

Shortest Path Routing

K-Multipath 2

K-Multipath 1

Fig. 7. The average energy consumption as function of the number of hours of communication

Figure 8 illustrates the lifetime extension as function of the percentage of node
death. We study the number of hours of communication when 1 percent, 25 percent,
50 percent, and 100 percent of the nodes die using k-multipath routing and the
shortest path routing. As can be seen in Figure 10, both of the two multipath routing
can yield improvements over the shortest path routing in all cases while the lifetime
extension of the multipath routing 1 is trivial compared to the multipath routing 2. To
the best of our knowledge, the battery energy of a network node is mainly consumed
on forwarding control and data packets. Multipath routing usually increases the
energy consumption on the transmission of data messages because some data packets
traverse sub-optimal paths. On the other hand, it will decrease the energy
consumption on the transmission of control messages. This reveals that k-multipath
routing 1 can achieve the best balanced energy dissipation among the sensor nodes to
have full use of the complete sensor network. In Figure 9 we have plotted query turn-
around time as function of sampling interval. One can see that there is less responsive
time in the shortest path. But for the long term and continuous query, since the nodes
close the shortest path routing, which are called “hot spots”, will quickly deplete the
sensor nodes’ energy, the impact brought by link failure will greatly increase query
response time. This confirms the more significance that we have explored K-
Multipath Routing Scheme for Energy Efficient Wireless Sensor Networks.

 Energy-Efficient and Adaptive Algorithms for Constructing Multipath Routing 393

Fig. 8. The lifetime of the network as function of the percentage of node death

Fig. 9. Query turn-around time as function of sampling interval

6 Conclusions and Future Work

We present a novel load-balancing mechanism for wireless sensor networks. The new
scheme is simple but very effective to achieve load balancing and congestion alleviation.
We have explored an experimental comparison between k-multipath routing and the
shortest path routing. Our performance study shows that the network traffic can be
distributed more evenly onto multipath routing. Load balancing is important to fairly
distribute the routing task among the nodes of the network. It can also protect a node from
failure considering that a node with heavy duty is likely to deplete its energy quickly.

Although it takes much more time for the packet delivery along those multiple paths
than the shortest path, the packet delivery fraction of our technique has been improved
obviously and the network resource can be utilized efficiently. Also, we use the k-
multipath routing to balance the energy dissipation to maximize the lifetime of the
nodes in a sensor network. However, minimizing energy in isolation has drawbacks
because energy efficiency often brings additional latency. Clearly, several practical
applications set limits on acceptable latency, as specified by QoS requirements. For
example, the data transmission delay per packet may have a bound. Beyond this bound,
this packet may be dropped. Therefore, our motivation of this paper is to investigate the
trade-off that arises between the end-to-end delay of the data transmission and the
lifetime extension of the individual nodes and the network as a whole. We have
explored an experimental comparison between k-multipath routing and the shortest path
routing. So through distributing the energy load among the nodes, we can increase the
lifetime and quality of data in a sensor network. However, multipath routing techniques
are not without pitfalls. It is worthwhile to mention them clearly, even though they are

394 S. Wan

not captured in our simulation. The primary disadvantages of multipath routing
protocols compared to single path protocol are complexity and overhead. We have to
consider the overheads that we maintain multiple routes to a destination, which leads to
large routing tables at intermediate nodes. Also, we need to take into consideration how
to allocate the packets to the multiple routes. Hence, we still need to expand our design
to provide the solution to the above-mentioned problems in the future.

Acknowledgments. We would like to thank the anonymous reviewers for their
insight and suggestions which have substantially improved the content and
presentation of this paper. This work was supported by the Fundamental Research
Funds for the Central Universities of China under Grant No. 31541311303 and the
Research Project Funds (32514113005).

References

1. Chen, X., Chamania, M., Jukan, A., Drummond, A.C., da Fonseca, N.L.S.: QoS-
Constrained Multi-path Routing for High-End Network Applications. In: IEEE
INFOCOM2009 High-Speed Networks Workshop, Rio de Janeiro, Brazil (April 2009)

2. Ganjali, Y., Keshavarzian, A.: Load balancing in ad hoc networks: single-path routing vs.
multipath routing. In: Twenty-Third Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2004) (March 2004)

3. Pham, P.P., Perrau, S.: Performance Analysis of Reactive Shortest Path and Multipath
Routing Mechanism with Load Balance. In: Proc. IEEE INFOCOM Conf., pp. 251–259
(April 2003)

4. Kwon, S., Shroff, N.B.: Analysis of Shortest Path Routing for Large Multi-Hop Wireless
Networks. IEEE/ACM Transactions on Networking 17(3), 857–869 (2009)

5. Wan, S., He, Y.: Performance analysis of single-tree and split-tree approach in wireless
sensor networks. In: CyberC 2009: International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, pp. 132–135 (October 2009)

6. Fan, K.-W., Liu, S., Sinha, P.: Structure- free Data Aggregation in Sensor Networks. IEEE
Transactions on Mobile Computing (TMC) 6(8), 929–942 (2007); an earlier version also
appeared in INFOCOM 2006

7. Skraba, P., Fang, Q., Nguyen, A., Guibas, L.: Sweeps over wireless sensor networks. In:
5th Int’l Conference on Information Processing in Sensor Networks (IPSN), pp. 143–151
(2006)

8. Shrivastava, N., Buragohain, C., Agrawa, D., et al.: Medians and beyond: new aggregation
techniques for sensor networks. In: Proc. of the Second International Conference on
Embedded Networked Sensor Systems (SenSys 2004), pp. 239–249. ACM Press, New
York (2004)

9. Chanak, P., Samanta, T., Banerjee, I.: Fault-tolerant multipath routing scheme for energy
efficient wireless sensor networks. International Journal of Wireless & Mobile Networks
(IJWMN) 5(2) (April 2013)

10. Vasudevan, S., Adler, M., Goeckel, D., Towsley, D.: Efficient Algorithms for Neighbor
Discovery in Wireless Networks. IEEE/ACM Trans. Networking 21(1), 69–83 (2013)

11. Patel, P., Bansal, D., Yuan, L., Murthy, A., Greenberg, A.G., Maltz, D.A., Kern, R.,
Kumar, H., Zikos, M., Wu, H., Kim, C., Karri, N.: Ananta: cloud scale load balancing.
In: SIGCOMM 2013, pp. 207–218 (2013)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 395–408, 2014.
© IFIP International Federation for Information Processing 2014

An Adaptive Channel Sensing Approach
Based on Sequential Order in Distributed

Cognitive Radio Networks

Guangsheng Feng1, Huiqiang Wang1, Qian Zhao2, and Hongwu Lv1

1 College of Computer Science and Technology, Harbin Engineering University,
Harbin, China

{fengguangsheng,wanghuiqiang,lvhongwu}@hrbeu.edu.cn
2 School of Computer and Information Engineering, Harbin University of Commerce,

Harbin, China
zhaoqian@hrbcu.edu.cn

Abstract. We design an efficient sensing order selection strategy for distributed
Cognitive Radio Networks (CRNs), where multiple CRs sense the channels
sequentially for spectrum opportunities according to a channel Latin Square.
We are particularly interested in the case that CRs’ quantity is more than the
available channels’, where traditional approaches will have high probabilities of
collision. We first introduce a system model and an adaptive sensing threshold
for available channels which is estimated according to the sensing probability of
the specific sequential order. Then, we propose a channel sensing and access
strategy that can adjust its sensing and access probabilities based on the
crowded degree of sequential order. Last, we conduct extensive simulations to
compare the performance of our approach with other typical ones. Simulation
results show that the proposed scheme achieves an outstanding performance on
channel utilization in the case of heavy channel workload.

1 Introduction

The rapid growth of new wireless communication services is now facing the difficulty
of no enough available spectrum resource due to the fact that the fixed spectrums
have been granted to some licensed entities exclusively. According to tremendous
statistics[1-4], a great deal of allocated spectrums are severely underutilized.
According to this fact, a new technology, namely Cognitive Radio (CR), is contrived,
which enable wireless services to operate over those licensed but temporally or
geographically unused spectrums through secondary opportunistic access. Cognitive
Radio Networks, abbreviated as CRNs, are built on the platform of Cognitive Radio,
where primary users (PUs), i.e., the licensed users, have arbitrary rights to transmit
over those licensed channels whenever necessary. However, the secondary users
(SUs) or CR nodes must perform spectrum sensing to attain transmission
opportunities under the premise of protecting PUs’ communications. Due to the
hardware advancement, most of the wireless terminals are able to sense more than one
channel within a same transmission slot, which is also our concern in this paper.

396 G. Feng et al.

For the arbitrary PUs’ rights to use licensed channels, a proper sensing mechanism
should be designed to ensure a lower rate of transmission collisions among CRs. This
mechanism can also evacuate the occupied channels immediately once some PU
reclaims them, even if there are some SUs’ communications over them. Provided a
centralized coordinator and a common control channel (CCC), every CR may achieve
a high efficiency of channel sensing and allocation. Otherwise, each of them has to
sense the spectrum opportunity independently and then accesses an idle channel
depending on the sensed results. In this case, each CR hunts for the opportunities of
access channel by periodic or sequential channel sensing. In the first approach, each
CR senses a specific channel first and then transmits over it if available. Otherwise,
the CR has to wait until the next transmission slot and repeat this process periodically.
In the second one, in order to find some available channels, each CR has to sense the
channels sequentially according to an elaborated order designed in advance. After
spectrum sensing, each CR makes its own decision on whether to sense the next
channel continually or to start transmission based on the sensed results. Contrast to
the periodically sensing strategies, the sequential approach allows a CR to identify an
idle channel quickly by sensing more than one channel successively. If the sensed
channel is occupied by other entities currently, there is little time delay before sensing
the successive channels. Due to the above justifications, sequential channel sensing is
of our concern in this paper.

Traditional researches have mainly focused on improving the throughput of CRNs.
However the majority of them have a common assumption or implied assumption that
the temporal idle channels could accommodate the majority of CRs, and only in this
case some scheduling approaches could achieve a better performance. For example,
Khan’s work[1] has an excellent performance under the condition that the channel’s
quantity is not less than the CRs’, which has been demonstrated in our experiment in
Section 5, but Khan’s contribution inspires our work greatly. On the basis of Latin
Square utilized in [1], we are interested in the sequential channel sensing strategy
without a centralized coordinator under the case of heavy channel workload, i.e.,
more CRs but fewer available channels.

In this paper, we propose a distributed and sequential sensing approach in a
decentralized CRN on the basis of Khan’s approach and random access. The
contributions of our work are summarized as follows. First, a dynamic sensing
threshold for available channels is proposed, which can reflect the crowded degree of
a specific sequential channel order. In consideration of the CRs’ computation
capabilities, the threshold adjustment should be simple, dynamic and low
complicated. Once the quantity of sensed available channels reaches the threshold, the
related CR will randomly make a decision on whether to choose one channel or to
observer continuously. If lots of CRs are crowded on a common sequential order, our
approach prefers observation to transmission. Otherwise, there will be a mass of
collisions among those CRs, resulted in all the frames invalid as well as a whole
transmission slot wasted. Furthermore, if a CR gets a spectrum opportunity and
transmits successfully, its access probability to the sequential channel order will be
increased; otherwise it will be decreased correspondingly at the next transmission
slot. Meanwhile, the sensing threshold of available channel is updated based on the
transmission result, i.e., success or failure on this sequential channel order.

 An Adaptive Channel Sensing Approach 397

The remainder of the paper is organized as follows. In Section 2, we introduce the
related work of interest. In Section 3, we design a distributed system model, including
the system process mechanism, the stop condition of sensing, the threshold of
available channels required to sense, and the collision avoidance approach. In Section
4, we evaluate our proposed design at different channel workload through numerical
experimental results. Finally, Section 5 concludes the paper.

2 Related Work

To solve the open problem of spectrum sensing and channel access in distributed
CRNs, lots of researches have been conducted and some typical frameworks have
been proposed, such as the work in [2-4], where the issue of Opportunistic Spectrum
Access, abbreviated as OSA, is still a hot issue.

In order to attain more spectrum opportunities, each CR has to perform periodic
sensing or sequential sensing under the premise of protecting PUs’ transmission.
Centralized and decentralized approaches are two typical branches in dealing with
such problems. In centralized ones, a coordinator is required to schedule all CRs’
sensing and transmission activities, such as in [5, 6]. The work in [5] takes the
statistical features of channel availabilities into consideration, and attains an optimal
sensing sequential order with the assistance of coordinator, but this scheme is only
suitable for two CRs existed. If lots of CRs are desired to communicate
simultaneously, a heavy workload on channels will definitely deteriorate the network
performance due to massive collisions. The work in [6] is established on an
assumption that CRs and PUs cooperate with each other, where each CR reports its
channel sensing result to a centralized Dynamic Spectrum Access (DSA) base station.
Therefore, the overall throughput will be maximized through scheduling each CR’s
transmission opportunity by the DSA. In consideration of DSA unknowing all the
operation parameters of PUs, this work proposed a sequential channel sensing order
based on estimated traffic. However, all CR devices may not be managed by the same
service provider in actual scenarios, and hence it is impossible to attain an optimal
scheduling strategy with several different coordinators.

Sensing channel in CRNs with a distributed manner is another branch. Traditional
researches are mainly focused on studying periodical sensing strategies, which are
easy to implement especially only one authorized channel existed[7]. Moreover, these
approaches are easily extended to multi-channel scenarios. In other words, in a given
slot, a CR selects a channel to sense in a random way or according to its prior
knowledge, and then it accesses this channel to transmit if available. Otherwise, this
CR should stay quiet in the whole transmission slot. In this point, a distributed
learning and allocation approach is investigated in the work [8, 9], where an adaptive
random selection strategy on orthogonal channels is employed. The implementation
of this approach is simple but high collision probability.

Using sequential channel order to sense spectrum opportunity has become a hot
issue[10], in which a CR probes multiple channels one by one with an elaborated
order in a given time slot. Generally, high throughput and low collision are two main

398 G. Feng et al.

objectives of system optimization [11-17]. In the work[11, 12], a low-load approach
jointing transmission optimization is proposed to sense channels sequentially. The
priori knowledge of authorized channels is not necessary in this approach but requires
perfect bandwidth and data rate. The work [13] proposes a simple channel sensing
order in multi-channel CRNs without the prior knowledge of PUs’ activities, where
all CRs sense the channels according to the descending order of their achievable rates.
However, this approach is only suitable for OFDM surroundings, and also requires all
channel gains in advance.

In the work[14], the statistics characteristics of Signal-to-Noise Ratio for each
channel are explored using pilot signals and PU’s activities. Based on the fluctuating
nature of heterogeneous channels as well as the QoS requirements of various
applications, two approaches for channel sensing order are proposed, which are
suitable for real-time and best-effort applications respectively. Nevertheless, a
Cognitive Pilot Channel, abbreviated as CPC, is required to exchange control
information between CRs and the base station. The work[15] is focused on identifying
the sensing order and sensing-access strategy such that it can achieve the maximum of
energy efficiency. This problem is formulated as a stochastic sequential decision-
making process and solved by means of dynamic programming. In addition, the long-
term statistical features and short-term diversity features[16], as well as the fast
channel sharing[17] are taken into account.

Recently, an efficient strategy for sensing order selection in distributed CRNs
surroundings is proposed in Khan’s work[1], where two or more autonomous CRs
sense the channels sequentially (in some sensing order) for spectrum opportunities.
The key contribution of this work is the adaptive persistent sensing order selection
strategy in the case that CRs with false alarms autonomously select the sensing
orders. This approach may achieve a better performance only when the quantity of
CRs is not more than the quantity of available channels.

Different with existing work, we propose a novel sequential order strategy for
sensing multiple channels in distributed CRNs jointing Khan’s work and random
access, but the two works have essential differences. Given that the sensing duration
for a single channel is much shorter than the transmission duration, it is worth to
attain a much lower collision probability at the cost of part transmission time, which
is the foundation of this work.

3 An Adaptive Model for Multiple Channels Sensing

3.1 System Model

In a distributed CRN, M CRs and N authorized channels are coexisted, which are
denoted as 1 2{ , , , }MCR CR CR=CR and 1 2{ , , , }NC C C=C respectively. If

some channels are idle and sensed simultaneously by some CRs, they could transmit
over those channels. In this case, if a PU reclaims one of the channels occupied by
some CR, it will be evacuated by the related CR at once, which is consistent with the
basic principle of Cognitive Radio. Given that all PUs and CRs employ the same time

slot system as figure 1 show
k idle channels are found, w
a CR is required to find k
transmit or sense continua
sensing interval, and the se
any idle channel found unt
only in the beginning of a ti

Fig. 1. Multipl

Similar to Khan’s appro
such as in(1):

CS

where there are N*N eleme
channel order whose eleme
a sensing probability for e

senses sequential channel
select some CSi according

going, the ()CS
ip will be u

the objective of which is lo
Note that the specific adap

next section. Due to the l
could not be conducted sim

This model is established
CR will make a decision
available channels are foun
channel order, it is requir
transmission decision. Oth
make a transmission deci
channels are existed in a C

An Adaptive Channel Sensing Approach

wn, a CR maybe have experienced i sensing sub-slots w
where k is the sensing threshold of available channels,
k idle channels and then makes a decision on whether
ally. The maximum of sensing duration is an allowa
ensing process will be stopped and stay quiet if there is
til this upper bound. A PU’s communication activity st
ime slot and last to its end.

le channels access with the same time slot system

oach, all channels are organized as a form of Latin Squ

1 2 3 1

2 3 4 1

3 4 5 1 2

1 2 2 1

, , , , ,

, , , , ,

, , , , ,

, , , , ,

N N

N

N N N

C C C C C

C C C C C

C C C C C

C C C C C

−

− −

 =

S

ents and each row CSi (i=1,2,…,N) stands for a sequen
ents are consisted of CSij (j=1,2,…,N). Every CR mainta
each CSi, i.e., () (){ , 1,2,..., }CS CS

iP p i N= = , which the

order CSi according to. At the beginning, each CR w
g to the probability () 1 1CS

i CSp N N− = . With the proc

updated according to its transmission and collision sta

owering the sensing probability to crowded channel ord
ptive updating approach for ()CS

ip will be elaborated

limitation of hardware devices, sensing and transmiss
multaneously.

d on the analysis of contending spectrum resource and
on communicating over an idle channel only whe

nd. If two or more CRs are crowded at the same sequen
red to sensing more available channels before makin
herwise, a smaller number of available channels can h
sion. As shown in figure 2, C1，C2，C3 and C4 f
RN, whose front part is a Latin Square based on chann

399

when
i.e.,
r to
able
s no
tarts

uare

(1)

ntial
ains
CR

will
cess

ates,

ders.
d in

sion

one
n k

ntial
ng a
help
four
nels,

400 G. Feng et al.

and its columns stand for
transmission slot, a CR sho
remaining time of this slot.
perform sequential channel
immediately once they fin
destined to occur. On the co
idle channel is found, such
event for CR1 choosing o
Instinctively, the collision
decreased.

Fig. 2

3.2 Stop Condition and

In this paper, we mainly
sensing and there is no poss
as PUs. Given that the sensi
the sequential channel orde
sensing probability ()CS

ip u

makes a decision on whet
existing work, we do not
channel is found, the proces
In the case of heavy channe
more CRs are crowded at th
of collision corresponding
least one) found, each CR o
different channel Cj to tra

Therefore, the value of k i
more collision will be cau
increased and the transmiss

r sensing sub-slots, such as Sense 1 to Sense 4. In
ould find some idle channels first and then transmit in
Suppose that CR1 and CR2 are crowded at the same CS

l sensing simultaneously. In this case, if both CRs trans
nd one idle channel, a collision event between them
ontrary, if they start their transmission when more than
h as C1 and C2 available, they maybe avoid this collis
ne idle channel but CR2 choosing the another idle o
n probability at the same sequential channel order

2. Schematic diagram of channel sensing

d Sensing Threshold for Available Channels

concern the distributed approach for sequential chan
sibility of cooperative communications among CRs as w
ing threshold for available channel is k, each CR will se
er CSi successively, i.e., {CSi1, CSi2,…,CSim}, based on
until k available channels are found. Afterwards, the

ther to transmit or to sense continuously. In contrast
consider the traditional stop condition that once an i

ss will be transferred to transmission from channel sensi
el load, i.e., more CRs but fewer available channels, two
he same sequential channel order which leads to a high
ly. If we continue to sense until k available channels
on this channel order will have an opportunity to choos
ansmit according to its access probability (,CH ip CS C

is sensitive to the collision probability. If it is too sm
sed, but on the contrary, the overall sensing time will
ion time is shortened correspondingly.

n a
the

S1 to
smit
m is

one
sion
one.
r is

nnel
well
ense
n its
CR

t to
idle
ing.
o or
rate
 (at
se a

)jC .

mall,
l be

 An Adaptive Channel Sensing Approach 401

As discussed above, ()CS
ip is the foregoing sensing probability that a CR attends at

sequential channel order CSi, which is estimated according to its transmission success
or not on CSi. A smaller of ()CS

ip stands for a higher collision probability on CSi. On

this basis, the threshold k of available channels could be estimated as (2):

k= ()min{ 1/ , }CS
i ap C (2)

where Ca is the total quantity of available channels. Therefore, k’s value stands for the
crowded degree of the current channel order. If k equals to 1, our approach is
simplified to Khan’s. In conclusion, the stop condition of sensing channel is that k
available channels have been found by the current CR.

3.3 Mechanism of Collision Avoidance

In a distributed CRN, collision events will occur frequently due to different CRs
contending spectrum opportunities as well as lacking coordinated mechanism among
CRs. If two or more CRs are crowded at the same sequential channel order, each CR
may attain a similar sensing result and they surely collide with each other even the
idle channels being found. In this case, all the transmission frames will be corrupted.
To solve those problems, we propose a dynamic collision avoidance mechanism in
this paper.

Suppose that a CR senses on sequential channel order CSi, and do not take
transmission activity until k available channels are found, where k is estimated
according to section 3.2. If the specific quantity channels are found, the CR will
randomly make a choice to transmit or to sense continuously. If continuous sensing is
selected, the similar decision will be made in next sensing round. In other words, once
k available channels are found, the CR faces two choices:
 Select channel Cj to transmit based on (,)CH i jp CS C that denotes the

probability of selecting channel Cj:

2
(,) (1)

j
CH i j

r
p CS C k k

×= + × (3)

where k is the sensing threshold of available channels and rj is the index number of
channel Cj in current available channel set. As shown in(3), the last available channel
in sensing result set has the highest access probability. Let r (r=1,2,…,k) denotes the
index number in available set, and Ir is the subscript of some channel, i.e., IrC ∈C .

Therefore, IkC is the last element and (,)CH i Ikp CS C is

 2 2(,) (1) (1)CH i Ik
kp CS C k k k

×= =+ × + (4)

402 G. Feng et al.

To sum up, the access probability of each element in the available set is sensitive to
its index number in this set as well as the total quantity k.
 Continue to sense at the current sequential channel order CSi.

If the first choice is selected, i.e., transmit over channel Cj, the following two cases
maybe happen.

Case 1：If there is no collision over channel Cj during the transmission interval, this
time of transmission is successful, which can be inferred from whether the related
ACK is correctly received or not. In this case, the sensing probability CSj, whose first
item is Cj, is increased correspondingly:

() ()

() ()
() ()

()

'

1 , if ' 1
'

CS CS
j j j

CS CS
jCS CS j j

k j k jCS
q j

q j

p p

p pp p
p

σ

σ
≠ ≠

≠
≠

 = +
 − + < = ×

 (5)

where () 'CS
jp is the sensing probability of CSj at the last transmission slot and

0jσ ≥ denotes the augmentation of sensing probability to CSj at this transmission

slot. The value of jσ should meet the requirement ()1 / 1 / ' jCS

j jp p K − ≥ ,

which means that the sensing threshold of available channels should be increased by
()jCSK such that the hit rate of channel Cj will be increased correspondingly. In this

updating process, if () ' 1CS
j jp σ+ ≥ holds true, the sensing probability to CSj will be

set to 1 and other one be set to 0, i.e., ()CS
k jp ≠ =0.

Case 2：If the ACK is not received correctly, it is deemed that a collision occurs on
channel Cj. In this case, the sensing probability to sequential channel order CSj will be
decreased, but others will be increased as shown in(6):

() ()

() ()
() ()

()

'

1 , s.t., ' 0
'

CS CS
j j j

CS CS
jCS CS j j

k j k jCS
q j

q j

p p

p pp p
p

σ

σ
≠ ≠

≠
≠

 = −
 − − ≥ =

 (6)

Similarly, the value of 0jσ ≥ should meet the requirement
()1 / ' 1 / jCS

j jp p K − ≥ such that the hit rate of CSj and Cj will be decreased. If

there is a contradictory between the two inequalities () ' 0CS
j jp σ− ≥ and

()1 / ' 1 / jCS

j jp p K − ≥ , the former one should be assured first.

In case 1, it is possible that a CR continues to sense at the current sequential
channel order CSi. In this case, this CR starts to sense from the first element in CSi in
next sensing round, but those channels that have been found busy in the first sensing
round will be omitted. Similarly, the process will transfer to transmission or selection
decision when k available channels are found. When the whole time of sensing rounds
reaches to the upper bound, i.e., the maximum of sensing duration, the sensing

process will be stopped at o
round (Round 1), CR1, CR2

C5> to sense k (k=3) availab
idle. In this case, if CR1 s
continuously, C3 , C4 and C
this case, if CR2 and CR3

happens. Therefore, in the
sensing probabilities to CS
Instinctively, what we d
immediately transmission w

Fig. 3. Illustration of

Our proposed adaptive m
the following pseudo-code
independently and there is n

Each CR will execut
transmission slot. In initia
channel order are identical.
make a judgment on wheth
and then adjust its sensing
available channels sensing
meanwhile a sequential cha
CSi. In line 4-8, the CR sen
the available channels are
executed repeatedly until k
checked. Thus, the complex
i.e., O(n). In the process o
should be selected for trans
are also updated accordin
proportional to buffer size,

An Adaptive Channel Sensing Approach

once. As an example shown in figure 3, in the first sens
2, CR3 and CR4 employ the same order CS1<C1, C2, C3,
ble channels. As a result, C2 is busy and C1、C3 and C4

selects channel C1 to transmit but others decide to se
C5 are found available and C1 is observed in this round
3 make a decision on transmission over C3, a collis
e next transmission slot, CR2 and CR3 will decrease
S3< C3,C4,C5,C1,C2,>, and meanwhile increase the oth
do can lower the collision probability in contrast
while one available channel is found.

f sense, collision and transmission in a transmission slot

multiple channels sensing strategy can be summarized
e algorithm CRN_MCST, which is executed in each
no any information exchanging among them.
te algorithm CRN_MCST one time in every sin
alization stage, the sensing probabilities to all sequen
 With the iterating of transmission, each CR independen

her the current sequential channel order is crowded or n
g probability accordingly. In line 2-3, the threshold k
g is calculated based on the sensing probability,
annel order is selected from the channel Latin Square,
nses the sequential channel order successively, in which
stored into the pre-allocated buffer. This process will
available channels found or all the items in CSi have b

xity of line 4-8 is proportional to the total channel quant
of line 9-20, the CR makes a decision on which chan
smission, and the sensing probability and access probabi
ng to the transmission result. The time complexity
thus it is O(k) and k<=n. In line 21-22, it is the case that

403

sing
C4,

4 are
ense
d. In
sion
the

hers.
to

d as
CR

ngle
ntial
ntly
not,
k of
and
i.e.,

h all
l be

been
tity,
nnel
ility
y is
t no

404 G. Feng et al.

available channels are found and the CR will stay quietly in the whole transmission
slot. To sum up, the time complexity in a transmission slot is O(n).

Algorithm. CRN_MCST
Initialization: The sensing probability vector P(CS), and each () 1 / , 1,2,...,CS

ip n i n= =

The channel matrix CS with Latin Square form;
 buffer_free is empty;// used for store the available channels sensed
 transmit_flag=false;

1. BEGIN

2. CSi is selected from CS based on ()CS
ip

3. Calculate k based on E.q.(2)
4. WHILE ! endof(CSi) && sizeof(buffer_free)<k //k is the threshold of free channels

sensed by the current CR
5. IF CSij is busy THEN j++;
6. ELSE
7. Store the CSij into the buffer_free;
8. END WHILE
9. WHILE sizeof(buffer_free)>0
10. Make a decision on whether to transmit or continue to sense randomly;
11. IF deciding transmission THEN
12. Select Cj from buffer_free to transmit based on E.q.(3)
13. Set transmit_flag=true and Transmit at the remaining transmission slots
14. IF transmission is successful at Cj in CSi THEN
15. Increase the probability CSj based on sensing probability E.q.(5) ;
16. ELSE decrease the probability CSj based on sensing probability E.q.(6);
17. Evacuate the buffer_free; // CR will transmit at the remaining period
18. ELSE //continue to sense the free channel in buffer_free
19. Goto step 2；
20. END WHILE
21. IF transmit_flag=flase THEN
22. Stay quiet until next transmission slot
23. END

Fig. 4. Algorithm CRN_MCST: multiple channel sense and transmission

4 Experiments and Analysis

In order to verify the performance and compare with other typical approaches, some
numerical experiments has been conducted in this section, where the mainly
parameters in our experiment are similar to Khan’s approach. The channel busy
probability Pu is set 0.0, 0.1, 0.3 and 0.5, such that we can check the performance of
different approaches at different channel workloads. The total channel quantity is 10
and the quantity of CRs are various from 2 to 20. The performance of channel
utilization can be inferred from the wasted ratio of transmission slot, including
collision interval and idle interval. Moreover, we set 50 transmission slots in each

 An Adaptive Channel Sensing Approach 405

time experiment and total 10 experiments are conducted. Thus, we have attained 100
times experimental data. Meanwhile, we set 11 sub-slots as a transmission slot, i.e., if
a CR has sensed the last item in current sequential order, there is only one sub-slot for
transmission. The experimental results are shown in figure 5 - figure 8.

Figure 5 and figure 6 are the comparisons between our approach and Khan’s.
Khan’s approach has an excellent performance under the case that there is a light load
with a fewer number of CRs on the channels, where the wasted ration of transmission
is no more than 20%. While the CR quantity is more than 10, the wasted ratio is
soaring. Even all the channel are not occupied by PUs, i.e., Pu=0.0, the wasted ratio
reaches 60% with 20 CRs. But in the case of Pu=0.5, the wasted ratio is about 33% in
Khan’s approach. Figure 6 shows the experimental result of our approach. It is
obvious that the proposed approach has a better overall performance compared with
Khan’s, and the wasted ratio is constrained about 10% at different probabilities of
Pus. Only when the CR quantity is 2 or 3, the performance is not superior to Khan’s.

Fig. 5. Khan’s method at different busy probabilities of channels with various CR quantities

Fig. 6. The proposed method at different Pus with various CR quantities

Figure 7 shows the comparison at the channel busy probability Pu=0.1. Only when
the CR quantity is less than channel quantity, Khan’s method has a better

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of CR nodes

R
at

io
 o

f
w

as
te

d
tim

e
sl

ot
s(

10
0%

)

Pu=0.0

Pu=0.1
Pu=0.3

Pu=0.5

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numbers of CR nodes

R
at

io
 o

f
w

as
te

d
tim

e
sl

ot
s

Pu=0.0

Pu=0.1
Pu=0.3
Pu=0.5

406 G. Feng et al.

performance. After that point, this approach has an intolerable increasing on channel
wasted ratio. On the contrary, our approach remains a comparative stable wasted
ration about 10%, only when the CR quantity is 2 or 3, the performance is poor. In the
case of heavy channel workload, our proposed approach will be a quite effective
complement to Khan’s approach. In those three approaches, the Random LS
strategy[13] has the least performance and the channel wasted ratio is reached 70%
when there are 20 CRs in the network.

Fig. 7. The comparison between different approaches

When there are 10 CRs, each CR could attain an almost equitable transmission
chance about 10% in all those three approaches, and all of them have achieved a well
fairness, as shown in Figure 8.

Fig. 8. The comparison in transmission ratio of different CR nodes

5 Conclusion

In this paper, we have investigated the distributed channel sensing strategy in a CRN
environment with heavy load channels and obtained some important observations. In

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CR numbers

W
as

te
d

 r
at

io
 o

f c
h

an
n

el
s

Khan approach
Proposed approach
Random LS approach

1 2 3 4 5 6 7 8 9 10
0.08

0.085

0.09

0.095

0.1

0.105

0.11

CR number

R
at

io
 o

f f
ai

rn
es

s

Khan approach
Randdom LS approach
Proposed approach

 An Adaptive Channel Sensing Approach 407

the system model, a sensing threshold for available channels is estimated based on the
crowded degree of the current sequential channel order. On this base, each CR can
adjust its sensing probability to sequential order and access probability to a channel
according to whether this transmission success or not. Moreover, we presented an
algorithm with low computational complexity, in which the process of each CR
sensing the sequential channel order and deciding channel to transmit is elaborated in
detail. Simulation results demonstrate the effectiveness of our proposed approach.

Acknowledgments. This work was supported in part by the Research Fund for the
Doctoral Program of Higher Education of China under Grant 20122304130002, the
Natural Science Foundation in China under Grant 61370212, the Natural Science
Foundation of Heilongjiang Province under Grant ZD 201102 and F201037, the
Fundamental Research Fund for the Central Universities under Grant HEUCFZ1213
and HEUCF100601, and Postdoctoral Science Foundation of Heilongjiang Province
under Grant LBH-210204.

References

1. Khan, Z., Lehtomaki, J.J., DaSilva, L.A., Latva-aho, M.: Autonomous sensing order
selection strategies exploiting channel access information. IEEE Transactions on Mobile
Computing 12(2), 274–288 (2013)

2. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S.: A survey on spectrum management
in cognitive radio networks. IEEE Communications Magazine 46(4), 40–48 (2008)

3. Khozeimeh, F., Haykin, S.: Brain-inspired dynamic spectrum management for cognitive
radio ad hoc networks. IEEE Transactions on Wireless Communications 11(10),
3509–3517 (2012)

4. Salami, G., Durowoju, O., Attar, A., Holland, O., Tafazolli, R., Aghvami, H.: A
comparison between the centralized and distributed approaches for spectrum management.
IEEE Communications Surveys & Tutorials 13(2), 274–290 (2011)

5. Fan, R., Jiang, H.: Channel sensing-order setting in cognitive radio networks: A two-user
case. IEEE Transactions on Vehicular Technology 58(9), 4997–5008 (2009)

6. Liu, C.-H., Tran, J.A., Pawelczak, P., Cabric, D.: Traffic-aware channel sensing order in
dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications
31(11), 2312–2323 (2013)

7. Liang, Y.-C., Zeng, Y., Peh, E.C., Hoang, A.T.: Sensing-throughput tradeoff for cognitive
radio networks. IEEE Transactions on Wireless Communications 7(4), 1326–1337 (2008)

8. Anandkumar, A., Michael, N., Tang, A.: Opportunistic spectrum access with multiple
users: learning under competition. In: The 29th IEEE Conference on Computer
Communications (INFOCOM 2010), San Diego, USA, pp. 1–9. IEEE Communications
Society (2010)

9. Anandkumar, A., Michael, N., Tang, A.K., Swami, A.: Distributed algorithms for learning
and cognitive medium access with logarithmic regret. IEEE Journal on Selected Areas in
Communications 29(4), 731–745 (2011)

10. Theis, N.C., Thomas, R.W., DaSilva, L.A.: Rendezvous for cognitive radios. IEEE
Transactions on Mobile Computing 10(2), 216–227 (2011)

11. Jiang, H., Lai, L., Fan, R., Poor, H.V.: Optimal selection of channel sensing order in
cognitive radio. IEEE Transactions on Wireless Communications 8(1), 297–307 (2009)

408 G. Feng et al.

12. Chang, N.B., Liu, M.: Competitive analysis of opportunistic spectrum access strategies. In:
The 27th IEEE Conference on Computer Communications (INFOCOM 2008), Phoenix,
AZ, USA, pp. 2207–2215. IEEE Computer Society Press (2008)

13. Cheng, H.T., Zhuang, W.: Simple channel sensing order in cognitive radio networks. IEEE
Journal on Selected Areas in Communications 29(4), 676–688 (2011)

14. Huang, J., Zhou, H., Chen, Y., Chen, B., Zhu, X., Kong, R.: Optimal channel sensing order
for various applications in cognitive radio networks. Wireless personal
communications 71(3), 1721–1740 (2013)

15. Pei, Y., Liang, Y.-C., Teh, K.C., Li, K.H.: Energy-efficient design of sequential channel
sensing in cognitive radio networks: optimal sensing strategy, power allocation, and
sensing order. IEEE Journal on Selected Areas in Communications 29(8), 1648–1659
(2011)

16. Li, B., Yang, P., Wang, J., Wu, Q., Tang, S., Li, X., Liu, Y.: Almost optimal dynamically-
ordered channel sensing and accessing for cognitive networks. IEEE Transactions on
Mobile Computing, 1–14 (2013)

17. Lai, J., Dutkiewicz, E., Liu, R., Vesilo, R.: Opportunistic Spectrum Access with Two
Channel Sensing in Cognitive Radio Networks. IEEE Transactions on Mobile Computing,
1–14 (2013)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 409–422, 2014.
© IFIP International Federation for Information Processing 2014

A Location Privacy Preserving Method
Based on Sensitive Diversity for LBS

Changli Zhou1,*, Chunguang Ma1,*, Songtao Yang1,2, Peng Wu1, and Linlin Liu3

1 Harbin Engineering University, Harbin City 150001, China
2 Jia Mu Si University, Jiamusi City 154007, China

3 Harbin Crystal Commercial Photography Co. Ltd, Harbin City 150001, China
zhouchangli888@gmail.com, machunguang@hrbeu.edu.cn

Abstract. A user's staying points in her trajectory have semantic association
with privacy, such as she stays at a hospital. Staying at a sensitive place, a user
may have privacy exposure risks when she gets location based service (LBS).
Constructing cloaking regions and using fake locations are common methods.
But if regions and fake positions are still in the sensitive area, it is vulnerable to
lead location privacy exposure. We propose an anchor generating method based
on sensitive places diversity. According to the visiting number and peak time of
users, sensitive places are chosen to form a diversity zone, its centroid is taken as
the anchor location which increases a user’s location diversity. Based on the
anchor, a query algorithm for places of interest (POIs) is proposed, and precise
results can be deduced with the anchor instead of sending users’ actual location
to LBS server. The experiments show that our method achieves a tradeoff
between QoS and privacy preserving, and it has a good working performance.

1 Introduction

Location Based Service (LBS) brings convenience to people's lives, at the same time, it
also poses a risk of location privacy leakage. Location based query is a widely used
LBS, a user sends a query request with her current location to LBS provider (LSP) to
get places of interest (POIs). Such as "find the K nearest neighbor restaurants around
me" or "find all the restaurants in the range of R kilometers", the former one is called
KNN query and latter one is range query. Due to the spatial and temporal relevance, an
exposure of location privacy may lead deeply privacy leakage, such as a user's home
address, hobbies, health condition and so on. Location privacy is significantly
important to us and should be protected carefully.

Places on a user's trajectory can be divided into two kinds: passing-by places and
staying-at places. A mobile user issues LBS query with her current location at any time
in a trajectory. A passing-by place has no relationship with a user, it only means a user
has passed by a location without any semantic association. But a staying-at place,
especially a sensitive place, has semantic association with a user staying at it, such as a
user is staying at an infectious hospital.

* Corresponding author.

410 C. Zhou et al.

Location obfuscation is a general protecting method for location privacy preserving.
Such as constructing cloaking region to achieve k-anonymity[1,2,3], as shown in Fig 1,
user C sends her actual location to an anonymous server (AS), then AS expands her
actual location to a rectangle R2 including 2 other users, and R2 will be sent to LSP for
POIs instead of her actual location. But there is a problem, if the cloaking region is in a
sensitive area, such as dash line rectangle in Fig.2. A query is sent with R2 means the
user is in a hospital. And when a user stays or moves a short distance in a sensitive area,
all her cloaking regions may be included in it. Location diversity is a solution that
requires users in a cloaking region to appear in diverse places, but that may lead a large
cloaking region, such as R3.

Fig. 1. Cloaking regions

Another protecting method is using fake locations[6,7], that is sending an actual
location accompanied with some fake locations, and all the locations will be used in
query operations, that brings too much burden to LSP. Then query methods with
significant object[8] or anchor[9] are proposed, they have more improvements and
more precise query results. Especially, SpaceTwist[9] is an effective method to get
KNN POIs without providing a user's actual location to LSP. But these methods have
the same drawback, which is if the fake locations or anchors are still picked in a
sensitive area, location privacy of a user will be leaked anyway.

Staying at a sensitive place causes a semantic association with a user, continuous
sensitive places lead to deep-going leakages[10,11]. We focus on the privacy
preserving when a user is staying at or moving short distance around a sensitive place.
The contents and contributions of this paper are as follows:

1).We propose a location privacy preserving method based on sensitive places
diversity when a user is staying at a sensitive place. A center server (CS) generates a
diversity anchor for a user. The diversity anchor is used to replace a user's actual
location. CS sends a query with the anchor. The diversity anchor is in the overlap area
of several sensitive places, which increases uncertainty of a user's actual location.

2).We propose a query algorithm with the diversity anchor. In a query request, a
diversity anchor is sent to LSP instead of a user's actual location. LSP takes the anchor
as a centroid and returns a candidate POIs set to CS, and CS can deduce precise result
of KNN POIs for a user. Without providing any user's actual location, our algorithm
achieves location privacy preserving and gets precise KNN POIs for a user.

 A Location Privacy Preserving Method Based on Sensitive Diversity for LBS 411

2 Related Works

In order to achieve location privacy preserving, a user obscures her actual location
before getting LBS. Gruteser et al[1] brought in k-anonymous idea from database for
LBS privacy preserving. Mokbel et al[12] proposed an architecture with center
server(CS), CS is between users and LSP, most of the CSs are credible. CS cloaks a
user's actual location and returns refined results. Chow and Mokbel[13,14] proposed a
P2P architecture without CS, it removes bottleneck when CS faces lots of users.

Anonymity is achieved by these methods, but if users crowd together in a place,
cloaking regions may still in a small area, in extreme case they are at the same spot. To
solve this problem, Bamba et al[4] introduced l-diversity idea from data publication into
location anonymity, they proposed a cloaking method which satisfies location diversity.
Xue et al[17] proposed a location diversity method to ensure each query can be associated
with at least l different semantic places. Xu et al[5] proposed an anonymous cell with
diversity roads. Yang et al[18] proposed cloaking cycle and forest which include diversity
roads to ensure that a user locates at diversity roads equally in a cloaking cycle. Meng et
al[11] proposed sensitive trajectory location protection method in data publication.
Liu[19] gives query l-diversity in location privacy preserving for the first time.

Using fake locations is another way to achieve protection. A general method is
sending several fake locations in order to obscure a user's actual location [6-9]. A user
sends a fake location in SpaceTwist [9], which is called “anchor”, to LSP and the user
deduces POIs result according to the returned candidate set. The main procedure is as
follows:

As shown in Fig. 2, a solid “•” denotes a user's actual location, “×” denotes an
anchor. A user sends a query with the anchor to LSP, LSP performs INN (incremental
nearest neighbor) query to get POIs candidate set and then sends it to the user gradually.
Firstly, LSP takes the anchor as the centriod of supply space to search POIs. When a
POI is found in Fig.2(b), the supply space expends and the demand space centred with
user's location shrinks. As POIs are found gradually, SpaceTwist terminates when the
supply space covers the demand space. Meng[15] and Gong[16] have proposed
improvement to make SpaceTwist achieve k-anonymity respectively.

Fig. 2. SpaceTwist processing procedure

Both cloaking region and anchor will cause privacy leakage when they are still in a
sensitive place. In this paper, we use an anchor referring to SpaceTwist, and ensure a
user at sensitive place to pick the anchor with location diversity. Based on the anchor,
we propose a query algorithm to get precise KNN POIs result for a user.

412 C. Zhou et al.

3 System Architecture

We pick the architecture with a CS, CS is between users and LSP, as shown in Fig. 3. A
user with a GPS sensor of her intelligent terminal sends her location and query to CS.
CS computes an anchor and sends anonymous query with the anchor to LSP. LSP
performs INN search in its database according to the anchor location and returns POIs
candidate set to CS. CS deduces precise results to the user.

Definition 1. There are 3 entity sets U,CS,LSP< > , Uku ∈ represents an energy
constrained mobile user. CSiCS ∈ is a central server, deployed at crowded location, it
has stronger abilities. LSP is an LBS provider, which is powerful in energy and
processing, it stores all POIs in its database. CS is credible, users and LSP may be not.

Definition 2. A user's query , , , ,k uku loc l C R< > , ku is her identity, ukloc is an actual
location, l is sensitive diversity degree, C and R are her query request content and
personal requirement in the query respectively.

Definition 3. CS sends a piece of query , , ,i anchorCS loc C β< > , iCS is identity of a
CS and anchorloc is the anchor location which is computed and satisfied with location
diversity, β is the number of POIs returned from LSP each time.

Fig. 3. System architecture

Definition 4. POIs are denoted as 1{ , ,......, }2 n= , i ∈ is a POI or a sensitive
place. POIs also have semantic association with users, so we usually consider some
POIs as sensitive places.

4 Location Privacy Preserving Method

Our method includes two main phases: the CS generates a diverse anchor for the user
who is at a sensitive place, and query for KNN POIs with the anchor. The first phase
contains sensitive location definition method based on users visiting frequency
characteristics, and the anchor generating method is based on sensitive locaiton
diversity. The second phase presents the query algorithm with a diversity anchor.

4.1 Diversity Anchor Generating Phase

We assign different sensitive weights based on users visiting number and visiting time
period firstly. The sensitive weights are used to generate a diversity anchor then.

 A Location Privacy Preserving Method Based on Sensitive Diversity for LBS 413

4.1.1 Sensitive Location Definition
Visiting number and peak visiting time period of a place reflect a sociality of a kind of
people. When the users are staying at the place, the semantic associations will lead a
privacy leakage of these users. For example, the visiting users to a place becomes more
in every weekday morning, it may be a company rather than a bar, a user stays at this
place may expose her working place. A place is often visited at night, it may be a bar
rather than a hospital. Nearly all sensitive places have bigger visiting numbers and
regular peak visiting time. These may lead a correlation with a category of places, so
we take visiting number and peak visiting time as main factors.

1v 2v 3v
4v

iv

kv
i

Fig. 4. Road networks with POIs

As the sensitive places are distributed in road networks, a user always finds a path to
reach a sensitive place. So when we discuss users visiting number, we consider
sensitive places (or POIs) are on the edge of the road graph. We define a directed graph
of road networks as ()G = V,E , V is a set of vertexes, each iv ∈ V has a visiting
weight ()i iv λ= . E is a set of edges, ike ∈ E

is a directed edge between iv and kv . If

there is no other vertex / { , }kx iv v v∈ V between iv and kv , a road directly connects

iv and kv . Users arrive from iv to kv follows Poisson process with arrival rate 0ikλ > ,
and ik ike λ= , or else 0ike = . So we define visiting weight of a vertex iv :

' '

, ,

()
j j

i i i k i i k i
v k i v k i

v eλ λ λ λ
∈ ≠ ∈ ≠

= = + = +
V V

 (1)

'iλ is a accumulation of user arrival rate who doesn't start from a vertex. Suppose a user
chooses each outgoing edge of a vertex with equal probability, each outgoing edge has a
visiting weight () / deg ()i out iv v , deg ()out iv is the outgoing degree. A road segment with
two vertexes iv and kv has a weight in the Formula (2). As shown in Fig.4, black
square points are denoted as sensitive places. As we known, a user doesn't stays at each
places in a road segment kiv v , she may only stay at one place according to her destination.

[() / deg ()] [() / deg ()]i out i k out kv v v v= + (2)

Suppose a place i on kiv v has n users passed by in a certain time period of a day
and the probability of staying-at users is p, so the users staying at a place i on

kiv v follows Poisson process with an arrival rate i npμ = . The probability of staying-at
number X of users when X is greater than a threshold TX is:

TX

T T
T

(X) 1 (X) 1 ...
0! 1! X !

e e e
P X P X

μ μ μμ μ− − −
> = − ≤ = − − − − (3)

414 C. Zhou et al.

So each place can be assigned with the weight as:

()TP X X= ⋅ > (4)

We choose typical time periods of a day, such as rush hour, leisure time and so on, to
get a sensitive weights sequence of a place ()i 1 2 3 n=(, , , . . . , ） , we can get its

peak visiting time periods of a day. The average value ()i in Formula (5) reflects

average visiting number of a place.

1

()
n

i i
i

n
=

= (5)

If a place satisfies ()i TR> , we call it a sensitive place, TR is a sensitive

threshold. The sensitive weights are used to generate diversity anchor in next section.
Anchor generating based on sensitive location diversity
In this section, we pick a user's neighbor sensitive places to form a diversity zone,

the anchor is generated at the centroid of the zone, a user querying with the anchor
improves the probability of staying at different sensitive places.

When CS chooses neighbor sensitive places for a user, we divide neighbor sensitive
places into 3 categories:

A. Disparate places, this kind of places have disparate peak visiting time period, a
user choose this place may lead severely uneven distributing probability of each
sensitive places for a user, such as a hospital and a bar, so CS excludes these places.

B. High correlation places, this kind of places do not only have similar peak visiting
time period but also shows a linear correlation with the sensitive place which the user is
staying at. These places may be the same kind neighbor places, such as two neighbor
bars. For achieving diversity, CS excludes these places.

C. Similar places, this kind of places have similar peak visiting time period but they
are not the same places, choosing this kind of places ensures sensitive diversity.

There are other measures to pick diversity places, we focus on user visiting number
and its variation tendency according to the sensitive weight sequence of a
place ()i 1 2 3 n=(, , , . . . , ） , which we have discussed below Formula (4).

CS has the sensitive weight sequences of all the POIs in its coverage area, one of the

sequences of a place i is denoted as () i i i i
i 1 2 3 n=(, , , . . . , ） , each

()i
1 i∈ at different time periods is computed by Formula (4). Suppose a user is

staying at i , and k is one of its neighbor sensitive places. CS compares the

sequence ()i to all the neighbor sensitive places ()k and excludes the ones

belonging to category A. We use cosine similarity to achieve this goal, in Formula (6),
since cosine similarity can reflect the tendency similarity of two data
sequences, (,) [0,1]i ksim ∈ , low similarity means a disparate place.

1

2 2

1 1

() ()
(,)

() ()
() ()

n
i k
j j

ji k
i k

n ni k i k
j j

j j

sim =

= =

×
⋅

= =
⋅

×

 (6)

 A Location Privacy Preserving Method Based on Sensitive Diversity for LBS 415

Formula (6) only filters the disparate places. If two sequences of i and k show

similar tendency, such as 2 simple examples (2000, 400, 100) and (1000, 200, 50), they
have similar variation tendency, and shows linear similarity, these may belong to
category B. We exclude these places to guarantee sensitive diversity. We use Pearson
correlation coefficient to achieve this goal, which represents the linearly dependent of
two data sequences.

1

1
(,)

1
i k

i kn
j i j k

i k
j

r
n s s=

 − −
 =

 −

 (7)

As shown in Formula (7), i 和 iS are mean value and standard deviation

respectively. The more | |r approaches 1, the higher linearly dependent is. We exclude
places of category B with high | |r . There is no negative correlation (r<0) after the filter
of Formula (6).

1

(,) ()
n

i k
i k j j

j

Dist
=

= − (8)

CS filters disparate places and high correlation places by Formula (6) and (7), the
remaining places satisfy sensitive diversity and refrains from inferring attack according
to peak visiting time period difference. We rank the remaining candidate places
according to similar degree, as defined in Formula (8), CS chooses better places to form
a diversity zone according to diversity degree. We use Euclidean distance to estimate
the similar degree in the candidate set. The greater Euclidean distance is, the higher
diversity degree of a neighbor sensitive place is.

anchor

i i

Fig. 5. Diversity zone and anchor generating

As the area is divided into grids by default, when CS receives a query from a user
staying at i , , , ,k uku loc l C R< > , it picks a neighbor grid randomly, as shown in

Fig.5 (a), and clockwise get all the sensitive places in its neighbor grids, all the grids are

in an angle range of 180 from the first grid, there is an angle limit because if the other
sensitive places surround i , i will be the sensitive place where the user is staying

at. CS compares each sensitive place with i using Formula (6) and (7), filters

disparate places and high correlation places, and ranks the remaining places according
to Formula (8). Finally, CS chooses l sensitive places to form a diversity zone and takes
its centroid as the anchor location, l is sensitive diversity degree defined by the user in
query request. The Algorithm is as follows:

416 C. Zhou et al.

Algorithm 1. Diversity zone and anchor generating
1. Procedure : CS receives a query request , , , ,k uku loc l C R< > from a user at i

2. generate a max heap W
3. randomly pick a neighbor grid, denote the vector from i to the grid as 1v

4. while 1(,) 180iv vθ ≤ // iv is the vector which ku points to the ith neighbor grid

5. clockwise get all neighbor grids
6. S ← all the sensitive places in these grids
7. for each k S∈ do

8. compute (,)i ksim

9. while (,)i k ssim ξ> do // sξ is a threshold

10. compute (,)i kr

11. if (,)i k rr ξ< then // rξ is a threshold

12. compute (,)i kDist

13. , (,)k i kW Dist←

14. while | |W l≥ // satisfy sensitive l-diversity
15. connect the top l k W∈ to form a divZone

16. centroid ← compute the centroid of divZone // take the centroid as an anchor for the user

17. return centroid
18. End Procedure.

In this section, we propose the picking method of sensitive diversity places
according to user visiting number and its variation tendency. Then we use diversity
places to form a diversity zone, the anchor is the centroid of the zone. CS uses this
anchor to replace the user's actual location and issues users’ query with the anchor. We
can find that the anchor can be reused by other users in the sensitive places which form
a diversity zone, the reuse decreases the overhead of CS.

4.2 Query Phase

In this phase, CS sends user's query request , , ,i anchorCS loc C β< > with a diversity

anchor. When LSP receives a query request, it takes the anchor as a dimcenter and
executes INN search. LSP returns the POIs candidate set gradually to CS. CS performs
Algorithm 2 to deduce precise KNN PoIs for a user.

τγ
τ

γ

τ

γ
τ

γ

τ
γ

Fig. 6. K nearest neighbor PoIs query for a user

 A Location Privacy Preserving Method Based on Sensitive Diversity for LBS 417

As show in Fig.6(a), a user locates at q and q' is the diversity anchor, when the first
POI is found, supply space (the dark grey cycle) expands and demand space (light grey
cycle) shrinks. As POIs are found gradually, supply space covers demand space for the
first time in Fig.6(b), K POIs are found around the anchor. Then demand space updates,
containing K POIs in its cycle and keeps its radius unchanged after the expand, as
shown in Fig.6(c) K=3. In Fig.6(d-e), query procedure continues until supply space
covers demand space for the second time, K POIs are found around user. The algorithm
running at CS end and referring to SpaceTwist is as follows:

Algorithm 2. CS performs the algorithm for KNN PoIs around a user at q
1. Procedure : K is defined by ku , ukq loc← , ' anchorq loc← , β is the package capacity of

PoIs returned from LSP
2. CS generates a max heap KW

3. insert K pairs of ,NULL< >∞ into KW

4. γ ← the top distance in KW // initialize demand space

5. 0τ ← // initialize supply space
6. send INN query to LSP with diversity anchor 'q
7. while (, ')dist q qγ τ+ > do

8. S ← get next package of PoIs from LSP
9. τ ← get the maximum x(',)dist q in S // update supply space

10. for each w S∈ do

11. if (,)wdist q γ< then

12. KW ← , (,)w wdist q< >

13. (,)wdist qγ ←

14. γ ← get (,)Kdist q in KW // update demand space

15. while (, ')dist q qγ τ+ > do

16. S ← get next package of PoIs from LSP
17. τ ← get the maximum (',)udist q in S // expand supply space gradually

18. if (,)udist q γ< then

19. KW ← , (,)h udist q< >

20. terminate INN query
21. return bottom K PoIs in KW

22. End Procedure.

In our algorithm, demand space expands and covers at least K PoIs, which is the key
point guarantees the user to get K PoIs around him nearly in 100% success rate. The
query process will not terminate until supply space covers demand space again. As
shown in Fig.6(e), LSP returns 10 PoIs in total. Alogrithm 2 picks K=3
PoIs 2 5 7{ , , } of them, the 3 POIs are around the user q, our algorithm is better than

SpaceTwist. When we consider a user stay in a sensitive place, that means all the users
are static or moves short distance, Algorithm 2 is snapshot query rather than continuous
query, a user in a query procedure always uses one diversity anchor. As we known, a
continuous query is composed of several snapshot queries, so Algorithm 2 is applicable
for continuous query if continuous anchor sequence is generated. We will consider it in
future work.

418 C. Zhou et al.

4.3 Performance Analysis

In this section, we will discuss security in the procedure of diversity anchor generating
and querying with the anchor, then we analysis the algorithm complexity.

(1) Security analysis
An anchor is chosen in the overlap region of several sensitive places, it increases the

probability of a user appearing in different sensitive places, the user's location semantic
privacy is preserved. The diversity sensitive places are filtered by Formula (6), the
disparate places are discarded to ensure the user is staying at each places with fequal
opportunity. Formula (7) filters the sensitive places which may be the same to the one a
user is staying at, such as a user is staying at a hospital, CS choose neighbor other
hospital for her, which reduces the diversity. At last, CS picks l sensitive places in the
remaining places to form a diversity zone, since the sensitive places is chosen from a
randomly direction firstly and different users at the same sensitive place have different
l-diversity degrees, so CS generates different anchors for users from the same place,
that avoids inferring attacks which all the users using the same anchor are from the
same sensitive place.

When CS generates an anchor according to l sensitive places around him, she is
staying at each place with equal probability () 1/ip x l= , so the information entropy of

querying with this anchor one time is:

1 1

1 1
() () log log log

()

l l

i
ii i

H q p x l l
p x l= =

= = = (9)

That is the maximum information entropy for a single time, an adversary is hard to
correlate any anchor with a user at sensitive place.

(2) Complexity analysis of query algorithm
Algorithm 2 is running at CS end, it compares the returned POIs from LSP, and

decides when to terminate the query process, as demand space expanded in Algorithm2
Line14, the query terminated time has set already, so the algorithm will not last long or
loop over and over again. The time complexity depends on amount of POIs returned in
two phases in Algorithm 2 Line 8 and 16, it is i h(| |+| |)O . When K=3, LSP has to

return 10 POIs to get precise KNN around a user, it is a little more, but the searching
time complexity is not large. In the other hand, it is a tradeoff between ensuring privacy
preserving and query efficiency.

5 Experiments

In this section, we discuss 3 main indicators: anonymity success rate, data traffic and
average response time. We do experiments on two different data sets to manifest the
good performance of our method.

5.1 Parameter Configuration

Simulation experiments are running on Windows 7, CPU is 3.5GHz Intel Core i7
processor and RAM is 16GB. We write the algorithms with Java, and we use two data

 A Location Privacy Preserving Method Based on Sensitive Diversity for LBS 419

sets, one is a real data set from Board on Geographical Names1, denoted as GDS, it
includes 358957 PoIs. The other one is simulated data set2, denoted as TDS, this data
set is generated by widely used Thomas Brinkhoff Generator which is based on road
networks of Oldenburg in Germany, it generates a city area about 24km×27km. The
bandwidth between CS and users is 3Mbps. At LSP end, each data set of POIs is
indexed by a 2K bytes R-tree structure. The parameter configurations are shown in the
following Table 1:

Table 1. Parameters configuration

Parameters Value range Defaults
Number of users U 100000 400000U≤ ≤ 300000

Threshold of users at a sensitive place TX 100 1000TX≤ ≤ 200

Sensitive places similarity threshold sξ 0 1sξ≤ ≤ 0.4

Package capacity of PoIs β 1 11β≤ ≤ 6
PoIs query number K 1 15K≤ ≤ 8

Distance between user and anchor (, ')dist q q 200 (, ') 1600dist q q≤ ≤ 1000

5.2 Success Rate of Anchor Generating

We run the experiments on both data set GDS and TDS, we discuss the success rate
of anchor generating when thresholds TX and sξ vary in Formula (4) and Algorithm 2.

Fig. 7. Threshold TX
varys Fig. 8. Threshold sξ

varys

In Fig.7, when TX increases, success rate of anchor generating is coming down

and keeps stable around 80%, that is due to some places with smaller visiting number
are not considered sensitive any more, in a valid region, CS is hard to find enough
sensitive places around the user. To the same in Fig. 8, when similarity threshold is
increasing, the sensitive places around a user must be similar enough to visiting number
and visiting time, it means some places will be filtered. So the anchor generating is
affected by these factors.

1 http://geonames.usgs.gov/index.html
2 http://iapg.jade-hs.de/personen/brinkhoff/generator/

420 C. Zhou et al.

5.3 Compare with SpaceTwist

We compares our Algorithm 2 to SpaceTwist on data set GDS and TDS, and mainly
discuss the communication cost when K and (, ')dist q q are changing.

Fig. 9. K varies on GSD Fig. 10. K varies on TDS

As shown in Fig.9-10, when K is increasing, packages are going up on both data set,
and Algorithm 2 is higher than SpaceTwist, especially K varies from 11-15, packages
are nearly twice than SpaceTwist. That is due to our algorithm expands demand space
and continue query until supply space covers it again. LSP has to continue returning
POIs until precise KNN POIs are obtained by CS, therefore the communication is
increasing, and when K becomes larger, LSP needs to search more area to get enough
POIs, packages are even more. Although Algorithm 2 has higher communication, it is
much more precise than SpaceTwist, because the POIs found in our algorithm are
around a user rather than the anchor, but SpaceTwist's are all around the anchor q', as
shown in Fig.6(b) and Fig.6 (e), our algorithm pays a little more in communication but
earns a lot in service quality. Due to demand space expanding, Algorithm 2 can get
precise KNN POIs around a user in nearly 100% success rate.

Fig. 11. (, ')dist q q varies on GSD Fig. 12. (, ')dist q q varies on TDS

As shown in Fig.11-12, when an anchor is further from the user, LSP has to search a
large area to get enough POIs, so its communication increases on both data set, as we
discuss the anchor generating in our algorithm is not far away from a user based on
grids, that ensures the communication cost of Algorithm 2 is in a reasonable range, in
our experiments, we suppose there is no more than 1000 meters between neighbor
grids. Communication of Algorithm 2 is higher than SpaceTwist, because it searches a
larger area as demand space expands.

 A Location Privacy Preserving Method Based on Sensitive Diversity for LBS 421

6 Conclusions

For location privacy preserving when a user is in a sensitive area, we propose an anchor
generating method using a user's neighbor sensitive places to achieve l-diversity. By
filtering places unsatisfied, CS generates an anchor and uses it to replaces a user's
actual location in a query. As the anchor locates at an overlap area of several sensitive
places, it increases the probability of appearing at different sensitive places for a user, it
avoids the leakage of location privacy when a user and her anchor are both in the same
sensitive area. In the query phase, CS needn't submit any user's actual location instead
of the generated anchor. According to the POIs set returned by LSP, CS can deduce
precise KNN POIs around a user, which is much more precise than SpaceTwist.
Experiments and performance analysis show that our method is better in security and
quality aspects, and its complexity and communication are in a reasonable range.

At the same time we also have some defects such as the factors to define sensitive
place are single, we only consider user visiting number and its variation tendency.
There is also a defect that the deployment of CS is not discussed, since when a CS is
confronting lots of users, the response time may be a bottleneck for the CS. We will
focus on these problems in our future works.

Acknowledgements. This research is supported by a grant from National Natural
Science Foundation of China (No. 61170241, 61073042), The Fundamental Research
Funds for the Central Universities (HEUCFZ1105), Specialized Research Fund for the
Doctoral Program of Higher Education (No. 20132304110017), Excellent Youth
Foundation of Heilongjiang Province in China (No. JC 201117), Science and
Technology Research Project of Heilongjiang Education Department (No. 12513049,
NO. 12541788), and this paper is also funded by the International Exchange Program
of Harbin Engineering University for Innovation-oriented Talents Cultivation.

References

1. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial
and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services, pp. 31–42. ACM (2003)

2. Gedik, B., Liu, L.: Location privacy in mobile systems: A personalized anonymization
model. In: Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems, ICDCS 2005, pp. 620–629. IEEE (2005)

3. Chow, C.Y., Mokbel, M.F.: Trajectory privacy in location-based services and data
publication. ACM SIGKDD Explorations Newsletter 13(1), 19–29 (2011)

4. Bamba, B., Liu, L., Pesti, P., et al.: Supporting anonymous location queries in mobile
environments with privacygrid. In: Proceedings of the 17th International Conference on
World Wide Web, pp. 237–246. ACM (2008)

5. Xu, J., Xu, M., Lin, X., et al.: Location privacy protection through anonymous cells in road
network. Journal of Zhejiang University (Engineering Science) 3, 006 (2011)

422 C. Zhou et al.

6. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using
dummies for location-based services. In: Proceedings of the International Conference on
Pervasive Services, ICPS 2005, pp. 88–97. IEEE (2005)

7. Lu, H., Jensen, C.S., Yiu, M.L.: Pad: Privacy-area aware, dummy-based location privacy in
mobile services. In: Proceedings of the Seventh ACM International Workshop on Data
Engineering for Wireless and Mobile Access, pp. 16–23. ACM (2008)

8. Hong, J.I., Landay, J.A.: An architecture for privacy-sensitive ubiquitous computing. In:
Proceedings of the 2nd International Conference on Mobile Systems, Applications, and
Services, pp. 177–189. ACM (2004)

9. Yiu, M.L., Jensen, C.S., Huang, X., et al.: Spacetwist: Managing the trade-offs among
location privacy, query performance, and query accuracy in mobile services. In: IEEE 24th
International Conference on Data Engineering, ICDE 2008, pp. 366–375. IEEE (2008)

10. Pellegrini, S., Ess, A., Schindler, K., et al.: You’ll never walk alone: Modeling social
behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on
Computer Vision, pp. 261–268. IEEE (2009)

11. Huo, Z., Meng, X., Hu, H., Huang, Y.: you can walk alone: Trajectory privacy-preserving
through significant stays protection. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S.,
Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 351–366. Springer,
Heidelberg (2012)

12. Mokbel, M.F.: Towards privacy-aware location-based database servers. In: Proceedings of
the 22nd International Conference on Data Engineering Workshops, pp. 93–93. IEEE
(2006)

13. Chow, C.Y., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm for
anonymous location-based service. In: Proceedings of the 14th Annual ACM International
Symposium on Advances in Geographic Information Systems, pp. 171–178. ACM (2006)

14. Chow, C.Y., Mokbel, M.F., Liu, X.: Spatial cloaking for anonymous location-based services
in mobile peer-to-peer environments. GeoInformatica 15(2), 351–380 (2011)

15. Huang, Y., Huo, Z., Meng, X.F.: Coprivacy: A collaborative location privacy-preserving
method without cloaking region. Jisuanji Xuebao(Chinese Journal of Computers) 34(10),
1976–1985(2011)

16. Gong, Z., Sun, G.Z., Xie, X.: Protecting privacy in location-based services using
k-anonymity without cloaked region. In: Mobile 2010 Eleventh International Conference on
Data Management (MDM), pp. 366–371. IEEE (2010)

17. Xue, M., Kalnis, P., Pung, H.K.: Location diversity: Enhanced privacy protection in location
based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009.
LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009)

18. Xue, J., Liu, X.Y., Yang, X.C., et al.: A location privacy preserving approach on road
network. Jisuanji Xuebao(Chinese Journal of Computers) 34(5), 865–878 (2011)

19. Liu, F., Hua, K.A., Cai, Y.: Query l-diversity in location-based services. In: Tenth
International Conference on Mobile Data Management: Systems, Services and Middleware,
MDM 2009, pp. 436–442. IEEE (2009)

Message Passing Algorithm for the Generalized

Assignment Problem

Mindi Yuan, Chong Jiang, Shen Li, Wei Shen, Yannis Pavlidis, and Jun Li

Walmart Labs and University of Illinois at Urbana-Champaign
{myuan,wshen,yannis,jli1}@walmartlabs.com, {jiang17,shenli3}@illinois.edu

Abstract. The generalized assignment problem (GAP) is NP-hard. It
is even APX-hard to approximate it. The best known approximation al-
gorithm is the LP-rounding algorithm in [1] with a (1− 1

e
) approximation

ratio. We investigate the max-product belief propagation algorithm for
the GAP, which is suitable for distributed implementation. The basic
algorithm passes an exponential number of real-valued messages in each
iteration. We show that the algorithm can be simplified so that only a
linear number of real-valued messages are passed in each iteration. In
particular, the computation of the messages from machines to jobs de-
composes into two knapsack problems, which are also present in each
iteration of the LP-rounding algorithm. The messages can be computed
in parallel at each iteration. We observe that for small instances of GAP
where the optimal solution can be computed, the message passing algo-
rithm converges to the optimal solution when it is unique. We then show
how to add small deterministic perturbations to ensure the uniqueness
of the optimum. Finally, we prove GAP remains strongly NP-hard even
if the optimum is unique.

1 Introduction

GAP in its most general form is as follows [2]: There are multiple agents and
tasks. Any agent can be assigned to perform any task with some cost or profit
depending on the agent-task assignment. Each agent has a budget, and we wish
to find an assignment in which no agent exceeds their budget, and the total
cost of the assignment is minimized. Many practical problems can be modeled
as GAP, for example finding the best locations to build distribution centers for
a retail company, or assigning jobs to machines for the minimum cost in a data
center. In this paper, we consider the following version of GAP:

– Problem: there are J jobs and M machines. Each machine has a capacity
cj . The processing cost is wij if job i is assigned to machine j.

– Objective: find a way to assign jobs to machines so that every job is as-
signed, the capacity constraints are satisfied, and the total cost is minimized.

Various algorithms have been developed for GAP. Shmoys and Tardos [3] im-
plicitly proposed the first known algorithm, an LP-rounding 2-approximation

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 423–434, 2014.
c© IFIP International Federation for Information Processing 2014

424 M. Yuan et al.

algorithm. Subsequently, Chekuri and Khanna [4] explicitly presented that algo-
rithm and developed a polynomial time approximation scheme for the multiple
knapsack problem, which is a special case of GAP when each item has the same
size and the same profit for every bin. They also proved the APX-hardness for
two special cases of GAP. Recently, Fleischer et. al. [1] proposed two algorithms.
One is a polynomial-time LP-rounding based ((1 − 1/e)β)-approximation algo-
rithm, which is the best known approximation for GAP so far. The other is a
simple polynomial-time local search (β/(β + 1) − ε)-approximation algorithm.
Cohen et. al [5] developed an efficient approximation algorithm, which has the
same (β/(β+1)− ε)-approximation as Fleischer’s second algorithm, but is much
faster.

All of the above methods are approximate. In fact, [1] showed that the re-
sults cannot be approximated within a factor better than 1 − 1/e unless NP ∈
DTIME(nO(log logn)). However, few researchers have investigated whether bet-
ter algorithms can be designed under the additional condition that the optimum
is unique.

Among the message passing algorithms (MPA), belief propagation (BP) and
max-product algorithms are developed corresponding to the two main problems
in probabilistic inference on graphical models (GM) [6]: evaluating the marginal
and maximum a posteriori (MAP) estimation. For loopy graphs, the correct-
ness and convergence of BP are still open problems for arbitrary GM’s. How-
ever, even for GM’s with cycles, the message passing algorithms are observed
to perform surprisingly well in many cases, some of which are also with rigor-
ous proof of optimality and convergence. For example, in [7] and [8], Yuan et.
al. proposed message passing algorithms for the minimax weight matching and
the constrained assignment problem respectively. Both algorithms were proved
to be correct, given uniqueness of the optimum. For the maximum weighted
matching (MWM) problem, as another example, Bayati et. al. [9] formulated a
max-product algorithm by calculating the MAP probability on a well defined
GM, which encodes the data and constraints of the optimization problem. For
the proof of convergence and correctness of the algorithm, they constructed an
alternating path on a computation tree to show each node would choose the cor-
rect edge in a MWM after enough iterations. However, this technique does not
work in our problem, where half of the nodes have a capacity constraint. In [10],
Bayati et. al. also provided the first proof of convergence and correctness of an
asynchronous BP algorithm for a combinatorial optimization. They showed that
when the LP relaxation has no fractional solutions, the BP algorithm converges
to the correct solution. In [11], Sanghavi showed the equivalence of LP relax-
ation and max-product for the weighted matching in general graphs. He provided
an exact, data-dependent characterization of max-product performance, and a
precise connection to LP relaxation: if the LP relaxation is tight, max-product
always converges to the correct answer, and inversely, if the LP relaxation is
loose, max-product does not converge.

In this paper, we propose a message passing algorithm for GAP, which com-
putes the optimal assignment on a tree graph. The basic algorithm passes an

Message Passing Algorithm for the Generalized Assignment Problem 425

exponential number of real-valued messages per iteration, but a more refined ver-
sion of this requires only a linear number of real-valued messages per iteration.
In particular, the computation of the messages from machines to jobs decom-
poses into two knapsack problems, which are also present in each iteration of
the LP-rounding algorithm. We observe that the algorithm can solve the GAP
exactly in less than 10 iterations for small problems, when the best assignment
is unique. We choose to test small problems, because their optima can be com-
puted in reasonable amount of time. For large problems, it is hard to verify the
correctness.

The rest of the paper is organized as follows. Section 2 presents the basic mes-
sage passing algorithm. Section 3 derives a simplified version of the algorithm
that uses fewer messages. Section 4 compares our algorithms with other algo-
rithms. Section 5 discusses the extension of the algorithm when the optimum is
not unique. Section 6 proves GAP is strongly NP-hard, even if there is a unique
solution. Conclusion and future works are in Section 7.

2 Message Passing Algorithm

Consider the problem on an undirected weighted complete bipartite graph
G = (J ,M, E), where J = {J1, J2, ..., Jn} denotes the n jobs and M =
{M1,M2, ...,Mm} denotes the m machines. Machine j (1 ≤ j ≤ m) has a ca-
pacity cj . Label each edge as (Ji,Mj) ∈ E , with associated cost wij . The load
of a machine is the sum of the weights of its adjacent edges. Assume all jobs
can and need to be assigned, otherwise leaving all jobs unassigned will have the
minimum cost. Although one machine can have multiple jobs, each job can only
be assigned to one machine. Define an assignment matrix X , where an entry
xij = 1 means job i is assigned to machine j and xij = 0 means it is not as-
signed to machine j. Thus the problem can be mathematically written as the
following integer program:

minX

∑

i,j

wijxij

s.t.
∑

j

xij = 1, ∀i
∑

i

wijxij ≤ cj, ∀j

xij ∈ {0, 1}
Call the solution of the above problemX∗, the minimum cost assignment (MCA).

We first consider this problem on a graphical model, G, of finding the minimum
marginal distribution where the joint probability distribution can be completely
specified between two nodes using the product of their functions. With abuse of
notation, we will use Ji as the random variable in node Ji and Mj as the random
variable for nodeMj . Ji can then take on any single value li fromM because each

426 M. Yuan et al.

job can only be assigned to one machine. Meanwhile, Mj can take on any subset
Sj of J , resulting in 2n different possible values. Denote the joint probability
distribution p(J1 = l1, J2 = l2, ...Jn = ln,M1 = S1,M2 = S2, ...Mm = Sm) as

p(J,M) = C
∏

i,j

φJi,Mj (li,Sj)
∏

i

αi(li)
∏

j

βj(Sj)

where

φJi,Mj (li,Sj) =

⎧
⎪⎨

⎪⎩

1, if li = j, Ji ∈ Sj
1, if li �= j, Ji /∈ Sj
+∞, otherwise

(1)

αi(li) = ewili

βj(Sj) =
{
e
∑

q∈Sj
wqj , if

∑
q∈Sj wqj ≤ cj

+∞, otherwise
(2)

and C is a constant for normalization. According to the definition of the com-
patibility function (1), a necessary condition for p(J,M) to be finite is that the
assignment must be compatible, i.e. Mj must accept Ji if Ji chooses Mj, and Mj

must not accept Ji if Ji does not chooseMj. According to (2), the other necessary
condition is that the assignment must be feasible, i.e. the capacity constraint for
each machine must be satisfied. These two conditions together are also sufficient
for p(J,M) to be finite, and in particular, p(J,M) = Ce2

∑
i wili . Note that when

p(J,M) is finite, it is a monotone function due to the positive edge weights. Let
p(J∗,M∗) = argmin p(J,M). By definition, {J1 = l∗1 , J2 = l∗2 , ...Jn = l∗n} will
then be the MCA.

Define a message vector from Ji to Mj at iteration k: Mk
Ji→Mj

= [mk
Ji→Mj

(1),

mk
Ji→Mj

(2), ...,mk
Ji→Mj

(2n)]. Likewise, define the message vector from Mj to Ji:

Mk
Mj→Ji

= [mk
Mj→Ji

(1),mk
Mj→Ji

(2), ...,mk
Mj→Ji

(m)]. Let bkJi
be the belief vector

for job Ji at the end of iteration k and let akJi
be job Ji’s choice at that iteration,

where akJi
= j means job Ji chooses machine Mj . Consequently, the standard

message passing algorithm is as follows.

(1) Initialization:
M0

Ji→Mj
= M0

Mj→Ji
= 0

(2) At kth iteration:

mk
Ji→Mj

(S) = min
l∈M

φJi,Mj (l,S)
[∑

p�=j

mk−1
Mp→Ji

(l) + wil

]

mk
Mj→Ji

(l) = min
S⊆Fl

φJi,Mj (l,S)
[∑

p�=i

mk−1
Jp→Mj

(S) +
∑

q∈S
wql

]

Message Passing Algorithm for the Generalized Assignment Problem 427

where Fl is the set of all the feasible subset assignments to machine Ml.
(3) Beliefs at kth iteration:

bkJi
(l) = wil +

∑

p∈M
mk

Mp→Ji
(l)

(4) Assignment at the end of kth iteration:

akJi
= argmin

l∈M
{bkJi

(l)}

In each iteration, every job/machine node sends and receives one message from
every machine/job node. In computing its message, a node gathers the incoming
messages at the last iteration from all neighboring nodes except the destination.
Note the dimension of the vector Mk

Ji→Mj
is 2n. Similarly, in computing each

entry for the vector Mk
Mj→Ji

, we potentially need to compare all 2n subsets of
J , when the particular machine has enough capacity for the entire job set. As a
result, the algorithm has exponential running time.

Most of the BP algorithms are formulated on trees, which are known as com-
putation trees. In this paper, we use the same definition of computation trees as
in [9]. Define the feasible tree assignment:

Definition 1. A feasible tree assignment is an assignment on the computation
tree, where 1) the capacity constraint of each machine is satisfied and 2) all the
jobs, except the leaves, are assigned.

Define tkJi
(l), the total cost on the computation tree of node Ji after k itera-

tions with the root choosing edge (Ji,Ml), i.e. Ji is believed to be assigned to
machine Ml.

Lemma 1. The belief of Ji at the kth iteration is bkJi
(l) = 2tkJi

(l) +C, where C
is a constant depending on the initialization step of the algorithm.

The proof is similar to that in [9] and is omitted here.

Remark 1. We only compute beliefs from the job side. If we do so from the
machine side as bkMj

(S) =∑q∈S wqj +
∑

p∈J mk
Jp→Mj

(S), then when using the

messages Mk
Jp→Mj

, we can not guarantee that the capacity constraints for the
machines at the bottom of the computation tree are satisfied, which may lead
to an infeasible tree assignment. This is since the capacity constraints are only
incorporated in the messages Mk

Mj→Ji
, but not Mk

Ji→Mj
.

3 Simplified Algorithm

In this section, we will simplify the previous message passing algorithm to a
pseudo-polynomial one. We first provide the resulting algorithm.

428 M. Yuan et al.

(1) Initialization:
m̃0

Ji→Mj
= m̃0

Mj→Ji
= 0

(2) At kth iteration:

m̃k
Ji→Mj

= wij −min
p�=j

[
m̃k−1

Mp→Ji
+ wip

]

m̃k
Mj→Ji

= min
{S,Ji}⊆Fj

[∑

p∈S
(m̃k−1

Jp→Mj
+ wpj)

]
+ wij

− min
S⊆Fj

[∑

p∈S
(m̃k−1

Jp→Mj
+ wpj)

]
(3)

where S is the set of all the jobs except Ji. Note the two minimizations are
knapsack problems (see Remark 2).
(3) Beliefs at kth iteration:

bkJi
(l) = wil + m̃k

Ml→Ji

(4) Assignment at the end of kth iteration:

akJi
= argmin

l∈M
{bkJi

(l)}

To prove the equivalence of the two algorithms, we need the following lemma.

Lemma 2. In the message passing algorithm, subtracting a constant from all the
coordinates of any particular message vector at any iteration will not influence
the final assignment of each job.

The intuition behind this lemma is as follows: the algorithm only performs
minimization over the messages, so subtracting an equal amount from all co-
ordinates of a vector will still maintain the same ordering of the coordinates
and hence produce the exactly same results. The proof is obvious and therefore
omitted here.

Lemma 3. The message passing algorithm and the simplified algorithm compute
the same assignment for each job.

Proof. First, we show that for any particular message vector, there are only two
distinct values for each entry. Consider mk

Ji→Mj
(S). If Ji /∈ S, mk

Ji→Mj
(S) =

minl �=j [
∑

p�=j m
k−1
Mp→Ji

(l)+wil]. The minimization does not include the case when

l = j, because in the case Ji /∈ S and l = j, the compatibility function evaluates
to +∞, and thus cannot be the minimum. If Ji ∈ S, again due to the property of
the compatibility function, mk

Ji→Mj
(S) = ∑

p�=j m
k−1
Mp→Ji

(j) + wij . As a result,

Message Passing Algorithm for the Generalized Assignment Problem 429

in both cases, mk
Ji→Mj

(S) does not depend on S and therefore takes on only two

different values. The same results hold for the messagemk
Mj→Ji

(l). Consequently,

if we only pass the difference (a scalar, not a vector) of the two values and if
the receiver knows the message source, then the receiver can still recover the
entire message vector which includes this difference and 0. According to Lemma
2, passing this new vector is equivalent to passing the original one.

However, recovering the vector is not necessary. Now we show by induction
that the update rule (3) computes the difference of the two distinct values in
the original message vector at each iteration. For the first iteration, it is trivially
true. Suppose it is true for the k − 1th iteration. Then for the kth iteration,

m̃k
Ji→Mj

=
∑

p�=j

mk−1
Mp→Ji

(j) + wij

−min
l �=j

[∑

p�=j

mk−1
Mp→Ji

(l) + wil

]

= wij −min
l �=j

[
mk−1

Ml→Ji
(l) + wil

]

= wij −min
l �=j

[
m̃k−1

Ml→Ji
+ wil

]

Note in the deduction above, most of the messages in the kth iteration are 0,
which can be removed. The equivalence of the updating rule for m̃k

Mj→Ji
can be

proved similarly.

Remark 2. In computing the message m̃k
Mj→Ji

, we are actually solving two knap-

sack problems for machine Mj : There are n− 1 items. Item p (p �= i) has value
m̃k−1

Jp→Mj
+wpj and size wpj . The capacity of bin j for the first knapsack is cj−wij

and the second cj . There are many efficient methods for the singe-bin problem.
Using the dynamic programming solution [12], we get a pseudo-polynomial al-
gorithm for each knapsack. Further note that the first knapsack problem is a
subproblem of the second, so we can get its solution while solving the second.
This means that computing the message m̃k

Mj→Ji
is equivalent to solving one

knapsack problem.

4 Simulation Results

In this section, we will compare our algorithm, henceforth denoted MPA, with
other algorithms in different scenarios. We will use the results obtained by the
MATLAB integer programming function bintprog() as the optimal solution. We
will compare our algorithm with the efficient GAP algorithm (EGA) in [5]. We
do not compare with the local search algorithm in [1], because it has the same
approximation ratio as EGA, but is much slower. We do not compare with the
LP-rounding algorithm in [1] by simulations, since its complexity is much higher.

We show two sets of experiments for comparison with EGA. For the first set,
the parameters are as follows. The capacity of each machine is cj = 100. The

430 M. Yuan et al.

weights of the edges are drawn from a uniform distribution from 30 to 80. We
run MPA with the number of iterations ranging from 0 to 9. The dimensions of
the experiments range from 2× 2 to 11× 11, where d× d means d jobs are to be
assigned to d machines. Each case is tested 1000 times. For the results returned
by the two algorithms, we first verify if it is a feasible solution and then compare
it with the optimum. Note that all the tests have feasible solutions, and so we
define the correct ratio as the percentage of exactly correct solutions out of the
1000 tests.

The first 10 experiments are showed in Table 1. The first column indicates the
number of iterations for MPA and the second row shows the dimension of the
cost matrix. From the table we can see that MPA can reach an average correct
ratio over 96.6% within 9 iterations. The smallest correct ratio for 9 iterations
is 92.8% when the dimension is 11 × 11. The average correct ratio for EGA is
44.4% and the smallest correct ratio is 13.6%. When the dimension of the cost
matrix is greater than 9× 9, EGA can get 100% feasible solutions. However, the
correctness is at most 21%.

Table 2 shows the case when the cost weights are drawn from a uniform
distribution between 40 and 70. The average correct ratio is 91.7% for MPA and
42.1% for EGA, while the smallest correct ratio is 79.9% for MPA and 10.4%
for EGA. The weights are closer now and the probability of two optima existing
is therefore higher. Consequently, the correct ratio for MPA is lower than those
in Table 1. Note for a particular dimension, the correct ratio will not always
increase with the number of iterations. For instance, refer to the 7 × 7 case
in Table 2; when the number of iterations increases from 8 to 9, the number
of correct cases decreases by 1. This is because when the number of iterations
is insufficient or when there are multiple optima, the decision of each job will
oscillate; it is possible that the belief coordinate of the correct assignment is the
largest at a particular iteration, but is no longer so at the next. For the cases
where the MPA returns wrong solutions, we manually check them and find that
either the number of iterations is insufficient or there are multiple optima.

To capture the key characteristics of the two algorithms, let us consider the

following small example with cost matrix W =

(
3 1
3 4

)

, where wij is the cost if Ji

is assigned to Mj , and assume both machines have capacity 5. If we run EGA, it
will first solve the knapsack problem for M1. The following problem arises: both
J1 and J2 have a cost of 3 if assigned to M1, so the knapsack solution picks one
at random. If it picks J1, then the final assignment will not be optimal. However,
our algorithm takes a more global view, and “knows” J1 should wait for M2.

In all of the experiments above, we did not change the capacity of the ma-
chines, because from the view of the jobs, it is equivalent to changing the dis-
tribution of the weights. Due to space limitations, we only show the full results
from two sets of parameters for the uniform distribution. To summarize some
other experiments, when the weights are drawn from uniform distributions with
parameters [0, 100], [10, 90] and [20, 80], and the problem dimension is 11× 11,
MPA achieves nearly 100% correctness at the first iteration. In those cases, even
if each job greedily chooses their least-cost machines, the capacity constraint can

Message Passing Algorithm for the Generalized Assignment Problem 431

Table 1. Machine capacity = 100; Cost weights ∼ uniform(30, 80); Each case tested
1000 times; Feasible solutions always exist. For each entry (a, b) in the table, a is the
number of cases the returned solution is feasible out of 1000 tests and b the number of
correct solutions among the feasible ones.

MPA

Iter 2×2 3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11
0 857, 857 819, 819 775, 775 730, 730 686, 686 661, 661 644, 644 604, 604 620, 620 620, 620
1 857, 857 819, 819 775, 775 730, 730 686, 686 661, 661 644, 644 604, 604 620, 620 620, 620
2 860, 860 819, 819 775, 775 730, 730 686, 686 661, 661 644, 644 604, 604 620, 620 620, 620
3 994, 994 980, 975 979, 975 966, 956 953, 945 953, 945 942, 929 927, 914 928, 910 908, 889
4 994, 994 980, 975 979, 975 966, 956 953, 945 953, 945 942, 929 927, 914 928, 910 908, 889
5 994, 994 995, 990 994, 990 979, 969 976, 965 972, 964 973, 958 960, 944 958, 938 947, 926
6 994, 994 995, 990 994, 990 979, 969 976, 965 972, 964 973, 958 960, 944 958, 938 947, 926
7 994, 994 997, 992 994, 990 981, 971 981, 970 978, 970 975, 960 962, 946 963, 942 949, 927
8 994, 994 997, 992 994, 990 981, 971 981, 970 978, 970 975, 960 962, 946 963, 942 949, 927
9 994, 994 997, 992 994, 990 981, 971 981, 970 978, 969 975, 960 962, 946 963, 943 950, 928

EGA 904, 875 950, 790 980, 678 992, 552 997, 423 998, 338 999, 246 1000, 210 1000, 187 1000, 136

still be satisfied with high probability. We did not test dimensions larger than
11× 11, since the MATLAB function bintprog() became unusably slow.

Consequently, we observe that MPA appears to converge towards the correct
assignment. If the weights are closer together, the problem becomes more difficult
for both algorithms, but MPA consistently outperforms EGA.

5 Optimum Uniqueness

According to our simulations, the message passing algorithm works well when
the optimum is unique, but this may not be the case in general. For example, if
all the weights are integers and their values are close, then with high probability,
there will be more than one optimum. One way to rectify this situation is to add
a small deterministic perturbation to each entry of the cost matrix so that we
can ensure each assignment has a unique value. Namely, if we use the same
indices for the jobs and machines as before, we will need to account for mn

possible configurations. Let w̃ij = wij + (j − 1)m−i, and c̃j = cj + 1 − m−n.
This can be viewed as appending to the value of an assignment the base-m
representation of the assignment, i.e. adding the term

∑n
i=1 m

−iJi, which is the
base-m number 0.J1J2 . . . Jn. Recall that Ji is the machine assignment for job i.
Since this additional value is in [0, 1−m−n], and because the original capacities
are integers, it follows that any assignment in the integer problem with weight
matrix W and capacity vector c is valid if and only if the same assignment is
valid in the modified, fractional problem with weight matrix W̃ and capacity
vector c̃. Furthermore, the smallest gap between any two assignments is at least
m−n. As a result, the uniqueness of optimum is guaranteed.

432 M. Yuan et al.

Table 2. Cost weights ∼ uniform(40, 70); Other parameters are the same as in Table 1

MPA

Iter 2×2 3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11
0 803, 803 757, 757 709, 709 660, 660 593, 593 531, 531 511, 511 442, 442 411, 411 345, 345
1 803, 803 757, 757 709, 709 660, 660 593, 593 531, 531 511, 511 442, 442 411, 411 345, 345
2 803, 803 757, 757 709, 709 660, 660 593, 593 531, 531 511, 511 442, 442 411, 411 345, 345
3 992, 992 954, 950 964, 956 942, 934 914, 896 898, 877 882, 859 838, 812 809, 783 766, 722
4 992, 992 954, 950 964, 956 942, 934 914, 896 898, 877 882, 859 838, 812 809, 783 766, 722
5 992, 992 981, 975 986, 978 964, 955 944, 924 936, 911 934, 904 887, 857 870, 840 844, 787
6 992, 992 981, 975 986, 978 964, 955 944, 924 936, 911 934, 904 887, 857 870, 840 844, 787
7 992, 992 984, 978 986, 976 967, 958 953, 932 938, 912 938, 908 894, 863 881, 849 857, 799
8 992, 992 984, 978 986, 976 967, 958 953, 932 938, 912 938, 908 894, 863 881, 849 857, 799
9 992, 992 984, 978 987, 977 967, 958 953, 932 938, 911 937, 907 896, 865 885, 853 857, 799

EGA 900, 858 927, 743 972, 655 983, 542 994, 431 997, 321 998, 248 1000, 178 1000, 132 1000, 104

6 Strongly NP-Hardness

In this section, we will prove:

Theorem 1. Given that there is a unique solution for the GAP, it is still im-
possible to develop a correct message passing algorithm which can terminate in
pseudo-polynomial number of iterations, unless strongly NP-hard = weakly NP-
hard.

A description of strongly NP-hard can be found here [13]. For example, we
know the single machine problem in our GAP can be solved in O(Jc) time.
Recall that J is the number of jobs and c the capacity of the single machine. If
c is polynomial in J , the single machine problem can then be solved in O(Ja),
where a is some constant. This is an example of a weakly NP-hard problem. If
the solution is still exponential in J even when c is polynomial in J , then it is
called strongly NP-hard.

Now we are ready to prove the theorem.

Proof. 1) GAP is strongly NP-hard. GAP can be reduced from the 3-partition
problem [14]. To see this, let each machine be a set in the 3-partition problem
and let the jobs be the numbers to be partitioned. Further assume the capacities
of the machines are all equal and the numbers are very close to each other. For
example, consider this instance of the 3-partition problem. There are n (n is a
multiple of 3) negative integers (since we need to do minimization for our GAP)
with sum S, and each number is very close to S/n so that the sum of any two
numbers is greater than 3S/n and any four is less than that. Set the number of
machines to be n/3 and the capacity to be 3S/n. At this point, the 3-partition
problem is reduced to GAP. If the minimum assignment cost for GAP is S, there
must be a feasible partition for the 3-partition problem. Note that S is the lowest
possible cost we can reach, and we reach S only when we assign all of the jobs.
Each machine would then have exactly 3 jobs due to the job size constraints.

Message Passing Algorithm for the Generalized Assignment Problem 433

If the minimum cost is not S, then there must not exist a feasible partition. GAP
is therefore not easier than the 3-partition problem. Consequently, it is strongly
NP-hard, since the 3-partition problem is strongly NP-hard [15].

2) GAP remains strongly NP-hard, even if there is one unique optimum. This
can be shown by another reduction. Denote the GAP with a unique optimum as
uGAP. By adding small deterministic perturbations to the GAP, as discussed in
Section 5, GAP can be transformed to uGAP. This transformation takes O(JM)
time, which is polynomial in the input size. Clearly, a solution for uGAP is a
solution for GAP, too. As a result, uGAP is not easier than GAP, and is therefore
also strongly NP-hard.

3) It is not possible to develop a correct message passing algorithm which can
terminate in pseudo-polynomial number of iterations, unless strongly NP-hard =
weakly NP-hard. If we can have such an algorithm, we have a pseudo-polynomial
algorithm for a strongly NP-hard problem, which would show strongly NP-hard
= weakly NP-hard.

Finally, it is easy to develop a dynamic programming algorithm for GAP that
runs in O(JcM). However, it is almost impossible to have a solution with com-
plexity O(JcM). In our simulations, nonetheless, the message passing algorithm
is able to produce correct solutions within a reasonable number of iterations for
cases with sizes up to 11× 11.

7 Conclusion and Future Work

In this paper, we proposed a message passing algorithm for GAP, which is
strongly NP-hard. The basic algorithm passes an exponential number of real-
valued messages in each iteration. We showed that the algorithm can be sim-
plified so that only a linear number of real-valued messages are passed in each
iteration. Through simulations, we observed that our algorithm is better than
the well-known approximation algorithm EGA, when the optimum is unique. Fu-
ture work will include improving the algorithm and investigating the relationship
between the message passing algorithm and the LP relaxation.

References

1. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approxima-
tion algorithms for maximum separable assignment problems. Math. of Operations
Research 36, 416–431 (2011)

2. Wikipedia, Generalized assignment problem,
http://en.wikipedia.org/wiki/Generalized_assignment_problem

3. Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Math. Program 62, 461–474 (1993)

4. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 213–222 (2000)

http://en.wikipedia.org/wiki/Generalized_assignment_problem

434 M. Yuan et al.

5. Cohen, R., Katzir, L., Raz, D.: An efficient approximation for the generalized
assignment problem. Info. Processing Letters 100, 162–166 (2006)

6. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, USA (2009)

7. Yuan, M., Li, S., Shen, W., Pavlidis, Y.: Belief propagation for minimax weight
matching. University of Illinois, Tech. Rep (2013)

8. Yuan, M., Shen, W., Li, J., Pavlidis, Y., Li, S.: Auction/belief propagation algo-
rithms for constrained assignment problem. Walmart Labs, Tech. Rep. (2013)

9. Bayati, M., Shah, D., Sharma, M.: Max-product for maximum weight matching:
convergence, correctness, and LP duality. IEEE Trans. Info. Theory 54, 1241–1251
(2008)

10. Bayati, M., Borgs, C., Chayes, J., Zecchina, R.: Belief propagation for weighted
b-matchings on arbitrary graphs and its relation to linear programs with integer
solutions. SIAM J. Discrete Math. 25, 989–1011 (2011)

11. Sanghavi, S.: Equivalence of LP relaxation and max-product for weighted matching
in general graphs. In: IEEE Info. Theory Workshop, pp. 242–247 (2007)

12. Wikipedia, Knapsack problem,
http://en.wikipedia.org/wiki/Knapsack_problem

13. Strongly NP-hard, Website,
http://en.wikipedia.org/wiki/Strongly_NP-complete

14. 3-partition problem, Website,
http://en.wikipedia.org/wiki/3-partition_problem

15. Garey, M.R., Johnson, D.S.: Strong np-completeness results: Motivation, examples,
and implications. Journal of the ACM 25, 499–508 (1978)

http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Strongly_NP-complete
http://en.wikipedia.org/wiki/3-partition_problem

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 435–445, 2014.
© IFIP International Federation for Information Processing 2014

PPMS: A Peer to Peer Metadata Management Strategy
for Distributed File Systems

Di Yang, Weigang Wu, Zhansong Li, Jiongyu Yu, and Yong Li

Department of Computer Science, Sun Yat-sen University
Guangzhou 510006, China

{yangdi5,lizhans,yujiongy,liyong36}@mail2.sysu.edu.cn,
wuweig@mail.sysu.edu.cn

Abstract. Distributed file system is one of the key blocks of cloud computing
systems. With the fast increase of user scale and data amount, metadata
management has become a crucial point affecting the overall performance of a
distributed file system. In this paper, we design and implement PPMS, a novel
metadata management strategy in a peer to peer way. Different from existing
metadata management methods, we adopt a two layer structure to achieve high
scalability and low latency. The upper layer is metadata index server, which is
used to store metadata of directories, while the lower layer consists of metadata
servers to store the metadata of files. More importantly, the lower layer is
organized in a peer to peer way to further improve scalability. We implement a
prototype file system based on PPMS and evaluate its performance via
experiments. The results show that our design can achieve high performance
with in terms of time latency and system throughput.

Keywords: Distributed File System, Metadata Management, Scalability, Low
Latency, Peer-to-Peer.

1 Introduction

Distributed file system is one of the key enabling technologies for distributed
computing, especially cloud computing [7][8][17]. Although metadata usually
accounts for only a very small part of a distributed file system in terms of data size,
more than half (50%~80%) of file operations are involved with metadata [1].
Metadata management has become one of key issues in distributed file system [13],
and it can significantly affect the overall performance and scalability in large-scale
distributed file system [2][17].

In most existing distributed file systems, such as HDFS of Hadoop [7] and GFS
from Google [8], there is only one single metadata server (MDS for short), which is
likely to become a bottleneck as users and the quantity of files increase. With the
rapid increase of user scale, such metadata management is definitely not scalable
enough.

Although there have been quite a number of distributed metadata management
solutions proposed by researchers, including static subtree partitioning [1], dynamic

436 D. Yang et al.

subtree partitioning [4], such tree-based metadata management strategies cannot scale
well due to the tight coupling among metadata servers. To address this problem, peer
to peer based metadata management strategies [5] have been recently proposed, which
organize metadata servers in an ad hoc way. Such metadata management strategies
are well scalable, but they cannot achieve fast metadata access due to the lack of
connections among metadata servers and consideration of user behaviors.

In this paper, we propose a novel peer to peer based metadata management
strategy, named PPMS (Peer-to-Peer Metadata Service), which also organizes
metadata servers in a peer to peer way. However, different from existing peer to peer
metadata management, we combine hierarchy structure with peer to peer way. More
precisely, we propose the concept of metadata index server (MIS for short). Our
design has two layers of servers, which are in charge of metadata of directories and
files respectively. MIS is in the upper layer and takes charge of managing the
metadata of directories. MDSs compose the lower layer and manage the metadata of
files. The correspondence between a file metadata and its local MDS is established
based on the location of the client that creates the file. Compared with existing
metadata management strategies, PPMS can achieve a better tradeoff between
scalability and latency.

To validate the correctness of PPMS and evaluate its performance, we have also
developed a prototype file system, named PPFS. We test PPFS using the popular
benchmark tool Postmark [16] and the RES trace. Various operations, including read,
creation, are executed to measure access latency and system throughput. MooseFS
[14] is also tested for comparison purpose. The results show that PPMS can
outperform MooseFS in nearly all cases.

The rest of the paper is organized as follows. Section 2 briefly reviews existing
solutions for metadata management, especially peer to peer based ones. We describe
the design of PPMS and PPFS in Section 3. Section 4 presents the performance
evaluation based on experiments. Finally, Section 5 concludes the paper and suggests
future directions.

2 Related Works

With the emergency of large-scale distributed file systems that separate metadata
from file read/write operations, metadata management strategies has become a hot
research topic and quite a number of metadata management strategies have been
proposed.

Static subtree partitioning [1] divides the whole file directory tree into non-
overlapped partitions, which are assigned to different MDSs by the system
administrator. The partitioning is static and can only be changed manually. This
strategy is very simple and easy to implement. However, it is not flexible and may
face the problem of workload imbalance among MDSs. Re-balancing will cause large
overhead. Dynamic subtree partitioning [4] is proposed to solve the load imbalance
problem of static partitioning. It divides the whole directory tree into overlapped
partitions, each of which is assigned to one MDS dynamically. By migrating heavily

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 437

workload metadata automatically and overlapping popular partitions, the workload
among different MDSs can be well balanced [12]. However, such design requires
additional mechanism to maintain consistency among different copies of the same
piece of metadata.

Hash based partition [3] can also solve the imbalance problem of static partition. A
hash function based on file identifier is used to distribute the workload among
metadata servers. With a well designed hash function, load balance among MDSs is
achieved easily. However, rename operations or change of MDSs may cause lots of
metadata migrations crossing MDSs. Another drawback is that hashing inherently
discards the advantage of locality.

All strategies above are based on portioning of the directory tree. Such strategies
can achieve high performance in terms of access latency, but may suffer from poor
scalability. On the other hand, with the increase of user scale and data scale,
scalability is becoming more and more important. To achieve high scalability in
metadata management, peer to peer based strategies have been proposed.

Hierarchical Bloom-Filter Array (HBA) [5] uses a two-tier probabilistic array, i.e.
Bloom filter array, to calculate corresponding MDS to the file a user want to query. In
the probabilistic array, the first layer has a higher accuracy ratio but only part of the
metadata stored, and the second layer stores all the metadata about the files but has a
lower accuracy ratio. When the number of files increases, HBA will have a demand of
large memory space to ensure a certain degree of accuracy.

Grouped Hierarchical Bloom-Filter Array (G-HBA) [6] is an extension of HBA by
introducing the concept of group of MDS. This scheme logically organizes MDSs into
a multi-layered query hierarchy and exploits grouped Bloom filters to efficiently route
metadata requests to desired MDS through the hierarchy.

Besides, there is some particular metadata management for special requiremnt
including Spyglass and SmartStore [9] [10] .

Although peer to peer metadata management based on Bloom filter can scale easily
due to the loose coupling among MDSs, such strategies are generally probabilistic in
terms of locating a file, and consequently may suffer from long access latency [11] .

3 The Design and Implementation of PPMS

3.1 Overview of PPMS

Basically, we follow the idea of peer to peer file sharing, where each node can access
data at other peers in a fully distributed way. Peer to peer approach can achieve high
scalability easily and is also suitable for metadata management. However, to avoid
long file access latency, we extend peer to peer based approach by introducing a two-
tier hierarchy.

Metadata generally includes directory information and file information in
distributed file system. And our proposed metadata strategy PPMS consists of two
types of servers, i.e. metadata index server (MIS) and metadata server (MDS)
correspondingly. MIS is mainly responsible for directory attributes, query and load
balancing, while MDS is primarily responsible for the file attributes. MIS and MDS
interact with each other, work together to complete the management of metadata, and

438 D. Yang et al.

accordingly handle a variety of user operations. In addition to the herein of metadata
types, there is a classification for MDS logically, i.e. the local MDS and the related
MDS. Local MDS is that a client mounts initially, while related MDSs represents
MDSs that are binding with individual directories and most likely to store nonlocal
file in that directory. The overall architecture of the PPMS is shown in Fig. 1.

Fig. 1. Overview of PPMS. There are one MIS and multiple MDSs in PPMS, and MDSs are
divided into local MDS and related MDS logically.

3.2 The Design of MIS

MIS manages the entire directory metadata information within PPMS, such as
directory name, permissions, user name, group name, related MDS list and so on.
MIS receives directory-related requests from MDS and provides directories
operations, such as directory deletion, directory creation and so on. If a client queries
for file metadata, the metadata that cannot be found in both the local MDS and related
MDS or there is no related MDS for the file’s parent directory, then the request will
be forwarded to MIS to retrieve the corresponding metadata.

Although it hasn't had time to realize, MIS is a coordinator for load balancing
among MDSs. MIS can monitor the workloads of MDSs via metadata requests
received. If some MDSs have too much more workloads than others, MIS will invoke
the migration procedure to migrate metadata from busy MDS to those with low
workloads. With such mechanism, workloads balance is achieved in the scope of
metadata service.

3.3 The Design of MDS

A MDS stores the metadata of files, including file name, permission, user name, user
group, size, etc. Each client is associated with its local MDS. When a client creates a
file, the file’s metadata will be stored at the local MDS, and the metadata of its parent
directory will be sent to the MIS.

One MDS becomes a local MDS once a client has mounted on it. As the local
MDS for a client, it is directly responsible for the client’s requests. Before mounting,
the client configures the IP and port information of the local MDS. Then the client
keeps contact with its local MDS. Also, the local MDS has become the only entrance
for the client to the entire metadata management system. Compare to the other MDSs,
the local MDS has a greater possibility to store the metadata that its corresponding
clients requests.

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 439

Besides, every MDS also maintains a related MDS list for each directory of the
files whose metadata is stored locally. A related MDS is designed for directory, and it
is the node that has the file’s attributes under the same directory. That is, a related
MDS has metadata of files in the same directory. Related MDS also has a good
possibility to have files under the same directory, and can be queried when the
metadata requested is missed at the local MDS itself.

The design of related MDS is the core of PPMS. In the beginning, none of related
MDS is defined in each MDS. When a client reads the metadata of given file, which
is missing at the local MDS, MIS will be queried and the metadata of the file will be
found at another MDS through MIS. Then, the requested MDS is defined as the
related MDS for this file’s parent directory in the local MDS. Since the number of
MDS is uncertain, which the related MDS for a directory has one is not an effective
solution when there is a very large number of MDS. For each directory, there may be
more than one related MDSs. The number of MDS can be determined based on the
availability of storage space and other factors.

3.4 Data Access

PPMS provides low latency and improves service quality continually through three
layers of query structure after Related MDS appeared. The procedure of accessing a
file is shown in Figure 2.

Fig. 2. The procedure of accessing a file. The query of a file involves three levels: looking up
the storage of local MDS, looking up the related MDS and looking up MIS.

The first layer of the query structure is the local MDS, which has great probability
to meet client needs by directly dealing with write and read requests. In general, files
under the same directory have a great correlation and it is ordinary for a client who has
interests in the same types. Therefore, the related MDS has also a high hit ratio as the
second layer of the query structure. Moreover, the last layer of the query structure is
MIS, which masters all the directory information to satisfy all client requests and avoid
global broadcasting. As a result, PPMS has low latency to content clients’ requests
through hierarchical query structure after analyzing the user possible behavior.

3.5 PPFS -- A Prototype File System Using PPMS

In order to verify the feasibility and correctness of our strategy, we have implemented
a prototype system, called PPFS, using C programming language. The system consists
of three modules: metadata management module, chunk server (i.e. node storing file

440 D. Yang et al.

data) module, and client module. In addition, metadata management module, which is
also called PPMS module, is responsible for managing allover metadata and
namespace, and this module also includes MIS module and MDS module designed as
stated above. And the job of chunk server module is to store actual file data. In
addition, client can get file data in the distributed file system through client module on
the mounted point. To simplify the implementation, client module is developed based
on FUSE [15], a file system in user space included in the kernel of linux and widely
used by many fields system, such as ZFS, glusterfs and lustre. Besides, we have also
implemented client cache, MDS cache and chunk server cache to improve the
performance of file access referring to other file system. Figure 3 shows the overall
architecture of our PPFS prototype.

Fig. 3. Overview of PPFS. The system consists of three modules: PPMS module, chunk server
module, and client module.

4 Performance Evaluation

In order to evaluate the performance of PPMS, we deploy the PPFS prototype. To
make the experiment more persuasive, we did two experiments.

In the first experiment, this test was divided into two parts to show the advantage
of PPMS. In the first part, we simply choose MooseFS to compare, because the first
part just want to run PPFS with a MDS, and to look for a single MDS system to make
a comprision. In addition, PPFS implementation refers to MooseFS, which has only
one MDS, and MooseFS is a light weight distributed file system that has been widely
used for research and testing [19] with a single MDS [14] . In the second part, we test
the performance of the system by increasing the number of MDS isometric.

In the second experiments, we simulate the metadata operations using the RES
traces and measure the performance in terms of hit ratio of the local MDS and the
related MDS.

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 441

4.1 Testing Using Postmark

The testing is conducted using Postmark [16], a file system benchmarking software
widely used. Postmark generates an initial pool of random text files ranging in a
configurable size. Once this pool is created, a specified number of transactions,
including create, delete, read and append, are performed on these files randomly.
When all the transactions have completed, the remaining files and directories are
deleted and statistics are done to compute the performance metric values. We use
several metrics, including total time, number of operations per second, system
throughput, etc.

We installed MooseFS on a computer equipped with 1G memory and running
Ubuntu 11.10 and deployed PPFS on a machine with the same deployment. We use
four performance metrics to measure performance of PPMS. These four metrics
includes total time to complete all the transactions, number of transactions per second,
number of creation per second and number of read per second.

When transaction is 2000 and number of files increase, the results of total
execution time are plotted in Figure 4. First, we can see obviously the effect of
number of files. More files are in the system, more time is needed. This is expected.
Compared with MooseFS, PPFS can execute much faster in nearly all cases of file
numbers. This clearly shows the advantage of our design. In PPFS, two-layer
hierarchy helps much in locating a file.

Fig. 4. Total execution time Fig. 5. Number of transactions per second

Figure 5 demonstrates how many transactions can be completed per second. We
test different numbers of transactions to show the performance under different cases.
With the number of transaction increases from 2000 to 5000, the number of
transactions processed by either system decreases. This is because that, with more
transactions, there may be more conflicts in data update, and then fewer transactions
can be completed per second.

Compared with MooseFS, PPFS performs much better since PPFS is not affected
much by the increase of transaction number. With the help of MIS, which has a whole
view of PPFS, PPFS can avoid conflicts in operations and consequently handle more
transactions in the same time duration.

442 D. Yang et al.

Fig. 6. Number of creations per second Fig. 7. Number of read per second

Figure 6 and Figure 7 show the results of file creation and file read respectively.
Comparing PPFS and MooseFS, we can see that PPFS can read/create files faster than
MooseFS, in most cases. The difference increases with the increase of transaction
number. This can be explained as follows. When a file is created in MooseFS, not
only the metadata of the file need to be added, but also the hierarchical directory
structure needs to be updated at the MDS. In PPFS, two different nodes are used to
maintain the file metadata and directory metadata respectively, and obviously the task
can be conducted faster. Of course, collaboration between MDS and MIS may cause
addition overhead.

MooseFS is faster than PPFS only when the number of transactions is small. This
because that, with few files, the directory structure is simple and the benefit of
separating file metadata and directory metadata is counteracted by the overhead of
cooperating MIS and MDS.

Finally, we examine the effect of number of MDSs in terms of total time by
Postmark. Different from previous experiments, it has 14 machines, one of which
running Windows 7 and others still running Ubuntu 12.04. The only one running
Window 7 manipulates all Ubuntu machines using Xshell. Every client node creates
300 files and deletes all the files by Postmark at the same time. The results are plotted
in Figure 8. We vary the number of MDSs from one to four. As expected, the total
time decreases when the number of MDSs increases.

1 2 4
4

6

8

10

12

14

16

18

to
ta

l
ti

me
(s

)

num of MDS

total times(s)

Fig. 8. Average latency of each request

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 443

4.2 Trace Simulation

To verify our system better, we simulate the metadata operations using RES trace and
measure the performance in terms of hit ratio of the local MDS and the related MDS.
RES trace was collected from 13 machines on the desktops of graduate students,
faculty, and administrative staff of their research group project during one year at
University of California Berkeley in 1996 and 1997 [18]. These hosts were used for a
wide variety of tasks including document processing, program development,
graphically displaying research results, email, and web browsing [18].

We downloaded part of data from official website and analyze data referring to the
online prompts step. Since we only care about the metadata, operations that are not
related was not extracted. Due to PPFS does not have directories and files at the
beginning, we should create corresponding files and directories for replaying using a
appropriate strategy and then replay RES trace on PPFS.

Limited by the experiment environment, we deploy a mini systems composed of 9
machine. Because real data is not involved in the replay, the chunk server module was
not involved. In this system, there are one MIS, four MDSs, and four clients. After
different machines running corresponding processes separately, the results are shown
in Figure 9 and Figure 10.

Figure 9 and Figure 10 show hit ratio of MDSs by replaying RES trace on PPFS.
We can clearly tell that the hit ratio of local MDSs are at a high level from the first
figure. As time goes by and more traces are performed, the hit ratio of local MDSs are
almost increasing gradually. This is because that design of local MDS in PPMS refers
to the user's behavior, and it is directly responsible for user’s write and read
operations. At the same time, hit ratio of related MDSs has a common trend that the
hit ratio is getting higher and higher in a long time. At the beginning, related MDSs
need to establish and replace the antiquated, inefficient related MDSs, so the related
MDSs were not efficient at that time. Due to the design of related MDS is based on
user behavior in accessing files in the same directory with a high frequency and the
files in the same directory is more likely in one MDS. Related MDSs has a high hit
ratio overall with time increasing.

Fig. 9. Hit ratio of local MDS Fig. 10. Hit ratio of related MDS

444 D. Yang et al.

5 Conclusion and Future Work

Distributed file system is one of the key blocks for distributed computing systems
including cloud computing platforms. We focus on metadata management to achieve
high scalability and low access latency simultaneously. With the novel concept of
metadata index server, we divide metadata into two layers, i.e. file metadata and
directory metadata, and propose a corresponding two layer metadata management
strategy. In the lower layer, MDS servers are organized in a peer to peer way, so as to
achieve high scalability. In the upper layer, MIS is used to achieve low latency. We
have implemented a prototype file system and tested it using Postmark and RES.
Compared with MooseFS, our design can achieves significant improvement.

Our design can be further improved and extended in many directions as the first
stage. One extension may be multiple MISs. In the current design, there is only one
MIS, which is prone to single point failure and may become a bottleneck in
performance. A peer to peer MIS layer will be obviously more scalable and reliable.
Another interesting work is metadata replication, which should be an effective way to
reduce metadata access latency and improve reliability. Finally, the system
implementation should be further improved.

Acknowledgments. This research is partially supported by National Natural Science
Foundation of China (No. 61379157), Guangdong Natural Science Foundation (No.
S2012010010670), and Pearl River Nova Program of Guangzhou (No.
2011J2200088).

References

1. Roselli, D.S., Lorch, J.R., Anderson, T.E.: A Comparison of File System Workloads. In:
USENIX Annual Technical Conference, General Track, pp. 41–54 (2000)

2. Brandt, S.A., Xue, L., Miller, E.L., et al.: Efficient metadata management in large
distributed storage systems. In: 2012 IEEE 9th International Conference on Mobile Ad-
Hoc and Sensor Systems (MASS 2012), p. 290. IEEE Computer Society (2012)

3. Corbett, P.F., Feitelson, D.G.: The Vesta parallel file system. ACM Transactions on
Computer Systems (TOCS) 14(3), 225–264 (1996)

4. Weil, S.A., Pollack, K.T., Brandt, S.A., et al.: Dynamic metadata management for
petabyte-scale file systems. In: Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing, p. 4 (2004)

5. Zhu, Y., Jiang, H., Wang, J.: Hierarchical bloom filter arrays (hba): a novel, scalable
metadata management system for large cluster-based storage. In: 2004 IEEE International
Conference on Cluster Computing, pp. 165–174. IEEE (2004)

6. Hua, Y., Zhu, Y., Jiang, H., et al.: Scalable and adaptive metadata management in ultra
large-scale file systems. In: ICDCS, pp. 403–410 (2008)

7. Borthakur, D.: The hadoop distributed file system: Architecture and design. Hadoop
Project Website 11, 21 (2007)

8. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. ACM SIGOPS
Operating Systems Review 37(5), 29–43 (2003)

 PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems 445

9. Leung, A.W., Shao, M., Bisson, T., et al.: Spyglass: Fast, Scalable Metadata Search for
Large- Scale Storage Systems. FAST, pp.153-166 (2009)

10. Hua, Y., Jiang, H., Zhu, Y., et al.: SmartStore: A new metadata organization paradigm
with semantic-awareness for next-generation file systems. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–12.
IEEE (2009)

11. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. Internet
mathematics 1(4), 485–509 (2004)

12. Weil, S.A., Brandt, S.A., Miller, E.L., et al.: Ceph: A scalable, high-performance
distributed file system. In: OSDI, pp. 307–320 (2006)

13. Wang, J., Feng, D., Wang, F., et al.: MHS: A distributed metadata management strategy.
Journal of Systems and Software 82(12), 2004–2011 (2009)

14. Moosefs, http://www.moosefs.org/
15. FUSE, http://fuse.sourceforge.net/
16. Katcher, J.: Postmark: A new file system benchmark. Technical Report TR3022, Network

Appliance (1997), http://www.netapp.com/tech_library/3022.html
17. Patil, S., Gibson, G.A.: Scale and Concurrency of GIGA+: File System Directories with

Millions of Files. In: FAST 2011, p. 13 (2011)
18. Trace,tracehost.cs.berkeley.edu
19. Yu, J., Wu, W., Li, H.: DMooseFS: Design and implementation of distributed files system

with distributed metadata server. APCloudCC, pp.42-47 (2012)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 446–458, 2014.
© IFIP International Federation for Information Processing 2014

Improving Log-Based Fault Diagnosis
by Log Classification

Deqing Zou, Hao Qin, Hai Jin, Weizhong Qiang, Zongfen Han, and Xueguang Chen

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

deqingzou@hust.edu.cn

Abstract. In modern computer systems, system event logs have always been the
primary source for checking the system status. As computer systems become more
complex, such as cloud computing systems, the interaction among software and
hardware is increasingly frequently. These components will generate enormous log
information, including running reports and fault information. The massive data is a
great challenge for analysis with manual method. In this paper, we implement a log
management and analysis system, which can assist system administrators to
understand the real-time status of the entire system, classify logs into different fault
types, and determine the root cause of the faults. In addition, we improve the
existing fault correlation analysis method based on the results of system log
classification. We apply the log management and analysis system to cloud
computing environment for evaluation. The results show that our system can
classify fault logs effectively and automatically. By using the proposed system,
administrators can easily detect the root cause of faults.

1 Introduction

With the widespread usage of cloud computing, computer systems are becoming
increasingly complex and the components within the entire system also become
diverse. Once some key parts failed, the whole system would be seriously implicated
due to the frequent interactions and high coupling. Therefore, an effective fault
detection and analysis method can help system administrators to locate the fault and
identify the cause, which plays an essential role in large systems management.

System and software logs are important sources for diagnosing the system and
software faults. However, for large systems, various components will generate amounts
of log information in real time. If a fault occurs, it is difficult to extract useful
information from the system efficiently and locate the fault accurately. Typically, we
have to manually extract the useful information from vast amounts of data, which would
seriously delay the response time of fault recovery. Therefore, an unified management
system for fault log analysis is required, which can automatically identify the fault type
and analyze the cause of the faults. It will provide a great help for system management.

A lot of studies have been proposed on log-based fault analysis, mainly falling in
the following directions. The first is log collection and analysis, which investigate
how to effectively and efficiently gather log information [1]. This information will be
used to get profile information for analyzing the system situation [2] and extract the

 Improving Log-Based Fault Diagnosis by Log Classification 447

feature [3]. The second part is fault location, which aims at determining the control
flow of software through logs [4] and uses the source code [5] to locate the position of
the faults occurred. The researches mentioned above use the log fault analysis in
different scenarios. But few of them focus on the system administrator's perspective to
design an integrated fault analysis system. The third part is fault correlation analysis.
In the multi-node environment, the fault propagation is a critical problem for fault
diagnosis. The area focuses on using log information to determine the connection
between different faults. Researches use time and spatial correlation to find some
connection, few of them consider the meaning of logs.

An integrated fault log analysis system will assist administrators to perform fault
analysis, improving the administrator’s ability to respond to the system fault and
reduce the time consuming of fault processing. We implement a new fault
classification method to assist manager to understand computer system and use fault
correlation analysis to locate the root-cause of fault. In this paper, we propose an
integrated fault log analysis platform (UiLog) to collect and manage various
components logs, storing, filtering, and analyzing logs for administrators to quickly
locate fault and analyze the cause of faults.

This platform consists of three components: 1) Fault log collection module is mainly
used to collect log data from various components. 2) Fault log analysis module classifies
log into the identifies fault type in real time. 3) Fault log correlation analysis module
collects fault log caused by same root-fault as a tuple and tries to find the root cause of
such faults. UiLog have deployed in a practical cloud environment, helping administrator
to troubleshoot and find the root cause of fault. Our main contributions are:

We propose a novel classification method for fault logs, using fault keyword
matrix to improve the accuracy. It reduces the time of determining the fault type and
the workload of manual processing. Moreover, this method can be more convenient to
add a new fault type without recalculated.

We improve the existing log correlation analysis. It combines the result of fault
classification and time windows correlation analysis. Our method uses the fault type
of logs as one factor in determining the size of the time window. It improves the
accuracy of the log correlation and the location of the fault’s root cause.

We illustrate a comprehensive log management system, which can help administrators
to quickly grasp the operation status of the system and save troubleshooting time.

The remaining of this paper is organized as follows. Section 2 discusses
background and related work. Section 3 outlines the structure of UiLog system and
describes the implementation of the system. Section 4 describes the evaluation of our
system whereas section 5 presents conclusions and future work.

2 Related Work

The aim of log information is to extract useful information from fault logs. The important
techniques of previous work are mainly relied on regular expressions [5]. However, the
rules of regular expressions require different knowledge from laborious and expert [6]. In
addition, the deployment of new application and upgrading of system will change these
templates of log frequency. It is difficult for designing these regular expressions [7].

Various studies are looking for how to understand the mean of logs, but it may be
useful for detecting faults in cloud computing system [8]. Many interesting features
are displayed by these studies. For instance, Stearley [9] has a new discovery that

448 D. Zou et al.

only through words cannot detect the fault type from logs. The position of each word
is a powerful indicator to distinguish different messages.

Researchers have also looked at other way except system logs to diagnose system,
such as application console logs [10]. However, this technique is limited to
application specific anomalies and requires source code [11].

In addition, several techniques and algorithms for automatic log classification have
been developed. [12] attempts to classify different raw logs into a set of categories.
Moreover, in [13], the authors try to use the modified naive Bayesian model and Hidden
Markov Models (HMM) to classify event logs based on the IBM CBE (Common Base
Event) format. On the other hand, SLCT [14] and Loghound [15] are designed
specifically to discover the format of logs and classify row log automatically. They use
two similar algorithms, which are useful to extract the template from logs.

Similar to correlation analysis, time and spatial correlation techniques have been
applied to a variety of large scale computing systems [16]. The current trend of this
study is to use tuple with a fixed value for time window, such as 5 minutes [17].

Content-based correlation is also a hot topic. For example, [17] applies the lift data
by mining operator to find frequent event patterns starting from log contents and try
to isolate accidental patterns.

3 UiLog System

3.1 Overview of UiLog

The Unify Log Analysis System (UiLog) is a fault analysis and diagnosis system, which
collects the system log information of each component and track logs for statistics.

Through the fault classification, UiLog learns the classification rules from training
set of artificial classification. After that, the system determines the fault type in real
time according the rule library. In addition, the fault correlation analysis can be
deployed when system administrators need to diagnosis fault. Considering the
propagation of the fault, UiLog can mining the association between faults generated
by the same root-cause and collect these fault logs into the same cluster.

To implement the process, we apply three modules to represent the UiLog: fault
log collection, fault log analysis, and fault log correlation analysis. As shown in Fig.
1, the fault log collection module collects logs from the entire target node. It collects
software and system logs in all components. The analysis node is responsible for fault
analysis and diagnose. In the analysis node, the fault log collection module stores all
logs in log information database for analysing.

The process of fault log analysis module is shown in Fig. 1. The fault log
collection module will be deployed respectively into Target Node for log collection
and Analysis Node for storage. This module will gather software log and system log
from Target Node and store log information into Log Information database. In the
Analysis Node, the Fault log analysis module will extract log structure from fault log
collection module. At first, these structures will be classified into different fault type
by administrator. The Fault log analysis module will learn classification rules from
administrator and store it into fault template database. After that, the fault log analysis
module will automatic classify log for log diagnose.

The correlation analysis module will use the result of fault classification and expert
knowledge to provide correlation analysis report from artificial analysis.

 Improving Log-Based Fault Diagnosis by Log Classification 449

3.2 Fault Log Analysis

The fault log analysis module aims at classifying log into different log types. We
adopt an example to illustrate the process: when an administrator analyzes the logs
(Table 1) the first step is to determine whether the logs are fault record or not. The
most commonly used method is finding keyword. The second step is the log analysis.
The system administrator will weed out the details of log information to determine the
cause of the fault. The first row in Table 1 shows that “Read socket failed”, which
indicates a socket problem when reading. The third step is the log classification. It is
easily to determine that the first log belongs to the network fault and the subcategory
is the remote network connection fault.

Through the above analysis, we can conclude that if we can deal with the semantic
analysis of keywords and determine the fault type in advance, a large load of work
can be automatically processed by the log analysis and classification.

As shown in Fig. 2, UiLog log classification method is divided into five steps. 1) Log
Pretreatment. 2) Extracting Invariants. 3) Filtering Template Information. 4) Obtaining
Fault Keyword Matrix. 5) Classifying Log Information. These steps will gradually
extract log information for fault classification and remove irrelevant content.

The input of the whole algorithm is the log data flow obtained by fault log
collection module. The output has two parts. One is the log classification rules (output
at Step 4) based on the training set. The rules in our algorithm appear as the fault
keyword matrix. The other is fault category of every log (output at Step 5). The
following sub-sections describe each step of the algorithm in more detail.

Fig. 1. Workflow for log analysis and fault diagnosis

450 D. Zou et al.

Table 1. Example of log messages

Date Host Device Message
2013-11-25

02:39:34 f1 sshd[18108] fatal: Read from socket failed:
Connection reset by peer

2013-11-23
16:57:13 f0 httpd[27807]

[error] [client 192.168.63.15 9]
File does not exist:

/var/www/html/favicon.ico

Fig. 2. Number of key words appeared in the fault logs

1) Log Preprocessing
Log preprocessing contains two parts. The first part is to filter repeated logs

generated by the system. Many software faults are insufficient to cause the collapse in
computer system and the component will persistent send fault message. We can
choose an appropriate threshold to filter the duplicate logs.

The second part is the log filter of meaningless words. We use English Stop Word
Table to filter meaningless words. In accessory, considering the special of logic, we
also filter out the most of adjectives and adverbs.

2) Extracting Invariants
After preprocessing, the next step is to extract the template information. The

template of log is used for classification. This step can reduce the solution space and
compress the size of fault keyword matrix. In addition, the template will be used to
match logs for fast classification.

 Improving Log-Based Fault Diagnosis by Log Classification 451

3) Filtering Template Information
Before classification, we use automatic classification approach DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) [18] to classify the log for
further reducing the manually determining space.

For a classification algorithm, based on Levenshten Distance (LD), we define our
Log Levenshten Distance (LLD) to measure the distance between a log and a cluster.
The distance between log A and log B is described in (1).

() ()
() ()

2 ,
,

LD A B
LLD A B

length A length B

×
=

+
 (1)

wherein LD(A, B) is the original Levenshten distance, length() indicates the length of
the log.

4) Obtaining Fault Keyword Matrix
When the system is in the learning stage, this step will learn the result of artificial

classification. While in the running stage, this step will modify the classification’s
rules. Through the step of filter template information, the remaining numbers of raw
logs have less than original.

For learning stage, the first requires administrator to classify logs manually. We
pre-define a fault catalogue in the cloud environment. Through the last step, the
classification has already marked a label to each fault cluster. Now the administrator
will first modify the automatically label, then adjust the result of the classification. As
shown in Table 2, after indicated the category, the result will be stored in the way of
“Content: Mark”. Label is a number that represents the fault type.

Table 2. Fault types

Content of Log Label Meaning
INFO: task * blocked * more * |NUM| seconds. 14 Disk
udevd (|NUM|): |DIR| is deprecated, please use
|DIR| instead.

11 File

pam_succeed_if(*): error retrieving
information about user *

7 Authenticate

Kernel reported iSCSI connection |NUM| error
* state

6 Drive

* received packet with * address * source 5 Network

Next, UiLog needs to learn the results of the artificial classification. Here we

propose the Fault Keyword Matrix (FK-Matrix) for saving the learning result of
artificial classification.

The FK-Matrix (matrix A) is a two-dimensional matrix constructed by the
probability of each word appeared in each fault type in the template. It is an m×n
matrix. M represents the different number of words in all the sample log, while n
represents the number of fault types, ai,j denotes the probability of the i-th word
belong to the j-th catalogue. (Note: ai,j is only a relative probability factor, not the true
probability.)

452 D. Zou et al.

1, 1 1, 2 1,

2, 1 2, 2 2,

, 1 , 2 ,

n

n

m m m n

a a a

a a a
A

a a a

 =

 (2)

The following describes how to calculate ai,w. The value of ai,w is used to determine
whether a word belongs to a certain type. As the value indicates the frequency of each
word in a particular type of fault, we consider the probability of the word i in the fault
type w as the ratio between the number of word i in type w and the total number of
words in type w. The basic formula is described in (3). P(i, w) represents the
probability that the i-th word appears in the fault type w, count(i, w) represents the
times that the i-th word appears in the fault type w.

() ()
()

1

,
,

,
m

j

count i w
P i w

count j w
=

=

 (3)

However, this formula only considers the distribution of different words in the
same fault type, but it ignores the same word between different fault types in the log
template. For example, if the word i only appears in the type w, then we believe that a
log is very likely to belong to the fault type w as long as it contains the word i, even if
how many time the word i appears in the type w. Therefore, we can amend the
formula by adding a scale factor shown as (4).

() () ()
()

,
, log 1

sum i count i w
K i w

sum i

 −
= − +

 (4)

The sum(i) represents the number of times that the word i appears in all the fault
type of the template library, namely in (5).

() ()
1

,
n

i

sum i count i t
=

= (5)

K(i, w) indicates the importance of the word i in the type w and it is in inverse
proportion to the frequency of word i occurs in other types, i.e. if the occurrence that
word i appears in the type w is more than in the other fault types, the word i is more
important to determine whether the log is belong to type w.

Thereby, we can conclude that the probability coefficient ai,w is calculated as the
product between the frequency of words in the fault type and the importance in the
entire template, namely in (6).

() (), , ,i wa P i w K i w= × (6)

Importing the equations (3) and (4) can obtain equation (7).

1

(,) (,)
, log 1 1

()(,)
m

j

count i w count i w
i w

sum icount j w
a

=

 = − − + (7)

 Improving Log-Based Fault Diagnosis by Log Classification 453

The following describes the learning process by using the FK-matrix. After
obtaining the results of manual classification, according to the formula, we can
calculate the matrix A by column. Next we will describe how to solve the w-th
column as an example.

The program will count the total number of words in type w from the entire library
template. The amount is named as T(w), which is shown in (8).

()
1

(,)
m

j

T w count j w
=

= (8)

To facilitate revised and updated the FK-matrix, a new row will be added in the
FK-matrix to store T(w) for reducing the number of double counting.

For each word i in the fault type w, the program will calculate sum(i). Similar to
the T(w), in order to reduce the number of calculations, the additional space will be
used to store sum(i). Thus, there is an expanded FK-matrix adding the additional row
and column for storing statistical information. The final matrix A is shown in (9).

()
()

()
() () ()

1, 1 1, 2 1,

2, 1 2, 2 2,

, 1 , 2 ,

1

2

1 2

n

n

m m m n

a a a sum

a a a sum

A

a a a sum m

T T T n

 =

 (9)

According to equation (7), we should calculate count(i, w) before calculating ai,w.
Considering the value of count(i, w) will be changed with updating of FK-matrix,
count(i, w) will be saved in the FX-matrix instead of ai,w in practice. UiLog will
calculate ai,w until the occurrence probability of word is needed. Due to related
variables has restored in the FK-matrix, it does not add any additional overhead.

After obtaining the FK-matrix through learning period, UiLog can classify log
through FK-matrix. In the running period, administrators might modify or add new
categories to different template for coping changes of system or software
environment. At that moment, UiLog will modify FK-matrix.

5) Classifying Log Information
Through the fault keyword matrix, we can easily classify the fault log on the

system. In the running period of the system, the fault log collection module will send
fault logs to the fault log analysis module from various components. In this step,
UiLog will scan every log message to compute the probability of different fault types
of log, according the Fault Keyword matrix. Suppose the fault log L need to be
classified, UiLog will compare each word in L with the FK-matrix. It will use an array
(array s) to store the probability that every word in L belongs to different fault types.
The Algorithm 1 gives the pseudo-code for calculating the probability.

454 D. Zou et al.

Algorithm 1. Log classification
1 function Classification()
2 for w in counts of fault types
3 for i ← every word in w
4 if (i ∈L) then s[w] ← s[w] + A[w][i]
5 end for
6 if (maxpossible < s[w]) then
7 maxpossible ← s[w]
8 f ← w
9 end if
10 end for
11 Inform administrator L belongs to fault type f
12 for w in counts of fault types
13 if ((maxpossible − s[w]) < threshold t) then
14 Inform L may belongs to fault type w
15 end for
16 end function

3.3 Fault Log Correlation Analysis

Fault log correlation analysis module diagnoses faults generated by different
components of system and software through logs. It will use the result of log analysis
to find connection between different fault logs.

In the UiLog, we use the results of our previous fault log classification to improve
the traditional fault correlation method based on time. We note that different fault
type has different time range to affect system. For example, a hardware fault has a
relatively small range of time to affect the system, but it has a huge impact on the
system within a short time. On the other hand, the time range of the influence of
network fault is relatively wide. The associated component will produce a fault report
after a long time. Thus, we can use different size of time windows to diagnose
different fault types. It can improve the accuracy of judgment homologous fault.

As a practical application of the fault log classification, we collect log information
generated by all hosts and virtual machines in StrongCloud within 10 months and
analyze the fault happened in this time. Here we first use traditional fault correlation
method based on time to diagnosis the fault. It uses the uniform window size. Then
we manually analyze each log in the tuple to determine the different window size for
every fault type.

In the specific process, the administrator will point out which log they want to
diagnose. UiLog will query the fault keyword matrix for finding the appropriate time
window after confirming the fault type of log. Then UiLog will use this time window
to diagnose the fault.

4 Performance Evaluations

In this section, we test the main functions of UiLog system and evaluate the effect
including fault log analysis. We construct a fault-tolerance testbed, StrongCloud [19],
which is made up of five Inspur’s NF5240M3 servers, each with 24 Intel Xeon E5-
2420 1.90 GHz processors, 32 GB of RAM and four Gigabit Ethernet ports. Each host

 Improving Log-Based Fault Diagnosis by Log Classification 455

has a Domain0 with CentOS release 6.3 of kernel 3.7.1-xen.x86_64, and the
hypervisor is Xen 4.2.1. UiLog is a sub-system of StrongCloud. The evaluations show
the importance of log management.

4.1 Log Analysis

For log analysis module, the most important is to test the efficiency of log
classification. In this test, UiLog classifies all the fault logs collected by log collection
module. The sample data is derived from StrongCloud within one year. The details are
shown in Table 3.

Table 3. Experimental environment

System Beginning Ending Days Size Messages

CentOS 2012-12 2013-12 386 1.7GB 14450302

We first use the data of January and February to train UiLog to obtain the basic

Fault Keyword matrix. The test is launched on the data from March 2013.

Fig. 3. Types of logs

To classify logs, we use trigger mechanism and User Defined Function (UDF) in
database for analysis log timely. Whenever there is a log from the log collection
module, the trigger is activated and UDF function will call log analysis module. The
log analysis module will classify the fault log according to the described steps of
running period by using the fault keyword matrix. If the type of log cannot be
determined, this log will be saved in unprocessed database and UiLog will inform the
administrator to manually classify this log. After dealing with this unsorted log
artificially, UiLog will automatically learn from these new results and modify the
fault keyword matrix to improve classification accuracy.

The bar chart (Fig. 3) shows the classification results for the one year fault log of
StrongCloud. We divide fault log into 12 different types. Fig. 3 gives the ratio of each
type. From the figure we can conclude that the main function of StrongCloud

456 D. Zou et al.

platform is network-related. The net error and web error are sum up to 43% of all
faults. In addition, we can find that the platform has been subject to external attack,
network authentication faults occupy 15%. The port SSL services or disable services
are not commonly used.

From Fig. 3, we can demonstrate that through the fault log classification analysis,
UiLog can help administrator to manage computer systems, finding problems and
bottlenecks in the system to compensate the deficiencies in the system.

4.2 Learning Efficiency

The learning efficiency of artificial classification is a vary import indicator for
evaluation the new fault classification method of UiLog. We use two months fault
logs as a sample for learning period. When the system is running, we will classify
those non-classification logs manually at the end of every month. UiLog will re-learn
these new classification results to improve the Fault Key matrix for better automatic
classification result.

Fig. 4 illustrates the number of classified fault logs and unclassified fault logs from
March to October. It shows that there are only 568 fault log types cannot be judged in
March after learning compared 2350 defined types. Then UiLog studies the results of
new type rules by the end of March. The number of unclassified fault logs had
dropped significantly, reaching 208 types on April. After that, the apparent decreasing
tendency can be seen during March to June, reaching the lowest point (48 types) in
June. That is because of re-learning by every end of month.

Fig. 4. Number of clusters

However, Fig. 4 also presents that the percentage of unclassified fault logs has a
growth in July. According the previous analysis, it is due to the new application or
software developed in July. This change generates a lot of new fault logs and leads to
324 new fault types. After finishing the re-learning step by the end of July, the
percentage of unclassified logs has dropped dramatically and the system becomes
gradually stabilizing. There are only 3 undefined log types.

 Improving Log-Based Fault Diagnosis by Log Classification 457

Through the above experiments and analysis, our fault classification method is
effective. It can be sufficiently carried out using the results of the automatic learning to
automatically determine the type of fault log.

5 Conclusions and Future Work

With the development of cloud computing, the architecture of system and software
are more complicated than before. This paper presents an integrated fault log analysis
platform UiLog system, helping administrators to manage the log generated by the all
the components of system, monitoring the running of the system and diagnosing the
fault.

To effectively analyze the logs, we propose a new method to classify log into
different catalogs according to the different fault types. We use Fault Keyword matrix
to accelerate the speed of classification. In addition, we improve the fault correlation
analysis. We use the result of fault classification to fix the time correlation window to
reduce the truncation error and collision error.

Acknowledgments. This work is supported by National 973 Fundamental Basic
Research Program under grant No. 2014CB340600 and National Science Foundation
of China under grant No. 61272072.

References

1. Zawoad, S., Dutta, A.K., Hasan, R.: SecLaaS: secure logging-as-a-service for cloud
forensics. In: Proceedings of the ACM Symposium on Information, Computer and
Communications Security, pp. 219–230 (2013)

2. Rao, X., Wang, H., Shi, D., Chen, Z.: Identifying faults in large-scale distributed systems
by filtering noisy error logs. In: Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 140–145 (2011)

3. Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., Pasupathy, S.: SherLog: error diagnosis
by connecting clues from run-time logs. Computer Architecture News 38, 143–154 (2010),
doi:10.1145/1735971.1736038

4. Fu, Q., Lou, J., Wang, Y., Li, J.: Execution anomaly detection in distributed systems
through unstructured log analysis. In: Proceedings of the IEEE International Conference
on Data Mining, pp. 149–158 (2009)

5. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.: Detecting large-scale system
problems by mining console logs. In: Proceedings of the ACM Symposium on Operating
Systems Principles, pp. 117–132 (2009)

6. James, E.P.: Listening to your cluster with LoGS. In: Proceedings of the LCI International
Conference on Linux Clusters: TheHPC Revolution, pp. 1–10 (2004)

7. Jain, S., Singh, I., Chandra, A., Zhang, Z., Bronevetsky, G.: Extracting the textual and
temporal structure of supercomputing logs. In: Proceedings of the IEEE International
Conference on High Performance Computing, pp. 254–263 (2009)

8. Stearley, J., Oliner, A.J.: Bad words: Finding faults in Spirit’s syslogs. In: Proceedings of
the IEEE International Symposium on Cluster Computing and the Grid, pp. 765–770
(2008)

458 D. Zou et al.

9. Sandia, J.S., Stearley, J.: Towards informatic analysis of syslogs. In: Proceedings of the
IEEE International Conference on Cluster Computing, pp. 309–318 (2004)

10. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.: Mining Console Logs for Large-
Scale System Problem Detection. In: Proceedings of the IEEE Conference on Tackling
Computer Systems Problems with Machine Learning Techniques, pp. 4–14 (2008)

11. Salfner, F., Tschirpke, S.: Error Log Processing for Accurate Failure Prediction. In:
Proceedings of the USENIX Workshop on Analysis of System Logs, pp. 23–31 (2008)

12. Park, J., Yoo, G., Lee, E.: Proactive self-healing system based on multi-agent technologies.
In: Proceedings of the ACIS International Conference on Software Engineering Research,
Management and Applications, pp. 256–263 (2005)

13. Li, T., Liang, F., Ma, S., Peng, W.: An integrated framework on mining logs files for
computing system management. In: Proceedings of the ACM International Conference on
Knowledge Discovery in Data Mining, pp. 776–781 (2005)

14. Vaarandi, R.: A data clustering algorithm for mining patterns from event logs. In:
Proceedings of the IEEE Workshop on IP Operations and Management, pp. 119–126
(2003)

15. Vaarandi, R.: A breadth-first algorithm for mining frequent patterns from event logs. In:
Aagesen, F.A., Anutariya, C., Wuwongse, V. (eds.) INTELLCOMM 2004. LNCS,
vol. 3283, pp. 293–308. Springer, Heidelberg (2004)

16. Oliner, A., Stearley, J.: What supercomputers say: A study of five system logs. In:
Proceedings of the Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 575–584 (2007)

17. Pecchia, A., Cotroneo, D., Kalbarczyky, Z., Iyer, R.K.: Improving log-based field failure
data analysis of multi-node computing systems. In: Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 97–108 (2011)

18. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the ACM International
Conference on Knowledge Discovery in Data Mining, pp. 226–231 (1996)

19. StrongCloud, http://211.69.198.202:91

A Compilation and Run-Time Framework

for Maximizing Performance of Self-scheduling
Algorithms�

Yizhuo Wang1, Laleh Aghababaie Beni2,
Alexandru Nicolau2, Alexander V. Veidenbaum2, and Rosario Cammarota3

1 Beijing Institute of Technology, Beijing 100081, P.R.China
frankwyz@bit.edu.cn

2 University of California, Irvine CA 92697, USA
3 Qualcomm Research, San Diego CA 92121, USA

Abstract. Ordinary programs contain many parallel loops which ac-
count for a significant portion of these programs’ completion time. The
parallel executions of such loops can significantly speedup performance
of modern multi-core systems. We propose a new framework - Locality
Aware Self-scheduling (LASS) - for scheduling parallel loops to multi-core
systems and boost up performance of known self-scheduling algorithms
in diverse execution conditions. LASS enforces data locality, by forcing
the execution of consecutive chunks of iterations to the same core, and
favours load balancing with the introduction of a work-stealing mecha-
nism. LASS is evaluated on a set of kernels on a multi-core system with
16 cores. Two execution scenarios are considered. In the first scenario
our application runs alone on top of the operating system. In the second
scenario our application runs in conjunction with an interfering parallel
job. The average speedup achieved by LASS for first execution scenario
is 11% and for the second one is 31%.

Keywords: loop scheduling, self-scheduling, random forest.

1 Introduction

Multi-core, multi-socket systems offer a great potential for improving perfor-
mance of ordinary programs, which are composed of many parallel loops and/or
loops that can be auto-parallelized by the compiler or by the user. However,
an effective exploitation of such a parallelism requires care in adapting chunks
of parallel loops and allocating such chunks to the available cores - in order to
balancing the load across cores and minimizing synchronization costs.

Loop scheduling algorithms and in particular self-scheduling algorithms (SS)
addresses finding the correct trade-off between load balancing and synchroniza-
tion costs to minimize the completion time of a parallel loop. However, the load

� This work was partially supported by the National Natural Science Foundation of
China under grant NSFC-61300011.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 459–470, 2014.
c© IFIP International Federation for Information Processing 2014

460 Y. Wang et al.

imbalance which rises in modern multi-core systems - due to a deep and com-
plex memory hierarchy organization and shared access to the main memory by
multiple threads and processes, is such that self-scheduling algorithms deliver
inconsistent performance across different parallel loops and in diverse execution
conditions.

In this work we propose a new framework for scheduling parallel loops to
multi-core systems - Locality Aware Self-scheduling (LASS). LASS has two main
components: (a) a compilation environment which partitions the iterations of
a parallel loops in batches and assigns each batch statically to one core. Each
batch of iterations is subsequently partitioned in chunks of iterations according
to one out of four widely adopted self-scheduling algorithms, a.k.a. SS [1], GSS
[2], FSS [3], TSS [4] - these algorithms are customarily implemented in the GNU
GCC compiler, the IBM XLC compiler and the Intel ICC compiler; (b) a run-
time environment, which first selects the type of self-scheduling algorithm that
is the most likely to speedup performance of a given parallel loop and second
deploys LASS with the selected self-scheduling algorithm. A machine learning
aided heuristic to select the self-scheduling algorithm and the number of cores
to use is constructed offline. Experimental results show that LASS boosts up
performance of known self-scheduling algorithms in diverse execution conditions.

The rest of the paper is organized as follows. Section 2 describes LASS. Ex-
perimental results are presented in Section 3. Section 4 provides a breakdown of
prior work on self-scheduling and iteration scheduling in the presence of shared
levels of memory hierarchy. Our conclusion is presented in Section 5.

2 Technique

In this section we present the LASS technique. To improve affinity, LASS assumes
that each worker thread is assigned to a core, so the number of workers never
exceeds the number of cores available on the system underneath.

2.1 Locality Aware Self-Scheduler

The Master thread spawns P Workers and pins each Worker to a core. Next,
the Master produces a list of chunk sizes, C, according to a given self-scheduling
algorithm. In addition to the above, the LASS scheduler partitions the parallel
loop in P batches and assigns one batch to each Worker. Subsequently, each
Worker executes the Algorithm 1 during the execution of a parallel loop.

When the Worker Ti completes the execution of its current chunk, it first
attempts to fetch the next available chunk size Cj in the listC and then attempts
to fetch Cj iterations from its batch Bi. If Cj iterations are available in the
batch Bi, then Ti fetches Cj iterations from Bi starting from the iteration #
ni. Toward the end of the batch, however, the number of iterations available in
Bi may be less than Cj . In this circumstance, the chunk Cj is split in two parts
at run-time. The iterations from ni until ui are fetched by Ti, whereas a new
chunk C′ = Cj − (ui − ni) is inserted in the queue C. Eventually, if no more

A Framework for Maximizing Performance of Self-scheduling Algorithms 461

Fig. 1. LASS operations

iterations are available in the batch Bi, Ti can help other Workers completing
their batches. In this case, multiple Workers will contend the access to the same
batch of iterations, hence synchronization is required. This is the only scenario
in which LASS requires synchronization. Indeed, with the exception of the last
case mentioned above, a Worker can fetch Cj iterations fromC without explicitly
gain exclusive access to the queue of iterations. Once a Worker fetches a chunk
size number from C, it moves the index of C to the next position. Because the
index of C is shared by all the Workers, two or more Workers can access the
same chunk size sometimes. Even if this happens, the algorithm can still run
correctly because the termination of the loop is not detected by checking C and
C just provides chunk sizes but not real chunks.

For clarity, we present the example in Figure 1. Let us assume the iterations
space being composed of 1000 iterations, that is Γ = {I1, I2, · · · , I1000}, and that
these iterations need to be scheduled to run on P = 4 cores. The iteration space
is partitioned in four batches composed of 250 iterations, Γ = Γ1 ∪Γ2 ∪Γ3 ∪Γ4.
Four Workers are spawn, T1, T2, T3 and T4. EachWorker is assigned to a different
core, so that any time the Worker Tj processes a chunk, it will always run on
the core Pj .

The Worker Tj is the owner of the batch Γj . When the parallel execution
starts, the Worker Tj has exclusive access to its own batch. Before the Workers
start, a self-scheduling algorithms is used to create a list of chunks, named C.
Iterations are scheduled in chunks as indicated in C. Let ni be the iterations
index in Γi. At a scheduling step in Figure 1, n1 = 100, n2 = 450, and the upper
bound for Γ3 is n3 = 750. There are three distinct possible scenarios:

– The Worker T1 attempts to fetch Cj iterations from Γ1. If n1 +Cj < u1, Cj

consecutive iterations can be fetched from Γ1. Next, the Worker T1 fetches
Cj consecutive iterations from Γ1 starting from n1 and executes them.

– The Worker T2 attempts to fetch Cj from Γ2. If n2 +Cj > u2, only u2 − n2

are fetched from Γ2, and C′ = Cj − (u2 − n2) is a new chunk size which is
appended to the list of chunk sizes.

– The Worker T3 attempts to fetch Cj from Γ3. If n3+Cj = u3, all iterations in
Γ3 have already been processed. In this case, n3 points to n4. If the iterations
in Γ4 have also been consumed, both n3 and n4 point to n1.

462 Y. Wang et al.

Algorithm 1. Locality aware self-scheduling

P : number of cores;
T = {T1, T2, · · · , TP} : worker threads;
C = {C1, C2, · · · , C#chunks, 0} : list of chunk sizes;
Γ = {I1, I2, · · · , IN} : queue of iterations;
ni : current index of the ith partition;
ui : upper bound index of the ith partition;
fi : set to 1 if Pi shares its partition;

t exit=FALSE
while (TRUE) do

if (fi=TRUE) then
lock(Γ)

end if
get Cj iterations from Γ ;
k = ni + Cj ;
if (k < ui) then

lb = ni; ub = ni +Cj ; ni = ni + Cj ;
else

if (k − ui > 0) then
Split the partition of the current chunk
C′ = k − ui

append C′ to C
end if
lb = ni; ub = ui; ni = ui; k = i;
repeat

nk = n(k+1)%P ; uk = u(k+1)%P ; k = k + 1;
if (i = k) then

t exit=TRUE; break;
end if

until (nk �= uk)
fk=TRUE

end if
if (fi=TRUE) then

unlock(Γ)
end if
for k = lb→ ub do

Body of the parallel loop
end for
if (t exit=TRUE) then

exit
end if

end while

A Framework for Maximizing Performance of Self-scheduling Algorithms 463

2.2 Selection of the Iteration Scheduling Algorithm and the
Number of Workers

LASS can work in combination with any self-scheduling algorithm and because
there is no self-scheduling algorithm that enables optimal performance for any
parallel loop, we propose a simple heuristic to the problem of selecting the most
suitable self-scheduling algorithm, given a characterization of a parallel loop.
Likewise, we propose a heuristic to select the number of Workers delivering best
performance.

Note that the selection of a self-scheduling strategy and the number of threads
to maximize performance depends on many factors on a real system, such as the
dynamic availability of cores, their instant load, etc. Thus, accurate analytical
models cannot be derived, and in any case, building such models is out of the
scope of this paper.

The heuristic proposed in this section is based on classification trees [5]. We
characterize the behavior of a parallel loop based on the features of its loop body,
such as uniform vs. non-uniform loop body. Non-uniform loop bodies are further
characterized in terms of the source of non-uniformity, such as multi-way loop,
non-perfectly nested loop, presence of conditionals and nested conditionals, etc.
To such features we associate - as a label - the most profitable self-scheduling
algorithm which maximizes performance of these loops, e.g., G for GSS, F for
FSS and T for TSS.

We build a predictor based on classification tree which learns from examples
such as f → {G,F, T }, where f indicates the description of the loop. Given an
unseen vector of features, our predictor is in charge to predict the most suitable
self-scheduling algorithm to minimize the execution time of a parallel loop. Such
a prediction, as we will see in the next section, can be performed independently
from the number of Workers allocated for its execution.

Following the same principle, we build a second classification tree using as
features as combination of loop’s feature, the self-scheduling algorithm previously
selected and the input size - which is expressed as the total number of instructions
retired. The output of this second classifier is the number of Workers to use in
order to maximize performance. Our predictor learns from examples such as
(f, s, I)→ p, where s ∈ {G,F, T }, I is the number of instructions retired, and p
indicates the execution time (performance) of the parallel loop.

3 Experiments

In order to evaluate our locality aware self-scheduling technique, we selected
three popular self-scheduling algorithms to run in combination with our tech-
nique. These algorithms are guided self-scheduling (GSS)[2], factoring self-
scheduling (FSS) [3] and trapezoid self-scheduling (TSS) [4].

3.1 Experimental Setup

We extracted several kernels from the benchmark suites SPEC CPU2000/2006,
SPEC OMP2001 and MiBenchII. The description of these kernels is provided

464 Y. Wang et al.

Table 1. List of kernels

Kernel Benchmark suite Benchmark File, line

L1 SPEC CPU2000 179.art scanner.c, 317

L2 MiBench JPEG jcdctmgr.c, 195

L3 SPEC CPU2000 183.equake quake.c, 447

L4 SPEC CPU2006 470.lbm lbm.c, 186

L5 matrix multiplication mm.c

L6 MiBench susan susan.c, 738

L7 SPEC CPU2006 433.milc quark stuff.c, 1523

L8 SPEC CPU2006 462.libquantum gates.c, 89

L9 SPEC CPU2006 462.libquantum gates.c, 61

L10 SPEC CPU2006 464.h264ref mv-search.c, 394

L11 SPEC CPU2006 482.sphnix3 vector.c, 512

L12 SPEC OMP2001 172.mgrid mgrid.f, 189

L13 matrix transposition mt.c

Table 2. System configurations

Processors 4 x Intel Xeon X7350 (Tigertown) @ 2.93GHz

L2 2 x 4MB

Main memory [GB] 8

Compilation gcc4.5 -O3 -lpthread -lrt -lm

Thread library NPTL 2.7

Operating system Linux 2.6.22

in Table 1. We compiled and executed our kernels on the system configuration
summarized in Table 2. Intel X7350 is a quad-core processor, which consists of
two dual-core. This configuration accounts for a total of 16 cores. Each dual-
core shares 4MB of shared L2 cache. We compiled the kernels listed in in Table
1 using GNU GCC v4.5 and the optimization level −O3 enabled.

Each performance result is the average of one hundred execution of each kernel
to ensure dependability of the results. During each run we collect hardware
performance counters using Perfmon2 [6].

3.2 Experimental Results

We implemented the Algorithm 1 presented in section 2. To produce the list of
chunks we refer to three widely used self-scheduling strategies: GSS, FSS and
TSS. These three self-scheduling algorithms differ in terms of their chunking
strategy, thereby their synchronization costs are different [3].

In the presentation of the experimental results, we refer as LASS-G when
LASS is applied in combination with GSS. Mutatis mutandis, we use the nomen-
clatures LASS-F and LASS-T to indicate that LASS is applied in combination
with FSS and TSS respectively.

For each kernel, we compare completion time obtained with a given self-
scheduling strategy with the completion time of LASS, say LASS-{G,F,T}. As
indicator of performance we use the speedup as defined in equation 1. Such a
speedup is relative to the completion time the parallel execution of a kernel
subject to a given self-scheduling algorithm.

S#Workers
{G,F,T} =

Completion timeG,F,T

Completion timeLASS−G,F,T
(1)

A Framework for Maximizing Performance of Self-scheduling Algorithms 465

We conducted the experiments in two execution environments. In the first
execution environment, named free system, our applications run alone, one by
one, on the system. In the second execution environment, named full system our
applications run in conjunction with an interfering parallel job influencing the
load of multiple cores at random. For each execution environment we conducted
our experiments for a variable number of Worker threads from 2 to 16.

Analysis of Performance and Locality. Results for the free system are re-
ported in Figure 2. LASS improved performance in most cases. Our performance
results are supported by the counters collected. In multi-cores, the cache miss
count is the main reflection of the locality exploitation. Figure 3 shows the miss
rate in the case of four threads running on the free system. This case is relevant
given our hardware configuration. Figure 3 shows that L1 cache misses decreases,
whereas L2 cache misses vary slightly or remains constant. The reduction of L1
cache misses is a direct effect of the adoption of LASS and does contribute to
ameliorate performance. The slight variation in L2 misses is an artifact of the
system we are running on.

For more than two workers, only couples of Workers share the second level of
cache - because of the topology of the memory hierarchy on our system, limiting
the benefit deriving from the enforcement of locality. Indeed, the kernels L10
and L11, whose working set size fits inside the last level of cache slightly benefit
from the parallel execution with 2 Workers and their performance is severely
compromised with the adoption a larger number of Workers.

On the other end, performance still improves because of the behavior of LASS
toward the end of the parallel execution. Toward the completion of the paral-
lel execution LASS creates additional chunks by splitting the last few chunks
available. The availability of additional chunks increases the number of tasks to
execute in parallel, the parallel execution still results profitable, thereby improves
performance despite the obstacle imposed by our system configuration.

Moreover, kernels L7, L12 and L13 achieve the best speedups in most cases.
Most likely reason is that the data in these kernels is much denser than other
kernels. Therefore, LASS gains more benefits from the improvement of the data
locality. However, it is hard to break down performance improvements attributed
to various factors in a real machine.

Next, we considered another execution environment, the full system. In this
execution scenario cores are not available for our applications at the same time.
Nevertheless, LASS still enhances performance of classical self-scheduling strate-
gies, as it is shown in Figure 4. Experimental results show that the average
speedup is significantly higher when compared to those of system free. These
results highlight that performance achieved because of the adaptivity of self-
scheduling strategy is effectively amplified by LASS. Furthermore, these results
show that there is opportunity to achieve higher speedups if, when applying a
self-scheduling strategy in both free and full systems, we were able to select ad
hoc the number of working threads.

466 Y. Wang et al.

(a) 2 Workers (b) 4 Workers

(c) 8 Workers (d) 16 Workers

Fig. 2. Speedup w.r.t. self-scheduling algorithm on free system

(a) L1 (b) L2

Fig. 3. L1 and L2 miss rates improvement for four threads on free system

Analysis of Synchronization Operations. Figure 5 shows the number of
synchronization operations required to run LASS is significantly lower than
the number of synchronization operations required by other non LASS self-
scheduling strategies. This is a trend across the three GSS, FSS and TSS. The
relative reduction of synchronization costs influences performance of each self-
scheduling algorithms in a different way. For example, let us consider experiments
using 16 worker threads. FSS is the self-scheduling strategy suffering from the
highest synchronization costs because of the chunk sizes’ distribution. When
the threads involved in the computation start and progress simultaneously, the
probability of having concurrent accesses is higher for FSS than GSS and TSS.

A Framework for Maximizing Performance of Self-scheduling Algorithms 467

(a) 2 Workers (b) 4 Workers

(c) 8 Workers (d) 16 Workers

Fig. 4. Speedup w.r.t. self-scheduling algorithm on full system

Fig. 5. Number of synchronization operations

Arguably, FSS is the self-scheduling strategy gaining the highest benefit from
the elimination of the synchronization operations. Our experiments show an
3.42% average reduction in execution time. Also TSS shows an 1.83% average
reduction in execution time and this number is 3.34% for GSS algorithm. The
influence that the reduction of synchronization operations has on performance
of a self-scheduling algorithm depends on the distribution of the chunk sizes.

Selection of the Self-scheduling Algorithm and of the Number of
Workers. The analysis of the vectors of counters collected and the types of
parallel loop adopted in our experiments suggest the adoption of two simple
heuristics, based on decision trees [7], to cope with the following problems: (a)

468 Y. Wang et al.

Selecting the most beneficial self-scheduling algorithm for a given loop. (b) Se-
lecting the number of Workers to achieve best performance from the parallel
execution.

We classify our loops using the rules as follows: We refer as uniform such par-
allel loops which have constant cost per iteration. In this category fall loops with
constant bounds and stride, containing inner loops with constant bounds and
uniform strides, and containing function calls. We refer as non uniform such par-
allel loops containing conditionals, indirect references, variable bounds and/or
strides. As first classification step we separate uniform from non uniform loops.
Uniform loops containing other nested loops are labeled with an F, indicating
FSS as the best candidate for this type of loops. Other uniform loops are la-
beled with G, which stands for GSS. Non uniform loops containing branches are
labeled with F, which stands for FSS, whereas non uniform loops with indirect
references or non constant loop body are labeled with T, which stands for TSS.
This heuristic applied on our kernels is illustrated in Figure 6. Experimental
results show that for both the execution environments, the free system and the
full system, the selection of self-scheduling algorithm to apply can be performed
visiting the decision tree in Figure 6 using the description of the parallel loop.
This pass is done offline. We provide another offline heuristic which, given the
features of a parallel loop and a self-scheduling algorithm, predicts the number of
working threads needed to minimize its execution time. This second heuristic is
based on the size of the input, represented by the number of instructions retired.
This second heuristic is illustrated as an example in Figure 7.

The results of the experiments conducted using the heuristics described above
are summarized in Table 3. Experimental results show an average speedup of 11%
in the free system, and an average speedup of 31% in the full system.

Fig. 6. Selection of self-scheduling per
loop

Fig. 7. Selection of the number of threads

4 Related Work

Many iteration scheduling algorithms have been proposed in the literature. These
algorithms leverage the presence of parallelism in a architecture to reduce execu-
tion time of ordinary programs. On one extreme, there is static scheduling which

A Framework for Maximizing Performance of Self-scheduling Algorithms 469

Table 3. Selection of self-scheduling and # Workers on free and full system

Kernel
Free system Full system

LASS # Workers Speedup LASS # Workers Speedup

L1 G 8 1.02 G 16 1.30

L2 F 16 1.04 F 16 1.15

L3 T 4 1.08 T 16 1.05

L4 F 4 1.05 F 8 1.26

L5 G 8 1.06 G 2 1.56

L6 G 4 1.01 G 16 1.41

L7 G or F 16 1.16 G 8 1.32

L8 F 16 1.10 F 16 1.14

L9 G 16 1.10 G 16 1.13

L10 G 2 1.03 G 8 1.57

L11 F 2 1.01 F 8 1.67

L12 F 8 1.49 G 8 1.25

L13 T 16 1.24 T 8 1.21

Average 1.11 1.31

assigns even partitions of a loop iterations to multiple cores. Compared to other
schemes, it has the lowest scheduling overhead but it may incur in the worst
load balancing when scheduling irregular parallel loops. On the other extreme,
there is the first self-scheduling [1]. It assigns one iteration to an idle core each
time, to achieve best load balancing, but has the highest execution and syn-
chronization overheads. For having a trade-off between execution overhead and
load balancing, the adoption of fixed chunks was proposed by other authors [8].
However, The selection of the chunk size is challenging. In fact, small chunk sizes
allow the exploitation of more parallelism, whereas larger chunk sizes reduce the
run-time overhead. Rather than the use of fixed chunk sizes, Kruscal and Weiss
in [9] proposed the adoption of chunk sizes with a decreasing profile down to
chunks containing only one iteration. In the beginning, threads are allowed to
fetch larger chunks, thus achieving low parallel execution overhead. Toward the
end of the parallel loop the presence of smaller chunks allows to achieve better
load balancing. Among the self-scheduling algorithms proposed in the literature,
GSS [2], FSS [3] and TSS [4] are widely used and implemented in open source
and commercial compilers.

In the other self-scheduling strategies technique in the literature [10,11], ad-
justed chunk sizes at run time or processor affinity is exploited. Markatos and
LeBlanc in [12] propose affinity scheduling, which is locality aware, but it suffers
of load balancing when dealing with irregular loops.

In the work stealing literature [13], the scheduling algorithms are all locality
aware because of the use of per-processor work queues. Work stealing schedulers
aim to tasks which are independent units of works that can be executed in
parallel. In Cilk [14] and Intel TBB [15] which are popular frameworks using
work stealing, a parallel loop is partitioned to fixed chunks. Then each chunk
is viewed as a task. To the best of our knowledge, LASS technique combining
self-scheduling with work stealing capabilities.

470 Y. Wang et al.

5 Conclusion

In this paper we proposed a new iteration scheduling technique - locality aware
self-scheduling - which, in combination with any self-scheduling algorithm, sys-
tematically reduces the number of synchronization operations required to assign
cores to chunks, enforces both spatial and temporal locality, enforces affinity and
adapts the mapping of chunks onto iterations at run-time, therefore improves
on load balancing and performance. As a part of our technique we propose a
machine learning based heuristic, which is based on decision trees, to select the
most suitable iteration scheduling algorithm and number of threads to minimize
the completion time of a parallel loop.

References

1. Smith, B.J.: Architecture and applications of the HEP multiprocessor computer
system. Real Time Signal Processing IV 298, 241–298 (1981)

2. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: a practical scheduling
scheme for parallel supercomputers. IEEE Trans on Computers 36(12), 1425–1439
(1987)

3. Flynn-Hummel, S., Schonberg, E., Flynn, L.E.: Factoring: A method for scheduling
parallel loops. Communications of the ACM 35(8), 90–101 (1992)

4. Tzen, T.H., Ni, L.M.: Trapezoid self-scheduling: a practical scheduling scheme for
parallel computers. IEEE Trans. on Parallel and Distributed Systems 4(1), 87–98
(1993)

5. Breiman, L., Friedman, J., et al.: Classification and Regression Trees. Chapman &
Hall/CRC (1984)

6. Jarp, S., Jurga, R., Nowak, A.: Perfmon2: a leap forward in performance monitor-
ing. J. Phys. Conf. Ser. 119, 042017 (2008)

7. Podgorelec, V., Kokol, P., et al.: Decision trees: An overview and their use in
medicine. J. Med. Syst. 26, 445–463 (2002)

8. Tang, P., Yew, P.C.: Processor self-scheduling for multiple nested parallel loops.
In: ICPP, pp. 528–535 (1986)

9. Kruskal, C.P., Weiss, A.: Allocating independent subtasks on parallel processors.
IEEE Trans. Softw. Eng. SE-1 1(10), 1001–1016 (1985)

10. Cariño, R.L., Banicescu, I.: Dynamic load balancing with adaptive factoring meth-
ods in scientific applications. J. Supercomput 44(1), 41–63 (2008)

11. Tabirca, T., Freeman, L., et al.: Feedback guided dynamic loop scheduling: con-
vergence of the continuous case. J. Supercomput. 30(2), 151–178 (2004)

12. Markatos, E.P., LeBlanc, T.J.: Using processor affinity in loop scheduling on
shared-memory multiprocessors. IEEE Trans. Parallel Distrib. Syst. 5(4), 379–400
(1994)

13. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

14. Blumofe, R.D., Joerg, C.F., et al.: Cilk: An efficient multithreaded runtime system.
In: PPoPP, pp. 207–216 (1995)

15. Intel(R) Threading Building Blocks, Intel Corporation

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 471–484, 2014.
© IFIP International Federation for Information Processing 2014

PaxStore : A Distributed Key Value Storage System

Zhipeng Tan, Yongxing Dang, Jianliang Sun, Wei Zhou, and Dan Feng

Wuhan National Laboratory for Optoelectronics, School of Computer Science, Huazhong
University of Science and Technology, Wuhan, China

Abstract. Consistency, availability, scalability, and tolerance to the network
partition are four important problems in distributed systems. In this paper, we
have designed a consistent, highly available distributed key value storage system
that can run on lots of general devices and solve the four problems in distributed
systems, we call it as PaxStore. It uses zookeeper to complete leader election. It
uses a centralized Paxos-based protocol to guarantee the strong replica
consistency. The system node can automatically recover in case of failure.
Experiments show that PaxStore can guarantee the strong consistency and only
increases 20% overhead compared with local systems. By using log
optimization, such as the circular lock-free queue and Paxos protocol
optimization techniques, PaxStore has a high performance and recovery speed
than the older system which uses a basic Paxos protocol.

1 Introduction

With the rapid development of computer technology and Internet, especially the
emerging of Web 2.0 technology, information grows explosively. Therefore, it is
difficult to improve the system performance by using the scale-up[2] method (provide
larger and more powerful servers). The scale-out[2] method, in the form of clusters of
general machines, is a long-term solution to solve the bottlenecks of storage systems.
However, the problems in distributed systems are far more complex than problems in
a single machine. We have to solve various anomalies, such as node failure, disk
failure, network partition, message missing etc.. It is difficult to build a highly
available distributed storage system under complex conditions.

In distributed systems, consistency, availability and partition tolerance are three
important issues. However, no distributed systems can simultaneously achieve the
three goals according to Brew's CAP Theorem[3]. Stonebraker[4] argued that strong
consistency and availability may be a better design choice in a single datacenter
where network partitions are rare.

Replica consistency is an important issue of distributed systems. For some
application scenarios such as bank, military, and scientific experiment, any
inconsistency in replicas is intolerable. There are some popular replica consistency
protocols such as two phase commit protocol[5], and Paxos protocol[6] etc.
Unfortunately, in hostile system environments, two-phase commit may not guarantee
the strong consistency among multiple replicas and the high system availability. With

472 Z. Tan et al.

three or more replicas, the Paxos family of protocols is considered to be the only
solution to guarantee the strong replica consistency. However it is not widely used in
distributed systems due to its complexity and low efficiency.

Besides consistency, system availability is also one of the key principles in
designing a distributed system. Many internet enterprises, like Google and eBay, often
have to provide reliable service of 24×7 hours for their users. However, the node
failure happens frequently in distributed systems when running on general servers.
Therefore how to continuously provide service after a node is down is the problem
that we should solve.

This paper presents a new distributed key-value storage system, called PaxStore,
which can guarantee the strong replica consistency by using a centralized Paxos-based
protocol. The protocol can significantly reduce the overhead compared with basic
Paxos. In PaxStore, if the leader failed, PaxStore can automatically select a new
leader to provide service uninterruptedly as long as the majority of its replicas are
alive. Furthermore, the system node can automatically recover in case of node failure.
Experiments show PaxStore can guarantee strong consistency among replicas and
only increases 20% overhead compared with local systems. Furthermore, PaxStore is
five times or more as fast as the older which also uses a basic Paxos protocol on write.

The rest of the paper is organized as follows. Section 2 provides a detailed survey
of existing work and the related backgrounds. Section 3 presents the design of
PaxStore. Section 4 is the implementation of PaxStore. Section 5 gives an
experimental evaluation of PaxStore. Section 6 summarizes our work and draws
conclusions.

2 Related Work

Brew's CAP theorem[3] is of great significance in the distributed systems, which
shows that it is impossible for any distributed system to simultaneously provide all of
the three following guarantees: consistency, availability and partition tolerance.
Actually, many distributed storage systems choose two of the above goals based on
their own application characteristics.

Many relational databases use the two-phase commit protocol, such as MySQL,
which has very good C (strong consistency), but it’s A (availability) & P (partition
tolerance) are poor. For example, these systems can prevent data from being lost when
facing with disk failures. But they may not provide service if a node fails or in the
abnormal network conditions.

Dynamo[8], and Cassandra[9] provide high availability and partition tolerance by
using eventual consistency. In CAP terminology, they are typical AP systems.
Dynamo uses the Quorum mechanism to manage replicas, which is a decentralized
system. When facing replicas inconsistency, applications must resolve the conflicts by
using data update timestamp.

The Paxos algorithm was proposed by Leslie Lamport in 1990[7], which is a
consistency algorithm based on message passing. At first, it didn’t attract people’s
attention because it is difficult to understand. However, in recent years, the

 PaxStore : A Distributed Key Value Storage System 473

widespread use of Paxos algorithm proves its important role in distributed systems.
The basic idea of the Paxos algorithm is that, the successful execution of each request
needs the acceptance and execution of the vast majority of nodes in the systems;
every Paxos instance has a sequence, which executes from small to large and all
nodes have the same instance execution order; if a new node joins systems, it can
recover data through catch-up mechanism to achieve the same status as the existing
nodes. But the basic Paxos protocol is a decentralized protocol which requires
multiple network communications, its efficiency is low. PaxStore uses a centralized
Paxos-based protocol with small network overhead.

Zookeeper[10] uses basic Paxos to select the master node which controls data
update. If the master goes down, it will select a new master. Zookeeper can guarantee
strong consistency. But its design goal is to provide distributed lock service and high
availability service for other distributed systems. It is not a dedicated distributed
storage system, so its performance is poor. Google’s Chubby[11] is also based on Paxos
protocol, which is similar to zookeeper.

Megastore[12] is a distributed storage system based on Paxos protocol developed
by Google, which relies on Bigtable. It has the advantages of both the scalability of a
NoSQL datastore and the convenience of the traditional RDBMS, and provides both
strong consistency guarantees and high availability. However, it uses the Paxos
protocol without being fully optimized, its write performance is not good.

Rao et al designed a scalable, consistent, and highly available data store by using
Paxos protocol, which is called Spinnaker[13]. But it doesn’t analyze the situation that
two leaders may appear in one system. Its read and write performance are not good.

Based on the above, we designed PaxStore by using zookeeper cluster and high
performance Leveldb engine. In addition, we used a number of optimization
techniques, such as log optimization, circular lock-free queue etc. It can not only
guarantee strong consistency, but also improve the system performance, and keep the
system scalability.

3 Design of PaxStore

3.1 Architecture

All data are divided into different ranges based on the key value of every record.
The basic components of PaxStore include client, zookeeper cluster and storage
server which include leader and follower. The architecture of PaxStore is depicted in
Figure 3.1. The replica’s number can be configured, here we set it to be 3. Every
range has a leader and two followers. Client only sends write requests to the leader
which synchronizes data to followers based on our Paxos-based protocol, but both of
the leader and the followers can provide read service. In order to simplify the leader
election process, we use Zookeeper for auxiliary election. At the same time,
Zookeeper can also monitor the system state. PaxStore can elect a new leader
automatically and records the times of leader election as epoch. Each write request is
assigned a number (sequence) to indicate its execution order. When a new node joins

474 Z. Tan et al.

in system, it will run a zookeeper client and connect with zookeeper server, and then
upload its metadata such as epoch, IP, and LSN (the largest write request sequence in
log), into zookeeper server. At last, PaxStore uses an improved and optimized Leveldb
as local storage engine.

Fig. 3.1. PaxStore Architecture Fig. 3.2. Protocol Flow Chart

3.2 Protocol Analysis

The basic process of the distributed replica protocol used by PaxStore is shown in
Figure 3.2.
（1）Client sends write request (w) to the leader.
（2）After receiving W, leader firstly serializes W, appends W with epoch and

sequence, then it writes the serialized W into log synchronously. In parallel with the
log force, leader sends the serialized W to all of the followers.
（3）When the followers receive the proposal W message, they write it into log

synchronously and send ACK message to leader.
（4）After writing W into the log and receiving more than 1 ACK message from

followers, leader writes W into local storage engine, and send RET message to client.
（5）Furthermore, Leader periodically sends commit message to the followers to

ask them to apply all pending write requests up to a certain sequence to their local
storage engine.

Until now, the leader and followers have the same and the latest value of W.
From the above descriptions, it is obvious that under normal circumstances, the

protocol overhead is extremely small, and only a RTT (Round-Trip Time) is needed to
commit a write.

The client read protocol is also a Quorum-based protocol. As the follower may
have an inconsistent state with leader for only a short time (leader periodically send
COMMIT message to follower), we can choose either strong consistent read (read
records from leader) or weak consistent read (read records from leader or followers).
When choosing strong consistent read, the system needs first read record from leader
and then read epoch message from a follower of this leader, if the follower has the
same epoch message with leader, it shows that we read data successfully, otherwise
the system errors occur.

 PaxStore : A Distributed Key Value Storage System 475

4 Implementation

4.1 Component of Storage Node

The basic components of node are shown in Figure 4.1. It includes a log system, a
storage engine and a zookeeper cluster. The replica consistency among multiple nodes
is guaranteed by improved Paxos-base protocol which is described in Section 3.2. We
choose Leveldb as our key-value storage engine, and replace its log module with our
high available log system. The details of the log system and storage engine will be
described in section 4.2.

Fig. 4.1. Component of Storage Node Figure Fig. 4.2. The Software Modules of Node

4.1.1 Software Modules of Node
The software modules of node are depicted in Figure 4.2. Each node has five
functional modules, that is, control core, leader modules, follower modules, log
system and Leveldb storage engine. The control core includes zookeeper client
module, Leader Election module and Leader Recovery module. Leader modules
include Write module, Read module, Proposal module, Remote Recovery module
(help followers to recover data), CMT Sync module and Write Log module. Follower
modules include Read module, Follower module (used to response the proposal
request and CMT request sent by leader) and Follower Recovery module. If a node is
leader, the running modules include control core, leader modules, log system and
storage engine. If it is a follower, the running modules include control core, follower
modules, log system and storage engine.

If the leader goes down, system will elect a new leader from the remaining alive
nodes by their leader election modules. The new elected leader should first stop its old
follower modules, and deal with all of the data that have been written into log but
have been written into leveldb engine. It will write these data into storage engine and
send these data to at least one follower to write into follower’s local storage engine.
Finally, the new elected leader starts all of the leader modules to become a real leader.
Now, system can continue to run normally.

476 Z. Tan et al.

4.1.2 Leader Logic
The basic implementation framework of leader, which handles the client requests by
differentiating read and write.

(1) Leader execution logic
The design of read logic is simple. Read Worker thread manages the establishment

and disconnection of read connection from the client. PaxStore can directly read the
required data from local Leveldb engine. But in order to improve the read
performance, we design a thread pool to use multi-core platform.

Write logic is the core part of the leader. The writing process is described in the
following. First, Write Worker thread receives write request from client, then, it adds
the request into Value Queue and sends a notify message to Proposal thread. Second,
Proposal thread reads request from Value Queue, serializes it (i.e., adds epoch and
sequence message) and then sends it to Proposal Round-robin Queue. The Proposal
Queue is a circular lock-free queue which can reduce the synchronization overhead
among threads. Third, PaxStore sends proposal message to follower, in parallel Write
Log thread reads proposal message from Proposal Queue and then writes it into local
log system. Once receiving at least half of the ACK message from followers (in our
system, it needs to receive an ACK message), the system can write this request into
local Leveldb engine and return Ret message to client. Periodically, Leader will also
send CMT message to followers.

(2) Leader Election
The design principle of Leader election algorithm is to use a simple way to ensure

that only one Leader can run normally at any time. The system cannot lose the
committed write requests in leader election. If there is a majority of nodes alive, there
must be the node containing all of the committed write requests. We only need to elect
the node that has the largest LSN if it has the largest Epoch as leader.

The implementation of leader election needs the help of Zookeeper cluster. Every
node will create an ephemeral file on the zookeeper server to save its metadata such
as LSN, Epoch, and IP, when it joins system. If a node disconnects with zookeeper
because of node failure, network partition or other reasons, its corresponding
ephemeral file will disappear automatically. Once more than half of the nodes join
system, they will compare their Epoch message and LSN message to elect a Leader.
Leader will create an ephemeral Leader file on the zookeeper cluster to save its
metadata. If Leader disconnect with zookeeper, this ephemeral Leader file will
disappear automatically and system will elect a new leader.

In distributed systems, the case that there are two leaders may occur inevitably, as
depicted in Figure 4.3, due to network reasons, A loses connect with zookeeper server,
then system will do leader election again. B and C disconnect with A and C is elected
as new Leader. But A may continue to run, so system has two leaders A and C at this
time. PaxStore can ensure that only C can run normally. As no follower connects with
A, even if it receives write requests, it can’t execute these write requests successfully
because it can’t receive ACK. System will force to stop A until the client and
zookeeper server find that A is in the isolate state. This can deal with the situation of
the two leaders.

 PaxStore : A Distributed Key Value Storage System 477

 Fig. 4.3. Two Leaders appear Fig. 4.4. The Proposed Round-robin Queue

(3) Leader Design Optimization
Parallel processing optimization: firstly, leader executes the proposal sending

and log writing in parallel, and then PaxStore executes multiple write requests in
parallel. PaxStore can handle multiple proposal messages simultaneously. As shown
in Figure 4.4, the commit sequence represents the largest committed request sequence,
the highest promised sequence represents the largest request sequence that has receive
ACK message, the LSN represents the largest request sequence that has been written
into log system, the next unused sequence represents the smallest sequence number
that has not been used. The requests between commit sequence and highest promised
sequence are not written into Leveldb storage engine; the requests between highest
promised sequence and next unused sequence are not proposed. The next unused
sequence minus commit sequence is the current degree of parallelism. In order to
control the system delays, we set an appropriate degree of proposal parallelism. To
avoid proposal lost, as well as out-of-order problems, PaxStore uses TCP protocol and
sets the TCP’s sending buffer and receiving buffer to an appropriate value.

4.1.3 Follower Logic Design
The basic implementation framework in the follower is depicted in Figure 4.5. The
basic implementation framework of follower is similar to Leader, but follower works
relatively simpler than Leader. The design of read logic of follower is the same as
leader. Follower does not have to deal with the client writes directly. It receives the
proposal message sent by Leader, and then detects whether the sequence of proposal
message is continuous or not; if it is, it receives this proposal and puts this proposal
message into Fproposal Queue, follower writes this proposal into local log system and
sends ACK to Leader. Because the communication between Leader and Follower uses
TCP protocol, it ensures that the sequence of proposal message sent by Leader is
continuous, if the proposal message sequence received by follower isn’t continuous,
Paxos-based protocol will not work normally; then follower will exit from system.

478 Z. Tan et al.

 Fig. 4.5. Follower Execution Logic Fig. 4.6. Log System Figure

If a new follower joins in system, it starts the follower recovery thread to finish
recovery, which includes local recovery and remote recovery. The follower recovery
mechanism will be depicted in section 4.4.

4.2 Implementation of Log and Storage Engine

The Log System is an important component of PaxStore. It stores both the data and
metadata required by the normally running of PaxStore. Furthermore, log can also
ensure that system can automatically complete the recovery.

The log structure is shown in Figure 4.6. The Log System is designed based on
local file system. The threshold of each log file size can be configured. When reading
data, we use block as a unit and the block size can be configured. The manifest file
records the metadata of each log file and helps us to locate log file when reading data.

Logical Truncated Table file records the largest corresponding commit sequence of
each Epoch, which can help determine which record can be read, and which record
needs to be discarded when in recovery.

The above files constitute the basic log system. In order to meet the requirements
of the strong system consistency, every write operation is synchronous, so the disk
overhead is relatively large. In order to improve system performance, we use the
overwrite method to optimize the log system, that is, we pre-allocate a fixed size of
log file and clear all of the data content of the file, and then write all of the records
into the file by using fdatasync() function instead of fsync. The fdatasync function has
a much high performance than fsync because it needn’t to update metadata of file.
This method can improve log system performance.

 PaxStore : A Distributed Key Value Storage System 479

 Fig. 4.7. Paxtore Storage Engine Fig. 4.8. Log Layout

Leveldb log module is used to do local recovery for itself. PaxStore has its local
log system, and Leveldb can get all of its needed data from PaxStore log system. So
we modify Leveldb and remove its log module. As shown in Figure 4.7, Leveldb can
get all of the data from PaxStore log system when in local recovery.

4.3 Recovery

4.3.1 Follower Recovery
Follower recovery is different from ordinary database recovery; it contains local
recovery and remote recovery.

As shown in Figure 4.8, the records before checkpoint have been written to storage
engine, so we need to recover these records. The records between checkpoint and
CMT have been committed, so we can read them from local log system directly. The
records between CMT and LSN are not yet confirmed, we need to do remote
recovery, and they may have been committed and may be stale. In order to ensure
complete recovery, follower should send remote recovery request to leader, receive
recovery data and write these data into Leveldb (storage engine).

4.3.2 Leader Recovery

When the leader goes down, system will elect a new leader; then the new leader
should do leader recovery work. New leader should re-propose the requests between
CMT and LSN because these data may return to client already or haven’t been
committed. After at least one follower and new leader both write these data into
storage engine, system can run normally.

5 Performance Evaluation

5.1 Write Latency

Write delay is an important parameter of evaluating our system and protocol. We
optimize our log system, that is, we pre-allocate a fixed size of log file in order to use

480 Z. Tan et al.

the overwrite method rather than append write method to write records. We inject
10,000 records with the same size into system. The size of write requests ranges from
512 Bytes to 8192 Bytes every time and all of the write log operations are
synchronous. We compare the write latency of PaxStore between overwrite and
append write method. As shown in Figure 5.1, the write latency increases with the
increase of write requests size. In addition, the performance of overwrite method is
much higher than append write method. This is because when it uses overwrite
method, the log data block has been previously allocated, every write operation
doesn’t require the high overhead of disk seek operation, and every synchronous log
write operation doesn’t need to write metadata of log file by using fdatasync. The
results show that our optimization of log can significantly improve PaxStore
performance.

 Fig. 5.1. Write Latency Fig. 5.2. Protocol Overhead

5.2 Protocol Overhead

As shown in Figure 5.2, we firstly set the replica’s number is1, that is, leader doesn’t
send any data to other nodes to measure the latency of local operations. The log uses
asynchronous write mode. Then we set replica’s number is 3 to measure the write
latency of PaxStore, and the log uses the same write mode too. The figure shows that
the overhead of our Paxos-based protocol is small which increases by about 20%
overhead over the local operation. There are many reasons, for example, the execution
of every write request only needs one RTT; write disk operation and network
communication work in parallel when dealing with a write request; we use a circular
lock-free queue which can reduce overhead caused by locking.

5.3 Comparison with Zookeeper

As shown in Figure 5.3, we compare the write performance of PaxStore with the older
system which also uses a kind of Paxos-based protocol. Both of their logs use a
synchronous write mode. When the size of write request is more than 2000 Bytes,
PaxStore is five times or more as fast as the older. This is because the older is not a

 PaxStore : A Distributed Key Value Storage System 481

specialized storage system. Furthermore, we use a variety of methods to optimize
PaxStore, such as overwrite log system, round-robin queue, disk and network works
in parallel etc. The results show that PaxStore has a very high write performance.

 Fig. 5.3. Compare PaxStore with the older Fig. 5.4. System Scalability

5.4 System Scalability

System can divide all of the data into some ranges based on the key, and each write
request can only be written into one range. Every range has its own leader and
followers. As shown in Figure 5.4, we test the system performance based on different
data range number. In order to achieve optimal performance, every node runs only
one PaxStore instance. Obviously, the system performance has a linear growth with
the increase of data range number regardless of how much the size of write requests
is. The results show that PaxStore has a linear scalability.

5.5 System Recovery

For distributed systems built on the commodity machine, node failure is frequent. In
PaxStore, we set replica’s number as 3, if one follower goes down, system can run
normally, but if two nodes failure, system will stop service. System will elect a new
leader from the remaining two nodes when the leader goes down. This process is very
fast. The system can complete the leader election using less than 3s latency, which
doesn’t have a huge impact on the normal running of system. This is because once the
leader goes down, zookeeper cluster will immediately perceive this situation and
notify the other nodes, and system can elect a new leader by comparing the metadata
of existing followers. Because zookeeper needs time to clean up obsolete information
and receive new information, it may has 3s delay.

It is important to measure the recovery speed of our system when new follower
joins in system and recovers to the current state of the system. As shown in Figure
5.5, we first write 10,000 records into system, and then new follower joins in system

482 Z. Tan et al.

and recovers these 10,000 records. The size of write request is range from 512 to 8192
Bytes. The experiments show that the recovery of 10000*512 Bytes size records only
needs 8s and 10000*8192 only needs 15s.

 Fig. 5.5. Follower Recovery Time Fig. 5.6. Read Latency

5.6 Read Latency

Because the read operation is not related to the complicated protocol, we only need to
read data from local Leveldb engine, so the system read performance is basically the
same as Leveldb. As shown in Figure 5.6, we firstly write 500,000 records into
PaxStore, and then read the data based on random key. The records size ranges from
512 to 8192 Bytes. Results show that the read delay is only 150μs when records size
is 512 Bytes, and the read delay increases as the records size increases. Besides, we
test the read performance of the older. It is obvious that the read latency of PaxStore is
much smaller than the older regardless of how much the size of request is.

5.7 Summary and Result

From the above testing, it is clear that PaxStore has a high performance. The log
optimization technology improves the system performance significantly. Our protocol
overhead is small which increases 20% overhead over local operation. The write
performance is five times over Zookeeper. PaxStore also has a quick recovery speed.

6 Conclusion and Future Work

This paper designs and implements a consistency, high availability, distributed key
value storage system, called PaxStore. In the PaxStore, we optimize its log system,
circular lock-free queue and Paxos protocol. PaxStore has a high performance and
lower protocol overhead. The results show that Paxos-based protocol is a good tool to
implement this kind of system[15-16]. By using high available service module,
including Chubby and Zookeeper, to do leader election, it can not only improve

 PaxStore : A Distributed Key Value Storage System 483

system performance and avoid a single point of failure, but also simplify the design of
PaxStore. The practical experience of PaxStore has constructive value for other
high-availability storage system designs.

In future work, we will use write batching method[17] to improve disk utilization
and chained push method[18-19] to reduce the network overhead of leader.

Acknowledgments. This work is supported by 973 project 2011CB302301, the
National Basic Research 973 Program of China under Grant by National University’s
Special Research Fee (C2009m052, 2011QN031, 2012QN099), Changjiang innovative
group of Education of China No. IRT0725, is supported by Electronic Development
Found of Information Industry Ministry.

References

[1] Bolosky, W.J., Bradshaw, D., Haagens, R.B.: Paxos replicated state machines as the basis of
a high-performance data store. In: Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI 2011, p. 11. USENIX Association,
Berkeley (2011)

[2] Michael, M., Moreira, J.E., Shiloach, D.: Scale-up x Scale-out: A Case Study using
Nutch/Lucene. In: IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2007, pp. 1–8 (March 2007)

[3] Brewer, E.A.: Towards Robust Distributed Systems. In: PODC, p. 7 (2000)
[4] DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood, D.:

Implementation Techniques for Main Memory Database Systems. In: SIGMOD, pp. 1–8
(1984)

[5] Raz, Y.: The Dynamic Two Phase Commitment (D2PC) protocol. In: Vardi, M.Y., Gottlob,
G. (eds.) ICDT 1995. LNCS, vol. 893, pp. 162–176. Springer, Heidelberg (1995)

[6] Lamport, L.: Paxos Made Simple. ACM SIGACT News 32(4), 18–25 (2001)
[7] http://research.microsoft.com/users/lamport/

pubs/pubs.html#lamport-Paxos
[8] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available
Key-Value Store. In: SOSP, pp. 205–220 (2007)

[9] Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system. ACM
SIGOPS Operating Systems Review Archive 44(2), 35–40 (2010)

[10] Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-Free Coordination for
Internet-scale Systems. In: USENIX (2010)

[11] Chandra, T.D., Griesemer, R., Redstone, J.: Paxos Made Live: An Engineering Perspective.
In: PODC, pp. 398–407 (2007)

[12] Baker, J., et al.: Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In: Conf. on Innovative Data Systems Research (2011)

[13] Rao, J., Shekita, E.J., Tata, S.: Using Paxos to Build a Scalable, Consistent, and Highly
Available Datastore. In: VLDB (2011)

484 Z. Tan et al.

[14] Leveldb, A.: fast and lightweight key/value database library by Google,
http://code.google.com/p/leveldb/

[15] Adya, A., Bolosky, W.J., Cermak, G., et al.: Farsite: federated, available, and reliable
storage for an incompletely trusted environment. In: Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, OSDI 2002, pp. 1–14. ACM, New York
(2002)

[16] Coulon, C., Pacitti, E., Valduriez, P.: Consistency management for partial replication in a
high Performance database cluster. In: Proceedings of 11th International Conference on
Parallel and Distributed Systems, ICPADS 2005, vol. 815. IEEE, USA (2005)

[17] Santos, N., Schiper, A.: Tuning Paxos for High-Throughput with Batching and Pipelining.
In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds.) ICDCN 2012. LNCS, vol. 7129,
pp. 153–167. Springer, Heidelberg (2012)

[18] Marandi, P., Primi, M., Schiper, N., et al.: Ring Paxos: A high-throughput atomic broadcast
protocol. Dependable Systems and Networks 7129, 153–167 (2010)

[19] van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput and
availability. In: Proceedings of the 6th Conference on Symposium on Opearting Systems
Design and Implementation, OSDI 2004, vol. 8, USENIX Association, San Francisco
(2004)

Semi-automatic Composition of Data Layout

Transformations for Loop Vectorization�

Shixiong Xu1,2 and David Gregg1,2

1 Lero, The Irish Software Engineering Research Centre,
2 Software Tools Group, Department of Computer Science,

University of Dublin, Trinity College,
Dublin, Ireland

{xush,dgregg}@scss.tcd.ie

Abstract. In this paper we put forward an annotation system for speci-
fying a sequence of data layout transformations for loop vectorization. We
propose four basic primitives for data layout transformations that pro-
grammers can compose to achieve complex data layout transformations.
Our system automatically modifies all loops and other code operating
on the transformed arrays. In addition, we propose data layout aware
loop transformations to reduce the overhead of address computation and
help vectorization. Taking the Scalar Penta-diagonal (SP) solver, from
the NAS Parallel Benchmarks as a case study, we show that the pro-
grammer can achieve significant speedups using our annotations.

1 Introduction

Single instruction multiple data (SIMD) vector computational units are widely
available in processors from large supercomputers to energy-efficient embedded
systems. Programmers often depend on compilers to auto-vectorize key loops.
However, some program features can hinder the compilers from fully unleashing
the power of SIMD. One important feature is interleaved data access coming
from the data organized in the manner of an array of structures (AoS). In order
to efficiently deal with interleaved data access, vectorizing compilers generate
a sequence of data shuffling instructions (e.g. pshuffle, pblend in Intel SSE) for
data reorganization. As long as data is accessed in a non-linear pattern, there
will always be a cost of shuffling or gathering data for vectorization.

We observe that for many scientific computing applications with data in AoS,
different loops in the program often repeat the same patterns of data permuta-
tion. These patterns usually first do data permutations on a small portion of the
whole data needed before the computation in each loop iteration, and apply data
permutations on the results after the computation is done. One way of getting
rid of these repeated data permutation operations is to transform the layout

� This work was supported, in part, by Science Foundation Ireland grant 10/CE/I185
to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 485–496, 2014.
c© IFIP International Federation for Information Processing 2014

486 S. Xu and D. Gregg

of the data throughout the program. There are two main approaches to trans-
forming array layouts in programs: automatic transformation by the compiler,
or manual changes by the programmer.

Compilers face two major challenges when performing automatic data layout
transformations for vectorization. First, the compiler needs a very sophisticated
whole-program data dependency and pointer aliasing analysis to make sure
that the transformation is safe. Secondly, it is difficult for the compiler to choose
the best layout. It is perhaps easier for the programmer to determine whether
modifying the data layout is safe. But it is tedious and error-prone for pro-
grammers to change their code by hand. They may have to change the type
declarations and any code that operates on the array. This may involve mod-
ifications to many parts of the program, and may result in changes to array
indexing, and even the introduction of new statements and loops.

To allow compositions of data layout transformations and evaluate the perfor-
mance impact of data layout transformations on vectorization, in this paper we
put forward a new program annotation (using C language pragma) to enable pro-
grammers to specify a sequence of data layout transformations. This data layout
transformation pragma is implemented in the Cetus source-to-source compiler
framework [1]. Our prototype implementation currently supports static arrays
but can be easily extended to support dynamically allocated arrays using Sung
et al.’s approach [2]. Our compiler changes data type declarations for all modified
arrays, rewrites all functions that operate on modified arrays to change array in-
dexing, and introduces additional loops and other code. Similar to other pragma
annotation systems, such as OpenMP, we assume that where the programmer
requests a transformation, that transformation is safe.

In this paper, we make the following contributions:

1. We put forward a new C language pragma to allow programmers to specify
a sequence of data layout transformations. This language annotation serves
as a script to control data layout transformations and thus can be integrated
into a performance auto-tuning framework as an extra tuning dimension.

2. We implemented our proposed data layout transformation pragma in the
Cetus source-to-source compiler. To reduce the overhead of address compu-
tation and help vectorization, we introduce data layout aware loop transfor-
mations along with the data layout transformations.

3. Manual tuning of data layout transformations on the SP in the NAS Parallel
Benchmarks shows that with proper data layout transformations, significant
speedups are possible from better vectorization.

2 Language Support for Data Layout Transformations

2.1 Motivating Examples

In this section, we take the kernel of tezar() in the SP (Scalar Penta-diagonal),
one of the benchmarks in the NAS Parallel Benchmarks (NPB) to demonstrate

Data Layout Transformations for Vectorization 487

1 double us [KMAX][JMAXP][IMAXP];
2 double vs [KMAX][JMAXP][IMAXP];
3 double ws [KMAX][JMAXP][IMAXP];
4 double speed [KMAX][JMAXP][IMAXP];
5 double qs [KMAX][JMAXP][IMAXP];
6 double rhs [KMAX][JMAXP][IMAXP][5];
7 double u [KMAX][JMAXP][IMAXP][5];
8

9 for (k = 1; k <= nz2; k++) {
10 for (j = 1; j <= ny2; j++) {
11 for (i = 1; i <= nx2; i++) {
12 xvel = us[k][j][i];
13 yvel = vs[k][j][i];
14 zvel = ws[k][j][i];
15 ac = speed[k][j][i];
16 ac2u = ac*ac;
17 r1 = rhs[k][j][i][0];
18 r2 = rhs[k][j][i][1];
19 r3 = rhs[k][j][i][2];

20 r4 = rhs[k][j][i][3];
21 r5 = rhs[k][j][i][4];
22 uzik1 = u[k][j][i][0];
23 btuz = bt * uzik1;
24 t1 = btuz/ac * (r4 + r5);
25 t2 = r3 + t1;
26 t3 = btuz * (r4 - r5);
27 rhs[k][j][i][0] = t2;
28 rhs[k][j][i][1] = -uzik1*r2 +

xvel*t2;
29 rhs[k][j][i][2] = uzik1*r1 +

yvel*t2;
30 rhs[k][j][i][3] = zvel*t2 + t3;
31 rhs[k][j][i][4] =

uzik1*(-xvel*r2 + yvel*r1)
+ qs[k][j][i]*t2 +
c2iv*ac2u*t1 + zvel*t3;

32 } } }

Fig. 1. The kernel of function tzetar() in the SP of NPB

the advantage of data layout transformations for efficient loop vectorization.
This kernel conducts block-diagonal matrix-vector multiplication on the data.

There is a loop nest of depth three enclosing the main computations and all
these loops are parallel, shown in Fig. 1. When vectorizing the innermost parallel
loop i, compilers directly generate vector loads and stores for the data references
to array us, vs, ws. On the contrary, the inter-leaved data access exposed by
the references to array u and rhs may require compilers to apply suitable data
reorganization. Compilers can treat these inter-leaved loads as gather operations.
But the support for these gather operations in modern commodity processors is
still not good enough [3]. Instead, the compiler may utilize available data per-
mutation instructions to transform the inter-leaved data access into consecutive
data access. On the other hand, the cost of data permutation instructions in-
troduced by the data reorganization may not be well offset by the performance
benefits gained by vectorization on the computations.

Table 1. Data layout schemes and vectorization strategies

Description Declaration Vectorization Strategy

Pure AoS double u [KMAX][JMAXP][IMAXP][5]; Data permutation with stride 5

Split AoS (1:4)
double u1 [KMAX][JMAXP][IMAXP]; Consecutive data accesses
double u2 [KMAX][JMAXP][IMAXP][4]; Data permutation with stride 4

Split AoS (4:1)
double u1 [KMAX][JMAXP][IMAXP][4]; Data permutation with stride 4
double u2 [KMAX][JMAXP][IMAXP]; Consecutive data accesses

Split AoS (1:2:2)
double u1 [KMAX][JMAXP][IMAXP]; Consecutive data accesses
double u2 [KMAX][JMAXP][IMAXP][2]; Data permutation with stride 2
double u3 [KMAX][JMAXP][IMAXP][2]; Data permutation with stride 2

Split AoS (2:2:1)
double u1 [KMAX][JMAXP][IMAXP][2]; Data permutation with stride 2
double u2 [KMAX][JMAXP][IMAXP][2]; Consecutive data accesses
double u3 [KMAX][JMAXP][IMAXP]; Consecutive data accesses

Pure SoA double u [5][KMAX][JMAXP][IMAXP]; Consecutive data accesses

Hybrid SoA double u [KMAX][JMAXP][IMAXP/4][5][4]; Consecutive data accesses

488 S. Xu and D. Gregg

Instead of compilers generating data permutation instructions to reorganize
data, programmers can change the data layout into a form amenable to vec-
torization. Table 1 gives several possible data layout schemes of array u and
their related vectorizing strategies compilers may take. The vectorizing strate-
gies shown in Table 1 illustrate that some data layout transformations may sim-
plify the vectorization of interleaved data access. For instance, compilers deal
with the inter-leaved data access with stride 2 in Split AoS instead of stride 5
in Pure AoS, demonstrated in Section 4. Similarly, since the data references to
the array rhs are inter-leaved with stride 5, the array rhs could also have same
data layout transformation schemes as the array u.

2.2 Data Layout Transformation Pragmas

In this paper, we put forward a program annotation, array transform, a C lan-
guage pragma to express data layout transformations on the static arrays. The
syntax of this new pragma is shown in Fig. 2.

〈pragma〉 ::= #pragma array transform 〈array name〉 〈descriptor〉 〈actions〉

〈descriptor〉 ::= [〈identifier〉] 〈descriptor list〉

〈descriptor list〉 ::= [〈identifier〉] 〈descriptor list〉 | 〈empty〉

〈actions〉 ::= -> 〈pre actions〉 〈post actions〉

〈pre actions〉 ::= 〈strip mine〉 | 〈interchange〉 | 〈pad〉 | 〈pre actions〉 | 〈empty〉

〈post actions〉 ::= 〈peel〉 | 〈empty〉 | 〈post actions〉

〈strip mine〉 ::= STRIP MINE (〈identifier〉 , 〈stride size〉 , 〈identifier〉)

〈interchange〉 ::= INTERCHANGE (〈identifier〉, 〈identifier〉)

〈pad〉 ::= PAD (〈identifier〉, 〈pad size〉)

〈peel〉 ::= PEEL (〈identifier〉, 〈peel size〉)

Fig. 2. Syntax of the data layout transformation pragma

The array transform pragma consists of array descriptor and transform ac-
tions. The array descriptor gives a name to each array dimension, and these
names are used in the transform actions to record the related data layout trans-
formations. The transform actions present the basic data layout transformations.
In this paper, we define four basic data layout transformations, strip-mining,
interchange, pad, and peel. These terms for data layout transformations are bor-
rowed from the classic loop transformations [4].

The data storage of an array A can be viewed as a rectangular polyhedron.
In [5], formal indices I is introduced to describe the array index space

I = [i1, i2, . . . , in]
T (1)

Data Layout Transformations for Vectorization 489

where n is the dimension of the array A. The range of the formal indices I
describes the size of the array, or index space, as follows:

λ ≤ I < μ (2)

where the lower bound vector λ = [λ1, . . . , λn]
T and the upper bound vector

μ = [μ1, . . . , μn]
T are n × 1 vectors. The array index in C language can only

start from 0, therefore, the lower bound vector λ in this paper is 0. As each
array dimension is given a name by the array descriptor, these names can be
treated as the formal indices to the arrays.

In contrast to the loop transformations which transform the loop iteration
space formed by the loop indices, data layout transformations change the array
index space. Since the array index space is changed, the subscripts in references
to the array also have to be transformed accordingly.

The subscripts in a reference to an array in loops represent a function that
maps the values of the loop iteration space to the array index space and this
function is often expressed in the form of a memory access matrix [6]. Consider
a data reference to an M dimensional array in the loop nest of depth D, where
D and M do not need to match. The memory access pattern of the array in the
loop is represented as a memory access vector, m, which is a column vector of
size M starting from the index of the first dimension. The memory access vector
is then decomposed as an affine form:

m = Mi+ o (3)

where M is a memory access matrix whose size is M ×D, i is an iteration vector
of size D traversing from the outermost to the innermost loop, and o is an offset
vector that is a column vector of size M and determines the starting access point
in an array.

The semantics of the four data layout transformations are defined as follows:

Strip-mining: STRIP MINE (id1, stride size, id2)
This transformation splits the array dimension i indicated by the id1 into
tiles of size stride size and creates a new formal indices vector I′ and two
new dimension range vectors λ′ which is 0 and μ′. Intuitively, the strip-
mining splits the array dimension into two adjacent dimensions with di-
mension name id1 and id2, respectively. The new dimension id1 takes the
position of i and the new dimension id2 takes the position of i+1 in the I′.
μ′ is created by dividing μi into μh and μl, where μh = �μi/stride size�
and μl = stride size. For each reference with subscripts s to the target
array in the corresponding scope, new subscripts s′ for each reference are
created by dividing si into sh and sl, where sh = �si/stride size� and
sl = si mod stride size. Note that, when the original dimension size is not
a multiple of block size stride size, padding is introduced automatically at
dimension i.

Interchange: INTERCHANGE (id1, id2)
This transformation interchanges the array dimensions i, j indicated by id1

490 S. Xu and D. Gregg

and id2 and creates a new formal indices vector I′ and two new dimension
range vectors λ′ which is 0 and μ′. The upper bound vector μ′ is created by
interchanging μi and μj . For each reference with subscripts s to the target
array in the corresponding scope, new subscripts s′ for each reference are
created by interchange si and sj .

Pad: PAD (id, pad size)
This transformation pads the array dimension i indicated by id by the size
of |pad size| either from the beginning if the integer pad size is negative or
from the end if the integer pad size is positive. Two new dimension range
vectors λ′ and μ′ are created, where λ′ is 0 and μ′ is formed by increasing μi

by |pad size|. If the pad size is negative, for each reference with subscripts
s to the target array in the corresponding scope, new subscripts s′ for each
reference are created, where s′i = si + |pad size|.

Peel: PEEL (id, peel size)
This transformation peels the dimension i of an array A indicated by id by
reducing the dimension size by |peel size| and creates two arrays A1,A2.
Two pairs of range vectors (λ′

h,μ
′
h),(λ

′
l,μ

′
l) are created for resulting ar-

rays A1,A2, respectively, where λ′
h,λ

′
l are 0, and μ′

h,μ
′
l are as follows:

μ′
h =

{ |peel size| if peel size > 0
μi − |peel size| otherwise

μ′
l =

{ |peel size| if peel size < 0
μi − |peel size| otherwise

For each reference with subscripts s to the target array A in the correspond-
ing scope, new subscripts s′ are created by first choosing the right array, A1

if si is less than μi of array A1 or A2 otherwise; then new subscripts are
calculated as follows:

s′i =
{
si if refers to A1

si − μ′
hi otherwise

Note that, according to the semantics of array peeling, the subscripts in
the dimension i of all the references to the array A should be compile-time
constants. As the array peeling transformations can be chained together,
in this case, all these chained array peeling actions should apply on the
same array dimension. The input to the next array peeling transformation
is decided by the current peeling size. If the current peeling size is positive,
which means the target array dimension is peeled off from the beginning,
the remaining array A2 will be the input for the next array peeling action.
Otherwise, the target array dimension is peeled off from the end and thus
the remaining array A1 will be the input for the next array peeling action,
demonstrated by the Split AoS in Table 2.

The four data layout transformations are classified into two classes, pre-action
and post-action. The post-action means all actions of this class can only be
added after all the actions in the class of pre-action. We define array peeling as a

Data Layout Transformations for Vectorization 491

member of the class post-action because we observe that for vectorization, array
peeling is mainly used to split one array dimension for the data alignment or
making the size of the array dimension power-of-two.

2.3 Composition of Data Layout Transformations

Our proposed array transform supports four primitive data layout transforma-
tions on static arrays. More complex data layout transformations can be achieved
by composing these primitive transformations.

Array permutation permutes several array dimensions according to a given
permutation command. It is more general than array interchange, which only
swaps two array dimensions indicated by the dimension names. It is intuitive
that array permutation can be decomposed as a sequence of array interchange
actions. For example, given an array: float A[SIZE I][SIZE J][SIZE K], where
i, j, k are the dimension names for each array dimension from the first to the
last dimension, the permutation command (k, i, j), which rearranges the array
dimensions indicated by i, j, k into a new order k, i, j, can be decomposed into
a sequence of array interchange transformations, (k, j)− > (i, k). Therefore,
programmers can put the array transform pragma as #pragma array transform

A[i][j][k] -> INTERCHANGE(k, j) -> INTERCHANGE(i, k)

Rectangular array tiling blocks array dimensions into tiles, and thus de-
composes the whole array into blocks which may help improve data locality.
Array tiling is a process of choosing suitable hyperplanes according to certain
conditions (e.g. data reuse distance) and partitioning the array data space with
these hyperplanes. Here, rectangular array tiling means the determined tiling
hyperplane for each array dimension is perpendicular to the axis of the array
dimension to be tiled. Similar to the loop tiling which is a combination of loop
strip-mining and loop interchange, rectangular array tiling can be decomposed
into a sequence of array strip-mining, and array interchange, which are the prim-
itive transformations defined in the array transform pragma.

As listed in Table 1 in Section 2.1, there are seven possible data layout trans-
formation schemes for the motivating example. With our proposed array trans-
form pragma, programmers can easily specify these data layout schemes by
giving varying sequences of valid transformation actions, as shown in Table 2.

3 Data Layout Aware Loop Transformations

Array strip-mining introduces modulus operations to get offsets in the resulting
tiles, illustrated in line 8 of Fig. 3. This kind of operation is not friendly to
vectorization, because it might hinder the native compiler from detecting possible
consecutive data access. Both the Intel C compiler and GCC are not able to
identify that the data references to the transformed array are consecutive. We
introduce data layout aware loop transformations to address this problem.

The modulus operations in the data references to the transformed arrays
are from the array strip-mining. Therefore, if the data references to the target

492 S. Xu and D. Gregg

-

Table 2. Data layout transformations assuming the array u is originally in the Pure

AoS

Description Declaration Data Layout Transformation

Pure AoS double u [KMAX][JMAXP][IMAXP][5]; NA

Split AoS (1:4)
double u1 [KMAX][JMAXP][IMAXP]; #pragma array transform u[i][j][k][m]->

PEEL(m, 1)double u2 [KMAX][JMAXP][IMAXP][4];

Split AoS (4:1)
double u1 [KMAX][JMAXP][IMAXP][4]; #pragma array transform u[i][j][k][m]->

PEEL(m, -1)double u2 [KMAX][JMAXP][IMAXP];

Split AoS (1:2:2)
double u1 [KMAX][JMAXP][IMAXP]; #pragma array transform u[i][j][k][m]->

PEEL(m, 1) -> PEEL(m, 2)double u2 [KMAX][JMAXP][IMAXP][2];
double u3 [KMAX][JMAXP][IMAXP][2];

Split AoS (2:2:1)
double u1 [KMAX][JMAXP][IMAXP][2]; #pragma array transform u[i][j][k][m]->

PEEL(m, 2) -> PEEL(m, 2)double u2 [KMAX][JMAXP][IMAXP][2];
double u3 [KMAX][JMAXP][IMAXP];

Pure SoA double u [5][KMAX][JMAXP][IMAXP];

#pragma array transform u[i][j][k][m]->
INTERCHANGE(m, k) ->
INTERCHANGE(m, j) ->
INTERCHANGE(m, i)

Hybrid AoS double u [KMAX][JMAXP][IMAXP/4][5][4];

#pragma u[i][j][k][m]->
STRIP MINE(k, 4, kk) ->
INTERCHANGE(m, kk)

array to be transformed are enclosed in loops, one easy way to get rid of the
modulus operations is to strip-mine the corresponding loops. In this paper we
only consider the case where all the references to the arrays to be transformed
have uniform effects to the surrounding loops. By which it means, if a loop is
strip-mined with stride δ according to one data reference, there should be no
other data references which require the same loop to be strip-mined with stride
other than δ.

Data layout aware loop strip-mining according to the array strip-mining may
include pre-loop peeling and post-loop peeling depending on whether the loop
iteration space and the data index space are aligned, as shown in line 12-14, 20-22
of Fig. 3. If a loop starts from 0 and ends at SIZE-1 and the corresponding array
dimension has a range from 0 to SIZE-1, in this case, the loop iteration space
and the data index space are aligned, otherwise they are unaligned. Regarding
the legality of these data layout aware loop peeling and loop strip-mining, they
are always legal because these loop transformations inherently will not change
the data dependencies across loop iterations.

In addition to the elimination of the modulus operations, the data layout
ware loop strip-mining helps solve the alignment issue in vectorization. If the
loop iteration space and the data index space are not aligned, pre-loop peeling
and post-loop peeling are applied according to the boundaries of tiles from the
array strip-mining. If the array starting address is aligned to 32 bytes and the
tile size is 32 bytes, for instance, all the boundaries of tiles will be aligned to 32
bytes as well. As a result, all the loads from these boundaries are aligned to 32
bytes.

Data Layout Transformations for Vectorization 493

1 #pragma ary[i] -> STRIP_MINING(i, 4)
2 float ary[32];
3 /* before transformation: */
4 for (i = 1; i < 31; i++)
5 ... = ary[i];
6 /* after transformation: */
7 for (i = 1; i < 31; i++)
8 ... = ary[i/4][i%4];
9

10 /* data layout aware
transformation:*/

11 /* from pre-loop peeling */
12 for (i = 0; i < 1; i++)
13 for (ii = 1; ii < 4; ii++)
14 ... = ary[i][ii];
15 /* from loop strip-mining */
16 for (i = 1; i < 7; i++)
17 for (ii = 0; ii < 4; ii++)
18 ... = ary[i][ii];
19 /* from post-loop peeling*/
20 for (i = 7; i < 8; i++)
21 for (ii = 0; ii < 3; ii++)
22 ... = ary[i][ii];

Fig. 3. Data layout aware loop trans-
formation.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Pure
 AoS

Spli
t A

oS
(1:

4)

Spli
t A

oS
(4:

1)

Spli
t A

oS
(1:

2:2
)

Spli
t A

oS
(2:

2:1
)

Pure
 SoA

Hyb
rid

 SoA

Se
co

nd
s

Performance of tzetar() in the SP Benchmark

Non-Vectorize Vectorize

Fig. 4. Performance of tzetar() with different
data layout transformations

4 Experimental Evaluation

4.1 Implementation

Our proposed array transform pragma is implemented in the Cetus source-to-
source C compiler. All the transform actions are processed and collected in the
pragma parsing phase. The actual data layout transformations and the data
layout aware loop optimizations are done as transform passes in the Cetus com-
piler. The high-level internal presentation in the Cetus compiler keeps the array
access close to the source code and thus simplifies the array transformation and
the substitution of subscripts in array references.

4.2 A Case Study: Data Layout Tuning for Loop Vectorization

In this section, we use the SP in the NAS Parallel Benchmarks [7] as a case
study to show the performance impact of data layout transformations upon loop
vectorization. SP is one of the simulated CFD applications that solve the dis-
cretized compressible Navier-Stokes equations. We choose the data set of Class
A in NPB, which has the size of 64× 64× 64 with 400 iterations. All the exper-
iments are conducted on an Intel Haswell platform (Intel Core i7-4770) running
the Ubuntu Linux 13.04. We choose the Intel C compiler 13.1.3 to compile both
the original and transformed code with the compiler option -march=core-avx2

-O3 -fno-alias for vectorization.

Performance of the Motivating Example. Fig. 4 gives the performance
of the motivating example in different data layouts shown in Table 2. The re-
sults show that the best vectorization performance is given by the data layout

494 S. Xu and D. Gregg

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Pure AoS Split
AoS(1:4)

Split
AoS(4:1)

Split
AoS(1:2:2)

Split
AoS(2:2:1)

Pure SoA Hybrid
SoA

M
O

P/
s

Performance of the SP Benchmark in Different Data
Layout Schemes

Non-Vectorize Vectorize

Fig. 5. Performance of the SP in different
data layouts

0

5

10

15

20

25

30

35

40

Single Precision Double Precision

Se
co

nd
s

Overall Performance of the SP Benchmark

non-vect-orig vec-orig non-vect-trans(hybrid SoA) vect-trans(hybrid SoA)

Fig. 6. Performance of the SP of the NAS
Parallel Benchmarks

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

rhs
x

rhs
y

rhs
z

res
t-r

hs

xso
lve

yso
vle

zso
lve

txi
nv

r
pin

vr
nin

vr
tze

tar

ad
d sp

ee
du

ps
 o

ve
r t

he
 n

on
-v

ec
t-t

ra
ns

Performance Breakdown of the Double Precision SP
Benchmark

non-vect-trans vect-trans

Fig. 7. Performance breakdown of the
double precision SP of the NAS Parallel
Benchmarks

0

0.5

1

1.5

2

2.5

rhs
x

rhs
y

rhs
z

res
t-r

hs

xso
lve

yso
vle

zso
lve

txi
nv

r
pin

vr
nin

vr
tze

tar

ad
d

sp
ee

du
ps

 o
ve

r t
he

 n
on

-v
ec

t-t
ra

ns

Performance Breakdown of the Single Precision SP
Benchmark

non-vect-trans vect-trans

Fig. 8. Performance breakdown of the
single precision SP of the NAS Parallel
Benchmarks

transformation Split 1:2:2. Splitting the last dimension of the array u (line
22 in Fig. 1) into three parts with sizes of 1, 2 and 2 helps the native compiler
vectorize the load of array u with a contiguous vector load. In the mean time,
data permutation instructions (e.g. vperm2f128, vunpacklpd) are used for the
data reorganization of the array rhs (line 17 - 21 in Fig. 1) instead of gather
instructions.

Overall Performance. We manually tune the data layout transformations for
the SP and constrain the search space of data layout transformations to the
ones mentioned in Table 2. Fig. 5 presents the overall performance of the SP
in different data layouts. Among the seven data layouts, the Hybrid SoA gives
the best overall performance. We also evaluated the performance of the single
precision SP with the data layout Hybrid SoA, where the strip-mining size is 8.
Compared to the double precision SP, the performance boost from vectorization
for the single precision SP is more significant, as depicted in Fig. 6.

Fig. 7 and Fig. 8 give the performance breakdown of the single precision and
double precision SP, respectively. With naive manual tuning of data layouts,
for the SP, vectorization on the transformed data can outperform the vector-
ization on the untransformed data by a factor of 1.8. The experimental results

Data Layout Transformations for Vectorization 495

demonstrate that it is necessary to introduce data layout tuning into existing
performance auto-tuning systems, in particular, for the better performance of
vectorization.

5 Related Work

Data layout transformations have primarily been applied to improving cache
locality and localizing memory accesses in nonuniform memory architectures
and clusters [8]. Maleki et al. [9] evaluated the vectorizing compilers and found
that manually changing the data layout is a valuable way to help compilers
to efficiently vectorize loops with non-unit stride accesses. However, compilers
rarely automatically perform the memory layout transformations.

Our work is mainly inspired by the the work on semi-automatic composition of
loop transformations for deep parallelism and memory hierarchies [10]. The main
approach of previous work is introducing a script language to control the loop
transformations upon the target loops. As far as we know, there are no such script
languages available to control the data layout transformations. Similar language
support for data layout transformations is designed mainly for optimizing data
locality, such as the align and distribute directives in HPF [11].

Henretty et al. [12] propose a novel data layout transformation, dimension-
lifted transposition, for stencil computations. This domain-specific technique
solves the memory stream alignment issue. On the contrary, our work is a gen-
eral solution to manual data layout transformations. Our work is greatly close to
the work by Sung [2], which presents a framework that enables automatic data
layout transformations for the structured grid codes in CUDA. Our work not
only supports more data layout transformations but also presents data layout
aware loop transformations for loop vectorization.

Jang et al.[6] optimize memory access into DRAM bursts (i.e. coalescing)
by gaining unit-stride accesses with data layout transformations in the case of
GPGPUs. Mey et al. [13] put forward a meta-data framework that allows both
programmers and tuning experts to specify architecture specific and domain
specific information for parallel-for loops of programs. The data layout transfor-
mations considered in this work are only AoS-to-SoA and SoA-to-AoS. Sinkarovs
et al. [14] also present a compiler driven approach towards automatically trans-
forming data layouts into a form that is suitable for vectorization. Their work is
studied in the case of a first-order functional array programming language while
our work focuses on the imperative C language.

6 Conclusion

In this paper, we put forward a new program annotation (using C language
pragma) to enable programmers to specify data layout transformations and im-
plemented it in the Cetus source-to-source compiler. In terms of loop vector-
ization, we introduce data layout ware loop transformations to help the native

496 S. Xu and D. Gregg

compilers to do better vectorization as well. The four primitive data layout trans-
formations presented are suitable to be composed into more complex data layout
transformations. The experimental results indicate that it is necessary to intro-
duce semi- or fully automatic tuning of data layout transformations in order to
help compilers to achieve better performance on vectorization.

References

1. Bae, H., Mustafa, D., et al.: The Cetus Source-to-Source Compiler Infrastructure:
Overview and Evaluation. Int. J. Parallel Program. 41, 753–767 (2013)

2. Sung, I.-J., Stratton, J.A., Hwu, W.-M.W.: Data Layout Transformation Exploiting
Memory-level Parallelism in Structured Grid Many-core Applications. In: Proceed-
ings of the 19th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT 2010 (2010)

3. Ramachandran, A., Vienne, J., et al.: Performance Evaluation of NAS Parallel
Benchmarks on Intel Xeon Phi. In: 2013 42nd International Conference onParallel
Processing (ICPP), pp. 736–743 (2013)

4. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler Transformations for High-
performance Computing. ACM Comput. Surv. 26, 345–420 (1994)

5. O’Boyle, M.F.P., Knijnenburg, P.M.W.: Non-singular Data Transformations: Def-
inition, Validity and Applications. In: Proceedings of the 11th International Con-
ference on Supercomputing, ICS 1997 (1997)

6. Jang, B., Mistry, P., et al.: Data Transformations Enabling Loop Vectorization
on Multithreaded Data Parallel Architectures. In: Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2010 (2010)

7. Bailey, D.H., Barszcz, E., et al.: The NAS Parallel Benchmarks. Technical report,
The International Journal of Supercomputer Applications (1991)

8. Kennedy, K., Kremer, U.: Automatic Data Layout for Distributed-memory Ma-
chines. ACM Trans. Program. Lang. Syst. 20, 869–916 (1998)

9. Maleki, S., Gao, Y., et al.: An Evaluation of Vectorizing Compilers. In: Proceedings
of the 2011 International Conference on Parallel Architectures and Compilation
Techniques, PACT 2011 (2011)

10. Girbal, S., Vasilache, N., et al.: Semi-automatic Composition of Loop Transforma-
tions for Deep Parallelism and Memory Hierarchies. Int. J. Parallel Program. 34,
261–317 (2006)

11. Rice University, CORPORATE:High Performance Fortran Language Specification.
SIGPLAN Fortran Forum 12 (1993)

12. Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J., Sadayap-
pan, P.: Data Layout Transformation for Stencil Computations on Short-Vector
SIMD Architectures. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 225–245.
Springer, Heidelberg (2011)

13. Majeti, D., Barik, R., Zhao, J., Grossman, M., Sarkar, V.: Compiler-Driven Data
Layout Transformation for Heterogeneous Platforms. In: an Mey, D., et al. (eds.)
Euro-Par 2013. LNCS, vol. 8374, pp. 188–197. Springer, Heidelberg (2014)

14. Sinkarovs, A., Scholz, S.B.: Semantics-Preserving Data Layout Transformations for
Improved Vectorisation. In: Proceedings of the 2nd ACM SIGPLAN Workshop on
Functional High-performance Computing, FHPC 2013 (2013)

Dynamic Stripe Management Mechanism

in Distributed File Systems

Jianwei Liao1,2, Guoqiang Xiao1, Xiaoyan Liu1, and Lingyu Zhu1

1 College of Computer and Information Science, Southwest University of China,
Beibei, Chongqing, P.R. China, 400715

2 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, Jiangsu, P.R. China, 210023

Abstract. This paper presents a novel mechanism to dynamically re-
size and re-distribute stripes on the storage servers in distributed file
systems. To put this mechanism to work, the information about logical
I/O access on the client side is piggybacked to physical I/O access on
the storage server side, for building the relationship between the logi-
cal I/O access and physical I/O access. Moreover, this newly presented
mechanism supports varying size of stripes on the storage servers to
obtain finer concurrency granularity on accessing to data stripes. As a
result, the mapping relationship can be utilized to direct stripe re-sizing
and re-distributing on the storage servers dynamically for better system
performance. Experimental results show that this stripe management
mechanism can reduce I/O response time and boost I/O data through-
put significantly for applications with complicated access patterns.

Keywords: Distributed/parallel file systems, Re-sizing and re-
distributing stripes, Varying stripe size, I/O optimization.

1 Introduction

The progresses in computation, storage and communication technologies firmly
speedup the development of complicated data processing applications that need
to deal with big data in distributed computing environments. According to the
EMC-IDC Digital Universe 2020 study, the amount of data created, replicated,
and consumed in China may grow 24-fold over 2012 and 2020 [1]. Thus, one par-
ticularly difficult challenge in this context is to find the right approach to store
and manage such huge amounts of data in a distributed or parallel computing
environment. The traditional centralized client/server model file systems have
been proven to be a barrier to scalable performance in distributed computing
systems [4]. Therefore, the file system deployed in a distributed computing en-
vironment is called a distributed file system, which is always employed to be a
backend storage system to offer I/O services for various sorts of data-intensive
applications. Actually, the distributed file system leverages multiple distributed
I/O devices by striping file data across the I/O nodes, and uses high aggregate
bandwidth to meet the growing I/O requirements of distributed scientific appli-
cations. In other words, a distributed file system is responsible for distributing

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 497–509, 2014.
c© IFIP International Federation for Information Processing 2014

498 J. Liao et al.

files on top of the involved storage devices, as well as managing the created files
and their attributes [5] and [6].

In general, the method describing the mapping from logical files to a phys-
ical layout of bytes on storage servers is called file data distribution function
or stripe distribution function. The generally adopted stripe distribution func-
tion is able to divide one-dimensional logical files into a set of non-overlapping
chunks of data, which are called stripes. To be specific, files are supposed to
be separated into many stripes, and then stored on the I/O nodes with certain
distribution methods. Normally, the stripes are stored in a round robin manner
on data files on the storage nodes [8], certain advanced distributed file systems,
such as GPFS [9], Lustre [10] and Google file system [11] employ this kind of
stripe distribution mechanism. It is well-known that data striping performance
is also influenced by the application’s I/O behavior, however, stripe distribution
does not adjust, even though the distribution goes against application’s access
modes [12]. For instance, the requirements of continuous media file servers differ
from the requirements of scientific applications that needs to process multi-
dimensional data but the traditional distributed file systems treat them without
any distinction [13]. From certain previous studies, it seems that the static dis-
tribution mechanism and the fixed stripe size configuration may perform poorly
in dealing with a substantial quantity of multi-dimensional data, which may be
read/written concurrently by a large number of clients [14].

In this paper, we propose a dynamic stripe management mechanism for dis-
tributed file systems, which enables varying stripe sizes, and supports stripe
re-sizing and re-distributing on the storage servers. As a result, the distributed
file systems can adjust stripe sizes and distribute stripes dynamically on the
basis of both applications’ access patterns and their corresponding disk access
patterns, to yield better I/O performance. This mechanism makes the following
two contributions:

1. Piggybacking applications’ access information to disk access patterns. Ap-
plications’ logical access information reveals the applications’ behavior on
the client side, but only the stripe access information on the storage servers
shows the real disk operations. In this stripe management mechanism, the
logical access information is supposed to be piggybacked with client I/O re-
quests for benefiting to mapping logical access to stripe access, but client
file systems do not need to keeping logs for logical access. The mapping re-
lationship can definitely do good to conduct I/O optimization strategies on
the storage server sides in the distributed file systems.

2. Re-sizing and re-distributing stripes dynamically on the storage servers. Ex-
cept for supporting varying size of stripes, the newly proposed mechanism is
able to perform dynamic stripe re-sizing and re-distributing on the storage
servers, according to the mapping relationship between logical access infor-
mation and physical access information. This indicates that it can boost I/O
data throughput, as well as reduce I/O response time through conducting
relevant I/O optimization strategies according to both logical and physical
access patterns.

Dynamic Stripe Management Mechanism in Distributed File Systems 499

The following paper is organized as follows: Section 2 describes certain back-
ground knowledge and related work that aims to improve I/O performance in
distributed file systems by employing different I/O optimization strategies. We
will demonstrate design details of the mechanism of dynamic stripe management
on the storage servers in Section 3. The evaluation methodology and relevant
results are illustrated in Section 4. Finally, we conclude this paper in Section 5.

2 Related Work

For the purpose of yielding attractive I/O performance in the distributed file
systems, much current work focuses on I/O optimization strategies for better
I/O performance by resorting to keeping and analyzing either logical I/O traces
or disk I/O traces. This section discusses some typical approaches, which are
mainly sorted as the following two categories:

I/O Optimization by using either logical I/O access information or
physical I/O access information. T. Madhyastha et al. [15] presented two
approaches to reveal various file access patterns and then employ these access
patterns to carry out the appropriate caching and prefetching optimization for
file systems. The main idea for characterizing access patterns is to use neural net-
works for short time scales and Hidden Markov models for long time scales. The
project IOSig+ allows users to classify the I/O access patterns of an application
in two steps: 1) obtain the trace of all the I/O operations of the application from
the view point of clients; 2) through the offline analysis on the trace to yield the
I/O Signature. Therefore, by using the I/O Signatures, which is the information
about logical I/O access patterns, certain optimization on I/O systems, such as
data pre-fetching, I/O scheduling, and cost model based data access optimiza-
tion can be conducted [14]. Besides, J. He et al. [23] have explored and classified
patterns of I/O within applications, thereby allowing powerful I/O optimization
strategies including pattern-aware prefetching to enhance I/O performance.

There are also many studies about the analysis of access patterns on disk
I/O traces. Z. Li and Y. Zhou first investigated the block correlation in the
storage servers by employing data mine techniques, to benefit to I/O optimiza-
tion in servers [16] and [17]. S. Narayan and J. Chandy [18] researched disk I/O
traffics under different workloads and different file systems, and they declared
the modeling information about physical I/O operations can contribute to I/O
optimization tactics for better system performance [19]. In [20], an automatic
locality-improving storage has been presented, which automatically reorganizes
selected disk blocks based on the dynamic reference stream to boost effective
storage performance. After that, DiskSeen has been presented that supports to
perform prefetching directly at the level of disk layout [21]. H. Song et al [22]
have presented a server-side I/O collection mechanism to coordinate file servers
for serving one application at a time to decrease the completion time.

Intelligently setting stripe size in file systems. H. Simitci [24] proposed
an adaptive mechanism to set the size of striping unit according to the system’s

500 J. Liao et al.

state. To be specific, the size of stripes can be determined on the basis of some pa-
rameters including the request rate, the request size, the network flow, and disk
speed. M. Medina et al. [13] proposed a self-tuning approach for automatically
determining and refining the file system’s striping parameters based on appli-
cation access patterns. In other words, this technique relies on the monitoring
of application I/O requests including their size, type, duration and inter-arrival
times etc., and then a proper analytic model is used to decide file striping pa-
rameters to improve overall file system performance. Therefore, the self-tuning
file systems usually operate correspondingly according to the principle that the
behavior of the file system must change to match the application. B. Dong et
al. [25] have proposed an analytic model to evaluate the performance of highly
concurrent data access, and then they have described how to apply this model to
determine the stripe size of a file. However, this adaptive disk striping approach
does not allow change the size of file stripe dynamically and various sizes of
stripes belonging to the file.

Besides, Triantafillou and Faloutsos [26] presented the mechanism of overlay
striping, which is a novel data distribution scheme, it stores several copies of a
file prior to its use, leveraging a number of different stripe widths. As a result,
the relevant replica with the most beneficial stripe width will be accessed. N.
Ali et al. have presented a fault-tolerant mechanism to distribute the parity
computation for generalized Cartesian data distributions on the storage servers.
Actually, in [12], we have proposed a self-tuning storage system that supports
stripe movement among storage servers on the fly. But it requires the client file
system to record the logical I/O events, and the stripe size is fixed all the time.

It is true that logical access patterns on the application side may affect the
I/O performance on the storage server side, that is the reason certain file systems
enable self-tuning functionality for determining stripe size and stripe location,
according to logical access patterns. On the other hand, only the physical access
patterns can disclose the disk behaviors corresponding to logical access. How-
ever, the fact is that none of the mentioned techniques and tools support the
optimization strategy of supporting dynamic re-sizing and re-distributing stripes
by analyzing both logical I/O access patterns and their corresponding physical
access patterns in the distributed file systems. Therefore, our work addresses
that it is able to build the connection between logical I/O access and physical
I/O access; then help the storage servers to re-size and re-distribute the stripes,
as well as enable varying size of stripes, for better I/O performance.

3 Dynamic Re-sizing and Re-distributing stripes

In Section 2, we depicted that a major part of I/O tracing approaches pro-
posed by other researchers focus on the logical I/O access occurred on the client
file system side, which might be useful for affirming application’s I/O access
patterns [14]. Nevertheless, without relevant information about physical I/O ac-
cess, it is difficult to build the connection between the applications and the dis-
tributed file system for enhancing the I/O performance significantly through I/O

Dynamic Stripe Management Mechanism in Distributed File Systems 501

Time Block Info. Req. Size

Storage server ID Disk ID Strip ID Block No.

Logical Info. Physical Info.

cfs R/W inode File descriptor Offset Req. Size

Fig. 1. Logged information about logical access and the corresponding physical access

optimization on the storage servers. Therefore, this section describes the details
of the way to support varying size of stripes, and then enable dynamic re-sizing
and re-distributing stripes on the storage servers to advance I/O system’s per-
formance.

3.1 Piggybacking Logical Access Information to Servers

In this newly presented stripe management mechanism, understanding the map-
ping relationship between logical access and physical access is a critical precon-
dition to perform I/O optimization. Thus, for storage servers, it is necessary to
know the information about client file systems and applications. Although we
have proposed a mapping mechanism in our previous work [12], it requires the
client file systems to keep the track of logical access information, and then send
the tracing logs to the server side. To reduce the overhead resulted by client
logging in our previous work, we leverage a piggybacking mechanism, to transfer
related information from the client node to the storage servers for contributing to
construct the mapping relationship between logical access and physical access.
To put it from another angle, the client file system is responsible for keeping
extra information about the application, client file system and the logical access
information; after that, it piggybacks the extra information with relevant I/O
request, and sends them to the corresponding storage server. On the other hand,
the storage server is supposed to parse the request to separate piggybacked in-
formation and the real I/O request. Apart from forwarding the I/O request to
the low level file system, the storage server has to record the disk I/O access
with the information about the corresponding logical I/O access.

Briefly speaking, when sending a logical I/O request to the storage server,
the client file system piggybacks information about the client file systems and
the application. In this way, the storage servers can record disk I/O events with
associated client information, which plays a critical role for modeling I/O access
relationship, and then directing stripe optimization operations on the storage
servers dynamically.

502 J. Liao et al.

3.2 Mapping Access Patterns

As mentioned before, the client information is piggybacked to the storage servers,
then the storage servers are possible to record the disk I/O operations accompa-
nying with the information about relevant logical I/O events. Figure 1 demon-
strates the structure of each piece of logged information, which is stored on
the relevant storage server. The information about logical access includes inode
information, file descriptor, offset and requested size. On the other hand, the
information about the relevant physical access contains storage server ID, stripe
ID, block ID and requested size.

Client 1

Client 2

Server 1

Server 2

Server 3

Read Request

Write Request

Fig. 2. Mapping Example of logical I/Os and physical I/Os

After analyzing the recorded logs for a series of I/O operations, we can eas-
ily to obtain the relations between logical access and physical access. Figure 2
illustrates an example case about I/O visualization of both kinds of I/O access
information. In the figure, the Read request from Client 1 is reflected to Server 1,
so that the two relevant stripes on that server will be accessed sequentially, which
may damage access concurrency. In addition, the Write request from Client 2
is separately mapped to Server 2 and Server 3. From the visualization illustra-
tion between logical access and physical access, it is not difficult to issue I/O
optimization on the storage servers after understanding the shortcomings of the
current stripes distribution. For example, the Write request from Client 2 is
mapped to Server 2 and Server 3, which indicates that the two stripes should
be updated, as well as the replicas corresponding to these two stripes. If this
Write request is mapped to only one stripe (merging the involved two stripes),
the number of replica synchronization can be reduced to a half. That is why
we have done the work to support dynamically performing stripe optimization
according to the access patterns.

Dynamic Stripe Management Mechanism in Distributed File Systems 503

3.3 Re-sizing and Re-distributing Functions

This paper presents a stripe management mechanism that allows varying size
of stripes on storage servers on the basis of analysis of the mapping of access
patterns. In other words, this newly introduced mechanism makes it possible
that the stripes are possible to be re-sized and truncated dynamically for some
reason. Figure 3 (a) and (b) illustrate two cases about re-distributing an existing
stripe and creating a new stripe (i.e. truncating an existing stripe to generate a
new stripe) respectively.

Read to File

Client File Systems

Storage Servers

Stripe 1 on SS1 Stripe 2 on SS1

Re-distribute an existing stripe
[The existing stripe is re-distributed to another storage servers for
better concurrency read data throughput]

Stripe 2 on SS1

Read to File

Client File Systems

Storage Servers

Stripe 1 on SS1 Stripe 2 on SS2Stripe 2 on SS2

Read to Part 1 of
the File

Read to Part 2 of
the File

Client File Systems

Storage Servers

Read to Part 1 of
the File

Read to Part 2 of
the File

Client File Systems

Storage Servers

Stripr on SS1 Stripe on SS2

Stripe on SS1

Truncated Stripe on SS2New Stripe on SS2

Create a new stripe from an existing stripe
[The new stripe can be re-distributed to another storage server (SS)
for fine stripe granularity to conduct optimization operations.]

(a) Re-distributing stripe to other storage servers (b) Create a new stripe (i.e. Re-sizing the existing stripe)

CCreatte a new striipe ffrom an exiisttiing sttriipe
[The new stripe can be re-distributed to another storage server (SS)
for fine stripe granularity to conduct optimization operations.]

RRe-ddiisttriibbutte an exiisttiing ssttriipe
[The existing stripe is re-distributed to another storage servers for
better concurrency read data throughput]

Fig. 3. Re-distributing and Re-sizing stripes on the storage servers

Let us take Figure 3(b) as an instance, the first read operation (i.e. Read to
Part 1 of the File) is reflected to 2 stripes that stored in two different storage
servers (i.e. SS 1 and SS 2), the reason for this situation is due to application’s
specification and default round-robin stripe distribution function. In this case,
the first read request does damage to the second read request (i.e. Read to Part
2 of the File) that might be issued by another client file system in our example.
Because the first read needs to lock the whole stripe stored on SS 2, that means
the second write or read request should wait until obtain the lock to that stripe,
even though it does not read the contents that requested by the first read request.
To overcome this problem, this paper introduces a novel stripe management
approach, which supports varying size of stripe units, and enables dynamic re-
sizing, re-distributing the existing stripes. Therefore, the conflicted stripe stored
on the SS2 can be divided into 2 stripes, and the first read request does not need
to lock the stripe file, which is requested by the second read request. Without
doubt, after re-sizing and re-distributing operations, the metadata server should
be notified to update relevant metadata, e.g. stripe sizes and stripe locations.

504 J. Liao et al.

4 Experiments and Evaluation

4.1 Experimental Setup

Experimental Platform. One cluster and two LANs are used for conducting
the experiments, one active metadata server, 4 storage servers are deployed on
the 5 nodes of the cluster. Moreover, for emulating a distributed computing
environment, 6 client file systems are installed on a LAN that is connected with
the cluster by a 1 GigE Ethernet; another 6 client file systems are installed
on another LAN but with same node specifications, which is connected with
the cluster by a 100M Ethernet, and both LANs equipped with MPICH2-1.4.1.
Table 1 show the specifications of nodes on both of them.

Table 1. Specification of Nodes on the Cluster and the LANs

Cluster LANs

CPU 2xIntel(R) E5410 2.33G Intel(R) E5800 3.20G

Memory 1x4GB 1066MHz/DDR3 4GB DDR3-SDRAM

Disk 6x114GB 7200rpm SATA 500GB 7200rpm SATA

Network Intel 82598EB, 10GbE 1000Mb or 100 Mb

OS Ubuntu 13.10 Debian 6.0.4

Evaluation Counterparts. To demonstrate the effectiveness of our proposed
dynamic stripe management scheme, we have employed the conventional dis-
tributed file system and the self-tuning storage system, as comparison counter-
parts in our experiments:

– Dynamic Re-sizing and Re-distributing Storage (D2RS). The proposed mech-
anism has been implemented and applied in a prototype distributed file sys-
tem, which enables varying stripe sizes and dynamic stripe re-sizing.

– Conventional Self-Tuning Storage (CSTS). We implemented a self-tuning
storage system in our previous work [12], which supports certain preliminary
optimized I/O strategies, such as stripe migration on storage servers, but
without piggybacking mechanism and supporting for varying size stripes. As
a matter of fact, this work is the most related scheme of our proposed D2RS.

– Conventional Storage System (CSS). The storage servers are responsible for
all I/O operations normally, and the data stripes are distributed with the
normal round-robin pattern. That indicates no I/O tracing and no dynamic
stripe re-sizing and stripe re-distributing functionality.

Benchmarks. We selected two benchmarks to evaluate our proposed stripe
management approach and its comparison counterparts.

Dynamic Stripe Management Mechanism in Distributed File Systems 505

 45

normal_01 normal_04 normal_08 cancer_01 cancer_04 cancer_08 cancer_12 benign_01 benign_04 benign_08 bwc_01 bwc_02

C
om

pl
et

io
n

T
im

e
(S

ec
on

d)

Dynamical Re−sizing and Re−distributing Storage
Conventioanl Self−tuning Storage
Conventional Storage System

 0

 5

 10

 15

 20

 25

 30

 35

 40

Fig. 4. Completion Times for Running DDSM Sampled Volumes

– Digital Database for Screening Mammography (DDSM), which is a database
of digitized film-screen mammograms with associated ground truth and other
information. The purpose of this resource is to provide a large set of mam-
mograms in a digital format that may be used by researchers to emulate
medical image processing [2].

– MADbench2, which is an I/O benchmark derived from a real world appli-
cation analyzing massive cosmic microwave background radiation in the sky
from noisy pixelated datasets from satellites [3]. Since MADbench2 performs
large, contiguous mixed read and write patterns, it has become a popular
and often used benchmark in the parallel I/O community.

4.2 Experimental Results: Benefits and Overhead

In this section, we are expected to unveil the overhead brought by the scheme
of dynamic re-sizing and re-distributing, as well as the benefits brought by this
newly presented stripe management scheme. Thus, the following two sub-sections
explore both positive and negative aspects of the proposed scheme respectively.

Improvement on I/O Performance We employed the aforementioned two
application benchmarks to measure I/O responsiveness and data throughput
respectively to show the merits brought by our proposed mechanism. First, we
executed DDSM on the three storage systems, and recorded the time required for
executing all sub-benchmarks in DDSM. The relevant results are reported in Fig-
ure 4, and it is not difficult to know that all sub-benchmarks of DDSM completed
with the shortest times while it run on D2RS, because the computation times
of the sub-benchmarks are the same, but D2RS caused the least times for I/O
processing. For instance, when the sub-benchmark is cancer 08, D2RS yielded
more than 30% execution accelerating, compared with CSTS, which means D2RS
have better I/O responsiveness while processing multi-dimensional datasets.

506 J. Liao et al.

(a) Shared subtype(Non-replica) (b) Shared subtype(1-replica) (c) Shared subtype(2-replica)

(a) Unique subtype(Non-replica) (b) Unique subtype(1-replica) (c) Unique subtype(2-replica)

Fig. 5. MADbench2 Experimental Results (MPI, SYNC, 18KPIX, 16BIN)

Moreover, for the purpose of checking the improvement on data throughput by
adopting our proposed mechanism, we run MADbench2 benchmark, and set var-
ious number of replicas for each stripe to measure read/write data throughput.
Actually, in MADbench2, the function S only writes, the function W both reads
and writes, the function C only reads; so that, the sub-benchmarks are denoted
as S w, W w, W r, C r to show the different I/O operations in the different
functions. Figures 5 shows the experimental results of executing MADbench2
benchmark with Shared and Unique subtype when adopting different configura-
tion of replicas. In all sub-figures, X axis shows the names of sub-benchmarks in
MADBench2, while Y axis indicates I/O data rate, and the higher one is better.
From the results shown in the figure, we can safely make a conclusion, compared
with other two comparison counterparts, D2RS could potentially result in bet-
ter overall data throughput. Especially, while the number of replicas is becoming
larger, the improvement on data throughput is more attractive. This is because
re-sizing stripes and creating new independent stripes may reduce the update
synchronization overhead caused by write operations.

Overhead on Client and Storage Servers. After disclosing the positive ef-
fects brought by the newly proposed stripe management mechanism, it might
be interesting to unveil the negative aspects on I/O performance caused by this
mechanism. Table 2 shows the execution time and space overheads for perform-
ing stripe re-sizing and re-distributing dynamically on the storage servers, as
well as keeping the track of physical I/O access. The results show that this
newly proposed mechanism can effectively and practically guide re-sizing and
re-distributing stripes on the storage servers for different workloads with accept-
able overhead on CPU time and disk space. Because MADbench2 is a typical
I/O benchmark to test I/O performance of storage systems, more than 7.4%

Dynamic Stripe Management Mechanism in Distributed File Systems 507

time overhead on trace analyzing and re-sizing stripes on the storage servers.
But, for the compute-intensive DDSM application, our proposed mechanism
consumed not much time to yield preferable system performance. Namely, while
the workload is DDSM, the time required for keeping disk traces and perform-
ing dynamic stripe management is around 3.7% of total processing time. This
trend indicates that a major part of processing time can be used to tackle I/O
processing; therefore, we can understand that this server-side, dynamic stripe
management technique is practical for storage systems in distributed computing
environments.

Table 2. Overhead on Dynamic Stripe Management Mechanism

Benchmarks Consumed time (%) Space for traces (MB)

DDSM (Overall) 3.7 588.4
Madbench (Shared, Non-replica) 7.4 332.7
Madbench (Unique, Non-replica) 8.6 443.8

Besides, we also recorded the disk space utilized to save the physical I/O
traces, which are used to analyze access patterns for conducting potential opti-
mization. The relevant results are reported in the table as well. It is clear that
the space used for storing I/O traces is not so much, in contrast to the space
used for storing the input and output data required by the benchmarks. For
instance, DDSM benchmark deal with more than 60 GB data, but it uses less
than 600 MB space for saving I/O trace data.

5 Concluding Remarks

This paper presents a novel stripe management technique in distributed file sys-
tems, in which the stripe size is varying from each other, and the data stripes
can be re-sized and re-distributed dynamically according to the access patterns
of target applications. The evaluation experiments have illustrated the effective-
ness of this newly proposed mechanism, and the attractive experimental results
demonstrated that our introduced stripe management mechanism is practical
for storage systems in distributed computing environments. As a matter of fact,
we have implemented this approach into a prototype distributed file system to
verify the feasibility of the idea presented in this paper, it can be not only ap-
plied to other traditional distributed file systems, but also parallel file systems,
such as the Lustre file system, the Google file system, the GPFS file system, or
their extensions, as well.

Acknowledgment. This work was supported partially by ”National Natu-
ral Science Foundation of China (No. 61303038”), ”Natural Science Foundation
Project of CQ CSTC (No. CSTC2013JCYJA40050)”, and ”the Opening Project
of State Key Laboratory for Novel Software Technology (No. KFKT2014B17)”.

508 J. Liao et al.

References

1. Gantz, J., Reinsel, D.: The digital universe in 2020: Big Data, Bigger Digital Shad-
ows, Biggest Growth in the Far East, United States (2013),
http://www.emc.com/collateral/analyst-reports/

idc-digital-universe-united-states.pdf (accessed on October 3, 2013)

2. Digital database for screening mammography,
http://marathon.csee.usf.edu/Mammography/Database.html

(accessed on December 12, 2011)

3. MADbench2. borrill/MADbench2/, http://crd.lbl.gov/

4. Weil, S.A., Pollack, K.T., Brandt, S.A., Miller, E.L.: Dynamic metadata man-
agement for petabyte-scale file systems. In: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, SC 2014, pp. 4–15. IEEE Computer Society, Wash-
ington, DC (2004)

5. Nieuwejaar, N., Kotz, D.: The galley parallel file system. Parallel Computing 23(4-
5), 447–476 (1997)

6. Kunkel, J., Ludwig, T.: Performance evaluation of the pvfs2 architecture. In: Pro-
ceedings of 15th EUROMICRO International Conference on Parallel, Distributed
and Network-Based Processing (PDP 200), pp. 509–516 (2007)

7. Liao, J., Ishikawa, Y.: Partial replication of metadata to achieve high metadata
availability in parallel file systems. In: Proceedings of the 41st International Con-
ference on Parallel Processing, ICPP 2012, pp. 168–177 (2012)

8. Latham, R., Miller, N., Ross, R., Carns, P.: A Next- Generation Parallel File Sys-
tem for Linux Clusters. Linux World 2(1) (2004)

9. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clus-
ters. In: Proceedings of the 1st USENIX Conference on File and Storage Technolo-
gies, FAST 2002. USENIX Association, Berkeley (2002)

10. Schwan, P.: Lustre: Building a file system for 1,000-node clusters. In: Proceedings
of the Linux Symposium, p. 9 (2003)

11. Ghemawat, S., Gobioff, H., Leung, T.: The Google file system. ACM SIGOPS
Operating Systems Review 37(5), 29–43 (2003)

12. Liao, J.: Self-tuning optimization on storage servers in parallel file system. Journal
of Circuits, Systems and Computers 30(4), 21 pages (2014)

13. Medina, M.: A self-tuning disk striping system for parallel input/output. Disser-
tation. University of Illinois at Urbana-Champaign, USA (2007)

14. Byna, S., Chen, Y., Sun, X.-H., Thakur, R., Gropp, W.: Parallel i/o prefetching
using mpi file caching and i/o signatures. In: SC 2008, pp. 44:1-44:12 (2008)

15. Madhyastha, T.: Automatic Classification of Input/Output Acess Patterns. Dis-
sertation, Champaign, IL, USA (1997)

16. Li, Z., Chen, Z., Srinivasan, S., Zhou, Y.: C-Miner: Mining Block Correlations
in Storage Systems. In: Proceedings of the 3rd Conference on File and Storage
Technologies, FAST 2004 (2004)

17. Li, Z., Chen, Z., Zhou, Y.: Mining Block Correlations to Improve Storage Perfor-
mance. ACM Transactions on Storage 1(1), 213–245 (2005)

18. Narayan, S., Chandy, J.: Trace Based Analysis of File System Effects on Disk I/O.
In: Proceedings of 2004 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems, SPECTS 2004 (2004)

19. Narayan, S.: File System Optimization Using Block Reorganization Techniques.
Master of Science Thesis, University of Connecticut (2004)

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
http://marathon.csee.usf.edu/Mammography/Database.html
http://crd.lbl.gov/

Dynamic Stripe Management Mechanism in Distributed File Systems 509

20. Hsu, W., Smith, A., Young, H.: The automatic improvement of locality in storage
systems. ACM Trans. Comput. Syst. 23(4), 424–473 (2005)

21. Jiang, S., Ding, X., Xu, Y., Davis, K.: A Prefetching Scheme Exploiting both Data
Layout and Access History on Disk. ACM Transaction on Storage 9(3), Article 10,
23 p. (2013)

22. Song, H., Yin, Y., Sun, X., Thakur, R., Lang, S.: Server-side I/O coordination for
parallel file systems. In: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC 2011). ACM (2011)

23. He, J., Bent, J., Torres, A., Sun, X., et al.: I/O Acceleration with Pattern Detection.
In: Proceedings of the 22nd International ACM Symposium on High Performance
Parallel and Distributed Computing (HPDC 2013), pp. 26-35 (2013)

24. Simitci, H.: Adaptive Disk Striping for Parallel Input/Output. Dissertation,
Champaign (2000)

25. Dong, B., Li, X., Xiao, L., et al.: A New File-Specific Stripe Size Selection Method
for Highly Concurrent Data Access. In: Proceedings of 2012 ACM/IEEE 13th In-
ternational Conference on Grid Computing (GRID), pp. 22-30 (2012)

26. Triantafillou, P., Faloutsos, C.: Overlay striping and optimal parallel I/O for mod-
ern applications. Parallel Computing 24(1), 21–43 (1998) Special Issue on Appli-
cations: Parallel Data Servers and Applications (1998)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 510–521, 2014.
© IFIP International Federation for Information Processing 2014

Accelerating the Reconstruction Process in Network
Coding Storage System by Leveraging Data Temperature

Kai Li and Yuhui Deng*

Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China
likai328@gmail.com, tyhdeng@jnu.edu.cn

Abstract. Over the past few years, network coding has been employed in data
reconstruction process of storage systems to minimize the recovery bandwidth.
However, the time consumption of the decoding operations incurs a significant
performance degradation. In this paper, we propose a data temperature-based
reconstruction optimization algorithm and integrate it into the reconstruction
process of a Network-Coding-Based File System (NCFS) which adopts
regenerating code as its storage coding scheme. We conduct extensive experiments
to evaluate the impacts on the data reconstruction process of regenerating codes.
The experimental results demonstrate that our method outperforms the
conventional approach both in reconstruction time, throughput and average
response time with up to 33.17%, 60.61%, 37.77% improvement, respectively.

1 Introduction

Distributed storage systems have been widely deployed in industry to provide massive
data storage service [1][2][3]. In such storage systems, data is allocated into a number
of nodes in a stripe manner which enhances read/write performance in parallel ways.
Since node failures are common [1], when a node storing encoded information fails,
in order to maintain the same level of reliability we need to create encoded
information at a new node. Therefore, redundancy must be introduced to reconstruct
data. The simplest redundancy method is replication, which places several copies of
same data in different nodes..

Erasure coding provides the same reliability as replication but requiring much less
storage space [4][5]. This technique departs one piece of data into d pieces and then
encodes them into n pieces (n>d), then stripe encoded data. Such that any d of them
are sufficient to reconstruct the original data. So, when we want to reconstruct a failed
node, at least k times size data must be read from surviving nodes to participate in the
decoding process, while in replication the repair of one replica needs that only one
other replica is read.

Dimakis [6] proposed Regenerating Codes that stem from the concept of network
coding [7] and minimize the repair traffic among storage nodes. They exploit the
optimal trade-off between storage cost and repair traffic, and there are two optimal
points. One optimal point refers to the minimum storage regenerating (MSR) codes,
which minimize the repair bandwidth subject to the condition that each node stores

* Corresponding author.

 Accelerating the Reconstruction Process in Network Coding Storage System 511

the minimum amount of data as in Reed-Solomon codes. Another optimal point is the
minimum bandwidth regenerating (MBR)codes, which allow each node to store more
data to further minimize the repair bandwidth. The construction of MBR codes is
found in [8], while that of MSR codes based on interference alignment is found in [9],
[10]. We focus on MBR codes in this paper.

Therefore, using minimum bandwidth regenerating (MBR) codes can improve the
performance of data recovery in case of node failure, while requiring less download
bandwidth than traditional replication and erasure coding. However, recent work [12]
has shown that regenerating codes takes too much computation overhead during data
reconstruction which significantly increases the reconstruction time. Meanwhile, the
time to rebuild a single disk has lengthened as the disk capacity far outpaces the disk
bandwidth. Furthermore, the longer the period of single disk repair takes, the higher
the possibility of a disk failure, which would probably lead to unrecoverable data loss.
Hence, accelerating the data reconstruction process is becoming a pressing problem.

In this paper, we propose a data temperature-based reconstruction optimization
algorithm in a network-coding-based file system, which uses data temperature to schedule
reconstruction sequence in node recovery process. The frequently accessed data is called
hot data, and the infrequently accessed data is determined as cold data. The hot data would
be reconstructed prior to the cold data during the reconstruction process. Since the user
request stream normally couple with the data rebuilding stream, we intend to reduce the
disk seek time and disk head shuttling, so as to improve the rebuilding performance. The
method is implemented atop network coding file system (NCFS) [11]. Extensive
experiments indicate that our approach significantly outperforms the existing reconstruction
schemes in terms of reconstruction time, throughput and average response time.

The rest of the paper proceeds as follows. Section 2 states background and
motivation, and Section 3 describes the design and implementation issues. Section 4
presents our experimental results. Section 5 concludes this paper.

2 Background and Motivation

2.1 Definitions

Maximum-Distance Separable Codes(MDS Codes): An MDS code can be defined
in the following way for storage: We can divide a file of size M into k blocks, each of
size M/k, encode them into n (n>k) encoded blocks and spread them to n nodes. Then,
the original file can be reconstructed by any k coded blocks. This mechanism is
optimal in terms of the redundancy–reliability tradeoff because k blocks, each of size
M/k, provide the minimum data for reconstructing the file, which is of size M. The
repair degree d is introduced for data repair, such that the repair for the lost blocks of
one failed node are achieved by connecting to d nodes to recover the lost blocks. Both
traditional storage codes RAID5 and RAID6 are MDS codes.

RAID5: In Fig. 1 (a), for special case n = 4, RAID5 is a (4,3) MDS code where n =
4, k = d = 3. RAID5 can tolerate at most a single node failure. In each segment, the
sole code block is generated by the bitwise XOR-summing of the k = n − 1 native
blocks. In reconstructing, the lost block can be rebuilt from the other n - 1 blocks in
the same segment via bitwise XOR-summing.

512 K. Li and Y. Deng

RAID6: In Fig. 1 (b), RAID6 is a (4,2) MDS code where n = 4, k = d = 2. RAID-6
can tolerate at most two node failures with two code blocks known as the P and Q
parities (corresponding to c1 and c2 in Fig.1). The P parity is generated by the bitwise
XOR-summing of the k = n − 2 native blocks similar to RAID5, while the Q parity is
generated by coefficient XOR-summing. In reconstruction, if single or double failures
happen, then each lost block can be repaired from the blocks of the same segment in
other surviving nodes.

Fig. 1. The data layout of RAID5, RAID6, and E-MBR code for the case n = 4

2.2 MBR Codes

MBR is optimal repair bandwidth efficiency. It attains one of the two extreme points of
the optimal Storage-Bandwidth Tradeoff curve [15] of regenerating codes. The tradeoff

curve are given by [19], where)
2

2
,

2

2
22 kkkd

B

kkkd

Bd
MBRMBR +−+−

=（），（ βα . When β

= 1, we have
2

)1(−−= kk
kdB and α = d.

Table 1. Parameters of a regeneration code

Parameters Descriptions

n number of storage nodes
B size of the source data to be stored, in terms of number of blocks
α storage capacity of each node, in terms of number of blocks
k the original file is recoverable from the data in any k nodes

d and β
on failure of a node, the replacement node connects to any d of the
existing nodes, downloading at most β blocks from each of them

dβ
reconstruct bandwidth, the total amount of data downloaded to
reconstruct a failed node

 Accelerating the Reconstruction Process in Network Coding Storage System 513

2.3 E-MBR Codes

In regenerating codes, there are generally three data repair approaches [13]: (i) exact
repair, which builds exactly the lost blocks in a new node, (ii) functional repair,
simply reconstructs a new block that combined with the existing ones still forms an
(n,k) MDS code, and (iii) a hybrid of both.

Dimakis[6] proposed regenerating codes. However, they gave only a theoretical
description of the codes without discussing implementation issues or computational
costs. Recently, some practical MSR codes [16] and exact MBR codes [14][15] are
proposed. Specifically, NCFS[11] implemented exact MBR (E-MBR) code [15] into
its system, along with RAID5, RAID6 coding schemes. In this paper, we focus on a
particular case where d = k = n−1 . For example, when n = 4 [Fig. 1 (c)2], specially,

according to the formula
2

)1(−−= kk
kdB , the number of total native blocks is

6
2

)1(=−−= kk
kdB . For each native block, we create a duplicate copy, so the

number of duplicate blocks in each segment is also 6 . According to formula α = d,
we have α = d = 3, which means each node stores 3 blocks. When a node fails, each
of living d = 3 contributes β = 1 block to reconstruct data on a new node.

Table 2. The Theoretical Overhead of RAID and E-MBR

Codes Storage Cost Reconstruction Traffic

RAID5 B/(1-1/n) B
RAID6 B/(1-2/n) B
E-MBR 2B 2B/n

Block allocation mechanism is shown as Fig. 1. We consider a segment of B native

blocks M0, M1,…MB-1 and their duplicate blocks M
——

0, M
——

1,…M
——

B-1. Thus, the total
number of blocks in one segment is 2B = n(n-1), which means each node stores (n-1)
blocks for each segment. There are n(n-1) fields for allocating if we regard it as a
matrix. For each block Mi, we search for a free field from top to bottom in a column-

by-column manner, starting from the leftmost column; for duplicate block M
——

i , we
search for a free field from left to right in a rowby-row manner, starting from the
topmost row. Until all blocks have been distributed.

To reconstruct the data in failed node, we note that each native block has a
duplicate copy, and the block and its copy are stored in two different nodes. Thus, for
each lost block, we retrieve its duplicate copy from another survival node and write it
to the new node. Note that based on the block allocation mechanism, each survival
node contributes exactly one block for each segment. The theoretical comparison of
storage cost and reconstruction traffic between RAID5, RAID6 and E-MBR is
presented in Table 2.

514 K. Li and Y. Deng

2.4 Motivation

On the one hand, most of the distributed storage systems switch to a recovery mode
after node failure to reconstruct data on a new node. On the other hand, systems
continue to serve I/O requests. So we have reconstruction data stream and user
request data stream contend the disk I/O simultaneously, which leads to frequent long
seeks to and from the different separate data districts. Another problem is that
regenerating codes take more computation than erasure codes [11][12], as a result, it
needs more time to reconstruct data. Based on the test results in NCFS from our
research, E-MBR suffers much more reconstruction time than either RAID5 or
RAID6. They are 1.326s/MB, 0.133s/MB, 0.159s/MB respectively.

We believe that scheduling reconstruction sequence with user access patterns is a
fundamental way to improve effectiveness of reconstruction process. The main idea is
to reconstruct the hot data prior to the cold data so as to relieve disk I/O contentions.
Tian et al. [17] proposed a popularity-based multi-threaded reconstruction
optimization algorithm (PRO) to optimize the reconstruction process deployed in
RAID-Structured Storage Systems by integrating the popularity and locality of
workloads into the reconstruction process. To the best of our knowledge, our method
is the first work that combines data temperature with the regenerating codes in
reconstruction process.

3 Design and Implementation

3.1 System Architecture

The proposed idea has to track data temperature in the node so that reconstruct thread
can conduct the repair sequence according to the temperature of each segment. In our
architecture, there are four modules (Fig. 2.). Two of them, Scheduler and
Taskexecuter, are inherent modules in NCFS. While the other two, Client and
Tracker, are added by us for data temperature tracing. Data streams are represented by
arrows with numbers in the Fig. 2. Streams 1,2 and 9,10 are user request data streams
and reconstruction data streams respectively.

Client: It sends I/O requests to the NCFS with user access pattern, which
implemented by using zipf distribution. Only read requests are considered in this
paper. If the request falls on the failed segment on the failed node, reconstruct the data
immediately and return it; otherwise, return the request data directly.

Tacker: Father process monitors I/O requests of Client to keeps track of access
frequency of each segment, and maintain a segment number for next reconstruction.
Child process communicates with Taskexecuter, conducts reconstruction sequence by
using data temperature.

 Accelerating the Reconstruction Process in Network Coding Storage System 515

Fig. 2. System Architecture

Data Reconstruction Process: When node failure occurs, NCFS starts Scheduler and
Taskexecuter. In the meantime, Client and Tracker begin to work. Scheduler receives
reconstruction parameters and schedules reconstruction task, then sends task
parameter struct to Taskexecuter telling it which task is going to be executed. Before
task begins, Taskexecuter obtains data temperature characteristic from Tracker, then
Taskexecuter launches reconstruction algorithm to rebuild data on the new node, until
all the data have been reconstructed. The two major algorithms are detailed as below:

Algorithm of Client:
while (1) {
 initiate req_disk, recon[];
offset = zipfDistribution() ;
if (req_disk != fail_disk) {

open(req_disk);
read(offset);}

else {if (recon[offset] == 1) {
 open(req_disk);
 read(offset);

good_req ++;}
else if (recon[offset] == 0) {
recover_mbr(fail_disk, new_disk);

 open(req_disk);
 read(offset);

bad_req ++;}}
if finish reconstruction, break; }

Algorithm of Tracker:
while (1) {
initiate hot_seg;
fpid = fork();
if (fpid == 0) { //Child process

while (1) {hot_seg = max (temp[]);
listen(taskexecuter_sd);
send (hot_seg);

 if finish reconstruction, break;}}

516 K. Li and Y. Deng

else if (fpid > 0) { //father process
recv (req_disk, offset);
segment = offset / mbr_segment_size;
temp [segment] ++;}

 if finish reconstruction, break;}

Fig. 3. An example of the reconstruction process of our method

Example: We describe our idea by Fig. 3, which shows a (4,3) E-MBR code and
failures node 0. After node 0 failed, client continue to access data from node 0, the
requests land up in different segments, which makes segment 1 the hottest zone,
segment 0 and segment 2 in node 0 are relatively cold. When reconstruction thread
starts, it selects segment 1 to rebuild data first. Inside segment 1, block rebuilding
shall be at sequence order by finding corresponding duplicate blocks and copying
them from other living nodes. In this case, reconstruction order should be segment
1:block 0 → segment 1:block 1 → segment 1:block 2 → segment 0:block 0 →
segment 0:block 1 → segment 0:block 2 → segment 2:block 0 → segment 2:block 1
→ segment 2:block 2.

3.2 Implementation Issues

Reconstruction Unit. Compare to the original approach reconstructing data block by
block, our method use segment as a reconstruction unit. Considering that the data in
the same segment are organized by the same allocation mechanism, it is more
computational saving to recover all blocks in a segment once at a time than to recover
each of them separately. On the other hand, spatial locality indicates that likelihood of
referencing a resource is higher if a resource near it was just referenced. So blocks in
the same segment would be very likely to be accessed by one request. Furthermore,
preserving the inherent sequentiality inside segment is more conform to the disk drive

 Accelerating the Reconstruction Process in Network Coding Storage System 517

I/O pattern which is at many times the bandwidth of random accesses. This will lead
to reduction of disk head rotations so as to save more reconstruction time.

4 System Evaluation

4.1 Experimental Settings

Our testbed is built on an open-source Network-Coding-Based Distributed File
System (NCFS) [11], which supports a specific regenerating coding scheme called
Exact Minimum Bandwidth Regenerating (E-MBR) codes [9]. We implement our
approach DTemp on NCFS in the reconstruction process of E-MBR exploiting data
temperature. The platform consists of 2.4GHz CPU, 2G DDR3 Memory, WDC
WD5000AADS-00S9B0 disk, CentOS release 6.3 (Final), and NCFS 1.2.1.

4.2 Workloads

User access pattern is usually in accord with Pareto principle. Therefore, we use Zipf’s
law to imitate the distribution of workload characteristic from client. The Zipf-like

distribution formula [18] depict this rule, given by ,)(αi
iNp

Ω= where =
−=Ω N

i
i

1
1)

1
α（ ,

α is a constant, which is in the range 0 < α ≤ 1. Let N be the total number of blocks in the
node. So Ω is also a constant, while PN(i) should be the conditional probability of the ith
block. For example, we have 10 blocks accessed by 10000 requests, then the Zipf-like
distribution is shown in Figure 5. When α = 1, block 0 and block 1 receive 7369 read
requests while the other 8 blocks receive 2631 requests in total, which almost conform to
the 80-20 rule.

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

Block id

 0.2
 0.4
 0.6
 0.8
 1

A
cc

es
s

tim
es

Fig. 4. Evaluate different alpha on Zipf-like access distribution

4.3 Performance Evaluation

We are mainly interested in the metric of reconstruction performance including
Reconstruction time, throughput and average response time. We obtain the
experimental results as follows. We write 100MB of data into each node via NCFS
using E-MBR. We disable one of the nodes in the array to make a single node failure.
We then perform the recovery operation by starting reconstruction thread, that is,

518 K. Li and Y. Deng

reading data from surviving disks, reconstructing data, and writing data to a new
node. In the meantime, client loads requests on the NCFS with the Zipf-like
distribution workload mentioned above. Each result is the average value of at least
three times experimental evaluation.

Impact of Alpha. The value of alpha indicates the dispersion degree of frequent
access location. As we can see from Fig. 4. The lager the value of alpha is, the more
centralized the hot data are. Apparently, the centralization of hot data is beneficial for
data retrieval by reconstruction data stream and user access data stream
simultaneously during the reconstruction process. The results show that DTemp
perform over E-MBR at all alpha value in reconstruction time, throughput and
average response time. As alpha value grows, the advantage expands.

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ec

on
tr

uc
tio

n
tim

e(
s/

M
B

)

Alpha

 DTemp
 E-MBR

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr

ou
gh

pu
t(

M
B

/s
)

Alpha

 DTemp
 E-MBR

(a) Impact of alpha on reconstruction time (b) Impact of alpha on throughput

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

R
es

po
ns

e
tim

e(
m

s)

Alpha

 DTemp
 E-MBR

(c) Impact of alpha on average response time

Fig. 5. Impact of alpha. E-MBR is not affected by alpha. The E-MBR curve on the graph just
for comparison.

Impact of Block Size. We evaluate how different block sizes influence the
reconstruction performance because block sizes directly affect I/O efficiency. Fig. 6
(a) shows the reconstruction time (s/MB) for different block sizes using conventional
E-MBR and our method DTemp, respectively. We observe that as the block size
increases, the reconstruction time decreases. The reason is that given the same amount
of data, the block number decreases for a larger block size. In this way, the times of
getting duplicate node and duplicate block are reduced greatly, which highly saves the
computational cost. On the other side, average response time (Fig. 6 (c)) increase
because reconstruction time of each block lengthened.

 Accelerating the Reconstruction Process in Network Coding Storage System 519

4k 8k 16k 32k 64k
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ec

on
st

ru
ct

io
n

tim
e(

s/
M

B
)

Block size

 DTemp
 E-MBR

4k 8k 16k 32k 64k
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
hr

ou
gh

pu
t(

M
B

/s
)

Block size

 DTemp
 E-MBR

(a) Impact of block size on reconstruction time (b) Impact of block size on throughput

4k 8k 16k 32k 64k
0

5

10

15

20

25

30

35

R
es

po
ns

e
tim

e(
m

s)

Block size

 DTemp
 E-MBR

(c) Impact of block size on average response time

Fig. 6. Impact of block size

4 6 8 10 12

0.4

0.6

0.8

1.0

1.2

1.4

R
ec

on
st

ru
ct

io
n

tim
e(

s/
M

B
)

Node

 Dtemp
 E-MBR

4 6 8 10 12
0.0

0.3

0.6

0.9

1.2

1.5

1.8

T
hr

ou
gh

pu
t(

M
B

/s
)

Node

 Dtemp
 E-MBR

(a) Impact of node number on reconstruction time (b) Impact of node number on throughput

4 6 8 10 12
0

1

2

3

4

5

6

R
es

po
ns

e
tim

e(
m

s)

Node

 Dtemp
 E-MBR

(c) Impact of node number on average response time

Fig. 7. Impact of node number

520 K. Li and Y. Deng

Impact of Node Number. In this paper, we only discuss E-MBR the case of (n,d)
where d = n-1. According to the coding scheme of E-MBR, each segment contains
n(n-1) blocks, and every nodes own n-1 blocks of one segment while each of these n-
1 has a duplicate in other n-1 nodes respectively. When a node corrupts, all need to do
is to find the duplicate blocks and copy them to the replacement node to accomplish
reconstruction. As node number grows, segment size grows as well, but segment
number in one node will reduce. As a result, it leads to access reduction of duplicate
block read operation on one single node but gain more nodes contributing duplicate
blocks together in a parallel way. That’s why with node quantity grows,
reconstruction performance improves.

5 Conclusions and Future Work

In this paper, we exploit data temperature into the reconstruction process of
regenerating codes, which reconstruct the hot data prior to the cold data. We
implement our method, call DTemp, alongside with NCFS reconstruction mechanism.
Our experimental results prove that DTemp does better performance than existing E-
MBR reconstruction with up to with up to 33.17%, 60.61%, 37.77% improvement in
terms of reconstruction time, throughput and average response time. We believe that
there are still many directions for future research on our work. One direction is to
include more regenerating code schemes to evaluate reconstruction performance using
data temperature for horizontal comparison. Another idea is to investigate the impacts
of DTemp in distributed storage system with real workload.

Acknowledgments. This work is supported by the National Natural Science
Foundation (NSF) of China under grant (No.61272073, No. 61073064), the key
program of Natural Science Foundation of Guangdong Province (no.
S2013020012865), the Scientific Research Foundation for the Returned Overseas
Chinese Scholars (State Education Ministry), the Educational Commission of
Guangdong Province (No. 2012KJCX0013). The corresponding author of this paper
is Yuhui Deng.

References

1. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: Proc. of ACM SOSP
(December 2003)

2. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available
Key-Value Store. In: Proc. of ACM SOSP (2007)

3. Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y.,
Srivastav, S., Wu, J., Simitci, H., et al.: Windows Azure Storage: A Highly Available
Cloud Storage Service with Strong Consistency. In: Proc. of ACM SOSP (October 2011)

4. Rodrigues, R., Liskov, B.: High availability in DHTs: Erasure coding vs.replication. In:
IPTPS (2005)

 Accelerating the Reconstruction Process in Network Coding Storage System 521

5. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quantitative
comparison. In: IPTPS (2002)

6. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M., Ramchandran, K.: Network
Coding for Distributed Storage Systems. IEEE Trans. on Information Theory 56(9), 4539–
4551 (2010)

7. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network Information Flow. IEEE Trans.
on Information Theory 46(4), 1204–1216 (2000)

8. Rashmi, K., Shah, N., Kumar, P.: Optimal Exact-Regenerating Codes for Distributed
Storage at the MSR and MBR Points via a Product-Matrix Construction. IEEE Trans. on
Information Theory 57(8), 5227–5239 (2011)

9. Rashmi, K.V., Shah, N.B., Kumar, P.V., Ramchandran, K.: Explicit Construction of
Optimal Exact Regenerating Codes for Distributed Storage. In: Proc. of Allerton
Conference (2009)

10. Suh, C., Ramchandran, K.: Exact-Repair MDS Code Construction using Interference
Alignment. IEEE Trans. on Information Theory 57(3), 1425–1442 (2011)

11. Hu, Y., Yu, C.-M., Li, Y.-K., Lee, P.P.C., Lui, J.C.S.: NCFS: On the Practicality and
Extensibility of a Network-Coding-Based Distributed File System. In: Proc. of NetCod
(2011)

12. Duminuco, A., Biersack, E.: A Practical Study of Regenerating Codes for Peer-to-Peer
Backup Systems. In: Proc. of IEEE ICDCS 2009 (2009)

13. Dimakis, A.G., Ramchandran, K., Wu, Y., Suh, C.: A survey on network codes for
distributed storage. In: arXiv:1004.4438v1 [cs.IT] (2010)

14. Rashmi, K.V., Shah, N.B., Kumar, P.V.: Optimal exact-regenerating codes for distributed
storage at the msr and mbr points via a productmatrix construction. In: arXiv:1005.4178v1
[cs.IT] (2010)

15. Rashmi, K.V., Shah, N.B., Kumar, P.V., Ramchandran, K.: Explicit construction of
optimal exact regenerating codes for distributed storage. In: Proc. of Allerton Conference
(2009)

16. Suh, C., Ramchandran, K.: Exact-repair mds codes for distributed storage using
interference alignment. In: Proc. of IEEE ISIT (2010)

17. Tian, L., Feng, D., Jiang, H., Zhou, K., Zeng, L., Chen, J., Wang, Z., Song, Z.: PRO: A
Popularity-based Multi-threaded Reconstruction Optimization for RAID-Structured
Storage Systems. In: FAST 2007, San Jose, CA (February 2007)

18. Breslau, L.: Pei Cao, Li Fan, G. Phillips, S Shenker. Web Caching and Zipf-like
Distributions: Evidence and Implications. In: Proc. of IEEE INFORCOM (March 1999)

19. Wu, Y., Dimakis, A.G., Ramchandran, K.: Deterministic Regenerating codes for
distributed storage. In: Proc. Allerton Conference on Control, Computing and
Communication, Urbana-Champaign, IL (September 2007)

Speedup Critical Stage of Machine Learning

with Batch Scheduling in GPU

Yuan Gao, Rui Wang, Ning An, Yanjiang Wei, and Depei Qian

BeiHang University, XueYuan Road No.37 HaiDian District Beijing, China
rui.wang@jsi.buaa.edu.cn

Abstract. As a superior data analysis method, Machine Learning suf-
fers the bottleneck from limited computing capability for many years.
With the advent of numerous parallel computing hardwares, modern
GPU is becoming a promising carrier for the tasks of Machine Learn-
ing. In this paper, we propose an efficient GPU execution framework to
speedup the forward propagation process of convolution neural network.
By extending the convolution unrolling method to fit this batch mode,
we get a significant increase of throughput but very little overhead.

Keywords: convolution neural network, framework, GPU, batch
process.

1 Introduction

With the fast-development of computer hardware, GPU has become a type of
important computation carriers with dramatic speedup and better energy effi-
ciency. More and more computing-intensive applications with natural data paral-
lelism have been migrated to GPU environment. However, although the NVIDIA
CUDA can help programmers to develop faster applications, programming on
GPU is much more difficult than that on CPUs. Programmers need to determine
the timing of copying the data from the host to the GPU, the number of blocks
or threads that should be divided reasonably to take full advantage of computing
resources, and the size of data slice that should be allocated to each thread. It
is quite difficult to develop a framework for a beginner to write efficient GPU
programs in any purpose. However, research on high productivity method both
in coding and in execution for special domains is promising.

2 CNN GPU Execution Framework

In this section, we take the image recognition application as an example to
illustrate the operating mechanism of our framework.

2.1 Batch Process

Improving the GPU computing resource utilization is a good way to speed up
the forward propagation since the computing hardware resource of GPU is quite

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 522–525, 2014.
c© IFIP International Federation for Information Processing 2014

Speedup Critical Stage of Machine Learning with Batch Scheduling in GPU 523

rich and forward propagation cannot take full advantage of GPU’s ability if only
handle one small size image at a time. What we can do, however, is to try to
increase the throughput in a single task, which means the CNN processes several
images in one forward propagation. The figure 1 presents the proposed frame-
work which shows two of the most important modules: the input organization
module and the convolution module. The input organization module automati-
cally splices tiny input images into a larger one before CNN executes on GPU.

Host GPU

Convolution Sub-sampling Full conneted

Picture1

Picture2

Picture3

Fig. 1. Proposed GPU execution framework schematic

The convolution layer requires the most amount of the calculation and is also
the optimization emphasis of our framework while the traditional convolution
layer speeding up method involves unrolling convolution

In our framework, we extend the simple unfolding of a convolution technique
to a batch mode which enables the convolution layer to process multiple images
(input features) at the same time.

When the spliced image (input features) arrives at the convolution layer which
came from the host or last layer a split operation is necessary at first. As we
know, each layer of the neural network has its fixed input size that is obviously
the processing layer’s input size is 3 × 3 in the figure 2. According to this input
size, the framework will split the spliced images (input features) into the standard
size before unrolling convolution. The convolution operation works in a similar
way except the unrolled input features from different images need to be added to
the bottom of input feature matrix. As shown in the figure 2, the spliced image
(input features) will be divided into nine 3 × 3 input features and be unrolled
to a 12 × 12 input feature matrix and the kernel matrix is exactly same as
the traditional unrolling convolution. After multiplying input features matrix by
the kernel matrix, we get a 12 × 2 output feature matrix that is still able to
find the boundary of different images. Instead of convoluting the three images
in a row, the batch mode unrolls three images to one matrix and does only one
multiplication to get the output features.

524 Y. Gao et al.

 0 1 1 0 0 0 2 1 3 0 0 0
 1 2 0 1 0 1 1 1 0 2 0 2
 1 0 2 0 2 1 0 0 0 0 3 1
 0 1 0 1 1 1 0 3 0 2 1 2

 1 0 2 1 2 1 1 0 3 0 2 1
 0 3 1 1 1 0 0 3 0 1 1 3
 2 1 1 0 1 0 2 0 2 1 1 1
 1 1 0 1 0 3 0 1 1 3 1 3

 2 0 1 3 2 0 1 0 1 0 0 3
 0 0 3 1 0 1 0 1 0 0 3 0
 1 3 2 1 1 0 3 1 0 3 1 1
 3 1 1 3 0 1 1 2 3 0 1 3

 1 0
 2 1
 2 0
 1 1

 1 2
 1 1
 0 0
 1 1

 1 2
 0 2
 0 1
 1 0

* =

 8 8
 10 9
 9 8
 10 13

 13 14
 16 12
 10 10
 12 15

 13 9
 9 6
 15 14
 19 14

 00 11 11 00

 1 0 0
 0 3 0
 1 1 3

Img3

0
0
3

g

000
000
33

111 000
 3 0 1
 2 1 3
 1 1 3

Img2 2 0 1
 1 0 1
 3 1 2

Img3

1
1
2

g

 1111
1111
22222

222 000
 2 1 0
 1 0 3
 2 0 1

Img2 2 0 0
 1 3 1
 2 1 3

Img3

 9 6
 14 14

Img3

 13 9
 15 19

Img3

99 6
4

Imgg3

99 666666666666
111111 14 12

 10 15

Img21113 9
9

1113 9999999999
11119 13 16

 10 12

11Img2 1111133
11113 16

2

1
111133 11111111

1111 8 10
 9 10

Img1

 1 2
 2 1

 1 1
 0 1

 1 0
 0 1

 0 1
 0 1

 2 1
 0 1

 2 2
 1 0

1144 111122
155 8 9

 8 13

Img1

3333

2222 00000
11111

0000
 1 0 3
 2 1 1
 1 0 1

Img2 22 00

1

Immggg22

33
111

22 00

11

ggg

11 33
11

000
 0 1 2
 1 0 1
 2 0 1

Img1

 000
 111

22
11

 111
 000

22 000IImmggg22 22 00
 000000000
333333
111111

ggg

22222222222 111
 0 0 1
 2 1 1
 0 0 3

Img1

 000 000
 222 111

11 000Immg22 11 00
 111111111
33333
33333

Immg22

3333 000
 3 0 2
 0 0 2
 3 1 2

Img1

 333 000
 000 00

 11 22 00 11
1 0 2 0
111 222 000 11

 00 00 22 11
0 1 1 1

 33 00 00 00
0 2 0 2

 11 00 22 11 22 11 11 00 33 00 22 11
 000 333 111 111

2 1 1 0

 22 00 11 33 22 00 11 000
0 1 0 1

 11 00 00 333
0 0 3 0 00 00 33 11

1 3 2 1
00 00 33 11

Output
features

Convolution
kernels

Input
features

Input features matrix
Kernel
matrix

Output
feature matrix

Batch matrix
product

version of
convolution

Image1

Image2

Image3

Intuitive
convolution

Fig. 2. Example batch mode unrolling convolution

3 Evaluation

Figure 3 and compared the execution time between the two methods, and in
the experiment, the filter size is 5 and the number of output features is fixed
by 10. We, however, still take the image dimension and the splicing number as
variables.

Speedup Critical Stage of Machine Learning with Batch Scheduling in GPU 525

Fig. 3. Execution time for executing image convolution operations with varying image
dimensions on the GPU and the splicing number is 10

4 Conclusion

In this paper, we propose an efficient neural network framework on GPU plat-
forms. Our framework addresses the gap in abstraction between domain experts
and current GPU programming frameworks, and accelerates the process of CNN
forward propagation. The framework can organize the input data automatically
to make use of GPU resources as much as possible for better performance. We
demonstrate the advantage of our framework in each CNN phase with five exper-
iments. According to the power of GPU, framework can extremely increasing the
throughput of CNN. The optimization method that we adopt in the framework
doesn’t modify the structure of CNN or require training extra neurons, which
can combine with other optimization method to achieve better performance.

Acknowledgment. This research is supported by 863 Program of China un-
der grant 2012AA010902, and by the NSFC under grant 61133004, 61073011,
61202425, and Huawei company under grant No.YB2012120105.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 526–529, 2014.
© IFIP International Federation for Information Processing 2014

The New Territory of Lightweight Security
in a Cloud Computing Environment

Shu-Ching Wang1, Shih-Chi Tseng1, Hsin-Met Chuan2,
Kuo-Qin Yan1,*, and Szu-Hao Tsai1

1 Chaoyang University of Technology, Taiwan, R.O.C.
{scwang,s10314901,kqyan,s9914603}@cyut.edu.tw

2 Hsing-Kuo University, Taiwan, R.O.C.
hn88780752@yahoo.com.tw

Abstract. The cloud computing is an Internet-based resource sharing system in
which virtualized resources are provided over the Internet. Cloud computing
refers to a class of systems and applications that employ distributed resources
for use in various applications; these computing resources are utilized over a
network to facilitate the execution of tasks. However, cloud computing
resources are heterogeneous and dynamic, connecting a broad range of
resources. Thus, there are a large numbers of application and data center in the
cloud computing environment. Therefore, the security issues of authentication
and communication in application services and data center need to be
considered in the cloud computing environment

Result

In this study, two security methods for client user are presented. (1) Group Key
Authentication (GKA) is proposed for user to obtain the services from multiple
servers quickly. And. (2) Authentication and Authorization within Two Factors
(AATF) provides a more stringent authentication and authorization, and the security
of cloud computing can be enhanced.

In a cloud-computing environment, each cloud service provider provides an
authentication key to the user [3]. By using GKA, an authentication group key is
generated by combining a set of authentication keys for different service providers at
the same time. The generating steps of GKA are depicted in Fig. 1.

1. Group Key Req.: The user requests the Group Key.
2. ID Req.: AUTH Server requests the User’s ID for identification when the

server receives the Group Key Req.
3. ID Res.: User sends the account name and password to AUTH server to

identify user.
4. Auth. ACK (Success/Failure): AUTH Server sends a message for User to

notice the authentication is success or fail.
5. Services Sel.: If authentication is success, then User selects the services that

user needed. In addition, a requirement is sent to AUTH server.

* Corresponding author.

 The New Territory of Lightweight Security in a Cloud Computing Environment 527

6. Key Req.: After AUTH Server receives the service request, it will send the
Key Request and ID to Service Servers.

7. Key Res.: When Service Server receives the request and ID, an
authentication key is generated, and the key and ID are stored. In addition,
Service Server sends the authentication key to AUTH Server. When AUTH
Server receives the authentication key; then the Group Key will be
assembled and stored.

When the user authentication group key is established, a one-time identity
verification for several services is available to users. The format of Group Key =
(SERVICE1||SERVICE2||… ||SERVICEn||ID). If a new service requirement is
presented by user, the key of the certification of the new service will be given, and the
new authentication key is combined to the GK. Moreover, every authentication key is
generated by Service Server randomly.

AATF security mechanism for the user during authentication and authorization
process is used to strengthen the legitimacy of authenticating users and improve the
security of user accounts. The execution flow of AATF is shown in Fig. 2.

Step 1. The user generates a set of random numbers, and then a random number
RN with Request sent to the application server side.

Step 2. Application server-side receives a random number RN with Request, return
the SC to the user, and will direct users to the authentication server-side.

Step 3. Users will send UN, PWD and SC to the authentication server-side for
authenticating.

Step 4. When the authentication is successful, the authentication server-side will
sent the AuT and S to the user, if authentication fails then return a failure
message to the user.

Step 5. The receiving AuT and S by user will be retrieved in accordance with the
number of RN to generate sRN, and then S and sRN are sent to the
application server-side authentication.

Step 6. The compare action of authentication and authorization will be started
when application server received the S and sRN; the ApT is returned to
user when authentication and authorization is passing; if fail, the fail
message is returned.

Step 7. When Users receive the ApT, ApT and AuT are combined into a Token,
and then Token can be passed to the application for using the service.

Fig. 1. Group Key generating Fig. 2. The processes of AATF

528 S.-C. Wang et al.

There are a lot of services and users in the cloud computing environment, will be
carried out to verify the identity through authentication and authorization protocol [4].
Therefore, the authentication and authorization are always making in cloud computing
environments. When authentication and authorization requires a lot of steps and a
large number of parameters, data exchange will be increased and the amount of
resources needed to make authentication and authorization will be increased.
Therefore, the number of steps, the total number of parameters and the amount of data
exchanges will be used for comparison. Then, the authentication protocols proposed
in this study can be verified as the lightweight computing security protocols. Form
Table 1, the steps of certification, the total number of parameters and the amount of
data exchange of GKA by AATF are less than OAuth [1] and the SAML[1].

Table 1. The comparisons with OAuth and SAML

 Step (times) Parameter Data Exchange
OAuth 10 11 30/time
SAML 8 12 14/time

GKA 7 4 8/time
AATF 7 11 13/time

Overall, our proposed lightweight security mechanisms can provide the security of
information and communication and authentication, without wasting computing
resources to enhance the security of cloud computing environment. Therefore, Group
Key Authentication (GKA) is used to provide the services that users can quickly
obtain multiple servers to improve security by reducing the transmission of secret
information in the cloud computing environment. GKA also can reduced the number
of users must be logged conversion services and waiting time. Authentication and
Authorization within Two Factors (AATF) in the cloud computing environment at
both ends of the server-side two-factor authentication through the authentication
server-side services can provide more stringent authentication and authorization in
order to verify the legitimacy of the identity of the user to enhance the cloud
computing security.

Cloud computing is a concept in distributed systems. It is currently used mainly in
business applications in which computers cooperate to perform a specific service
together. In addition, the Internet applications are continuously enhanced with
multimedia, and vigorous development of the device quickly occurs in the network
system. As network bandwidth and quality outstrip computer performance, various
communication and computing technologies previously regarded as being of different
domains can now be integrated, such as telecommunication, multimedia, information
technology, and construction simulation. Therefore, cloud computing is currently
used many commodity computers that can cooperate to perform a specific service
together [2]. Thus, applications associated with network integration have gradually
attracted considerable attention.

In a cloud-computing environment, users can access the operational capability
faster with Internet application, and the computer systems have the high stability to
handle the service requests from many users in the environment [5]. Today, a new
application service of operation system is emerged and it changes the user’s usage in
the past. Originally, the Internet infrastructure is continuous grow that many

 The New Territory of Lightweight Security in a Cloud Computing Environment 529

application services can be provided in the Internet. The reliability is improved in a
cloud computing by using the low-power hosts. In addition, cloud computing has
greatly encouraged distributed system design and application to support user-oriented
service applications. Furthermore, there are a large number of cloud applications and
data centers provided in the cloud computing environment, so the information and
communications, and authentication is one of the important security issue that must be
considered. In other words, the security is one of the most important aspects of cloud
computing as it ensures overall reliability and fluency. To ensure the cloud computing
is safety, a mechanism to ensure the security of information and communication is
thus necessary.

Therefore, Group Key Authentication (GKA) is used to provide the services that
users can quickly obtain multiple servers to improve security by reducing the
transmission of secret information in the cloud computing environment. GKA also
can reduced the number of users must be logged conversion services and waiting
time. Authentication and Authorization within Two Factors (AATF) in the cloud
computing environment at both ends of the server-side two-factor authentication
through the authentication server-side services can provide more stringent
authentication and authorization in order to verify the legitimacy of the identity of the
user to enhance the cloud computing security.

Through the above description, the proposed method can enhance the security in
the cloud-computing environment. According to the characteristics of cloud
computing, by using the proposed methods, the cost of resources can be reduced and
the quality of service can be improved. The proposed security mechanisms can meet
the cloud computing security step to ensure that users and service providers to enjoy
the security of cloud computing environment with the service provider.

Acknowledgments. This work was supported in part by the Ministry of Science and
Technology MOST 102-2221-E-324-008 and MOST 103-2221-E-324-025.

References

1. Almulla, S.A., Chan, Y.Y.: Cloud computing security management. In: the 2nd
International Engineering Systems Management and Its Application, pp. 1–7 (April 2010)

2. Bertram, S., Boniface, M., Surridge, M., Bricombe, N., Hall, M.M.: On-demand dynamic
security for risk-based secure collaboration in clouds. In: the 3rd IEEE Cloud Computing,
pp. 515–525 (July 2010)

3. Gong, Y., Ying, Z., Lin, M.: A survey of cloud computing. Lecture Notes in Electrical
Engineering, vol. 225, pp. 79–84 (2013)

4. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security issues in cloud
computing. In: The IEEE International Conference on Cloud Computing, pp. 109–116
(2009)

5. Ramgovind, S., Eloff, M.M., Smith, E.: The management of security in cloud computing.
In: The Information Security for South Africa (ISSA), pp. 1–7 (August 2010)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 530–533, 2014.
© IFIP International Federation for Information Processing 2014

DP: Dynamic Prepage in Postcopy Migration
 for Fixed-Size Data Load

Shuang Wu, Ce Yang, Jianhai Chen, Qinming He, and Bei Wang

College of Computer Science, Zhejiang University, Zheda Rd. 38, Hangzhou 310027, China
{catting,yvxiang,chenjh919,hqm,wangbei}@zju.edu.cn

Abstract. Postcopy migration is a mature technology in virtualization. However
the performance of postcopy is not stable. We find many memory intensive
loads having a high proportion of independent fixed-size data (FSD) cases. To
improve migration performance, we present DP: an algorithm which applies to
intelligently tackle FSD load during postcopy migration. We implement DP as
an online algorithm triggered by remote paging, and adjusting to prepage the
most appropriate amount of pages related to recent page fault records. DP also
has a threshold processing mechanism to prevent from noise which is derived
from load size fluctuation. The experimental results show that DP algorithm can
significantly reduce response time and implicit downtime in postcopy migra-
tion, with an high improvement on QoS.

1 Postcopy Migration

Postcopy migration[1,2] is one of the common methods in VM live migration. It
forces to move the running VM to target side, then fetches pages from source side
when page fault occurs, and pushes the remaining pages to target side at the same
time.

In this paper we target to improve migration performance by reducing the response
time for each page fault in postcopy migration, using a prepage method. Response
time is bottleneck for migration. It is the time waiting for fetching pages from source
side when page fault occurs. A proper prepage method can fetch a proper amount of
pages in advance, and reduce the response time for each case.

2 Fixed-Size Data

We build up the model for FSD load. It has many independent cases and every case
needs a certain amount of memory pages N to complete its work. If we fetch enough
pages (more than N), page fault will not occur during the current case.

In practical situations, some cases in FSD-like load need a different amount of
pages, which we called noises. Generalized FSD load should have a low NoiseRate.

There are many domains in real benchmark which can be magnified as fig.1. be-
low. These domains show the characteristic of FSD with some noises.

 DP: Dynamic Prepage in Postcopy Migration for Fixed-Size Data Load 531

Fig. 1. The FSD-like domains. Page fault addresses are placed in a narrow range.

3 Dynamic Prepage

The purpose of DP is to fetch the most suitable amount of pages before next page
fault in a noisy environment. We set a range for guessing from NMin to NMax, try to
include the best amount N. Every time we try to fetch an estimated value which called
NTest, we should decide which range it belongs to, and modify the limit value NMin
and NMax cautiously.

Step 1: We divide the guess result into two situations. If the current page fault ad-
dress is continuous with the pages we fetched the last time, then they belong to the
same case, expressed as (1) below. And the opposite situation expressed as (2).

Addrs
AddrsLast NLast

Addrs

=± ≠

(1)

(2)

A guessing result NTest is smaller than N or larger than N. The smaller one goes
into step 2, and the larger one jump into step 3.

Step 2: From step 1 we get the conclusion NTest < N. But now we cannot trust this
conclusion immediately. The modify of NMin should be very cautious, because we
need a reliable value to make sure the subsequent guess is not out of range.

We introduce a new array MinRecord[5] to save the recent five NTest, and MinHit
for the continuous times of going into step 2.

When MinHit reaches five, we choose the smallest value in MinRecord[5] as
NMin. If noises in record is smaller than N, they will not affect the correct conclusion.
Otherwise they must be larger than N. We avoid these noises by choosing the smallest
one in record. Only noises are continuous for five times can lead us to wrong conclu-
sion. Actually the rate of misguidance is related to NoiseRate and continuous times
we choose to refresh NMin as expression 3.

Ratemisguidance = NoiseRatecontinuous times. (3)

When continuous times is 5, we can get a low rate of misguidance about 3.2%,
even though NoiseRate is up to 50%. This makes the modify of NMin credible.

Then we jump into step 4.

532 S. Wu et al.

Step 3: Similar to step 2, we modify NMax cautiously. An array MaxRecord[5] to
keep records of the recent five NTest when it placed in the range between N and
NMax. MaxHit saves the continuous times of going into step 3. When MaxHit reaches
five we choose the largest one in MaxRecord[5]to be NMax.

Every time executing step 3, we should reset MinHit to zero. Similarly when start-
ing from step 2 we should reset MaxHit to zero.

Then the program jump into step 5.
Step 4: Our purpose is to rapidly narrow the gap between NMin and NMax, and al-

so correctly. So we adjust our guessing value NTest according to the current MinHit.
We fetch a smaller amount of pages when MinHit is close to the predetermined

threshold. Otherwise a large adjustment as equation 4.

2
lastNMax NTest

NLast
MinHit

−=
×

. (4)

NLast is the amount we fetch this time and as a parameter transferred to the
next round. NTestlast is the value last round we guessed. So that NTest can be calcu-
lated as equation 5.

lastNTest NTest NLast= + . (5)

Then we get the amount of pages and return to Step 1.
Step 5: This time we try to rapidly narrow the gap from the NMax side.
We fetch the amount of pages closer to NMax when MaxHit is close to the prede-

termined threshold. Otherwise a further address from NMax as equation 6.

2
last

last

NTest NMin
NTest NTest

MaxHit

−= −
×

. (6)

Then set the NLast equal to NTest and return to Step 1.
Strategy of guessing process is as fig. 2. below. MinHit and MaxHit decide the next

position of our guess. The purpose of recording hit times is to rapidly and reliably
modify the limit both minimum side and maximum side. Each time going into Step 4
or Step 5, the opposite hit times will reset to zero.

Fig. 2. The way adjusting NTest in both smaller side and larger side. Also the amount that we
fetch is relating to MinHit or MaxHit. In this figure we see the different position of next guess-
ing when MinHit = 1 and MinHit = 5. The same way that MaxHit works.

 DP: Dynamic Prepage in Postcopy Migration for Fixed-Size Data Load 533

The complexity of DP algorithm is O(N), N is for the rounds of page fault in the
whole migration.

4 Experimental Evaluation

We use simulation and benchmark ways to evaluate DP algorithm. In simulation ex-
periment DP algorithm works well with the deviation below 0.05 when noisy rate is
lower than 20 as fig.3. below.

Fig. 3. Noisy rate and the result of NMin/N and NMax/N after DP algrithm in simulation expe-
riment. Vertical axis shows the result of NMin and NMax, N is always set to be 1. Horizontal
axis means the noisy rate for one case.

We add DP algorithm into postcopy migration and test the new migration on
QEMU1.4 [3], Xeon CPU 2.13GHz, 16GB memory and gigabit network. In bench-
mark way we use STREAM [4] which is a FSD-like benchmark. And DP algorithm
can reduce 33% response time in benchmark test.

Acknowledgments. This research is partly supported by the key Science and Tech-
nology Innovation Team Fund of Zhejiang under Grant~(No.\ 2010R50041).

References

1. Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual machines.
ACM SIGOPS Operating Systems Review 43(3), 14–26 (2009)

2. Hirofuchi, T., Nakada, H., Itoh, S., et al.: Reactive consolidation of virtual machines
enabled by postcopy live migration. In: Proceedings of the 5th International Workshop on
Virtualization Technologies in Distributed Computing, pp. 11–18. ACM (2011)

3. McCalpin, J.D.: STREAM: Sustainable memory bandwidth in high performance computers.
Silicon Graphics Inc. (1995)

4. QEMU, http://www.qemu.org/

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 534–537, 2014.
© IFIP International Federation for Information Processing 2014

Capacity Region of Wireless Network Coding

Jun Zhang and Shu-Tao Xia

Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
zhangjun.zero@gmail.com, xiast@sz.tsinghua.edu.cn

Abstract. Network coding is a highly regarded technology for improving the
capacity of wireless networks. COPE-sys network coding is an easily
implemented and widely studied coding system. This paper studies the maximum
throughput that can be supported by COPE-sys network coding over a practical
CSMA/CA medium access control (MAC) protocol. Traditional method of
analyzing capacity is multi-commodity flow (MCF) formulation, which assumes
impractical centralized scheduling. We enhanced MCF formulation by taking
into account the collision overhead in the distributed CSMA/CA protocol, to
compute the maximum throughput. To the best of our knowledge, this paper is
the first rigorous theoretical study of the achievable capacity over a multi-hop
CSMA/CA based wireless network coding system.

1 Introduction

We develop a method to integrate CSMA/CA MAC analysis with the MCF
formulation. We enhance traditional MCF clique constraints by utilizing the maximum
normalized throughput. Our method can give a tighter upper bound of the network
coding throughput over the CSMA/CA MAC. We also give an achievable lower bound
of the network throughput by analyzing conflict within cliques and inter-cliques.

2 Capacity Region over CSMA/CA MAC

2.1 Throughput Analysis

The wireless network discussed in this paper is assumed to be a static, multihop
wireless network where all nodes are single-channel single-radio and all antennas are
omnidirectional. Let denote the transmission probability for each node in any time

slot. A time slot at the MAC layer could be an empty backoff time slot, a period
associated with successful transmission, or a period associated with collision [1]. The
length of a time slot equals to one physical time slot if the channel is idle, or the
packet transmission time if the channel is experiencing a successful transmission,
or the packet collision time if a collision happens. Let , , and denote the

probabilities of seeing an idle slot, a successful transmission slot, and a collision slot,
respectively. Let ε denote the number of native packets in an encoded transmission.

 Capacity Region of Wireless Network Coding 535

Let denote the payload size of a native packet and C the spectrum bandwidth. The
normalized throughput are expressed as ∑ 1 ε

(1)

We use a Markov chain to compute ε . To obtain the maximum channel utilization

and normalized throughput, we can determine according to 0. The

maximum normalized throughput can be computed as ∑ 1 1 11 (2)

2.2 Upper Bound

Suppose that there are k given commodities with pairs { , }, where s , t V are
source and destination for commodity x respectively. Let denote the set of -
flows. A k-flow is a sequence of flows f , f , … , f with f , x=1, 2, … , k.
The classic MCF formulation without considering the wireless interference is
expressed as [2]

max 1 (3)

, 1,2, … , , (4), (5)

A clique in NC network in the conflict graph is a set of vertices that mutually conflict
with each other. Note that a vertice in conflict graph in NC network may represent a
hyperarc. In a clique at most one hyperarc can transmit at a time. Suppose that there are
R maximal cliques in the conflict graph , denoted as 1, 2, … , , respectively. If a
hyperarc (i, J) within a maximal clique is allocated the transmission time of tiJ during
the whole clique transmission interval T, the upper bound of the maximum network
throughput can be solved by augmenting the basic MCF formulation with the clique
constraint (6) 1

, , |1, | 1, 2, … , (6)

Let denote the upper bound of the MCF throughput based on the clique
constraint. We have the following theorem about a tighter upper bound of the network
throughput over the CSMA/CA MAC.

536 J. Zhang and S.-T. Xia

Theorem 1. A tighter upper bound of the optimal throughput of a wireless NC network
based on a CSMA/CA MAC protocol is /|J|.

Proof: Since simultaneous transmissions will not be successful under the CSMA/CA
protocol within a clique, the maximum normalized throughput over a maximal clique is
upper-bounded by . Then the clique constraint under CSMA/CA MAC is now
expressed as 1

, ,, , 1, 2, … , (7)

If we define |J|, the new MCF formulation with the constraint of (7) is

then transformed back to the original clique-based MCF formulation assuming a
centralized scheduling (6). Therefore, the optimal throughput is /| |
2.3 CSMA/CA Area and CSMA/CA Clique

A circle with a diameter of is termed as a CSMA/CA area, where denote
interference range. Considering that we adopt the protocol interference model, we

define a CSMA/CA clique as follows: let denote the CSMA/CA area and

denote that node i is within the CSMA/CA area . The clique C consists of

hyperarcs satisfying that source node of the hyperarc is within or all the

destination nodes of the hyperarc are within . We have the following lemma
regarding the maximum normalized throughput over a CSMA/CA area and the
associated CSMA/CA clique (the proof is ignored due to the limit of space).

Lemma 1. The total normalized throughput over a CSMA/CA clique can be
transformed to that over the CSMA/CA area defining the clique, and vice versa. Thus,

the maximum normalized throughput over a CSMA/CA clique is

2.4 Lower Bound

The fundamental reason that the clique-based MCF formulation gives an upper bound,
which may not be achievable, is that the interference among the cliques in the multihop
context can not be described by the clique constraint. Considering inter-clique
interference over each clique, we have the following theorem about a lower bound of
the network throughput.

Theorem 2. For a uniform network, a lower bound of the optimal throughput over the

CSMA/CA MAC is , , where denotes the

interference range, denotes the area of the circle center at node i, i can be any node
in the network, and is the upper bound given in Theorem 1. Thus, the lower bound is

at least of the maximum capacity .

Proof: From lemma 1, w
clique C to the associated C
nodes are uniformly distribu

 is ρD , each node
Suppose node A transmi

of conflict, all the circles ce
be consider as one CSMA/
contained in this CSMS/Nei A , Then a lower bouρ⁄ . Considerin

achievable throughput of an

Fi

In a uniform network, a
same achievable throughpu
over a CSMA/CA area, with

ρD ρ max
Therefore, the total thr,

whole network, we have the

References

1. Bianchi, G.: Performance
IEEE J. Sel. Areas Commu

2. Zhou, J., Xia, S., Jiang, Y
Coding. IEICE Trans. Fu
(2013)

Capacity Region of Wireless Network Coding

we can transform the total throughput over a CSMA/
CSMA/CA area . Let D() denotes the area of
uted with a density of ρ, the number of nodes containedi can achieve the throughput of /ρD .
its to its neighbors. To ensure all destination nodes are f

entered at these destination nodes with radius of sho
/CA area, as shown in Fig. 1. Then the number of no
/CA area is ρ ρ , w
nd of the achievable throughput of the tagged node A
ng all the nodes contained in , a lower bound of

ny node in is ρ max⁄ .

ig. 1. Possible interference on a clique

all nodes have the same stochastic behavior, therefore
ut. Thus, the lower bound of the total achievable through
h inter-clique interference taken into account, is

max 2 2
ρ max

4

oughput over a CSMA/CA clique C is achievable, . Regarding the total throughput over

eorem 2.

analysis of the IEEE 802.11 distributed coordination funct
un. 18(3), 535–547 (2000)
., Zheng, H., Cui, L.: Maximum Multiflow in Wireless Netw
ndamental Theories for Communications E96-B(7), 1780–1

2

537

/CA
. If

d in

free

ould
odes w
A is

the

the
hput

(8)

e if

the

tion.

work
1790

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 538–541, 2014.
© IFIP International Federation for Information Processing 2014

Tacked Link List - An Improved Linked List
for Advance Resource Reservation

Li-bing Wu1,2, Jing Fan1, Lei Nie1,2, and Bing-yi Liu1

1 School of Computer, Wuhan University, Wuhan 430072, China
2 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

wu@whu.edu.cn

Abstract. Since advance resource reservation is a widely used mechanism in
distributed systems and high-performance networks, the optimization of its per-
formance has been greatly concerned. And the performance of the data structure
plays an important role for the overall performance of the advance resource res-
ervation. In this paper, the authors figured out the disadvantages in the existing
data structures used in advance resource reservation and proposed an improved
data structure called 'tacked list', to overcome these disadvantages. To demon-
strate the performance of this improved data structure, the authors made ma-
thematical analysis to explore the tradeoff between performance and cost. At
last, the result of the simulation experiments show that the improved data struc-
ture can highly improve the performance of the whole reservation system at the
starting up phase and still have a relatively good performance at the stable
phase.

1 Model

Admittedly, the linked list could solve the problem that the query operation needs to
traverse the data too many times in advance resource reservation. Based on the linked
list, the indexed link list could improve the locating operation by introduce the index
array and it has better performance than other data structures in advance resource
reservation which has already been proved in previous article [3].

However, the index linked list still has some disadvantages. At the start phase, the
index linked list needs to traverse backwards on each index to find the position of a
certain value if the index has no value before. To solve this problem, we try to elimi-
nate traversing from previous index point by adding a dummy node in the tacked link.
The topology of these two structures is shown in figure 1.

2 Performance Analysis

The tacked list utilizes the index array to locate the target node, so the overall perfor-
mance of tacked list is closely related to the size of the index array. Although a large
index size can significantly promote the locating speed, it also increases the difficulty

 Tacked Link List - An Improved Linked List for Advance Resource Reservation 539

of maintenance at the same time. We can figure out that the cost of each query opera-
tion match with formula 1.

() TtCt WRdtTRDCCost releasemmmnode 222 21 +

+
+++= (1)

Rm1 means the average time cost on traversal operation of each index node for lo-
cating the start point. Rm2 and Wm mean the cost on traversing and modifying the value
node. The Costrelease means the time of the memory release operation. T means the
interval between two index and t means the interval between two requests. d means
the average duration of the requests.

We can minimum the cost of each query operation by set an optimal interval be-
tween two index nodes.

3 Simulation

The following experiments runs on the Intel(R) Pentium(R) CPU G2020 @ 2.90GHz
dual-core CPU with 4GB memory. And the Operation System is Windows 7 Service
Pack 1 64bit. The test programs is written by C++ and compiled with MinGW in ec-
lipse. Since the main point of this paper is concentrated on the performance of the
data structure, all of the reservation requests are pre-generate requests. And the reser-
vation system will read them from the memory immediately to ignore the network
influence. The other details will be described before each experiment.

The difference between tacked list and indexed list are analyzed in this section. the
experiment contain the start-up performance test and the stable performance test.
From the experiment, we notice that the mainly improvement of the tacked list is the
performance during the start-up phase.

In the start-up performance test, we will record the processing time of the first 20
requests for these two data structures with different index size. From the analysis in
the previous part, the processing time has no correlation with the time limited by res-
ervation system, so the maximum of the reservation time is set to a relatively large
value, 1048576 (220). In this way, we can make the parameter T to change precisely
with the size of the index array. Furthermore, in order to get an accurate processing
time, the system generated 20000 random requests at first and these requests were
divided into 1000 groups. And the system also initialized 1000 instances of each data
structure in advance. Then the system inserted the requests of each group into each
instance of the data structure. After all the 1000 groups have been processed, the sys-
tem will record the total processing time. The interval between two requests and the
duration of every request are 4 time units. The results are shown in figure 2.

Since there is no backward search operation for the index nodes in the tacked list,
the processing time is relatively stable along with index size growth. However in the
indexed list, the processing time in the start-up phase increases linearly with the size
growth of the index array.

In the stable performance test, the system generated 100 thousands requests at the
beginning. To eliminate the influence of the start-up phase, the data structure will be

540 L.-b. Wu et al.

fully filled before recording the processing time. To fill the data structure, the system
will read a part of these requests until the time of the reservation system pass the res-
ervation limit. After the data structure is fully filled, the system will process all of the
100 thousands requests again and record the processing time. The interval between
two requests and the duration of them are the same as in the start-up performance test.
The result is shown in figure 3.

Since the operations of these two data structures are highly similar in the stable
phase, their performance with different index size is also highly similar. These are
reflected in figure 3 and their average processing time are 297.3ms for tacked list and
297.0ms for indexed list.

After the comparison with the indexed list, the final test is the system capacity test.
In this test we try to find the system capacity of the tacked list. In order to make the
results more intuitive, there will be some comparison tests among indexed list, tacked
list, time slot array and RRB+ tree. There are else some other data structures using for
advance resource reservation, but they has already been researched comparatively [3].

In this test, the system will generate 1 million requests in advance. The duration
range of these requests is from 30 seconds to 1800 seconds. The reservation time limit
is 432000 seconds (5 days) after the received time. To make every request be ac-
cepted, the quantity of resource in every request is set to 1 unit and the max resource
quantity is set to UINT_MAX. And the size of the index array is set to a relatively
high value, 108000, to fit the high-traffic situation. During the test, the system will
run two threads at the same time, one for reservation and one for recording.

From figure 4, we can find that the performance of the time slot array was very
stable, because the only influential factor is the average duration of all requests. On
the other hand, the performances of the other three data structures gradually decreased
over time. This is because these data structures have very simple structures after the
initialization. But with the requests filled in, their structures will become complex and
the performances decrease. This will continue until it achieves the balance point that
the old nodes become failed at the same speed of new nodes inserted.

Fig. 1. Topology of indexed list and tacked list

 Tacked Link List - An Improved Linked List for Advance Resource Reservation 541

Fig. 2. Start-up performance

Fig. 3. Stable performance

Fig. 4. System capacity test

4 Conclusion

After all of these analyses and experiment, we find that the tacked list has a much
better performance at the start-up phase than indexed list. And in the stable phase the
performance of tacked list is similar to the indexed list.

Acknowledgments. This work is supported by National Science Foundation of China
(No. 61170017, 61272112), Science & Technology Plan of Wuhan city (No.
2013010501010146.) and the Fundamental Research Funds for the Central University
(No. 2014211020202.)

References

1. Burchard, L.-O.: Analysis of data structures for admission control of advance reservation
requests. IEEE Transactions on Knowledge and Data Engineering 17(3), 413–424 (2005)

2. Wu, L., Yu, T., He, Y., Li, F.: Index linked list suited for resource reservation. Journal of
Wut (Information & Management Engineering) 33(6), 904–908 (2011) (in Chinese)

3. Yu, T.: Research of Data Structures and Algorithms on the Reservation of Grid Resource.
M.Sc. Thesis. Wuhan University, China (2012)

CFIO2: Overlapping Communications and I/O

with Computations Using RDMA Technology

Cheng Zhang, Xiaomeng Huang, Yong Hu, Shizhen Xu, Haohuan Fu,
and Guangwen Yang

Ministry of Education Key Laboratory for Earth System Modeling,
Center for Earth System Science, Tsinghua University, 100084,

and Joint Center for Global Change Studies, Beijing, 100875, China
zhangcheng12@mails.tsinghua.edu.cn

Abstract. The output data produced by numerical climate model sim-
ulations have increased greatly in complexity and size. The exploding
volume of climate data is becoming a challenge for climate scientists.
Our previous work, Climate Fast Input/Output (CFIO) library, imple-
mented a two-phase I/O method to overlap I/O with computations, and
achieved high throughput. In this paper, we present CFIO2, which can
overlap communications with computations using Remote Direct Mem-
ory Access(RDMA) technology. We design a simple communication inter-
actions model to implement asynchronous and concurrent data transfer.
The experimental results show that CFIO2 can provide higher through-
put than CFIO and can shorten the overall simulation time for climate
model significantly.

1 System Architecture

CFIO [1] [2] utilizes a two-phase I/O method to offload its I/O tasks. MPI
processes in CFIO are divided into two parts: I/O clients and I/O servers. When
using CFIO in climate models, the clients are assigned for computation, and
servers for I/O. After completion of several simulation steps, clients forward all
output data to servers, and continue their next simulation step immediately.
The I/O tasks are offload to servers, and servers execute I/O tasks by invoking
PnetCDF interface separately. Thus, CFIO can overlap I/O with computations.

The data transfer between clients and servers, which is called communication
phase as well in this paper, takes considerable time in overall simulation. The
data transfer method of CFIO is to call MPI interfaces of send and receive corre-
spondingly. It’s obviously a synchronous way so this phase can not be overlapped.
CFIO had also attempted to communicate asynchronously using multi-threads,
but great impair is encountered due to competition of resources including CPU
and network. In this work, our target is to overlap the communication phase
with the computation phase as well.

To eliminate communication overhead on client side, we introduce a RDMA
communication layer to CFIO, constructing CFIO2 as figure 1 illustrates. Us-
ing RDMA write/read operations, connected client and server could access the

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 542–545, 2014.
c© IFIP International Federation for Information Processing 2014

Overlapping Communications and I/O with Computations 543

Compute
Processes

I/O
Processes

PnetCDF

Parallel File System

RDMA Communication Layer

RDMA Communication Layer

I/O request

Buffer

Sender

CFIO
Client

Receiver

Output by PnetCDF

Buffer

CFIO
Server

①request

③ACK②data

......
Buffer

I/O request

Buffer

Sender

CFIO
Client

①request

③ACK②data

......

Fig. 1. The system architecture of CFIO2

memory of each other directly. What important is those access actions will not
interrupt the process or occupy the CPU of the peer side. So asynchronous com-
munication can be implemented.

Overlapping of communications and I/Owith computations can be achieved via
this asynchronous communication. Client just asynchronously posts I/O request
by writing it’s memory descriptor to server, and turns back to next computation
phase immediately, without waiting for the completion of later communication
and I/O. Server fetches output data from client’s memory according to that de-
scriptor, and acknowledges client about the completion of data transfer, both with
asynchronousRDMA operations. Therefore, communication phase and I/O phase
are both invisible at client’s view.

2 Communication Interactions

To support RDMA communications, two kinds of memory region are registered
at each process. One is used to buffer the output data, named data buffer.
Another one is used to record key addresses of data buffer, start address as an
example. We call this memory region as address buffer or descriptor of data
buffer.

Figure 2 illustrates the scenario of communication interactions between one
client and one server. Client (1) products some output data after one computa-
tion phase, which is stored in an area ranging from address used to address free
of data buffer; (2) updates address buffer using the key addresses of data buffer,
and importantly, changes flag to 1 ; (3) copies the content of its address buffer
to server’s address buffer with RDMA write; and (4) turns to next computation
phase immediately. Server (3) finds that flag of its address buffer is changed from
0 to 1, recognizing that there are output data prepared for I/O. Then, it (5)

544 C. Zhang et al.

CLIENT SERVER

0 7 15

DATA BUFFER

ADDR(flag=1, start=0, used=7, free=15)

ADDR(flag=1, start=0, used=7, free=15)

0 127 135

ADDR(flag=0, start=0, used=7, free=15)

ADDR(flag=0, start=0, used=7, free=15)

0 7 15 31

ADDR(flag=1, start=0, used=15, free=31)

ADDR(flag=1, start=0, used=15, free=31)

0 15 31

write
ADDR

write
ADDR

write
ADDR

read
DATA

①

②

③

④ ⑤

⑥

⑦

⑧

Fig. 2. An example of communication interactions between client and server

posts requests of RDMA read to get data from client according to the content
of address buffer. Once all output data is fetched or local data buffer is full, (6)
server updates its address buffer, changes its flag back to 0, and writes content of
address buffer to client. This address buffer describes which area of client’s data
buffer has been read. Client (7) updates its arguments of data buffer according
to newly updated address buffer, noticed the change of flag. It then (8) updates
address buffer and posts a write request again.

3 Results

We performed experiments on the Explore100 cluster of Tsinghua University.
Each cluster node contains 2 2.93GHz Intel Xeon X5670 6-core processers, and
32G or 48G main memory. Those nodes are interconnect with InfiniBand, which
provides a peak bandwidth of 40 Gb/s. The file system of Explore100 is Lustre,
which consists of 1 Meta-Data server(MDS) and 40 Object Storage
Targets(OST).

3.1 Write Performance

To measure the raw output performance, we tested CFIO2 with different pro-
portions of client and server. This test case contains 20 iterations, and in each
iteration the clients forward 3.2GB output data to servers. The number of clients
is fixed to 256.

Overlapping Communications and I/O with Computations 545

Figure 3 shows the write throughput of PnetCDF, CFIO, and CFIO2. The X-
axis stands for the number of processes that call PnetCDF interface to execute
parallel I/O. As expectation, write throughput of CFIO and CFIO2 are both
lower than PnetCDF. CFIO2 reaches its peak throughput of 1.09 GB/s when
running with 128 servers. CFIO2 Performs better than CFIO, because it takes
advantage of event-driven method and achieve higher throughput of communi-
cation.

3.2 Overlapping Evaluation

To confirm the advantage of overlapping communication with computation, we
imitated a climate model with typical I/O pattern. This experiment executes 20
iterations of computation and I/O. Each computation iteration costs 4.5 seconds
and produce 3.2GB output data. The number of servers is 64.

The result is illustrated in figure 4. PnetCDF takes more total time than
CFIO and CFIO2, because no overlapping occurs. CFIO can overlap I/O phase
with computation phase, so it outperforms PnetCDF significantly. The iteration
time of CFIO2 clients is about 91 seconds, which is very close to the pure com-
putation time. And on the server side, the total time for communication and
I/O of each iteration is less than 4.5 seconds. So, CFIO2 manages to overlap
the communication phase with computation phase. As to both the CFIO and
CFIO2, the gap of server and client is the data transfer time plus I/O time of
the last iteration.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 16 32 64 128 256

T
hr

ou
gh

pu
t (

M
B

/s
)

No. of servers

PnetCDF
CFIO

CFIO2

Fig. 3. I/O throughput

 0

 50

 100

 150

 200

 250

128 256 512 1024

T
im

e
(s

)

No. of clients

PnetCDF
CFIO server
CFIO client

CFIO2 server
CFIO2 client

Fig. 4. Overall simulation time

References

1. Wang, W., Huang, X., Fu, H., et al.: CFIO: A Fast I/O Library for Climate Models.
In: 2013 12th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 911–918. IEEE (2013)

2. Huang, X., et al.: A fast input/output library for high resolution climate models.
Geoscientific Model Development 7(1), 93–103 (2014)

Performance Analysis of End-to-End Services

in Virtualized Computing Environments�

Guofeng Yan1,2 and Yuxing Peng2

1 School of Computer and Communication, Hunan Institute of Engineering, China
2 Science and Technology on Parallel and Distributed Processing Laboratory,

National University of Defense Science and Technology, Changsha 410073, China
{gfyan,pengyuxing}@nudt.edu.cn

Abstract. In this paper, we present a novel stochastic analyzing model
for e2e virtualized cloud services using hierarchical Quasi-Birth Death
structures (QBDs). We divide the overall virtualized cloud services into
three sub-hierarchies, and then, analyze each individual sub-hierarchy
using QBDs. Our approach reduces the complexity of performance anal-
ysis. Our results are useful to prevent the cloud center from entering
unsafe operation, and also reveal practical insights into load balancing
and capacity planning for virtualized computing environments. . . .

1 Introduction

Theoretical analyses on cloud services mostly rely on extensive research in per-
formance evaluation of M/G/m queuing systems, as outlined in [1]. Using the
distribution of response time, researchers discover the relationship among the
maximal number of requests, the minimal service resources and the highest level
of services [2]. However, as solutions for distribution of response time and queue
length in M/G/m systems cannot be obtained in closed form, suitable approxi-
mations are sought. To ensure that the quality of service (QoS) perceived by end
clients is acceptable, in [3], the performance of cloud server farms with general
service time is analyzed. The researchers propose a general analytic model for
e2e performance of cloud services. However, the proposed model is limited to the
single arrival of requests and the start up delay of cold physical machines (PMs)
has not been captured. The effect of virtualization on e2e cloud QoS need to be
further studied based on these previous research.

2 System Model

We assume that L different servers, M distinct users, and N types of requests
for each user. A type-k request, Reqk, is specified a type-k VM-configuration

� This work was supported by the National 973 Basic Research Program of China
under Grant Number 2011CB302601, China Postdoctoral Science Foundation under
Grant Number 2013M542561, and Scientific Research Fund of Hunan Provincial
Education Department under Grant 14B040.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 546–549, 2014.
c© IFIP International Federation for Information Processing 2014

Performance Analysis of End-to-End Services 547

VMk, and VM i
k is the provisioning VMk on server i. Assume that a global

resource provisioning and deploying decision machine (RP&DDM) processes re-
quests on a FCFS principle in our system and each request arrives stochasti-
cally at RP&DDM, and we define the size of the request Reqk as |Reqk|. Let
S = {active, passive} be the state set of RP&DDM. In active, an arriving re-
quest can be served immediately; in passive, an arriving request can only be
processed after PMs are redeployed. Assume that the requests of user k arrive
according to a Poisson process with rate λk (λ1 = · · · = λM), each server main-
tains N different queues (i.e., qi1, qi2, · · · , qiN) for N different types of requests,
and the processing time of Reqk on each server is exponentially distributed with
parameter μk (μ1 = · · · = μN = μ).

3 QBDs Stochastic Model for Cloud Computing System

Let λ =
∑M

i=1 λi = Mλi and Qreq denote the finite queue of all requests.
We consider two state spaces: Λ and Λi

k. Λ = {Y (t), st} describes the gen-
eral characters of RP&DDM, where Y (t) = 0, 1, 2, · · · , Q denotes the number
of requests in Qreq, and st ∈ S refers to the state of RP&DDM at time t.
Λi
k = {(Y i

k (t), r
i
kj , s

i
t) : j = 1, 2, · · · , Q; rikj � 0; sit = 0, 1} captures the charac-

ters of type-k request on server i, where rikj , Y
i
k (t) and sit refer to the remaining

size of the jth type-k request on server i, the the number of requests in qik at time
t, and the current state of server i, respectively. Let st = 0 and st = 1 denote
that st is passive and active, respectively. Then, each state of Λ can be expressed
as a combination (Y (t), st). We compute the transition rates of the QBDs ac-
cording to [4]. Let the probabilities of RP&DDM being in active, and passive
at time τi be 1 − e−p(τi), and e−p(τi), respectively. Hence, we obtain the transi-
tion probabilities of RP&DDM from time τi to τi+1 from pΛ00 = e−p(τi)−p(τi+1),
pΛ01 = e−p(τi)− e−p(τi)−p(τi+1), pΛ11 = 1− e−p(τi)− e−p(τi+1) + e−p(τi)−p(τi+1), and
pΛ10 = e−p(τi+1) − e−p(τi)−p(τi+1).

For the state space Λi
k, let rikj(t) be the remaining request size of the jth

type-k request on server i at time t, and rik(t) the queue state of type-k request
on server i. Then, Y i

k (t) = {rik(t)}k,i is QBDs on Λi
k [1].

4 Performance Evaluation

Rejection Probability of Reqk. Let pfullreject and ppassivereject be the rejection
probabilities of Reqk due to Qreq full and no active VM-configuration,
respectively. Assume that s and π(Q,s) are the state of RP&DDM and
the stationary state probability of the first hierarchical QBDs, respec-
tively, 1

γpassive
is the mean searching delay to find a passive server,

πik(n, passive) and λik are the stationary state probability. We can ob-

tain pfullreject and ppassivereject from pfullreject = 1
N

∑
s∈{active,passive} π(Q,s) and

548 G. Yan and Y. Peng

ppassivereject =
∑L

i=0

∑Q
n=0

γpassive·1−πi
passive·πik(n,passive)

λik
. Then, the rejection proba-

bility preject is:

preject =
∑

s∈{active,passive}
π(Q,s)+

L∑

i=0

Q∑

n=0

γpassive · pipassive · πik(n, passive)

λik
(1)

We use simulations to evaluate the acceptance probability (i.e., 1 − preject).
Let L ∈ {50, 100, 150, 200} and M ∈ [50, 600] users. We carry out our simulation
with δ = 0.75, λk = 0.05, μ = 0.5, and 1/γpassive = 5. The experiment results
and the calculative results are shown in Fig. 1. From Fig. 1, the calculating
results of our analytical model and the simulation results are very similar. When
M > 350, the acceptance probabilities seriously decrease with the increasing of
M and it means that the system capacity of cloud computing is not enough for
more than 350 users. Furthermore, we find that the acceptance probabilities for
L = 200 are steady for all M and more than 0.95. These results show the benefits
of adding more servers are reflected by having higher acceptance probabilities of
user requests for a fixed μ and λk.

Fig. 1. Effective request acceptance probability of Reqk vs different number of users
with μ = 0.5 and λk = 0.05

E2e Response Delay. Let Tw denote the waiting time in the steady state,
and W (x) and W ∗(y) be the CDF of Tw and its LST, respectively. Let f(z)
be the generation function of Ql, and we can obtain f(z) = W ∗(λ(1 − z)). Let

z = 1 − y/λ and we have W ∗(y) =
∑k=L−1

k=0 π(k,s) +
∑k=2L

k=L π(k,s)(1 − y/λ)k−L

according to [1]. Hence, we get E[Tw] =
∑k=2L

k=L
(k−L)π(k,s)

λ .
Similarity, let Td and Te be the resource deploying delay and the mean request

executing time, respectively. Then, E[Td] and Te can be calculated by E[Td] =
1/γactive+pi

passive/γpassive

paccept
and Te =

∑N
k=1

λik(Lδpt
11+L(1−δ)pt

01)
λμk

, respectively, where

1/γactive and 1/γpassive are the mean search delay when server i being in states
active and passive. Therefore, the mean e2e delay of Reqk, Te2e, is:

Te2e = E[Tw] + E[Td] + E[Te] (2)

Performance Analysis of End-to-End Services 549

The calculating results and simulation results in Fig. 2 show increasing the
number of users will increase the response delay. For a small cloud server cluster
(for example, L < 50), increasing the number of user will increase rapidly the
response time of request. But for a large cloud server cluster (for example, L >
200), the response delay of request does not distinctly varies due to its enough
capacity. Based on these information, cloud computing systems can achieve an
more effective admission control policy to guarantee e2e cloud QoS.

Fig. 2. Mean response time vs different number of users with μ = 0.5 and λk = 0.05

5 Conclusion

We analyze the effect of virtualization on the IaaS cloud service quality. Our
model is flexible in terms of scalability and diversity of requests and cloud com-
puting clusters. However, we do not consider the remaining time of time slots
when a request is finished before the given time slot terminates. Therefore, how
to improve the precision of the analytical results is our further work.

References

1. Ma, B.N.W., Mark, J.W.: Approximation of the mean queue length of an M/G/c
queueing system. Operations Research 43, 158–165 (1998)

2. Yang, Y., Zhang, Y., Wang, A., et al.: Quantitative survivability evaluation of three
virtual machine-based server architectures. Journal of Network and Computer Ap-
plications 36, 781–790 (2013)

3. Khazaei, H., Mǐsić, J., MiMǐsić, V.B.: Performance analysis of cloud computing
centers using M/G/m/m+r queueing systems. IEEE Transactions on Parallel and
Distributed Systems 23(5), 936–943 (2012)

4. Yan, G.F., Wang, J.X., Chen, S.H.: Performance analysis for (X, S)-bottleneck cell
in large-scale wireless networks. Information Processing Letters 111, 267–277 (2011)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 550–554, 2014.
© IFIP International Federation for Information Processing 2014

Adopting Two Strategies to Ensure and Optimize
the Quality of Service in Linux

Shaohua Wan

School of Information and Safety Engineering, Zhongnan University of Economics and Law,
430073 Wuhan, China

shwanhust@gmail.com

Abstract. This paper presents a new access-density-based prefetching strategy
to improve prefetching for the access patterns, which have not been dealt with
in the current Linux read-ahead algorithm. At the same time, motivated by the
existing algorithms, we propose a hybrid and efficient replacement algorithm to
improve buffer cache performance. Firstly, we propose the following three
metrics to evaluate the above access patterns: reading file data backwards,
reading files in a stride way (leaving holes between two adjacent references),
alternating references between multiple file regions and reading files randomly.
Secondly, having explored the eight representative recency/frequency-based
buffer cache replacement algorithms, we carry on a hybrid replacement
algorithm. Finally, these experimental results demonstrate the importance for
buffer cache research to take both file system prefetching and replacement
algorithm into consideration.

1 Results

Prefetching locates between page cache and disk buffer. According to [1], prefetching
has significant impact on the performance of page cache replacement algorithms,
while buffer cache replacement is critical to file system performance, so it worth to
improve prefetching algorithm. The rationale of the design is that when pages in a
region of a file are referenced, it is likely that pages around these pages may also be
referenced. The entire file space is partitioned into a number of regions with the fixed
size, and the number of pages which have been accessed, is tracked in a region. Once
this number reaches a pre-determined threshold, prefetching makes all pages of the
region resident in the buffer cache. So, further accesses of the pages in the same
region can be hits. Moreover, to further overlap the computation time with I/O time,
prefetching pages start in the adjacent regions when the number of accessed blocks in
this region exceeds a higher pre-determined threshold. In this way, there can be no
I/O stalls with the references to adjacent regions. This serves the same purpose as the
operation of shifting two windows as references proceed in the Linux read-ahead.
Only sequential access can be handled very well in a Linux kernel and can’t handle
random access and backward access. Figure 1(a) is sequential access, which can be
handled very well in a Linux kernel. That is why there are so many fewer misses and
so many more hits. Figure 1(b), however, is random access, so it shows no hits and all

 Adopting Two Strategies to Ensure and Optimize the Quality of Service in Linux 551

misses. As can be seen in this figure, we can also notice that how far the curve that
represents the number of misses blocks from X axis. the curve that represents
“number of misses and number of prefetched” is very close to the curve that
represents “number of hits and number of misses” in Fig. 1(a). Since the number of
misses is very less (almost zero), the prefetched blocks are being used by user’s
requests, this means that the precision is good and the prefetching policy is
performing very well. In Fig. 1(b) The curve that represents “number of misses and
number of prefetched” is overlapping with the curve that represents “number of hits
and number of misses”, the reason for this can be explained by the fact that number of
misses is used in both curves and the values of number of prefetched and hits are both
zero. Again, the number of prefetched blocks is zero, so the prefetching policy in Fig.
1(b) is performing very badly. As for “Number of Prefetched but not yet Requested
Blocks” metric, in Fig. 1 (a), almost all blocks that are prefetched are being used and
this prefetching policy can guarantee cache buffer to have more spaces at its disposal
for a higher hit ratio. On the contrary, the number of prefetched blocks is zero and the
cache space does not function in Fig. 1(b). Therefore, from Fig. 1 (a) and (b), we draw
a conclusion that the current Linux kernel cannot handle non-sequential workload
access pattern.

As for backward access patterns, Linux kernel also can’t handle it. So what is
shown in the “linux-backward-stride1” curve, Figure 1(c) is all misses and no hits or
prefetching. As for Figure 1(d), because of the region prefetching algorithm, all the
blocks have been prefetched before being used. So it shows much more hits and fewer
misses than Figure 1(c), which indicates the “My-backward-4-16-stride1” prefetching
policy has much more accuracy and precision than Linux kernel. The comparison of
space overheads in these two curves is similar to that in Fig. 1(a) and Fig. 1 (b).

For Figures 1(e) and 1(f), both two curves that represent the number of misses are
approximately close to X axis, which shows there are extremely fewer misses and
those two prefetching policies are able to predict user’s future requests. In this case,
we can say that both are equally accurate. But the upper line doesn’t completely
overlap the middle one. It means there are a few blocks prefetched which are useless.
Figure 1(f) indicates the inability of the regional algorithm to handle the access
pattern perfectly. That is why the number of missing blocks increases and the gap
between the upper line and the middle line enlarges. It also means that only a small
fraction of prefetched blocks are actually used later. In consequence, we can say that
the “My-2streams-4-16-stride1” prefetching policy is much more precise than “My-
2streams-4-16-stride2” policy. We also notice that almost all prefetched blocks are
the same as the accessed blocks, in which the space overhead is low. While in Figure
1(f) we see that not all prefetched blocks are accessed, which means that the space
overhead will be increased. The space overhead of the “My-2streams-4-16-stride1”
prefetching policy is lower than the space overhead of the “My-2streams-4-16-
stride2” policy.

Intuitively, there is no obvious difference between Figure 1(e) and Figure 1(g). The
only difference of the algorithm in these two figures is the value of the high
watermark that triggers the prefetching of pages in its adjacent regions and the low
watermarks are same. However, zooming in on the two figures reveals the “.cuv” file

552 S. Wan

directly; Figure 1(g) prefetches more aggressively than Figure 1(e). This can be
demonstrated by the fact that the upper line is closer to the middle line in Figure 1(e).
The fact that the gap between the upper line and the middle line becomes larger in
Figure 1(g) shows that only a small fraction of prefetched blocks are actually used
later. Thereby, the prefetching policy of “My-2streams-4-16-stride1” outperforms that
of “My-2streams-4-2-stride1” in terms of the precision metric. We can also observe
that the space overheads will be decreasing in both prefetching policies.

As for Figure 1(h) and Figure 1(i), the only difference is the size of the expand
threshold. As can be seen in these figures, the curves that represent the number of
misses are not overlapping with X axis, which indicates there are a few prefetched
blocks that are not used. In terms of the accuracy metric, both prefetching policies
don’t perform perfectly. Because Figure 1(i) uses more aggressively prefetching,
there are fewer misses at the cost of less precise prefetching. That is why the upper
line in Figure 1(i) is further away from the middle one than that of Figure 1(h).
Finally, both graphs show that, the whole file is prefetched in the beginning and all
the blocks are occupying the cache space and need to wait sometime before they are
requested by user’s program. This means that the space overhead will be increasing
and both prefetching policies are performing very badly in terms of space overhead.

We discuss the eight representative recency/frequency-based buffer cache
replacement algorithms (OPT, LRU, LRFU, LRU-K, LIRS, 2Q, ARC, Hybrid) used
in our evaluation of hit ratio,. For each replacement algorithm, we summarize the
original algorithm followed by the adapted version that manages the blocks brought in
by kernel. The motivation is simply to compare the different algorithms in a realistic
scenario when implemented in the Linux buffer cache. A hybrid replacement
algorithm is just that, when the cache is full it randomly implements the above-
mentioned one replacement algorithm and picks which page will be replaced. In
Figure 2 (a), this shows the hit ratios of the hybrid replacement algorithm and other
algorithms mentioned before. Here I also include the OPT replacement, an off-line
optimal replacement algorithm, which depends on the knowledge about the future
accesses for its decision. In this hit ratio graph, X axis is for cache size, Y axis is for
hit ratio. The hybrid hit ratio is very close to the optimal, much better than others. We
can see that LRU hit ratios are very low before the cache reaches 400 blocks, the size
of one of its locality scopes. LRU is not effective until this working set fully reside in
the cache. The hybrid algorithm achieves as high hit ratio as LIRS algorithm in Figure
2(b). Figure 2(c) shows the easy case for all the replacement algorithms. All the
curves are close to that of LRU. They all have high hit ratios. LIRS uses both IRR (or
reuse distance) and recency for its replacement decision while 2Q uses only reuse
distance. LIRS adapts to the locality changes when deciding which blocks have small
IRRs. 2Q uses a fixed threshold in looking for blocks of small reuse distances. Both
LIRS and 2Q are of low time overhead (as low as LRU). Their space overheads are
acceptably larger.

 Adopting Two Strategies to Ensure and Optimize the Quality of Service in Linux 553

(a) Linux-forward-stride1 (b) Linux-random-stride2 (c) Linux-backward-stride1

(d) My-backward-4-16-stride1 (e) My-2streams-4-16-stride1 (f) My-2streams-4-16-stride2

(g)My-2streams-4-2-stride1 (h)My-rand-4-16 (i) My-rand-4-2

Fig. 1. The various curves of performance characteristics of the two prefetching policies

0

10

20

30

40

50

60

70

80

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

OPT

LIRS

LRU-2

2Q

LRFU

ARC

LRU

Hybrid

Cache size (blocks)

H
it

 r
at

io
(%

)

0

10

20

30

40

50

60

70

80

30 200 355 400 1000 1750 2700

OPT

LIRS

LRU-2

2Q

LRFU

ARC

LRU

Hybrid

H
it

 r
a

ti
o

(%
)

Cache size (blocks)

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

OPT

LIRS

LRU-2

2Q

LRFU

ARC

LRU

Hybrid

Cache size (blocks)

H
it

 r
a

ti
o

(%
)

 (a) (b) (c)

Fig. 2. Hit ratio curves by various replacement policies on various workloads: postgres, multi2
and sprite

554 S. Wan

Acknowledgments. We would like to thank the anonymous reviewers for their insight and
suggestions which have substantially improved the content and presentation of this paper. This
work was supported by the Fundamental Research Funds for the Central Universities of China
under Grant No. 31141311303 and the Research Project Funds (32114113001).

Reference

1. Ali, R.: Butt,Chris Gniady, and Y. Charlie Hu: The Performance Impact of Kernel
Prefetching on Buffer Cache Replacement Algorithms. In: Proceedings of the ACM
International Conference on Measurement & Modeling of Computer Systems
(SIGMETRICS), Banff, Canada, June 6-10 (2001)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 555–558, 2014.
© IFIP International Federation for Information Processing 2014

Analysis of VMSS Schemes for Group Key Transfer
Protocol

Ching-Fang Hsu1 and Shan Wu2. *

1 Computer School, Central China Normal University, Wuhan, 430079, China
2 Wuhan Technology and Business University, Wuhan, 430065, China

cherryjingfang@gmail.com

Abstract. Known group key transfer protocols in group communications using
classical secret sharing require that a t -degree interpolating polynomial be
computed in order to encrypt and decrypt the secret group key. Secret sharing
plays an important role in ensuring the group communications security. A
verifiable multi-secret sharing (VMSS) scheme is a multi-secret sharing scheme
with the verifiable property. Recently, Zhao et al. and Dehkordi et al.
successively proposed two threshold VMSS schemes. Shortly, using the same
verification mechanism, Dehkordi et al. presented another two VMSS schemes.
In these schemes, authors claimed that the dealer was absolutely impossible to
become a cheater. In this paper, we show that in both Zhao scheme and
Dehkordi scheme, a dishonest dealer may distribute a fake share to a certain
participant, and then that participant would subsequently never obtain the true
secret. Indeed, verification mechanism should be improved in these schemes;
and furthermore our results highlight that extra cautions still be exercised when
constructing schemes in this direction.

Results

A verifiable multi-secret sharing (VMSS) scheme is a multi-secret sharing scheme with
the verifiable property. Recently, Zhao et al. [3] and Dehkordi et al. [1] successively
proposed two threshold VMSS schemes. Shortly, using the same verification
mechanism, Dehkordi et al. presented another two VMSS schemes [2]. In these
schemes, authors claimed that the dealer was absolutely impossible to become a cheater.
In this paper, we show that in both Zhao scheme and Dehkordi scheme, a dishonest
dealer may distribute a fake share to a certain participant, and then that participant
would subsequently never obtain the true secret. Indeed, verification mechanism should
be improved in these schemes; and furthermore our results highlight that extra cautions
still be exercised when constructing schemes in this direction.

Cryptanalysis of Zhao Scheme

In Zhao scheme [3], we assume that D is a dishonest dealer. Let

w
M ({1.2, ..., }w n∈) be a certain participant in M . The goal of D is to distribute a

* Corresponding author.

556 C.-F. Hsu and S. Wu

fake share to
w

M and
w

M will not detect this and, hence,
w

M would subsequently

never obtain the true secret. A more detailed description of the attack is as follows:

(1) As a preliminary step, D chooses an integer
1n

s
+

 from the interval [2,]N

and computes +1
1 0

modn
n

s
I R N

+
= such that

1n i
I I

+
≠ for 1.2, ...,i n= ;

(2) After polynomial () modh x Q is constructed, D computes () mod
i i

y h I Q=

for 1.2, ...,i n= , i w≠ and specially computes
1

() mod
w n

y h I Q
+

= instead of

() mod
w w

y h I Q= . Afterwards, D publishs
1 2

(, , ...,)
n

y y y or

1 2
(, , ..., , (1), (2), ..., ())

n
y y y h h h k t− ;

(3) When any t participants include
w

M want to recover the secrets
1 2
, , ..,

k
P P P

(without loss of generality, suppose participants
1

{ }t

i i
M

=
), it is easy to see that

anybody can verify '
i

I is true or false but can not verify
i

y is matched with

i
I or not for 1.2, ...,i t= . Therefore, after the verifications are done,

w
M is

unable to detect any discrepancy on
w

y (actually,
1

() mod
w n

y h I Q
+

= is not

matched with
w

I);

(4) By using Lagrange interpolation polynomial, these t participants include
w

M

will uniquely obtain another polynomial () ' modh x Q but not () modh x Q ,

since the complete share distributed to
w

M , that is (,)
w w

I y , is not correctly

paired. As a consequence,
w

M would never obtain the secrets
1 2
, , ..,

k
P P P .

Through the attack, the verification mechanism of Zhao scheme is completely
compromised.

Cryptanalysis of Dehkordi Scheme

Indeed, the attack of Dehkordi scheme [1] is the same as that of Zhao scheme. In
Dehkordi scheme [1], we assume that D is a dishonest dealer. Let

w
M ({1.2, ..., }w n∈) be a certain participant in M . The goal of D is to distribute a

fake share to
w

M and
w

M will not detect this and, hence,
w

M would subsequently

never obtain the true secret. A more detailed description of the attack is as follows:

(1) As a preliminary step, D chooses an integer
1n N

s
+

∈ and computes

+1
(,)

n
f r s such that

+1
(,) (,)

n i
f r s f r s≠ for 1.2, ...,i n= ;

 Analysis of VMSS Schemes for Group Key Transfer Protocol 557

(2) After
(,)

1
{ , }

f r s ni
i i

r G g
=

= is published and polynomial () modh x q is

constructed, D computes ((,)) mod
i i

y h f r s q= for 1.2, ...,i n= , i w≠ and

specially computes
1

((,)) mod
w n

y h f r s q
+

= instead of

((,)) mod
w w

y h f r s q= . Afterwards, D publishs
1 2

(, , ...,)
n

y y y or

1 2
((1), (2), ..., (), , , ...,)

n
h h h k t y y y− ;

(3) When any t participants include
w

M want to recover the secrets
1 2
, , ..,

k
P P P

(without loss of generality, suppose participants
1

{ }t

i i
M

=
), it is easy to see that

anybody can verify (,)
i

f r s is true or false but can not verify
i

y is matched

with (,)
i

f r s or not for 1.2, ...,i t= . Therefore, after the verifications are

done,
w

M is unable to detect any discrepancy on
w

y (actually,

1
((,)) mod

w n
y h f r s q

+
= is not matched with (,)

w
f r s);

(4) By using Lagrange interpolation polynomial, these t participants include
w

M

will uniquely obtain another polynomial () ' modh x q but not () modh x q ,

since the complete share distributed to
w

M , that is ((,),)
w w

f r s y , is not

correctly paired. As a consequence,
w

M would never obtain the secrets

1 2
, , ..,

k
P P P .

Through this attack, the verification mechanism of Dehkordi scheme [1] is
completely compromised. Furthermore, since the newer VMSS schemes proposed by
Dehkordi et al. in [2] are based on the same verification mechanism, our attack
equally applies to them.

Countermeasure

The main flaw in Zhao scheme and Dehkordi scheme is that there are no way for the

participant to check whether
i

I (or (,)
i

f r s) chose by her/himself and
i

y

published by D are correctly paired or not. All participants can not be sure that
i

y

is matched with
i

I (or (,)
i

f r s) by only checking the correctness of
i

I (or

(,)
i

f r s). This oversight allows the dishonest dealer in our attack to send the forged

i
y without being detected by the participant.

The simplest way to resolve the security problems with Zhao scheme and Dehkordi
scheme would be to change the verification equations. For Dehkordi scheme, instead

558 C.-F. Hsu and S. Wu

of computing
(,)f r si

i
G g= for 1.2, ...,i n= , D need to compute 1 modiP

i
G g p+=

for 0,1, 2, ..., 1i k= − and publish them. Through checking

(,)
1

0

() modi
jy f r si

j

t

j

Gg p
−

=
= ∏ (if k t≤) or (,)

1

0

() modi
jy f r si

j

k

j

Gg p
−

=
= ∏ (if k t>)

for 1.2, ...,i n= , the participants verify whether (,)
i

f r s and
i

y are valid (i.e,

correctly paired). After the secrets are recovered, the participants check
1 modiP

i
G g p+= for 0,1, 2, ..., 1i k= − to verify whether

1 2
, , ..,

k
P P P are valid. As

a consequence, our attack will no longer be valid against the fixed scheme. In the
same way, this verification mechanism equally applies to Zhao scheme and the newer
VMSS schemes proposed by Dehkordi et al. in [2].

Conclusion

This paper has considered the security of Zhao scheme and Dehkordi scheme for
verifiable multi-secret sharing. Although these schemes claimed the dealer was
absolutely impossible to become a cheater, we have shown that the schemes are
indeed completely insecure against a dishonest dealer. In addition, we have
recommended a small change to the schemes that can address the identified security
problem. Furthermore, our attack and security patch apply also to the newer VMSS
schemes proposed by Dehkordi et al.

References

[1] Hadian Dehkordi, M., Mashhadi, S.: An efficient threshold verifiable multi-secret sharing.
Computer Standards & Interfaces 30(3), 187–190 (2008)

[2] Hadian Dehkordi, M., Mashhadi, S.: New efficient and practical verifiable multi-secret
sharing schemes. Information Sciences 178(9), 2262–2274 (2008)

[3] Zhao, J., Zhang, J., Zhao, R.: A practical verifiable multi-secret sharing scheme. Computer
Standards & Interfaces 29(1), 138–141 (2007)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 559–562, 2014.
© IFIP International Federation for Information Processing 2014

Resource Prediction for Inter-cloud Broker

Mohammad Aazam and Eui-Nam Huh

Department of Computer Engineering, Kyung Hee University,
Suwon, Republic of Korea

aazam@ieee.org, johnhuh@khu.ac.kr

Abstract. Media content over the Internet has massively been increasing,
resulting in popularity gain of cloud computing. Cloud computing is the only
solution in hand to handle rapidly increasing digital media content. Through
cloud computing, digital media can be manipulated, stored, and communicated
in a much better and easier way. But due to increase in user's demands and
diversity of applications, it is, at times, not possible for a single cloud to fulfill
all the requests. At that point, multiple clouds have to communicate and share
resources through an intermediary, called cloud broker. To handle requests
properly, broker has to predict the amount of resources required when a service
is requested. This paper focuses on this particular issue. We present resource
prediction part of our model here, along with its implementation and evaluation
using CloudSim toolkit.

1 Introduction

The rapidly increasing digital media content has already surpassed traditional media,
as a result of which long-term and vast changes are required for the contents shared
over the Internet. In 2010, Internet video traffic had surpassed global peer-to-peer
(P2P) traffic [1]. Excluding the amount of video exchanged through P2P file sharing,
at the time being, Internet video is 40 percent of consumer Internet traffic. Since
2012, it has become over 50 percent and will reach 62 percent by the end of 2015.
Counting all form of videos, the number will be approximately 90 percent by 2015
[2]. This media revolution not only brings great opportunities, but also bears some
challenges. To meet those challenges, much better infrastructure, sophisticated
technologies, and powerful capabilities are required to be incorporated.

Cloud computing still faces some open challenges, but to provide better reliability,
availability, cost-efficiency, and QoS, inter-cloud computing has already been
envisioned. Research on inter-cloud computing is still in its start, but its effectiveness
cannot be denied by any means [3]. Cloud Service Providers (CSPs) have their
customers dispersed all around the globe. To serve them optimally, CSPs have to
setup many of their data centers at different geographical locations. Existing systems
are not capable enough to coordinate dynamically the load distribution among data
centers, to determine optimal location for hosting services to achieve desired

560 M. Aazam and E.-N. Huh

performance. Furthermore, users’ geographical distribution cannot be predicted as
well. Thus, load coordination and service distribution has to be done automatically.
Inter-cloud computing is meant to counter this problem. It provides scalable
provisioning of services with consistent performance, under variable workload and
dynamically changing requirements. It supports dynamic expansion and contraction
of resources, to handle abrupt variations in service demands [4]. In inter-cloud
computing, an intermediary, broker, is responsible to identify appropriate CSP,
according to the needs of its customer, through cloud exchange. Broker negotiates
with the gateway to allocate resources, according to user and service requirements [4].
Resource management is a key attribute of broker. So far, the available literature
addresses resource management issue in a trivial way.

In this paper, we present a part of our resource management model, in which we
focus mainly on advanced reservation of resources, according to the type of customer
and service. Implementation and simulation of our model was performed on
CloudSim 3.0.3 toolkit.

2 Resource Prediction and Premium Amount Calculation

When a cloud service customer (CSC) [5] requests the broker [6] for a particular
service, broker has to further contact cloud service provider (CSP) and negotiate the
contract, including service level agreement (SLA) [7]. For some services, broker
performs ad hoc allocation of resources, while for others; resources are required to be
predicted. Based on the type of service, broker's resource prediction is formulated as
under:

=∑ | 1 | 10 (1)

Where is required service, is the maximum cost a particular user can
afford or willing to pay, n is the number of cloud customers, | is the
probability of a particular customer of giving up the resource. For simplicity, we have
categorized it into two, as low () or high () probability. 0 0.5, 0.5 1 (2) ‘ ’ is User Characteristic, which represents the characteristic of the requesting user,
based on its history. This value is assigned by the broker, on the basis of previous
resource consumption log-file of a particular user. For an altogether new user, this
characteristic is set to maximum positive value for the first time. After predicting the
resources, broker asks its users to pay a particular premium amount, based on
following formulation: ρ (3)

 Resource Prediction for Inter-cloud Broker 561

Where, ρ determines premium amount, represents probability as “low”.
Actual and final price is paid once the resources are started to be consumed.
Therefore, in equation 3, relinquish probability is set as low, instead of both low and
high. Same is the case with user characteristic, which is set as positive for low
relinquish probability customers.

The implementation and evaluation of this part of model was done on CloudSim
3.0.3 toolkit. Results are presented below.

Shown in figure 1, the unit is greater for L customers, having low relinquish
probability, since they are more loyal, as compared to H customers. Prices for a total
of 9 services have been shown, ranging from USD 100 to USD 500. On vertical axis,
unit of resources to be reserved increase with the higher valued service. Better and
costly service require more resources, hence, the unit of resources increase
accordingly.

Figure 2 shows the premium amount to be paid, according to service type.
Premium amount is shown on the top of the bars, in USD, while the values at the
bottom represent the total price of services, in USD. Premium amount of each of the 9
services is shown.

Fig. 1. Resource prediction for different types of customers, according to different services

562 M. Aazam and E.-N. Huh

Fig. 2. Premium amount, according to service type

Acknowledgment. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education(No.NRF-2013R1A1A2013620). The corresponding author is Prof. Eui-
Nam Huh.

References

[1] Tan, M., Su, X.: Media Cloud: When Media Revolution Meets Rise of Cloud Computing.
In: Proceedings of The 6th IEEE International Symposium on Service Oriented System
Engineering, Irvine, CA, USA, December 12-14 (2011)

[2] Cisco-White-Paper, Cisco Visual Networking Index – Forecast and Methodology,
2010–2015 (June 1, 2011)

[3] Grozev, N., Buyya, R.: Inter-Cloud Architectures and Application Brokering: Taxonomy
and Survey. Wiley Software: Practice and Experience (2012)

[4] Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-oriented federation of cloud
computing environments for scaling of application services. In: Hsu, C.-H., Yang, L.T.,
Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer,
Heidelberg (2010)

[5] Wenwu, Z., Chong, L., Jianfeng, W., Shipeng, L.: Multimedia Cloud Computing. IEEE
Signal Processing Magazine 28, 59–69 (2011)

[6] Aazam, M., Huh, E.-N.: Inter-Cloud Architecture and Media Cloud Storage Design
Considerations. In: The Proceedings of 7th IEEE CLOUD, Anchorage, Alaska, USA, June
27-July 2 (2014)

[7] Díaz-Sánchez, D., Almenarez, F., Marín, A., Proserpio, D., Cabarcos, P.A.: Media Cloud:
An Open Cloud Computing Middleware for Content Management. IEEE Transactions on
Consumer Electronics 57(2) (May 2011)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 563–566, 2014.
© IFIP International Federation for Information Processing 2014

An Efficient Certificateless Blind Signature Scheme
in the Random Oracle Model

Hao Xu, Baoyuan Kang, and Yongzheng Niu

School of Computer Science and Software Engineering,
Tianjin Polytechnic University, Tianjin, 300387, China

23880797@qq.com, baoyuankang@aliyun.com, niuer890214@163.com

Abstract. The blind signature schemes are useful in some applications
where the anonymity is a thorny issue. The certificateless public key cryptogra-
phy (CL-PKC) can eliminate the certificate management problem and solve
the key escrow problem. In this paper, we put forward a secure and efficient
CLBS scheme. We then illustrate that our new scheme is secure in the random
oracle model. Also, we theoretically validate that our proposed scheme is more
efficient than those existing ones in terms of computational complexity.
We hope to transfer our scheme into applications.

Keywords: Certificateless blind signature, Certificateless public key cryptogra-
phy, Random oracle model, Computational Diffie-Hellman problem.

1 Introduction

The blind signature was first proposed by Chaum [1], which can provide the ano-
nymity of signed message. Informally, blind signature allows the message owner
blind the message by the blind factors, and then lets the signer sign the blinded mes-
sage. At last, the message owner eliminates the blind factors of signature to get the
signer’s signature of the original message. Blind signature is a special digital signa-
ture, it must also meet the property of blindness differing from other signatures.
Therefore, blind signature schemes can used in order to eliminate the possible abuse
of linkability.

Up to now, even if there have been a lot of researches for blind signature, most of
works have been based on a traditional public key infrastructure (PKI) or an identity-
based public key cryptography (ID-PKC). In the traditional PKI, the trusted Certifi-
cate Authority (CA) needs a large amount of storage and computing time to manage
the certificates, which are signatures of CA on the public keys of users. This is called
certificate management problem. In the ID-PKC, an inherent problem of ID-PKC is
that a Key Generation Center (KGC) generates any user’s private key with a master
key of KGC. Obviously, a malicious KGC is able to forge the signature of any signer.
This is key escrow problem. To tackle the problems above, Al-Riyami and Paterson
[2] put forward a new paradigm named certificateless public key cryptography (CL-
PKC) in 2003, which avoids the certificate management problem in traditional PKI
and eliminates the key escrow problem in ID-PKC.

564 H. Xu, B. Kang, and Y. Niu

Blind signature and CL-PKC have gotten fruitful achievements since they were in-
troduced. However, to our best knowledge, little attention has been paid to the design
of provably secure blind signature scheme in CL-PKC [3]. In this paper, we propose
an efficient CLBS scheme based on bilinear pairings, then show that our CLBS
scheme is existentially unforgeable in the random oracle model under the Computa-
tional Diffie-Hellman (CDH) problem.

The remainder of this paper is organized as follows: In Section 2, we present the
construction of our new CLBS scheme. We will show that our scheme is security in
Section 3. Section 4 shows efficiency comparison with the existing schemes.

2 Certificateless Blind Signature Scheme

In this section, we propose a secure and efficient CLBS scheme. It consists of the
following seven algorithms. The details are shown as follows:

• Setup: On the input of a security parameter k , the KGC firstly selects a cyclic addi-
tive group 1G generated by a generator P of prime order q , a cyclic multiplica-

tive group 2G with the same order q and a bilinear map 1 1 2:e G G G× → , picks

the master key master-key *
R qs Z∈ at random and keeps s secret, then sets

pubP sP= as the public key. Choose three secure hash functions: { }*

1 1: 0,1H G→ ,

{ }*

2 1: 0,1H G→ , { }* *
3 : 0,1 qH Z→ . The system parameters are params

{ }1 2 1 2 3, , , , , , , ,pubG G q e P P H H H= .

• Partial-Private-Key-Extract: For a user with identity { }*
0,1AID ∈ , KGC computes

()A 1= AQ H ID as the public identity of the user, and sends AD to the user as his

partial private key via a secure channel, where A AD sQ= .

• Set-Secret-Value: Given params, the user with identity AID selects a random
*

A R qx Z∈ as his secret value.

• Set-Public-Key: This algorithm accepts params, a user’s identity AID and secret

value Ax , then outputs the public key A AP x P= of the user with identity AID .

• Set-Private-Key: This algorithm takes as input params, the signer’s identity AID ,

partial private key AD , public key AP and secret value Ax to produce the sign-

er’s private key A A A ASK D x T= + , where ()2 ,A A AT H ID P= .

• Issue: To sign a message m , the signer with identity AID , public key AP , private

key ASK , executes the following steps with the signature requester:

(a) Request: The requester requests the signer for a CLBS. After receiving the re-
quest, the signer chooses *

R qr Z∈ at random and computes R rP′ = , then

sends R′ to the requester.

 An Efficient Certificateless Blind Signature Scheme in the Random Oracle Model 565

(b) Blind: Upon receiving R′ , the requester randomly picks *, R qZα β ∈ as the

blind factors, computes R R Pα β′= + , ()3 , , ,A Ah H m ID P R′ = and 1h hα − ′= ,

then sends h back to the signer.
(c) Sign: The signer sends S ′ to the requester, where A pubS hSK rP′ = + .

(d) Unblind: The requester unblinds S ′ by computing pubS S Pα β′= + , and out-

puts (),R Sσ = as the CLBS on message m .

• Verify: For a message m , and the corresponding signature (),R Sσ = , the verifi-

er computes the value ()3 , , ,A Ah H m ID P R′ = , ()2 ,A A AT H ID P= , then check if

the equation:

() () ()() (), , , ,
h

A pub A A pube S P e Q P e T P e R P
′

=

holds. If the equation holds, the signature (),R Sσ = is valid.

3 Security

About the security of our CLBS scheme, we have the following two theorems.

Theorem 1. The CLBS scheme is blindness.

Theorem 2. The CLBS scheme is existentially unforgeable under assuming that the
CDH problem in a cyclic additive group 1G is intractable.

4 Efficiency Analysis

We compare our scheme with other three available CLBS schemes [4-6] based on
bilinear pairings in terms of secret key size and the required computational cost of
signing and verifying. For our scheme, we omit the computation efforts which can be

pre-computed by the verifier, for example, the computation of (),A pube Q P and

(),A Ae T P . For convenient comparison, we include the following presentation, the

notion 1G denotes the bit length of an element in 1G , q be the binary length of

an element in qZ , mP be the scalar multiplication on the curve, exP be the exponen-

tiation operator in 2G and eP be the bilinear pairing operation.

566 H. Xu, B. Kang, and Y. Niu

Table 1. Performance comparison of different schemes

Scheme Sign Verify
Secret key
length

[4] 3 4 7e ex mP P P+ + 1 1 2e ex mP P P+ + 1q G+

[5] 2 1 8e ex mP P P+ + 3 1 2e ex mP P P+ + 1q G+

[6] 3 2 9e ex mP P P+ + 2 1e exP P+ 1q G+

Our
scheme

7 mP 2 1e exP P+ 1G

From Table 1, we can clearly see that a prominent merit in our scheme is that no

pairing operator is required in the whole signing process. To our best knowledge the
computation of the pairing is the most time-consuming in pairing based cryptosystem.
Besides, the length of the secret key is also shorter than other schemes. Thus, our
scheme is more useful and efficient than the previous schemes.

5 Conclusion

In this paper, we put forward a new CLBS scheme on the bilinear pairings, and give
some theorems of the security and efficiency analysis of our scheme, which show that
the new proposed CLBS scheme is much more efficient and satisfy both blindness
and unforgeability properties. Our CLBS scheme may have applications in areas such
as electronic cash systems using CL-PKC.

References

1. Chaum, D.: Blind Signatures for Untraceable Payments. In: Crypto, pp. 199–203 (1982)
2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih, C.-S.

(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)
3. Zhang, L., Zhang, F.T., Qin, B., Liu, S.B.: Provably-secure Electronic Cash Based on Certi-

ficateless Partially-blind Signatures. Electronic Commerce Research and Applica-
tions 10(5), 545–552 (2011)

4. Zhang, L., Zhang, F.: Certificateless Signature and Blind Signature. Journal of Electronics
(China) 25(5), 629–635 (2008)

5. Zhang, L., Zhang, F., Qin, B., et al.: Provably-secure Electronic Cash Based on Certificate-
less Partially-blind Signatures. Electronic Commerce Research and Applications 10(5),
545–552 (2011)

6. Liu, J., Zhang, Z., Sun, R., et al.: Certificateless Partially Blind Signature. In: 2012 26th In-
ternational Conference on Advanced Information Networking and Applications Workshops
(WAINA), pp. 128–133. IEEE (2012)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 567–570, 2014.
© IFIP International Federation for Information Processing 2014

Increasing Multi-controller Parallelism
for Hybrid-Mapped Flash Translation Layers

Hung-Yi Sung and Chin-Hsien Wu

Department of Electronic and Computer Engineering,
National Taiwan University of Science and Technology, Taiwan

{M10002137,chwu}@mail.ntust.edu.tw

Abstract. Nowadays, the architecture of solid-state drives (SSDs) is using mul-
tiple controllers to efficiently handle NAND flash memory chips. Several flash
translation layers (FTLs) have been proposed to improve the overall perfor-
mance of NAND flash memory. Therefore, the collaboration of FTLs and the
multi-controller design of SSDs will become an important research topic. In this
paper, we will propose a method to increase multi-controller parallelism for hy-
brid-mapped flash translation layers.

1 Problem Overview

In the paper, we explain the importance of handling read/write requests under a multi-
controller design of SSDs. An SSD consists of a host interface, RAM buffer, a master
controller, multiple slave controllers, and multiple NAND flash memory chips [1].
The master controller is responsible for the execution of a flash translation layer
(FTL) which can handle read/write requests from the host interface. Each flash mem-
ory chip under a hybrid-mapped flash translation layer can be divided into data and
log blocks. When a file system receives a read request, FTL will handle the read re-
quest and assign slave controllers to read data from the corresponding flash memory
chips. When a file system receives a write request, FTL will allocate appropriate loca-
tion (i.e., data and log blocks) in flash memory chips to write data.

Compared to hard-disk drives (HDDs), SSDs could provide faster read and write
operation time in terms of sequential and random data access. Currently, SSDs use a
fixed architecture, called the multi-controller design [2]. Under the architecture, one
controller can access to flash memory chips on its own bus which could reduce execu-
tion parallelism of multiple controllers. Therefore, the performance will decrease
while many I/O requests access those chips which belong to the same controller, and
other idle controllers cannot perform the I/O requests in different buses.

2 Design Concept

As shown in Fig. 1, when a request is coming, it contains the information of
Start_LPA and Size which means “read/write the pages of length Size from the logical

568 H.-Y. Sung and C.-H. Wu

page address of Start_LPA”. If it is a write request, the request will be divided into
sub-requests by the block striping technique. Assume that the maximum size of one
sub-request is one block. Sub-requests may include data blocks {D1, D2, ..., Di}, or
log blocks {L1, L2, ..., Lj}. If it is a read request, FTL will search its mapping table
and translate the read request to sub-requests that could include data blocks {D1, D2,
..., Di}, or log blocks {L1, L2, ..., Lj}. Then, the read sub-requests will be performed
by reading the data or log blocks from the corresponding flash memory chips.

Fig. 1. Handling read/write operations

We show how to handle the first write request. As shown in Fig. 2.(a), when Re-
quest 1 is going to write data into data blocks, the write request is divided into sub-
requests {D1, D2, D3, D4} by the block striping technique. The best case is to write
the data blocks {D1, D2, D3, D4} into different buses by the page striping technique.
The worst case of Fig. 2.(a) happens when that only one controller is involved and
sub-requests are written into one bus. In order to effectively use multiple controllers
and reduce the idle time of multiple controllers, we know that the allocation of data
and log blocks for sub-requests is quite important because it can have impact on the
multi-controller parallelism.

We show how to handle the request with overwritten data. Due to the out-of-place
update of NAND flash memory, a write request could overwrite data and cause that
some sub-requests write data to log blocks {L1, L2, ..., Lj}. As shown in Fig. 2.(b),
Request 2 will write data to two log blocks {L1, L2}. Assume that the corresponding
data blocks of L1 and L2 are D1 and D2, respectively. If partial valid data are stored
in both {L1, D1} and {L2, D2}, the best case is to write the log block {L1} to Bus 2
and the log block {L2} to Bus 3, where the corresponding data blocks {D1, D2} are
also not locating in Bus2 and Bus 3. If the log block is located in the same bus with
the corresponding data block, when valid data in {L1, D1} or {L2, D2} are required,
only one controller can be involved and reduce the multi-controller parallelism, as
shown in Fig. 2.(b).

 Increasing Multi-controller Parallelism for Hybrid-Mapped Flash Translation Layers 569

Fig. 2. Handling Request 1 and Request 2

Therefore, the allocation method of data and log blocks is to avoid a log block with its
corresponding data blocks in the same bus. The allocation method can be implemented in
the address translation function of FTL because FTL usually has a RAM-resident transla-
tion table, where each entry of the table contains the corresponding physical block ad-
dresses (i.e., data and log blocks) by indexing the logical block address. Assume that
there are N buses and a write request can be translated to some sub-requests that could
include data blocks {D1, D2, ..., Di}, or log blocks {L1, L2, ..., Lj}. For each data block
Dx in {D1, D2, ..., Di}, it can be dispatched to the (x%N)-th bus in a block-striping way.
For each log block Ly in {L1, L2, ..., Lj}, it can be dispatched to the bus where its cor-
responding data blocks are not locating. Therefore, if the number of corresponding data
blocks is larger than the number of buses, a log block with the corresponding data blocks
could co-exist in the same bus. In this case, the log block can be dispatched to the bus
where its corresponding data blocks have the least number of valid pages. The design
idea behind the allocation method is to distribute valid pages to different buses as much
as possible. Thus, when read and write requests occur, we can increase the multi-
controller parallelism to access flash memory chips efficiently.

3 Experimental Results

Four real traces are used in the experiments, as shown in Table 1. The improvement
ratio with the proposed method for merge operations under 32 and 256 RW log blocks
is shown in Table 2. According to the experimental results, we can utilize the execu-
tion parallelism to improve the execution time of partial and full merge operations.

570 H.-Y. Sung and C.-H. Wu

Table 1. Four Real Traces

Trace Total request
Count

Total page
accesses

Read
 ratio

Write
ratio

Avg. read/write
pages

Financial 1 5,334,987 6,967,821 19.23 % 80.77 % 1.08 / 1.37
Financial 2 3,699,194 4,479,959 79.52 % 20.48 % 1.17 / 1.40
AS SSD 246,957 8,925,678 33.37 % 66.63 % 69.96/ 29.10
Windows PC 2,398,728 8,532,159 55.24 % 44.76 % 3.54 / 3.58

Table 2. The improvement ratio with the proposed method for merge operations under 32 and
256 RW log blocks

Trace 32 RW log blocks 256 RW log blocks
Financial 1 15.52% 15.64%
Financial 2 15.68% 16.08%
AS SSD 3.9% 3.91%
Windows PC 8.34% 8.31%

References

1. Bez, R., Camerlenghi, E., Modelli, A., Visconti, A.: Introduction to Flash Memory.
Proceedings of the IEEE 91(4) (April 2003)

2. Kang, J.U., Kim, J.S., Park, C., Park, H., Lee, J.: A multi-channel architecture for high-
performance NAND flash-based storage system. Journal of Systems Architecture 53(9),
644–658 (2007)

3. Park, S.K., Park, Y., Shim, G., Park, K.H.: CAVE: channel-aware buffer management
scheme for solid state disk. In: Proceedings of the 2011 ACM Symposium on Applied
Computing, pp. 346–353 (May 2011)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 571–574, 2014.
© IFIP International Federation for Information Processing 2014

An Estimation-Based Task Load Balancing
Scheduling in Spot Clouds

Daeyong Jung1, HeeSeok Choi1, DaeWon Lee2, Heonchang Yu1, and Eunyoung Lee3,*

1 Dept. of Computer Science Education, Korea University, Seoul, Korea
2 Division of General Education, SeoKyeong University, Seoul, Korea

3 Dept. of Computer Science, Dongduk Women’s University, Seoul, Korea
{karat,hsrangken,yuhc}@korea.ac.kr, daelee@skuniv.ac.kr,

elee@dongduk.ac.kr

Abstract. Cloud computing is a computing paradigm in which users can rent
computing resources from service providers according to their requirements.
Cloud computing based on the spot market helps a user to obtain resources at a
lower cost. However, these resources may be unreliable. In this paper, we
propose an estimation-based distributed task workflow scheduling scheme that
reduces the estimated generation compared to Genetic Algorithm (GA).
Moreover, our scheme executes a user’s job within selected instances and
stretches the user’s cost. The simulation results, based on a before-and-after
estimation comparison, reveal that the task size is determined based on the
performance of each instance and the task is distributed among the different
instances. Therefore, our proposed estimation-based task load balancing
scheduling technique achieves the task load balancing according to the
performance of instances.

1 Introduction

In recent years, due to the increased interest in cloud computing, many cloud projects
and commercial systems, such as the Amazon Elastic Compute Cloud (EC2) [1] and
FlexiScale [2], have been implemented. Cloud computing provides high utilization
and high flexibility for managing computing resources. In addition, cloud computing
services provide a high level of scalability of computing resources combined with
Internet technology that are distributed among several customers [3, 4]. In most cloud
services, the concept of an instance unit is used to provide users with resources in a
cost-efficient manner.

Spot-market-based cloud environment configures the spot instance. In the spot
instance environment, spot prices changes depending on the supply and demand of
spot instances. The environment affects the success or failure of task completion
according to the changing spot prices. Spot prices have a market structure and follow
the law of demand and supply. Therefore, cloud services (Amazon EC2) provide a
spot instance when a user’s bid is higher than the current spot price. Furthermore, a

* Corresponding author.

572 D. Jung et al.

running instance stops when a user’s bid becomes less than or equal to the current
spot price. After a running instance stops, it restarts when a user’s bid becomes
greater than the current spot price.

We analyze the task and instance information from the price history data, and
estimate the task size and instance availability from the analyzed data. A workflow is
created using each available instance and the task size. However, the created
workflow has a problem in that it does not consider the failure time of each instance.
To solve this problem, we propose a scheme to change the task size of each instance
using an estimation algorithm, such as Genetic Algorithm (GA).

2 Estimation Method

In this paper, using environment expands workflow scheduling scheme from our
previous paper [5]. Our task distribution method determines the task size in order to
allocate a task to a selected instance. Based on a compute-unit and an available state,
the task size of an instance iI (

iIT) is calculated as

1

1

()
i i

i request baselineN
ii ii

U A
T T U

UU A
=

 × = × × ×
 ×

 (1)

where requestT represents the total size of tasks required for executing a user request.

In an instance iI ,
iIU and

iIA represent the compute-unit and the available state,

respectively. The available state
iIA can be either 0 (unavailable) or 1 (available).

The baseline represents the standard of the instance.
In our scheduling scheme, chromosome is defined as an assigned task to an

instance. The length of chromosome composes the number of task. If available
instances allocate the same length of chromosome, each instance is different task
completion time. This reason, each instance has different the performance and the
occurrence frequency of out-of-bid situation. The problem solution is the length of
each chromosome varies to consider each instance condition (the performance, the
occurrence frequency of out-of-bid situation, etc.). Therefore, we have designed a
new crossover and mutation scheme for scheduling tasks that is based on the
performance of each instance.

tk,5 tk,6 tk,9 tk,12 tk,5

tj,3 tj,4 tj,8 tj,11 tj,3 tj,4 tj,8tj,6 tj,11

ti,1 ti,2 ti,7 ti,10 ti,1 ti,2 ti,7 ti,9 ti,12ti,10

Before Estimation After Sorting

tk,5

tj,3 tj,4 tj,8 tj,6tj,11

ti,1 ti,2 ti,7 ti,9 ti,12ti,10

After Migration

Ik

Ij

Ii

Ins.

Fig. 1. Processing of migration and sorting

 An Estimation-Based Task Load Balancing Scheduling in Spot Clouds 573

The scheduling scheme is depicted in Fig. 1. The instances Ii, Ij, and Ik have high,
medium, and low performance, respectively. The instance Ik belongs to a positive
group and the other two instances (Ii, Ij) belong to a negative group. In the crossover
operation, we select an instance to find the target instances that belong to the positive
group. Next, we calculate the size of tasks in the positive group that are to be sent to
the negative group (e.g., Ik). Finally, the calculated tasks are distributed to instances in
the negative group (e.g., Ii and Ij) according to the performance of each instance. In
mutation, we perform the re-arrangement of tasks. The re-arrange method sorts tasks
in the increasing order of their indices.

3 Performance Evaluation

The simulations were conducted using the history data obtained from Amazon EC2
spot instances [6]. The history data before 10-01-2010 was used to extract the
expected execution time and failure occurrence probability for our checkpointing
scheme. The applicability of our scheme was tested using the history data after 10-01-
2010. Table 1 shows the parameters and values for the simulation.

Table 1. Simulation parameters and values for instances

Simulation
parameter

Task time
interval

Distribution
time

Merge
time

Checkpoint
time

Recovery
time

Value 43,200(s) 300(s) 300(s) 300(s) 300(s)

0

5,000

10,000

15,000

20,000

25,000

30,000

43,200 86,400 129,600 172,800 216,000 259,200

0

1,000

2,000

3,000

Task Size

 m1.small m1.large m1.xlarge c1.medium
 c1.xlarge m2.xlarge m2.2xlarge m2.4xlarge

-5,000

-3,000

-1,000

R
eq

ue
st

 S
iz

e

R
eq

ue
st

 S
iz

e
:

In
iti

al
 T

as
k

 Initial Task

Fig. 2. Size variations in requested tasks

Fig. 2 shows the size variations of requested tasks in each instance before and after
using the proposed estimation. Initial Task stands for the initial task size before using
the estimation in all instances. The task size is determined based on the performance
of each instance, and the task is distributed among the different instances. Each
instance type (m1.small, m1.large, etc.) indicates the task size.

Fig. 3 shows the variation of the allocated task size in each instance Ii when task
size is 86,400. In each instance, as the task size grows, the instance with high
performance increased the task size, whereas the instance with low performance
reduced the task size. It is due to the failure time of each instance. Therefore, we
reduced the failure time of low performance instances in order to achieve similar
estimated failure times across all instances.

574 D. Jung et al.

0 2 4 6 8 10
0

3,000

6,000

9,000

12,000
T

as
k

S
iz

e

Estimated generation

 m1.small m1.large m1.xlarge c1.medium
 c1.xlarge m2.xlarge m2.2xlarge m2.4xlarge

Fig. 3. Task size variation in each estimated generation

4 Conclusion

In this paper, we proposed an estimation-based task load balancing scheduling in
unreliable cloud computing environments. The proposed scheduling technique
achieves the task load balancing according to the performance of instances. In our
scheme, we reduced the failure time of low performance instances in order to achieve
similar estimated failure times across all instances.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-2013R1A1A3007940).

References

1. Elastic Compute Cloud (EC2) (2013), http://aws.amazon.com/ec2
2. Ferraris, F.L., Franceschelli, D., Gioiosa, M.P., Lucia, D., Ardagna, D., Di Nitto, E., Sharif,

T.: Evaluating the Auto Scaling Performance of Flexiscale and Amazon EC2 Clouds. In:
Proceedings of 14th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pp. 423–429 (2012)

3. Van, H.N., Tran, F.D., Menaud, J.M.: SLA-Aware Virtual Resource Management for Cloud
Infrastructures. In: Proceedings of the 2009 Ninth IEEE International Conference on
Computer and Information Technology, vol. 2, pp. 357–362. IEEE Computer Society
(2009)

4. Komal, M., Ansuyia, M., Deepak, D.: Round Robin with Server Affinity: A VM Load
Balancing Algorithm for Cloud Based Infrastructure. Journal of Information Processing
Systems 9(3), 379–394 (2013)

5. Jung, D., Lim, J., Yu, H., Gil, J., Lee, E.: A Workflow Scheduling Technique for Task
Distribution in Spot Instance-Based Cloud. In: Jeong, Y.-S., Park, Y.-H., Hsu, C.-H(R.),
Park, J.J(J.H.) (eds.) Ubiquitous Information Technologies and Applications. Lecture Notes
in Electrical Engineering, vol. 280, pp. 409–416. Springer, Heidelberg (2014)

6. Cloud exchange (2013), http://cloudexchange.org

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 575–578, 2014.
© IFIP International Federation for Information Processing 2014

Distributed Ontology Integration Model
for Cooperative Inference in Context Aware Computing

Soomi Yang

Department of Information Engineering, The University of Suwon
Hwangseong-si, Gyeonggi-do, Korea

smyang@suwon.ac.kr

Abstract. In this paper, an efficient ontology integration model for cooperative
agent framework is proposed. Context aware computing with inference based
on ontology investigates distributed entities on surveillance devices such as
smart cameras or sensors which may carry heterogeneous data. However, even
smart devices have small memory and power capacities which can only manage
a portion of the ontology data. In the proposed ontology integration model, each
of the agents that are built into devices get services not only from a region serv-
er, but also from peer agents with proper access control and data management.

1 Introduction

Context aware computing is indispensable for the construction of ubiquitous surveil-
lance systems. Networked smart surveillance devices provide huge raw sensed data
and inferred feature data. The available information is distributed over various infor-
mation resources. The information resources are heterogeneous in their content, data
format, organization, information management and the like. Heterogeneity of the
information resources makes their integration difficult. Furthermore content within
the information resources is changeable as it is continuously updated and modified.
The agents installed in each smart device have constraints with regard to the memory
and the power. Therefore the efficient management of their limited resources and the
information is required.

2 Distributed Ontology Integration Model

Context aware computing regarding such as location trace requires the cooperation
among the sensors[1]. For regional surveillance networks, a hierarchical tree infra-
structure of the regional surveillance networks at the regional and administrative level
similar to R-trees[2].

Ontology describes contexts such as concepts and relationships about target envi-
ronment for the surveillance. None of single agent can accommodate the whole ontol-
ogy. Each agent with a part of ontology forms a distributed graph structure. They can
communicate each other freely within access control permission to perform their own
intelligent distributed inference based on their own ontology[3]. We intend to refine

576 S. Yang

each of the local ontology groups and then develop knowledge bases by integrating
several related neighboring ontologies. The regional surveillance network forms a
hierarchical tree structure by administrative level. If the number of children that each
non-leaf node is between m and M where 2/2 Mm ≤≤ , the height of the tree is
bounded by]log,[log NN mM

 when N is the number of ontology agents. Bandwidth

between the agents is regulated by the tree level.
The data source agents need to carry out the indexing and retrieval of the informa-

tion distributed across the agents in an efficient manner. To aid the task, a communi-
cation protocol is defined according to ONVIF standard[4]. As peers exchange infor-
mation, they can negotiate and utilize caches based on the messages exchanged. For

an adaptive cache management, weight of data is measured using f s r d
ki k iw hλ δ μ=

where λ is the access frequency, δ is the size of data, μ is the service interval and

h is the distance between the agents similarly to [5]. As a result, better utilization of
their limited cache space and higher system performance can be obtained.

3 Performance Evaluation

To evaluate the performance of the model, a simulation to count the number of packet
transmissions for accomplishing context aware computing is carried out to inspect the
effects on the average packet transmission. Fig. 1 shows the expected packet trans-
mission by packet loss p and service interval μ. When the packet loss is small, the
difference is small. However, as the packet loss gets bigger, it suffers more increasing
packet transmission. When the packet loss is large, the performance can be managed
by controlling the caching ratio q and adjusting the network structure.

0

0.5

1

0

0.5

1
0

5

10

15

20

25

p

Expected Value of the Packet Transmissions

μ

E

unstructured
structured

Fig. 1. A comparison of the expected packet transmissions

 Distributed Ontology Integration Model for Cooperative Inference 577

Fig. 2. An ontology description view

Several context ontologies reflecting various types of situation are under develop-
ment, and the prototype system described in this paper is operated with inference
based on ontology integration. Fig. 2 shows a portion of the ontology developed in
TopBraid[6]. In the prototype system, surveillance environments are identified for
context aware computing into knowledge bases. Final implementation of the proposed
ontology integration model will be merged into wide area surveillance system named
CUSST(Center for U-city Security and Surveillance Technology)[7].

4 Conclusion

In this paper, the distributed ontology integration model for cooperative inference in
context aware computing is proposed. Data source agents exchange information with
each other freely within access control in accordance to ONVIF standard. Agents
perform their own integrated inference based on their own ontology knowledge base
and others. The flexible cache scheme and scalable agent structure which is adaptive
to the actual device demands and that of its neighbors help cooperative inference.
Context inference including distributed multimedia data and biomedical feature data
is widely used in surveillance environment including health surveillance[8]. In [8],
biomedical ontologies are integrated in a graph approach. It can be combined with our
ontology integration model.

The simulation and implementation are conducted to show the effectiveness of the
proposed model. The expected packet transmission is inspected and the trend is ana-
lyzed. Realistic data is collected also to make the prototype system merge into wide
area surveillance framework.

Acknowledgements. This work was supported by the GRRC program of Gyeonggi
province. [GRRCSUWON2014-B1, Center for U-city Security and Surveillance
Technology].

578 S. Yang

References

1. Sankaranarayanan, R.J.A., Veeraraghavan, A., Chellappa, R.: Object Detection, Tracking
and Recognition for Multiple Smart Camaras. Proceedings of the IEEE 96(10) (2008)

2. Manolopoulos, Y., Nanopoulos, A., Theodoridis, Y.: R-Trees: Theory and Applications.
Springer (2006)

3. Pan, J.Z.: A Flexible Ontology Reasoning Architecture for the Semantic Web. IEEE Trans-
actions on Knowledge and Data Engineering Archive 19(2) (2007)

4. http://www.onvif.org/
5. Paknikar, A., Kankanhalli, M., Ramakrishnan, K.: A Caching and Streaming Framework for

Multimedia. ACM Multimedia (2000)
6. http://www.topquadrant.com/
7. http://cusst.suwon.ac.kr/, http://grrc.suwon.ac.kr/
8. Shaban-Nejad, A., Haarslev, V.: An Enhanced Graph-Oriented Approach for Change Man-

agement in Distributed Biomedical Ontologies and Linked Data. In: Proceedings of the
IEEE International Conferende on Bioinformatics and Biomedicine Workshops (2011)

Cross-Platform Parallel Programming

in PARRAY: A Case Study

Xiang Cui1,2,4, Xiaowen Li3, and Yifeng Chen1,2

1 HCST Key Lab at School of EECS, Peking University, Beijing, China
2 State Key Laboratory of Mathematical Engineering and Advanced Computing,

Wuxi, China
3 Air Defense Forces Academy, Zhengzhou, China

4 College of Computer & Information Engineering, Henan University, Kaifeng, China

Abstract. Parray (or Parallelizing ARRAYs) is an extension of C lan-
guage that supports system-level succinct programming for heteroge-
neous parallel systems. Parray extends mainstream C programming with
novel array types. This leads to shorter, more portable and maintainable
parallel codes, while the programmer still has control over performance-
related features necessary for deep manual optimization. This paper uses
the case study on stepwise program refinement of matrix transposition
to illustrate the basic techniques of Parray programming.

1 Introduction

Parray (or Parallelizing ARRAYs) is an extension of C language that sup-
ports system-level succinct programming for heterogeneous parallel systems [1,2].
Parray extends mainstream C programming with novel array types, which are
then compiled to C code with machine-generated macros and vender-specific
library calls. The programming style is unified for all forms of parallelism.

Matrix transposition, as a basic linear algebra algorithm, is implemented
in Parray to demonstrate its cross-platform programming features. A unified
Parray matrix-transposition code can run on hardware platforms like CPU,
MIC and GPU with only memory types modified and achieve high performance.

2 Array Types of PARRAY

The following array type A in paged main memory has three dimensions:

$parray paged float[[n][n]][m] A

and consists of n*n*m elements. Parray supports various other memory types
such as dmem for GPU device memory, micmem for MIC memory and so on. The
following commands declare two type-A array objects x and y as pointers and
allocate memory to the pointers using the corresponding library calls of the
memory type. Note that the commands are the same as $create A(x,y) in
shorthand.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 579–582, 2014.
c© IFIP International Federation for Information Processing 2014

580 X. Cui, X. Li, and Y. Chen

float *x,*y; $malloc A(x,y)

Unlike C language, type A nests its first two dimensions together, and is also a
two-dimensional type. The size $size(A 0) of the column dimension A 0 is n*n,
which is split into two sub-dimensions A 0 0 and A 0 1 of size n.

Parray allows array dimensions to refer to existing types. The following type
B also consists of n*n*m elements:

$parray dmem float[[#A 0 1][#A 0 0]][#A 1] B

but is allocated in GPU’s device memory. Its row dimension B 1 has the same
offsets as A 1 (according to dimensional reference #A 1), but the sub-dimensions
of the column dimension are swapped. The following Parray command $copy

performed by a CPU thread duplicates n*n*m floats at address x in main memory
to address y in GPU device memory :

$copy A(x) to B(y).

If we consider every m adjacent elements as a unit, the layout of y is exactly
a matrix transposition of x. A simple way to map the elements of an array is to
use for command like the following code of array initialization where the pointer
y is moved to the address of each element for processing, and (*y) obtains the
element:

$for B(y) {(*y)=0;}.

3 Case Study

The performance of matrix transposition on different hardware platforms highly
depends on the underlying architecture and requires system-level programming.
Unified cross-platform programming to achieve high performance is challenging.
In this case study, we illustrate a simple algorithm, a cache-friendly block-wise
algorithm and a tile-buffered algorithm with different levels of performance opti-
mization. The programming style remains tidy and unified for these algorithms.

3.1 Simple Matrix Transposition

The following code performs a square matrix transposition in memory by CPU:

$parray {paged double [n][n]} C

$parray {paged double [#C_1][#C_0]} D

$main{......

$for C(x),D(y){ *y=*x;}

......}

where type C is declared as a n*n double array in main memory. Type D also
has two dimensions referred from C but swaped. The for command makes sure
the pointer x is moved to the address of C’s each element which is copied to
corresponding pointer y whose offset is calculated according to type D. The
square matrix is transposed as a result. By changing the memory type of C and
D from paged to micmem or dmem, the code can be easily run on MIC or GPU.

Cross-Platform Parallel Programming in PARRAY: 581

3.2 Blocked Matrix Transposition

A more effective way to do the matrix transposition is the blocked transposi-
tion algorithm. The matrix is divided into a checkerboard of small blocks. Two
blocks that are symmetrically distributed with respect to the leading diagonal
are identified and their data is swapped with each other with the elements of
every block also in transposed form. Data distribution is defined as follows:

$parray {paged double [[q][n/q]][[q][n/q]]} E

$parray {paged double [[#E_0_0][#E_1_0]][[#E_0_1][#E_1_1]]} F

$parray {paged double [[#E_1_0][#E_0_0]][[#E_1_1][#E_0_1]]} G

where type E partitions the initial square dimension of n*n into (q*(n/q)) *

(q*(n/q)). F is declared by reordering E’s dimensions to represent the initial
array layout as q*q blocks of (n/q)*(n/q) doubles. Compared with F, type G

represents the layout after transposition. The Parray code is as follows:

$main{......

$for F_0(x),G_0(y){

$for F_1(x),G_1(y) { *y=*x; }}

......}

where the outer for command moves the pointers x to the beginning addresses
of each block before transposition and y after transposition respectively; then
the inner for command handles each block.

3.3 Buffered Matrix Transposition

For different processors, data buffer could be used to further improve perfor-
mance when transposing each block. Elements in one block could be fetched
into a buffer and written back to memory in a more efficient way.

With MIC, in order to get higher memory bandwidth, array accesses should
be vectorized. MIC has 512-bit vector registers and every 64 doubles can be
fetched into one vector register. The data buffer is defined as follows:

$parray {vmem double [n/q][n/q]} H

where vector memory type H has the same size with one block and is used to
describe the vector register buffer. The Parray code is as follows:

$main{......

$for F_0(x),G_0(y){

$for F_1(x) itile H, G_1(y) otile H {

$for H(x,y) {*y=*x;}}}

......}

where itile/otile clause of Parray is used to specify the data buffer used.
Actually, the above Parray code can be written in a more simply way:

582 X. Cui, X. Li, and Y. Chen

$parray {paged double [n][n]} F

$parray {paged double [#F_1][#F_0]} G

$parray {vmem double [n/q][n/q]} H

$main{......

$for G(x) itile H, H(y) otile H{

$for H(x,y) {*y=*x;}}

......}

where the matrix will be divided to tiles automatically when doing transposition.
Similarly, with GPU, shared memory can be used to avoid the large strides of
accessing device memory when doing matrix transposition.

This code is tested for various matrix sizes and achieves about 78 and 88
GB/s on MIC and Nvidia K20 GPU respectively (which are about 70% peak
bandwidths of contiguous data transfer on both accelerators).

Table 1. Matrix transposition v.s. peak bandwidth of contiguous data transfer

Simple Block-wise Tile-buffered Peak bandwidth

CPU 3.49 10.45 N/A 32.89
MIC(60 cores) 4.98 6.53 78.73 101.13
Nvidia K20 GPU 7.68 12.38 87.75 150.34

4 Conclusion

This paper uses a case study on stepwise program refinement of matrix transpo-
sition to illustrate the basic techniques of Parray programming and its cross-
platform programming features. Layout patterns before and after transposition
can be defined using Parray’s array types easily and clearly. A unified Parray
matrix-transposition code can run on hardware platforms like CPU, MIC and
GPU with only memory types modified and achieve high performance.

Acknowledgement. This research is supported by theNational HTRD 863Plan
of China under Grant No. 2012AA010902, 2012AA010903; the National Natural
Science Foundation of China under Grant No. 61240045, 61170053, 61379048; the
China Postdoctoral Science Foundation under Grant No. 2013M540821; the State
Key Laboratory of Mathematical Engineering and Advanced Computing under
Grant No. 2013A12; the Science and Technology Key Project of Education De-
partment of Henan Province under Grant No. 13A520065.

References

1. Chen, Y., Cui, X., Mei, H.: PARRAY: A Unifying Array Representation for Hetero-
geneous Parallelism. In: PPoPP 2012 (2012)

2. PekingUniversityManycoreSoftwareResearchGroup (2014),
http://code.google.com/p/parray-programming/

http://code.google.com/p/parray-programming/

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 583–586, 2014.
© IFIP International Federation for Information Processing 2014

Different Solvers Evaluation for a Bucking Problem

Chau-Yi Chou1, Jiunn-Horng Lee1, Yu-Fen Cheng1,
Chih-Wei Hsieh1, and Weichung Wang2

1 National Center for High-Performance Computing, Taiwan
2 Institute of Applied Mathematical Sciences, National Taiwan University

cychou@nchc.narl.org.tw

Abstract. The linear system solver plays a key role in scientific computing.
This paper evaluates the performances of PETSc (Portable, Extensible Toolkit
for Scientific Computation) and HIPS (Portable, Extensible Toolkit for
Scientific Computation) solving a singular matrix arising from a bucking
problem from UF matrix collection. We employ preconditioned (Level-based
ILU) iterative methods (GMRES) for PETSc while HIPS adopts the Schur
complement method, named iterative or hybrid mode. Moreover, HIPS
proposed HID (Hierarchical interface decomposition) to improve the parallel
efficiency. We hope to transfer these results into industrial applications.

Results

These results were performed on ALPS in National Center for High-performance
Computing (NCHC). The hardware of computing nodes on NCHC ALPS consists of
600 of Acer AR585 and are connected together with Qlogic InfiniBand in 4x QDR
(40Gb). Each node contains 48 cores sharing 128 GB RAM in 4-memory-controller
non-uniform memory access architecture.

The singular matrix was proposed by Arthur Raefsky for a buckling problem for
container models in 1993. The id number in UF matrix collection [1] is 817. Table 1
presents the matrix characteristic. From Table 1, we know that this matrix is a
singular matrix because of her dimension unequal to her rank.

Table 1. Matrix Characteristic

Name N NNZ
Condition
Number

rank

raefsky4 19779 1316789 3.13E13 19771

The stopping criteria were used the scaled residual < 1E-7 [2]. This study first

evaluated the performance of different k levels of ILU(k) preconditioned GMRES
iterative method via PETSc. Table 2 depicted the results (the number of iterations,
elapsed time in second, scaled residual, peak fill-in ratio) of different levels via
PETSc. The “peak fill-in ratio” denoted the ratio of the memory to the original one in
order to show the memory increment. It had to pay the penalties of the elapsed time
and the memory for increasing levels. Because that the infinity norm [3] of the

584 C.-Y. Chou et al.

computed solutions between 7 and 100 levels was near 7.55E-7, we adopted 7 levels
for PETSc hereafter.

Table 2. Results of ILU(k) preconditioned GMRES iterative method via PETSc

ILU(k) No. iter. Elapsed time (Sec.) Scaled residual
Peak fill-in

ratio
7 37 2.75E1 8.30E-6 11.70

10 24 4.88E1 3.63E-6 15.89

100 2 1.80E2 4.38E-6 25.19

HIPS used the Schur complement method, HID, threshold ILUT preconditioned
GMRES iterative method, named iterative or hybrid mode [4] to solve the linear
system. Iterative mode used the ILUT preconditioned GMRES iterative method;
however, hybrid mode first divided the linear system into the interior system and the
Schur complement. Then, the direct method dealt with the interior system while the
ILUT preconditioned GMRES iterative method dealt with the Schur complement.
Therefore, the hybrid mode used both the direct and iterative methods to solve this
linear system.

Take 100 Krylov subspaces and let the maximal number of iterations be 100. Use
the scaled residual to check the accuracy of the computed solutions. Fig. 1 shows the
breakdown of the iterative mode compared with PETSc_seq. HIPS outperforms
because of HID. Fig. 2 illustrates the breakdown of the hybrid mode. From Fig. 1 and
Fig. 2, the hybrid mode lightly outperforms iterative mode when MPI jobs are less
than 16; however, the iterative mode shows lightly faster than the hybrid mode on 16
MPI jobs.

Fig. 1. Breakdown of PETSc and HIPS (iterative mode)

Fig. 3 shows the speedup of the iterative and hybrid modes via HIPS. Both modes
via HIPS have near speedup because of problem size limit. Fig. 4 shows the number
of iterations via HIPS. Parallel affects the accuracy in the iterative mode; however,
the hybrid mode doesn’t.

0

5

10

15

20

25

30

PETSc_seq 1 4 16

E
la

ps
ed

 t
im

e
in

 S
ec

.

No. of MPI Jobs

Solver

Precond.

Ordering

HID

Partition

 Different Solvers Evaluation for a Bucking Problem 585

Fig. 2. Breakdown of HIPS hybrid mode

Fig. 3. HIPS Speedup

0

5

10

15

20

25

1 2 4 8 16

E
la

ps
ed

 t
im

e
in

 S
ec

.

No. of MPI Jobs

Solver Precond. Symbolic factorization HID

586 C.-Y. Chou et al.

Fig. 4. The number of iterations via HIPS

Conclusion

HIPS outperforms because of HID. HIPS shows good parallel performance, too.
Dealing with this problem via HIPS, the hybrid mode shows lightly faster than the
iterative mode when MPI jobs are less than 16 while the iterative mode shows lightly
faster than the hybrid mode on 16 MPI jobs. Our future work will focus on auto
tuning via PETSc to suggest the best solution among these packages. Moreover, we
will systematically analyze the linear solver performances for an application field, for
example, solid and structural mechanics.

Acknowledgments. We are grateful to the National Center for High-Performance
Computing for computer time and facilities.

References

1. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Transactions
on Mathematical Software 38(1), 1–25 (2011)

2. Gould, N.I.M., Scott, J.A., Hu, Y.: A numerical evaluation of sparse direct solvers for the
solution of large sparse symmetric linear systems of equations. ACM Transactions on
Mathematical Software 33(2), 10 (2007)

3. Golub, G.H., Loan, C.L.: Matrix computations, 3rd edn. Johns Hopkins University Press,
Baltimore (1996)

4. Gaidamour, J., Hénon, P.: A parallel direct/iterative solver based on a Schur complement
approach. In: Proceedings of the IEEE International Conference on Computational Science
and Engineering, pp. 98–105 (2008)

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 587–590, 2014.
© IFIP International Federation for Information Processing 2014

Quality of Service Enhancement by Using an Integer
Bloom Filter Based Data Deduplication Mechanism

in the Cloud Storage Environment

Kuo-Qin Yan1, Yung-Hsiang Su1, Hsin-Met Chuan2,
Shu-Ching Wang1,*, and Bo-Wei Chen1

1 Chaoyang University of Technology, Taiwan, R.O.C.
{kqyan,s10033905,scwang,s10114603}@cyut.edu.tw

2 Hsing-Kuo University, Taiwan, R.O.C.
hn88780752@yahoo.com.tw

Abstract. Network bandwidth and hardware technology are developing rapidly,
resulting in the vigorous development of the Internet. A concept, cloud computing,
uses low-power hosts to achieve high quality service. According to the
characteristics of cloud computing, the cloud service providers can support the
service applications on the Internet. There are a lot of applications and data centers
in the cloud-computing environment, then the loading of storage node is heavier
than before. However, data deduplication techniques can greatly reduce the amount
of data. Therefore, an integer Bloom Filter based Lightweight Deduplication
Mechanism (LDM) under cloud storage is proposed. The proposed LDM can
reduce the extra cost that traditional data deduplication technique needed.

Result

As network bandwidth and quality outstrip computer performance, various
communication and computing technologies previously regarded as being of different
domains can now be integrated, such as telecommunication, multimedia, information
technology, and construction simulation. Thus, applications associated with network
integration have gradually attracted considerable attention. Similarly, cloud
computing facilitated through distributed applications over networks has also gained
increased recognition. In a cloud-computing environment, users have access to faster
operational capability on the Internet [2], and the computer systems must have high
stability to keep pace with this level of activity.

In the data deduplication strategy, the block-level strategy is used. The block-level
strategy has higher reduction ration than file-level but must consume more computing
resource that is not suitable in cloud computing [3]. In this study, an integer Bloom
Filter [4] based Lightweight Deduplication Mechanism (LDM) under cloud storage is
presented to solve this problem. In the proposed LDM system architecture, several
storage nodes are grouped into a cluster, each cluster has a storage node acts cluster
are called Namenode, the other storage node are called Datanode. Namenode is
responsible for perform LDM and placement data to Datanode, Namenode also

* Corresponding author.

588 K.-Q. Yan et al.

provides the storage capacity. Each Namenode has two components, LDM and
Metadata Table. The LDM is used to perform deduplication strategy, and Metadata
Table is responsible for the metadata of stored data. The proposed system architecture
is shown as Fig. 1. The main job of Transfer Agent System (TAS) is used to upload
data when the requests of user are received. The data is partitioned into n chunks and
translated into unique identifier by SHA-1. Then, the unique identifier of data chunks
is delivered to cluster by TAS for comparison data.

Fig. 1. The LDM System Architecture

In the proposed system architecture, each cluster executes LDM. The steps are
described in below:

1. Set the number of hash function (k). For example, Cloud Service Provider
(CSP) chooses seven hash functions.

2. Calculate the quantity of data that each cluster can store (nmax). For example,
if the capacity of cluster is 40 GB and data chunk capacity is 64 MB, then
this cluster can store 640 data (40 GB/64 MB).

3. Calculate the length of Bloom Filter (m) by using:
k=(m/n)ln 2=m/n*0.69314 (1)

Through formula (1), Bloom Filter length (m) is 6463.

4. Calculate the probability of “Positive False” by using:
f’=(1-(1/m)kn)k (2)

Through formula (2), the probability of “Positive False” is 0.0078 that means
the average 1000 times query will occur 8 times “Positive False”.

5. CSP chooses an accept probability of “Positive False”, and then the
initialization of Bloom Filter is completed. If CSP cannot accept an accept
probability of “Positive False”, then return to Step 1. In addition, a bigger k is
chosen that can get smaller probability of “Positive False”.

 Quality of Service Enhancement by Using an Integer Bloom Filter Based Data DM 589

A linked structure is used by LDM to store the metadata. When a data is added, to
calculate the unique identifier by k hash functions and mapping to Bloom Filter
firstly, then the hash value is computed to decide the starting position of link. The
calculator formula is shown in (3), where val(hi) is the ith hash value, m is Bloom
Filter length, % symbol is mod function.

Link(position) = ((hi)) % m (3)

By formula (3), a position in Bloom Filter can be obtained, and then link to the
metadata of data chunk. For example, if there are 4 hash functions, val(h1) = 6069,
val(h2) = 36, val(h3) = 5, val(h4) = 642, and m =6463, by using formula (3), the link
start position is 289 [(6069+36+5+642) % 6463 = 289], therefore, this data will be
linked to intBF index number 289. When the same result is gotten by different data
through formula (3), then a links is generated by the last linked list. The progression
of LDM is shown as Fig. 2.

Fig. 2. The progression of LDM

In the data deduplication, the process of comparison is same as the process of data
added. In the comparison process, the unique identifier is calculated by k hash
functions firstly. Then, LDM judges the status of data existence by using intBF. If this
data is not exist, do not perform the compare process, else if intBF judge this data is
existence, to find the link position through formula (3), and search all link nodes to
find the same data. However, the average comparison times in data duplication of our
proposed LDM is compared with iBF (indexed Bloom Filter) proposed by Antichi et
al. [1]. The capacity of storage node was generated by NS2, include current consume
capacity and maximum capacity. The unique identifier was generated by md5-
database [5], md5-database can transform data in to a unique identifier by MD5,
SHA1, SHA256, and SHA512. However, SHA-1 was used in this experimental.
There are 250 original data, include 150 movie data (2441 data chunk after partition),
and 100 backup data (2518 data chunk after partition). Original data are partitioned by
64 MB, and there are 4959 data chunks totally. C++ is used to write the proposed
mechanism. Finally, MS Excel 2010 is used to record experimental result. In addition,
when a new data is uploaded, the unique identifier of data will be compared with
storage system. In this experiment, data deduplication is performed in storage system
which stored different number of data (25%, 50%, 75%, 100% of total data).

590 K.-Q. Yan et al.

In this experiment, there are 20 data be uploaded in four kinds of situation and
perform the data deduplication comparison processes. Fig. 3 is the results of average
comparison times. X-axis is the different number of data; Y-axis is the average
comparison times.

Fig. 3. The average comparison times in Data Duplication

According to the results shown in Fig. 3, whether in more or less number of data,
the comparison times in LDM were keep in a constant time nearly. From the
experiment results, LDM can use less computing resource to complete data
deduplication process that is more suitable in cloud storage. In this study, LDM
through rapid judge the status of data existence and compare the same data position
can reduce the computing resource of data deduplication compare process, and then
LDM more suitable in cloud computing.

Acknowledgments. This work was supported in part by the Ministry of Science and
Technology MOST 102-2221-E-324-008 and MOST 103-2221-E-324-025.

References

1. Antichi, G., Pietro, A.D., Ficara, D., Giordano, S., Russo, F., Vitucci, F.: Achieving Perfect
Hashing through an Improved Construction of Bloom Filters. In: The IEEE International
Conference on Communications, pp. 1–5 (May 2010)

2. Aymerich, F.M., Fenu, G., Surcis, S.: An approach to a cloud computing network. In: The
1st International Conference on Applications of Digital Information and Web Technologies,
pp. 113–118 (August 2008)

3. Tsuchiya, Y., Watanabe, T.: DBLK: Deduplication for Primary Block Storage. In: The of
IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–5 (2011)

4. Wang, S.C., Wang, S.S., Yan, K.Q., Chen, B.W.: HDDS: Hybrid data DeDuplication
Strategy over Cloud Storage. In: The International Conference on Innovation and
Management, p. 103 (July 2012)

5. Unique Identifier Database, http://md5-database.org/sha1/

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 591–594, 2014.
© IFIP International Federation for Information Processing 2014

Fault-Tolerant Storage Servers for the Databases
of Redundant Web Servers in a Computing Grid

MinHwan Ok

Korea Railroad Research Institute, Woulam, Uiwang, Gyeonggi, Korea
mhok@krri.re.kr

Abstract. Computing Grid in this paper is a Grid computing environment that
supplies applications which run in a local computing site only, without any
modification or adaptation for running globally in the Grid computing environ-
ment. Each stage of a running application is transcribed at all the management
databases coupled with respective Web servers. The consistency is maintained
by double-checking of every acknowledgement against a write to all the man-
agement databases and a circulated read response from either database. The sto-
rage spaces could be integrated into a single one by storage managers within a
computing site. The modification of a file is broadcast to the storage managers
sharing the storage space and their allocation tables are updated immediately.
The system architecture is in a distributed control type, potentially the best
match for Cloud computing.

Keywords: Scalable Web service, computing Grid, Fault-tolerant, Storage
virtualization.

1 Constructing the Computing Grid

In the system model, the applications are provided to the users by Web service. A
client computer connects to the Web server of the coordinator. Coordination Service
is composed of user interfaces to log-on the computing Grid and to input parameters
with user input/output data transfer. DB Organizer is the manager of information in-
cluding parameters input, software title selected, and details concerned with user ID.
It also selects appropriate computing site for the user. DB Connector is a client of DB
Organizer and read/write information/report from/to the management database. Ap-
plications are launched, controlled and landed through Application Manager, which
would be a kind of RFB Service. In Fig. 1, Application Manager delivers the com-
mands included in the order, which is received via DB Connector, to the Application.
When transferring the output data, Application Server should be re-authenticated for
the security of user data.

On writing information to the management DB of the originator coordinator, the
originator writes the same information to the management DBs of the other coordina-
tor, if one or more coordinator does not respond to the writing, the coordinator is pre-
sumed crashed-down. This is broadcast to the remained coordinators. On reading
information from the management DB of the originator coordinator, the originator

592 M. Ok

initiates reading from the management DB of the next coordinator, after reading the
information from the its own management DB. The reading is relayed returning to the
originator, thus it is named Circulated Read Request. If one or more coordinator does
not respond to this reading, the coordinator is presumed crashed-down and this is also
broadcast to the remained coordinators.

Fig. 1. System architecture of the computing Grid

Fig. 2 illustrates the circulated read request/response, the broadcast write is illu-
strated in Fig. 3. In both information writing and information circulated reading, the
originator creates Replay Roll if it detects any crashed-down coordinator. Replay roll
is the list of DB transactions from the point the crash-down is detected to the point the
crashed-down coordinator broadcasts its restart. Then the coordinator updates its
management DB following the replay roll the originator has sent. Keeping up the
recorded information identical is the major issue in this follow-up scenario.

Coordinator 2

DB

Organizer

Coordination

Service

Coordinator 3

DB

Organizer

Coordination

Service

Coordinator 1

DB

Organizer

Coordination

Service

Information

Coordinator 2

DB

Organizer

Coordination

Service

Read-Relay 1

Coordinator 3

DB

Organizer

Coordination

Service

Read

Originator

Coordinator 1

DB

Organizer

Coordination

Service

InformationInformation

Read-Relay 2

RequestRequest

Request

Fig. 2. Information reading from either management DB is relayed, which will be circulated to
the originator and the originator responds with the information last

 Fault-Tolerant Storage Servers for the Databases of Redundant Web Servers 593

Fig. 3. Information writing to the management DB of the other coordinators are acknowledged
later and the coordination service continues without these acknowledgements

2 Multiple Storage Servers

Ancillary to the selected one among local computing sites the software installed, one
of storage servers is designated for sizable storage space to process large quantities of
data with the storage farm. The storage space for application running is confined
within the application server in the previous work[1]. It is also confined in the appli-
cation server in this work, except that the whole data is partitioned and the partitions
are replaced to be processed in the application server in the manner similar to the
virtual memory. The application has restarted in the case of the storage server failure
in the previous work, however the application rolls back to the previous phase of the
current partition in this work. For active/standby failover, the allocation table is mir-
rored to the other storage server. A couple of storage servers are assigned to backups
of each other, and the storage manager has dual modes between active/standby in
normal status and active/active in abnormal status, of the other server. Coupling two
storage servers is static and conducted by the administrator.

Storage Server

Application ServerApplication Server Application Server

Gateway

Storage Server

Application ServerApplication Server Application Server

Gateway

Storage Farm Storage Farm

Storage Server Storage ServerStorage Server

Coordinator

Coordinator

Storage Server

Application Server

Partit

ion 1

Partit

ion 2

Partit

ion 3

Partit

ion 4

Partit

ion 5

Partit

ion 2

Lo
ad
in
g

Fig. 4. Computing Grid Organization and storage management on partitioned data

Since multiple storage servers govern the storage farm, the write to a storage de-
vice is allowed while the storage manager has the token of the device that the token is
traversing storage servers otherwise. Once the storage manager wrote to a storage
device, it broadcasts allocation information of the written file to other storage manag-
ers so that storage managers sharing the storage space would update their allocation

594 M. Ok

tables. The storage devices could constitute one single storage space spanned from
one device to another, for availability losing an advantage of parallelized access of
striping. When one storage device fails, it is broadcast among the storage managers by
a storage manager detected the fault. The storage space of the device is marked
'missing' at all the storage managers, analogous to bad blocks, and access to files lo-
cated at the space is restricted from then. A storage manager should have the token of
a device when it has to write to the device and it waits for the token. The investigation
protocol is described in Fig. 5 for the case the token of a device is not returned before
the failure of a storage manager.

Fig. 5. Investigation into the storage manager which is queried whether its writing is done

Reference

1. Ok, M.-H., Lee, K.-S.: A Consolidation Model of Web Application Servers toward a
Simplified Computing Grid. In: International Conference on Multimedia and Ubiquitous
Engineering, Seoul, Korea, pp. 757–761 (2007)

Scheduling Cloud Platform Managed

Live-Migration Operations to Minimize
the Makespan

Xiaoyong Yuan1, Ying Li1,2, Yanqi Wang3, and Kewei Sun3

1 School of Software and Microelectronics, Peking University, Beijing, China
2 National Engineering Center of Software Engineering,

Peking University, Beijing, China
3 IBM Research - China, Beijing, China

Abstract. Live-migration of virtual machines (VMs) has become an in-
dispensable management operation of cloud platforms. The cloud plat-
forms need to migrate multiple co-located and live VMs from one physical
node to another for power saving, load balancing and maintenance. Such
live-migration operations are critical to the running services, and thus
should be completed as fast as possible. State-of-the-art live-migration
techniques optimize the migration performance of single or multiple VMs
by concentrating on Virtual Machine Monitor (VMM), little attention
has been given to the cloud platforms which control and schedule the
multiple migration operations. In this paper, we consider the problem of
scheduling migration operations to minimize the makespan.

1 Cloud Platform Managed Migration Operations

Live-migration of VMs has become an indispensable management operation of
cloud platforms. Cloud platforms present users the ability to deploy VMs over
a cluster of physical machines on demand from a centralized management node,
thus building what is usually referred to as a VM-based cloud, which can then be
used to provide IaaS. At the current stage, however, several management issues
still deserve additional investigation, such as performance of management oper-
ations. The research[1] reveals that the burst of management operations such as
VM live-migration is the rule rather than the exception, in the VM-based cloud,
and planning and orchestrating management operations is essential for efficient
cloud operations. State-of-the-art live VM migration techniques optimize migra-
tion performance of single or multiple VMs performed by VMM, whereas the
optimization of scheduling live-migrations centralized managed by cloud plat-
form is still missing, especially for new platform(eg. OpenStack). For example,
it will take more than 2 minutes for OpenStack to migrate 30 idle VMs (KVM
driver), for that the applications within VMs suffer from degraded performance.

In cloud platform like OpenStack and CloudStack, live-migration as a man-
agement operation, is viewed as a transactional interaction between a controller
node and two compute nodes which provide computation capability. The migra-
tion operation has 4 phases: 1) checking that the scheduler on controller node

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 595–599, 2014.
c© IFIP International Federation for Information Processing 2014

596 X. Yuan et al.

finds a proper destination node; 2) pre-migration that the destination node builds
a new idle instance for receiving contents; 3) live-migration that VMM (eg. Lib-
virt in OpenStack) is invoked to perform live-migration of VM from source to
destination using pre-copy method[2]; 4) post-migration is a phase that the in-
stance tears down network and updates its status on source node. In this paper,
we consider optimizing migration operations of multiple co-located VMs from
one physical node to another. Supposing we are given n VMs on the source node
to be migrated, cloud platform will schedule and perform a set of n migration
operations M = {MO1,MO2, . . . ,MOn}, as depicted in Figure 1. For each mi-
gration operation MOi, Tij is its processing time in phase j. Besides phase 1−4,
there is a phase 0 to indicate its waiting time for performing. The objective is to
find a feasible schedule of minimum completion time of n migration operations;
that is, to minimize the makespan C:

min
M

C (M) , (1)

where makespan C is the maximum completion time of n migration operations:

C (M) = max
i

Σ4
j=0Tij , i = 1, 2, . . . , n. (2)

time

migration
operations

MO1

MO2

MOn

MO3

…

1.checking

2.pre-migration

3.live-migration

4.post-migration

MOi

Moi+1

…

0. waiting

…

…

makespan

Fig. 1. Cloud platform managed VM migration operations

2 Scheduling

2.1 Multiple Migration Operations of Idle VM

In order to save physical resource and reduce operational cost, the cloud plat-
form need to migrate idle or light workload VMs among servers for consolida-
tion. When the cloud platform performs n migration operations of idle VMs
between two nodes, the makespan varies with the number of migration opera-
tions m performed concurrently. If m = 1, n migration operations are performed
sequentially, and with m increasing, more migration operations are executed si-
multaneously in one group. The migration operation in different phases is mainly

Scheduling Cloud Platform Managed Live-Migration Operations 597

performed on different node (i.e., phase 1 on controller node, phase 2 on desti-
nation node, phase 3 and 4 on source node). When m = Ni, the processing time
of m migration operations in phase i will greatly exceed that of m = Ni − 1,
because the nodes capacity can’t afford that concurrency level. For example, in
phase 1, controller node can’t afford N1 concurrent migration operations and
the processing time would be extremely large compared with that of N1 − 1
operations. The processing time of m concurrent migration operations in phase
i is defined by

Tij(m) =

{
(n−Nj)T

∗
j , n > Nj

T ∗j , n ≤ Nj
(j = 1, 2, 4)

T ∗i is a constant coefficient of each equations. Here we perform m migration
operations simultaneously by group. To complete n migration operations, n

m
groups are going to be migrated in all. Because the duration of live-migration
phase of migration operations of idle VM is short compared with other phases,
T3i can be assumed as constant, and let T3i = T ∗3 . For there’s no different in
Ti1, Ti2, Ti4 among VMs, for these phases are cloud management related, not
VM related. We let Ti1 = T1(m), Ti2 = T2(m), Ti4 = T4(m),m = 1, 2, . . . , n for
convenience. Waiting time in each group should be the maximum time among
{T1(m), T2(m), T4(m)} (Figure 2), so that there is no overlap between different
groups and won’t affect each other. Hence the makespan of n migration opera-
tions is:

C (M) = Tcomplete(m) + Twait(m)(
n

m
− 1), (3)

where Tcomplete is the complete time in one group: Tcomplete(m) = T1(m) +
T2(m) + T ∗3 + T4(m), and Twait is the waiting time between groups: Twait(m) =
max{T1(m), T2(m), T4(m)}. The optimal number m in one group should be the
minimum point of C (M).

m N1 N2

t

N4

T1(m)

T4(m)

T2(m)

Fig. 2. Waiting time function
Twait(m)

bandwidth

time
C

...

... ...

...

...

...

... ...

MO1

MO11

MO5

MO3

MO2

MOn

MOi

MO4

MO6

MOi+1Ti3

Ti0

bm1 br1 bk1 BD

Fig. 3. Schedule for migration op-
erations

598 X. Yuan et al.

2.2 Multiple Migration Operations of Busy VM

Sometimes, the cloud platform need to migrate busy VMs among servers for load
balancing. For cloud platform managed migration operations of busy VM, the
live-migration phase is the most influential one than others. We pay attention
to migration operation in phase 3 this time. Supposing the migration operation
MOi with memory size VMi, dirty page rate DRi and bandwidth of each op-
eration regulated as bmi, we estimate processing time of live-migration phase
Ti3 by approximate algorithm[3]. As shown in Algorithm 1, once given input of
MOi: VMi, bmi, DRi, the migration time Ti3 can be estimated by simulating
migration operation.

According to approximate algorithm, network bandwidth is the most influen-
tial parameter. As network bandwidth decreasing, migration performance starts
to degrade rapidly especially for busy VM. We consider following network pa-
rameters: network bandwidth BD in cloud, bandwidth bmi utilized in each op-
eration, and bandwidth bri reserved to maintain an acceptable quality of service
in live-migration phase[5]. bdi, sum of bmi and bri, is a necessity of network
bandwidth for both migration performance and service quality during each mi-
gration. When migration operations are performed simultaneously, the number
of migration operations m is limited so that the sum of m migration operations’
bandwidth bdi can’t exceed network bandwidth BD. To minimize the makespan,
our work is to arrange the order and waiting time for migration operations prop-
erly.

Now it is kind of strip-packing problem: pack items with various width and
height into a big strip which has fixed width and variable height, and the ob-
jective is to minimize the height of strip. In Figure 3, we illustrate n migration

Algorithm 1. Performance
Model for Migration

INPUT: bmi, V Mi, DRi

OUTPUT: Ti3

vo ← VM , vmig ;← 0, tmig ←
0; //Given iterth, vth as default
values
for i = 0 to iterth do

ti ← vi
bmi

;
vi+1 ← ti ·DRi;
tmig ← tmig + ti;
vmig ← vmig + vi;
if vi+1 ≤ vth or vmig ≥ VMi

then
break;

end if
end for
Ti3 ← tmig +

vi+1

bmi

Algorithm 2. Scheduling of migration op-
erations

INPUT: BD, bmi, bri, V Mi, DRi OUT-
PUT: Ti0,C
for i = 0 to n do

Ti3 = f(VMi, bmi, DRi); //f denotes Al-
gorithm 1

end for
bdi = bmi + bri;
[bdk1 , bdk2 , . . . , bdkn] =
sort([bd1, bd2, . . . , bdn]); //sort by non-
increasing sequence
for i = 0 to n do

//find lowest possible position left justified
for operation ki
(hki , wki) = lowleft(bdki , Ti3);
Tki0 ← hki ;

end for
C← max(hki + Tki3);

Scheduling Cloud Platform Managed Live-Migration Operations 599

operations, each having live-migration time Ti3 and waiting time Ti0. The width
of strip is bandwidth of network. The height of strip shows the highest opera-
tion (the (n−1)th operation in Figure 3), the makespan in fact. After packing n
migration operations into a 2-D strip composed by time and bandwidth, we will
get an optimal schedule. Though strip packing problem is a NP problem, there
are still some approximation algorithms such as Next-Fit Decreasing Height
(NFDH), or metaheuristic algorithms like annealing and genetic algorithm[4].
Algorithm 2 uses the Bottom-Left (BL) algorithm to find an optimal schedule
to minimize the makespan of cloud platform managed migration operations of
busy VM.

References

1. Soundararajan, V., Anderson, J.M.: The impact of management operations on the
virtualized datacenter. In: ACM SIGARCH Computer Architecture News, pp. 19–23
(June 2010)

2. Clark, C., Fraser, K., Hand, S., Hansen, J.G.: Live migration of virtual machines.
In: Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation, pp. 273–286 (2005)

3. Strunk, A.: Costs of virtual machine live migration: A survey. In: IEEE Eighth
World Congress, pp. 323–329 (2012)

4. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey.
European Journal of Operational Research, 241–252 (2002)

5. Breitgand, D., Kutiel, G., Raz, D.: Cost-aware live migration of services in the cloud.
In: SYSTOR 2012 (2012)

Sequential Sensing and Transmission

for Real-Time Traffic in Cognitive Networks

Show-Shiow Tzeng1 and Ying-Jen Lin2

1 Dept. of Optoelectronics and Communication Engineering,
National Kaohsiung Normal Univ., Kaohsiung, Taiwan

sstzeng@nknucc.nknu.edu.tw
2 Dept. of Mathematics, National Kaohsiung Normal Univ., Kaohsiung, Taiwan

Abstract. This paper proposes a sequential sensing and transmission
algorithm for real-time data in time-slotted multi-band cognitive net-
works. The proposed algorithm includes the backlog in a queue and the
delay constraint of real-time data to select an appropriate band to send
data such that more real-time data can be transmitted before being
dropped. Simulation results show that the proposed algorithm reduces
frames loss ratio and increases effective real-time throughput.

Keywords: sequential sensing, real-time traffic, frame loss ratio, multi-
band, cognitive networks.

1 Introduction

Cognitive networks have been introduced to utilize the temporarily idle bands in
licensed networks [1]. To access an idle spectrum band, the first step of a mobile
user in cognitive networks (i.e. cognitive user) is to sense the band and determine
whether the band is idle or busy. In a multi-band networks, a cognitive user can
use sequential sensing to sense bands one by one. Once one idle band is found,
the cognitive user can send out data on the band; otherwise, the user senses
the next band. Sequential sensing allows cognitive users to sense two or more
bands, which then leads to that cognitive users send out data more quickly in a
cost-effective manner [2,3].

Previous sequential sensing algorithms implicitly assume that (i) frames are
always available from an upper layer at any time and (ii) frames can tolerate long
delay. Frames arriving from an upper layer are usually placed into a queue and
then be transmitted latter. Due to the first assumption, the number of the frames
in a queue is infinite and previous sequential sensing stops to send frames on
the band which maximum throughput is the greatest among the sensing bands.
However, the number of the frames in a queue is finite and is possibly variable.
It is meaningless that a band which can transmit all the frames in a queue is
found but we abandon the band and sense the next band due to the reason
that the next band may have higher throughput. Therefore, we suggest that
sequential sensing may stop on the band which can send out all the frames if the
band is found, instead of the band which maximum throughput is the greatest;

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 600–603, 2014.
c© IFIP International Federation for Information Processing 2014

Sequential Sensing and Transmission 601

from this viewpoint, the frames can be sent more quickly. Under the second
assumption, previous sequential sensing does not consider that real-time frames
have the requirement of delay constraint; that is, frames are dropped when the
frames suffer a specified delay time. Although sensing more bands may have
more opportunity to find a throughput-maximum band, more frames may be
also dropped. This paper designs a sequential sensing procedure for real-time
traffic in a realistic network environment removing the two assumptions.

2 The Proposed Sensing and Transmission Algorithm

The radio environment herein is a licensed network in which radio spectrum is
divided into spectrum bands and each band is further divided into time slots. M
possible transmission rates are assumed to be available on a band; each rate is
denoted by rm, 1 ≤ m ≤ M . The frames, consisting of header and payload, are
real-time traffic with the constraint of delay time. The time that a frame stays in
a queue is queuing time. The time that a frame is sent out is transmission time.
For a frame, if the sum of queuing time and transmission time is greater than
the delay requirement, the frame is dropped. Given a set of bands, the amount of
real-time data successfully sent in a slot on the bands excludes sensing overhead,
header overhead, and the failed data due to miss-detection and dropping. Then,
the estimated real-time throughput (ERT) is defined as the ratio of the average
amount of real-time data successfully sent in a slot on the bands to a slot time.
In the proposed algorithm, a cognitive user starts to sense a time slot on band
bi, i = 1. If sensing result is busy, the user checks whether band bi+1 exists. If
band bi+1 exists, the user senses the same slot on the next band bi+1; otherwise,
the user waits the beginning of the next slot and then repeats the proposed
algorithm. If sensing result is idle, the user calculates (i) the ERT of band bi and
(ii) the ERT of the bands {bi+1, bi+2, ..., bN}; then the user compares the values
of the both ERTs. If the ERT of the bands {bi+1, bi+2, ..., bN} is higher, the user
continues to sense the next band bi+1; otherwise, the user sends frames in the
residual time of the slot on band bi.

In the following, we introduce the notation used in the equations to calculate
the ERT, and then the equations are presented. The header length and payload
length of a frame are denoted by Lh and Ld respectively. Let Tc, Ts, Tl, and Tp

respectively denote the time of changing bands, sensing time, slot time, and the
probing time of a band. Let T j

q denote the queuing time of the q-th frame in a
queue at the beginning of slot j. The probability that a slot is busy (or idle) is
denoted by Pbusy (or Pidle). The probability that a user correctly detects a busy
slot is denoted by Pd. The probability that a user incorrectly identifies an idle
slot as a busy slot is denoted by Pf . Let E

j
i,k denote the ERT of slot j on bands

{bi, bi+1, ..., bN}, where 1 ≤ i ≤ N and k, 0 ≤ k ≤ i−1, is the number of probing
operations performed before band bi. Let e

j
i,k(x) represent the ERT of slot j on

band bi, where x is the transmission rate of band bi and k is the number of
probing operations performed before band bi. We in turn derive eji,k(x) and Ej

i,k

as follows. When a cognitive user attempts to send frames in a queue in slot j

602 S.-S. Tzeng and Y.-J. Lin

on band bi, the user experiences i sensing times, (i−1) times of changing bands,
and at least one probing time. Since the user may have probed k bands before
band bi, the q-th frame can be sent at a rate x if (i) the frame is sent completely
before the end of slot j, i.e. iTs + (i− 1)Tc + (k+1)Tp + q(Ld +Lh)/x < Tl and
(ii) the delay constraint D of the frame is satisfied, i.e. T j

q + iTs+(i−1)Tc+(k+

1)Tp+q(Ld+Lh)/x < D, which can be expressed by an indicator function δjq(x).

The value of δjq(x) is 1 if the frame is sent successfully; otherwise, the value is 0.
The maximum number of frames which can be sent at a rate x in the remaining
time of slot j is

∑
q∈Q δji,k,q(x), where Q is the set of frames in a queue at the

beginning of slot j. Then, the ERT, eji,k(x), is calculated as follows:

eji,k(x) =
1

Tl

∑

q∈Q
δji,k,q(x)Ld. (1)

When a user is in slot j on band bi, the ERT of bands {bi, bi+1, ..., bN}, Ej
i,k,

is discussed into three cases: (i) the sensing result of idle band bi is idle, which
probability is Pidle(1− Pf), (ii) the sensing result of busy band bi is idle, which
probability is Pbusy(1−Pd), and (iii) the sensing result of idle or busy band bi is

busy, which probability is PbusyPd+PidlePf . In the first case, if the ERT, eji,k(x),
of band bi is greater than or equal to the ERT of bands {bi+1, bi+2, ..., bN}, the
user determines to send frames on band bi; i.e., E

j
i,k is eji,k(x). Otherwise, the

user continues to sense the next band bi+1; i.e., E
j
i,k is Ej

i+1,k+1. Let δji,k(x)
be an indicator function which value is 1 if the user sends frames in slot j on
band bi, i.e. e

j
i,k(x) ≥ Ej

i+1,k+1, and which value is 0 if the user continues to

sense. Let δ̄ji,k(x) denote the complementary of the δji,k(x). The ERT of bands
{bi, bi+1, ..., bN} in the first case is

M∑

m=1

Prm [δji,k(rm)eji,k(rm) + δ̄ji,k(rm)Ej
i+1,k+1], (2)

where Prm denotes the probability that the transmission rate of band bi is
rm, m = 1, 2, ...,M . In the second case, when a user probes the rate of band bi,
the user receives no response due to busy band bi. The user continues to sense
the next band bi+1; then, the ERT, Ei,k, is E

j
i+1,k+1. In the third case, the user

continues sensing from the next band bi+1; then, the ERT, Ej
i,k, is E

j
i+1,k. The

ERT of bands {bi, bi+1, ..., bN} is summarized in recursive Eq. (3) which can be
solved by backward induction.

Ej
i,k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pidle(1− Pf)
∑M

m=1 Prm [δji,k(rm)eji,k(rm)+

δ̄ji,k(rm)Ej
i+1,k+1] + Pbusy(1 − Pd)E

j
i+1,k+1+

(PbusyPd + PidlePf)E
j
i+1,k 1 ≤ i ≤ N − 1,

Pidle(1− Pf)
∑M

m=1 Prmeji,k(rm) i = N .

(3)

Sequential Sensing and Transmission 603

3 Simulation Results and Conclusions

Fig. 1 shows the ERT and frame loss ratio (the ratio of the number of loss
frames to the total number of frames) of the proposed algorithm and the two
other algorithms; one is the algorithm in [3], which produces maximal effective
throughput (MET) without considering delay constraint and the backlog in a
queue, and the other is the algorithm, called first-fit herein, which merely sends
frames on a band which is first found on a slot and its bandwidth is sufficient to
send all the frames in a queue. The unit of the ERT in Fig. 1 is the percentage of
the load which can be successfully transmitted. From the figure, we observe that
the proposed algorithm reduces frame loss ratio and increases effective real-time
throughput because the proposed algorithm includes the backlog and the delay
constraint to select an appropriate band to send frames as soon as possible.

0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Load

F
ra

m
e

lo
ss

 r
at

io

0.2 0.4 0.6 0.8 1

0.88

0.9

0.92

0.94

0.96

0.98

1

Load

E
R

T

MET
First−find
Proposed

MET
First−find
Proposed

Fig. 1. Frame loss ratio and ERT

Acknowledgement. This research was partially supported by the National
Science Council, Taiwan, under grants NSC 101-2221-E-017-011- and NSC 102-
2221-E-017-006-.

References

1. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S.: A survey on spectrum man-
agement in cognitive radio networks. IEEE Comms. Mag. 46(4), 40–48 (2008)

2. Shu, T., Krunz, M.: Throughput-efficient sequential channel sensing and probing in
cognitive radio networks under sensing errors. ACM Mobicom 2009, 37–48 (2009)

3. Tzeng, S.-S., Lin, Y.-J.: Cross-layer sequential sensing with effective throughput
maximization in time-slotted cognitive networks. Wireless Netw. 19(5), 591–606
(2013)

An Adaptive Heterogeneous Runtime

for Irregular Applications in the Case
of Ray-Tracing (Extended Abstract)

Chih-Chen Kao and Wei-Chung Hsu

Department of Computer Science, National Taiwan University, Roosevelt Road,
Taipei, 10617 Taiwan

hsuwc@csie.ntu.edu.tw

Heterogeneous architecture has been widely adopted in various computing sys-
tems, from mobile devices to servers. However, optimizing the performance for
such platforms remains challenging in three aspects: the control flow divergence
decreases the utilization of SIMD components, the significant memory copy over-
head between computing devices consuming precious memory bandwidth and
the load imbalance that degrades the overall performance. In this paper, we pro-
posed three methodologies: Intermediate Feedback, Dynamic Task Partitioning
and Heterogeneous Runtime that work collaboratively to overcome the aforesaid
problems. We adopted and implemented these methodologies in a heterogeneous
runtime library derived from Intel Embree[1] and compared the performance
results of the two frameworks running Ray-Tracing[2] on various scenes. Experi-
ment results have shown that the performance gain from the proposed methods
is significant, especially in complex scenes with a large amount of objects or with
large input data sizes the CPU cannot handle efficiently.

Due to the performance and power efficiency potentials of GPGPU and het-
erogeneous systems, a wide variety of applications, which include molecular sim-
ulation, fluid dynamics, biomedical image processing and computer vision, have
been developed by leveraging the aforementioned programming models. How-
ever, for this type of heterogeneous configuration, many challenges remain before
the performance potential can be fully unleashed. Despite significant advantages
of GPU programming, writing high-performance heterogeneous programs still
require programmers to be familiar with GPU architecture. The performance of
a heterogeneous program is significantly influenced by how the computations are
mapped into threads and how those threads are scheduled onto distinct cores,
the usage of GPU registers and memory hierarchy, the synchronization among
all threads and data access, the data transfer between host and GPU memories
and the control flow branch divergence issue. In short, a program which benefits
from GPGPU must contain explicit parallelism, high regularity and data reuse.
The irregularities in an application may throttle the expected performance of
the GPU by as much as an order of magnitude.

The terms regular and irregular are often used in compiler literature. For ex-
ample, in regular code, control flow and data memory references are not data
dependent. Dense matrix multiplication operations are good examples of regular
code. On the other hand, in irregular code, both control flow and data memory
references could be data dependent. For example, graph-based applications are

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 604–607, 2014.
c© IFIP International Federation for Information Processing 2014

An Adaptive Heterogeneous Runtime for Irregular Applications 605

considered irregular, because the connectivity and values of the nodes in a graph
are unknown before the input graph is available, and the connectivity and values
of the nodes determine which graph elements are accessed[3]. Regular programs
can often be efficiently mapped onto the GPGPU computing unit, and many of
them have been ported to heterogeneous systems to benefit from increased per-
formance and power efficiency. However, duplicating the success of heterogeneous
computing from regular programs to irregular programs is a challenge. Irregu-
lar programs are often operated around pointer-based data structures such as
graphs, trees or linked lists that are difficult to map to conventional regular GPU
architecture or SIMD components. The execution paths of an irregular program
are often unpredictable and could also vary dramatically during runtime[4]. Fur-
thermore, in contrast to regular programs, the data dependencies in irregular
programs can only be resolved dynamically at runtime, making it difficult to
design a proper task scheduler[5][6].

The obstacles of efficiently adopting irregular programs to heterogeneous
system can be categorized as follows: Firstly, the irregular memory access (e.g.
indirect array references, sparse matrix references) could lead to low effective
memory bandwidth, and there is no proper static solution to adaptively de-
termine which type of memory should be used for irregular programs during
execution. Secondly, the dynamically varying control flows create thread diver-
gences, which reduces the level of parallelism and SIMD lane utilization in GPU.
Thirdly, the chain of input dependencies often causes load imbalance among
multiple cores, which degrades the overall throughput. Finally, memory-bound
pointer chasing exhibits low data locality and exposes increased data access
latency on GPGPU. Therefore, mapping irregular code efficiently onto a hetero-
geneous system remains difficult[7][8].

What type of heterogeneous computing model could handle irregular
programs more efficiently is still debatable. For example, Ray-Tracing is an ir-
regular program that is intensively used for global illumination in multimedia
applications and has been adopted for implementation on different heterogeneous
models. At the early stage of GPGPU computing, Ray-Tracing is designed to
run on a GPGPU because a GPGPU is capable of handling a large number of
rays in parallel. However, the potential irregularities of Ray-Tracing decrease the
utilization of SIMD/SIMT components in GPU, and thereby offer little perfor-
mance/power advantages[9].

Recently, Intel has announced a Ray-Tracing framework called Embree[1] with
a different design philosophy that is optimized for traditional CPU architectures
augmented with medium size (i.e. 512 bits) of SIMD capability. The Embree
framework leverages CPU threads with wider SIMD units by using a compiler
framework called Intel SPMD Program Compiler. (ISPC)[10]. The framework
was originally designed for single ray traversal using SSE or AVX-enabled CPUs
but has been extended to support Intel Xeon Phi architectures[11]. Embree
features spatial acceleration structures and traversal algorithms and claim to
support efficient Ray-Tracing with MIMD architectures and medium size SIMD
capability. However, we believe that, with proper runtime and innovative

606 C.-C. Kao and W.-C. Hsu

methodologies, we could make traditional CPU/GPU type of heterogeneous sys-
tem more competitive on irregular applications. In this work, we use Ray-Tracing
as a case study to show the potential of our proposed approaches.

In this work, we address the forenamed problems of irregular programs and
proposed a feedback tuning mechanism that can be used to model a specific cat-
egory of heterogeneous program where the input data is recursively modified and
added back to the commonly shared database for the next computation. Pre-
vious research applied a statistic approach and heuristic. Our method is based
on analyzing and monitoring the communication protocol and behavior among
all modules in a program. A new methodology is introduced in this research
that encodes the representative feature of a heterogeneous program gathered at
runtime and sends them to adjacent modules for adjusting iterative computa-
tion to fit the given platform configuration in order to gradually fine tune the
system performance. We proposed a dynamic task partitioning mechanism and
heterogeneous thread pool in order to resolve issues related to branch divergence
and load imbalance. To demonstrate the effectiveness of our proposed schemes,
we evaluate our performance gain by implementing the methodologies into a
runtime library which is derived from the Intel Embree Ray-Tracing framework
and compare the execution time with the original version.

In Conclusion, we explore the performance potential of mapping irregular
programs onto heterogeneous systems by taking a Ray-Tracing algorithm as a
case study. Three methodologies, Intermediate Feedback, Dynamic Task Parti-
tioning and Heterogeneous Thread Pool, are introduced in this framework. The
experiment results shows that our proposed methods could benefit heterogeneous
computing resources and thereby increase the system performance, especially for
handling complex scenes and for large input data sizes. We believe that the pro-
posed methods could be applied to other heterogeneous frameworks to address
the challenges of branch divergences, memory copy overhead and load imbalance
when mapping irregular applications to GPGPU.

The benefit of the intermediate feedback is significant. Without this mech-
anism, the program must be built by pure heuristic approaches, which have
limited success and are often effective for only certain specific configurations.
The optimized execution setup will be lost if the system setting is changed. For
instance, in the case of Embree, the hybrid packet/single-ray tracing algorithm is
implemented by utilizing a specific type of BVH tree. However, determining the
appropriate tracing method in the algorithm is based on heuristic. The process
starts with a 16-wide packet traversal which performs 16-wide box tests. At any
point in time, the bit in an active mask will be counted to indicate how many
of the packet’s rays are still active for a subtree. If this number falls below a
given threshold, which is set to 7, the process leaves the packet traversal mode
and sequentially traces all active rays in the single-ray mode[12]. The drawback
of this method is that the threshold may need to change and the program will
require recompilation if the system is moved to a machine with a shorter SIMD
lane. Also, this method does not prevent any possible divergent execution that
lowers the effectiveness of the SIMD engine. Our intermediate feedback differs

An Adaptive Heterogeneous Runtime for Irregular Applications 607

from the above method by setting the correlation based on the actual activities
and data analysis. It is effective for any kind of system configuration since the
runtime would automatically adjust itself. If this method were moved to an-
other platform, the program which utilized our runtime library could adapt and
gradually arrives at an optimized setting.

References

1. Woop, S., Feng, L., Wald, I., Benthin, C.: Embree ray tracing kernels for cpus and
the xeon phi architecture. In: ACM SIGGRAPH 2013 Talks, p. 44. ACM (2013)

2. Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P.: Ray tracing on programmable
graphics hardware. In: Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 2002, pp. 703–712. ACM, New
York (2002), http://doi.acm.org/10.1145/566570.566640

3. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs
on gpus. In: 2012 IEEE International Symposium on Workload Characterization
(IISWC), pp. 141–151. IEEE (2012)

4. Zhang, E.Z., Jiang, Y., Guo, Z., Tian, K., Shen, X.: On-the-fly elimination of
dynamic irregularities for gpu computing. In: ACM SIGARCH Computer Archi-
tecture News, vol. 39(1), pp. 369–380. ACM (2011)

5. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on gpus. In: 2013 IEEE 27th International Symposium on Parallel
& Distributed Processing (IPDPS), pp. 463–474. IEEE (2013)

6. Monteiro, P., Monteiro, M.P.: A pattern language for parallelizing irregular algo-
rithms. In: Proceedings of the 2010 Workshop on Parallel Programming Patterns,
ParaPLoP 2010, pp. 13:1–13:14. ACM, New York (2010),
http://doi.acm.org/10.1145/1953611.1953624

7. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem,
R., Lee, T.-H., Lenharth, A., Manevich, R., Méndez-Lojo, M., et al.: The tao of
parallelism in algorithms. ACM SIGPLAN Notices 46(6), 12–25 (2011)

8. Kulkarni, M., Burtscher, M., Inkulu, R., Pingali, K., Casçaval, C.: How much
parallelism is there in irregular applications? SIGPLAN Not. 44(4), 3–14 (2009),
http://doi.acm.org/10.1145/1594835.1504181

9. Aila, T., Laine, S.: Understanding the efficiency of ray traversal on gpus. In: Pro-
ceedings of the Conference on High Performance Graphics 2009, pp. 145–149. ACM
(2009)

10. Pharr, M., Mark, W.R.: ispc: A spmd compiler for high-performance cpu program-
ming. In: Innovative Parallel Computing (InPar), pp. 1–13. IEEE (2012)

11. Chrysos, G., Engineer, S.P.: Intel R© xeon phi coprocessor (codename knights cor-
ner) (2012)

12. Benthin, C., Wald, I., Woop, S., Ernst, M., Mark, W.R.: Combining single and
packet-ray tracing for arbitrary ray distributions on the intel mic architecture.
IEEE Transactions on Visualization and Computer Graphics 18(9), 1438–1448
(2012)

http://doi.acm.org/10.1145/566570.566640
http://doi.acm.org/10.1145/1953611.1953624
http://doi.acm.org/10.1145/1594835.1504181

DLBer: A Dynamic Load Balancing Algorithm

for the Event-Driven Clusters

Mingming Sun, Changlong Li, Xuehai Zhou, Kun Lu, and Hang Zhuang

Computer Science University of Science and Technology of China, Hefei, China
{mmsun,liclong,local,zhuangh}@mail.ustc.edu.cn,

xhzhou@ustc.edu.cn

Abstract. The event-driven programming model has been proposed to
efficiently process iterative applications and incremental applications. In
clusters based the event-driven model, applications are structured as a
series of triggers, each of which will be invoked when associate events
are trigged. And framework assigns a newly submitted trigger to a node
where the relevant datasets set. Unfortunately it may lead to load im-
balance because associate events occur by chance. Numerous triggers in
a node may be simultaneously invoked but other nodes have no triggers
running. Jobs composed of short, sub-second triggers present a difficult
balancing challenge. To the end, we design DLBer, a new dynamic load
balancing algorithm for the event-driven clusters to maximize improve
the utilization of node resources.

1 Introduction

The synchronous data-flow model such as MapReduce, Dryad and their variants
is deficient for iterative applications since synchronous computation and lock-
step across rounds. It also is not suitable for incremental applications because it
processes total dataset for every increment, incurring a significant performance
penalty. Therefore, the event-driven programming model is proposed as an asyn-
chronous computation model such as Percolator[1], Oolongr[2] and Dominor[3]
et al. This model follows the Event-Condition-Action (ECA) rule[4]. ECA rules
are straightforward: when the event occurs, evaluate the condition; if the condi-
tion is fulfilled, execute the action automatically. Applications can be expressed
in term of triggers, user-specified code blocks that can be invoked whenever
the associated datasets modified. Each trigger completes a computation task. In
iterative applications, the result of past iteration can be immediately used to
determine the course of current execution. Incremental applications only need
to process the updated dataset and some relevant data, which is affected by the
updated dataset, instead, recalculates entire dataset.

In clusters based event-driven model, a newly submitted trigger is assigned
to the node where the relevant datasets set. However triggers are not instantly
executed after their submission, that is to say, specific events are needed to in-
voke triggers. This may lead to load imbalance because during execution time
the cluster resource usage cannot be determined. Extreme case, a node has lots

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 608–611, 2014.
c© IFIP International Federation for Information Processing 2014

DLBer: A Dynamic Load Balancing Algorithm for the Event-Driven Clusters 609

TriggerMaster

TriggerWorker

... ...

... ...
RPC Call

RPC Call
RPC Call

Event
Detector

Action
Fun

SchedulerManager

Load Scheduler

Workoad
Estinator

Trigger
Grouper

Load Balancer

TriggerWorker

Event
Detector

Action
Fun

Load Scheduler

Workoad
Estinator

Trigger
Grouper

TriggerWorker

Event
Detector

Action
Fun

Load Scheduler

Workoad
Estinator

Trigger
Grouper

Fig. 1. The architecture of DLBer

of triggers invoked in the waiting queue, but other nodes are idle. So frame-
work needs a load balancer to achieve better utilization of node resources and a
high system throughout and quick response time of user requests. However, trig-
ger may be short second or sub-second task. This presents a difficult balancing
challenge. To address the above problems, we design DLBer, a new centralized
dynamic load balancing algorithm for the event-driven clusters. Dynamic load
balancing is essential for such systems since unpredictable load estimates. Our
load balancer aims at maximize improve the utilization of node resources.

2 DLBer Design

As shown as Fig. 1, custer based event-driven model runs with a TriggerMaster,
which assigns a newly coming trigger to workers where the relevant datasets
of the trigger set, and multiple TriggerWorkers, each of which monitors the
modification on dataset, and executes trigger tasks. Our DLBer consists of two
main modules: a LoadBalancer in TriggerMaster, which coordinates and re-
distributes triggers invoked among TriggerWorkers according to their work-
loads, and LocalScheduler in each TriggerWorker. LocalScheduler contains
WorkloadEstimator, which automatically predicts the execution time of trig-
ger and evaluates current total workload, and TriggerGrouper, which picks out
several suitable triggers to become a group as the basic unit of transfer. As
trigger in the event-driven clusters may be short second or sub-second task, we
divide triggers invoked into groups to avoid repeatedly network transmission
and reduce pressure for TriggerMaster. Once the balancing decisions are made
in LoadBalancer, a high-load TriggerWorker will receive transfer instructions
and trigger LocalScheduler to transfer triggers. LocalScheduler first selects one
or more trigger group, and then transfer trigger group to low-load destination

610 M. Sun et al.

TriggerWorker according to transfer instructions. DLBer employs centralized
load balancing policy because the accumulation of workoad information can be
achieved by heartbeat message.

2.1 Trigger Group Policy

WorkloadEstimator calculates the mean completed time of same triggers, which
have already completed, as the execution time of trigger. As triggers continue to
complete, the execution time of trigger will be recalculated to get more precise
time. Each TriggerWorker workload is the sum of the execution time of all
triggers invoked in waiting queue.

The role of TriggerGrouper is to divide triggers invoked into groups as the
basic unit of transfer. We define TriGroup, the size of trigger group, which
depends on the worker computing capacity and network bandwith. Upon the
arrival of a transfer request from TriggerMaster, TriggerGrouper sorts triggers
in descending order of predicted execution time into trigger sequence. Then it
selectes triggers from head of trigger sequence into a trigger group according
to TriGroup. Then trigger group contains minimal triggers to reduce network
transmission overhead.

2.2 Load Balancing Algorithm

DLBer focuses on TriggerWorkers, whose workload is lower than a threshold
called tunder. tunder is greater than the sum of load balancing policy time, the
heartbeat interval (default as 5 second) and transmission time of a trigger group.
Then the low-load TriggerWorker can be still busy during the transfer triggers.

Algorithm 1 illustrates the process of load balancing algorithm. If workload of
worker n is below the tunder, load balancing policy first considers the heaviest
load worker a. Supposing worker a will transfer out a trigger group, the workload
of worker a needs to exceed the load of worker n, otherwise it is not necessary
to transfer tasks. When all nodes in cluster are busy, there is almost no extra
scheduling overhead. At the other extreme, our method also avoid frequent task
transfering since the defined tunder.

3 Evaluation

In order to test DLBer using a realistic workload, we ported Domino by writing
a Domino load balancing plugin. Domino is an open-source trigger-based pro-
gramming framework. We use application PageRank on a cluster, which has a
master and 8 workers. PageRank in the event-driven model contains two trig-
gers: PageRankDist and PageRankSum. Once pagerank value of a page is
modified, PageRankDist will be invoked to change pagerank weights for all
its relevant out-degree pages. Then the PageRankSum for such relevant out-
degree pages will be invoked for these changes. The function of PageRankSum
is to simply sum up all the rank values generated from different in-degree pages.

DLBer: A Dynamic Load Balancing Algorithm for the Event-Driven Clusters 611

Algorithm 1.. Load Balancer

Input:
Array A: nodes queue by descending workload;

Iteration:
while n.load < tunder (n : the tail of A) do

if a.load > tunder & a.load − TriGroup > n.load + TriGroup (a :
the head of A) then

task fetch(a, n);
else

break;
end if
Reorder array by descending workers’ workload;

end while

PageRankDist will be invoked again. This continues until a tolerable error de-
fined by user. Our results shows our load balancer outperforms default Domino
about 100%.

Acknowledgment. Our work was supported by the National Science Founda-
tion of China under grants No. 61272131 and No. 61202053, China Postdoctoral
Science Foundation grant No. BH0110000014, Fundamental Research Funds for
the Central Universities No. WK0110000034, and Jiangsu Provincial Natural
Science Foundation grant No. SBK201240198.

References

1. Peng, D., Dabek, F.: Large-scale Incremental Processing Using Distributed Trans-
actions and Notifications. In: OSDI, vol. 10 (2010)

2. Mitchell, C., Power, R., Li, J.: Oolong: asynchronous distributed applications made
easy. In: Proceedings of the Asia-Pacific Workshop on Systems. ACM (2012)

3. Dai, D., et al.: Domino: an incremental computing framework in cloud with eventual
synchronization. In: Proceedings of the 23rd International Symposium on High-
Performance Parallel and Distributed Computing, ACM (2014)

4. McCarthy, D., Dayal, U.: The architecture of an active database management sys-
tem. ACM Sigmod Record 18(2), 215–224 (1989)

5. Willebeek-LeMair, M.H., Reeves, A.P.: Strategies for dynamic load balancing on
highly parallel computers. IEEE Transactions on Parallel and Distributed Sys-
tems 4(9), 979–993 (1993)

Performance Prediction Model and Analysis

for Compute-Intensive Tasks on GPUs

Khondker S. Hasan, Amlan Chatterjee, Sridhar Radhakrishnan,
and John K. Antonio

School of Computer Science
University of Oklahoma

110 W. Boyd St., Norman
OK 73019, USA

{shajadul,amlan,sridhar,antonio}@ou.edu

Abstract. Using Graphics Processing Units (GPUs) to solve general
purpose problems has received significant attention both in academia
and industry. Harnessing the power of these devices however requires
knowledge of the underlying architecture and the programming model.
In this paper, we develop analytical models to predict the performance of
GPUs for computationally intensive tasks. Our models are based on vary-
ing the relevant parameters - including total number of threads, number
of blocks, and number of streaming multi-processors - and predicting the
performance of a program for a specified instance of these parameters.
The approach can be used in the context of heterogeneous environments
where distinct types of GPU devices with different hardware configura-
tions are employed.

Keywords: Compute-Intense Kernels, CUDA, GPU, Modeling and
prediction.

1 Introduction

The availability of GPUs as commodity hardware and co-processors to CPUs,
and the relative low cost-to-performance ratio has propelled these devices to
the forefront or research in both academia and the industry. Compute Unified
Device Architecture (CUDA), an extension to the C programming language, al-
lows general-purpose problems to be solved using Nvidia GPUs. However, this
paradigm shift has left developers striving for better performance from the avail-
able hardware. The general trend has been focusing on transferring compute
intensive portions of tasks to the GPUs and exploiting parallelism in the exist-
ing code. Therefore, most of the research and studies relevant to GPUs focus
on transferring the data from the CPU to the GPU and back, designing effi-
cient data structures for the GPU, and utilizing available primitives to decrease
memory latency [2, 4]. In reality, to exploit the full potential of these devices,
understanding the underlying architecture and the basics of the programming
model are required.

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 612–617, 2014.
c© IFIP International Federation for Information Processing 2014

Performance Prediction Model and Analysis 613

In this paper, we focus our research on optimally using the device at hand.
We concentrate on deriving analytical models that can predict the execution
efficiency of GPU programs i.e., GPU kernels based on certain parameters like
the total number of resident blocks, number of threads in each block, the total
number of blocks spawned in the device, the total number of streaming multi-
processors available in the device, and others. The importance of our models are
in the fact that it will help developers to unleash the full potential of the available
hardware by predicting execution efficiency of thread blocks before placing them
in the GPU run queue and also by providing suggestions to improve the efficiency
by making arrangements for optimal execution time. The benchmark programs
used for empirical analysis of our analytical model are professionally developed
programs from the Nvidia CUDA GPU Computing SDK [8] for demonstrating
the reliability and accuracy of our proposed model. The benchmark programs
are tested in both Tesla C1060 and Kepler 20 devices, respectively and achieved
very low prediction error with an error bound of 0.13-5.69%.

2 Analytical Models

An analytical framework for estimating the overall execution efficiency for
batches of thread blocks is derived for GPU systems. The introduced prediction
model incorporates the following three major observed categories while GPU
executes several blocks of threads:

– When the number of blocks to be executed is more than the aggregate num-
ber of resident blocks for the GPU.

– When the number of warps to be executed is more than the aggregate number
of resident warps for the GPU.

– When the total number of threads to be executed is more than the aggregate
number of resident threads for the GPU.

Table 1 contains the notation and definitions of required parameters of the model.
The execution time is ideal, denoted by τ , when the number of blocks and threads
in each block is less than the aggregate resident blocks and threads for the GPU
(this number varies by GPU architecture). The following model incorporates the
effect for the case when the number of thread blocks spawned for execution is
more than the aggregate resident blocks for all multi-core processors of the GPU;
for measuring the execution time (ξrb):

ξrb =

{
τ if β ≤ (ρb × ρsm),

Max
(
1,
⌈

β
ρb×ρsm

⌉)
× τ else

(1)

A higher occupancy reduces processor idle time (SM may stall due to unavail-
ability of data or busy functional units) and improves overall performance [9], [10].
The estimated execution time model can be derived as:

ξrw =

{
β × ϑ

(ρw × σw × ρsm)

}

× τ (2)

614 K.S. Hasan et al.

Table 1. Terms and definitions of GPU efficiency prediction model parameters

Terms Definition

ρsm Number of Streaming Multi-core processors (SM) in the device.

ρw Maximum number of resident warps in a streaming multi-core processor.

ρb Maximum number of resident blocks in a streaming multi-core processor.

ρt Maximum number of resident threads in a streaming multi-core processor.

σw Size of warp. Size for both Tesla C1060 and Kepler 20 is 32.

σb Maximum size (number of threads) of a block.

β Number of blocks spawned in the GPU device.

ϑ Number of threads per block (block size).

Fig. 1. Surface diagrams by deploying the introduced prediction model when ϑ is
increased from 32 to 1024, β increased from 16 to 1248, and τ = 14.5 (a) shows
measured total execution time surface (b) shows measured efficiency surface diagram
(associated with Eq. 3).

The composite prediction model which incorporates all major specified effects
includes the input parameters: ideal thread execution time, execution efficiency
when β > (ρb×ρsm), and execution efficiency when threads in a SM > (ρw×σw).
The model equation is derived from Eqs. 1 and 2 to reflect the observed effect
in total thread execution time (κ).

κ =

{
τ

(τ+ξrw) , when (β × ϑ) ≤ (ρw × σw × ρsm)
τ

(ξrb+ξrw) , when (β × ϑ) > (ρw × σw × ρsm)
(3)

When the value of (β×ϑ) ≤ (ρw×σw×ρsm), the τ is divided by an expression
which incorporates the overhead of warp occupancy. Next, when (β × ϑ) >
(ρw × σw × ρsm), the τ is divided by an expression which contains the overhead
of both β > ρb and ϑ > ρt expressed in Eqs. 1 and 2.

Performance Prediction Model and Analysis 615

Figure 1 (a) shows the composite effect of increased blocks and threads in a
block on total execution time of the GPU kernel. In this figure, two horizontal
axes represents ϑ and β respectively and the vertical axis represents the total
execution time in milliseconds. With careful observation, it can be seen that
for each case when β > (ρb × ρsm), the execution time jumps by the value of τ .
Similarly, when (β×ϑ) > (ρw×σw×ρsm), for each (ρw×σw×ρsm), the execution
time increases utilizing Eq. 2. The total execution time increases sharply for
large number of blocks and its sizes. Figure 1 (b) depicts the execution efficiency
surface measured by Eq. 3. The efficiency surface diagram clearly visualizes the
composite effect of increased number of β and ϑ. The model depicts a sharp
performance degradation as soon as the β > ρb.

Fig. 2. Surface diagrams for the Sum of Binomial Series benchmark program (a) shows
increasing run-time while ϑ increased from 32 to 1248 and β increased from 16 to 1024
(b) shows measured efficiency surface diagram with respect to τ

3 Empirical Studies

The purpose of this experimental study is to empirically measure the execution
efficiency of kernels in GPUs as a function of aggregate blocks and threads in each
block. The Sum of binomial series benchmark program is utilized from Nvidia
CUDA SDK to conduct the empirical work to ensure real-world applications
adaptability and accuracy. Two different GPU devices are used for evaluating the
proposed efficiency prediction models for parallel thread execution. We have used
Kepler 20 and Tesla C1060 GPU cards for empirical studies in heterogeneous
environments.

It can be observed from Table 2 that for β = 64 and ϑ ranging from 32 to 320,
as the (β × ϑ) > ρt, the execution time increases around (2 × τ) depending on
the number of warps. This behavior is modeled using Eq. 2. Next, when the total
number of threads spawned (β×ϑ) is more than the occupancy, (ρw×σw×ρsm =
64× 32× 13 = 26, 624 for the Kepler 20 device), the specified series in Section 2

616 K.S. Hasan et al.

Table 2. Empirical results using Kepler 20 GPU device for the Sum of Binomial
Series benchmark program

β Number of Threads per Block (ϑ)

32 64 96 128 160 192 224 256 288 320

16 14.61 14.61 14.62 14.63 14.62 14.62 14.62 14.62 14.63 14.64
64 14.61 14.60 14.63 14.62 15.42 15.91 16.90 17.73 21.34 22.57
112 14.60 14.53 15.20 16.69 21.38 24.35 27.93 42.31 42.74 41.72
160 14.54 15.19 17.84 22.47 40.29 40.58 44.35 45.28 52.16 65.71
208 14.55 15.83 20.80 27.64 43.00 45.12 52.69 55.23 70.21 77.90
224 29.02 30.36 35.30 42.16 42.97 46.65 56.08 69.69 75.50 78.63
272 29.05 30.37 35.47 43.40 50.60 66.41 70.39 79.28 84.12 95.45
320 29.07 30.54 36.56 45.43 67.23 71.02 80.39 98.46 102.9 117.3
368 29.08 31.60 39.95 51.77 69.03 78.60 96.55 103.4 123.5 127.1
416 29.02 31.63 41.58 55.38 75.08 93.54 102.2 110.4 129.7 147.5
432 43.45 46.13 56.03 69.73 78.60 94.69 105.3 124.9 134.9 147.9
480 43.50 46.15 56.19 70.99 93.14 99.24 124.6 134.3 153.7 170.8
528 43.51 46.32 58.16 74.42 94.91 117.8 132.6 152.3 164.8 178.4
576 43.50 46.75 60.69 79.36 101.6 120.7 139.1 161.9 181.4 199.4
624 43.51 47.41 62.39 83.10 105.8 130.2 152.4 165.5 192.9 209.2
640 57.87 61.91 76.75 97.30 118.9 131.1 156.4 180.1 203.4 222.6

can be observed in the Table 2. For β = 208 and ϑ = 128, the number of threads
spawned in the device is 208×128 = 26, 624 (i.e., maximum occupancy reached)1.
As soon as the ϑ or β increases, the execution time increases depending on the
number of execution cycle. This observed behavior is modeled using Eq. 3.

Figure 2 (a) and (b) shows the complete measured run time surface and
efficiency surface (using Eq. 3) diagram for the sum of binomial series benchmark
program. Both surfaces depict the complete 2496 independent test run results
to capture all possible scenarios by varying the values of β and ϑ. It can be
observed from Figure 2 (a) that each time when β × ϑ crosses (ρw × σw × ρsm),
the execution time increases for new scheduling cycles. Similarly, when β crosses
(ρb × ρsm), the execution time increases by τ . It can be observed from Figure 2
(b)that the efficiency value decreases significantly when β and ϑ increases beyond
the capacity of scheduling cycle. Both surface diagrams clearly depicts same
behavior and shape as compared to the models’ run-time and efficiency surfaces
in Figure 1 respectively.

4 Conclusion

This paper has introduced prediction models to forecast the execution efficiency
of GPUs for computationally intensive kernels. The key challenge was to deter-
mine the arrangement of blocks and threads in a block prior to placement of

1 Maximum number of resident threads in a Kepler 20 SM is 2048 though a thread
block can contain a maximum of 1024 threads.

Performance Prediction Model and Analysis 617

threads into the run queue. The model has been validated with Nvidia CUDA
GPU SDK benchmark program for accuracy. The provided surface diagrams
depict clear visualization of measured efficiency based on variable number of
blocks and size of blocks. The empirical studies performed on the prediction
model show that the model surface follows the same shape and pattern of the
real-world benchmark programs with only 0.13 − 5.69% prediction error. The
conducted study is highly useful for understanding and optimizing performance
on GPUs and useful in the context of heterogeneous environment to choose the
device with a better performance potential.

References

1. Sim, J., Dasgupta, A., Kim, H., Vuduc, R.: A Performance Analysis Framework for
Identifying Potential Benefits in GPGPU Applications. In: 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP 2012),
New Orleans, Louisiana, pp. 11–22 (2012)

2. Khondker, S., Hasan, J.K.: Antonio, and Sridhar Radhakrishnan, “A New Com-
posite CPU/Memory Model for Predicting Efficiency of Multi-core Processing”.
In: The 20th IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA 2014) Workshop, Orlando, FL, February 15-19 (2014)

3. Holmen, J.K., Foster, D.L.: Accelerating Single Iteration Performance of CUDA-
Based 3D Reaction–Diffusion Simulations. International Journal of Parallel Pro-
gramming 42(2), 343–363 (2014), doi:10.1007/s10766-013-0251-z

4. Chatterjee, A., Radhakrishnan, S., Antonio, J.K.: Data Structures and Algorithms
for Counting Problems on Graphs using GPU. International Journal of Networking
and Computing 3(2), 264–288 (2013)

5. Hasan, K.S., Radhakrishnan, S., Antonio, J.K.: Composite Prediction Model and
Task Distribution on a Cloud of Multi-core Processors. In: IEEE International
Conference on High Performance Computing (HiPC 2014) Workshop, Bangalore,
India (December 2013)

6. Kepler Compute Architecture Technology in a Brief (2012),
http://www.nvidia.com/content/PDF/kepler/

NV DS Tesla KCompute Arch May 2012 LR.pdf

7. Zhang, Y., Owens, J.D.: A quantitative performance analysis model for GPU ar-
chitectures. In: 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (HPCA), pp. 382–393 (2011)

8. Nvidia CUDA GPU SDK, Sample CUDA Toolkits,
http://docs.nvidia.com/cuda/cuda-samples/

9. CUDA Warps and Occupancy. GPU Computing Webinar (July 2011),
http://on-demand.gputechconf.com/gtc-express/2011/

presentations/cuda webinars WarpsAndOccupancy.pdf

10. Lam, S.K.: CUDA Performance: Maximizing Instruction-Level Parallelism
(September 2013), http://continuum.io/blog/cudapy_ilp_opt

http://www.nvidia.com/content/PDF/kepler/NV_DS_Tesla_KCompute_Arch_May_2012_LR.pdf
http://www.nvidia.com/content/PDF/kepler/NV_DS_Tesla_KCompute_Arch_May_2012_LR.pdf
http://docs.nvidia.com/cuda/cuda-samples/
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://continuum.io/blog/cudapy_ilp_opt

C.-H. Hsu et al. (Eds.): NPC 2014, LNCS 8707, pp. 618–622, 2014.
© IFIP International Federation for Information Processing 2014

Interdomain Traffic Engineering Techniques
to Overcome Undesirable Connectivity Incidents

Amer AlGhadhban, Ashraf Mahmoud, Marwan Abu-Amara,
Farag Azzedin, and Mohammed H. Sqalli

University of Hail, KFUPM
a.alghadhban@uoh.edu.sa,

{ashraf,marwan,fazzedin,sqalli}@kfupm.edu.sa

Abstract. The importance of Internet availability is supported by the
overwhelming dependence of government services and financial institutions
upon said availability. Unfortunately, the Internet is facing different level of
undesirable connectivity incidents. So, it is imperative to take serious measures
in order to increase Internet connectivity resilience. We consider a scenario
where a concerned region is facing an undesirable connectivity incident by its
primary Internet Service Provider (ISP) which still advertises reachability to the
concerned region. Assuming that connectivity to a secondary ISP is available,
software is designed to implement different traffic engineering techniques in
order to enhance internet connectivity resilience and send the traffic through the
secondary ISP. The work is characterized by the implementation of these traffic
engineering techniques in the laboratory through a detailed set of experiments.

1 Introduction

Undesirable Internet connectivity incidents can occur due to many reasons that can be
categorized into two main categories: intentional and unintentional. Unintentional
reasons include router misconfiguration, hardware and software failures, and security
violations of the ISP/BGP operations. On the other hand, intentional reasons may
happen with malicious intent or for political reasons [1]. Traffic engineering
techniques are used by Autonomous Systems (ASes) in order to optimize the
utilization of network resources [2]. In this work software is designed to implement
traffic engineering techniques in order to enhance internet connectivity resilience. The
work is characterized by the implementation of different traffic engineering
techniques in the laboratory through a detailed set of experiments. Performance
figures for the different types of background traffic considered and the representative
configurations are collected and compared with each other.

1.1 Problem Statement

This study focuses on the network configuration portrayed in Fig. 1 where the
concerned region, represented by AS100, is connected to the Internet through the
primary ISP and represented by AS300. AS100 is also connected through a secondary

Traffic Engineering Techniques to Overcome Undesirable Connectivity Incidents 619

ISP, called here the good ISP and represented by AS200. In this instance, AS100
faces undesirable connectivity incidents, such as significant bandwidth reduction
and/or unacceptable delay by its primary ISP. Nevertheless, the primary ISP’s border
router continues to exchange BGP messages with the border router of the concerned
region (AS100) and advertising its prefixes on the Internet.

1.2 Summary of Contributions

In this work we evaluate and prototype a different set of interdomain traffic
engineering techniques that have the capability to control outgoing traffic and attract
incoming traffic through a secondary ISP. The evaluation and prototyping is
performed in a laboratory setting designed to mimic conventional deployment with
support for two distinct topologies referred to by identical and non-identical
topologies to symbolize the Internet’s connectivity structure. In the identical scenario
the AS-Path length from AS100 to AS600 over the two ISPs are the same. In the non-
identical scenario the AS-Path from AS100 to AS600 through the two upstream ISPs
are not the same, as shown in Fig. 1. For the sake of accurate and consistent testing
procedures, software is created to detect the connectivity incident, deploy the
prescribed solution, and to measure the network convergence time. When the
connectivity incident, such as multiple packets drop, is detected the software forces
the concerned region’ border router to route the traffic via the good ISP.

2 Proposed Work

In this section, the proposed interdomain traffic engineering techniques are described.
The proposed techniques are listed in Table 1. Some of the proposed BGP-based
techniques can influence the incoming traffic to go through the good ISP while others
can control the outgoing traffic.

Overlay Network is a virtual network that works over a real network such as the
Internet. The most common type of overlay network is Virtual Private Network
(VPN). VPN is usually used to build a secure network over an unsecure network like
the Internet. Overlay Network methods can be used to overcome internet connectivity
issues by establishing an overlay network between the region of concern AS and
several cooperative ASes distributed around the world, e.g. IXPs, and route the traffic
over a good ISP. Fig. 2 shows the effect of different overlay techniques on FTP and
HTTP end-to-end delay. The FTP/HTTP applications are examined in our laboratory
and tested under different background loads. Obviously, the end-to-end delay
increases proportionally with the increase in the traffic load. The unencrypted overlay
techniques show almost the same end-to-end delays when they are compared with no
overlay technique.

The BGP methods tested in our labs that can influence incoming traffic, referred to
as Attractors, are AS-Path Pre-pending, eBGP multihop, and Filtering outgoing
advertisement. AS-Path Pre-pending [3] allows a router to advertise its prefixes with a
longer AS-Path through one or more neighboring routers. Hence, this method

620 A. AlGhadhban et al.

advertises the prefixes through the primary ISP with a longer AS-Path and with a
regular AS-Path through a good ISP. Consequently, the Internet ASes will prefer the
shortest AS-Path which goes through the good ISP. The eBGP multihop scheme
allows indirectly connected ASes to look as if they are directly connected.
Consequently, the AS-Path length between the two eBGP multihop configured routers
appears in the global routing table as one hop. This means that downstream ASes will
prefer the path through the eBGP multihop routers over all other existing paths that
might be physically shorter. Thirdly, filtering of outgoing advertisement method can
control and filter the outgoing BGP routing advertisements of the local BGP speaker.
This means that we can block the local prefixes from being advertised to the primary
ISP and have them only advertised to the good ISP. Consequently, the local prefixes
are not included in the advertisements of the primary ISP to the Internet, and the
Internet routers learn about the local side prefixes only through the good ISP. The
Outforwarders methods that can control the outgoing traffic are filtering of incoming
advertisements, IP default/static, MED, Weight and Local Preference.

Fig. 1. Non-identical laboratory scenario

As seen in Table 1, some of the solutions have the ability to forward outgoing
traffic via a good ISP and other solutions have the ability to attract incoming traffic.
To overcome the undesirable connectivity incident we have to combine one solution
from the Outforwarder list with another solution from the Attracter list. Then,
configure the concerned region’s BGP speaker with this combination.

Table 1. Classification of the proposed solutions

 BGP Solution Methods Incoming Outgoing

A
tt

ra
ct

er
 Overly Network Yes No

AS-Path pre-pending Yes Yes
eBGP multihop Yes Yes
Filter outgoing
advertisements

Yes No

O
ut

fo
rw

ar
de

r Filter incoming
advertisement

No Yes

IP static/default route No Yes
MED No Yes
Weight No Yes
Local Preference No Yes

Traffic Engineering Techniques to Overcome Undesirable Connectivity Incidents 621

2.1 Convergence Time Results

The traffic engineering techniques are examined under three different background
traffic loads: 75%, 50% and 25% on the 1.544 Mbps inter-router links used in the
laboratory implementation.The obtained convergence time of the evaluated solutions
is between 0.1 and 0.3 second, as shown in Fig. 2. The convergence time exchanged
messages are few in number and small in size. Thus, the effect of the background
traffic load on the convergence time is very small. The combination of Filter outgoing
advertisements + Weight always gives the fastest convergence time even with the
different background traffic load. The Filter outgoing advertisements solution blocks
the concerned region prefixes from being advertised to the Internet through the
primary ISP. Also, it does not change or introduce any load on the BGP
advertisements, unlike AS-Path pre-pending solutions.

Fig. 2. Shows the end-to-end delay of the examined tunnelling techniques (CS=Checksum)

Fig. 3. Convergence time results (LP=Local-Preference W=Weight)

3 Conclusions

Government services and financial institution’s dependence on Internet availability is
sufficient proof of the importance of avoiding connectivity problems. The presented
techniques address incidences wherein the primary ISP of the concerned region is
showing unacceptable connectivity service. In this work we proposed multiple

622 A. AlGhadhban et al.

combinations of the interdomain traffic engineering techniques that can control
outgoing traffic and influence incoming traffic. Based on the results, Internet
Exchange Points (IXPs) and/or International ISPs can strengthen the Overlay
Network and eBGP multihop solutions by agreeing to serve as remote cooperative
ASes. The examined overlay techniques showed an acceptable overhead on the
evaluated applications.

References

1. Arbor networks: Infrastructure security survey,
http://www.arbornetworks.com/spsecurityreport.php

2. Secci, S., et al.: Efficient inter-domain traffic engineering with transit-edge hierarchical
routing. Computer Networks 57, 976–989 (2013)

3. Rekhter, Y., Li, T., Hares, S.: IETF-A Border Gateway Protocol 4, BGP-4 (January 2006),
http://www.ietf.org/rfc/rfc4271.txt

Author Index

Aazam, Mohammad 559
Abu-Amara, Marwan 618
AlGhadhban, Amer 618
An, Ning 522
An, Xuejun 120
Antonio, John K. 612
Awal, Md Rabiul 132
Azzedin, Farag 618

Bai, Yuebin 269
Barbar, Jamil Salem 61
Beni, Laleh Aghababaie 459
Brzeziński, Jerzy 96

Cai, Ye 72
Cammarota, Rosario 459
Cao, Jian 281, 333, 347
Cao, Zheng 120
Cao, Zhongsheng 369
Chang, Yuan-Ying 169
Chatterjee, Amlan 612
Chen, Bo-Wei 587
Chen, Changyuan 347
Chen, Chien-Ting 169
Chen, Guo 35
Chen, Jianhai 530
Chen, Jingyu 234
Chen, Kaimeng 108
Chen, Xueguang 446
Chen, Yifeng 579
Cheng, Kun 269
Cheng, Yu-Fen 583
Chiang, Chaoyuan 49
Choi, HeeSeok 571
Choi, Sang-Min 157
Chou, Chau-Yi 583
Chu, Xiaowen 144
Chuan, Hsin-Met 526, 587
Chung, Kwang-Sik 321
Cui, Xiang 579

Dang, Yongxing 471
Deng, Yuhui 510

Fan, Jing 538
Fan, Zhiguo 120
Feng, Dan 471
Feng, Guangsheng 395
Fu, Danqing 195
Fu, Di 306
Fu, Haohuan 542

Gao, Yuan 522
Gil, Joon-Min 321
Gregg, David 485
Gu, Yonggen 234

Han, Yo-Sub 157
Han, Zongfen 446
Hasan, Khondker S. 612
He, Qinming 530
He, Wen 257
Hirwa, Jean Steve 333
Ho�lenko, Mateusz 96
Hsieh, Chih-Wei 583
Hsu, Ching-Fang 555
Hsu, Wei-Chung 604
Hu, Yong 542
Huang, Xiaomeng 542
Huang, Yoshi Shih-Chieh 169
Huang, Yu-Hao 208
Huh, Eui-Nam 559

Inoguchi, Yasushi 132

Jiang, Chong 423
Jiang, Jinlei 220
Jin, Hai 10, 23, 195, 446
Jin, Jing 181
Jin, Peiquan 84, 108
Jin, Xiang 357
Jumnal, Anand 247
Jung, Daeyong 571

Kang, Baoyuan 563
Kang, Jihun 321
Kao, Chih-Chen 604
Kim, Kyoung-Hwan 157

624 Author Index

King, Chung-Ta 169
Kobusińska, Anna 96
Kong, Chang 72

Lai, Bo-Cheng Charles 208
Lee, Daewon 321, 571
Lee, Eunyoung 571
Lee, Hyein 157
Lee, Jiunn-Horng 583
Li, Changlong 608
Li, Guoqiang 234
Li, Jun 423
Li, Kai 510
Li, Ming-Hua 169
Li, Ruidan 23
Li, Shen 423
Li, Xiaoming 10
Li, Xiaowen 579
Li, Ying 595
Li, Yong 435
Li, Zhansong 435
Liao, Jianwei 497
Liao, Xiaofei 10
Lim, JongBeom 321
Lin, Jiun-Liang 208
Lin, Xiaola 181
Lin, Ying-Jen 600
Liu, Bing-yi 538
Liu, Chengjian 144
Liu, Linlin 409
Liu, Xiaobing 120
Liu, Xiaoli 120
Liu, Xiaoyan 497
Liu, Yu-Liang 1
Lu, Feng 23
Lu, Kun 608
Luo, Qiuming 72
Lv, Duo 269
Lv, Hongwu 395

Ma, Chunguang 409
Ma, Jihong 269
Ma, Xiaolong 234
Ma, Yao 269
Mahmoud, Ashraf 618
Man, Ka Lok 157
Mei, Xinxin 144
Miura, Yasuyuki 132
Murthy, M.K. Mohan 247

Nicolau, Alexandru 459
Nie, Lei 538
Niu, Yongzheng 563
Nor, Rizal Mohd 132

Ok, MinHwan 591
Oliveira, Tiago Prado 61

Pavlidis, Yannis 423
Pei, Dan 35
Peng, Yuanfeng 269
Peng, Yuxing 546

Qian, Depei 522
Qiang, Weizhong 446
Qin, Hao 446
Qiu, Tie 294

Radhakrishnan, Sridhar 612
Rahman, M.M. Hafizur 132
Ruan, Yonghui 369

Sang, Janche 169
Sanjay, H.A. 247
Sembok, Tengku Mohd Bin Tengku 132
Shen, Wei 423
Shi, Xuanhua 10, 195
Soares, Alexsandro Santos 61
Sqalli, Mohammed H. 618
Su, Yong 120
Su, Yung-Hsiang 587
Sun, Jianliang 471
Sun, Kewei 595
Sun, Mingming 608
Sun, Weifeng 294
Sun, Yongqian 35
Sung, Hung-Yi 567

Tan, Zhipeng 471
Tao, Jie 234
Tsai, Szu-Hao 526
Tsai, Yihjia 49
Tseng, Shih-Chi 526
Tseng, Ying-Yu 208
Tu, Chiao-Yun 169
Tzeng, Show-Shiow 600

Veidenbaum, Alexander V. 459

Wan, Shaohua 383, 550
Wang, Bei 530

Author Index 625

Wang, Bo 220
Wang, Huiqiang 395
Wang, Jianpeng 357
Wang, Mei 72
Wang, Rui 522
Wang, Shu-Ching 526, 587
Wang, Tai-Yuan 169
Wang, Weichung 583
Wang, Yanqi 595
Wang, Yizhuo 459
Wang, Yuanzhen 369
Wang, Zhan 120
Wang, Zhongzhao 269
Wawrzyniak, Dariusz 96
Wei, Yanjiang 522
Wu, Chin-Hsien 567
Wu, Li-bing 538
Wu, Peng 409
Wu, Shan 555
Wu, Shuang 530
Wu, Song 10, 195
Wu, Weigang 435
Wu, Xiaohong 234
Wu, Zhangling 84

Xia, Shu-Tao 534
Xiao, Guoqiang 497
Xu, Cong 306
Xu, Hao 563
Xu, Jie 281
Xu, Shixiong 485
Xu, Shizhen 542

Yan, Guofeng 546
Yan, Kuo-Qin 526, 587
Yang, Ce 530
Yang, Chengcheng 84

Yang, Di 435
Yang, Guangwen 220, 542
Yang, Jiahai 306
Yang, Songtao 409
Yang, Soomi 575
Yao, Dezhong 23
Yu, Chen 23
Yu, Heonchang 321, 571
Yu, Jiongyu 435
Yu, Xin 10
Yuan, Mindi 423
Yuan, Xiaoyong 595
Yue, Lihua 84, 108

Zang, Dawei 120
Zhang, Cheng 542
Zhang, Dalu 357
Zhang, Danchuang 294
Zhang, Hui 306
Zhang, Jun 534
Zhang, Ning 294
Zhang, Qingqing 294
Zhao, Kaiyong 144
Zhao, Qian 395
Zhao, Youjian 35
Zhou, Changli 409
Zhou, Dejiang 357
Zhou, Jingya 257
Zhou, Like 195
Zhou, Wei 471
Zhou, Xuehai 608
Zhou, Yuanyuan 72
Zhu, Jiaqi 357
Zhu, Lingyu 497
Zhuang, Hang 608
Zierhoffer, Piotr 96
Zou, Deqing 446

	Preface
	Organization
	Table of Contents
	Systems, Networks and Architectures
	Routing and Wavelength Assignment for Exchanged Hypercubes in Linear Array Optical Networks
	1 Introduction
	2 Preliminaries
	2.1 The Exchanged Hypercube
	2.2 The Congestion

	3 A Lower Bound of
	4 Optimal Wavelength Assignment for Realizing EH(s, t) on
	5 Concluding Remarks
	References

	Page Classifier and Placer: A Schemeof Managing Hybrid Caches
	1 Introduction
	2 ProposedScheme
	2.1 Page Coloring
	2.2 Page Classifier
	2.3 Page Placer

	3 Methodology
	3.1 System Configuration
	3.2 Workload
	3.3 Design Methodology

	4 Result
	4.1 General Evaluation
	4.2 Results of Page Classifier
	4.3 Results on Single-Core
	4.4 Results on Dual-Core

	5 Related Work
	6 Conclusion and Future Work
	References

	Temporal-Based Ranking in HeterogeneousNetworks
	1 Introduction
	2 Related Work
	3 Concepts and Preliminaries
	3.1 Heterogeneous Information Network
	3.2 Preliminaries

	4 TemporalHeteRank Method
	4.1 Ranking the Graph
	4.2 Affinity Matrices
	4.3 Flow Propagation

	5 Experiment and Application
	5.1 Dataset
	5.2 Evaluation Metric
	5.3 Experiment on Ranking
	5.4 Experiment on Hotspots Detection Application

	6 Conclusion
	References

	Designing Buffer Capacity of Crosspoint-QueuedSwitch
	1 Introduction
	2 The Crosspoint-Queued Switch
	2.1 The CQ Switch Model
	2.2 Definitions

	3 Performance Analysis with Different Buffer Size
	3.1 Throughput Analysis
	3.2 Delay Analysis

	4 Verification of Analysis and Real Trace Simulations
	4.1 Verification of Performance Analysis
	4.2 Simulations under Real-Trace

	5 Conclusion
	References

	Loss-Rate Driven Network Codingfor Transmission Control
	1 Introduction
	2 Related Works
	2.1 TCP Congestion Control
	2.2 Selective ACK
	2.3 Network Coding

	3 Loss-Rate Driven Coding
	3.1 Transmission Model
	3.2 Sensing Segment Loss-Rate
	3.3 Segment Format
	3.4 Encoding Procedure
	3.5 Decoding Procedure
	3.6 Congestion Control

	4 Performance Evaluation
	4.1 Theoretical Induction
	4.2 Packet Loss Model
	4.3 Simulation Results

	5 Conclusions
	References

	Multilayer Perceptron and Stacked Autoencoderfor Internet Traffic Prediction
	1 Introduction
	2 Artificial Neural Networks
	3 Review of Literature
	3.1 Multilayer Perceptron and Backpropagation
	3.2 Stacked Autoencoder and Deep Learning

	4 Experiments and Results
	4.1 Data Normalization
	4.2 Neural Network Architecture and Topology
	4.3 Neural Network Training
	4.4 Main Results

	5 Conslusion
	References

	Optimization of Uncore Data Flow on NUMA Platform
	1 Introduction
	2 Unbalance and Congestion of Data Traffic of Uncore
	2.1 Microarchitecture of Uncore
	2.2 Unbalance and Congestion of Data Traffic

	3 Dynamic Entries Management
	3.1 Modeling Trackers of GQ/QHL
	3.2 The Implementation of Dynamic Entries Management

	4 Experiment Results
	4.1 Smooth Request Sequences
	4.2 Burst Request Sequences

	5 Conclusion
	References

	APP-LRU: A New Page Replacement Method for PCM/DRAM-Based Hybrid Memory Systems
	1 Introduction
	2 Related Work
	3 The APP-LRU Method
	3.1 Page Access Pattern Prediction
	3.2 Page Replacement and Migration

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Results on the Synthetic Traces
	4.3 Results on the Real OLTP Trace

	5 Conclusion
	References

	Towards Relaxed Rollback-Recovery Consistency in SOA
	1 Introduction
	2 System Model and Basic Assumptions
	3 ReServE — The General Idea
	4 Strict Recovery Consistency Model
	5 Relaxed Recovery Consistency Models
	6 Discussion on the Consistent Recovery Problem
	7 Conclusions
	References

	A Novel Page Replacement Algorithm for the Hybrid Memory Architecture Involving PCM and DRAM
	1 Introduction
	2 Related Work
	3 The MHR-LRU Algorithm
	3.1 The Main Idea
	3.2 The Detailed Algorithm

	4 Performance Evaluation
	4.1 Experimental Setup and Datasets
	4.2 Hit Ratios
	4.3 Writes to PCM

	5 Conclusions
	References

	HiNetSim: A Parallel Simulator for Large-Scale Hierarchical Direct Networks
	1 Introduction
	2 Key Issues and Design
	2.1 Parallelism
	2.2 Load Balancing
	2.3 Cycle-Level Accuracy
	2.4 Flexibility

	3 Implementation
	3.1 HiNetSim Architecture
	3.2 Topology Generation
	3.3 Routing Mechanism
	3.4 Flow Control Mechanism
	3.5 Simulation of Network Devices

	4 Simulation Examples
	4.1 Flattened Butterfly (FB): 1024 Nodes
	4.2 4D Torus: 4096 Nodes
	4.3 D Torus Network: A Hierarchical Network

	5 Performance Evaluations on HiNetSim
	6 Conclusions and Future Work
	References

	Wire Length of Midimew-Connected MeshNetwork
	1 Introduction
	2 Architecture of the MMN
	3 Wire Length Evaluation
	4 Conclusion
	References

	Parallel and Multi-Core Technologies
	Benchmarking the Memory Hierarchyof Modern GPUs
	1 Introduction
	2 Background: Modern GPU Memory Hierarchy
	3 Methodology
	3.1 Shared Memory Bank Conflict: Stride Memory Access
	3.2 Cache Structure: Fine-Grained Benchmark

	4 Experimental Results
	4.1 Shared Memory
	4.2 Global Memory
	4.3 Texture Memory

	5 Conclusions
	References

	Parallel CYK Membership Test on GPUs
	1 Introduction
	2 Related Work
	3 CFG Membership Test
	3.1 Context-Free Languages
	3.2 CYK Algorithm

	4 Our Approaches and Implementations
	4.1 Three Types of Thread Mappings
	4.2 Two Types of Memory for Data Access
	4.3 Two Types of Data Transfer Methods

	5 Experimental Results
	6 Conclusions
	References

	Designing Coalescing Network-on-Chipfor Efficient Memory Accesses of GPGPUs
	1 Introduction
	2 System Design
	2.1 Router Microarchitecture
	2.2 Design Issues

	3 Evaluation
	3.1 Row Buffer Miss Rate
	3.2 Instructions per Cycle
	3.3 Factors Affecting Performance

	4 Related Works
	5 Conclusions
	References

	Efficient Parallel Algorithms for LinearRankSVM on GPU
	1 Introduction
	2 Linear RankSVM Training with L2-loss
	2.1 Linear RankSVM Traing with L2-loss by Using Trust Region

	3 Novel Parallel Algorithms for Linear RankSVM Training with L2-loss on Graphic Processing Units
	3.1 Efficient Parallel Algorithm for Computing Hessian-Vector
	3.2 Efficient GPU Sorting for Linear RankSVM Training with

	4 Performance Evaluation
	4.1 Performance Evaluation for P-SWXRankSVM
	4.2 Prediction Performance Evaluation for P-SWXRankSVM

	5 Conclusion and Future Work
	References

	A Real-Time Scheduling FrameworkBased on Multi-core Dynamic Partitioningin Virtualized Environment
	1 Introduction
	2 Design of Real-Time Scheduling Framework
	2.1 Multi-core Dynamic Partitioning Mechanism
	2.2 vGEDF Scheduler

	3 Performance Evaluation
	3.1 Experimental Environment and Methodology
	3.2 Effect of Multi-core Dynamic Partitioning Mechanism
	3.3 Effect of vGEDF Scheduler

	4 Related Work
	5 Conclusion
	References

	Automatic Data Layout Transformation for Heterogeneous Many-Core Systems
	1 Introduction
	2 Related Works
	3 Hardware Data Layout Transformation Framework
	3.2 ASTA Data Layout

	4 Experiment Results
	4.1 Experiment Setup
	4.2 Performance Comparison with Different Data Layouts
	4.3 Impact of Different Lengths of a Tile
	4.4 Performance Effect When Adding Hardware Delays

	5 Conclusion
	References

	mpCache: Accelerating MapReduce with HybridStorage System on Many-Core Clusters
	1 Introduction
	2 mpCache Design
	2.1 Optimal Allocation Determination
	2.2 Input Data Cache Model

	3 Evaluation
	3.1 Platform
	3.2 Benchmarks
	3.3 Experimental Results

	4 Related Work
	5 Conclusion
	References

	Virtualization and Cloud Computing Technologies
	Online Mechanism Design for VMs Allocationin Private Cloud
	1 Introduction
	2 Related Work
	3 Modeling and Notations
	4 The Online Greedy Allocation with Reservation
	4.1 Description of Mechanism
	4.2 The Algorithm Design of OGAWR Mechanism

	5 Analysis of OGAWR Mechanism
	6 Evaluation and Simulation
	7 Conclusion
	References

	Threshold Based Auto Scaling of Virtual Machines in Cloud Environment
	1 Introduction
	1.1 Scenario 1: User Hosts Different Application on the VM
	1.2 Scenario 2: Application Requirement Vary over Time
	1.3 Up-Scaling
	1.4 Down-Scaling

	2 Related Work
	3 Threshold Based Auto Scaling of VM
	3.1 Monitor
	3.2 Decision Maker

	4 Scaling Algorithms
	4.1 Memory Scaling
	4.2 CPU Scaling

	5 Experimental Setup and Results
	5.1 Memory Scaling
	5.2 CPU Scaling

	6 Conclusion
	References

	A Novel Resource Provisioning Modelfor DHT-Based Cloud Storage Systems
	1 Introduction
	2 Related Work
	3 Resource Provisioning Model
	3.1 System Model
	3.2 Resource Provisioning Problem
	3.3 Solution

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Trace-Driven Evaluation

	5 Conclusions
	References

	BIDS: Bridgehead-Employed Image DistributionSystem for Cloud Data Centers
	1 Introduction
	2 Design Principle of BIDS
	2.1 Execution Mechanism of Bridgehead Mode
	2.2 Efficient Collaborative Sharing
	2.3 Image Version Management
	2.4 Remote Management Console

	3 Components Implementation of BIDS
	3.1 Architecture of GIS
	3.2 Architecture of Host Service Part
	3.3 Architecture of RMC

	4 Evaluation
	4.1 Provision Time
	4.2 Bandwidth Consumption
	4.3 Delay

	5 Related Work
	6 Conclusions
	References

	A Broker-Based Self-organizing Mechanism for Cloud-Market
	1 Introduction
	2 Related Work
	3 Broker-Based Self-organizing on Cloud Commerce
	3.1 Broker-Based Self-organizing Framework
	3.2 Broker Agent Properties and Characteristics
	3.3 Multi-agent Communication Mechanism

	4 Self-organizing Model and Algorithm
	4.1 Consumer Model
	4.2 Service Selection and Response Model
	4.3 Learning Model

	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	Group Participation Game Strategy for Resource Allocation in Cloud Computing
	1 Introduction
	2 Related Work
	3 Resource Allocation Game Model and Nash Equilibrium
	3.1 Resource Allocation Game Modeling
	3.2 Nash Equilibrium in CT-RAG

	4 The Group Participation Game Strategy
	4.1 CS-RAGs and Nash Equilibrium
	4.2 Spillover Effect or Externality
	4.3 The Group Participation Game Strategy (GPGS)
	4.4 The Theory Analysis of GPGS

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Towards Optimal Collaboration of Policies in the Two-Phase Scheduling of Cloud Tasks
	1 Introduction
	2 Scheduling Policies in the Two Phases
	2.1 Ordering Policies in the First Phase
	2.2 Dispatching Policies in the Second Phase

	3 Modeling and Analysis of Scheduling Policies
	3.1 Description of Scheduling Process Using SPN Model
	3.2 Modeling of Ordering Policies
	3.3 Modeling of Ordering Policies
	3.4 Performance Analysis of Scheduling Policies

	4 Experiments and Evaluations
	5 Conclusion
	References

	Gossip Membership Managementwith Social Graphs for Byzantine FaultTolerance in Clouds
	1 Introduction
	2 Related Work
	3 Proposed Membership Management
	3.1 System Model
	3.2 Detailed Algorithms

	4 Evaluation
	4.1 Experimental Settings
	4.2 Performance Results

	5 Conclusion
	References

	An Ensemble Multivariate Model for Resource Performance Prediction in the Cloud
	1 Introduction
	2 Related Work
	3 Prediction Theory and Techinques
	4 Ensemble Learning Approach
	5 Evaluation Techniques
	6 Discussion
	7 Conclusion
	References
	8 Appendix

	Prediction-Based Optimization of Live Virtual Machine Migration
	1 Introduction
	2 Related Work
	3 Prediction-Based Model
	3.1 The Growth of the Size of a Snapshot
	3.2 The Prediction Model for Snapshot Size Growth

	4 Prediction-Base ed Migration Strategy
	4.1 Feedback-Based M Migration Strategy
	4.2 Adjustment-Based Migration Strategy

	5 Experiments
	6 Conclusion and Future Work
	References

	Control Protocol and Self-adaptive Mechanismfor Live Virtual Machine Migration over XIA
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Testbed Design
	3.2 Migration Control Modules

	4 Control Protocol and Self-adaptive Mechanism
	4.1 VM Migration Control Protocol
	4.2 Self-adaptive Mechanism

	5 Implementation and Evaluation
	5.1 Comparison of Migration Modes
	5.2 Connectivity Test
	5.3 Workload Test

	6 Future Works
	7 Conclusion
	References

	Efficient Live Migration of Virtual Machineswith a Novel Data Filter
	1 Introduction
	2 Related Work
	3 Data Filter
	3.1 State Transition Model of Memory Write
	3.2 Local Writable Working Set
	3.3 Markov Model

	4 Live Migration with Improved Pre-copy Algorithm
	4.1 Performance Metrics
	4.2 Migration Algorithm

	5 Experiment
	5.1 Test Setup
	5.2 Overhead of Data Filter
	5.3 Migration Performance for Different Size of State Space
	5.4 Downtime
	5.5 Migration Time and Amount of Migrated Data

	6 Conclusion
	References

	Applications of Parallel and Distributed Computing
	Energy-Efficient and Adaptive Algorithms for Constructing Multipath Routing in Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Query Model and Problem Formulation
	3.1 Query Model
	3.2 Problem Formulation

	4 K-Multipath Routing Algorithm
	4.1 Route Establishment
	4.2 The Analysis of Finding Multiple Node- Disjoint Paths

	5 Performance Evaluation
	6 Conclusions and Future Work
	References

	An Adaptive Channel Sensing Approach Based on Sequential Order in Distributed Cognitive Radio Networks
	1 Introduction
	2 Related Work
	3 An Adaptive Model for Multiple Channels Sensing
	3.1 System Model
	3.2 Stop Condition and d Sensing Threshold for Available Channels
	3.3 Mechanism of Collision Avoidance

	4 Experiments and Analysis
	5 Conclusion
	References

	A Location Privacy Preserving Method Based on Sensitive Diversity for LBS
	1 Introduction
	2 Related Works
	3 System Architecture
	4 Location Privacy Preserving Method
	4.1 Diversity Anchor Generating Phase
	4.2 Query Phase
	4.3 Performance Analysis

	5 Experiments
	5.1 Parameter Configuration
	5.2 Success Rate of Anchor Generating
	5.3 Compare with SpaceTwist

	6 Conclusions
	References

	Message Passing Algorithm for the GeneralizedAssignment Problem
	1 Introduction
	2 Message Passing Algorithm
	3 Simplified Algorithm
	4 Simulation Results
	5 Optimum Uniqueness
	6 Strongly NP-Hardness
	7 Conclusion and Future Work
	References

	PPMS: A Peer to Peer Metadata Management Strategy for Distributed File Systems
	1 Introduction
	2 Related Works
	3 The Design and Implementation of PPMS
	3.1 Overview of PPMS
	3.2 The Design of MIS
	3.3 The Design of MDS
	3.4 Data Access
	3.5 PPFS -- A Prototype File System Using PPMS

	4 Performance Evaluation
	4.1 Testing Using Postmark
	4.2 Trace Simulation

	5 Conclusion and Future Work
	References

	Improving Log-Based Fault Diagnosis by Log Classification
	1 Introduction
	2 Related Work
	3System
	3.1 Overview of
	3.2 Fault Log Analysis
	3.3 Fault Log Correlation Analysis

	4 Performance Evaluations
	4.1 Log Analysis
	4.2 Learning Efficiency

	5 Conclusions and Future Work
	References

	A Compilation and Run-Time Frameworkfor Maximizing Performance of Self-schedulingAlgorithms
	1 Introduction
	2 Technique
	2.1 Locality Aware Self-Scheduler
	2.2 Selection of the Iteration Scheduling Algorithm and the

	3 Experiments
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Related Work
	5 Conclusion
	References

	I/O, File Systems, and Data Management
	PaxStore : A Distributed Key Value Storage System
	1 Introduction
	2 Related Work
	3 Design of PaxStore
	4 Implementation
	4.1 Component of Storage Node
	4.2 Implementation of Log and Storage Engine
	4.3 Recovery

	5 Performance Evaluation
	5.1 Write Latency
	5.2 Protocol Overhead
	5.3 Comparison with Zookeeper
	5.4 System Scalability
	5.5 System Recovery
	5.6 Read Latency
	5.7 Summary and Result

	6 Conclusion and Future Work
	References

	Semi-automatic Composition of Data LayoutTransformations for Loop Vectorization
	1 Introduction
	2 Language Support for Data Layout Transformations
	2.1 Motivating Examples
	2.2 Data Layout Transformation Pragmas
	2.3 Composition of Data Layout Transformations

	3 Data Layout Aware Loop Transformations
	4 Experimental Evaluation
	4.1 Implementation
	4.2 A Case Study: Data Layout Tuning for Loop Vectorization

	5 Related Work
	6 Conclusion
	References

	Dynamic Stripe Management Mechanismin Distributed File Systems
	1 Introduction
	2 Related Work
	3 Dynamic Re-sizing and Re-distributing stripes
	3.1 Piggybacking Logical Access Information to Servers
	3.2 Mapping Access Patterns
	3.3 Re-sizing and Re-distributing Functions

	4 Experiments and Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results: Benefits and Overhead

	5 Concluding Remarks
	References

	Accelerating the Reconstruction Process in Network Coding Storage System by Leveraging Data Temperature
	1 Introduction
	2 Background and Motivation
	2.1 Definitions
	2.2 MBR Codes
	2.3 E-MBR Codes
	2.4 Motivation

	3 Design and Implementation
	3.1 System Architecture
	3.2 Implementation Issues

	4 System Evaluation
	4.1 Experimental Settings
	4.2 Workloads
	4.3 Performance Evaluation

	5 Conclusions and Future Work
	References

	Poster Sessions
	Speedup Critical Stage of Machine Learningwith Batch Scheduling in GPU
	1 Introduction
	2 CNN GPU Execution Framework
	2.1 Batch Process

	3 Evaluation
	4 Conclusion

	The New Territory of Lightweight Security in a Cloud Computing Environment
	Result
	References

	DP: Dynamic Prepage in Postcopy Migration for Fixed-Size Data Load
	1 Postcopy Migration
	2 Fixed-Size Data
	3 Dynamic Prepage
	4 Experimental Evaluation
	References

	Capacity Region of Wireless Network Coding
	1 Introduction
	2 Capacity Region over CSMA/CA MAC
	2.1 Throughput Analysis
	2.2 Upper Bound
	2.3 CSMA/CA Area and CSMA/CA Clique
	2.4 Lower Bound

	References

	Tacked Link List - An Improved Linked List for Advance Resource Reservation
	1 Model
	2 Performance Analysis
	3 Simulation
	4 Conclusion
	References

	CFIO2: Overlapping Communications and I/Owith Computations Using RDMA Technology
	1 System Architecture
	2 Communication Interactions
	3 Results
	3.1 Write Performance
	3.2 Overlapping Evaluation

	References

	Performance Analysis of End-to-End Servicesin Virtualized Computing Environments
	1 Introduction
	2 SystemModel
	3 QBDs Stochastic Model for Cloud Computing System
	4 Performance Evaluation
	5 Conclusion
	References

	Adopting Two Strategies to Ensure and Optimize the Quality of Service in Linux
	1 Results
	Reference

	Analysis of VMSS Schemes for Group Key Transfer Protocol
	References

	Resource Prediction for Inter-cloud Broker
	1 Introduction
	2 Resource Prediction and Premium Amount Calculation
	References

	An Efficient Certificateless Blind Signature Scheme in the Random Oracle Model
	1 Introduction
	2 Certificateless Blind Signature Scheme
	3 Security
	4 Efficiency Analysis
	5 Conclusion
	References

	Increasing Multi-controller Parallelism for Hybrid-Mapped Flash Translation Layers
	1 Problem Overview
	2 Design Concept
	3 Experimental Results
	References

	An Estimation-Based Task Load Balancing Scheduling in Spot Clouds
	1 Introduction
	2 Estimation Method
	3 Performance Evaluation
	4 Conclusion
	References

	Distributed Ontology Integration Model for Cooperative Inference in Context Aware Computing
	1 Introduction
	2 Distributed Ontology Integration Model
	3 Performance Evaluation
	4 Conclusion
	References

	Cross-Platform Parallel Programmingin PARRAY: A Case Study
	1 Introduction
	2 Array Types of
	3 Case Study
	3.1 Simple Matrix Transposition
	3.2 Blocked Matrix Transposition
	3.3 Buffered Matrix Transposition

	4 Conclusion
	References

	Different Solvers Evaluation for a Bucking Problem
	Results
	References

	Quality of Service Enhancement by Using an Integer Bloom Filter Based Data Deduplication Mechanism in the Cloud Storage Environment
	Result
	References

	Fault-Tolerant Storage Servers for the Databases of Redundant Web Servers in a Computing Grid
	1 Constructing the Computing Grid
	2 Multiple Storage Servers
	Reference

	Scheduling Cloud Platform ManagedLive-Migration Operations to Minimizethe Makespan
	1 Cloud Platform Managed Migration Operations
	2 Scheduling
	2.1 Multiple Migration Operations of Idle VM
	2.2 Multiple Migration Operations of Busy VM

	References

	Sequential Sensing and Transmissionfor Real-Time Traffic in Cognitive Networks
	1 Introduction
	2 The Proposed Sensing and Transmission Algorithm
	3 Simulation Results and Conclusions
	References

	An Adaptive Heterogeneous Runtimefor Irregular Applications in the Caseof Ray-Tracing (Extended Abstract)
	References

	DLBer: A Dynamic Load Balancing Algorithmfor the Event-Driven Clusters
	1 Introduction
	2 DLBerDesign
	2.1 Trigger Group Policy
	2.2 Load Balancing Algorithm

	3 Evaluation
	References

	Performance Prediction Model and Analysisfor Compute-Intensive Tasks on GPUs
	1 Introduction
	2 Analytical Models
	3 Empirical Studies
	4 Conclusion
	References

	Interdomain Traffic Engineering Techniques to Overcome Undesirable Connectivity Incidents
	1 Introduction
	1.1 Problem Statement
	1.2 Summary of Contributions

	2 Proposed Work
	2.1 Convergence Time Results

	3 Conclusions
	References

	Author Index

