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Preface

The continued improvements in high performance computing and high resolution
sensing capabilities are resulting in data of unprecedented size and complexity.
Historically topological and statistical techniques have been deployed as indepen-
dent alternatives in the analysis of a variety of data types. However, the continued
increases in size, dimensionality, and number of variables create new challenges
that traditional approaches cannot address. New methods that leverage the mutual
strengths of both topological and statistical techniques are needed to support the
management, analysis and visualization of such complex data.

In an effort to characterize the current challenges and research trends, and to
foster collaborations, we organized the Workshop on the Analysis of Large-scale,
High-dimensional, and Multivariate Data using Topology and Statistics, held June
12-14 in Le Barp, France. Around 30 researchers from 20 European and American
universities, companies, and national research laboratories were in attendance.
The program comprised 18 presentations, including a keynote talk by Herbert
Edelsbrunner from the Institute of Science and Technology Austria, titled “Per-
sistent Homology: Theory and Practice.” A number of interesting challenges were
addressed during the workshop, with presentations covering a wide range of topics,
including topological techniques for large data, high-dimensional data analysis,
computational challenges, multivariate visualization and analysis techniques.

In this book, we present 16 peer-reviewed chapters, divided into 6 parts as the
outcome of this workshop. Parts I and II focus on large-scale data, Parts III and IV
focus on multivariate data, and Parts V and VI focus on high-dimensional data.
The chapters in Part I include recent results in the area of in-situ and distributed
analysis. We start with a distributed-memory algorithm for labeling connected
components in simulation data (Harrison et al.), followed by a discussion of in-
situ visualization in fluid mechanics (Ribes et al.). Part I concludes with a survey of
recent discoveries in sublinear algorithms for extreme-scale data analysis (Seshadhri
et al.). Part II focuses on the efficient representation of large functions and includes
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a report on optimal general simplification of scalar fields on surfaces (Tierny et
al.), an algorithm for piecewise polynomial monotonic interpolation of 2D gridded
data (Allemand-Giorgis et al.), and a technique for shape analysis using real
functions (Biasotti et al.). The chapters in Part III focus on structural techniques
for multivariate data. This part includes a survey on 3D symmetric tensor fields
that highlights what we know and where to go next (Zhang and Zhang), followed
by a comparison of Pareto Sets and Jacobi Sets (Huttenberger and Garth), and a
report on deformations preserving total curvature (Berres et al.). Part IV focuses
on classification and visualization of vector fields, and includes a presentation of
Lyapunov time for 2D Lagrangian visualization (Sadlo), followed by a survey of
geometric algebra for vector field analysis and visualization (Ausoni and Frey). This
part concludes with a report on a technique for computing accurate Morse-Smale
complexes from gradient vector fields (Gyulassy et al.). Part V includes chapters
focused on the exploration of high-dimensional models, including a presentation of
high-dimensional sampling techniques (Ebeida et al.), and a report on the realization
of regular maps of large genus (Razafindrazaka and Polthier). Lastly, Part VI
presents recent results in the analysis of large, high-dimensional systems, and
includes a technique for faster localized solving of systems of equations (Anthony
et al.), followed by a system for ensemble analysis of electrical circuit simulations
(Crossno et al.).
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Fig. 1 Workshop participants, June 2013

In summary, this book brings together recent results from some of the most
prominent and recognized leaders in the fields of statistics, topology, and computer
science. The book’s contents cover both theory and application, providing an
overview of important key concepts and the latest research trends. The algorithms
detailed in this book are broadly applicable and can be used by application scientists
to glean insight from complex data sets.
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Part I
Large-Scale Data Analysis: In-Situ
and Distributed Analysis



A Distributed-Memory Algorithm for Connected
Components Labeling of Simulation Data

Cyrus Harrison, Jordan Weiler, Ryan Bleile, Kelly Gaither, and Hank Childs

1 Introduction

Parallel scientific simulations running on today’s state of the art petascale computing
platforms generate massive quantities of high resolution mesh-based data. Scientists
often analyze this data by eliminating portions and visualizing what remains,
through operations such as isosurfacing, selecting certain materials and discarding
the others, isolating hot spots, etc. These approaches can generate complex derived
geometry with intricate structures that require further techniques for effective
analysis, especially in the context of massive data.

In these instances, representations of the topological structure of a mesh is often
helpful (Fig. 1). Specifically, a labeling of the connected components in a mesh
provides a simple and intuitive topological characterization of which parts of the
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Fig. 1 (Left) Sub-volume mesh extracted from a 21 billion cell structured grid decomposed across
2,197 processors. (Right) Sub-volume mesh colored by the results from the connected components
labeling algorithm described in this chapter

mesh are connected to each other. These unique sub-meshes contain a subset of
cells that are directly or indirectly connected via series of cell abutments.

The global nature of connectivity poses a challenge in distributed-memory
parallel environments, which are the most common setting for analyzing massive
data. This is because massive data sets are typically too large to fit into the memory
of a single processor, so pieces of the mesh are distributed across processors.
Cells comprising connected sub-meshes may span any of the processors, but the
relationships of how cells abut across processors frequently has to be derived.
To deal with this problem, sophisticated techniques to resolve connectivity are
necessary.

This chapter explores an algorithm that operates on both structured and unstruc-
tured meshes and scales well even with very large data, as well as its underlying
performance characteristics. The algorithm executes in multiple stages, ultimately
constructing a unique label for each connected component and marking each vertex
with its corresponding connected component label. This final labeling enables
analyses such as: calculation of aggregate quantities for each connected component,
feature based filtering of connected components, and calculation of statistics on
connected components.

In short, the algorithm provides a useful tool for domain scientists with applica-
tions where physical structures, such as individual fragments of a specific material,
correspond to the connected components contained in a simulation data set. This
chapter presents the algorithm (Sect. 4), results from a weak scaling performance
study (Sect. 5), and further analysis of the slowest phase of the algorithm (Sect. 6).



A Distributed-Memory Algorithm for Connected Components 5
2 Related Work

The majority of research to date in connected components algorithms has been
focused on computer vision and graph theory applications. This previous research is
useful for contributing high-level ideas, but ultimately the algorithms themselves are
not directly applicable to the problem considered here. Computer vision algorithms
typically depend on the structured nature of image data, and so cannot be easily
applied to unstructured scientific data. Graph theory algorithms are more appropri-
ate, since the cell abutment relationships in an unstructured mesh can be encoded as
an undirected graph representation. But this encoding results in a very sparse graph,
with the edges having special properties—neighboring cells typically reside on the
same processing elements, although not always—that graph theory algorithms are
not optimized for. For more discussion of these algorithms, we refer the reader
to [11]. That said, previous graph theory research on connected components has
used the Union-find algorithm [8], which is also used for the algorithm described
in this chapter. Further, the Union-find algorithm and data structures have been
used in topology before, for the efficient construction of Contour Trees [5], Reeb
Graphs [17], and segmentations [2, 3]. Union-find is discussed further in Sect. 3.1.

The algorithm described in this chapter is intended for distributed-memory paral-
lelism. With this technique, Processing Elements (PEs)—instances of a program—
are run on each node, or on each core of a node. By using multiple nodes, the
memory available to the program is larger, allowing for processing of data sets
so large that they cannot fit into the memory of a single node. Popular end user
visualization tools for large data, such as ParaView [1] and Vislt [7], follow this
distributed-memory parallelization strategy. Both of these tools instantiate identical
visualization modules on each PE, and the PEs are only differentiated by the sub-
portion of the larger data set they operate on. The tools rely on the data set being
decomposed into pieces (often referred to as domains), and they partition these
pieces over their PEs. This approach has been shown to be effective; Vislt performed
well on meshes with trillions of cells using tens of thousands of PEs [6]. The
algorithm described in this chapter follows the strategy of partitioning data over the
PEs and has been implemented as a module inside Vislt. It uses the Visualization
ToolKit (VTK) library [15] to represent mesh-based data, as well as its routines
for identifying cell abutment within a piece. Finally, we note that other topology
algorithms have also been ported to a distributed-memory parallel environment,
specifically segmentations [18] and merge trees [13].

3 Algorithm Building Blocks

This section describes three fundamental building blocks used by the algorithm.
The first is the serial Union-find algorithm, which efficiently identifies and merges
connected components. The second is binary space partitioning trees, which enable
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efficient computation of mesh intersections across PEs. The third is the concepts of
exteriors cells and ghost data, which significantly accelerate the algorithm.

3.1 Union-Find

The Union-find algorithm enables efficient management of partitions. It provides
two basic operations: UNION and FIND. The UNION operation creates a new
partition by merging two subsets from the current partition. The FIND operation
determines which subset of a partition contains a given element.

To efficiently implement these operations, relationships between sets are tracked
using a disjoint-set forest data structure. In this representation, each set in a partition
points to a root node containing a single representative set used to identify the
partition. The UNION operation uses a union-by-rank heuristic to update the root
node of both partitions to the representative set from the larger of the two partitions.
The FIND operation uses a path-compression heuristic which updates the root node
of any traversed set to point to the current partition root. With these optimizations
each UNION or FIND operation has an amortized run-time of O(«(N)) where N is
the number of sets and «(/N) is the inverse Ackermann function [16]. «(N) grows
so slowly that it is effectively less than four for all practical input sizes. The disjoint-
set forest data structure requires O(N) space to hold partition information and
the values used to implement the heuristics. The heuristics used to gain efficiency
rely heavily on indirect memory addressing and do not lend themselves to a direct
distributed-memory parallel implementation.

3.2 Binary Space Partitioning (BSP)

A binary space partitioning (BSP) [10] divides two- or three-dimensional space into
a fixed number of pieces. BSPs are used in the connected components labeling
algorithm described in this chapter to determine if a component on one PE abuts
a component on another PE (meaning they are both actually part of a single, larger
component). The BSP is constructed so that there is a one-to-one correspondence
between the PEs and the pieces of the BSP tree. Explicitly, if there are N PEs,
then the BSP will partition space into N pieces and each PE will be responsible
for one piece. The PEs then relocate their cells according to the BSP; each cell is
assigned a piece from the BSP based on its partition, and then that cell is sent to the
corresponding PE.

It is important that the BSP is balanced, meaning that each piece has approxi-
mately the same number of cells. If disproportionately many cells fall within one
piece, then its PE may run out of memory when the cells are relocated. As a result,
the PEs must examine the cells and coordinate when creating the BSP.
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The BSP construction and cell relocation can be very time consuming. More
discussion of their complexity can be found at the end of this chapter (Sect. 6).

3.3 Exterior Cells and Ghost Cells

Exterior cells and ghost cells are used by the algorithm to reduce the amount of
data needed to coordinate between PEs. Both techniques identify cells that are on
the boundary of a PE’s piece. Ghost cells identify exactly the cells on the boundary,
while exterior cells identify a superset of the boundary cells.

Exterior cells are the cells that lie along the exterior of a volume, which does
not necessarily strictly correspond to the exterior of the PE’s piece. Consider the
example of removing a material: the exterior cells of the remainder will likely have
a portion along the PE piece boundary, but it will also likely have a portion along
the interior of the piece, where the material interface lies.

“Ghost cells” are the result of placing a redundant layer of cells along the
boundary of each domain. Ghost cells are either pre-computed by the simulation
code and stored in files or calculated at run-time by the analysis tool. They
are typically created to prevent interpolation artifacts at piece boundaries. More
discussion of ghost cells can be found in [7] and [12].

Ghost cells are also useful for connected components labeling. They identify
the location of the boundary of a piece and provide information about the state of
abutting cells in a neighboring piece. Note that the results discussed in this chapter
uses ghost cells that are generated at run-time, using the collective pattern described
in [7], not the streaming pattern described in [12].

4 Algorithm

The algorithm identifies the global connected components in a mesh using five
phases. It first identifies which pieces are at the boundary (Phase 1). It then identifies
the connected components local to each PE (Phase 2) and then creates a global
labeling across all PEs (Phase 3). It next determines which components span
multiple PEs (Phase 4). Finally, it merges the global labels to produce a consistent
labeling across all PEs (Phase 5). This final labeling is applied to the mesh to create
per-cell labels which map each cell to the corresponding label of the connected
component it belongs to. In terms of parallel considerations, Phases 1 and 2 are
embarrassing parallel, Phase 3 is a trivial communication, Phase 4 has a large all-
to-all communication, followed by embarrassingly parallel work, and Phase 5 has
trivial communication following by more embarrassingly parallel work (Fig. 2).

Phase 1: Identify cells at PE boundaries: The goal of this phase is to identify
cells that abut the spatial boundary of the data contained on each PE, which
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Phase 1(Ext ) Phase 2

Output

Input

Phase 1(Ghst) Phase 3 Phase 5

Fig. 2 Example illustrating the five phases of the algorithm on a simple data set decomposed onto
three PEs. Phase 1 has two variants, and both variants are shown—*‘exterior cells” on the top and
“ghost cells” on the bottom

enables reduced communication in Phase 4. We consider two methods for doing
this: ghost data and exterior cells. The ghost data option marks the minimum
number of cells to be considered, since ghost data always lies along the PE
boundary. The exterior cells option marks more cells, since some cells are
external to a component, but interior to the PE boundary; these cells cannot be
distinguished and thus must be processed unnecessarily.

Ghost cells are not present in all data sets. The algorithm deployed in VisIt uses
the ghost data option when ghost data is present, and falls back to the exterior
cells option when it is not. However, we point out that the study described in this
chapter shows the two variants to have very similar performance.

Phase 1, ghost cells option: Ghost cells are useful because they are always adja-
cent to boundary cells; finding the cells adjacent to ghost cells is equivalent to
finding the list of cells on the boundary. Note that ghost cells cannot be used
directly to represent PE boundaries since they themselves lack ghost data. For
example, an isosurface operation on a ghost cell lacks the requisite additional
ghost data to perform interpolation, and therefore does not have sufficient
information to generate the correct contour. For this reason, all ghost cells are
removed after the boundary is identified.

In pseudocode:

For each cell c:
boundary[c] = false
if (not IsGhostCell(c))
For each neighbor n of c:
if IsGhostCell(n):
boundary[c] = true
RemoveGhostCells ()
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Phase 1, exterior cells option: Again, exterior cells are the cells that are on the
exterior of the components. Only the cells on the boundary need to be considered
in Phase 4, and these cells are a superset of the cells on the boundary. However,
they are a subset of all cells and discarding the cells in the interior of the
components substantially improves Phase 4 performance.

The benefit of this approach varies based on the data set. If a component has
a high surface area to volume ratio, then proportionally less cells will be in
the interior and the number of cells discarded is less. Further, the proportion
of exterior cells that are not on the boundary compared to those that are on the
boundary is data dependent. That said, a factor of 4x to 10x reduction is typical
in the number of cells processed in Phase 4 by focusing on exterior cells.

The exterior cells can be calculated by using a standard “external faces”
algorithm. For each face, look at the number of cells incident to that face (or
each edge in two dimensions). The faces that have one cell incident to it are
exterior, and so those cells are marked as exterior.

Phase 2: Identify components within a PE: The purpose of this phase is for each
PE to label the connected components for its portion of the data. As mentioned
in Sect. 3.1, the Union-find algorithm efficiently constructs a partition through an
incremental process. A partition with one subset for each point in the mesh is
used to initialize the Union-find data structure. It then traverses the cells in the
mesh. For each cell, it identifies the points incident to that cell. Those points are
then merged (“unioned”) in the Union-find data structure.

In pseudocode:

UnionFind uf;
For each point p:
uf.SetLabel (p, GetUniqueLabel ())
For each cell c:
pointlist = GetPointsIncidentToCell (c)
p0 = pointlist [0]
For each point p in pointlist:
if (uf.Find(p0) != uf.Find(p))
uf . Union(p0, p)

The execution time of this phase is dependent on the number of union operations,
the number of find operations, and the complexity of performing a given union
or find. The number of finds is equal to the sum over all cells of how many
points are incident to that cell. Practically speaking, the number of points per
cell will be small, for example eight for a hexahedron. Thus the number of finds
is proportional to the number of cells. Further, the number of unions will be less
than the number of finds. Finally, although the run-time complexity of the Union-
find algorithm is nuanced, each individual union or find is essentially a constant
time operation, asymptotically-speaking. Thus the overall execution time of this
phase for a given PE is proportional to the number of cells contained on that PE.
Phase 3: Component re-label for cross-PE comparison: At the end of Phase 2,
on each PE, the components within that PE’s data have been identified. Each
of these components has a unique local label and the purpose of Phase 3 is
to transform these identifiers into unique global labels. This will allow the
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algorithm to perform parallel merging in subsequent phases. Phase 3 actually has
two separate re-labelings. First, since the Union-find may create non-contiguous
identifiers, it transforms the local labels such that the numbering ranges from 0
to Np, where Np is the total number of labels on Processing Element P. For later
reference, we denote N = > Np as the total number of labels over all PEs.
Second, the algorithm constructs a unique labeling across the PEs by adding
an offset to each range. It does this by using the PE rank and determining how
many total components exist on lower PE ranks. This number is then added to
component labels. At the end of this process, PE 0 will have labels from 0 to
Np — 1, PE 1 will have labels from Ny to Ny + N; — 1 and so on. Finally, a new
scalar field is placed on the mesh, associating the global component label with
each cell.

Phase 4: Merging of labels across PEs:
At this point, when a component spans multiple PEs, each PE’s sub-portion
has a different label. The goal of Phase 4 is to identify that these sub-portions
are actually part of a single component and merge their labels. The algorithm
does this by re-distributing the data using a BSP (see Sect. 3.2) and employing
a Union-find strategy to locate abutting cells that have different labels. The
data communicated involves cells, including their current label from Phase 3,
although only the cells that lie on the boundary are needed to locate abutments.
The cells identified in Phase 1 are used in the search process, but the cells known
not to be on the boundary are excluded, saving about an order of magnitude in
the number of cells considered.
The Union-find strategy in Phase 4 has four key distinctions from the strategy
described in Phase 2:

* The labeling is now over cells (not points), which is made possible by the
scalar field added in Phase 3.

* The algorithm now merges based on cell abutment, as opposed to Phase 2,
where cells were merged if it had two points incident. This abutment captures
any spatial overlap, be it at a face, a vertex, or one cell “poking” into another.

* Each cell is initialized with the unique global identifier from the scalar field
added in Phase 3, as opposed to the arbitrary unique labeling imposed in
Phase 2.

* Whenever a union operation is performed, it records the details of that union
for later use in establishing the final labeling.

In pseudocode:

CreateBSP ()
UnionFind uf;
For each cell c:
uf . SetLabel(c, label[c])
For each cell c:
For each neighbor n of c:
if (uf.Find(c) != uf.Find(n))
uf.Union(n, c)
RecordMerge (n, c)
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After the union list is created, the re-distributed data is discarded and each PE
returns to operating on its original data.

Phase 5: Final assignment of labels: Phase 5 incorporates the merge information
from Phase 4 with the labeling from Phase 3. Recall that in Phase 3 the algorithm
constructed a globally unique labeling of per-PE components and denoted N
as the total number of labels over all PEs. The final labeling of components is
constructed as follows:

After Phase 4, each PE is aware of the unions it performed, but not aware of
unions on other PEs. However, to assign the final labels, each PE must have
the complete list of unions. So Phase 5 begins by broadcasting (“‘all-to-all”’)
each PE’s unions to construct a global list.

Create a Union-find data structure with N entries, each entry having the trivial
label.

UnionFind uf
For i in 0 to N—I:
uf.SetLabel (i, 1)

Replay all unions from the global union list.

For union in GlobalUnionList:
uf.Union(union.labell , union.label2)

The Union-find data structure can now be treated as a map. Its “Find” method
transforms the labeling we constructed in Phase 3 to a unique label for each
connected component.

Use the “Find” method to transform the labeling from the scalar array created
in Phase 3 to create a final labeling of which connected component each cell
belongs to.

For each cell c:
val[c] = uf.Find(val[c])

Optionally transform the final labeling so that the labels range from 0 to N¢ —
1, where N¢ is the total number of connected components.

Note that the key to this construction is that every PE is able to construct the same
global list by following the same set of instructions. They essentially “replay” the
merges from the global union list in identical order, creating an identical state in
their Union-find data structure.

5 Performance Study

The efficiency of the algorithm was studied with a performance study that used weak
scaling on concurrency levels up to 2,197 cores (and 2,197 PEs) with data set sizes
up to 21 billion cells. The study used Lawrence Livermore National Laboratory’s
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“Edge” machine, a 216 node Linux cluster with each node containing two 2.8 GHz
six-core Intel Westmere processors. The system has 96 GB of memory per node
(8 GB per core) and 20 TB of aggregate memory.

5.1 Problem Setup

The data input came from a core-collapse supernova simulation produced by the
Chimera code [4]. This data set was selected because it contains a scalar entropy
field with large components that span many PEs. A data set was generated for each
concurrency, using upsampling to ensure each PE would operate on a fixed number
of cells. Interval volumes—the volume that lies between two isosurfaces, one with
the “minimum” isovalue and one with the “maximum” isovalue—were extracted
from the upsampled structured grid to create an unstructured mesh as input to the
connected components algorithm.
The following factors were varied:

 Concurrency (12 options): Levels varied from 8 cores (2%) to 2,197 cores (133).

» Data sets (2 options): Data sizes with one million cells per PE and 10 million
cells per PE were run. Table 1 outlines the data sizes for the latter case.

* Phase | Variant (three options): Both the ghost cell and exterior cells variants of
the algorithm were tested, as well as a variant with no identification of cells at PE
boundaries (i.e., no Phase 1), since this variant was presented in previous work.

The cross product of tests were run, meaning 12 x 2 x 3 = 72 tests.
Figure 1 shows rendered views of the largest interval volume data set used in the
scaling study and its corresponding labeling result.

Table 1 Scaling study data set sizes for the runs with 10 million cells per PE. The study targeted
PE counts equal to powers of three to maintain an even spatial distribution after upsampling. The
highest power of three PE count available on the test system was 13> = 2197 PEs, so PE counts
from 8 to 2,197 and initial mesh sizes from 80 million to 21 billion cells were studied. The interval
volume operation creates a new unstructured mesh consisting of portions of approximately 1/8th
of the cells from the initial mesh, meaning that each core has, on average, 1.2 million cells

Num Input mesh Interval vol. Num Input mesh Interval vol.
cores size mesh size cores size mesh size
2 =8 80 million 10.8 million 8 =512 5.12 billion 621.5 million

33 =27 270 million 34.9 million 93 =729 7.29 billion 881.0 million
4 =64 640 million 80.7 million 10 = 1,000 10 billion 1.20 billion
53 =125 1.25 billion 155.3 million 113 = 1,331 13.3 billion 1.59 billion
6’ =216 2.16 billion 265.7 million 123 = 1,728 17.2 billion 2.06 billion
73 =343 3.43 billion 418.7 million 13% = 2,197 21.9 billion 2.62 billion
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5.2 Results

Figures 3 and 4 present the timing results from the cross product of tests. As
expected, the timings for Phases 2, 3, and 5 are consistent between all variants of
the algorithm. At 125 PEs and beyond, the largest subset of the interval volume
on a single PE approaches the maximum size, either 1 million or 10 million cells
depending on the study. For this reason, weak scaling for Phase 2 is expected. This
is confirmed by flat timings for Phase 2 beyond 125 PEs. The ghost cell variant
and exterior cell variant perform comparably in Phase 4, and both significantly
outperform the variant with no boundary selection. These timings demonstrate the
benefit of identifying per-PE spatial boundaries. The small amount of additional
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Fig. 3 Scaling study using one million cells per PE. Each figure corresponds to a variant for
running Phase 1 and plots the timings for the five phases for each of the 12 concurrency levels
for that variant. (a) shows the ghost cells variant. (b) shows the exterior cells variant. (¢) shows
the variant with no reduction of cells exchanged, which was presented in previous work and is
included for comparative purposes. Figures a and b are very similar in performance and are on
similarly scaled axes. Figure ¢ performs significantly slower and is on a different scale. The time
spent in Phase 1 for the ghost cell and exterior cell variants—which is not present in the third
variant—leads to substantial savings in Phase 4. Phases 3 and 5 are negligible across all versions
of the algorithm
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Table 2 Cells exchanged in Phase 4 for each variant for the 10 million cell per PE test variant.
The total listed for each variant is the percentage of the total number of cells for that concurrency

level

Number of

cores Total cells
2 =38 10.8M
3 =27 34.9M
4 =64 80.8M
53 =125 155M
6® =216 266M
7? =343 419M
8 =512 622M
93 =729 881M
103 = 1,000 1.2B
11° = 1,331 1.6B
123 =1,728 2.1B
133 = 2,197 2.6B

Table 3 Information about
the largest component and
about the number of global
union pairs transmitted in
Phase 5. There is a strong
correlation the two, and the
Pearson correlation
coefficient between them is
99.4 %. The percentage of
cores spanned by the largest
component converges to
slightly less than 25 %

Ghost cell
variant (%)
1.2

2.3

24

2.6

2.6

2.7

2.7

2.7

2.7

2.7

2.7

2.7

Num cores
2 =38

33 =27

4 =64

53 =125

6 =216

73 = 343

8 =512

9 =729
10° = 1,000
11° = 1,331
12> = 1,728
13> =2,197

Exterior cell

variant (%)
11.1
9.1
7.7
6.9
6.2
5.7
54
5.1
4.9
4.6
4.5
4.3

Num cells in
largest comp.
10.1 million

132.7 million
176.7 million
146.6 million
251.2 million
396.4 million
588.9 million
835.5 million
11.14 billion
11.51 billion
11.96 billion
12.49 billion

No optimization (%)

100
100
100
100
100
100
100
100
100
100
100
100

Num cores | Num global

spanned

4
17
29
58
73

109

157

198

254

315

389

476

union pairs
16
96
185
390
666
1,031
1,455
2,086
2,838
3,948
5,209
6,428

preprocessing time required for Phase 1 creates significant reduction in the number
of cells transmitted and processed in Phase 4, as shown in Table 2.

Although the amount of data per PE is fixed, the number of connectivity
boundaries in the interval volume increases as the number of PEs increases. This
is reflected by the linear growth in both the number of union pairs transmitted in
Phase 5 and the number of cores spanned by the largest connected component (See

Table 3).



A Distributed-Memory Algorithm for Connected Components 15
6 BSP Generation

Phase 4 is the slowest part of our algorithm, and BSP generation is a significant
portion of that time. In this section, we consider the techniques and performance
considerations for BSP generation. Section 6.1 describes Recursive Coordinate
Bisection (RCB), a technique for generating BSPs. RCB requires a data structure
for doing spatial searches; Sect. 6.2 explores the relative advantages of octrees and
interval trees.

6.1 Recursive Coordinate Bisection (RCB)

RCB [14] is an algorithm that takes a list of points and a target number of regions
and generates a BSP that partitions space such that every region in the BSP contains
approximately the same number of points. The list of points is distributed across the
PEs, so the RCB algorithm must operate in parallel. Again, in this context, the target
number of partitions is the number of PEs, so that each PE can own one region. It
is important that each region contains approximately the same number of points,
otherwise a PE might receive so many points that it will run out of memory.

RCB starts by choosing a “pivot” to divide space. In the first iteration, the pivot
is a plane along the x-axis (e.g., “X =2"). The pivot should divide space such that
half of the point list is on either side of the plane. The algorithm then recurses. It
embarks to find a plane in the y-axis for each of the two regions created by the initial
split. These planes may be at different y locations. The algorithm continues iterating
over the regions, splitting over X, then Y, then Z, then X again, and so on. At each
step, it tries to split the region so that half of the points are on each side of the plane
(with modifications for non-powers of two). This process is illustrated in Fig. 5.

A key issue for RCB is pivot selection. The pivot selection requires iteration,
with each proposed pivot requiring examination of how many points lie on either
side. Previous RCB constructions [14] have used randomized algorithms. These

T I T
: 15 15
. '————.1;5 '--r--ws
315 125 | LY
1 2/5 ool 1|'5|1."5|___
1 ' /5 1 V45
1 L i 1

Fig. 5 RCB construction of a BSP-tree in a distributed memory setting. On the left, the
decomposition of the original mesh. Assume the red portions are on PE 1, blue on 2, and so on.
The iterative strategy starts by dividing in X, then in Y, and continues until every region contains
approximately 1/Npg; of the data. Each PE is then assigned one region from the partition and the
data is communicated so that every PE contains all data for its region. The data for PE 3 is shown
on the far right
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Table 4 Comparison of communication patterns for randomized RCB and the modified “2-Pass”
RCB scheme used in this study

Factor Randomized RCB 2-Pass RCB

Num. passes N 2

Num. communications per pass 1 1

Num. searches per pass 1 5

Total N communications, 2 communications,
N searches 10 searches

Table S Breakdown of balance of points in BSP created by ‘“2-Pass” RCB method for run with
2,197 processors

Problem Maximum Average Minimum
2,197 pieces with 2.2B cells 1.3M 1.0M 805K
2,197 pieces with 10.9B cells 6.4M 4.9M 3.8M

The maximums are no more than 30 % bigger than average and the minimums are no more than
25 % smaller than average. These inequities were deemed desirable in the context of reduced
parallel communication

algorithms choose a pivot at random, and then restrict the points considered to be
those on the majority side of the pivot.

Although it is possible to iterate on pivot location until equal numbers of points
lie on either side of the pivot, it is not practical. Each pivot candidate requires
parallel coordination. And a pivot that includes the balance by a negligible amount
will not substantially improve further processing in Phase 4. So, to make RCB
execution go faster, the requirement of a balanced spatial partition was relaxed. As a
result, the points in each region were unbalanced. The effective tradeoff is decreased
RCB execution time versus increased time later in Phase 4 by the PEs that got more
than the average number of points.

The algorithm presented in this chapter used a modified version of RCB (not a
randomized version). It chooses five potential pivot points that are evenly spaced
through the volume. It then identifies the pair of pivots that contain the ideal pivot
and places another five evenly spaced pivots between them. The best choice of
those five is the pivot. This method works well in practice, because it minimizes
communication, as the five pivot selections can be communicated simultaneously.
Table 4 analyzes the communication time, while Table 5 shows the effective balance
of the modified “2-Pass” RCB scheme on a large problem.

6.2 Octrees and Interval Trees

For each pivot candidate, the algorithm must determine how many points lie on
either side of its dividing plane. If there are N PEs, then N —1 pivots must be chosen
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(this can be thought of as the number of interior nodes in a binary tree). Each pivot
likely involves some number of candidate pivots (10 in the case of this algorithm). If
done poorly, this would involve (10N — 10) x O (num points) comparisons. Placing
the points in a search structure can substantially reduce the cost for checking on the
quality of a pivot candidate.

There are many data structures for spatial searches [9]; this section considers
the tradeoffs between octrees and balanced interval trees, comparing the speed of
searches on two data sets meant to model the best and worst case scenario for
an interval tree. Since the interval tree is derived by data points and not spatially,
ordering of data has a profound effect on the efficiency of the model. (Note that
sorting the data points spatially considerably increases overall initialization time.)
The octree is spatially created, and will, therefore, always create the same outcome
whether the data is sorted or unsorted.

We ran our initial tests against two data sets. Both data sets contained one million
points evenly spread across a rectilinear grid with one data set being sorted and the
other data set unsorted. The test involved running the octree and interval tree models
against five different searches using both types of input data. The first search covered
the entire bounding box. Each of the following four searches decreased the bounding
size by half of the previous size. Again, this technique was designed to measure the
best case search for the octree to the worst case search for the octree, given its early
termination criteria. Results are shown in Fig. 6.

Although the first tests were fairly conclusive, additional tests were performed
on real world data, namely a data set operated on by one PE from the scaling
study. Results are shown in Fig.7. The results for the tests show that the octree
maintains a consistent and very quick search time with low variation, on the order
of ten thousandths of a second. The interval tree however performed quite poorly in
some cases, on the order of hundredths of a second, and excelled in others, reaching
one ten thousandth of a second. The interval tree’s quick regions were identified
as those which did not contain any data. The interval tree was able to use an early
termination scheme to quickly decide if there were no points in the search bounds.
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Fig. 6 Interval Tree (IT) tests are on the left, Octree (OC) tests are on the right, each with
ordered (o) and unordered (u) variants. Searches #1—#5 are from largest bounding box to smallest,
respectively. The run time for octree was significantly faster (note the axes have different scales),
and was sometimes less than the precision of the timing instrumentation
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Fig. 7 The tree structures were evaluated using data from one processor of a 128-processor test.
Each of the 1,548 searches on that data were recorded and laid out along the X-axis. The Y-axis for
each graph is the time (in seconds) for the corresponding search structure to complete the requested
search. Note that the scale varies between the graphs, since the octree is significantly faster

But when it could not terminate early, it spent a good deal of time adding up the
points that were within the range. The octree, on the other hand, was able to use
early termination criteria to deal with these cases. These tests clearly solidified the
octree as the better of the two data structures in question for this task, which had a
run time similar to the interval tree’s best case for every case.

7 Summary

This chapter described a distributed-memory parallel algorithm that identifies and
labels the connected components in a domain-decomposed mesh. The labeling
produced by the algorithm provides a topological characterization of a data set
that enables important analyses. The algorithm is designed to fit well into currently
deployed distributed-memory visualization tools, and this was demonstrated in a
scaling study.
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In-Situ Visualization in Computational Fluid
Dynamics Using Open-Source tools: Integration
of Catalyst into Code_Saturne

Alejandro Ribés, Benjamin Lorendeau, Julien Jomier, and Yvan Fournier

1 Introduction

Computational Fluid Dynamics (CFD) is a fundamental step for the study and
optimization of electricity production. Indeed, current power plants use water as a
mean of convective heat transfer. Consequently, the simulation and visualization of
fluid dynamics phenomena is of great importance for the energy industry. Electricit
de France (EDF), one of the largest electricity producer in Europe, has been
developing for the past 15 years an open source CFD code named Code_Saturne.
Code_Saturne performs CFD computations on very large models [15]. EDF owns
several supercomputers that regularly run this code in order to perform CFD
analysis involving large amounts of data. In this context, the post-processing and
visualization steps become critical.

EDF also develops, in collaboration with OpenCascade and the French Cen-
ter of Atomic Research (CEA), an open-source numerical simulation platform
called SALOME [12]. This platform provides generic methods for pre- and post-
processing of numerical simulations. SALOME is based on an open architecture
made of reusable components such as computer-aided design (CAD), meshing, high
performance computing (HPC) execution management, multi-physics coupling,
data post-processing and visualization. The visualization module of the SALOME
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platform is currently based on the open-source post-processing platform ParaView.
Furthermore, Code_Saturne is often used in conjunction with the SALOME plat-
form.

In the past, studies and improvements in scientific simulation have been mainly
focused on the solver, due to being the most cycle-consuming part in the simulation
process. Thus, visualization has been traditionally run sequentially on a smaller
computer and at the very end of the solver computation. At the time, this was
easily explained by the small need for both memory and computation resources in
most of the visualization cases. Nevertheless, with the increase of our computational
capabilities, we tend to use and generate much more data than what we were used
to. Thus, as the scale of CFD simulation problems is getting wider, specific issues
are emerging related to input/output efficiency. In particular, data generated during
the solver computation and used for the visualization are the source of a worrisome
overhead. Even worse, some researchers are starting to spend more time writing and
reading data than actually running solvers and visualizations [13]. This new trend
compels us to design new input/output (I/O) strategies and consider visualization as
a part of our high-performance simulation systems.

For some years, in-situ visualisation techniques have been successfully applied
in different contexts and mainly by research institutes. In this chapter, we present an
overview of the efforts needed to transition a traditional simulation code to an in-
situ model in an industrial environment. This is the reason why care have been taken
constructing uses cases that are representative of our current visualisation problems.

Most fluid dynamic engineers at EDF R&D are currently visualizing lower
temporal and spatial resolution versions of their simulations in order to avoid I/O
bottlenecks when large quantities of data are involved. We decided to address the
subject of co-processing and in-situ visualization which has been proved to be an
effective solution against the current limitations of this problem [11, 14]. Our aim is
to provide EDF engineers with an operational research-oriented tool in a mid-term
basis. For this, we chose to evaluate Catalyst as an industrial tool for performing
in-situ visualization. Catalyst is a library, developed by Kitware, which implements
the co-processing for ParaView by defining the visualization process through the
ParaView user interface and exploiting VTK’s parallel algorithms for the post-
processing of data generated by numerical simulation [8].

In this chapter, we report a study upon the effectiveness and scalability of a
prototype implementation of the co-processing in an industrial case based on the
coupling of Code_Saturne with Catalyst. In Sect.2 we introduce the motivation
of this work. In Sect.3 we discuss related advances on recent visualization in-situ
systems. We then introduce, in Sect.4 Code_Saturne, the CFD code developed at
EDF R&D. In Sect. 5 we present our integration of Catalyst into Code_Saturne and
how the system is used by EDF users in the context of fluid dynamic simulations.
Section 6 describes our use case and presents results on one of our corporate
clusters. Finally, section “Conclusion” presents our analysis of the results and
describes our ongoing and future work.
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2 Motivation

Most numerical simulation engineers at EDF R&D are currently visualizing lower
temporal and spatial resolution versions of their simulations, in order to avoid I/O
issues and cumbersome visualisation procedures, when large quantities of data are
involved. We believe that other industries dealing with large simulations are having
the same problem. This is the reason why we decided to leverage the power of co-
processing and in-situ visualization. Our aim is to provide our research-oriented
engineers with an operational tool within 2 years. Thus, we have evaluated Catalyst
as an industrial tool for performing in-situ visualization.

First of all, it is important to better describe the scope of our industrial
visualisation solutions to understand why in-situ processing is needed. In Table 1
we show the results of a simple subjective experiment conducted by one of our
engineers. At the end of 2012, she meshed a simple cube at different resolutions
and then tried to visualise the results giving a subjective evaluation of how she
could work. She used our open-source numerical simulation platform, SALOME,
and a standard scientific PC with 8Gb of RAM. Table 1 presents the results of her
subjective experiment. The study clearly shows that she started working without an
immediate system response for meshes which contain more that 10 millions cells
and for 50 million cells the system was not responding at all. At the time that this
test was performed, some of our R&D engineers were already running simulations
with meshes containing around 200 millions cells and, in June 2014, with meshes
reaching 400 millions cells. This implies that copying the simulation results from
the simulation cluster to the scientific stations is not practical, first because of the
long transfer time and second because, as Table 1 shows, the visualization and
post-processing tasks cannot even run. It clearly appears that the visualization and
post-processing of large meshes is a serious bottleneck in this industrial context.
This motivated the beginning of this work.

A first solution to the post-processing bottleneck consists in the installation of
parallel visualisation servers that can deal with the large amount of data generated
by the numerical simulations. In general, such a system (in our case a ParaView
“pvserver”) is installed on a visualisation cluster; the system reads the data from
disk and performs the visualisation operations in parallel, while streaming images
(or small 3D models) to a remote client hosted on a standard PC. EDF R&D owns

Table 1 Subjective characterization of the reaction time of the SALOME platform for different
mesh sizes

Mesh size manipulation experiment

Number 10 thousands 100 thousands 1 millions | 10 millions 50 millions

of cells

RAM(%) | <50% <50% <50% 100% Saturated
Reaction | Immediate Immediate 2-3s Uncomfortable | Not responding

time
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a visualisation cluster as part of its HPC cluster “Ivanhoe”, which will be described
later in this chapter. This type of solution implies writing and reading large data in
parallel. Even if these operations are performed on a cluster with a fast distributed
file system, in-situ processing provides much better performances as large resulting
datasets are potentially never generated.

In order to get more insight, we can model the whole time taken by simulation
and visualisation tasks as an addition of individual operations. For the traditional a
posteriori visualisation approach:

Z‘posterior =TL+T,+T, +T, (D

where T is the simulation time, 7,, is the time for writing the data, 7} is the time
to read the data (either in parallel or sequentially) and 7, is the time to perform
visualization operations and probably write visualisation results (like videos, images
or graphs). For the in-situ approach:

tin—situ = Ts + 7?1)mcem + Tw—in—sim + Tv—in—sim (2)

where T is the simulation time (the same as in #,o5erior), Tprocess 1S the time to
perform the visualisation operations in-situ, 7},—;,—gy, the time to store the already
processed visualisation results and 7,—;,—sy, the time that the engineer takes to
visualize the videos or other pre-processed data. Comparing these two formulas
we can see that #,5erior >>> tijn—gin as, in the case of in-situ, we skip writing
and reading large volumes of data, T\, + T, >>> Tpcess + Tyw—in—siu; but also
the visualisation time is reduced 7, >>> T,_; sy, because, in the a posteriori
approach, visualising means performing operations on large data while in the in-
situ approach only lightweight data is involved. In the rest of this chapter these
times will be exemplified. For instance, in the top two images of Fig.4 one can
compare T, and T; + T,, for different simulations and the relationship 7}, + T, >>>
Tyrocess + Ty—in—sinu becomes clear. These two images demonstrate how quickly I/O
times widen, relative to solver times, which is why in-situ techniques are needed.

In conclusion, the whole process of “simulation + visualisation” is faster when
performed in-situ, furthermore the volume of the produced data in much smaller.
This is the reason that motivated this work.

3 Related Work

The size of generated data has become an important subject in high performance
computing, due to the need of a better I/O efficiency in our computing system.
To answer this problem, several visualization systems have been created. We can
distinguish two main approaches in recent solutions. The first one is to integrate a
specific in-situ visualization directly to the simulation code. Such approach proved
to be an efficient way to provide co-processing for a given simulation as well as a
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visualization system as it is the case in the hurricane prediction [6] and earthquake
simulation [14] systems. This method has been proven to lead to good performances
but is limited to a specific implementation.

The second approach is to provide a general post-processing framework letting
the simulation and the visualization code communicate together. EPSN which is
a general coupling system, allows for the connection of M simulation nodes to
N visualization nodes through a network [7]. This solution is a loosely coupled
approach, requiring separate resources and data transfer through the network. This
approach presents the advantage of not overloading the nodes used for computation.
Thus the visualization code does not interfere with the execution of the simulation.
Based on the same approach, a ParaView plug-in named ICARUS [3] has been
developed. It differs from EPSN in design by having lower requirements as it only
needs the use of a single HDFS library and file driver extension. Such solutions offer
tools for researchers to interact with their simulations by allowing them, not only
to monitor their current states but also to modify the parameters of the remaining
simulation steps. Those computational steering solutions as well as the RealityGrid
project [4] focus on interactivity with simulation whereas our main objective is
to provide in-situ visualization operations to researchers while minimizing I/O
overhead and disk space use.

Both built upon the well known parallel visualization library VTK, the appli-
cation frameworks Vislt [5] and ParaView [9] both provide through the possibility
to co-process simulation data via libsim [16] and Catalyst [8] respectively. Those
in-situ solutions are tightly coupled and while they limit potential interactions
with the running simulation, they also highly reduce the need of network data
transfer. Thus, they contribute to circumventing the inefficiency of high performance
computing I/O systems. Those solutions take their benefits from directly accessing
the simulation memory to perform visualization tasks by simply asking for a pointer
to the available data. One major drawback of this approach is the necessity to
provide a coherent data layout to those libraries. Moreover, as this type of solution
often gains from computing pre-determined visualization tasks, it is not well suited
for results exploration. As building a steering solution for Code_Saturne is out of
the scope of this case study, we do not consider these drawbacks as a limitation.

After evaluating the performance solutions offered by ParaView and VTK, we
choose Catalyst as our co-processing library for our case study as it answers EDF’s
visualization needs while focusing on the reduce of data amount use. Further,
Kitware recently included services allowing the interactions with the running
simulation, the so-called Live Catalyst.

4 Code_Saturne: A Computational Fluid Dynamics Code

Code_Saturne is a computational fluid dynamics software designed to solve the
Navier-Stokes equations in the cases of 2D, 2D axisymmetric or 3D flows.
Development started in 1997, with a first release in 2000, and the code has been
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released as free software under a GPL (General Public Licence) licence since 2007.
Its main module is designed for the simulation of flows which may be steady or
unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal
or not. Scalars and turbulent fluctuations of scalars can be taken into account.
The code includes specific modules, referred to as “specific physical models”, for
the treatment of atmospheric flows, Lagrangian particle tracking, semi-transparent
radiative transfer, gas combustion, pulverised coal combustion, electricity effects
(Joule effect and electric arcs) and compressible flows. Code_Saturne relies on
a finite volume discretisation and allows the use of various mesh types which
may be hybrid (containing several kinds of elements) and may have structural
non-conformities (hanging nodes). The parallelization is based on standard spatial
partitioning with ghost cells that facilitate data passing between adjacent cells lying
across the boundaries of disconnected parts using the Message Passing Interface.
More technical details are presented in [1] and [2], and many resources are
available at http://www.code-saturne.org. Code_Saturne is also used as a base
for the NEPTUNE_CFD code, specialized in multiphase flows, and which uses a
different time stepping scheme, but mostly the same volume discretization scheme.

As Code_Saturne is used for industrial cases involving complex flows, with
turbulence modeling requiring sufficiently fine resolution, large meshes are often
needed. In 2000, the largest meshes used for actual studies were around 1.5 million
cells; today, they have reached up to 400 million cells. More common studies use
meshes about ten times smaller than that. Meshes up to 3.2 billion cells have been
tested for a few time steps, to ensure the code’s internal mechanisms work well at
scale.

Code_Saturne focuses on the solver, and its uses requires external tools for the
major part of the meshing and visualisation tasks, though the code itself offers
major preprocessing features to make these easier, such as parallel joining of
independently-built and read submeshes (whether conforming or not), and user-
definable post-processing functions (Fig. 1). Many input mesh and visualisation
output formats are supported (including the EDF and CEA MED format, and the
standardized CGNS format).

The number of separate executable tools is quite reduced, with a few interactive
tools and associated commands designed for data setup.

To make the use of HPC as seamless as possible, without multiplying the number
of tools or requiring complex libraries or dependencies, mesh, checkpoint/restart,
and post-processing output files are partitioned independently: in addition to the
connectivity of each local mesh, which is described with a local numbering, global
ids are also maintained, for import and export purposes, and for ghost cell to local
cell matching. Multiple ranks participate in reading and writing files using MPI-10.

Typically, computational resource requirements are primarily determined either
by the time to solution, or the size of the model. For time to solution, the number
of cores may be selected in order to solve the problem in a given time. In practice,
optimal performance is often obtained in a range of 30,000—60,000 cells per rank
on a typical HPC cluster (this being the best compromise between communication
latency and cache behavior). On machines with very good network/compute
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performance ratios, such as IBM Blue Genes or Cray X series, this range may be a
bit wider.

5 Using Catalyst

Catalyst is the coprocessing library of ParaView. It has been designed to be
tightly coupled with simulation codes to perform in situ analysis at run time.
Catalyst leverages the Visualization Toolkit (VTK) for scalable data analysis and
visualization. Furthermore, it can be coupled with the ParaView In Situ Analysis
framework to perform run-time visualization of data extracts and steering of the
data analysis pipeline. Catalyst provides two sets of tools: one for simulation users
and one for simulation developers.

For simulation users, it is possible to create a coprocessing pipeline using two
different methods. The first method does not require any knowledge of ParaView
and relies on pre-generated scripts. These predefined scripts can be written in C++
or Python and are, usually, expected to run without any configuration options.
The second method uses the ParaView interface to generate a coprocessing script
from scratch and intuitively adjust its parameters as needed (Fig. 2). This method is
similar to using ParaView interactively to setup desired post-processing pipelines.
The goal of these pipelines is to extract post-processed information during the
simulation run. Ideally one should start with a representative dataset from the
simulation. It is also possible to modify directly the generated Python’s scripts
which have been previously created using ParaView. However, this would require a
knowledge of the ParaView Python application programming interface (API).

For simulation developers, Catalyst provides the tools to create an adaptor
between the simulation code and the visualization pipeline. The adaptor binds
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the simulation code and Catalyst so that both the functions of the simulation
code and the general-purpose API of Catalyst can be accessed. As Catalyst itself
is independent of the simulation code, only the adaptor has to be developed by
the designers of the solver. This flexibility is critical in order to successfully
integrate external code into complex simulations usually running with different
languages and packages. Catalyst is also easily extensible so that users can deploy
new analysis and visualization techniques to existing coprocessing installations.
Catalyst provides all the communication and synchronization routine and the
pipeline mechanics necessary for coprocessing. Catalyst also provides powerful data
processing capabilities through VTK filters as well as many writers and support for
compositing and rendering.

The Catalyst library has also been developed with features to address limitations
that come with pre-configuring a pipeline, but there may still be some unexpected
data in the arbitrary simulation. To address these situations, the pipeline must be
adjusted interactively. The Catalyst library can leverage ParaView’s client server
mechanism to allow an interactive ParaView client to connect to a server running
inside an in situ pipeline. ParaView can then read from a Catalyst data source like it
reads from a file. This enables construction/modification of a pipeline interactively
in the ParaView client via this live data source. Additionally, by enabling the client-
server architecture in the Catalyst library, some or all of the data analysis and
visualization pipeline can offload, if desired, to a separate machine, e.g., a smaller
visualization cluster with specialized graphics hardware.
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5.1 Code_Saturne with Catalyst

Using Catalyst with Code_Saturne is quite straightforward, and fits quite naturally
in the existing architecture. In this section we describe first how we implemented
an adaptor for Catalyst and then we present how we configured the post-processing
pipeline.

5.1.1 Adaptor Implementation

When embedding Catalyst there is always a non-zero cost in terms of time,
memory and number of processors. Naively, one could simply address these
issues by requesting a greater number of processors, but in most cases this is not
possible nor practical. Therefore, great care must be taken in the implementation
of the adaptors. If memory is limited, the adaptor either uses complicated pointer
manipulation or uses a smaller region of memory. If memory is not limited, then
deep copy of the simulation data structures into a VTK data object doubles the
resident memory, and also creates a CPU cost involved with copying the data. The
overriding overhead issue in embedding ParaView Catalyst in a simulation code is
the memory management in an adaptor translating data structures in the running
simulation.

In order to co-process the simulation data, Catalyst must be provided with the
data formatted to the VTK data object structure. To accomplish this task, several
solutions are possible, depending on the format used for the data of the simulation
code. In the case where the format of the simulation code is similar to VTK and,
moreover, the simulation data can be shared at any time, then it is possible to
feed Catalyst with a direct pointer to the simulation memory. This option is indeed
preferred, when possible, as it allows to decrease the memory footprint. Another
option is to fully or partially copy the data from the simulation into a VTK object,
and then send this object to Catalyst.

As users of Code_Saturne are provided with several output formats and as the
data structure in our simulation differs from the VTK data object structure, feeding
Catalyst with a direct pointer to the simulation memory is not possible. Thus, in this
configuration data is copied from the simulation into a VTK data object. In fact, we
allocate a vtkDoubleArray data structure to store our data for Catalyst. Furthermore,
we provide a pointer of this VTK data structure to Code_Saturne so it can transform
its simulation data and then fill the VTK data object.

The memory cost increase of our solution can be alleviated by using more
machines. The CPU cost of the copy is in a range similar to the one needed when
adapting simulation data to a specific output format. This cost is largely affordable
comparatively to the time to write data to disk when storing time step specific
outputs.
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5.1.2 Pipeline Configuration

From the point of view of an engineer performing a fluid mechanics simulation
using Code_Saturne, the workflow of a co-processing simulation is (1) to define
a ParaView pipeline describing what the user wants to study and (2) to run the
simulation. Since users are already familiar with fluid mechanics simulations,
defining the pipeline for the co-processing remains the main sticking point. Thus
this new process should be done in an efficient way and should not become a
cumbersome bottleneck. This point is of great importance, especially in an industrial
environment like ours.

As we have explained in the previous section, the definition of a Catalyst
pipeline can be achieve either programmatically or via the ParaView interface.
In our industrial context, the former was considered too complicated and time
consuming for the end user, especially when setting camera parameters is needed,
as no visualization feedback is provided. Therefore, the Catalyst pipeline has been
created using the ParaView user’s interface. This solution appears to be much easier
as one can interact with ParaView in the same way he/she uses to when visualizing
the results a posteriori. This solution is also easier to deploy with ParaView using
its companion co-processing plugin.

Indeed, using ParaView to define the co-processing requires a representative
input dataset. One could use the available resources on a large cluster in order to
setup the pipeline. However we chose to provide a simplified or under-sampled
version of the large geometry to define the pipeline. In fact, this strategy is possible
in ParaView but some characteristics of the initial geometry must be present in its
simplified version; more importantly the name of the data fields must remain the
same, as they are part of the definition of the pipeline.

The generation of the co-processing pipeline implies several steps. First of all,
the users start with a Computer Aided Design (CAD) version of the geometry
which is parameterized. This parametric representation can generate meshes at
different resolution levels. In our case, this is performed inside the open-source
SALOME [12] platform for numerical simulation.

We then generate two different meshes, one at high resolution (up to 204M
hexahedrals in the current use cases) that will be used for the CFD simulation and
one with a lower resolution to define the pipeline (700,000 hexahedrals in our use
cases). The lowest resolution mesh is fed into Code_Saturne to perform a short
simulation. This allows ParaView to obtain a representation containing not only the
geometry but also the result fields. This is the data that is then used to define the
pipeline. The different processing pipelines are presented next.
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6 Results

6.1 Required User Interactions for Co-processing

Before presenting our results we briefly describe how the user interactions were
performed. The following steps were necessary in order to use the developed co-
processing technology:

(1) A “light version” of the input mesh is generated as explained in Sect.5.1.2. As
the user possesses a CAD version of the geometry that is parameterized, it is
then possible to obtain meshes at different spatial resolutions. A “light mesh”
of small size in memory and representative of the CAD geometry is obtained.
Figure 3a represents the “light version” of the mesh used in our experiments.

(2) A short simulation (normally just a few seconds on a local machine) on
the “light mesh” is run. This simulation allows to define the information
about the result fields needed to create a visualisation pipeline in ParaView
(e.g. temperature, pressure, velocity). An “augmented light mesh” is therefore
created.

(3) The mesh and the fields obtained at the end of step 2 are then read in
ParaView and the user defines her/his visualisation pipeline. At the end of
this step a simple click in the ParaView interface will create a Python file that
programmatically defines the visualisation operations to be performed in-situ.

(4) Finally the real simulation is ran using a full resolution size mesh. The
co-processing part of the simulation reads the python script containing the
definition of the visualisation pipeline. This step is expected to be time-
consuming.

Fig. 3 (a) Original geometry of our use case. (b) A final coprocessed picture of our simulation
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6.2 Use Cases

Our simulations have been run on Ivanoe, an EDF corporate supercomputer,
composed of 1,382 nodes, each node having 12 cores for a total of 16,584 cores. In
these simulations we associate one MPI process by core and we use from 720 cores
up to 3,600 cores. We include two use cases that were run on this supercomputer.
The choice of the cases is motivated by two main factors: the size of the mesh and
the complexity of the visualization pipeline. We detail next these two impacting
factors.

(1) Mesh size. We chose to use two meshes representing the same geometry but
at different resolutions, one made of 51M hexahedral elements and another of
204M hexahedrals. As we have already outlined in Sect.2, in our industrial
environment, our simulation engineers are blocked when performing visuali-
sation tasks on their PCs for meshes containing 50 M cells. We chose a 51M
elements mesh as it is representative of a typical study at EDF which will induce
performance issues for the visualization process. Furthermore, it more than
doubles the size used in the results presented in [8] for the PHASTA adaptor.
On the other hand, when research oriented simulations are performed at EDF,
these simulations currently contain around 200M elements. We choose this size
as a typical research oriented or “heavy mesh” simulation data.

(2) Pipeline complexity. We define two pipelines aimed to be representative of two
different situations: users performing simple and light visualization operations
(e.g. generating slices in a volume) and another using very time-consuming
visualization tasks (e.g. performing volume rendering).

In the following we name our uses cases: CASE_A, use case using an average
mesh size of 51M hexahedrals and a visualization pipeline including volume
rendering which aims to be very time-consuming. CASE_B, our second use case,
contains a light visualization pipeline simply performing some slices but on a large
mesh of 204M hexahedrals.

Table 2 summarizes the composition of these use cases. In all our use cases we
run a simulation consisting in a fluid with physical properties identical to water
passing through the mesh. Then the output is generated at each step, for a total of
ten co-processed visualization images.

Table 2 Description of our two use cases

Use cases sum up

Name Size Pipeline Figures
CASE_A 51M hexahedrals, industrial size Heavy: volume rendering, 4a,c, e
case celldatatopointdata and glyphs
CASE_B 204M hexahedrals, research Light: nine slices, 4b, d, f

size case celldatatopointdata



In-Situ Visualization in Fluid Mechanics Using Open-Source Tools 33
6.3 Results

Figure 3b presents an image obtained from one of our in-situ simulations with
CASE_A. We see the flux of water moving around the vertical cylinders, the glyphs
being attached to the velocity vectorial field. The color of the volume rendering
represents the turbulent viscosity of the fluid.

We establish first the overhead induced by storing our simulation results in
Figs. 4a,b. We observe an average of 18 and 14 % of time used to store results, for
CASE_A and CASE_B respectively. These figures correspond to the comparison
of T\, and T; + T,, in Eq. 1. This overhead tends to increase with the number of
processes in use. One can also notice that the overhead is also not stable and subject
to important variations with a peak at 26 %. We thus identify the storage process as a
bottleneck in everyday CFD studies for its average overhead and its high instability
in execution time.

Figure 4c shows two graphs of CASE_A: in red the execution time versus the
number of cores, in blue the execution time without the co-processing overload.
These figures correspond to the comparison of Ty and T + Tpppcess in Eq. 2. We
are satisfied by this overload that is comprised between 20 and 30 % of the total
execution time, when we chose complicated task with a high 7},,,c.s. Moreover, it
looks like this overload is decreasing when the number of cores increases. Figure 4d
shows the exact same behavior in the CASE_B experiment. Both graphs are difficult
to distinguish as the time needed for co-processing is circumscribed between 6 and
105, the overload (the difference between T and T + T)yrocess) is less than 1 % of
the total execution time. We notice that having heavy T ocess is not very usual in our
applications and we consider CASE_A as an example of worst case scenario.

We also decided to compare the Catalyst overhead with a non-VTK-based
storage strategy that performs no visualization operations. Figures 4e.f, show
the comparison of the global execution time with Catalyst co-processing versus
the Ensight Gold storage format. This means comparing 7y + 7,, and Ty +
Throcess + Tw—in—si- Figure 4e presents our implementation results with CASE_A.
This compares positively for Catalyst as the overhead is approximately 10 % and
decreases when the number of cores increases. We notice that for CASE_A the
heavy Tpocess 1 already taken into account in the in-situ curve but 7, + T, is still
not performed for the traditional visualisation scheme. This means that this result is
very positive and we should not forget that 7, 4 T, is very time consuming for this
case (and saturates our scientific PCs at EDF R&D).

Figure 4f presents our results for CASE_B. Here we can see the potential of
Catalyst when lighter and more relevant visualization tasks are processed. Indeed,
there is no more overhead as we gain an average of 10 % of execution time while
freeing ourselves from storage issues (we evaluate the execution time peak of 3,000
processes as a result of concurrent accesses on our supercomputer storage disks).
To emphasize this, Table 3 shows how much data each solution generates, namely
a basic storage in Ensight Gold format versus our co-processing implementation
using Catalyst. These informations are those of our CASE_B when performing a
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ten steps simulation. Both size are expected to grow proportionally to the size of
the mesh input, and the number of steps. Therefore, we expect the gain provided by
the use of co-processing to be increasingly interesting when moving forward in use

case size.
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Table 3 CASE_B
comparison between the size

of processed results and : .
simple storage 57Gio | 1,3Mio

*Processing size comparison
Storage | Coprocessing

The simulation was run on ten
steps, with ten pictures co-
processed

We also studied in [10] the total memory used when running in-situ visualization
compared to writing simulation results in Ensight Gold format. We observe that
memory consumption is increased by an approximate factor varying from 2 to 3.
This can be explained by both our first naive memory management approach and
also by a natural increase in memory consumption when visualization operations are
to be performed. Concerning the memory management Kitware recently released
the so-called “zero-copy VTK” that can be used to avoid naive deep copy of the
simulation data structures.

Conclusion

This chapter provides an overview of the efforts needed to transition a
traditional simulation code to an in-situ model. We believe that the results
of our experiments are bringing new insights to the community, especially
to the simulation teams (including simulation code developers and the
visualization experts they work with) that are considering the transition to
in-situ processing.

The main finding presented in this chapter is that we have successfully
integrated Catalyst into Code_Saturne (a computational fluid dynamics code
developed at EDF R&D). Both Catalyst and Code_Saturne are Open Source
software and this development can be downloaded, used or tested freely by
everyone. After testing the prototype in our corporate supercomputer Ivanhoe,
we found Catalyst to be a relevant solution to provide Code_Saturne users
with visualization co-processing. Catalyst also allowed for a simple and fast
implementation of a simulation code adaptor.

The results presented are based on a 5IM and a 204M elements mesh,
which is above the average size case used by EDF engineers in our industrial
environment. We plan to perform simulations on at least 400M elements
meshes in the near future, using the same supercomputer. We performed our
simulations from 60 up to 300 nodes. This is due to the typical simulation
node size in Ivanhoe being around 150 nodes for our engineers. We also plan
to work on another of our corporate supercomputers, an IBM BG/Q with 65k
cores. In that case, we will test on a much larger number of cores.

The increase of memory usage, described in the results section of [10],
indicates that memory optimizations are to be performed before running on

(continued)
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the IBM BG/Q. We did not, in this study, perform any delicate memory
tweaking in order to reduce the memory consumption. We are currently
working on this point, experimenting with the new VTK in-situ data structures
implemented recently by Kitware, the so-called “zero copy VTK”. This
approach aims to facilitate the memory management in the adaptor without
the use of complicated pointer manipulation; we expect to reduce memory
overhead without much increasing code complexity.

Another ongoing development consists on how we deal with the ghost
levels generated by Code_Saturne. Indeed, we want to use the same spatial
partition of the meshes for Code_Saturne and Catalyst, the aim being not
to degrade the execution time by not necessary data exchanges among MPI
ranks. We currently use ParaView D3 filter (a filter originally performing
a redistribution of the data among MPI processes) as a ghost cell handler.
However, we asked Kitware for the integration in ParaView/Catalyst of a new
filter to perform a direct generation of ghost cells from existing distributed
data. This development has been finished in December 2013.

This chapter has been dedicated on how to deal with large data using visual
co-processing but we are also testing the computational-steering capabilities
of Catalyst, the so-called Live Catalyst. This currently allows the modification
of the ParaView pipeline parameters while the numerical simulation is
running.

In conclusion, we are mostly satisfied with the integration of Catalyst in
Code_Saturne. The first version of our integration will be released as part of
a new version of this open-source software.
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Sublinear Algorithms for Extreme-Scale Data
Analysis

C. Seshadhri, Ali Pinar, David Thompson, and Janine C. Bennett

1 Introduction

The need to ingest and glean insight from massive amounts of data is a ubiquitous
problem facing the scientific community and the world at large. Increases in
the quality and availability of high resolution sensing equipment and computing
resources enable ever more enhanced experiments and simulations, but I/O con-
straints are impeding their impact. The increases in spatial and temporal resolutions
are so large that not all data of interest can be written to disk. This makes it
impossible to track features with timescales smaller than that of I/O frequency.
We need a fundamental shift away from a post-process centric data analyses.
Concurrent analysis frameworks are a promising direction wherein raw simulation
and/or experimental data is processed as it is computed, decoupling the analysis
from I/O. In high performance computing, in-situ [16, 18,49] and in-transit [1,5,46]
processing are based on performing analyses as the simulation is running, storing
only the results, which are several orders of magnitude smaller than the raw
data. This mitigates the effects of limited disk bandwidth and capacity. Operations
sharing primary resources of the simulation are considered in-situ, while in-transit
processing involves asynchronous data transfers to secondary resources. These work
flows pose unique challenges as algorithms must be re-designed to operate within
tight memory, communication, and I/O constraints.
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Another realm of importance is analysis of massive graphs. In fields as diverse
as scientific computing, cybersecurity, and computational social sciences, graphs
are used to represent and manipulate data. The sizes of these graphs are becoming
extremely large, and our algorithmic abilities are relatively limited. Various graph
processing tasks, like subgraph mining, scale superlinearly in the size of the graph,
which rapidly becomes infeasible for the practical data sizes in many applications.
Architecture advances alone cannot solve this problem, and new algorithms tailored
such extreme size problems are required. We believe that sublinear algorithms
may provide a solution to the analysis challenges for extremely large data. In the
rest of this chapter, we will provide a brief introduction to the area of sublinear
algorithms, and then discuss adoption of sublinear algorithms in two applications in
graph mining and scientific visualization.

2 Sublinear Algorithms

Sublinear algorithms is a recent development in theoretical computer science and
discrete mathematics, which addresses the mathematical problem of understanding
global features of a data set using limited resources. Often enough, to determine
important features of an input, one does not need to actually look at the entire input.
The field of sublinear algorithms [19,29,30] makes precise the circumstances when
this is possible and combines discrete math and algorithmic techniques with a rich
set of statistical tools to quantify error and give trade-offs with sample sizes. This
confidence measure is necessary for adoption of such techniques by the large-scale
scientific computing community, whose scientific results are often used to make
high-impact decisions that could have large financial or public policy implications.

Samples chosen by sublinear algorithms are more intricate than statistical
random sampling based on standard closed-form distributions. A key insight of
sublinear algorithms is that understanding different properties of a data set require
different types of samples. It may not even be possible to explicitly describe the
samples used by the sublinear algorithm. For example, to estimate the degree
information of a graph, we may sample uniform edges [22]; to find low-conductance
cuts, we may sample random walks [21]; to count triangles, we may sample paths
of short length [35]. The art and creativity in sublinear algorithms is in constructing
the algorithm that samples the “right structure”.

Although at a high level, any question that can be framed in terms of determining
global properties of a large domain is subject to a sublinear analysis, surprisingly,
the origins of this field has had nothing to do with “big data” or computational
challenges in data analysis. This birth of sublinear algorithms is in computational
complexity theory [31], an area quite disjoint from fields like scientific computing
or data mining. Hence, there is almost no work in applying these methods to real
applications.
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2.1 The Formal Setting

Suppose we have a function f : D — R. We are given oracle access to this
function, meaning, for any x € D, we can query f(x). To make this more concrete,
consider the following examples. If D = [n]*> and R = R, this could be the
temperature values on a structured grid coming from a jet engine simulation. If D =
[n] and R = {0, 1}, then f represents an n-bit binary string. If R = {4, T,G,C},
then f could represent a piece of DNA. If D = [n]?, then the function could
represent a matrix (or a graph). If D is an arbitrary graph, then this could be data
in an unstructured grid. In this way, almost any data analysis input can be cast as a
collection of functions over a discrete domain.

We are interested in some specific aspect of f. For example, given two strings
(which we can think of as a function), we may want to know how common they
are. We may wish to know the sizes of regions of high temperature in a jet engine
simulation. In a graph, we wish to know how many cliques of size 4 it contains.
In the theory of sublinear algorithms, these are abstracted as properties, which
one can think of as yes/no questions. Let us go back to the examples. Is the edit
distance between two strings at least 30 %? Does there exist a high-temperature
region spanning the x-axis of the grid? Are there at least three million cliques in the
graph?

How do we determine whether f satisfies property & without querying all of
f? Naturally, it is not possible to give an exact answer without knowledge of f. To
formalize what can be said by querying o(|D|) values of f, we introduce a notion
of the distance to <. Every function f has a distance to &2, denoted ¢ s, where
ey = 0iff f satisfied 2. To provide an exact answer to questions regarding &,
we determine whether e, = 0 or ¢ # 0. However, approximate answers can
be given by choosing some error parameter ¢ > 0 and asking: can we distinguish
gy = Ofrom ey > &? The theory of sublinear algorithms shows that often, the latter
question can be resolved by an algorithm that queries o (] D|) function values.

For example, it may be possible to distinguish in sublinear time if the edit
distance is at most 25 % or at least 30 %. It may be possible to distinguish if there
does not exist a high temperature region spanning 90 % of the x-axis, or there is one
spanning 95 % of the x-axis. The exact nature of the approximation depends heavily
on the property at hand, but the theory provides a wide range of mathematical tools
to quantify the approximation.

For a sublinear algorithm, there are usually three parameters of interest: the
number of queries ¢, the error ¢, and the confidence §. As described earlier, the error
is expressed in terms of the distance to 2. The mathematical analysis will show that
for a given ¢, we can estimate the desired answer within error ¢ with a confidence
of > 1 — §. Conversely, given ¢, §, we can compute the number of queries required.
Of course, we are probably not just interested in yes/no questions, but quantifiable
properties. This yes/no setting is a mathematical convenience, and the sublinear
algorithms can usually provide approximate answers for these problems. But the
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theory is set up as such questions, and this makes it easier to prove theorems and
express guarantees formally.

The actual sublinear algorithm is often quite complex and uses many levels of
randomization. It is not as simple as just taking a uniform random sample of the
function. For example, in the case of the temperature function, such a sample would
give no information about spatial locality, and hence cannot detect large connected
regions of high temperature. The samples used by the sublinear algorithm are often
correlated in complex ways, and it is not possible to write out the distribution
of queries in closed-form. Nonetheless, these algorithms can be mathematically
analyzed, using the techniques of randomized analysis from theoretical computer
science. This involves discrete probability theory, combinatorics, discrete math, and
graph theory. There is heavy use of concentration inequalities from probability
theory and functional analysis, which gives tail bounds for functions of random
variables.

The remaining sections summarize two recent applications that showcase the
immense potential of transferring the advances in theoretical computer science into
a practical realm. First, we present how sampling algorithms are used for triadic
analysis in large-scale graphs. Then we discuss how to choose color maps to make
prominent features more distinguishable during visualization of large-scale data.

3 Sublinear Techniques for Triangle Counting

Graphs are used to model infrastructure networks, the World Wide Web, computer
traffic, molecular interactions, ecological systems, epidemics, citations, and social
interactions, among others. One of the methods for classifying and understanding
these graphs is subgraph mining. Given a graph G, any subset of its edges (with the
corresponding vertices) is called a subgraph. In G, if vertices u, v, and w are all con-
nected to each other, then this triangle is a subgraph of G. It has long been observed
in physics, biology, and social sciences, that the frequency of small subgraphs plays
a key role in the structure of the data [3, 10, 13, 15, 20, 24, 28,37, 39, 40, 47, 48].
Computing these measures is an important aspect of understanding and processing
these graphs.

In particular, the triangle has received special attention in a majority of this
work. The triangle is a set of three vertices that are all connected to each
other. The history of studying triangles is extremely long and rich, with the first
publications on this subject back in the 1970s by social scientists [24]. Diverse
fields such as physics, sociology, biology, cybersecurity, computer science have
focused on triangle counting [3,10,13,15,17,20,24,48]. From a scientific computing
perspective, it is a common problem to run on high performance computing
systems. There is much research on getting scalable algorithms for this problem;
some focus on enumeration [6, 9, 12,32, 38] and others on fast counting schemes
[2,26,33,42-45].
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Fig. 1 Example graph with
12 wedges and 1 triangle

Even a moderately sized graph with millions of edges can have many orders of
magnitude more triangles [35]. Hence, an enumeration is bound to be expensive
due to the size of the output, regardless of how well the algorithm or architecture is
engineered. Sublinear subgraph counting is all about using powerful graph sampling
methods to answer such questions without enumeration. But naive sampling
schemes such as looking at uniform random vertices or uniform random edges are
doomed to fail, since subgraphs can often be concentrated in small regions of the
graph (consider a graph having a few dense regions containing all the triangles, but
most vertices and edges participate in few of these) (Fig. 1).

3.1 The Nuts and Bolts of Wedge Sampling

We summarize the techniques and results of a successful sampling procedure that
works in practice for triangle counting [35], which was based on the concept of
wedge sampling [33]. A wedge is a path of length 2. Suppose the total number
of triangles in G is T, and the total number of wedges is W. A common triangle
measure is the transitivity t, the fraction of wedges that participate in triangles. This
is exactly 37/ W (there is a factor 3 because a triangle contains 3 wedges.)

Let us begin by trying to estimate the transitivity. Denote a wedge to be closed, if
it participates in a triangle, and open otherwise. Let % be the uniform distribution
on wedges. Observe that T = Pr,, [w is closed]. Consider the following thought
experiment: sample ¢ uniform random wedges wy, wa, ..., w,. Output the fraction
of these wedges that are closed as 7, the transitivity estimate. How far is this from
the true answer? Define an indicator random variable X; for the wedge w; being
closed. The X;’s are i.i.d. and E[X;] = 7. By the Hoeffding bound [23], for any

e € (0,1),
Pr|:

ZX,‘/I—T

1

> 8] < 2exp (—ezt/Z).
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Fig. 2 Absolute errors in transitivity for 2K, 8K, and 32K samples (from [35])

Reverse engineering this bound, set ¢ = [(2/&%)1In(2/§)], for any choice of
accuracy ¢ and confidence §. This procedure is guaranteed to estimate the transitivity
up to additive error & with probability 1 — §. We can explicitly provide a confidence
guarantee and quantify the number of samples required. From this, we can also get
an estimate on the number of triangles.

At this point, this is still a thought experiment, since we do not know how to
sample a uniform random wedge. This can be done with a simple preprocessing
on the graph. Let us define the degree of a vertex as the number of its neighbors.
It is standard to compute the degrees of all vertices of G. Suppose we sampled
vertex v with probability proportional to (dzv) (where d, is the degree of v). If we
choose a uniform random pair of neighbors of v, this can be shown to yield a
uniform random wedge. The data structures and sampling can be set up cheaply
without much difficulty, and it gives one of the fastest algorithms to estimate the
transitivity (and triangle counts). Refer to Fig. 2, which shows the transitivity error
on real graphs with the number of samples set to 2K, 8K, and 32K. Observe how
the error for 32K samples is less than 0.002 for all these graphs.

Sublinear sampling is incredibly versatile. We can compute different triangle
statistics by modifying the sampling, that is by sampling wedges according to
other distributions. For instance, by choosing uniform random vertices as centers
of wedges, we can compute the local clustering coefficient [35]. Or we can bin
vertices and compute the clustering coefficients for wedges centered at vertices in
that bin. For instance, Fig. 3 shows the results of an experiment, where the vertices
were binned by their degrees to enable computation of degree-wise clustering
coefficients, giving a nuanced view of triangle correlations with degrees.

Wedge sampling can also be extended for triangles in directed graphs. For
directed graphs, there will be multiple wedge and triangle types, as opposed to a
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Fig. 3 Getting degree-wise clustering coefficients for the flickr graph, which has ten million edges
(from [35])
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Fig. 4 Improvements in runtime for a wide variety of graphs

single wedge and a single triangle type for undirected graphs [34]. However, by
properly defining the distribution from which to choose wedges, we can compute
estimates for the numbers of triangles of all types [36].

All of these algorithms beat clever enumerations algorithms by orders of magni-
tude in running time. In Fig. 4, we show the speedup of our sampling algorithm over
a state of the art enumeration algorithm for different sampling rates. For the largest
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sample size used, the runtime improvement over enumeration is close to a factor of
100 (and improvements increase for larger graphs).

3.2 Wedge Sampling for Massive Graphs

The methods presented in [35] go beyond traditional computing models where the
graph is in memory. The wedge sampling algorithms have been successfully paral-
lelized in the Map-Reduce model [25]. Observe that after the graph is preprocessed
to set up wedge sampling, each sample can be generated and checked for closure
in parallel. The preprocessing step basically requires the degree distribution (and a
few extra data structures, all computable from the degrees), which can be obtained in
two Map-Reduce passes. Direct implementations require significant communication
(called “shuffling”) in the Map-Reduce framework. Randomized sampling methods
can also be used to significantly reduce this communication cost. The final algorithm
generated triangle numbers for the uk-union graph [7, 8] (which has four billion
edges) in about 30 min. These are the largest published numbers on triangle
counting, and demonstrate the scalability of sublinear techniques like wedge
sampling.

4 Color Maps

Our aim is to apply these sampling-based techniques to large-scale, physics-based
simulations, although the data analysis challenges are significantly different. Our
initial investigations in application-independent generation of color maps show
promise [41]. The visualization of large-scale data can be difficult because deter-
mining a good color map requires information about the distribution of values in
the data. The size of the data often makes this process computationally expensive.
Using sampling methods, we have devised an algorithm to efficiently generate color
maps that support the visualization of features of interest on large-scale data. The
color maps relate the prominence of values sampled to the distinguishability of
colors in the map. Besides the perceptual issues involved, analysis of the samples is
driven by ignorance of whether the data being presented is discrete or continuous in
nature. Thus, the sampling process is also driven by a desire to separate prominent
discrete values from samples that appear to approximate continuous distributions.
The difficulty is that computational representations of sample values are always
discretized in some sense and that discretization may occur at the same scales as the
physical experiment or numerical simulation generating the dataset.

The approximation we make is that the data may be modeled as a mixture of
two distributions: one continuous and one discrete. Values repeated a significant
fraction 7 of the dataset (such as 0.1 % of all data) are considered to be prominent
values taken from the discrete distribution; while other values are drawn from a
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distribution with a continuous cumulative distribution function (CDF), which we
wish to estimate. We use the sampling theory to show that the number of samples,
t, required to detect prominent values is dependent only on t and the confidence
(1 —8)—the probability that a given sample of the data will contain each prominent
value. Thus the number of samples is independent of the dataset size. We also
show that the number of samples required to estimate the CDF to within a small,
fixed fraction with a high confidence is also independent of dataset size. In the next
section, we present the bounds on sample size for both prominent value detection
and CDF estimation. After that we illustrate how the samples are used to create
color maps on large data.

4.1 Bounding Sample Sizes for Color Maps

The analysis of both algorithms follow from straightforward applications of Cher-
noff bounds, although we will only discuss the detection of discrete prominent
values below. We state the multiplicative Chernoff bound (refer to Theorem 1.1
in [14]) for sums of independent random variables.

Theorem 1 (Chernoff Bound) Ler X1, X», ..., Xi be independent random vari-
ables in [0,1] and X = Zf;l X;.

* (Lower tail) For any ¢ > 0,
Pr[X < (1 — ¢)E[X]] < exp(—£’E[X]/2).
* (Upper tail) For any ¢ > 0,
Pr(X > (1 + e)E[X]] < exp(—e’E[X]/3).
* (Upper tail) For any t > 2eE[X],
Pr[X > ¢] <27

For the first problem, of detecting prominent values, we treat our data as a discrete
distribution. For each value r, p, is the fraction of the dataset where the value r is
attained (so { p, } describes a distribution over the range of the dataset). We use & to
denote this distribution and R to denote the support. For any set S (often an interval
of the real line), we use P(.S) to denote the probability mass of S.

In our theorems, we do not attempt to optimize constants; for convenience, we
use ¢ and ¢’ to denote sufficiently large constants. In practice, we have found that
¢ = 5 is sufficient for the combustion simulation and other synthetic data we have
encountered.



48 C. Seshadhri et al.

Our aim is to determine values of r such that p, > 7, where 7 € (0,1) is a
threshold parameter. We expect the algorithm below to identify r with probability
1-4.

find-prominent(?, 1)
Inputs: sample size ¢, threshold t
Output: the “prominent set” of range elements, /.

1. Generate set S of ¢ independent random samples from 2
2. Initialize important set [ = @.
3. For any element r € & that occurs more than 77/2 times in
S’
Addrtol.
4. Output /.

The following theorem states that (up to some approximation), / is indeed the
set of frequent elements. The constants in the following are mainly chosen for
presentation. (Instead of p, < t/8 in the following, we can set it to t/«, for
any @ > 1, and choose ¢ accordingly.) Throughout our theorems, we use § for a
tunable error parameter that decides the sample size 7. Note that it is not an explicit
parameter to the algorithms.

Theorem 2 Sets = (c¢/7t) In(c/(t6)). With probability > 1 —§ (over the samples),
the output of find-prominent(t,§) satisfies the following.

If pr > 1, thenr € I.
If pr <t/8, thenr ¢ 1.

We show this in [41] by first proving that with probability at least 1 — §/2, for all
pr > T, r € I. Then we show that with probability at least 1 —§/2, for all p, < t/8,
r ¢ I. A union bound then completes the proof using the lemma below.

Lemmal Leta € (0,1) and s > (c/8a)In(c/(8ad)). Consider a set R’ such that
Vr € R, 0 < p, < a. With probability > 1 — §/2, the following holds. For all
r € R, the number of occurrences of r in s uniform random samples from 9 is at
most 4sa.

Again, the constant ¢ is unknown because the Chernoff bounds make no demands
of the distribution of Z; as the variance of Z diverges, so does c. By fixing c, the
performance of the algorithm will degrade when the variance is high.

Similar arguments allow us to bound the number of samples required to estimate
the CDF to within a given error with high confidence. Our aim is to construct a
series of disjoint intervals (or, blocks) that (almost) equally partition the probability
mass. To gain some intuition, consider a positive integer v and a sequence of
numbers Yo, Y1, ..., Y, Where yo = min,eg#, y, = max,eg’, and foralli < v,
P([yi,yi+1)) = 1/v. Our algorithm will try to find these intervals (for a parameter
v). Of course, such intervals may not even exist, due to the discrete nature of 2.
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Nonetheless, we will try to find suitable approximations. We assume that there are
no values in & with high probability. This is an acceptable assumption, since we
run this procedure after “removing” prominent values from 2.

There are two parameters for CDF approximation: the sample size ¢ and a block
size b that is used to group samples into intervals. For convenience assume b
divides ¢.

find-CDF(t,b)
Inputs: sample size ¢, block size b
Outputs: Intervals By, B, ...

1. Generate set S of ¢ independent random samples from 2.

2. Sort these to get the (ordered) list {xy, X2, X3, ..., X;}.

3. Output the intervals By = [x1, xp), B = [Xp+1, X2p), etc. In general, the
ith interval B; is [x(—1)p41,Xi») and there are ¢/b blocks. The samples in
this interval form the associated set, so s(B;) = |B; N S].

This main theorem involves some play of parameters, and we express ¢ and b
in terms of an auxiliary integer parameter v. Again, the constants chosen here are
mainly given for some concreteness and notational convenience. We use the notation
A € (1£B)B asashorthand for A € [(1—8)B, (1+ B) B]. A proof of this theorem
can be found in [41].

Theorem 3 Setr t = cvin(cv/§) and b = t/v. Suppose there exists nor € R
such that p, > 1/100v. With probability > 1 — §, the following holds. For each
output interval B, P(B) € (1 = 1/10)/v. Furthermore, P((min,cgr,x)) and
P((xs, max,eg r)) are at most 1/50v.

Thus, by evaluating find-prominent and £ind-CDF on a small sample 7, we
obtain a statistical model of the data composed of a discrete distribution / mixed
with a continuous distribution modeled by ranges B;. All that remains is providing
a method for choosing colors as the data is rendered.

4.2 Creating Color Maps from Samples

Because our model of the data includes both discrete and continuous components,
we can provide a clear distinction between high-probability values and those
approximating a continuum. We assign a perceptually distinct color to each entry of
I computed by find-prominent. If there are more values in / than the human
visual can distinguish, multiple values are assigned the same color in a round-robin
fashion. For the blocks B; that are (almost) equiprobable, we assign colors from
an ab-line in Lab color-space such that points on the line assigned to each block
are perceptually equidistant. This provides an illustration of the data that is good at
showing large-scale, continuous trends.
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Fig. 5 (a) and (c) demonstrate default colormap generated by ParaView for two separate combus-
tion data sets and (e) demonstrates the default colormap generated by ParaView for temperature
inside a rotating disk reactor. (b), (d), and (f) demonstrate sampling-based colormaps for the same
datasets. Sampling is able to identify trends and features in the data as well as constant boundary
conditions that are otherwise obscured by a traditional linear color map constructed from the full
scalar value range

Figure 5 contrasts the sampling-based colormap that our algorithm produces with
the default view produced by Paraview for two combustion datasets and for temper-
ature on a rotating disk reactor. As seen in the rotating disk example in Fig. Se, f,
our technique is able to identify constant boundary conditions of temperature that
are otherwise obscured by a traditional linear color map. The combustion data as
seen in Fig. 5a—d was generated by S3D [11], a turbulent combustion simulation
code that performs first principles-based direct numerical simulations in which both
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Fig. 6 Sampling-based
colormaps could be used to
generate high-quality
visualizations in a data-driven
fashion in-situ, as the
simulation is running

turbulence and chemical kinetics introduce spatial and temporal scales spanning
typically at least five decades. In the combustion data our approach visually depicts
structures in the data that are difficult to see in the default view. These structures
cover a relatively small percentage of the overall scalar domain, however these
values are observed with relatively high frequency within the data. We note that our
approach can be effective at identifying coherent structures in spite of the fact that
we are not integrating spatial information into our estimates. Thus, sampling-based
colormaps could be leveraged to generate high-quality visualizations in a data-
driven fashion in-situ, as a large-scale simulation is running, see Fig. 6.

5 Future Opportunities

There is a rich set of opportunities for which sublinear theory could be leveraged
to develop scalable analysis solutions for massive data. Consider, for example,
the aggregation of feature-based statistics [4]. Given functions defined over the
three-dimensional grid, combustion scientists are interested in the average size of
the connected regions with a value greater than some threshold [27]. A sublinear
algorithm would ascertain this value without examining the whole domain by choos-
ing a small subset (using randomization) through complex algorithmic schemes.
The output would be approximate, but with a quantified time-error trade-off. In
scientific applications with an underlying turbulent transport, it is often important
to track structures of interest over time as they are advected by the flow. The full
analysis can be too computationally expensive at the frequency required by the
simulation timescales, and the sketches provided by sublinear algorithms might



52 C. Seshadhri et al.

be utilized as a surrogate for a subset of the time steps. Numerous problems of
interest in scientific computing can be cast as finding patterns (such as subsequences
or specific substrings) in a large file. For example, the right cache size for
compiled code is often estimated through access patterns of registers, which can be
abstracted as pattern matching in long strings. Many problems in bioinformatics and
cybersecurity involve finding large common subsequences between sets of strings.
Sampling methods from sublinear algorithms could be used for fast estimation of
these quantities. Finally, many algorithms running on massive inputs work much
faster if prior knowledge of the input is incorporated. This is often encoded in terms
of algorithm parameters, which are set by domain experts based on their estimates of
global properties of the input. Sublinear algorithms can explore a tiny portion of the
domain to provide accurate, data-driven estimates of these desired global properties.

In summary, sublinear algorithms demonstrate enormous potential in providing
solutions to data analysis challenges in extreme-scale scientific computing environ-
ments. This revolutionary approach tells us how to perform computations by looking
at small portions of the data, potentially leading to huge reductions in required
communication. Initial results in transitioning these technologies from theory to
practice show promise for current architectures. However, further study is required
to understand both their broad applicability and performance on potential future
architectures.
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Part 11
Large-Scale Data Analysis: Efficient
Representation of Large Functions



Optimal General Simplification of Scalar Fields
on Surfaces

Julien Tierny, David Giinther, and Valerio Pascucci

1 Introduction

As scientific data-sets become more intricate and larger in size, advanced data
analysis algorithms are needed for their efficient visualization. For scalar field
visualization, topological analysis techniques have shown to be practical solutions
in various contexts by enabling the concise and complete capture of the structure
of the input data into high-level topological abstractions such as contour trees
[7,9, 10], Reeb graphs [23,27], or Morse-Smale complexes [18, 19]. Moreover,
important advances have been made regarding the analysis of topological noise
with the formalism of topological persistence [14], which enabled their multi-
resolution representations and consequent progressive data explorations. However,
the notion of feature is application-dependent. Using persistence to prioritize
topological cancellations can be inappropriate for selecting features of interest in
many scenarios (depending on the characteristics of the noise). For this reason,
users often employ ad-hoc feature identification strategies that combine several
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criteria to determine which topological cancellations should be considered signal
or noise [10]. While established simplification schemes produce multi-resolution
representations of the topological abstractions, they do not focus on generating an
actual simplification of the underlying scalar field. However, simplifying the field
before any analysis can be beneficial in a number of applications. For example,
the complexity of an analysis based on the Morse-Smale complex [18, 19] or a
topology similarity estimation [5] strongly depends on the number of critical points.
In these applications, reducing the number of critical points in a controlled manner
can drastically improve run-time performance.

In this chapter, we present a new combinatorial algorithm which generalizes and
extends previous work on topological simplification of scalar fields [4,26]. Given a
scalar field f, our algorithm generates a simplified function g that provably admits
only critical points from a constrained subset of the singularities of f while strictly
minimizing || f — g||c for data-fitting purposes. Bauer et al. [4] presented such
an optimal algorithm in the discrete Morse theory setting for the special case of
persistence-driven simplifications. In this chapter, we generalize this work to piece-
wise linear (PL) scalar fields, which are commonly used in visualization software. In
contrast to prior work [2, 4, 15], the proposed simplification scheme works with an
arbitrary—not necessarily persistence-based—selection of singularities while still
minimizing || f — g||co. We illustrate this in several experiments which also show
empirically the optimality of the proposed algorithm.

1.1 Related Work

The direct simplification of scalar fields given topological constraints is a subject
that has only recently received attention. Existing techniques can be classified into
two (complementary) categories.

Numerical approaches aim at approximating a desired solution by solving
partial differential equations, where a subset of the input singularities are used
as topological constraints while smoothness constraints are often used to enforce
geometrical quality. The first work in this direction was presented by Bremer et al.
[6], where simplified Morse-Smale complexes are used to guide an iterative and
localized simplification of the field based on Laplacian smoothing. In the context
of geometry processing, approaches have been presented for the computation of
smooth Morse functions with a minimal number of critical points [17,22]. Patane
et al. [24] presented a general framework for the topology-driven simplification of
scalar fields based on a combination of least-squares approximation and Tikhonov
regularization. Weinkauf et al. [28] improved the work by Bremer et al. [6]
with bi-Laplacian optimization resulting in smoother (C!) output fields. However,
one of the biggest challenge of these approaches is the numerical instability in
the optimization process. This may create additional critical points in the output
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preventing it from strictly conforming to the input constraints. Additionally, the
overall optimization process might be computationally expensive resulting in
extensive running times.

Combinatorial approaches aim at providing a solution with provable cor-
rectness that is not prone to numerical instabilities. In a sense, they can be
complementary to numerical techniques by fixing possible numerical issues as a
post-process. Edelsbrunner et al. introduced the notion of e-simplification [15].
Given a target error bound €, the goal of their algorithm is to produce an output
field everywhere at most e-distant from the input such that all the remaining pairs
of critical points have persistence greater than €. Their algorithm can be seen as
an extension of early work on digital terrain [1, 25] or isosurface processing [8],
where the Contour Tree [9] was used to drive a flattening procedure achieving
similar bounds. Attali et al. [2] and Bauer et al. [4] presented independently a similar
approach for e-simplification computation. By locally reversing the gradient paths in
the field, the authors show that multiple persistence pairs can be cancelled with only
one procedure. However, these approaches admit several limitations. Their input is
afiltration [14] or a discrete Morse function [16]. Since many visualization software
require a PL function, the output needs to be converted into the PL setting requiring
a subdivision of the input mesh (one new vertex per edge and per face). However,
such a subdivision might increase the size of the mesh by an order of magnitude
which is not acceptable in many applications. Also, they focus on the special case
where the critical points are selected according to topological persistence. On the
other hand, Tierny and Pascucci [26] presented a simple and fast algorithm which
directly operates on PL functions enabling an arbitrary selection of critical points for
removal. However, this approach does not explicitly minimize the norm || f — g||co-

1.2 Contributions

Several strategies can be employed to remove a hill from a terrain (i.e. to remove
a maximum-saddle pair from a function, see Fig. 1). For example, a hill can be
flattened such that the resulting plateau contains an arbitrarily small monotonic
slope towards the saddle ([26], Fig. 1b). Alternatively, one can construct a bridge
along integral lines emanating from a saddle while enforcing an arbitrarily small
monotonic increase along the bridge ([15], Fig. 1c). In the context of persistence-
driven simplification, tight upper bounds for the distance || f — g||oo have been
shown [11]. The algorithm by Bauer et al. [4] achieves these bounds in the discrete
Morse theory setting. In this chapter, we make the following new contributions:

* An algorithm that achieves these bounds for the PL setting;
e An algorithm that minimizes the distance || f — g||co in the case of general
simplifications (where the critical points to remove are selected arbitrarily).
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Fig. 1 Removing a maximum-saddle pair (1, s) from a scalar field f such that | f(m)— f(s)| = €
(a). A strategy based on flattening [26] (b) will lower m down to the level of s, yielding || /' —
glloo = €. A strategy based on bridging [15] (c) will lift s up to the level of m, yielding || f —
glloo = €. A strategy based on a combination of the two [4] (d) will lower m halfway down
to the level of s while lifting s halfway up to the level of m, yielding a minimized infinity norm

I1f = glloo = €/2

2 Preliminaries

This section briefly describes our formal setting and presents preliminary results.
An introduction to Morse theory can be found in [20].

2.1 Background

The input to our algorithm is a piecewise linear (PL) scalar field f : .¥/ — R
defined on an orientable PL 2-manifold .7. It has value on the vertices of .¥ and
is linearly interpolated on the simplices of higher dimension. Critical points of PL
functions can be classified with simple and inexpensive operations (Fig. 2). The star
St(v) of a simplex v is the set of simplices o that contain v as a face. The link Lk(v)
of a simplex v is the set of simplices in the closure of the star of v that are not also
in the star: Lk(v) = St(v) — St(v). The lower link Lk~ (v) of v is the subset of
Lk(v) containing only simplices with all their vertices lower in function value than
vi Lk=(v) = {0 € Lk(v) | Yu € o : f(u) < f(v)}. The upper link Lk (v) is
defined by: Lkt (v) = {0 € Lk(v)|Yu o : f(u) > f(v)}.
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Fig. 2 Scalar field on a terrain (left). A level set is shown in blue; a contour is shown in white.
Vertices can be classified according to the connectivity of their lower (blue) and upper links (green).
From left to right: a minimum (a), a regular vertex (b), a saddle (c), a maximum (d)

Definition 1 (Critical Point) A vertex v of .% is regular if and only if both Lk~ (v)
and Lk (v) are simply connected, otherwise v is a critical point of f.

If Lk~ (v) is empty, v is a minimum. Otherwise, if Lk (v) is empty, v is a maximum.
If v is neither regular nor a minimum nor a maximum, it is a saddle.

A sufficient condition for this classification is that all the vertices of . admit
distinct f values, which can be obtained easily with symbolic perturbation [12]. To
simplify the discussion, we assume that all of the saddles of f are simple ( f is then
a Morse function [20]), and .¥ is processed on a per connected component basis.
The relation between the critical points of the function can be mostly understood
through the notions of Split Tree and Join Tree [9], which respectively describe
the evolution of the connected components of the sur- and sub-level sets. Given an
isovalue i € R, the sub-level set L™ (i) is defined as the pre-image of the open
interval (—oo, i] onto . through f: L™({) = {p € /| f(p) < i}. Symmetrically,
the sur-level set L™ (i) is defined by L1 (i) = {p € . | f(p) > i}. The Split
Tree 74 of f is a 1-dimensional simplicial complex obtained by contracting each
connected component of the sur-level set to a point. By continuity, two vertices v,
and vj, of . with f(v,) < f(vp) are mapped to adjacent vertices in 7 if and only
if for each v, € . such that f(v.) € (f(va), f(v»)), there holds:

* the connected component of L™ ( f(v,)) which contains v, also contains v;;
* the connected component of L™ (f(v.)) which contains v, does not contain v.

By construction, a bijective map ¢+ : ¥ — 4 exists between the vertices of .
and those of 7. Hence, for conciseness, we will use the same notation for a vertex
eitherin . or in 74 . Maxima of f as well as its global minimum are mapped in .7
to valence-1 vertices, while saddles where k connected components of sur-level sets
merge are mapped to valence-(k + 1) vertices. All the other vertices are mapped to
valence-2 vertices. A super-arc (vq,vp) [9] is a directed connected path in 7} from
va to vy with f(v,) > f(vp) such that v, and v, are the only non-valence-2 vertices
of the path. The Join Tree 7_ is defined symmetrically with the sub-level sets of f.
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Fig. 3 Non removable critical points: (a) a global minimum and a global maximum have to
be maintained for the field not to be constant. (b) 2 g s saddles cannot be removed. (c), (d)
Each boundary component has two non-removable global stratified extrema, which turn into non-
removable saddles (c) or (possibly) exchangeable extrema (d)

2.2 General Simplification of Scalar Fields on Surfaces

Definition 2 (General Topological Simplification) Given a field f : % — R
with its set of critical points €', we call a general simplification of f a scalar field
g : - — R such that the critical points of g form a sub-set of €y: €, € €.

In other words, a general simplification consists in constructing a close variant of the
input field f from which a set of critical points has been removed. We call it optimal
if it additionally minimizes the infinity norm || f — g||co. As described by Tierny
and Pascucci [26], critical points can only be removed in extrema-saddle pairs.
Hence, the removal of the saddles of f is completely dependent on the removal
of its extrema. Note that there are also critical points that can not be removed due
to the topology of . (summarized in Fig. 3). We call them non-removable critical
points. More details on the influence of the topology of . on the simplification of
critical points can be found in [26].

3 Algorithm

In this section, we present our new algorithm for the computation of optimal general
simplifications. Given some input constraints (539 and (ggz , i.e., the minima and
the maxima of g, our algorithm reconstructs a function g which satisfies these
topological constraints and minimizes || f — g||co- Saddles are implicitly removed
by our algorithm due to their dependence on the minima and maxima removal.

To guarantee that the input field admits distinct values on each vertex, symbolic
perturbation is used. In addition to its scalar value, each vertex v is associated
with an integer offser €'(v) initially set to the actual offset of the vertex in
memory. When comparing two vertices (e.g., critical point classification), their
order is disambiguated by their offset & if these share the same scalar value. Our
new algorithm modifies the scalar values of the vertices (Sects.3.1-3.3), while
the algorithm by Tierny and Pascucci [26] is used in a final pass to update the
offsets.
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In the following sub-sections, we describe the case ‘6&9 = ‘K}? (only maxima are
removed). The removal of the minima is a symmetrical process. We begin with the
simple case of the pairwise critical point removal before we go into more complex
and general scenarios addressing the removal of multiple critical points. The overall
algorithm is summarized at the end of Sect. 3.3.

3.1 Optimal Pairwise Removal

Let ng be equal to C} \ {m} where m is a maximum to remove. As discussed in
[26], m can only be removed in pair with a saddle s where the number of connected
components in the sur-level set changes (i.e. a valence-3 vertex in 7). Moreover,
a necessary condition for a critical point pair to be cancelled is the existence of
a gradient path linking them [21]. In the PL setting, these are connected PL 1-
manifolds called integral lines [13]. Thus, m can only be removed with a valence-3
vertex s € 4 that admits a forward integral line ending in m. Let S (m) be the set of
all saddles satisfying these requirements. Since integral lines are connected, 77 must
belong to the connected components of L™ (f(s)) which also contains s € S(m).
In 74, the saddles of S(m) are the valence-3 vertices on the connected path from
m down to the global minimum M of f.

To cancel a pair (m,s), one needs to assign a unique target value ¢ to m and
s. Since m is the only extremum to remove and m and s are the extremities of a
monotonic integral line, we have:

If = &lloo = max(| f(m) —z].[f(s) —1]) &)

The optimal value t* which minimizes (1) is f(m) — | f(m) — f(s)|/2. Hence, we
need to find the saddle s* € S(m) that minimizes | f(m) — f(s)|. Since the saddles
of S(m) lay on a connected path from m to M in 74, the optimal saddle s* is the
extremity of the only super-arc containing 1.

Let .# be the set of vertices of . mapped by ¢+ to the super-arc (m,s*). Let
2 be the forward integral lines emanating from s*. The pair (i, s*) can then be
removed by setting them to the value #* such that no new critical point is introduced.
This can be guaranteed by enforcing monotonicity on {# U Z}: Our algorithm
assigns the target value ¢* to any vertex of .# which is higher than ¢* and to any
vertex of % which is lower than ¢* (see Fig. 4). Thus, given only one maximum to
remove, our algorithm produces an optimal general simplification g.

Note that the extremity s of the super-arc (m, s) admits a forward integral line ending in m.
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Fig. 4 (a) The set of flattening vertices .# is identified from .74 (transparent white). The set of
bridging vertices # is identified through discrete integral line integration (black curve). (b) The
function values of each vertex of .% and 4 is updated to produce the simplified function

Fig. 5 Optimal simplification of a sub-tree 7} of the split tree Z4. (a) A set of maxima
corresponding to the leaves of a connected sub-tree 7} is selected. (b) The optimal set of saddles
to remove can be identified with a simple traversal of 7. Cancelling the critical points of T}
requires to process a function interval of € = | f(m™) — f(s*)|, where m™ and s™* are respectively
the highest maximum and the lowest saddle of 7. The set of candidate vertices .# for flattening
is directly identified from T} . The set of candidate vertices for bridging % is identified by discrete
integral lines emanating from the saddles of 7j. (¢) Updating the function values of .# and A
yields an infinity norm of €/2: by lifting s* up by €/2 and by lowering m™* down by €/2

3.2 Optimal Sub-tree Removal

We call a sub-tree Ty of 7} a maximally connected sub-set of 7} such that: it
contains (a) k maxima of f to remove and (b) k valence-3 vertices of .74, and that
(c) for all the valence-3 vertices s; of Ty except the lowest, there exists no maximum
m to maintain such that s; belongs to the connected path on 7 from m down to M
(Fig. 5a). The optimal simplification of a sub-tree is a generalization of the previous
case. By using the pairing strategy described in the previous sub-section, one can
process the maxima of 7} in arbitrary order. The maxima are paired with valence-3
vertices of 7 and the corresponding super-arcs are removed. The resulting paired
saddles will always be valence-3 vertices of T} irrespectively of the order in which
the maxima are processed.

Let .% be the pre-image of ¢ restricted to the super-arcs of T;. Let 4 be the
forward integral lines emanating from the valence-3 vertices of T;. By construction
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{F U %} is a connected component, see Fig. 5b, from which we aim to remove all
the critical points. Similar as in the previous sub-section, these can be cancelled by
assigning them a common target value ¢* while enforcing monotonicity on {.% U %}
(no new critical point should be added).

For a given target value ¢, we have || f — g||loo = max (| f(m™*) —t|,| f(s*) —
t|) with m* and s* being the highest maximum and the lowest saddle in T,
respectively. The target value ¢* which minimizes || f — g||co is then t* =
f(s*) 4+ | f(m*) — f(s*)|/2. Thus, our algorithm assigns the target value t* to
any vertex of .# which is higher than ¢* and to any vertex of % which is lower than
t*.

All the sub-trees T of .74 can be identified with one breadth-first search traversal
of 7 seeded at the maxima to remove, in order of decreasing f value. In this
traversal, only the maxima to remove and the valence-3 vertices are admissible. Two
connected components (seeded at the maxima to remove) can merge if there exists
a super-arc between them. A connected components stops its growth if its number
of maxima to remove equals the number of its valence-3 vertices. At the end of the
traversal, each remaining component forms a maximally connected sub-tree 7.

3.3 Optimal Sub-tree Sequence Removal

In this sub-section, we finally describe the optimal simplification of a sequence of
sub-trees (corresponding to the most general case, where maxima can be selected
for removal arbitrarily).

For a given set of maxima to remove (Fig. 6a), the corresponding maximally
connected sub-trees can be identified with the algorithm described in the previous
sub-section. Moreover, it is possible to compute their individual optimal target
values {#; } that creates optimal simplifications of the sub-trees {7} }. To guarantee
the monotonicity of the function, special care needs to be given to sub-trees that are
adjacent to each other but separated by a super-arc, see Fig. 6b.

Fig. 6 Optimal simplification of a sequence of sub-trees (a). While each sub-tree 7; can be
individually simplified at its optimal target value #; (b), monotonicity has to be enforced by
selecting for each sub-tree the maximum value among its own target value and its adjacent parent’s

(©)
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Let Ty and 7 be two sub-trees such that sy and s; are the lowest valence-3
vertices of Ty and 77, respectively. Additionally, let sy and s; be connected by a
super-arc (s1,80) with f(s;) > f(so). Since Ty and T; are adjacent yet distinct
maximally connected sub-trees, there exists at least one maximum m to preserve
with f(m) > f(s;) > f(so) such that 5o and s; both belong to the directed
connected path from m down to the global minimum M of f, see Fig. 6. Hence, in
contrast to the previous sub-section, monotonicity should additionally be enforced
on the connected path on .7 from m down to M.

Let .% be the pre-image through ¢+ of the super-arcs of Ty and 7 and % the
forward integral lines emanating from the valence-3 vertices of Ty and 7. Since Ty
and T are adjacent, {% U 4} is again a connected component on which g has to
be monotonically increasing. Two cases can occur:

1. tp < t;: Simplifying the sub-trees Ty and 7] at their individual optimal target
values 7y and #; yields a monotonically increasing function on {.% U 2}

(An example is given in Fig. 6b for the case Ty = 7, and T = Tj);

2. to > t;: Simplifying the sub-trees T and 7 at 7y and #; would yield a decreasing
function, and hence introduce a new critical point on {% U %}. (An example is
given in Fig. 6b for the case Ty = T, and 71 = T.). In this case, forcing 7} to
use 7 as a target value will correctly enforce monotonicity while not changing
the distance || f — g||00,> see Fig. 6c.

Hence, the optimal target value needs to be propagated along adjacent sub-trees
to enforce monotonicity. To do so, 74 is traversed by a breadth-first search with
increasing f value. When traversing a vertex s;, which is the lowest valence-
3 vertex of a sub-tree 7, the algorithm checks for the existence of a super-arc
(s1, S0) such that s¢ is the lowest valence-3 vertex of a sub-tree Ty. The optimal
target value #; is updated to enforce monotonicity: ¢; <— max(t, t;). Note that this
monotonicity enforcement among the target values does not change || f — g||co-
Hence, an optimal simplification is guaranteed. In particular, || f — g||co Will be
equal to | f(m™) — f(s*)|/2 with s* and m* being the lowest valence-3 and the
highest valence-1 vertex of the sub-tree 7* which maximizes | f(m*) — f(s*)|.
In case of persistence-guided simplification, the simplified function g achieves the
upper bound || f — glleo = €/2 with € = | f(m™) — f(s™)].

In conclusion, the overall algorithm for optimal simplification can be summa-
rized as follows:

1. Identifying the sub-trees to remove (Sect. 3.2);

2. Enforcing monotonicity on the target values of each sub-tree (Sect. 3.3);

3. Cancelling each sub-tree to its target value with a combination of flattening and
bridging (Sects. 3.1 and 3.2).

*Since f(so) < f(s1) and 1 > 11, then | f(s0) — g(s0)| = to = f(s0) > t1 = f(s1) = | f(s1) —
g(s1)|. Thus, if Ty and T} are the only sub-trees, || f — glloo = to — f(s0)-
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4. Running the algorithm by Tierny and Pascucci [26] as a post-process pass to
disambiguate flat plateaus. This last pass is a crucial step which is mandatory to
guarantee the topological correctness in the PL sense of the output.

The optimal simplification of the function given some minima to remove is obtained
in a completely symmetric fashion by considering the Join Tree J_.

4 Results and Discussion

In this section, we present results of our algorithm obtained with a C++ implemen-
tation on a computer with an i7 CPU (2.93 GHz). In the following, the range of the
height functions f exactly spans the interval [0, 100] for all data-sets.

Computational Complexity The construction of the Split and Join Trees takes
O(nlog(n)) + (n 4+ e)a(n + e) steps [9], where n and e are respectively the number
of vertices and edges in . and «( - ) is an exponentially decreasing function (inverse
of the Ackermann function). The different tree traversals required to identify the
sub-trees to remove and to propagate the target values take at most O(n log(n))
steps. Updating the function values of the vertices for flattening and bridging takes
linear time. The algorithm by Tierny and Pascucci [26] employed to post-process
the offset values takes O(n”log(n)) steps. Hence, it constitutes the bottleneck of
our overall algorithm. However, scalability experiments for this latter part [26]
exhibits O(nlog(n)) performances in practice. Thus, the overall time-complexity
of our algorithm is O(nlog(n)) in practice. Although our algorithm admits linear
memory-complexity, we found that it first becomes memory-limited before being
compute-limited due to its practical time efficiency.

Persistence-Driven Simplification is well understood in terms of infinity norm

[4, 11]. We start our infinity norm evaluation with this setting to verify that our

algorithm meets these expectations. As shown in Fig.7, our algorithm improves

the infinity norm in comparison with an algorithm solely based on flattening [26].

Given a persisterlce threshold e, the output g generated by our algorithm satisfies
e . ; .

|6| *f b j”oo 5 if the most persistent pair selected for removal has persistence

General Simplification aims for arbitrary critical point removal. Figure 8 shows
an example where the user interactively selected extrema to remove. Even in this
setting, our algorithm improved || f — g||oo by a factor of two compared to [26].

Empirical optimality of our algorithm is illustrated in the last part of the experi-
mental section. We provide practical evidence for the minimization of || f —g||co- As
shown in Sect. 3.1 and in Fig. 1, an extremum-saddle pair can be removed optimally
in a localized fashion. Hence, a general simplification can be achieved through
a sequence of optimal pairwise removals for a given list of extrema to remove.
However, such a general simplification is not necessarily optimal as shown in Fig. 9.
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£ = gll = 3.02 | | =gl = 151
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Fig. 7 Comparison of the simplifications obtained with the algorithm proposed in [26] (a), (|| f —
glloo < €) and our new algorithm (b), (|| f — glleo < €/2). Critical points are removed based on
topological persistence (the persistence threshold is €). The topology of the fields is summarized
with the inset Reeb graph for illustration purpose (input surface: 725k vertices)

a b =
[If = gll = 19.88 [1f —gll= =994

1:0.18 5. 1:0.50 5.

(iterations : 2) (frerations : 2)

Fig. 8 User driven simplification. The statistics of the simplification are shown in the grey frames
for the flattening-only algorithm [26] (a) and for our new algorithm (b). The topology of the fields
is summarized with the inset Reeb graph for illustration purpose (input surface: 75k vertices)

The distance || f — g||oo is even depending on the order of extrema-saddle pair
removals. To explore this space of optimal pairwise removal sequences in a Monte-
Carlo fashion, we computed 100 sequences of pairwise removals ordered randomly
for several data-sets (Figs. 6, 7, and 8) with given sets of extrema to remove. Table 1
shows the minimum, average, and maximum distances for each of the examples.
The minimum distance || f — g||co Obtained with this Monte-Carlo strategy was
never smaller than the distance obtained by our global algorithm. This illustrates
that there exists no sequence of optimal pairwise removals that results in a smaller
distance || f — g||co than our algorithm. This shows empirically its optimality.
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Fig. 9 An arbitrary sequence of pairwise optimal simplifications (a—d) does not necessarily
produce an optimal simplification. In this example, the global maximum is moved lower (d) than
it would have been with our global algorithm (e). This results in a higher distance with regard to
the infinity norm (d) (|| f — glleo = 34.83, () || f — glloo = 26.02)

Table 1 Distance || f — g||co Obtained with our algorithm (top) and with sequences of optimal
pairwise simplifications (bottom 3) on several data-sets for a given constrained topology

Terrain (Fig. 6)

Children (Fig. 7)

Dragon (Fig. 8)

Global algorithm 26.02 1.51 9.94
Pairwise sequences (Minimum) 26.02 1.51 9.94
Pairwise sequences (Average) 30.57 1.55 13.20
Pairwise sequences (Maximum) 34.83 1.58 17.04

For simplifications based on pairwise sequences (bottom 3), the order of simplification of the
critical point pairs is defined randomly (100 runs per data-sets)

Limitations Although our algorithm achieves the same time complexity as the
flattening algorithm [26], our new algorithm is more computationally expensive,
in practice (Figs. 7 and 8). This is due the use of the flattening algorithm in the final
pass and the necessity of the Join and Split tree computations (which take longer
than the flattening algorithm in practice). In the general case, our algorithm may
change the value of the maintained critical points after simplification. For instance,
if the lowest minimum of ‘589 is initially higher than the highest maximum of %72,
the algorithm will change their values to satisfy the topological constraints. Noisy
data may also contain multi-saddles. To account for these, in the sub-tree removal
procedure (Sect. 3.2), one must construct a sub-tree T} by considering k maxima
and a set of saddles whose multiplicity sums to k. Moreover, a p-multi-saddle must
be paired with p maxima to be removed. The rest of the procedure is identical.
Alternatively, multi-saddles can be unfolded in a pre-processing step [13]. Finally,
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our algorithm provides strong guarantees on the topology of the output and on
|| f — glloo at the expense of geometrical smoothness.

Conclusion

In this chapter, we have presented a new combinatorial algorithm for the
optimal general simplification of piecewise linear scalar fields on surfaces. It
improves over state-of-the art techniques by minimizing the norm || f — g||co
in the PL setting and in the case of general simplifications (where critical
points can be removed arbitrarily). Experiments showed the generality and
efficiency of the algorithm, and demonstrated in practice the minimization of
|| f — glloo- Such an algorithm can be useful to speed up topology analysis
algorithms or to fix numerical instabilities occurring in the solve of numerical
problems on surfaces (gradient field integration, scale-space computations,
PDEzs, etc.). Moreover, our algorithm provides a better data fitting than the
flattening algorithm [26] since it minimizes || f — g||co. A natural direction for
future work is the extension of this approach to volumetric data-sets. However,
this problem is NP-hard as recently shown by Attali et al. [3]. This indicates
that the design of a practical algorithm with strong topological guarantees is
challenging.

Acknowledgements Data-sets are courtesy of AIM@SHAPE. This research is partially funded
by the RTRA Digiteo through the unTopoVis project (2012-063D). The authors thank Hamish Carr
for insightful comments and suggestions.
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Piecewise Polynomial Monotonic Interpolation
of 2D Gridded Data

Léo Allemand-Giorgis, Georges-Pierre Bonneau, Stefanie Hahmann,
and Fabien Vivodtzev

1 Introduction

Preserving meaningful features in scalar fields when simplifying the data set is a
requirement in Scientific Visualization for efficiently visualizing and understanding
very large data. One class of meaningful features of a scalar function is locations
and values of local extrema. Large isolated extrema are indeed salient features and
have usually an important meaning. So they have to be preserved in a visualization,
whereas nearby local extrema with similar values can be neglected in many
application domains. It is even better to remove these spurious extrema in order to
enhance the visibility of significant features and thus to improve the understanding
of the data set. It is equally important to avoid adding spurious extraneous features
when visualizing a data set. In particular if a data set samples a function without
local extrema, then the visualization of this discrete data should be free of local
extrema as well.

Morse theory [17] is an example of a concept dealing with critical points and
their importance. The Morse-Smale (MS) complex, which is based on Morse theory,
segments the domain into a set of regions inside which the function is monotonous.
A combinatorial simplification of the MS complex has been introduced in [6].
The MS complex is simplified by removing adjacent pairs of critical points in the
complex while preserving most significant critical points. Then the original data is
however not coherent anymore with the simplified complex, because monotonicity
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got lost inside the MS cells. The new data should be monotonic inside a region. So,
techniques which compute monotonic data knowing some values of the function on
a grid are needed.

This paper presents a novel approach for computing monotone scalar functions
interpolating gridded 2D data sets using smooth piecewise polynomial representa-
tions. We built the interpolant in such a way that no local extrema exist in the interior
of the function domain if the input data fulfills a simple monotonicity criterion.
In contrast to prior related works we do not require the input data to be axial
monotonic, meaning that the data does not have to be strictly monotonous along all
grid rows and columns, instead we base on a less restrictive monotonicity criterion.
In this paper we make the following contributions:

— A monotonicity constraint is used which is more general than the standard axial
monotonicity for tensor-product surfaces.

— In concordance with the monotonicity constraint we introduce a modified Sibson
split interpolant.

— We derive sufficient conditions on the partial derivatives to ensure monotonicity
of the interpolating function.

— We then develop two algorithms to effectively construct a monotone C! surface
composed of cubic triangular Bézier surfaces.

The main contribution of this paper is a new piecewise polynomial monotonic
interpolant. It has been inspired by earlier work in the field of Constrained Shape
Design within Computer Aided Geometric Design (CAGD). In this field the objec-
tive is to interpolate or approximate a set of points by analytically defined curves or
surfaces with a given constraint such as positivity, convexity or monotonicity. Our
new interpolant is based on relaxed monotonicity constraints that still ensure that no
critical points exist in the interior of the function domain.

The remainder of the present paper is structured as follows. In Sect. 2 we review
related works dealing with shape preserving interpolation. Section 3 presents our
contributions on piecewise polynomial monotone interpolation. We first introduce
our new interpolant. It is based on a relaxed monotonicity constraint. We give
sufficient conditions ensuring that no critical point exists in the interior of the
domain with our new interpolant. We then develop two algorithms to effectively
compute monotone interpolants. Finally we show results in Sect. 4 and conclude the
paper in section “Conclusion” with a discussion on future directions of research.

2 Related Works

Shape preserving interpolation is a well studied problem in scientific literature. It
consists of computing a curve or surface which interpolates given scalar data while
preserving the shape of the underlying data.

The problem we are dealing with in the present paper is closely related to shape
preserving interpolation. Indeed, we aim to construct a function free of critical
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points interpolating a maximum and a minimum function value at opposite vertices
of a rectangular domain. Since a monotone surface is sufficient for this purpose, we
derive an algorithm which is able to construct a surface that preserves monotonicity
along a diagonal direction.

Convexity [3,4,13] and monotonicity are typical shape properties to be preserved.
Concerning monotonicity preserving surface fitting most research focussed on
monotone bivariate interpolation. In [1, 2, 12] sufficient (and sometimes also
necessary) conditions were derived for the monotonicity of piecewise polynomial
patches interpolating data given at the grid points of a rectangular mesh. These
conditions were transformed into a system of linear inequalities which in turn
formed the basis for an algorithm. Since the interpolating functions are determined
by a function value and first order derivatives at the grid points, the algorithms
compute feasible solutions of the derivatives. All these methods provide surfaces
preserving axial monotonicity. Even though our method is similar to [12], we base it
on a relaxed monotonicity preservation in diagonal direction only. This is sufficient
for our goal to interpolate local extrema without any other critical point inside the
function domain.

In [9] it was shown that tensor product Berstein and B-spline bases preserve
monotonicity in all directions. In [10] three kinds of monotonicity preservation of
systems of bivariate functions on a triangle are studied. We also use the fact that
Bernstein polynomials on triangles preserve monotonicity. However, we do not only
derive sufficient conditions for monotonicity, in addition we provide an effective
algorithm to compute a monotone surface. Our approach splits the rectangular
domain into four cubic triangle patches and computes the Bézier control points with
a modified Sibson split in order to get a globally C'-continuous surface.

Let us finally mention that monotonicity preservation has also been investigated
for scattered data approximation [19], for subdivision curves [11, 14], convolution
of B-splines [18], for rational surfaces [5] and for non-polynomial functions [15].

3 Monotonic Polynomial Interpolation

In this section we propose a novel solution to the following problem.

Problem Given a 2D rectangular grid of scalar values sampled from a monotone
function, compute a smooth interpolating function which is monotone as well.

This is a typical problem encountered in Shape Preserving interpolation methods
[16], where the general goal is to compute an interpolating surface that mimics the
shape of the input data.

The method we present in this paper is inspired by the algorithms given in [1, 2,
12], where C' monotone increasing spline functions interpolating gridded data are
constructed by iteratively adjusting initially estimated gradient values at each grid
point. It is a kind of Hermite interpolation, where the gradient values are adjusted
to ensure monotonicity. This idea can easily be illustrated on 1D cubic Hermite
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interpolation of monotone data, where the choice of the derivative (slopes of the
tangents) at these data points decide whether the interpolating function is monotonic
or not, see Fig. 1.

We use piecewise polynomial functions defined on a triangular subdivision of the
gridded domain, where each rectangle is subdivided into four triangles by drawing
the main diagonals, as shown in Fig. 2. Each polynomial piece of function f : T —
R is a cubic triangular Bézier surface (Fig. 3)

f(@) = Z bijkB,;k(T), teT

i+j+k=3
i k>0

defined on a domain triangle 7 C R? given by three non-colinear points py, p1, pa.
© = (10,71, 72) is the triplet of barycentric coordinates of a point in 7. The
10 coefficients bz € R are called the Bézier ordinates of f corresponding to

the parameter values (i/3,j/3,k/3). Bj(v) = %‘L’(’)tlj ¥ are the Berstein
polynomials of degree 3. All fundamentals on triangular Bézier surfaces can be
found in [7].

The polynomial pieces of our surface are computed by interpolating Hermite
data (i.e. function values and partial derivatives) given at the grid points using a
modified Sibson split interpolant, as explained in the next section. An advantage of
using Hermite data is that C'-continuity can be ensured more easily. The problem

we solve is therefore to find upper bounds on the gradients, which guarantee that the

H(x) H(x) H(x)

fﬂm

X X X

Fig. 1 Cubic Hermite interpolation of monotone increasing data. Different derivatives prescribed
at the data points lead to different curves. Setting derivatives equal zero produces a monotone
increasing curve (left), but critical points are generated. Monotonicity of the function gets lost
when the derivative values are too big (right)

Fig. 2 Left: Rectangular function domain D with vertices (x;, y;). Right: Sibson split and Bézier
coefficients of one rectangular patch
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Fig. 3 Triangular Bézier
surface patch of degree 3

functions interpolating these Hermite data is monotone, as illustrated in Fig. 1 for
the 1D case.

However, instead of solving for functions with monotone increasing values along
the grid lines, i.e. along the x- and y-axis as it was done in previous works, we
construct our interpolating function to be monotone only in diagonal (x + y)-
direction. Additionally, we require that the function has to be strictly monotone
increasing, i.e. be free of critical points inside its domain. Note that the latter
property is not guaranteed by the standard axis aligned monotonicity definition as
usedin [1,2,12].

We begin in Sect. 3.1 by first describing the standard Sibson split method, which
subdivides each rectangle into four cubic bivariate polynomials joining with C!
continuity. Then the modified Sibson split interpolant is presented. Section 3.2
introduces our relaxed monotonicity constraints and explains the difference to
the standard monotonicity. Then our new monotonicity preserving interpolant is
introduced in Sect. 3.3, and a proof of monotonicity is given. And finally, we derive
two algorithms ensuring monotonicity and strict monotonicity respectively for a
function interpolating monotone input data in Sects. 3.4 and 3.5.

3.1 Modified Sibson Split Interpolant

Cubic Sibson split patches (SSP) interpolate positional and partial derivative values
given at the vertices of a rectangular gridded domain. Each patch is composed
of four non-parametric cubic triangular Bézier patches with 25 Bézier ordinates
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Cy Cio Co C3

Cs

G

G

Fig. 4 Cubic (modified) Sibson interpolant. Input data: positional and gradient values located on
a rectangular grid. Each grid cell is subdivided into four triangles and yields a C' piecewise cubic
interpolant. Orange points are computed from given data, red points from linear cross-boundary
derivatives and green points from C'-continuity conditions

as illustrated in Fig. 4. The resulting surface is globally C'-continuous since two
adjacent SSP which share the same boundary curve along the common edge,
interpolate the same partial cross-derivatives given at each end-point of the edge
and have the same linear cross-boundary derivatives along the edge.

Following [8] the orange control vertices are used to interpolate positional and
partial derivative values at the four corners. The green control vertices are con-
strained by the C' continuity between patches. Each green vertex is the mid-point
on the straight line between the two vertices indicated by the arrows. The green
middle vertex is the midpoint of the plane of its four surrounding vertices. These
last conditions are sufficient to ensure C' continuity between the four patches, for an
arbitrary choice of the red vertices [7]. The red vertices are chosen so that the normal
cross-boundary derivatives (derivative orthogonal to the boundary) are linear. This
leads to the following formulas for these four vertices:

c17= Qeciz+2cis+cs+cg—c1—c2) /4
cig = Qcis+2ci5+c7+cg—c1—c2) /4
c19 = 2cis +2ci6+ co+cg—c1 —2) /4
c20 = (2¢16 + 2¢13 + 11 + s —c1 —¢2) /4.

The detailed formulas for all other coefficients are given in the Appendix.

Modified Sibson Interpolant

Instead of having linear normal cross-boundary derivatives, we require the direc-

tional cross-boundary derivatives E)(f-—_’;y)(x, y) to be linear. This results in the
following formulas for the Bézier ordinates marked in red in Fig. 4 and which
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replace the formulas (1) :

ci7 = (—c1+2¢cs—ce+ci3+c1a)/2
c1g = (—¢3 +2¢5 —¢7 + c1a + €15)/2
c19 = (—c3+2c9 — 1o + 15+ c16)/2
€20 = (—c1 + 2c12 —c11 + 13 + c16) /2.

2

All other coefficients remain the same.

Lemma 1 The modified Sibson Interpolant (2) is C' continuous for given position
and gradient values at the corners of a rectangular domain.

Proof Formulas (2) correspond to linear interpolation of B(xa—-);-y) (x,y) along the
outer boundaries of each SSP. Since the SSPs share the same partial derivatives
at their corners, the directional derivatives in the direction x + y must be continuous
across the domain D. Furthermore directional derivatives along the boundary curves
of the SSPs are trivially continuous since the SSPs are C° continuous. It follows that
the interpolant is C'! across the domain. O

3.2 Relaxed Monotonicity

Monotonicity Constraints Let D be a rectangular domain in R2, subdivided into
rectangles Dy = [x;, x;+1] x [y;,yj+1] with1 <i <nyand1 < j < n, and
hi = Xis1 = xi, hy = yj41— ;.

The data set {(x;, y;, zy)}?;’:l is called diagonal monotone increasing if

Zij < Zit1,j+1 3)

foralll1 <i <nyand1 < j <n,.
The problem we seek to solve is to compute a C '-continuous function f : D — R
such that f interpolates a diagonal monotone increasing data set, i.e.

f(-xivyj) = Zjj

forall 1 <i <nyand1 < j < n,, and f is monotone increasing in (x + y)-
direction, i.e.

f

m(x’)’) >0 “4)

for all (x, y)in D.
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Fig. S Left: Diagonal monotone increasing data. The function values z; at the grid points are

increasing along the grid diagonals (blue arrows). Right: Axis-aligned monotone increasing data.
The functions values z;; at the grid points are increasing along the x- and the y-axis (blue arrows)

N

=X

b

7

Remark A function is called strictly monotone increasing if (4) is replaced by

f

m(x’)ﬁ > 0. (5)

In contrast to the usually used axis-aligned monotonicity as in [12] our diagonal
monotonicity (3) of the input data does not require that the given function values
increase along rows and columns, but only along the grid diagonals, see Fig. 5.
Note that this is a more general framework since if the data is increasing along the
rows and columns then it is also increasing along diagonals. It is thus possible to
deal with horizontal or vertical grid lines that are not monotone increasing.

3.3 Sufficient Monotonicity Conditions

We now introduce a new monotonicity preserving interpolation scheme for gridded
data, that only assumes the input values to increase along diagonals, as illustrated in
Fig. 5-left.

Let us assume without loss of generality that all D;; are squares of the same
size h == hf = hf. The next theorem gives sufficient conditions on the partial
derivatives so that the modified SSP interpolant is (strictly) monotonic.

Theorem 1 The modified SSP given by (2) which interpolates positional values 7y
and partial derivatives z;,z, on Dy (k = i,i + 1,1 = j,j + 1) satisfies (5)
providing the following conditions hold:

g +z>0, (6)

Lyt Ziy+1j >0, (N
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Fig. 6 If for every arrow the
coefficient at its basis is
strictly smaller than the
coefficients at its tip then the
four cubic triangular Bézier
patches satisfy the diagonal
monotonicity constraint (5),
i.e. they are strictly increasing
in the diagonal direction

x+y
G+ 3 >0, ®)
Gty T Gy > 0, ®
12 X y X y X y
T(Zi-l—lj—l—l_zl'j) >52ij+Zij+ZZl-+lj +22i+1j +Zi+lj+l +5Zi+lj+l 5 (10)
12 X y X y X y
T(Zi-l—lj—l—l_zl'j) >Zij+52ii+21ij+1 +2Zij+1 +Szi+lj+l +Zi+1j+l . (11)

Proof In essence the proof of Theorem 1 follows from three arguments. The first is
that conditions (6)—(9) imply the monotonicity constraint (5) at the four corners of
the SSP. The second argument comes from the modified Sibson-Split interpolation
formulas (2), which imply that (5) is fulfilled along the four outer boundary edges of
the SSP. Eventually, conditions (10) and (11) enable to propagate the monotonicity
constraint (5) inside the SSP.

From [7] we know that condition (5) is satisfied by the modified SSP provided
that for all couples of coefficients (c; — cx), as shown in Fig. 6, the relation¢; < ci
holds. This leads to 18 sufficient conditions on the 25 coefficients c; .

Hypotheses (6)—(9) imply cj3 —c¢; > 0, cja —c6 = c7—c14 > 0, ¢c3 —c15 >
0, ci6 —c11 = cj0 — c16 > 0 (see the Appendix for the values of the control-
points). Adding (6) and (7) leads to 2(c;7 — ¢5) = (c13 —¢1) + (c14a — ¢6) > 0.
Analogously we have cg — c13 > 0, ¢9 — c19 > 0, and ¢y9 — ¢12 > 0. Furthermore
2(ca1 —c13) = (c20 — €12) + (€17 — ¢5) > 0, and analogously we have c¢j5 — ¢3 > 0.
¢ —c17 can be computed from the interpolation conditions using (2) and the control-
point formulas given in the Appendix. This leads to

1 h x y X
a—C =3 (Zi+1j+1 = 25) — E(Sz}y +z; + 224,

y X y
2% 40 + Zig T Szi+lj+l):|



82 L. Allemand-Giorgis et al.

Therefore condition (10) implies ¢, — ¢j7 > 0. Analogously condition (11) implies
Cpq—Cy0 > 0. From the Appendix we have 2x(ca5—c21) = (c22—c17)+(c24—c20) and
therefore ¢p5 — ¢31 > 0. The remaining three conditions follow from the Appendix:
cig—cCn =cpn—c17>0,003—05 =5 —C21 >0,c19—Cog =C24—C0>0. O

Remark (Theorem 1’°) Replacing the strict inequality signs by > in (6)—(11) yields
an analogous theorem for the weaker monotonicity constraint (4). The proof is
analogous as well.

3.4 Algorithm 1

Assume now we are given as input gridded values z;; which satisfy (3). Our goal is
to compute partial derivatives z; and z,y, such that the sufficient conditions given in
Theorem 1 are satisfied. Let us call them admissible partial derivatives. Using these
admissible partial derivatives together with the input values z;; for the modified SSP
interpolant makes the resulting function being monotonic.

We present two algorithms for computing admissible partial derivatives, one
for the weaker Theorem 1’ and one for Theorem 1. Also the strategies followed
by the algorithms are different. While the first algorithm modifies some given
estimations of the partial derivatives, the second algorithm computes admissible
partial derivatives only from the input function values.

The first part of Algorithm 1 corresponds to the conditions (6)—(9) of Theorem 1.
If the sum of the partial derivatives z}; + z;, is negative in any corner of the SSP, we
apply an orthogonal projection as illustrated in Fig. 7. This procedure results in a
gradient that is closest to the original gradient. The modified partial derivatives are

thus given by (5 — z1)/2. (g — zi)/2))-

z Kl
/7|,

o z,

z ki’ z k/)
Fig. 7 Projection of the
partial derivatives (z3;, z3;) on

B y .

2z + 2 = 0 when their sum _
is negative. z kI+Zy k/_o
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Algorithm 1 Modify the input partial derivatives for one SSP in order to satisfy the
sufficient monotonicity conditions given by Theorem 1

Require: zj; with z;; < z;41;+1, and partial derivatives apyk=ii+1,1=jj+1
{First part of the algorithm}
fork € {i,i + 1} do
for/ €{j,j+ 1} do
{ Verification of the four conditions (6)-(9)}
ifz5; + z; <0 then
old, <z,
old, <z,
{Orthogonal projection of the point (z};, z3;) onto z3; + zj; = 0}
Z}’é’ - oldy zaldy
y oldy, —old,
Gy~ — >3
end if
end for
end for
{Second part of the algorithm}
Az < ZGiij41 —2ip)
Sy « 5|Z;}| + |Z’vj| + 2|Zf+1j| + 2|Z?+1]‘| + |Zf+1j+1| + 5|Z;+1j+1|
S3 <« |Z;;| + 5|Z;y]| + 2|Z;;'+1| + 2|Z;j+1| + 5|Z;(+1j+1| + |Z?+1j+1|
Simax < Maximum(S,, S3)
{ Verification of the last two conditions (10),(11)}
if Az <S4 then

€ Suur
gy <czg fork=ii+1L1=jj+1
g, < cgfork=ii+1L1=jj+1

end if

The second part of Algorithm 1 decreases the partial derivative values so that
conditions (10) and (11) of the Theorem 1 are satisfied. Absolute values are required
since the partial derivatives as input may have a negative value.

3.5 Algorithm 2

The previous algorithm needs estimated gradient values as input. We now propose a
second algorithm which directly computes admissable gradient values for the strict
monotonicity of Theorem 1.

This second algorithm ensures that the right hand sides in conditions (10) and
(11) are always smaller than A% (z,-+1j+1 — z,-j), where A €]0, 1] is a user-specified
constant. It also ensures that all partial derivatives are positive, so that conditions
(6) to (9) are satisfied as well.
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Proof (Algorithm 2) Because z;+1;4+1 > Z, all K;; are positive. Therefore all
KMinjj are positive, and all partial derivatives z; and ziyj computed by Algorithm 2
are also positive. It follows that conditions (6)—(9) are fulfilled. It remains to prove
conditions (10) and (11).

Let S be the right part of the condition (10):

_ X y X y X Yy
S =35z + 5y + 2841 + 28415 + L1+ %G 40

A A A
= 6§KMin,;,~ + 4§KMil’Li+1j + 6§KMini+1j+1.

Algorithm 2 Compute partial derivatives for all SSPs in order to fulfill the sufficient
monotonicity conditions given by Theorem 1
Require: z;for1 <i <n,and 1 < j <ny,such that z;; < zj41;41
Require: a constant A with0 < A < 1
fori =1---n, —1do
for j =1---n,—1do
Kij < 5 (@141 — 2)
end for
end for
KMinU < K] 1
KMinn,\»n,» <~ Kn,\»—l,/t,»—l
KMin,l)vl < Knxfl,l
KMl.I’lL,ly < Klyfly_l
{traverse the interior of domain}
fori =1---n, —2do
forj=1---n,—2do
KMini 1,41 < min (Ki. Kiy1j. Kijp1. Kig1j41)
end for
end for
{traverse left and right domain boundaries }
forj =1---n,—2do
KMinl_j+1 < min (Klj9 Kl,jJrl)
KMin,l»j_;,_l <— min (Kn,\»—ljv Kn,\»—l,j-‘rl)
end for
{traverse bottom and top domain boundaries }
fori =1---n,—2do
KMI’I’!,'J,.LI <— min (K,'l, K,'J,_L])
KMin; 41, <= min (Kin,—1. Kit10,—1)
end for
{initialize partial derivatives from KMin array}
fori =1---n,do
for j =1---n,do
2 < A3KMin;;
5 <z
end for
end for
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Algorithm (2) computes the coefficients KMin;; such that:

. . . 3
KMinij, KMin;y1j, KMin;1j 41 < ﬁ(zi-i-lj-i-l = 2j)-

And therefore:
12
S < 17(2i+1j+1 - zj),

which means that condition (10) is verified.
Condition (11) can be proven analogously. O

The parameter A can be used to control the shape of the interpolant. A value of
A close to 1 tends to increase the partial derivatives at the corners of the SSP, and to
decrease the partial derivatives in the interior of the SSP. On the other hand, a value
of A close to 0 implies almost 0 partial derivatives at the corners of the SSP. In our

examples we have used A = %

4 Results

The first and simple example shown in Fig. 8 corresponds to a 4 x 2 grid of
scalar values that satisfy the relaxed monotonicity constraints (3). The interpolated
values are increasing along the rows, but not along all columns. They are diagonal
monotone increasing but not axis-aligned monotone. This simple data set can thus
not be handled by previous works on monotonicity preserving interpolation. In
contrast, our relaxed monotonicity constraints enable to built an interpolant that

Fig. 8 A 4 x 2 grid of scalar values is interpolated by our C! cubic interpolant. This simple
example can not be handled by prior works on monotonicity preserving interpolation since some
of the rows have increasing and other have decreasing values. Nevertheless our interpolant does
not exhibit critical points as it can be seen from the isolines in the /eft. The isoparametric lines of
the 12 cubic Bézier patches are shown on the right
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Fig. 9 Interpolation of a grid sampled from an analytical function. The left part shows the result
when the exact partial derivatives of the function are used for the interpolant. The isolines on the
bottom left clearly indicate critical points. In the right part these critical points are removed by
modifying the partial derivatives with our Algorithm 1 (Sect. 3.4)

is free of critical points as it can be seen from the isolines shown in the left
side of Fig. 8. On the right side, the same interpolant is shown together with the
isoparametric lines. Since the interpolant is composed of triangular Bézier patches,
there are three isoparametric directions.

The second example in Fig. 9 illustrates the ability to use estimates of gradient
values thanks to Algorithm 1 presented in Sect. 3.4. In this example a grid of
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5 x 5 sampled values in the domain [—0.4, 40.4]> for the function (x + y)? s
interpolated. We give as input to Algorithm 1 the exact partial derivatives sampled
from the function. We show our modified Sibson-Split interpolant on the left side
of Fig. 9 without correction of the partial derivatives, and on the right side with the
corrected partial derivatives computed by Algorithm 1. As it can be seen from the
isolines at the bottom of Fig. 9, the interpolant with the exact partial derivatives
exhibits critical points, which are removed when the corrected partial derivatives
computed by Algorithm 1 are used for the interpolant.

The third example shows the interpolation of a grid of size 10 x 10. The values
at the grid vertices are computed randomly but satisfy the diagonal monotonicity
constraint (3). For this example Algorithm 2, described in Sect. 3.5, is applied to
compute admissible values for the partial derivatives at the grid vertices. This data
set can not be handled by previous works since neither the rows nor the columns are
monotone increasing. Nevertheless, our new method is able to produce a monotone
C! interpolant free of critical points as it can be seen from the isolines in Fig. 10.
The inset on the top right shows a closeup view with the isoparametric lines of the
Bézier patches.

The last example in Fig. 11 illustrates the ability of piecewise monotone
interpolants to interpolate a grid of function values, where local minima, maxima
and saddles are prescribed. In contrast to the previous settings, where a globally
monotone function performs shape preserving interpolation, we now apply the

Fig. 10 Interpolation of a grid of 10 x 10 function values. The grid values are randomly chosen
such that our relaxed monotonicity constraint (3) is fulfilled. Since neither the rows nor the
columns are increasing, this grid can not be handled by previous works on constraint monotonic
interpolation. Our new method can produce an interpolant free of critical points in the interior of the
definition domain, as shown by the isolines. The partial derivatives are computed from Algorithm 2,
described in Sect. 3.5. The inset on the top right shows a closeup view with the isoparametric lines
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Fig. 11 Local maxima (red), minima (blue), saddles (green) and regular (yellow) vertices are
interpolated by a C! piecewise cubic interpolant. Leff: no unwanted local extrema exist in the
interior of the cubic patches. Right: partial derivatives too large in size are chosen for the
yellow regular vertices implying that additional unwanted local extrema appear inside the cubic
polynomial patches

monotonicity property only locally. We compute a surface which is piecewise
monotone (inside each grid cell) without generating any extraneous critical points
except at the grid vertices where critical points are prescribed. The red vertices are
local maxima, the blue vertices are local minima and the green vertices are saddles.
At all these prescribed critical points the partial derivatives are fixed to be 0. There
are only two grid vertices in yellow, which are regular vertices and where the choice
of the partial derivatives is determinant for the monotonicity of the neighbouring
patches. Indeed, this example also allows to illustrate the influence of the gradient
values on the shape of a function computed by a Sibson interpolant. Figure 11 shows
two results with different gradient values at the yellow vertices, reproducing thus the
phenomena described in Fig. 1-right for the 2D case. In fact, on can observe that the
choice of gradient values too large in size produces extra unwanted critical points,
see Fig. 11-right, whereas Fig. 11-left shows the resulting interpolant with properly
chosen partial derivatives the yellow vertices. In both surfaces the local extrema are
exactly interpolated, and the shape of the interpolant is smooth around the yellow
regular vertices. All the patches are individually monotone increasing and join with
C!-continuity.

Finally, let us provide some statistics: All examples have been computed in less
then 1 ms. Even though we only show small size examples to appreciate geometric
and topological properties of the resulting functions, the method runs in real time
also for very large data sets. We generated data sets with 10° grid cells and computed
valid gradient values in 3 ms. Moreover, the computation of Bézier surfaces can
be performed in parallel. Indeed, once the derivatives known at the corners of the
grid cell, the modified Sibson interpolant can be computed independently from its
neighbours.
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Conclusion
In this paper we propose a new method to interpolate a 2D grid of scalar
values by a C! piecewise cubic function with no critical points and no local
extrema in the interior of the domain. In comparison with prior related works,
we do not require the values to increase along all rows and columns of
the grid. Instead, we introduce a relaxed monotonicity constraint in which
the values are required to increase monotonously only along diagonals of
the grid cells. We also introduce a modified Sibson-split interpolant which
is coherent with this relaxed monotonicity constraint. We give sufficient
conditions on the partial derivatives at the grid vertices such that the Sibson-
split interpolant is free of local extrema. And we propose two algorithms
to actually compute admissible partial derivatives satisfying these sufficient
conditions. The first algorithm takes as input estimated values of the partial
derivatives and modifies them in order to ensure monotonicity. The second
algorithm computes partial derivatives without requiring any initial guess. As
shown in Sect. 4, such a C! piecewise cubic monotonic interpolant can also
be used to interpolate a grid of prescribed local minima, maxima and saddles.
Our method is a step towards reconstructing function from MS complexes,
even though it can’t be applied directly in its present form. Indeed, the current
work is limited to regular grids. Therefore, we are currently investigating the
generalization of our results to monotone interpolation of function values
defined on a triangular mesh instead of a grid. This would enable us to
extend the example shown in Fig. 11 to an arbitrary setting of local extrema.
Furthermore, we plan to apply our method to the reconstruction of monotonic
functions within MS cells. Another direction of future research is to extend
the present approach to C? continuity using quintic triangular Bézier patches.

Appendix—Sibson Split Interpolant

Let D be a rectangular domain in R?, regularly subdivided into rectangles D; =
[xi, xip1] X [yj,yj+1], 1 <i <n,,1 < j <n, and the following ordinates z;; and
gradients z;;, ziyj given at the grid points. Let ¥ = x; 41 —x;,h’ = y; 1 —y;. Each
rectangle is splitted into four sub-triangles by drawing both diagonals.

The Sibson split (cf. [7]) is a cubic C'-continuous function f : D — R
interpolating the input data with

f(xi,yi) = zj, fe(xi, yi) =z, S (i, yi) =z,
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where each patch defined on D;; is composed of four cubic polynomials with in total

25

Bézier coefficients (see Fig. 4), computed uniquely as follows:

C1 = Zjj C2 = Zi+1,j C3 = Zi41,j+1
hx hx
€4 = Zij+1 Gs=ct 5z C6 = €2 =%ty
c—c—ﬁx = +h—xx = +h—yy
9 =C3 3 Z41,j+1 Cl0o=0C4 3 %41 Ci2 = (1 3 %
c—c~|—ﬂy c—c—ﬁy c—c—ﬂx
7= T T4 8= G 7 F 41 T GT R4
1 1 1
c3 = z(c5s +c12) ¢y = (¢ +¢7) c15 = 5 (cs + ¢o)
2 2 2
1 1 1
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Shape Analysis and Description Using Real
Functions

Silvia Biasotti, Andrea Cerri, Michela Spagnuolo, and Bianca Falcidieno

1 Introduction

Since many years researchers work on different aspects of shape-based modelling,
where by shape we mean a one-, two- or higher-dimensional connected, compact
space having a visual appearance. In this context, geometric modelling techniques
are at a quite mature stage in the sense that the most fundamental problems related
to the modelling, manipulation and visualization of static and dynamic 3D shapes
are well understood and solved. However, several issues are still open and nowadays
even more critical due to the larger use of data in digital form in a variety of applied
and scientific domains. Among these, in the mid-1990s the shape similarity problem
(and related issues about how to code uncertainty due to incompleteness or noise
affecting original data [1]) started to be approached on the basis of the geometric,
structural and semantic properties of the digital shapes [16].

3D Shape Analysis studies how to derive shape information from objects stored
in the form of geometric models, extracting from low-level properties (points,
triangles, voxels) high-level knowledge about the geometry, structure and semantic
meaning of 3D objects. It deals, for example, with evaluating the similarity among
3D objects and the semantic annotation of objects and their parts; the best-known
representative of this class of activities is probably the classification of shapes (or
taxonomy), which takes place in a variety of contexts: botanics, mathematics, and
zoology to cite just a few. The idea underlying classification is to group objects,
which exhibit similar characteristics, even if they may differ in some quantitative
parameter. Classification requires tools, which permit the identification of these
similar characteristics independently of their specific embedding in the object.
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Though young as a discipline on its own, 3D Shape Analysis shows solid
mathematical foundations. As anticipated by D’Arcy Thompson in his seminal
work, mathematical formalism and tools are needed in shape analysis and
classification for their abstraction and synthesis power: “we must learn from the
mathematician to eliminate and discard; to keep in mind the type and leave the
single case, with all its accidents, alone; and to find in this sacrifice of what matters
little and conservation of what matters much one of the peculiar excellences of the
method of mathematics” [26].

Though until recently regarded as a niche of research, 3D Shape Analysis
is just now maturing to a key discipline: it is getting many people involved,
and is penetrating many applied domains, spanning from Entertainment to Life
Sciences, from Cultural Heritage to Industrial Design, from Manufacturing to Urban
Planning. In all these contexts, mathematics provides shape descriptors, which can
be successfully applied to shape analysis. Special emphasis is given to issues related
to the definition of abstraction tools for deriving high-level descriptions of complex
shape models [5, 17,22,23].

Our efforts have been focusing on computational topology that is a branch of
computational mathematics aimed at the solution of problems related to topological
issues, without disregarding the feasibility or the computational complexity of the
problem.

Here, we present a shape analysis and comparison pipeline based on a collection
of functions defined of an object (Sect. 2). These functions are supposed to represent
meaningful shape properties and drive the extraction of a geometric/topological
shape descriptor. In this contribution, we focus on Reeb graphs and persistence
diagrams (Sects. 2.1.1 and 2.1.2). In order to use sets of functions for capturing
different shape aspects, we describe a clustering approach that minimizes the
redundancy in the final shape description (Sect. 2.1.3). We also take advantage of
persistence spaces, which can be used as shape descriptors in the case of vector-
valued functions (Sect. 2.2.1). We finally show the proposed pipeline in action,
dealing with the retrieval of textured 3D shapes (Sect. 3).

2 Computational Topology Methods for Shape Description

Characterizing a shape means building a computational description (a shape
descriptor) that preserves the most representative features of the shape, usually a
few basic types, along with their relationships and their invariants [16]. In this con-
text, Mathematics plays a key role to handle with the complexity of digital shapes.

2.1 Shape Descriptions Based on Real-Valued Functions

Differential topology, and specifically Morse theory, provides a suitable setting to
formalize several problems related to shape analysis and description, and concretely



Shape Analysis and Description Using Real Functions 95

approach them through the algorithmic resources offered by computational topol-
ogy. In this scenario, methods have been derived to analyze the shape of an object
according to the properties of real functions defined on it. The added value of these
approaches is that different functions can be used according to the properties and
invariants that one wishes to capture, thus providing a flexible shape description
framework. Examples of popular functions used in object retrieval are distance
functions, geodesic-based functions, Laplace eigenfunctions and distribution maps
[6,7]. The resulting descriptors compactly store the geometric/topological informa-
tion related to the shape; here we focus on Reeb graphs and persistence diagrams.

2.1.1 Reeb Graphs

The notion of a Reeb graph dates back to 1946, when George Reeb [22] defined
the quotient space of a smooth manifold S with respect to a simple, Morse function
f S — Rin terms of equivalence relation “~” that identifies the points belonging
to the same connected component of level sets of f:

(p. () ~ (q. f(¢) if and only if f(p) = f(g) and p, g are in the same
connected component of £ ~!(f(p)).

The quotient space defined by Reeb is what is currently called Reeb graph and
stores the evolution and the arrangement of the level sets of a real function defined
over the shape. It is able to convey both geometrical and topological information,
since the topological analysis is driven by the properties expressed by f.

Since its first application in Computer Graphics by Shinagawa and Kunii [23]
in 1991, Reeb graphs have been used to solve different problems related to shape
matching, morphing and coding. To deal with shape matching, it is necessary
to enrich the pure topological Reeb graph with local information, i.e. geometric
attributes that represent the characteristics of the shape parts that correspond to
nodes and edges of the graph. We adopt here the Extended Reeb Graph (ERG)
description, which has been first defined in [5]. The ERG represents a surface
through a finite set of level sets of f, and can be used to describe triangle meshes
representing surfaces, with or without boundary [4].

If we consider the interval [f,,, fis] containing the image of the continuous
function f : S — R and a set of real values { f; : f; € [fm, fu]}, an extended
Reeb equivalence between two points p,g € S is defined by:

1. f(p) and f(q) belong to the same element of ¢ € /;
2. p and q belong to the same connected component of f~!(z),1 € I;

where [ is the partition of [ f,,,, fir] induced by the values { f;}. It follows that all
points satisfying the above conditions 1. and 2. for an element ¢ € [ are Reeb-
equivalent in the extended sense and they may therefore collapse into the same point
of the quotient space. The quotient space obtained from such a relation is a discrete
space, called Extended Reeb (ER) quotient space [4]. The ER quotient space may
be represented as a traditional graph named the Extended Reeb Graph (ERG), by
following the adjacency relations among the elements of f~'(¢), 7 € 1.
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Fig. 1 A model (a) and the corresponding ERGs with respect to two eigenfunctions of the
Laplace-Beltrami operator (b and ¢) and the distance from the center of mass (d)

From the practical point of view, we start the extraction of the ERG by
considering a uniform sampling of [ f,,, fir], then we possibly refine the level set
using the adaptive, bisection criterion proposed in [4]. Beside the combinatorial
representation of the graph, the ERG is embedded in R? by associating each node
with the position of the barycentre of the corresponding part and visualized almost
everywhere as an approximation of the centerline skeleton of .S, see Fig. 1b—d. This
picture shows how different functions can give insights on the shape from various
perspectives.

2.1.2 Persistence Diagrams

Persistence diagrams are one of the main tools introduced in the context of
persistence [14], and can be used to globally describe the shape of an object
according to a topological perspective.

The main idea is to explore the evolution of the lower level sets of a function
f : X — R defined on a topological space X . The function f measures properties
which are considered relevant for the analysis of the shape; the role of X is to
represent the object under study, and can vary from an iconic view of the model to
its surface or volume.

Focusing on the occurrence of important topological events, it is possible to
obtain a global shape description. We refer, e.g., to the birth and the death of
connected components, tunnels and voids, which are encoded in a Oth-, Ist- and
2nd-persistence diagram, respectively. For example, the Oth persistence diagram of
f X — R keeps track of the connected components which remain disconnected
passing from a lower level set X, of X to another lower level set X, with u < v,
being a lower level set for f defined as X, = {x € X : f(x) < u}, foru e R.

Figure 2 shows the Oth persistence diagrams for the “height” function defined on
two surface models. As displayed in the picture, a persistence diagram can be seen
as a collection of points lying in the half-plane {(u,v) € R? : u < v}, (red dots in
Fig. 2b, c¢). Each point (&, v) in the diagram describes the lifespan of a connected
component: the u-coordinate denotes the value of f at which a new component
appears in the associated lower level set X,;; similarly, the v-coordinate denotes the
value of f at which that component merges with an existing one. The distance from
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Fig. 2 A model (a) and a noisy version of it (d), both associated with the height function (color
coded from blue for low values to red for high values), and the corresponding Oth persistence
diagrams (b and c)

the diagonal u = v represents the component lifespan, which in turn mirrors the
importance of the topological feature that component represents: points far from
the diagonal describe important, long-lived features, whereas points close to the
diagonal describe local information such as smaller details and noise. Consider for
instance the three red points in Fig 2b which are farthest from the diagonal: Together
with the red line, they mirror the existence of four meaningful features: the legs of
the horse (Fig2a) born at the four minima of the height function. In particular, the
red vertical line can be interpreted as a point at infinity, and represents a connected
component that will never die, i.e. its u-component corresponds to the smallest value
for the height function, and its v-component is equal to +o0.

Persistence diagrams are stable under the so-called bottleneck distance: small
changes in the function f induces only small changes in the corresponding
diagrams, with respect to the aforementioned distance [13]. An intuition of this fact
is given by Fig. 2b, c: a slight perturbation in the original data results in a minor
movement for points of the persistence diagram which are far from the diagonal. In
other words, relevant topological features do not change that much. In particular, the
stability property allows for replacing the comparison of two shapes with the one of
corresponding persistence diagrams.

2.1.3 Selection of Representative Functions

Although the generalization to the case of multi-variate functions allows us to
capture properties of shapes that are intrinsically multidimensional (see discussions
in Sect. 2.2), here we depict the more general case in which sets of scalar functions,
not necessarily related each other, concur to provide shape’s information under
different viewpoints.

Selecting the (hopefully small) number of functions that better describe the shape
of an object is an open problem. Being able to reduce the number of functions would
help to avoid redundancy in the shape description and to associate to the object a
small set of descriptors, e.g. Reeb graphs. Moreover, such a reduction must preserve
as much as possible the descriptive power of the descriptors.

In this scenario, we present the clustering approach proposed in [9] to select a
subset F/ C F of scalar functions that qualitatively define a sort of basis of the
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shape properties. The approach groups the functions in a completely unsupervised
manner according to a distance defined on F. The results obtained in [9] show that
for a given class of shapes it is possible to identify a (small) number of functions
that are mutually independent.

For a set F = {fi,..., fu} of n functions defined on a triangle mesh T
representing a shape, the distance #( f;, f;) between two functions f; and f; is
given by:

vVifi V' -
VANVl

T f) = — 3

area(T) =

<

with V* f;, V' f; representing the gradient of f; and f; over the triangle t € T.
Intuitively, we are assuming that a relevant discrepancy in the distribution of the
gradients (and therefore of the level sets) of two functions f; and f; implies that they
are significantly different. From the practical point of view, we derive the function
distances directly as a weighted sum over the triangles of the dot products of the
function gradients. In this way, gradients are well defined and the distance evaluation
is linear in the number of triangles of T'. Then, a matrix M with entries M;; :=
1 — Z(fi, f;) is used to store the distances between all the possible couples of
functions and to determine the clusters, i.e., groups of functions that qualitatively
perform similarly. Therefore, the computation of M costs O (n*t) operations, where
n represents the cardinality of F and t is the number of triangles of T'.

We represent each cluster as an n-dimensional vector x = (x;), whose
components are real numbers expressing the level of participation of the function
fi in the cluster. A small value for x; mean that f; is weakly associated to the
cluster, whereas a high value means that the f; is strongly associated to it. The
cohesiveness of the elements of a cluster is expressed in terms of the quadratic
form Q = x” Mx so that the (pairwise) clustering problem is reduced to that of
finding a vector x maximizing Q; in practice the clustering problem is solved by
the following quadratic program (see the formal proof in [21]):

maximize x’ Mx, x € A", (1

where A" is the standard simplex of R”.
Equation (1) is (locally) solved through the so-called first-order replicator equa-
tion [28], adopting the iterative model (2):

(Mx);

x() T Mx(k)’ @

xi(k +1) = x;(k)

where k represents the iteration step. Once a cluster is identified, the corresponding
rows and columns are removed from the matrix M. In summary:

1. select the components of x such that x; > €, where € is a cohesiveness threshold
fixed by the user;



Shape Analysis and Description Using Real Functions 99

2. remove the functions already clustered by deleting the corresponding rows and
columns in the matrix M ;
3. reiterate on the remaining functions.

In the practical implementation of the method, the complexity of the cluster
detection is O(n logn) where n is the cardinality of the set F.

2.2 Shape Descriptions Based on Vector-Valued Functions

A common scenario in applications is when two or more properties naturally
concur to define and analyze the shape of an object. This is generally the case
of the analysis and comparison of time-varying CT scans in medical imaging:
for example, studying features like gradient magnitude and curvature is important
to detect anomalies related to the cycles of the heart process. Sometimes it is
desirable to study properties of a shape that are intrinsically multidimensional,
such as the coordinates of an object in a 2D or 3D image (e.g. for tracking
applications) [3], or photometric properties, which are usually taken into account in
digital image segmentation. Further examples can be easily addressed in the context
of computational biology and scientific computing for the simulation of natural
phenomena. All these cases motivate the introduction of vector-valued functions
for shape analysis and description.

2.2.1 Persistence Spaces

In the context of persistence, the use of vector-valued functions leads to a gen-
eralization of the notion of persistence diagram to that of persistence space [10].
For example, for a function f = (fi,...,fn) : X — R” and for any u =
Ui, ...,up),v = (vi,...,vy) € R*, with uy; < v; foralli = 1,...,n, the Oth
persistence space associated with f keeps track of the connected components which
remain disconnected passing from the lower level set X, of X to the lower level set
X,, being a lower level set for f defined as X, = {x € X : fi(x) < w;,i =
1,...,n}.

We refer to [10, 11] for more details on the notion of persistence space, as
well as for a list of analogies with that of persistence diagram. For the present
contribution, it is probably sufficient to emphasize that, similarly to the case of
persistence diagrams, also for persistence spaces it is possible to prove stability
under function perturbations, with respect to either the Hasdorff distance [11] or a
generalization of the bottleneck distance [10]. In Sect. 3.2.1 we describe a compu-
tational framework for the practical usage of persistence spaces as textured shape
descriptors.
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3 An Application to the Retrieval of Textured 3D Images

In order to show the capabilities of the proposed shape descriptions, we test them in
the context of textured 3D shape retrieval.

Nowadays, many sensors are able to acquire not only the 3D shape of an object
but also its texture, and multiple-view stereo techniques enable the recovery of
both geometric and photometric information directly from images. Photometric
features contain rich information about the visual appearance of real objects [25],
and play an important role in many shape analysis applications [27]. Indeed,
the combination of shape and colour information has been studied for visual
object recognition [24] and image processing [19]. In a shape retrieval context,
methods dealing with photometric properties of shapes have been introduced, e.g. in
[18,20,30].

Here we propose a shape description and retrieval work-flow able to handle
both geometric and photometric information. The geometric information is based
on a collection of Reeb graphs built on a set of real-valued functions, while
photometric information is handled within the persistence setting, namely using
persistence diagrams and spaces. In this way, a similarity measure between different
shapes can be assessed, comparing them through suitable distances defined on the
associated shape descriptors. Experiments are performed on the SHREC’ 13 dataset,
a collection of 240 textured shapes, in the form of triangle meshes [12].

3.1 Geometric Description

In our framework we are interested in functions that somewhat are related to
shape properties. In principle, this set of functions is very large; the space of
the eigenfunctions of the Laplace-Beltrami operator or heat-kernel functions are
possible examples as well as distance-based or geodesic-based functions [9]. We
start from a set of 76 functions that in our idea reflects either intrinsic or extrinsic
shape features (see [8] for a complete description of these functions), then we cluster
them according to the method presented in Sect. 2.1.3. In this way, 12 functions have
been selected out of the starting 76, each one being a representative of a cluster, see
Fig. 3 for an example.

For each model in the dataset, such functions have been used to compute as many
Reeb graphs, thus providing a battery of geometric shape descriptors. We note that
the insertion in the loop of new functions would influence the type of geometric
invariance captured by the description without modifying the global framework.

For a function f, two Reeb graphs G, G, corresponding to two shapes S;, S»
are compared by measuring pattern vectors built on the weighted Laplacian matrix
L associated to the graphs, as proposed in Wilson et al. [29]. More in detail, the
Laplacian of a graph G with weighted edges is given by: L = D — A, where D is
the diagonal degree matrix whose non-zero elements D;; are the number of edges
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a b

Fig. 3 A 3D textured model for the SHREC’13 dataset (a), the corresponding matrix M with 76
functions (b), and a reduced version with 12 functions (c¢). The distances range from blue (zero) to
red (1); blue regions indicate functions that are strongly similar

which exit from the individual nodes v;, and the matrix A is the weighted adjacency
matrix defined as:

A = W (e), ifte = (vi,v;) € G;
N ) otherwise,

where # (e) is the weight associated to e. The matrix L is semidefinite positive.
Denoting e; and A; the ith eigenvector and eigenvalue of L, the matrix L may be
expressed by the formula:

L=od,

where @ = (®y); j=1..» = (VAier,...,~/A,e,). Then, the set of elementary

symmetric polynomials S;(ei,...,e,) = Zi1<~-~<ij eiei-orei, j = 1,...,n,is
used to define the feature vector B of the graph in terms of the matrix:

B:(fll?"'7flns"'1ﬁllﬂ"'1ﬁln)tv

where fj; = sign(S; (P, ..., Ppi)) - In(1 4+ [S; (P, ..., Dy;)|) are elements of a
matrix F = (fjj)ij=1...n-

Then, the distance between the two graphs G, G, is defined by d(Gy, G,) =
|IB; — By||. The final geometric distance between S; and S, is the sum of the 12

normalized distances between Reeb graphs, i.e. D(S1,S2) = )" d/,(d; (G, G2)).

3.2 Photometric Description

Photometric properties can be represented in different colour spaces, such as the
RGB and HSV spaces. We opt here for the CIELab colour space [15]. Defining
measures in the CIELab colour space is justified by physiological studies, showing
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a b c d
Fig. 4 A textured 3D model (a) and a representation of the associated L-, a- , and b-channels
(b—d). All representations are color-coded from low (blue) to high (red) channel values

that it well represents how the human eye perceive colours. Moreover, in the CIELab
space tones and colours are held separately: the L channel is used to specify the
luminosity or the black and white tones, whereas the a channel specifies the colour
as either a green or a magenta hue and the b channel specifies the colour as either a
blue or a yellow hue, see Fig. 4 for an example.

We exploit such colour representation in the way we include photometric infor-
mation in the persistence framework. Indeed, we consider the a, b coordinates as
jointly defining a bivariate function over a given shape, whereas L is used separately
as a scalar function. In this way, colour and intensity are treated separately. More
precisely, we associate each considered shape S with two functions f; : § — R
and f,, : S — R?, the former taking each point p € S to the L-channel value at
P, the latter to the pair given by the a- and the b-channel values at p, respectively.
The values of f1, f,, are then normalized to range in the interval [0,1]. Lastly,
S is associated with the Oth persistence diagram of f7, say Dgm( f7.), and the Oth
persistence space of f, 5, denoted by Spc( f45)-

For two shapes S| and S5, their photometric distance is the normalized sum
of the bottleneck distance dp (Dgm,(f1), Dgmy(f1)) between the correspond-
ing persistence diagrams and the Hausdorff distance dg (Spci(fap), Spca(fup))
between the corresponding persistence spaces. Indeed, these distances allow for a
stable comparison between the aforementioned persistence-based descriptors, thus
implying robustness to noise in concrete applications.

3.2.1 Computational Framework

For a shape S represented as a triangle mesh with k vertices, the computation of
the Oth persistence diagram Dgm( f7) can be achieved by the use of a union find
data structure, and is at most proportional to ko (k), where « is the notoriously slow
growing inverse of the Ackermann function. For further details we refer to [14,31].

As for a persistence space, we remark that, practically, it is not possible
to compute it exactly. Indeed, differently from persistence diagrams, in general
persistence spaces are not discrete collection of points in the real plane [10]. For
instance, the Oth persistence space of a bivariate function like f; 5 is an arrangement
of continuous structures living in R*. Being continuous, this implies that concretely
we can only get approximations of a Oth persistence space of f, ;. Following [8],
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this can be done through a collection of suitable Oth persistence diagrams computed
as follows:

1. let P be the set of points in the triangle mesh representing a shape S, and let M
be the greatest value between max,cp a(p) and max,ep b(p);

2. being k the cardinality of P, fix logk equally distributed real values i in the
interval (0, 1), and as many equally distributed real values j in the interval

3. for every i and j, compute the Oth persistence diagram for the function Fj; :
P — Rtakingeach p € P to

a(p)—j b(p)+j) .

Fi' = ’ . ’
i(p) = max T

4. for every point (u,v) in the Oth persistence diagram of Fj;, project it back to a
point (uy, uz, vy, v) € R* through the equations

(i up) = (1 =Du+ (j, =), iv2) =@ 1=+ (j.—)).

The set of all points in R* obtained according to the above procedure gives us an
approximation for the Oth persistence space of f, ;. Being based on the computation
of log? k persistence diagrams, approximating a persistence space in such a way is
at most proportional to ka (k) log? (k).

3.3 Experimental Results

We tested the proposed framework in a retrieval experiment. The 240 models of
the SHREC’13 dataset can be roughly grouped in ten subsets (four legs animals,
ants, birds, glasses etc.), each one containing 24 elements obtained as follows. Six
null models (two base meshes endowed with three different textures) are deformed
according to four transformations. Deformations occur at different strength levels
for the classes; nevertheless, the same texture may be shared by models belonging
to different subsets, see Fig. 5 for some examples.

In our experiments, models are associated with the geometric and the photo-
metric shape descriptions detailed in the previous sections. The final similarity
score between two shapes is the sum of the geometric and photometric distances,
which are beforehand normalized to range in the interval [0,1]. Then, each model
is used in turn as a query against the remaining part of the database, with the goal
of retrieving the most similar objects. In doing this, we assume that two objects
belong to the same class if they share both geometric and texture information. We
compared our method (OurMtd) with four ones among the best of [12]: a method
based on Scale Invariant Heat Kernels (A2), the Color-weighted Histograms of Area
Projection Transform (Gi), a method based on 2D multi-view and bag-of-features
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18D A==

Fig. 5 Models in the SHREC’13 benchmark belonging to different subsets: four amphoras, a
cup, two chairs and a table. Models in the same subset are characterized by geometric (a, b, d),
topological (f, g) or texture (a, b) deformations. Different textures are used for models in the same
subset (a, ¢, d). However, a similar texture may be applied to models in different subsets [(c, h),

(d, e)]
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Fig. 6 Left: Precision-recall curves for all methods. Right: Retrieval performances on the whole
dataset. For each evaluation measure, best results are in bold text

approach (G2), and an approach merging a shape description based on geodesic
distance matrices with RGB histograms (V3). We used Average precision-recall
curves, Nearest Neighbor (NN), First Tier (FT) and Second Tier (ST) as evaluation
measures.

Figure 6 (left) shows the performances of all methods in terms of average
precision-recall curves. Recall indicates the ratio of the models in a given class
returned within the top matches; precision indicates the ratio of the top matches
which are members of the correct class [2]. The final curve is averaged over all
the models. The larger the area below the curve, the better the performance under
examination.

Figure 6 (right), columns 2—4, reports the performances for all methods according
to the NN, FT and ST measures. These evaluation measures aim at checking the
fraction of models in the query’s class also appearing within the top k retrievals,
where k can be 1 (NN), the size of the query’s class (FT), or the double size of the
query’s class (ST). The final score, ranging between 0 and 1, is an average over all
the models.
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Conclusion

Combining shape and photometric properties offers several advantages: the
information conveyed can be encoded in compact and informative geomet-
ric/topological descriptions; the resulting framework is flexible because of the
translation of the shapes properties in terms of functions; it is robust to noise
and invariant with respect to the groups of transformations the functions are
invariant.

The experiments we have shown are performed over a synthetic dataset
combining geometric and photometric information. However, our framework
can be easily tuned to more specific, real-world datasets, for instance reposi-
tories of archaeological artefacts or protein models: in that case the selection
of geometric functions will reflect the nature of the new collection and also
the contribution of the photometric description might change according to the
different users needs. In addition, we highlight that the method is not limited
to geometric and photometric information: indeed we are able to include and
combine any property, which can be defined by real or vector-valued function
(e.g., an electrostatic potential in the case of protein models).

Finally, we think that this work paves the road to the automatic selection of
properties (i.e., functions) that are informative for specific classes of shapes
and goes towards the selection of intra-class shape invariants. In practice, the
method evolves with the insertion of new models (it allows for the inclusion
of other properties in the processing pipeline), it is modular (it is possible to
select informative subsets of properties) and adaptive (the combination rule of
the description can be changed, and even learned using a learning set extracted
from the original database). This fact naturally leads to the integration of the
framework proposed here with semantic annotation and statistic techniques,
such as semi-supervised learning strategies.

Acknowledgements This work is partially funded by the EU project IQmulus under grant
agreement no. FP7-ICT-2011-318787 and the CNR Flagship project INTEROMICS, InterOmics
PBO05, research unit WP 15.
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3D Symmetric Tensor Fields: What We Know
and Where To Go Next

Eugene Zhang and Yue Zhang

1 Introduction

This chapter discusses the state of research in the visualization of second-order,
symmetric tensor fields. Such tensor fields appear in a wide range of applications,
such as the metric curvature tensor in differential geometry, the stress and strain
tensor in solid and fluid mechanics, and the diffusion tensor in medical imaging.
While the word fensor can be more general, we will use the word to mean
symmetric, second-order tensors in the remainder of this chapter and therefore omit
the terms symmetric and second-order.

There have been many recent advances in the analysis and visualization of tensor
fields, made by the geometry processing, scientific visualization, image processing,
and medical imaging communities. We believe this is a time for reflection, when we
look back at our achievements and identify future directions. In this book chapter,
we will review facts about tensor fields that we think are the most important, i.e., that
should appear in an introductory textbook on tensor fields. Furthermore, we make
an attempt to point out problems that we believe are the most pressing in advancing
the research of tensor field analysis and visualization. We hope that our effort can
lead to more discussions and exchange of ideas.
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Section 2 reviews past research in symmetric tensor field visualization. In Sect. 3
we review what we believe are the most important results about tensor fields.
In Sect. 4 we discuss open problems that we feel are the most pressing before
concluding in section “Conclusion”.

2 Previous Work

There has been much work on the topic of 2D and 3D tensor fields for medical
imaging and scientific visualization. We refer the readers to the recent survey by
Kratz et al. [1]. Here we only refer to the research most relevant to this chapter.

Most of the earlier research on symmetric tensor field analysis and visualization
focused on the diffusion tensor, a semi-positive-definite tensor extracted from
brain imaging. The main focus is two-folds. First, fibers following the eigenvectors
of the diffusion tensor are computed. Second, appropriate glyphs are designed to
help the user understand the diffusion tensor. This has led to various measures
for the anisotropy in the diffusion tensor, such as the relative anisotropy and the
fractional anisotropy [2]. Unfortunately these measures do not distinguish between
the linear and planar types of tensors. Westin et al. [3] overcome this by modeling
the anisotropy using three coefficients that measure the linearity, planarity, and
sphericalness of a tensor, respectively. The aforementioned measures are designed
for semi-positive-definite tensors, such as the diffusion tensor. We refer interested
readers to the book [4] and the survey by Zhang et al. [5] on research related to this
area.

There have been a number of approaches to visualize 2D and 3D symmetric ten-
sor fields. Delmarcelle and Hesselink [6] introduce the notion of hyperstreamlines
for the visualization of 2D and 3D symmetric tensor fields. Zheng and Pang [7]
visualize hyperstreamlines by adapting the well-known Line Integral Convolution
(LIC) method of Cabral and Leedom [8] to symmetric tensor fields which they
term HyperLIC [7]. Zheng and Pang also deform an object to demonstrate the
deformation tensor [9]. These visualization techniques have been later used for
geomechanics data sets [10]. One of the fundamental differences between the
diffusion tensor and the other symmetric tensors from mechanics (stress, strain,
symmetric part of the velocity gradient tensor) is that the former is semi-positive
definite (no negative eigenvalues) while the latter can have both semi-positive and
negative eigenvalues. Schultz and Kindlmann [11] extend ellipsoidal glyphs that are
traditionally used for semi-positive-definite tensors to superquadric glyphs which
can be used for general symmetric tensors. In our work, we focus on the analysis of
traceless tensors which lead to a different glyph design.

Delmarcelle and Hesselink [6, 12] introduce the topology of 2D symmetric
tensor fields as well as conduct some preliminary studies on 3D symmetric tensors
in the context of flow analysis. Hesselink et al. later extend this work to 3D
symmetric tensor fields [13] and study the degeneracies in such fields. Zheng and
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Pang [14] point out that triple degeneracy, i.e., a tensor with three equal eigenvalues,
cannot be extracted in a numerically stable fashion. They further show that double
degeneracies, i.e., only two equal eigenvalues, form lines in the domain. In this work
and subsequent research [15], they provide a number of degenerate curve extraction
methods based on the analysis of the discriminant function of the tensor field.
Furthermore, Zheng et al. [16] point out that near degenerate curves the tensor field
exhibits 2D degenerate patterns and define separating surfaces which are extensions
of separatrices from 2D symmetric tensor field topology. Tricoche et al. [17] convert
the problem of extracting degenerate curves in a 3D tensor field to that of finding
the ridge and valley lines of an invariant of the tensor field, thus leading to a more
robust extraction algorithm. Tricoche and Scheuermann [18] introduce a topological
simplification operation which removes two degenerate points with opposite tensor
indexes from the field. Zhang et al. [19] propose an algorithm to perform this pair
cancellation operation by converting the tensor field to a vector field and reusing
similar operations in vector field topological simplification [20].

More recently, Wagner et al. [21] describe a viewpoint that applies to tensors of
any type, including symmetric second-order tensors. The main idea is based on the
notion of harmonic field analysis, an application of spectral analysis.

3 Important Facts About Tensor Fields

In this section we review the most relevant background on tensors and tensor fields.

3.1 Tensors

A K-dimensional (symmetric) tensor T has K real-valued eigenvalues: Ay > A, >

. > Ag. When all the eigenvalues are non-negative, the tensor is referred to as
semi-positive-definite. The largest and smallest eigenvalues are referred to as the
major eigenvalue and minor eigenvalue, respectively. When K = 3, the middle
eigenvalue is referred to as the medium eigenvalue. An eigenvector belonging
to the major eigenvalue is referred to as a major eigenvector. Medium and
minor eigenvectors can be defined similarly. Eigenvectors belonging to different
eigenvalues are mutually perpendicular.

The trace of a tensor T = (Tj) is trace(T) = Z,.K=1 A;. T can be uniquely
decomposed as D 4+ A where D = %]I (I'is the K-dimensional identity matrix)
and A = T — D. The deviator A is a traceless tensor, i.e., trace(A) = 0. Note
that T and A have the same set of eigenvectors. Consequently, the anisotropy in a
tensor field can be defined in terms of its deviator tensor field. Another nice property
of the set of traceless tensors is that it is closed under matrix addition and scalar
multiplication, making it a linear subspace of the set of tensors.
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The magnitude of a tensor T is ||T|| = /> ., i<k T”2 = ,/ZiK A2, while

the determinant is ]_[,-K=1 Ai. When K = 3, there is an additional quantity,
minor(T) = A1A; + A1A3 4+ A3, which is not to be confused with the term minor

2
eigenvalue of T. For a traceless tensor T, when K = 2 we have w = —|T|

2
while when K = 3 we have w = —minor(T). These facts demonstrate two

things. First, the formulas of these tensor invariants become much simpler when
considering traceless tensors without losing anisotropic information (difference in
the eigenvalues and eigenvector information) in the tensor. Second, for 3D tensors,
the trace of the tensor, the magnitude and determinant of the deviator of the tensor
uniquely determine the three eigenvalues, yet with a more meaningful description
than considering the three eigenvalues independently.

A tensor is degenerate when there are repeating eigenvalues. In this case, there
exists at least one eigenvalue whose corresponding eigenvectors form a higher-
dimensional space than a line. When K = 2 a degenerate tensor must be a multiple
of the identity matrix. When K = 3, there are two types of degenerate tenors,
corresponding to three repeating eigenvalues (triple degenerate) and two repeating
eigenvalues (double degenerate), respectively. The discriminant of a tensor [14] is
definedas [ [, <i<j< k(A=A j)z. A tensor is degenerate if and only if its discriminant
is zero.

In 2D, the aforementioned trace-deviator decomposition can turn any tensor into
the sum of a degenerate tensor (isotropic) and a non-degenerate tensor (anisotropic).
As an example, consider curvature tensor of two-dimensional manifolds embedded
in 3D. It has the form K = U’ (Kl 0

0 K2
curvatures and the columns of U are the corresponding principal curvature
directions.

The isotropic-deviator decomposition amounts to [22]

(m 0) _ VKD + K3 [Sin¢((1) (1)) tcosg (1 0)} "

0/(2 ﬁ 0 -1

) U where k1 > kK, are the principal

where k7 + k2 = ||K||? is the total curvature and ¢ = arctan(i‘lfl’g) measures the
relative strength between the isotropic and anisotropic components in the curvature
tensor. Figure 1 shows the canonical shapes corresponding to various representative
¢ values and how ¢ can be used as a classification of surface geometry on the bunny
surface.

For 3D tensors, the complexity increases. A traceless tensor can still be
degenerate, i.e., two repeating eigenvalues. Moreover, there are now two types of
double degenerate tensors. The first type is linear, where A; > A, = Aj. In this
case, Ay = A3 is the repeated eigenvalue, while 1| (major eigenvalue) is the non-
repeated eigenvalue. The second type is planar, where A; = A, > Aj3. For planar
tensors, the non-repeated eigenvalue is the minor eigenvalue.
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Fig. 1 Surface classification scheme based on the shape index ¢ € [7/2, /2] is color mapped
to the [BLUE, RED] arc in HSV color space: Left top: continuous mapping. Bottom: binned
classification. The legend (right) shows surfaces patches which are locally similar to points with

given values. This figure is a courtesy of [22], (©2012 IEEE

g&0

Fig. 2 Visualization of the impact of tensor mode using various types glyphs: ellipsoids (top),
boxes (middle), and superquadrics (bottom). The leftmost and rightmost columns correspond to
planar and linear degenerate tensors, respectively. Notice how planar degenerate tensors transition
gradually towards linear degenerate tensors through non-degenerate tensors (middle columns)

A traceless tensor T can be characterized by its mode [17], defined as mode(T) =
3”‘/T€| ||"3r| . The mode achieves its maximum value 1 when T is a linear degenerate tensor
and its minimal values —1 when T is a planar degenerate tensor. Figure 2 shows the
transition from planar degenerate tensors (left column) to linear degenerate tensors

(right column) through non-degenerate tensors (middle columns).
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If all the eigenvalues of a tensor T are positive, the tensor is positive-definite.
Examples of semi-positive-definitions include the diffusion tensor from medical
imaging and the metric tensor from differential geometry. Tensors that are indefinite
include the curvature tensor from differential geometry and the stress and strain
tensors from solid and fluid mechanics. For semi-positive-definite tensors, their
anisotropy can be measured by the so-called fractional anisotropy:

FA(T) = l \/(M —12)2 + (hr — A3)2 4+ (A3 — 1))? o
2

1171

The fractional anisotropy achieves the minimum value O when T has three equal
eigenvalues. It achieves the maximal value 1 when T is degenerate.

3.2 Tensor Fields

We now review fensor fields, which are tensor-valued functions over some domain
2 C RX. A tensor field can be thought of as K eigenvector fields, corresponding
to the K eigenvalues. A hyperstreamline with respect to an eigenvector field e; (p)
is a 3D curve that is tangent to e; everywhere along its path. Two hyperstreamlines
belonging to two different eigenvalues can only intersect at the right angle, since
eigenvectors belonging to different eigenvalues must be mutually perpendicular.

Hyperstreamlines are usually curves. However, they can occasionally consist of
only one point, where there are more than one choice of lines that correspond to
the eigenvector field. This is precisely where the tensor field is degenerate. A point
po € §2 is a degenerate point if T(py) is degenerate. The topology of a tensor field
consists of its degenerate points.

In 2D, the set of degenerate points of a tensor field are isolated points
under numerically stable configurations, when the topology does not change given
sufficiently small perturbation in the tensor field. An isolated degenerate point can
be measured by its tensor index [19], defined in terms of the winding number of
one of the eigenvector fields on a loop surrounding the degenerate point. The most
fundamental types of degenerate points are wedges and trisectors (see Fig. 3), with
a tensor index of % and —%, respectively. Let LT, (p) be the local linearization of

T(p) at a degenerate point py = (XO), ie.,
Yo

IT _ (an(x —x0) +bu(y —yo)  an(x —xo0) +bin(y — yo)) 3
nlP) (alz(x —x0) + bi2(y —yo)  axn(x —xo) + bn(y — yo) ©)

ajl—az
117022
52 bia

characterizes the type of degenerate points [12]. More specifically, po is a wedge

Then § = is invariant under the change of basis. Moreover, it
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when § > 0 and a trisector when § < 0. When § = 0, py is a higher-order degenerate
point. A major separatrix is a hyperstreamline emanating from a degenerate point
following the major eigenvector field. A minor separatrix is defined similarly. The
directions in which a separatrix can occur at a degenerate point py can be computed
as follows.

Let LT ,,(p) be the local linearization at pg. Since LT, (p) is linear, the major
eigenvector field e; and the minor eigenvector field e, respectively have a constant
orientation along any ray emanating from py. A ray whose direction is parallel
to the major eigenvector field along it is referred to as a major separatrix, while
a ray parallel to the minor eigenvector field along it is referred to as a minor
separatrix. Finding either major separatrix or minor separatrix directions leads to
a cubic polynomial with either one or three solutions under stable conditions [23].
It is known that around a trisector there must be three solutions, corresponding to
three separatrices that divide the neighborhood of py into three sectors, thus the
namesake. Around a wedge there can be either one sector or three sectors.

The total tensor index of a continuous tensor field over a two-dimensional mani-
fold is equal to the Euler characteristic of the underlying manifold. Consequently,
it is not possible to remove one degenerate point. Instead, a pair of degenerate
points with opposing tensor indexes (a wedge and trisector pair) must be removed
simultaneously [19].

The topology in 3D tensor fields is more challenging. While triple degeneracies
can exist, they are numerically unstable [14], i.e., can disappear under arbitrarily
small perturbations. Stable topological features in 3D tensor fields consists of
double degenerate points that form curves. A curve consists of either purely
linear degenerate points, or purely planar degenerate points. Furthermore, along a
degenerate curve the tensor field exhibits 2D tensor degenerate patterns [16].

To be more precise, consider a degenerate curve y and a point py € y. The
repeated plane at py is the plane that is perpendicular to the non-repeated eigenvec-
tor at po. Recall that the non-repeated eigenvector is the eigenvector corresponding
to the non-repeated eigenvalue of T(py), which is the major eigenvalue for linear
degenerate points and the minor eigenvalue for the planar degenerate points.

Let (vi,v2) be an orthonormal basis for the repeated plane at py and v3 be a
unit non-repeated eigenvector for T(po) such that (vi, v,, v3) form a right-handed
orthonormal basis. Under this basis the tensor field has the form:

Mii(p) Mp(p) Mis(p)
Mi2(p) Ma(p) Moai(p) “)
Miz(p) Mas(p) Mss(p)

When p — po, Mi3(p) and Mys(p) approach 0. Moreover, if py is a
linear degenerate point, the difference between the eigenvectors of M(p) =

(Mn(P) M2 (p)

Mi2(p) M2 (p)
A3 approach 0 as p approaches py. A similar statement can be made for a planar

degenerate point, except that we replace A, and A3 with A; and A,, respectively.

) and the projection of the eigenvectors corresponding to A, and
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Fig. 3 Near a degenerate curve, 3D tensor fields exhibit 2D tensor patterns such as wedges (in the
left plane, also the inset to the left) and trisectors (in the right plane, also the inset in the right).
Such patterns persist along the curve until transition points (fop of the curve), where the wedge and
trisector cancel each other

M(p) restricted to the repeating plane P at py has at least one degenerate point,
po- The 2D tensor pattern near py is typically either a wedge or a trisector. See
Fig. 3 for an illustration. The tangent of degenerate curve y at pg is v (Mj1(p) —
M2 (p)) x vMi2(p). This is the direction in which M(p) remains degenerate [16].
When 7 (M1(p) — Mxn(p)) x yMa2(p) = 0, the tangent to the degenerate curve
is parallel to the repeated plane at py. In this case, the 2D degenerate pattern of M
inside the repeated plane is a higher-order degenerate point. It is referred to as a
transition point as it is the boundary between wedge points on y and trisector points
ony.

Figure 3 illustrates this with an example. When taking a stack of cut planes
moving upwards, we can observe two 2D degenerate patterns (wedge and trisector)
in the projected tensor field moving closer and eventually canceling each other at
the transition point.

A separating surface is the union of all hyperstreamlines emanating from a
degenerate curve following one of the eigenvector fields. There are three sheets of
such a surface around the trisector segments along a degenerate curve and one or
three sheets around the wedge segments.

A degenerate curve can be extracted by finding the zeroth levelset of the
discriminant function [14]. In one such approach, degenerate points are first found
on the faces of cells in the mesh on which the tensor data is represented. Given
a face, we start with a random point in the plane containing the face and perform
the Newton-Raphson method on the discriminant function. Once all such points
are found on the faces of cells, they are connected by straight line segments
that approximate the degenerate curves between these points. The tangent to the
degenerate curves at the points on the faces are used to remove ambiguity in how
these points are connected. In a more refined approach, numerical integration is used
to actually trace out the segments between degenerate points on the faces.

Degenerate curves can also be extracted with the realization that they are crease
lines of fractional anisotropy function and the mode function of the tensor field [17].
A point py is a ridge point of a scalar function f if 7f(po) X ex = vf(po) xe3 =0
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where e, and e; are the eigenvectors corresponding to negative eigenvalues 1, > A3
of the Hessian of f. A valley point py satisfies that 7f(po) x e; = vf(po) xex =0
where e; and e, are the eigenvectors corresponding to positive eigenvalues A; >
A, of the Hessian of f. A crease line can then be extracted using the well-known
Marching Cubes method.

4 Open Problems
In this section we describe some of the problems that we feel need the attention of
the various communities that deal with tensor fields.

4.1 Natural Parameterizations

Equation (1) describes a natural description of the curvature tensor. In fact, such a
description applies to any 2D symmetric tensors. More specifically, a 2D tensor T
can be rewritten as

T T T[] . 10 cosf  sinf
=— 5
(le Tzz) V2 sing 01 +cosd sinf —cosf )
where 6 = arctan(lelT_‘]Z,zz) and ¢ = arctan(——2tI2___) This can be

(T11=T2)?+4TF,
considered as a reparameterization of the set of 2D symmetric tensors, a three-
dimensional linear space, by spherical coordinates p = ||T|| € [0, 00), 6 € [0, 27),
and ¢ € [—%, F]. This parameterization maps the set of unit tensors to § 2, the
unit sphere. This sphere can be considered as sweeping the half circle in the right
image of Fig. 1 by the vertical axis. Travelling along any latitude, the tensors
maintain the eigenvalues while the eigenvectors rotate at the rate of %. Along any
longitude, we see the same transition shown on the curvature tensor in Fig. 1 (right).
Starting from the North Pole (two identical positive eigenvalues), going south
transitions through two positive but unequal eigenvalues, one positive eigenvalue
and one zero eigenvalue, one positive and one negative eigenvalue, then one zero
and one negative eigenvalue, two negative but unequal eigenvalues, and eventually
ending up at the South Pole (two equal negative eigenvalues). When interpolating
between two tensors that do not necessarily have the same magnitude, the projection
of the interpolation onto the unit sphere is the shorter segment of the greatest
circle between the projection of the two tensors. This means that as one travels
along this interpolation path, the eigenvectors of the first tensor rotates towards the
eigenvectors of the second tensor monotonically.

Similar parameterization is highly desired for 3D tensor fields. However, there
are some fundamental challenges. First, it is not obvious how the eigenvectors of a
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tensor depends on the entries of the tensor. Second, 3D rotations do not commute.
Third, the space of 3D symmetric tensors is six-dimensional. While the unit traceless
tensors form a four-dimensional subspace, it is still not clear how to model this
subspace. Fourth, there is a four-way symmetry in the frames generated from a
tensor. That is, there are four right-handed frames derived from the eigenvectors of
a tensor.

Finding an intuitive, preferably geometric relationship between the entries of
tensors and the corresponding eigenvectors of the same tensor can be key to finding
a natural parameterization and thus interpolation for the set of 3D tensors.

4.2 Physical Interpretation for Local Degenerate Patterns

It is known that there are two 2D fundamental degenerate patterns: wedges and
trisectors. When driving on two-way street networks, there are three most basic ways
of reversing driving directions: (a) a U-turn (wedge), a three-point turn (trisector),
and (c) driving in reverse (illegal). While this seems intuitive, the interpretation of
wedges and trisectors in domain applications remains less clear.

For example, in the curvature tensor field, it is understood that wedges and
trisectors appear around the umbilical points (equal principal curvatures). The type
of the point (wedge or trisector) depends on the local Gaussian curvature. When
the Gaussian curvature is positive, wedges appear. When the Gaussian curvature is
negative, trisectors appear. Geometrically, wedges appear naturally near the tips of
protrusions (elliptical), while the trisectors appear naturally in regions where two
protrusions join each other (hyperbolic). In contrast, it is not clear what wedges
and trisectors represent in more physical driven tensors such as the stress and strain
tensors, which are important quantities in fluid and solid mechanics and material
sciences.

Transition points are stable features in 3D tensor fields but rarely appear in 2D
tensor fields. Developing a clear understanding of the physical meaning of wedges,
trisectors, and transition points in terms of their physical interpretation can enable
wider impacts of tensor field topology in many applications of tensor fields in
science and engineering.

4.3 Index Theory and Topological Editing

A 2D degenerate point can be measured by its tensor index, which can be defined in
a fashion similar to the Poincaré index for vector field singularities. Such an index
has been extremely useful for 2D tensor field analysis and simplification. Recall
that the total tensor index of all the degenerate points is a constant, i.e., the Euler
characteristic of the underlying domain. Degenerate point removal must involve two
degenerate points, with opposite tensor indexes, so that the resulting tensor field still
has the same total tensor index.
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How to measure a 3D degenerate point? Would it make more sense to define
the index for a degenerate curve as a whole? This is one of the most fundamental
problems in advancing the state of 3D tensor field visualization.

What are the fundamental operations for simplifying the topology of a tensor
field? In other words, what are the fundamental bifurcations in 3D tensor fields?
How do we realize these operations? The aforementioned tensor field indexes, if
developed, can provide a critical insight on topological simplification.

4.4 Triple Degeneracy

Triple degenerate tensors are numerically unstable [14], which means that a linear
degenerate curve does not intersect a planar degenerate curve in general. However,
it is possible that two such curves pass through the same cell in the mesh, and their
separation is small. In this case it may be necessary to study the behavior of the
tensor field around the cell, which topologically is equivalent to that of a triple
degenerate point.

How many degenerate curves can emanate from a triple degenerate point, and
what kinds of degenerate points are on these curves (linear, planar, wedge, trisector,
etc)? Answers to these questions are necessary in providing a complete picture of
tensor field topology.

4.5 More Robust Degenerate Curve Extraction
and Classification

Existing methods for extracting degenerate curves cannot guarantee that all degen-
erate curves can be found. Moreover, no algorithm has been published in locating
the transition points on degenerate curves. This raises a fundamental challenge on
the physical interpretation of tensor field topology in terms of the applications.
Identifying a robust degenerate curve extraction and classification algorithm is
highly desirable. The indexes for 3D tensor fields can help identify cases where
some degenerate curves are missing from a degenerate curve extraction algorithm.
A possible first direction is to study linear tensor fields given their simplicity.

4.6 3D Tensor Fields and Their 2D Projections

There are two typical scenarios in which people need to deal with 2D and 3D tensor
fields simultaneously.
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First, domain scientists often inspect the projection of 3D data sets on some two-
dimensional submanifolds, such as a probe plane or the boundary surface of the
domain [24,25]. While it is straightforward to project a 3D tensor field onto a 2D
submanifold, it is not clear how useful the analysis of the projected tensor field is
for the analysis of the original 3D tensor fields. Under what conditions is such an
approach beneficial, and when is it misleading? A closer inspection of this is critical
to the widening use of tensor field visualization.

Second, one often needs to create a volumetric tensor field from the curvature
tensor field (2D) on the boundary surface [26], especially for remeshing purposes
where the volumetric mesh elements are required to respect to the features in the
boundary surface. While it seems straightforward to require that the eigenvectors in
the 2D tensors be also eigenvectors of the 3D tensors, it is challenging to determine
which two of the three eigenvectors of the 3D tensors be used. Moreover, it is
not obvious how to choose the third eigenvalue, and how this choice impacts the
application. Further research is necessary.

4.7 Extension to 3D Asymmetric Tensor Fields

There has been some recent advances in the analysis of 2D asymmetric tensor
fields [25,27,28]. While having complex-valued eigenvalues and eigenvectors make
the situations more complicated, some similarities between 2D symmetric tensor
field topology and 2D asymmetric tensor field topology have been noted, especially
when the eigenvalues are complex-valued. A natural question is how much what we
know about 3D symmetric tensor fields can be used to shed light on 3D asymmetric
tensor fields. Exploration in this direction can represent a major step towards
a complete understanding of tensor fields, whether symmetric or asymmetric.
Moreover, many science and engineering applications deal with asymmetric tensors,
such as the velocity gradient tensor in fluid mechanics and deformation gradient in
earthquake modeling. While it is possible to convert the asymmetric tensor field
into a symmetric one by multiplying with its transpose or simply removing the anti-
symmetric component, such an approach can cause information loss. Direct analysis
and visualization of 3D asymmetric tensor fields is highly desirable.

Conclusion

Tensor fields are finding applications in more and more domains in science,
engineering, and medicine. While our understanding of 2D tensor fields
has matured, our understanding of 3D tensor fields has not. A fundamental
challenge for more research in tensor fields is simply its mathematical
complexity, which usually presents a rather steep learning curve for an
average computational scientist conducting visualization research. Many facts

(continued)
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of tensor fields are scattered in tens, if not hundreds, of research papers.
Extracting a big-picture view of tensor field research can be daunting. In
this chapter, the authors attempt to summarize some of what we believe to
be most important facts about tensor fields, organized in an order that we
believe is intuitive. We also point out, based on our own research experience,
some immediate and long-term future research directions in tensor field
visualization. We hope that our effort will help advance the state of this field
and bring the tensor field visualization closer to realizing its full potential in
domain applications.
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A Comparison of Pareto Sets and Jacobi Sets

Lars Huettenberger and Christoph Garth

1 Introduction

The amount of data arising from computational or experimental treatment of
scientific problems has grown strongly over the past decades. Not only have typical
data sets increased in size, but also with respect to variety. For example, ensemble
simulations, i.e. repeatedly conduct simulations with slightly varying parameters, or
using different methods on the same problem to account for uncertainties and noise,
has been a trend of the recent past. Considering the outcome of this process as a
multifield data set, we observe that the image dimensionality has grown, too.

To provide visual analysis capabilities in such settings, several classes of
techniques were explored in recent research, including projection approaches,
hierarchical displaying or the usage of glyphs and icons [9]. However, due to the
overwhelming size and complexity of data in many application areas, those visual-
izations alone are often unsatisfactory and would require further improvement. To
offer a simplified representation, a proven approach has been to define important
features and structures in the data on which the visualization can focus.

Topological structures are one possibility to characterize such features. Among
other approaches, previous work on topological analysis of multifield data intro-
duced Jacobi sets [11], Morse decomposition [24], and Joint Contour Nets [7]
(JCNs). Those methods define their structures and criticality based on ideas of
topological agreement such that the interpretation of the individual functions, for
example with respect to extremity, can be transferred to the multifield data. To
identify the common idea in these concepts and, e.g. use it to improve the current
visualization tools or to decide under which scenario which tool is to be preferred,
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those methods need to be put into context with each other. Previous work on
Pareto sets [14] included an informal comparison to earlier topological concepts
and highlighted differences to the other methods above as a first step.

In this context, the goal of this paper is to examine deeper connections between
Pareto sets [14] and Jacobi sets [11]. Specifically, we prove a subset relation
between these sets of critical points defined by both theories in the smooth case. Our
result indicated further relations between both sets and other multifield approaches
specifically the Morse decomposition and the JCN methods.

The paper is structured as follows: After we provide a brief discussion of prior
work in the following section, we first recapture the fundamentals of Pareto sets
(Sect. 3) and Jacobi sets (Sect. 4) and provide an alternative characterization for
each set. We use these new definitions to outline a proof idea in the first part of
Sect. 5 and carry out this idea in its second half. The implication of the proof results
for future work are presented in Sect. 6 as well as a visual comparison of Pareto and
Jacobi sets using two data sets as a test set.

2 Related Work

The following paragraphs provide background and discuss the wider context of
multifield visualization into which our focus on topological structures falls. Cer-
tainly not all visualizations of multifield data are based on topological descriptions.
A general, non-topological approach is to present the modalities in multiple linked
but separate views [29]. Such techniques, however, do not include interaction
between the views explicitly but require the user to explore the images on their
own.

To guide the user through the data many different approaches are possible going
from user-supported selection and merge of subsets or subvolumes to the definition
of similarity measures.

Examples for the first area are Botchen et al. [2] or Nagaraj and Natarajan [19]
who used fuzzy logic and density functions, respectively, to guide isosurface
selection, or Woodring and Shen [30] who used boolean set operations to merge
several volumes. The second area, similarity measures, can be used to build a
graph-like structure to aid user-traversal through the separate modalities. Those
measures include global correlation (see e.g. Sauber et al. [22]) or coherence
(Nagaraj et al. [20]). Without such similarity definitions, Kniss et al. [16] proposed
the usage of multidimensional transfer functions to add connections between the
different views.

All these approaches aid users mainly to select and traverse through the data,
but they provide only few hints on which data to select or where to go. Finding
important structures inside the data is still left to the user. Topological approaches
try to fill this gap.

Coming from the user-interactivity point of view, different papers introduced the
idea of using topological representations to aid data traversal. For example, contour
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trees were applied for isosurfaces and volume rendering [8,26] and Jacobi sets and
Reeb graphs were used track volumetric features and quantities over time [4,5,27].

Coming from the mathematical side, topological approaches were introduced to
provide an abstract simpler view on the data for the user which still contains all
relevant features. For multiple scalar fields, such methods include Jacobi sets [11]
which work with the intersection and restriction of level sets and are based on
folding of smooth mappings by Whitney [28]. Stadler and Flame’s work [23] on a
mathematical approach to optimization problems on graphs inspired Huettenberger
et al. [14], who use partial ordering to define dominance relations on multifield data.

Through the calculation of steepest gradients most practical scalar functions
can be transformed into a vector field where for each location the scalar value is
replaced by the gradient vector at that point. Vector field topology is often used in
flow simulation and visualization. We refer to surveys like Laramee et al. [18] or
Pobitzer et al. [21] for more information on this direction. Finding stationary points
or orbits in vector field can be achieved by following trajectories as described by
Helman and Hesselink [13]. Alternatively these features can be identified through
the intersection of stream surfaces as done by Theisel and Weinkauf [25]. In prior
work, using topological graphs, Chen at al. [10] introduced Morse Decomposition
on single vector fields which were then extended by Szymczak to multiple vector
fields incorporating super transition graphs [24].

For completeness, the following references present approaches for subset selec-
tion and merging as well as view abstraction that are not based on topological
approaches or view points. For a general overview of multivariate and multifield
visualization techniques see Biirger and Hauser [6]. Further relevant work includes
Akiba and Ma [1] who suggested to couple information visualization with volume
rendering to visualize time-dependent, multiple scalar fields. In another combination
of information and scientific visualization techniques, Janicke et al. [15] used
brushing and linking of a graph structure called attribute cloud to visualize multifield
data. See Lampe et al. [17] for an approach to transform volumes into curves in a
neighborhood-preserving fashion such that the curves can be laid out and analyzed
in parallel. For an evolutionary approach, Fuchs et al. [12] used an evolutionary
search algorithm to assist hypothesis formalization in multiple volumetric data.

3 Pareto Sets

In this section, we first present the definition of Pareto sets aimed to construct
topological structures—specifically the definition of critical points and regions—
in a multifield setting. In the second half of the section, we proceed to an alternative
characterization of these critical points through point-specific linear programs. We
then prove that a point is in the Pareto set if and only if the corresponding linear
program has no solution, i.e. is infeasible.
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3.1 Pareto Sets of Multiple Morse Functions

The following concepts are adapted from an approach by Stadler and Flamm [23]
who described topological structures on graphs. We follow the presentation in [14]
and extend it from a piecewise linear, simplicial setting to a smooth case.

Henceforth, we consider M C R to be a d-manifold, d > 0, and f a function
f M R, k > 0,such that f = (fi...., fi) consists of kK Morse functions
fi M- R

To compare two different points x and y in M with respect to their values in
f we say that x (weakly) dominates y if fi(x) > fi(y) foralli = 1,...,k, and
denote this as x > y. Furthermore, x (strictly) dominates y, written as x > y, if
for each index i the stronger condition f;(x) > f;(y) holds. The points x and y
are called comparable if either x > y or y > x holds, and incomparable otherwise.
Intuitively, comparability is based on the notion that all functions f; change in the
same way—all either increase or decrease—when changing from x to y.

The definition of “>" provides a transitive relation, i.e. x > y and y > z imply
x > z. Together with reflexivity (x > x) and antisymmetry (¢ > b and b > a imply
a = b) we receive a partial ordering of points w.r.t. their values in the image of f.

Through this dominance relation we can now describe extremal points of f.
A point x is called a local Pareto optimum if there exists an open neighborhood
U(x) containing x such that all y € U(x) \ {x} are incomparable. Similarly,
x is a local Pareto minimum or local Pareto maximum, if, for all y € U(x), y
is either incomparable to x or strictly dominates or is strictly dominated by x,
respectively. All other points are termed regular. In the remainder of this paper,
we will drop the local attribute as we are not interested in global perspective, and
refer to Pareto optima, Pareto minima, and Pareto maxima collectively as Pareto
extrema, P. It should be noted that in the unifield case (k = 1), minima and
maxima are Pareto minima/maxima according to this definition. The definitions are
illustrated for k = 2 functions in Fig. 1.

Given a point x € M and an open neighborhood o with x € o, we define a
set of all points y € o which are strictly dominated by x, i.e. for which x > y

9(x)

\

ascending set Pareto-optimal region * ascending set

Pareto maximum Pareto maximum

Fig. 1 Pareto sets for two one-dimensional functions
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holds. For a sufficiently small neighborhood, this set can be characterized through
the gradients V f; for each function f;. To see this, note the linear approximation to
fis i) ~ f(x) + V(y —x)T - f;(x) for x close to y and V f;(x) the gradient
of f; computed at x. In other words, for two points x, y € o, we can approximate
fi(x) > fi(y)if y is contained in the set

HY(x) = {yeo | (y-x)"-Vfi(x) > 0}.

Considering all f;, x is dominated by the ascending set

k
Hi(x) == () HY ().

i=1

The descending set H (x) is defined analogously, such that HGjE (x) == H}f (x) U
H_ (x) is the set of all points in ¢ that are comparable to x.

Therefore, H, (x) provides a characterization of Pareto maxima that we denote
with the new symbol P* such that

Pt = {xe M| H(x) =0}

The set of all Pareto minima P~ is given analogously, together with P = P™ U P,
the set of all Pareto extrema or in general the Pareto Set.

For further reading, especially to understand the global structure defined through
connectivity between the Pareto extrema, we refer to [14].

Note that for a small neighborhood o around a point x, Hf (x) is a cone limited
by {y € 0 | 3:(y — x)-Vfi(y) = 0}. Due to the use of the strict dominance this
border is excluded from H, (x).

In the special case that, for some 1 < i < j <k, Vf; = —V f; holds at least
in o, H; (x) is empty while {y € o | 3;(y — x)T -V f;(y) = 0} = {x} must not
be true, especially for k = 2. Conversely, however, if we require V f; # —V f; for
every pair of functions, enforced e.g. through a preprocessing step, we can replace
the strict dominance relation in the above definition with the weak dominance
relation without consequences for the following theorem. However, we keep the
strict variant so we do not need any more restriction on the functions. This also
makes the proofs for the theorem easier to follow.

3.2 A Linear Program for Pareto Extrema

Towards the main result of this paper, it is useful to characterize points of the Pareto
set in terms of feasibility of a specific linear optimization problem. This allows us
to apply mathematical theorems from linear programming for the proofs in Sect. 5.
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To identify the Pareto set, we calculate an intersection of halfspaces characterized
by the gradients of f; hence it is reasonable that the optimization problem should
be based on a suitable description of the latter. Note that for each point x € M
those gradients are only related to a sufficiently small neighborhood U(x). Hence,
for each point x, each Morse function f; can be locally approximated by a linear
function g; with the only condition that g; (x) = f;(x) and Vg;(x) = V f;(x). With
this function g;, Hif, (x) = @ is equivalent to HfM(x) = () when f; is substituted
by g;. Note that g; is different for each x and not a global approximation of f;. For
easier reading we drop the o in H, (x) in the following theorem.

Theorem 1 Let ¢ > 0. Given a point p € M, and denote n; := V f; (p) .
Define a (k + 1) x (d + 1)-matrix

—nyg e —npg 1
Ay =
—ngy e —ngg 1
o -« 0 -1
and vectors
b= (—s,...,—e,O)T € RkH!

c=1(0,....,0,)7 eRrIt

Then HY (p) # @ if and only if the linear program 3”1'7" defined by

maximize ¢! x

ey

subjectto Apx < b

is feasible and unbounded. Feasible means that an x € RYHY exists with Apx < b
holds and unbound means that for every x with A, x < b we can find an x' # x
with A, x' < b such that cTx <cTy.

Proof Without loss of generality assume that p = 0 by translation such that through
the introduction of ¢ > 0, p is not a solution. Otherwise, without ¢, i.e. with b =
0 the zero vector, the linear problem would always be feasible with x = 0 as a
solution.

We prove the two directions of the equivalence claim separately. For =, assume
that H*(p) # @ such that y € H1(0) with y # 0 exists. Then, based on the
definition of H¥(0), (y —0)7 -n; > Oforalli = 1,...,k. Hence, &; > 0 exists

Vo> = >0,

— €min

n,-T-y-)/zsmm-yzsholdsforalli =1,...,k and any y > y.
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Note that we introduced an arbitrary y to receive an infinite amount of solutions
for 3”; . To find those solutions, for any y > yp, we define a ¢ > 0 such that the
following inequality holds forall i = 1,... k.

(nf-y-y)—q=ze
This is true as long as g lies within the difference of n ,T -y-yande,i.e.

0<g<(y-nl-y)—eforalli =1,... k.

o5 Y%, q)
A,-y" < bhold.

To see this, consider the calculation of line i, 1 < i < k, with A,; - y < —e.
Given the definition of A4, this calculation is equivalent to —niT -y +¢g < —eand
thus, is simply an inversion to our above argumentation, everything is multiplied
by —1. Due to the inversion the parameter ¢ changes into —g < 0 such that the
last line, A pk+1 vy’ < 01is also ensured. Hence P is feasible. Furthermore, with
the program is also unbounded.

Conversely for <=, let y € R**! be a solution to the linear program & Define

¥ = (yo, ..., yx) such that, based on the definition of &7,

—n,-T -y + yr+1 < —¢ and therefore niT -y’ > &+ yry1 hold.
Hence, with Ay x41-y = —1-yr4+1 < 0, we find that
nl -y >0

foralli = 1,...,k, such that y’ # 0 is in H*(0) by definition of the ;.
O

The linear program 3”; for which the gradient vectors are negated is defined
analogously, and its relation to H ~(p) is proven in the same way. Also note that, as
a direct implication of Theorem 1, p € M is not Pareto maximal, i.e. p ¢ P if and
only if 9;’ is feasible and unbound.

4 Jacobi Sets

In the following, we briefly revisit the concepts underlying the Jacobi sets. A more
thorough treatment can be found in [11].
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4.1 Background

The Jacobi set of k < d Morse functions f; on a common d-manifold M is defined
through level set intersection. The level set for one function f;, 1 < i < k, and
scalar value ¢ € R is the set M; := f,._1 (¢). For multiple functions, the intersection
of the level sets, excluding function f;, is defined by M, ; := ﬂi#, f7N(@) for a
vector ¢ € R¥. The Jacobi set J is the closed set of all point x that are critical in f;
restricted on M (y); for some index 1 </ < k with respect to scalar field topology.

Note that a level set in a d-manifold is of dimension d — 1 and the closed
intersection of k — 1 level sets is of dimension d — (k — 1).

Conversely, we have x € J if and only if after removing all points from M with
different values than x with respect to k — 1 of the Morse function, x is critical w.r.t.
the (k)th function, thus a minimum, maximum or saddle of some degree. Note that
x can become isolated in M y(,); which we then consider as critical too. In case of
k > d, this results in J = M.

In another approach towards Jacobi sets, presented by Edelsbrunner [11],
criticality of a point x € M is defined through the gradients of the functions f;
at x. Consider the gradients V f; of the function i # [ at a point x € M, for some
index 1 <[ < k and a k-vector ¢. Those gradients span the linear subspace of vector
normals of M. If V f; at point x also belongs to this linear subspace, x is critical in
i restricted on M ;.

In general, Jacobi sets can be described as the closure of a set of points x for
which there is A € R¥ such that A # 0 and Zle Ai -V fi(x) = 0. Hence,

J = ¢l

k
x €M | 3 e RF\ {0} s.t. inv-f,-(x)=o§

i=1

Note that in this linear combination negative parameters A; are allowed, thus the
direction of the gradient is ignored.

For further use we add the notation of the positive Jacobi Set J* that includes the
additional restriction that A; > 0 for all 1 < i < k and thereby results in a positive
linear combination.

k
Jt = {xeM | 31 e R\ {0} s.t. Z)kaf,-(x):()and/\,- >0 fa. i}
i=1

@

We obtain J* C J as a subset of the Jacobi set. In an analogous fashion, we also
add the notation of negative Jacobi sets J~. Note that both sets in our definition
of J* and J~ do not include the closure. We do this to avoid complications in the
following proofs with points that lie in the closure but not in the actual set.
Furthermore, note how the alternative definition is based on the gradient vectors
rather than on the values of the Morse functions. Thus, the translation of this
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definition for multiple scalar fields to multiple vector fields is immediate if each
vector field is equivalent to a gradient fields of some Morse function.

For the following Eq. (3) we also note its relation to the definition of critical
triangles by Szymczak [24], defined for k piecewise constant vector fields over a
2-dimensional manifold. Szymczak calls a triangle critical iff the convex hull of
its vectors—inside a triangle the separate vector fields are constant—contains the
zero vector. We present Definition 3 and its relation to Jacobi sets to use the results
in our main proof and, additionally, to put Pareto sets transitively in relation with
Szymczak’s definition.

k k

Cti=JxeM|IMeR st. D L) =0A) A =1AX>0"fai
i=1 i=1

3

Claim Under the assumption that for every x € M, v;(x) = V f;(x) with f; the
Morse functions as given above it holds that C* = J7.

Proof C: Obviously, if a convex combination with parameter A results in the zero-
vector, those parameters are also a positive linear combination that result in the
zero-vector. Furthermore, Y A; = 1 AA; > 0f.a.i excludes A = 0 as parameter.

: If the positive linear combination with parameter A results in the zero-vector,
we can conclude that Y A; = ¢ # 0 holds. The right inequality is implied by
the requirement that A # 0 and A; > 0 for 0 < i < k. Hence, with the new
parameter A’ = A/c we receive Y A; = 1 and the convex combination still
results in the zero-vector.

U

|

4.2 A Linear Program for Jacobi Critical Points

As with the Pareto sets, we aim to characterize points in the Jacobi sets through
the feasibility of a linear program. This translation allows us to use mathematical
results from linear program in the proof in Sect. 6 and furthermore provides a new
approach to compute Jacobi sets.

Theorem 2 Letagaine > 0, p € M, andn; =V f;(p) todefinea (d +1)x(k+1)-

matrix

—nyy - —ngy O

—Niqg - —Nmd 0
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and vectors

b= —e,...,—s,O)Te RFF!

c=1(0,...,0,)7 € R
Then p € J* if and only if the linear program .@;’
minimize  bTy
subjectto B,y = ¢ 4)
and yi >0
is feasible and unbounded.

Proof For =, let without loss of generality p = 0 by translation and assume that
p € J*. By Eq. (2) and the proven equality J* = C¥ there is a A € R? such that

k k
Z/\,‘ -n; = 0 with A; >0 and ZA, =1
i=1 i=1
holds. Thus, we define a possible solution for 9; with arbitrary o > 0.
yi=(aAq,....arg, (@ —1)7

Since Y¥_, A;n; = 0 holds, also 3°F_ A;an; = 0 is true such that the first d rows
of B,y = c are true. With

k k
(Zyi) = Vik+1) = (ZM) a—(a—1)=1
i=1 i=1

all conditions of @I‘f are fulfilled by y which is therefore feasible. Furthermore,
since

k
Ty = —s'a'z/\i = —¢ -«
i=1

can be arbitrary small with respect to c, Q;L is also unbounded.
Conversely for <, assume that 7;f is feasible with y € R¥*! as a possible solution.
First, define & := y+1) + 1 and parameter vector A € R¥ with

Ai = yi/a forall 1 <i <k.
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The problem condition y; > 0 holds for all i especially i = k + 1 which implies
A; > 0 for all i. This and the last row of the equation system B, -y = c, namely

Zf:o ¥i — Yk+1 = 1, furthermore imply that Zf:o A; = 1 holds. Also, based on
the first d rows of B,

k k
(Zn,--y,- =0) = (Zn;-ki = 0) holds.

i=1 i=1

Hence, with A as parameters, p € J* according to Eq. (2). O

As before, we can define a linear program %, for which an analogous statement is
easily proven, namely that p € J~ if and only if &, is feasible and unbounded.

5 Result

Having characterized both Pareto extrema and Jacobi critical points in terms of the
feasibility of linear programs, we proceed to state the main result. The proof'is based
on the weak duality theorem for a primal-dual system [3]. The following section will
briefly reiterate this statement and its preconditions.

Given a linear program in primal form

maximize ¢’ x

subjectto Ax < b

and a corresponding problem in dual form
minimize b7y
subjectto ATy =c¢
and y >0
for which the matrix A and the vectors b and ¢ are the same, linear programming
theory states the following result.
Theorem 3 (Weak Duality)

» The primal program is unbounded <> the dual program is infeasible
» The dual program is unbounded < the primal program is infeasible.

The complete proof can be found in [3] and in many other texts on linear
optimization. We proceed to use the previous results from Sects. 3.2 and 4.2 to
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easily prove the following result. We are able to do so since 9;’ , 3”;, _@;' ;and 7,
are all in primal and dual form, respectively.

Theorem 4 Given a d-manifold Ml € R? and k Morse functions f; : M +— R with
k < d, we obtain the following relations:

(i) Pr=J*F
(i) P~ =]
(i) P CJ

Proof (i). Given a point p ¢ P+ we know that, by definition of P, H ™ (p) # @.
Therefore, using Theorem 1, the linear program 9; is feasible and
unbounded. Since 9; is in primal form, weak duality provides that the
corresponding dual problem Q;L is infeasible, hence neither feasible nor
unbound. Thus, Theorem 2 implies that p ¢ J* and therefore J* C PT.

The reverse statement, P C J¥, follows analogously using the second
line of the weak duality theorem. Combined, we receive Pt =J*t.
Claim (ii) follows analogously by considering & and 7, instead of 3”;
and 7,7
(iii). We use (i) and (ii) for the second equality of

P=pPtuP =JtuJ cIJ.

|

Note that (iii) can be trivially extended to the case k > d since then J = M and
therefore P C J as a direct result. J] = M follows directly from the level set-based
definition of Jacobi sets. For each point p, after the restriction of a function to the
level set intersection of the other k — 1 > d functions, only p remains which is
obviously critical under such an restriction.

Examples in the following section and in previous work by Huettenberger
et al. [14] furthermore show that the subset relation (iii) is strong, i.e. P C J is
possible.

6 Discussion and Conclusion

6.1 Discussion

The result obtained here is based on a continuous formulation and requires Morse
functions over a d-manifold while the practical application would need to work on
a piecewise linear setting. Numerical experiments seem to indicate that there is a
similar correspondence, and its proof is the focus of ongoing work.
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Fig. 2 Pareto sets and Jacobi sets for a two-dimensional example with two functions. In both
images we used the same functions but inverted one of them for the results in the second image

We calculated Pareto and Jacobi sets for a selection of artificial and practical data
sets, given on two-dimensional simplicial meshes using the algorithms described
in [14] and [11]. Figures 2 and 3 provide the results from two datasets as examples.

First, in a fluid-filled can with a rotating bottom values like velocity, pressure, etc.
are measured to identify locations of possible vortices. On a cross-section through
the can, both the Jacobi set and the Pareto sets are calculated and presented in Fig. 2
for two of these measurements. Pareto extrema are shown in red (minima) and green
(maxima), respectively, while points in the Jacobi set are colored gray. Note that
P; C Ji holds.

In Fig. 2b, one of these component functions is negated, and the results are shown
using the same coloring as in Fig. 2b; here, P, C J,. Changing the sign of the
component functions, which inverts the gradient vectors, does not change the Jacobi
set since the definition of J allows positive and negative parameter A;. We therefore
have the equality J; = J,. We restricted the orientation of the gradients through only
positive or only negative parameter A; in the definitions of positive and negative,
respectively, Jacobi sets. Since we can neglect other possible orientations based on
the symmetry of Jacobi sets, it follows that for the closure c/{J IF ulJ ; + = J; holds
in these images. Hence, using our previous theorem, ¢/ {]P’T ) P;‘ } = Ji is also true.
This can obviously be extended to cases with even more underlying functions as
long as k < d, which allows the calculation of the Jacobi set through the calculation
of the Pareto sets.

As we consider the two-dimensional can dataset in Fig. 2, the points p € P
are those locations where the gradients of both functions point in parallel and in
opposite directions. The points p € intJ \ IP are the locations where the gradients
point in the same direction. Hence J \ P includes all points with parallel gradient
vectors, a common direction over all fields of steepest ascent. Note how the Jacobi
set connects the components in the Pareto set through one-dimensional paths. Hence
we can interpret J \ PP as connections of the components in P which form the
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Fig. 3 Pareto sets and Jacobi sets for a two-dimensional example with three Gaussian functions.
Fig. 3a illustrates the behavior of one of the three functions. The remaining images show the Jacobi
sets for the three possible pairings of the three functions separately

fastest paths through the domain. Future work towards multifield visualization
and topological structures should include a study of this observation to aim for
incorporation of Jacobi and Pareto sets to build global connectivities.

The second data set consists of three artificial functions obtained from sums of
Gaussians. Each component function has three minima and maxima. The location
of the minima and maxima are only slightly perturbed among the three function,
cf. Fig. 3a for an illustration of one of the functions. The Jacobi sets are calculated
and colored as in the previous figure, however since Jacobi sets are only defined for
k < d, we calculate them separately for each two-pairings of variables, shown in
the three Fig. 3b—d. Pareto sets based on all three functions are also shown in these
figures with the same coloring as in Fig. 2, but with additional yellow for Pareto
optima.

Note that the Pareto sets for each pairing of two functions can be calculated
through the intersection of the corresponding Jacobi sets and the Pareto set based
on all three functions. Hence, it was sufficient to only calculate the Pareto set once.
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Also note how the Jacobi sets from all three figures, if combined, form the border
of the components in the Pareto set. Our assumption and additional direction of
research is that this introduces, together with our main proof, a new approach to
calculate Pareto sets for a large number of functions through the combined Jacobi
sets for small number of functions.

6.2 Conclusion

This paper proved the following three subset and equivalence relations:

i Pr=J*F
G) P~ =]
Giiy P cJ

The previous subsection also provided the equivalence relation c/ {]P’f u IP’;' y=h
for the case of two underlying functions. The discussed concept can however be
extended to a arbitrary number of functions. This and the translation of the Jacobi
and Pareto set definition to linear programs provide new approaches to calculate
those sets.

New calculation tools and a better understanding of both sets and there relation
to each other are only the immediate results.

This paper also suggested an equality between Jacobi sets and the critical points
defined in the Morse decomposition approach [24], resulting in our subsequent
result J© = C*. However, Pareto sets and Jacobi sets are only two possible
approaches to define criticality in multifield scalar data and other methods exist as
well as methods for multifield vector or tensor fields. Thus, this paper is intended as
a step towards understanding the general concepts of multifield topology and their
practically application, for example for simplification techniques.
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Deformations Preserving Gauss Curvature

Anne Berres, Hans Hagen, and Stefanie Hahmann

1 Introduction

In industrial surface generation, it is important to consider surfaces with minimal
areas for two main reasons: these surfaces require less material than non-minimal
surfaces, and they are cheaper to manufacture. Based on a prototype, a so-called
masterpiece, the final product is created using small deformations to adapt a surface
to the desired shape. We present a linear deformation technique preserving the total
curvature of the masterpiece. In particular, we derive sufficient conditions for these
linear deformations to be total curvature preserving when applied to the masterpiece.
It is useful to preserve total curvature of a surface in order to minimise the amount
of material needed, and to minimise bending energy [9, 15].

Efimov was the first to introduce partial differential equations as a tool to study
infinitesimal bending. He gives an overview of the state of the art of infinitesimal
bendings in his textbook [6]. Hagen et al. [10] visualise the momentarial rotation
field that is associated with infinitesimal bending. They then use the structure of
this rotation field as a tool to analyse the deformations that were generated by
this bending. Hahmann et al. [11] investigate numerical aspects of discretising the
deformation vector field. Ivanova and Subitov [13] examine infinitesimal bendings
of surfaces of revolution and of polyhedra. Meziani [18] studies infinitesimal
bending of homogeneous surfaces that have a flat point and positive curvature.
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More recent works on infinitesimal bending for curves and non-parametric surfaces
have been published by L. Velimirovi et al. They study total mean curvature
variation on oriented, boundary-free surfaces [22], and they visualise changes of
bent curves as surfaces constructed from different stages of deformation [21].
Eigensatz et al. [8] use curvature as a tool to control surface deformation. They
extend this work to allow various user-specified local restrictions on deformation
[7]. Other works have addressed perturbations preserving the topological form of
polyhedra [1], and deformations preserving ambient isotopy of curves [14, 16].

In this work, rather than studying total curvature changes after bending, or using
curvature as a tool to deform surfaces, we employ total curvature as a tool to restrict
bending and avoid large changes. We assume a rigid material that can be bent out of
shape through exterior deformations but that cannot be stretched in tangent direction
through interior deformations, as common in engineering [2,4].

Section 2 gives an introduction into some fundamentals of differential geometry
that our method is based on. In Sect. 3, we describe and prove our approach, rounded
off by two examples in Sect. 4.

2 Fundamentals of Differential Geometry

We start by defining parametrised surfaces, tangents, derivatives, and Gauf} frames.
Then, we recall the definitions of the first and second fundamental forms, and finally,
we discuss various well-established definitions of curvature. For more definitions,
see [5].

A parametrised C" surface is a C"-differentiable mapping X : U — E? of an
open domain U C E? into the Euclidean space E?, whose differential dX is one-to-
one foreachq € U.

Remark 1 (a) A change of variables of X is a diffeomorphism 7 : U — U, where
T is an open domain in E2, such that 7’s differential dt always has rank = 2, if
the determinant of its Jacobian matrix det(t*) > 0 is orientation-preserving.

(b) Relationship: the change of variables defines an equivalence relation on the class
of all parametrised surfaces. An equivalence class of parametrised surfaces is
called a surface in E3.

(c) Let us denote in the following X, := %—L)f, X, = %, X = 835—8); or

alternatively X;, X;,i, j € {u, w}. The differential dX is one-to-one if and only
if % and g—iﬁ are linearly independent.

We can define a tangent plane which is spanned by the tangents of the
surface. This tangent plane, in conjunction with the surface normal, defines a local
coordinate system on the manifold.

Definition 1 (a) The tangent plane is a two-dimensional linear subspace 7, X of
[E3 generated by span{X,, X,,}, and it is called the tangent space of X atu =
(u,w) e U.
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Fig. 1 GauB} frame n
{X..X,, N} for the
surface X

(b) Elements of Ty X are called tangent vectors.

(c) The vector field N := %, where [., .] is the cross product, is called a unit
normal field.

(d) Themap N : U — S? C E? is called Gauf3 map, and the moving frame
{X., X\, N} is called the Gauf frame of the surface as displayed in Fig. 1.

Some properties of the surface can be determined using the first and second
fundamental forms. The first fundamental form allows to make measurements on
the surface: lengths of curves, angles between tangent vectors, areas of regions, etc.
without referring Back to the ambient space E>.

Definition 2 Let X : U — E? be a surface. The bilinear form of 7, X induced by
the scalar product (-, -) of E? by restriction is called the first fundamental form I,
of the surface.

Remark 2 Properties of the first fundamental form:

(a) The matrix representation of the first fundamental form with respect to the basis
{X., X,,} of Ty X is given by

(gll ng) — ((Xm Xu)(Xm Xw)) . (1)
821 822 (va Xu)(va Xw)

(b) Let us denote by

g = det(gy)

the determinant of the first fundamental form.
(c) The first fundamental form is symmetric, positive definite, and a geometric
invariant.

The second fundamental form allows us to study surface curvature and torsion.
One especially interesting consequence of the second fundamental form can be
found in the Weingarten equations which will prove useful when considering the
main theorem of this paper.
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Definition 3 Let X : U — E? be a surface andu € U.

(a) The linear map L : Ty X — TyX defined by L := —dN,-dX, is called the
Weingarten map.

(b) The bilinear form II,, defined by I1,(A, B) := (L(A), B) foreach A, B € T, X
is called the second fundamental form of the surface.

Remark 3 Properties of the second fundamental form:

(a) The matrix representation of 11, with respect to the canonical basis {e;, e;} of
T,[E? (identified with [E?) and the associated basis {X,, X,,} of T, X is given by

(hll h12) — ((_ us Xu)(_Nl,u Xw)) — ((Na XMM)(Na qu)) (2)
h2l h22 (_ ) Xu)(_NWa Xw) (Na qu)(Na wa) ’

ie.
hij = (=Ni, X;) = (N, Xj).

We can assume that 1j, = &5 since we are considering C"-continuous surfaces.
(b) Let us denote by

h := det(hy)

the determinant of the second fundamental form.

(c) We call two geometric objects congruent to each other iff. there is an isometric
transformation (i.e. only translation, rotation, and reflection are employed) from
one to the other. Congruences preserve lengths and angles.

(d) The second fundamental form is invariant under congruences of E* and
orientation-preserving changes of variables.

(e) It can be shown that (N;, N) = 0; i = 0, 1. Thus, N; can be represented by the
local frame of the tangent plane, and the following relation holds

1
Ni==> X, (3)
k=0

where the following equations

_ gy —hngn 0 = hi2g11 — h11g12
g g

_ hgn —hngi 0= hngi —hign
g g

I
@)
hy
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are called Weingarten equations [5]. Further, N;; can be expressed in terms of
the Gauf} frame, and it can be shown that the following relation holds

1
Xy =hyN + ) T X )
k=0

where I“I;‘ = (Xi, X;j) are called the Christoffel Symbols.

Curvature is of great interest in the context of differential geometry. The minimal
and maximal curvatures k1, k, at a surface point are the basis for the more interesting
definitions of mean curvature and Gaul} curvature. In this work, we examine total
curvature of surfaces under deformation in normal direction.

Considering surface curves, we get to know the geometric interpretations of the
second fundamental form:

Let A := A'X, + A%X,, be a tangent vector with ||A|| = 1. If we intersect the
surface with the plane given by N and A, we get an intersection curve y with the
following properties:

y'(s) = Aande, = £N ,

where e; is the principal normal vector of the space curve y.

The implicit function theorem implies the existence of this so-called normal
section curve. To calculate the minimal and maximal curvature of a normal section
curve (the so-called normal section curvature), we can use the method of Lagrange
multipliers because we are looking for extreme values of the normal section
curvature ky with the condition g;A'A/ = 1 = ||y’|| (Fig.2).

Fig. 2 Construction of
normal section curves
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As a result of these considerations, we can define various notions of curvature:

Definition4 Let X : U — E3beasurfaceand 4 = A' X, + 12X, a tangent vector
of X at u.

(a) The Weingarten map L is self-adjoint.
(b) The normal section curvature ky (1A', A%) can be computed as:

| a2 hiiA" Al

ky(A,A%) = TR
Unless the normal section curvature is the same for all directions (umbilical
points), there are two perpendicular directions A; and A, in which ky attains
its absolute maximum and its absolute minimum.

(c) Ap and A, are the principal directions.

(d) The corresponding normal section curvatures, k; and kj, are called principal
curvatures of the surface.

(e) Let X : U — E3 be a surface and y : I — E3 be a surface curve. We
denote by y(¢) the orthogonal projection of y(z) on the tangent plane 7, X at
(an arbitrary) point P := X(u). The geodesic curvature kg of y at P is defined
as the curvature of the projected curve y(¢) at P. A curve y(¢) on a surface X
is called geodesic if its geodesic curvature k, vanishes identically.

(f) kg = det(y, ¥, N), where dots denote derivatives with respect to the arc length
of y.

(g) H :=trace(L) = %-(kl + k») is called the mean curvature.

(h) K :=ki-ky = dei(L) = 7 is called the Gaup curvature.

(i) Total Gauf3 curvature, or short, total curvature, is defined as Koy = ff y KdX.

Remark 4 (Geodesics and Curvature)

(a) An arc of minimum length on a surface joining two arbitrary points must be an
arc of a geodesic.

(b) Assuming the boundary of a surface is given and we have to fit in a surface
patch of minimal area, then the minimal curvature of this patch has to vanish, in
which case, the mean curvature H = 0 will also vanish.

3 Deformations

Let X (u, w) be the masterpiece of an industrial surface. Let us further assume that
it is a minimal surface (i.e. H = 0), such that it covers a minimal area. This
masterpiece should be deformed along its normal direction N (u, w) by applying a
deformation function F(u,w) (F : U — E). Deformations along the normal mean
that interior deformations of the surface are not permitted (no inner bending).
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‘We consider linear deformations of the form
X(u,w,t) = Xu,w)+1-Fu,w)-N(u,w), (6)

fort € (—e, &), & = g+ o(t?), such that o(¢?) constitutes an infinitesimal change.
Let us notice that the more general case of linear deformations

X(u,w, 1) = X(u,w) + t Z(u, w), (7)

where Z(u, w) is a continuous vector field (Z : U — E%), is called an infinitesimal
bending if ds> = ds? + o(¢?), i.e. the difference of the squares of the line elements
of these surfaces has at least second order [6, 10, 11].

Let us first prove two properties of minimal surfaces which will be needed to
prove Theorem 1.

Lemma 1 For a minimal surface X (u,w), i.e. a surface with H = 0, we get

(a) [XquW] + [Nus XW] - Os
(b) (N,hi1Nyw + hooNy — h12Ny — hioNyy,) =0,

where N = —[X“éX“"] for g = det (21 iz) =gngn—8,.

Proof We will prove part (a) and part (b) of this Lemma separately.

(a) To prove Lemma la, we can expand Eq.3 to

h —h h —h
_ 12812 11g22Xu T 11812 12811
g g
h —h h —h
_ 22812 12822 X, + 12812 22811
g g

Ny

X ®)

N, X, )

from which we can immediately conclude the assumption:

h12812 — hngu hi2812 —hi1g»

[Xua Nw] + [Nua Xw] = [Xua Xw] + [Xua Xw]

XM’ XVV
= (h12812 — haogii + hi2g812 — hi1822) - o X0]
= —(h1182 + h2aagi1 — 2h12812)- N
_ hugan + hngn —2hngn
= — .gN

g
=—(ki+ky)-g-N

=-2H-g-N=0.
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(b) To prove Lemma 1b, we first compute the second derivatives of N. Then, using
the Weingarten equations, we can conclude the following relations:

Bhl oh?

Ny = X h qu_ _le_thwu
O ou !

Ny = ahlx —hiX ah%x h3 X
8h1 oh?

Ny, = X —h qu__le_thww
Cow w !
8h1 oh?

Now = =2 Xy — hy Xow — =2 Xoo — h3 X -
O ou 2

Next, we look at the scalar product of the normal vector and its second partial
derivatives. From this computation, we receive all basic components needed to
express part the formula given in part (b) of this Lemma:

(N. Nuw) = —h} (N, Xuus) = By (N, Xy) = —hihi — hih
(N, Nypw) = —h3(N, Xuns) — h3(N, Xyns) = —hyhiy — hhn
(N, Nuy) = —h1 (N, X0} — B3N, X,100) = —hihi — iy
(N, Nyu) = —h3(N, Xuu) — h5(N, X\ = —hihy —h3his.

We want to show that (N, iy Ny +hoo Ny —h12 Ny —h12N,,,) = 0. Taking
the above results, combined with Eq. 4, we arrive at

(N, h11 Ny + hoo Ny — h12 Ny — h1a Ny
= (N, hiiNww) + (N, hoaNuw) — (N, h12Nigw) — (N, 12 Nyu)
= —hithyhiy — hih3hy — haahihy — hyahthy
+ hiahihiy + hiahthyy + hiohyhay + hoh3h
= —hnhxn(hi + h3) + (hp)*(h} + h3)
= (hiha — (h12)*)(—=h3 — hy)

h
= g(hlzglz —h11822 + hi2g12 — haogit)

h
= —(—2Hg)
g

= —-2hH =0.
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We are now interested in shape-preserving modification of the masterpiece. We
consider infinitesimal deformations which do not change the Gaul3 curvature, and
therefore preserve the total curvature of the minimal surface.

We restrict ourselves to exterior deformations, i.e. deformations in normal
direction. Interior deformations, such as perturbations in the tangent plane, are not
permitted. This restriction serves the purpose of exaggerating or reducing features
that are present in the masterpiece but refraining from introducing additional
perturbations. We can now introduce the main theorem of this paper:

Theorem 1 A linear deformation
X(u,w,t) = X(u,w) + tF(u,w)N (u,w) (10

of a minimal surface X(u,w) witht € (—¢,¢), and § = g + o(t?) preserves the
Gauf} curvature if

DF = hllew + h22Fuu - 2h12Fuw - Fu(hIIFZIZ - hlellz + hzzrlll)\/?
+ Fo(hn T —holl + hnl3) Vg
= O,

and therefore preserves the total curvature [[, s Kds of our minimal surface X (u, w).

To examine the impact of linear deformation as given in Eq. (10), we need to
observe changes in some surface properties. We start with normal vectors, along
which we perturb the surface. Normal vectors deform as follows:

N(u,w,t) = IITIII ([Xus Xl + 1 [Fo Xy — FaXo, NI} + 0(£2) .

The deformed second fundamental form ﬁ, defined as

(I;l:ll }212) — ((]S/s {Zuuﬂj\?v )guw>)
h12 h22 (Nv qu)(Nv wa) '

can be written as

hi = (N +1-[FyXy— F.Xy. N|, Xue + t FuN + 2tF,N, + tFN,,) + o(t?)
= hit + 1 {Fu + det(F, X, — Fu X, N, X)) + F (N, Nu)} + 0(£%)

hys = hoy + 1 -{Fypy + det(F Xy — Fu Xy, N, Xons) + F (N, Nyu)} + 0(£%)

Rz = his +1-{Fu, + det(Fy X, — F, X\, N, Xuny) + F(N, N)} + 0(t?)

hay = hay + 1 -{Fyp + det(Fy X, — Fu X0, N, Xy)) + F(N, Nyu)} + 0(£%) .
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det(1l)
We know that K = D)’

the first fundamental form, which remains identical to det(/) up to an infinitesimal
change under deformation. To compute K, we have to compute the determinant of
the second fundamental form, det(II) = hn hzz — hlz his.

and we already have the determinant det(] ) = gof

det(ﬁ) = hi-ho —hi-hi
= hihy — hiphi + o(t?)
+t-{hn Fyy + hudet(F, Xy — Fu X0, N, Xy) + h1i F(N, Nyy)}
+t - {hoy Fuy + hopdet(F, X, — Fu Xy, N, X)) + hoo F (N, N}
— 1t - {h12Fyu + hipdet(F X, — Fu X0, N, Nyi) + hia F (N, Nyi)}
—t - {h12Fuy + hiodet(Fy X, — FuXo, N, Nuy) + 1o F (N, Nup )}
= hithy — hi, + o(t?)
+ t{hy Fyy + hydet(F, X, — F,X,,, N, X,,,)
+ hoy Fuy + hppdet(Fy X, — Fu X0, N, X))
—2h13 Fyy — 2h1pdet(Fy X, — F, X,o. N, Ny} .

As we know from Lemma 1b, (N, h11 Ny + hooNyy — hiaNyyw — hiaNyy) = 0
holds. Assuming F,,, = F,,, we can conclude that

SO Y M A
K=-"1"2""n ”g 2 1 o(12)

=K +1- {hllew + h22Fuu - 2h12Fuw
+ h (F, 5y — F,Iyy)det(X,, N, X,,)
+ ho(F, I — F.I})det(X,. N, X,,)
+ 2hy(F TS — F,IY)det(X,, N, X,,)} .

Since det(X,, N, X,,) = —det(N, X,, X,,) = —(N, [X,, X,,]) = —./&, the GauB
curvature changes als follows under deformation:

Ie =K +t '{h“FWW + h22Fuu - 2h12Fuw + hll(erzzz - Furzlz)\/g
+ hoo(Fo I = FuI)) Vg = 2hia(Fu TS — Fu 1) g}

This concludes the proof of the main theorem of this paper.
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4 Examples

In the following examples, we consider linear deformations, assuming bilinear
distribution function F(u,w) = au + bw + ¢ which has the derivatives F, = «,
F,=b,and F,, = F,,, = 0.

Example 1 (Helicoid) We deform a helicoid X, which is a minimal surface of the
form (Fig. 3)

ucosw
X(u,w) = | usinw | ,
d-w

withd = g—g, where d is the number of windings.
This gives us the following derivatives and normal vector:

cosw —usinw —sinw
Xy=|sinw]|] X, =1 ucosw Xuw = | cosw
0 d 0
dsinw
[Xus X0 1
= = —d cosw

B ||[Xu,Xw]|| vu2+d2

u

-20 =20

Fig. 3 A helicoid with u, w € [0, 67],d = %
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Next, we compute the elements g;; of the first fundamental form, and the elements
hj; of the second fundamental form.

g1 = (Xu, X,) = cos’>w +sin®w + 0 =1
g1 = (X, X)y) = —usinwcosw + usinwcosw + 0 =0
g = (X, X,,) = u?sin>w + u? cos’ w + d* =u’+d?
dsinwcosw —d coswsinw
hiy = (N, Xu) = =0
P ) Vs
—d sin> w — d cos? —d
h12: <N7qu> = il il =
Vu? +d? Vu*r +d?
—ducoswsinw + du coswsinw
h22: N7wa = =0.
( ) Ju? +d?

If we compute DF for our surface X and our deformation function F, and set
DF = 0 (Theorem 1), we end up with

DF = hii Fuw + hoo Fuw — 212 Fue — (h11 Ty — 1o Iy + oI - Fu /g
+ (hu L —hilh +hoo ) - Fu/g

—d
=0-Fup+0-Fy—2———="Fu
/M2+d2
—d
~(ont- o nt) m e
#0013 B 07 ) R
2d
= P+ d-0-Fy douFy
2d
=———-0+du-F,
u2+d2
=du-F,
=du-b=0
< b=0,

since Fllz = (Xuw, Xy) = 0 and 1"122 = (Xuw, Xy) = u.
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Therefore, to make the deformation (total) curvature-preserving, the bilinear
distribution function has to be simplified to the form au + c.

The resulting deformation is shown in Fig.4. The influence of the linear
coefficient a € {0,0.5,1} is given in the first row: in the beginning, the surface
is a helicoid, but with increasing a, it deforms to a funnel. This effect is amplified
by the scaling parameter¢ € {1, 1.25, 1.5}, since both are multipliers for the normal,
as seen in the second row. The influence of the constant coefficient ¢ € {0,0.5, 1} is
given in the third row: in the beginning, the helicoid’s centre curve is a straight line,
but with increasing c, it deforms into a helix, dragging along the adjacent portions
of the surface. The last row demonstrates the effect of r € {1, 2, 3} on this additive
portion: the almost vertical surface parts are stretched from little more than a line to
long sheets hanging down.

In real-world examples, parameters have to be chosen carefully (and small)
to avoid such drastic deformations. We used extremely large parameters for this
example to convey a general impression of the nature of change.

Our method is targeted at infinitesimal deformations. For the sake of illustration,
we have chosen extremely large parameters for the deformations in Fig.4. More
realistically, one has to choose a much smaller ¢ since we assume o(t?) to be
negligible in our proof. Thus arises ¢ < 1 as a necessary requirement.

With an initial K, = 0.0011, we consider a change of AK,; = 1 a sufficiently
small change. The discretised helicoid consists of 10,201 points, so this results an
average change of 0.000098 in Gauss curvature per point. This threshold is first
reached for t = 0.015 with F = 1, and it is last reached for r = 0.086 with F = u
in our example.

In Figs.5 and 6, we use the same deformation function parameters as in Fig4.
Both Figures illustrate how AK,, changes with increasing ¢. In Fig.5, we show
the change until the threshold of AK,, = 1 is reached. In Fig.6, we continue
deforming until # = 1.6, the maximum deformation used for the upper half of Fig. 4,
to demonstrate the instabilities occurring for large ¢. In these cases, the prototype of
a model has to be adapted before applying further infinitesimal bendings.

For this particular example, the signs of a and ¢ do not affect A K, when varied
individually since the helicoid is symmetric and applying the deformation with
opposite sign results in a similar deformation in opposite direction.

Example 2 (Fandisk)

Large industrial surface models are typically composed of smaller parts. For
example, consider a turbine: it is composed of fan blades, fandisks, and many other
components. It would not necessarily make sense to deform the entire model at once,
but it is relatively easy to modify a single part like a fan blade or a fandisk.

In this example, we present deformations on Hoppe’s fandisk model [12]. We
have recreated the part marked in the rendering of the original model (Fig. 7a) from
Bézier surface patches (Fig. 7b). As most real-world examples, this model has hard
edges. We preserve them as surface patch boundaries between adjacent patches.
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Fig. 4 The impact of deformation on the helicoid, shown separately for a,c, . In the first and
third row, only F = au + c is varied. The first row shows a varying coefficient a with a fixed
coefficient ¢ = 0, while the third row shows a varying coefficient ¢ with a fixed coefficient a = 0.
For the second and fourth row, we keep F fixed, while varying the scaling parameter ¢ in order
to demonstrate the influence of scaling on the linear and constant coefficients. Figures (a) and (g)
display the same surface from different perspectives. (a) F = 0¢ = 1, (b) F = 0.5u,t = 1, (¢)
F=ut=1,d)F=u,t=12,)F =u,t =14 F =u,t =16, F=0,r =1,
h F=05t=1),0)F=1t=1),()F=1t=2KF=1,t=30OF=1,t=4
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Fig. 5 Plot of AK, (vertical) over increasing ¢ (horizontal) up to |AK| = 1. (a) F = 0.5u,

b)F=1u,(c) F =05 F =1

To deform the entire model rather than a single patch at a time, we take the
average of adjacent surface normals to perturb edges. Note that this can only be

done on oriented manifolds.

We now take the technique we developed for minimal surfaces and adapt it to
general surfaces. Our goal remains to keep the surface area as minimal as possible
so the material cost remains as minimal as possible.

Now, we deform all surface patches with

Xu,w,t) =X, w)+1-Fu,w)-Nu,w),

where

Fu,w)=au+bw+c

is our deformation function.
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Fig. 6 Plot of AKy (vertical) over increasing ¢ (horizontal) up to t = 1.6. (a) F = 0.5u, (b)
F=1lu(c) F=05 F =1

\

Fig. 7 Fandisk model by Hoppe [12] and a portion of it recreated from Bézier surface patches. (a)
Model shown in Blender, (b) recreated as surface patches
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Fig. 8 Fandisk model under deformation with ¢t = 0.1. (a) F(u,w) = u. (a > 0), (b) F(u,w) =
w. (b >0),(c) Flu,w) =1.(c > 0), (d) F(u,w) = —u. (a <0), (&) F(u,w) = —w. (b <0), (f)
Fu,w)=—-1.(c <0)

In Fig.8, we demonstrate the effect of isolated changes of a,b,c on the
deformation. Figure 9 illustrates some deformations with combined parameter
changes.

The colour map in Figs. 7b, 8, and 9 depends on the Gauf} curvature at each point.
Blue areas are minima of Gauf} curvature, red areas are maxima of Gaul3 curvature
relative to the rest of the model. White areas are close to the median Gauf3 curvature.

In Fig. 10, we show changes in AKy over a deformation with ¢ € [0, 10]. For
relatively small values of 7, the deformation-induced change is stable. However, as
the deformation grows, instabilities begin to occur for ¢ approximately between 0.5
and 2.0. For extremely large values of ¢, the deformation is stable again, however
the deformed surface no longer looks similar to the original one.
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Fig. 9 Isolated change of one parameter at a time with ¢

F(u,w)

.........

1

F =

)

Fig. 10 Change in AK,, fort € [0,10]. (a) F = u, (b) F = w, (¢
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Conclusion

The goal of this work is to deform the masterpiece in a meaningful way,
i.e. enhance or decrease features; this can be done by perturbing in normal
direction. Since there is a direct connection between total curvature and
bending energy, the restriction of total curvature serves to restrict the bending
energy. This maintains a surface area that is as minimal as possible and
therefore reduces material cost.

We have presented a method to perturb surfaces without altering their
total curvature, thereby keeping their bending energy low. This results in
surfaces with a small surface are which can be manufactured at lower cost
than surfaces which have a higher total curvature and higher bending energy.
The surface and deformation function given in Example 1 have nice analytic
descriptions, so it is possible to make all computations manually. For the
surface in Example 2, this is not possible since we have to define normals
on hard edges.

We can deform a surface along normal direction, both outward (F (u, w) >
0) to increase features, and inward (F (u, w) < 0) to decrease features. While
the examples in Fig. 4 only present the results for deformation with a positive
F, the results look very similar (but upside down) for a negative F.

In real-world examples, the surface description is a lot more complicated,
making it more difficult to comprehend what exactly happens to the surface
during deformation.

A lot of such complex models possess sharp edges on which tangents and
normals are not clearly defined. In these cases, they have to be estimated from
the neighbourhood of an edge.

Our method is subjected to the same numerical limitations as partial
differential equations. It is proven for objects with an analytic description,
however, they are applicable to a meshes at the sacrifice of accuracy. In our
first example, we computed normals and tangents analytically, but the actual
deformation is performed on a discretised version of the model. Given an
arbitrary mesh, our approach is limited by the availability of tangents and
normals. Solutions to this are presented by [3, 17, 19, 20]. If the surface
has a boundary, we are, again, limited by the availability of tangents and
normals. However, given this information, the deformation procedure does
not discriminate between boundary points and interior points. For a given
surface patch, one can assume the normal and tangent on the boundary to be
identical to its neighbourhood. Under infinitesimal deformations, the genus of
a model will be preserved but if a deformation is very large, deformations can
introduce self-intersections.

It is possible to introduce a flow on a given surface. One of the important
and complicated challenges we want to address in the future is to apply

(continued)
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our deformations in a way that they not only preserve the index sum of all
singularities of a vector field defined on this surface, but also leaves the indices
of each singularity unchanged.
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Lyapunov Time for 2D Lagrangian Visualization

Filip Sadlo

1 Introduction

Vector fields play an important role in various domains, and appropriate understand-
ing is essential in many respects. While in the early years scientific visualization
tended to employ the Eulerian view, e.g., using color coding or arrow glyphs
for local quantities, it is nowadays increasingly the Lagrangian view based on
trajectories that is employed for visualization of vector fields (Fig.1). This is
in particular the case for time-dependent vector fields, where the straightforward
Eulerian view would necessitate time-dependent visualizations, while concepts
based on time-dependent trajectories, i.e., pathlines, in these fields are able to
provide a notion of their true dynamics in a static picture (Fig. 1). Visualization
techniques based on integral curves can be categorized into two main fields: dense
and sparse. While dense visualizations basically represent the vector field at each
point of its domain, e.g., by drawing a dense set of instantaneous trajectories
(i.e., streamlines), sparse techniques, on the other hand, typically focus on salient
features, e.g., they try to draw only the most important streamlines. Prominent
examples of the two extremes are line integral convolution [5] (LIC) (Fig. 2), where
a dense texture is obtained by smearing noise along trajectories, and vector field
topology [13, 14] (Fig. 3), where isolated zeros (i.e., critical points) with saddle-
type behavior of the vector field are extracted and streamlines (i.e., separatrices) are
computed from these points forward and reverse, providing the essential structure
of a vector field by separating its regions of qualitatively different behavior.

These two concepts, dense and sparse visualization, are typically applied sepa-
rately, but cases where both are combined in an additive manner are not uncommon,
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Fig. 1 Buoyant Flow dataset. The time-dependent 2D air flow is driven by a heated boundary at
the bottom and a cooled boundary at the top, while gravity is pointing downward. (a) Temperature
distribution at time #y = 50.5008 s, with blue at 278.15 K and red at 348.15 K. (b) Velocity field
at the same time step visualized with streamlines of length 0.04 s (seeds by black dots)

Fig. 2 Line integral convolution in Buoyant Flow dataset at 7o = 50.5008 s, based on streamlines
in original field (no normalization of velocity). No advection LIC (a) reveals noise texture,
advection with 7 = =£0.01 s (b) indicates flow, while advection time T = =%£0.1 s (c) reveals
its features

since both complement each other well. While, for example, vector field topology
provides a notion of the overall transport due to the vector field, LIC provides
detailed morphological information about this dynamics and is therefore often used
to augment topology-based visualization (Fig. 3).

Traditional vector field topology is defined in terms of asymptotic behavior of
streamlines as time goes to o0, i.e., in practice the separatrices are integrated
until they converge sufficiently close to other critical points, periodic orbits (closed
streamlines), or reach the domain boundary. This raises several issues, in particular
with respect to appropriateness and visual clutter. Separatrices can grow arbitrarily
far from the seeding saddle point, with the result that the phenomenon of interest
(the saddle-type flow behavior at the saddle point which causes the respective
separatrices) has only a very remote connection to that part of the separatrix.
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Fig. 3 Traditional vector field topology extracting saddle-type critical points (green) and integrat-
ing separatrices (white) therefrom in forward and reverse direction. LIC with T = #0.1 s provides
context. (a) Separatrices of integration length 2.0 s indicate qualitatively different regions of the
vector field. (b) Increasing integration of separatrix streamlines to 100.0 s can clutter visualization
(in this case due to non-vanishing divergence), in particular if integration time is further increased
(1,000.0 s) (c). Besides insignificant visualization, this can cause prohibitive computational cost

If it makes sense to visualize and investigate such long separatrices typically
depends on the application. However, such long streamlines suffer from error
accumulation during integration, and visual clutter during inspection. Visual clutter
can in particular impede proper analysis if the vector field exhibits vortical flow
that is not divergence-free. The example shown in Fig. 3¢ does, due to constraints
in computation time, not show the full-size separatrices, which would fill the
complete vortical structure, resulting in insignificant visualization. Hence, limiting
the length of separatrices can make sense both with respect to error accumulation
and perception.

A further drawback of traditional topology-based visualization of vector fields is
that it takes an instantaneous view on the field because it is based on streamlines.
Thus, in the case of time-dependent vector field data, it would need to be applied
to isolated time steps, which cannot provide appropriate insight into the true time-
dependent dynamics. During the last decade, the finite-time Lyapunov exponent [11]
(FTLE) field proved successful in providing a basis for topology-based visualization
of time-dependent vector fields. As will be detailed in Sect. 3, the FTLE measures
the divergence of pathlines with finite time length and is therefore able to indicate
the boundaries between regions of qualitatively different time-dependent transport
behavior. As a consequence, computation of the FTLE field requires to start a
pathline at each sample point (and time step of the FTLE field), turning this concept
into a large-scale problem, even for vector fields with very low resolution. The
rationale behind this is that due to its Lagrangian nature, the FTLE does not reflect
the local properties of a vector field. Since each pathline traverses a substantial part
of the vector field, the FTLE typically exhibits highly complex structures, far beyond
the variation of, e.g., tensor-product linear interpolation of the vector field itself
(Fig.4). In fact, its detail, including the length and sharpness of its ridges, grows
with increasing finite advection time 7" (Fig. 5). The high computational cost led to
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Fig. 4 Pathline-based FTLE in Buoyant Flow dataset, with 7y = 50.5008 s, forward (red) and
reverse (blue), with zoomed-in region (black box). Resolution of FTLE features is independent
of original vector field data. (a) Velocity magnitude reflects resolution of original data. (b) FTLE
with advection time 7 = =£0.1 s exhibits features that require higher resolution, and FTLE with
advection time 7 = =%1.0 s (¢) requires even higher resolution

Fig. 5 Pathline-based FTLE with ¢, = 50.5008 s, forward (red) and reverse (blue). Increasing
advection time T increases length of its ridges, T = £0.1s(a), T = £1.0s (b), and T =
+5.0 s (¢). Insufficient advection time results fuzzy features which do not reflect the topology of
the vector field (a). Too high advection time makes it very difficult to sample the features due to
aliasing (c)

various acceleration techniques, e.g., related to adaptive mesh refinement [8,25] and
using distributed compute environments [20].

So far, Lagrangian visualization techniques, such as the FTLE or LIC, typically
employ uniform integration time, i.e., all underlying integral curves are of equal
integration length. Depending if the vector field is normalized or not, this leads
to constant-length or constant-time integral curves, respectively. In time-dependent
fields, where such a normalization is not directly applicable, the integration time
has to be adjusted to the phenomenon under investigation. While finding a global
integration time that fits the overall visualization goal might be possible in some
cases, it is rather common that a vector field exhibits different spatial and temporal
scales, which necessitate different finite time intervals for Lagrangian analysis.
This difficulty was the motivation for the finite-size Lyapunov exponent (FSLE)
introduced by Aurell et al. [2]. Instead of prescribing the integration time and
measuring the divergence of the endpoints of the trajectories, as in the case of the
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FTLE, the FSLE prescribes a separation factor and measures how long it takes for
particles (trajectories) to separate by this factor. Hence, the FSLE can be seen as
the dual for the FTLE. In other words, instead of prescribing a time scale for the
analysis, as in the case of the FTLE, the FSLE employs a spatial scale by varying
the time scale.

In this chapter, we employ Lyapunov time (LT) for the visualization of 2D time-
dependent vector fields to address the aforementioned issues. Lyapunov time reflects
the limits of predictability of a system, i.e., it relates to the duration over which
trajectories are not dominated by error accumulation. Hence, we propose to utilize
LT for steering the integration duration in trajectory-based visualization. Due to
its close relation to the FTLE and FSLE, the resulting visualizations are related to
time-dependent vector field topology. In Sect. 2, we give an overview of less closely
related work, followed by a more formal introduction to the FTLE, FSLE, and LT
concepts in Sect. 3. In Sect. 4, we present the results of LT-guided visualization, and
in section “Conclusion” we draw conclusions and discuss possible future work.

2 Related Work

Most closely related works in the field of dense Lagrangian visualization are
texture advection techniques such as line integral convolution due to Cabral and
Leedom [5], and delocalization of quantities due to Fuchs et al. [7], where quantities
such as temperature or vortex indicators are averaged along pathlines.

Traditional (streamline-based) vector field topology was established in visualiza-
tion by the works due to Perry and Chong [23], Helman and Hesselink for 2D [13]
and 3D [14] flow, and Globus et al. [9]. Later works include those by Hauser et
al. [18] and Theisel et al. [33], the former in the field of dynamical systems, and the
latter regarding the visualization of homoclinic (heteroclinic) orbits, i.e., streamlines
that connect the same (different) saddle point in 3D. Beyond that, the vector field
topology concept was utilized in a variety of visualization techniques, e.g., for
achieving significant streamline placement [38] or guiding streamsurface-based
visualization in recirculating flow [21]. Other works in the context of recirculating
flow include the visualization of the magnetic field in fusion reactors [30] and
recirculation in general [22]. More recently, Bachthaler et al. [4] derived a vector
field topology concept for the visualization of magnetic flux in 2D fields.

In the field of time-dependent vector field topology, Haller proposed [11] and
Shadden et al. defined [32] Lagrangian coherent structures (LCS), the counterpart
to separatrices in time-dependent fields, to be ridges in the FTLE field. A good
introduction to the topic is the tutorial due to Shadden [31] and the survey
by Pobitzer et al. [24]. Sadlo and Peikert [26] proposed to extract LCS using
the height ridge concept due to Eberly [6]. Shadden et al. [32] and later Sadlo
et al. [28] investigate the choice of the uniform finite time scope for FTLE
computation, while Kasten et al. [17] proposed a local computation, and Uffinger
et al. [36] examined the linearization involved in traditional FTLE computation
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and proposed alternatives beyond first-order approximation. While the majority of
research focuses on the geometric shape of LCS, Bachthaler et al. [3] presented
a visualization technique for the dynamics within LCS in 2D fields, i.e., for the
stretching and squeezing in tangential direction. Beyond that, the LCS concept
was also extended to tensor fields [15, 35] and transport in advection-diffusion
flow [29], and used for computational steering of flow simulations [1]. Recent
advances in time-dependent vector field topology include the reinterpretation of
LCS as streakline-based vector field topology in 2D [27] and 3D [37] vector fields.
Based on the findings of Haller [10], Ide et al. [16], and Mancho et al. [19],
Sadlo et al. reinterpreted hyperbolic trajectories [10] as degenerate streaklines with
hyperbolic behavior and their manifolds (LCS) as streak manifolds converging
forward or reverse to these degenerate streaklines within finite time intervals. In
contrast to traditional LCS extraction based on FTLE ridges, streak-based LCS
avoid false positives caused by shear flow (similar to [12]), provide high-quality
results, and are of lower computational cost, however, with the drawback that
the degenerate streaklines (hyperbolic trajectories) have to be determined at high
accuracy.

None of these techniques employ varying integration time for sets of trajectories
and neither do they involve predictability considerations in this respect, in contrast
to the approach based on Lyapunov time we propose.

3 FTLE, FSLE, and Lyapunov Time

As introduced above, the FTLE crtg (x) measures Lagrangian separation by deter-
mining the growth of the distance between particles during their advection over a
finite advection time 7'. Haller [11] proposed to determine the FTLE by means of
the flow map ¢t€(x), which maps the seed points x of pathlines started at time #; to
their endpoints after advection for time 7. Based on this, the FTLE can be obtained
using the spectral norm || - ||, as

0, = mln AP mln Voo (V87)TVO7) M

with A« (- ) representing the major eigenvalue. It can be readily seen that the FTLE
basically measures the gradient of the flow map, i.e., a linearization of the largest
separation of pathline endpoints with uniform advection time 7'.

The FSLE can be seen as a dual approach: here, the separation factor s is
prescribed and the time 7 is measured, until this factor is achieved. As proposed by
Sadlo and Peikert [25], the FSLE 6,‘; (x) can be also computed from the flow map,
using the FTLE as follows:

@

6 =
10 | f()l '
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with

. !
Ty = arg min Vel =s. 3)
T

For efficient computation [25], the flow map (bg (x) can be computed incrementally
for increasing 7" until Eq. (3) is satisfied.

The Lyapunov time 7; (x) represents the smallest time interval that is necessary
for a perturbation started at x and time #; to grow by a factor of Euler’s number e,

. !
T, =argmin Ve |, =e. “)
IT|
Hence, using Eq. (2), LT relates to the FSLE as follows:

e _— ___ p—
T, = zg Ine = e - (®)]
to 1o

Throughout this chapter, we compute LT according to Eq. (5), using the algo-
rithm [25] for FSLE computation. Due to its high computational complexity, the cost
for LT computation typically predominates that of the subsequent LT-constrained
trajectory-based visualization (Sect. 4).

It is of course possible to compute the FTLE, FSLE, and LT for stationary vector
fields, or for isolated time steps of time-dependent fields, using streamlines. It has to
be noted, however, that the resulting structures cannot be consistent with traditional
vector field topology in general, although they may be similar sometimes [26, 34],
because, while the FTLE, FSLE, and LT are Galilean-invariant, traditional vector
field topology is not. This is demonstrated in Fig. 6.

Fig. 6 Galilean invariance of FTLE in Buoyant Flow dataset at #, = 50.5008 s. Traditional vector
field topology is not Galilean-invariant, i.e., result from original frame of reference (a) (Fig. 3a)
differs from result if observer moves from right to left at speed 0.05 m/s (b). (¢) Streamline-based
FTLE with T = 1 s, forward (red) and reverse (blue), is identical in both frames and exhibits, in
this example, features similar, but not identical, to (a)
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4 Lyapunov Time for Visualization

The utility of constraining integration time with LT in trajectory-based visualization
is demonstrated with three applications using the Buoyant Flow dataset (Fig. 1).
First, we include LT in sparse trajectory-based visualization (Sect.4.1). Then we
exemplify LT-based visualization by means of LIC (Sect. 4.2). Finally, we provide
results for LT-constrained delocalization of quantities (Sect. 4.3).

Since LIC requires streamlines for its generation and to support comparability
and interpretability, we use streamlines for generating all results in this section, i.e.,
the FTLE, FSLE, and LT as well the derived trajectories and delocalizations are
based on streamlines. In practice, however, our approach does address both steady
and time-dependent vector fields. Our results are based on the fields shown in Fig. 7.
Figure 7a shows the streamline-based FSLE with separation factor e and Fig. 7b the
LT 14, 505 derived therefrom. Since 1) 5 is rather restrictive, we also provide
results for 729 os» the “Lyapunov time” with separation factor 10 (Fig. 7c).

4.1 Sparse LT Trajectories

Motivated by the difficulties demonstrated in Fig. 3, we first employ LT for limiting
the integration length of separatrices (Fig. 8). Since the goal of vector field topology
is to depict the regions of qualitatively different behavior and since divergence
is comparably small in the examined data, we aim at separatrices that perform a
“single turn”, i.e., that reach the critical point where they were seeded. This way
they indicate the substantial regions and at the same time the effects of divergence.
While a global selection of integration time cannot achieve this goal (see Figs. 3a
and 8a), constraining integration by 8.0 - 7%, 5, achieves this goal for the saddles at
(i) and (ii) (Fig. 8b)—providing a significant visualization of the dynamics.

7/

-~ 4

a (®

Fig. 7 (a) FSLE 65 5003 forward (red) and reverse (blue). (b) LT 1,505 computed from (a),
forward (red) and reverse (blue). (¢) “Lyapunov time” 740 o With scaling factor 10 for comparison



Lyapunov Time for 2D Lagrangian Visualization 175

Fig. 8 (a) Visualization by separatrices with uniform integration length of 3s. While the
separatrices just reach the originating saddle point at (i), they pass it at (ii), resulting in insignificant
visualization there. (b) Visualization by separatrices constrained to 8.0 - 75 5. Separatrices reach
saddle point both at (i) and (ii), providing a more concise and better comprehensible visualization.
Confer Fig. 3a for uniform integration length of 2 s, where separatrices reach (ii) but not (i)

Next, we limit integration time with LT for regularly seeded streamlines (Fig. 9).
Figures 9a, d show uniform integration in forward and reverse direction, respec-
tively. Note that in our current approach, we do not employ streamline placement
to achieve an even placement of the lines—instead we use rather short integration
times to prevent excessive visual clutter. We want to address streamline placement
that involves LT as future work. Limiting integration length with LT not only
incorporates predictability aspects, it provides at the same time structures that
reflect the coherent structures. We found that limiting integration time with 75 5¢
(Figs. 9b, e) was rather restrictive, we preferred using 74 05 (Figs. 9c, f), as this
provided more pronounced structures. As illustrated in Figs.9g, h, our approach
reveals the regions of qualitatively different behavior.

42 LTLIC

The results from regularly seeded streamlines from Sect. 4.1 directly motivate limit-
ing integration in LIC using LT (Fig. 10). Again, 74 5. in particular 0.01 - 740 <0
(Fig. 10f), leads to results that depict coherent regions in a more pronounced manner.
In LT LIC visualizations, chaotic (less predictable) regions can be identified by
more noisy areas whereas predictable regions are represented with more line-
like structures. Compared to LT trajectories (Sect.4.1), LT LIC provides a more
continuous and more detailed picture of predictability and coherence.
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Fig. 9 (a)—(c) Forward streamlines at {, = 50.5008 s, of length 0.4 s (a), 0.3 - 7, 505 (b), and
0.1- ‘5513 5008 (€). (d)—(f) Same for reverse streamlines. It is apparent that 0.1 - rslg 5008 Provides more
expressive results. (g) Comparison of (¢) with forward FTLE from Fig. 6¢c shows that coherent
regions are well represented. (h) Same for (f) with reverse FTLE. (i) Forward (¢) and reverse (f)
streamlines together with forward (red) and reverse (blue) 0.1 - & .. for context

4.3 LT Delocalization

In our final example, we employ LT for the delocalization [7] of scalar quantities.
The concept of delocalization was originally used to make vortex indicators more
coherent. For each sample point, a trajectory is seeded there, a scalar field, in our
case temperature, is averaged along the trajectory, and the result is stored at the
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Fig. 10 Limiting LIC with forward and reverse 5 50g, using 1.0« 75 5005 (@), 0.1+ 75 500 (b),
and 0.01 - &, 505 (¢) shows coherent regions. However, using forward and reverse d0s,.s, Using
1.0+ 780 5005 (@), 0.1+ 749 0c (€), and 0.01 - 740 o (F) provides more significant results

seed point of the trajectory. Hence, delocalization can be interpreted as Lagrangian
averaging of quantities (Fig. 11).

In contrast to the original approach (Figs. 11a—e), which uses uniform integration
length, we limit the trajectories by LT (Figs. 11g—i). While the temperature field
from the simulation is subject to excessive diffusion (Fig. 11c) due to numerical
diffusion in the solver, delocalization provides a tool for investigating the advection
of quantities with reduced diffusion, in particular the delocalization in direction
reverse to the flow. Compared to traditional delocalization, LT delocalization takes
at the same time into account predictability of the involved trajectories, which limits
the resulting structures but prevents misinterpretation with respect to accumulation
of integration error. Nevertheless, we find it more difficult to interpret the overall
results from LT delocalization—providing a visualization of the underlying LT
trajectories for context is important.
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Fig. 11 Delocalization of temperature (c) (blue at 278.18 K, red at 348.18 K) at #, = 50.5008 s,
using streamlines of length 1.0 s forward (a) and reverse (b), with selected streamlines (black).
Delocalization with length 10.0 s forward (d) and reverse (e) reveals coherent structures (compare
streamline-based FTLE (f), same as Fig. 6¢). Limiting delocalization time with 1.0~ 74 54 for-
ward (g) and reverse (h),(i) does not provide coherent structures as clearly, but shows predictability,
i.e., only predictable structures with respect to temperature advection are shown

Conclusion

We introduced Lyapunov time in trajectory-based visualization and demon-
strated its use for separatrices and direct visualization by sets of trajectories,
for LIC, and for the delocalization of quantities. The resulting visualizations
not only reflect predictability limitations in these concepts, they reveal at the
same time the topological structure of the vector fields due to the close relation

(continued)
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between Lyapunov time and the FSLE field. As future work inspired from
our results in Sect. 4.1, we plan to develop streamline placement strategies
that take into account Lyapunov time, both for predictability purposes and
topological expressiveness.
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Geometric Algebra for Vector Field Analysis
and Visualization: Mathematical Settings,
Overview and Applications

Chantal Oberson Ausoni and Pascal Frey

1 Introduction

Nowadays, complex numerical simulations (e.g. in climate modelling, weather
forecast, aeronautics, genomics, etc.) produce very large data sets, often several
terabytes, that become almost impossible to process in a reasonable amount of
time. Among other challenges, storage, transfer, analysis and visualization are
the more crucial. This requires developing new methods and implementing new
algorithms to efficiently process this large quantity of information. On the other
hand, in mathematics or theoretical physics, problems are commonly posed in
high-dimensional spaces and require specific methods to reduce their dimension
and make the solutions understandable. In both cases, there is a critical need for
an abstract, general purpose method of analysis capable of extracting the salient
features of the complex data. Unfortunately, numerical algorithms are too often
inadequate to perceive the mathematical properties or the general structure of the
objects considered. In this chapter, we will explain how the formal language of
geometric algebras may be one of these analysis tools, as it provides a unified
framework bringing us closer by the topological aspects of geometrical problems,
in a wide range of applications, including scientific visualization. The main strength
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Fig. 1 Sampling a vector
field over a cube (/eft) and
summing the trivectors on the
unit sphere (right), to
compute an approximation of
the index, see 4.2 (reprinted
from [7]). Note that such a
trivector is a volume in space
and not a triple of vectors

of geometric algebra lies in the elegance and the generality (ubiquity) of its
formulations, which can be injected within the classical Euclidean framework as
well as in differential geometry. In this perspective, concepts and ideas introduced
should not replace existing theories and tools, but complement them and shed new
light on them.

Based on the work of Grassmann, Clifford’s geometric algebras, born in the mid
nineteenth-century, consider algebraic operators along with three main products to
describe the spatial relations characteristic to geometric primitives in a coordinate-
free approach. The many possibilities offered by Clifford algebras and geomet-
ric algebras (hereafter denoted GA), and especially their geometrically intuitive
aspects, have been emphasized by numerous scientists. For instance, the physicist D.
Hestenes has acknowledged their importance to relativistic physics [22]. Likewise,
the mathematicians G.-C. Rota [17], L.LR. Porteous [27] and J. Snygg [31], among
others, have largely promoted the geometric compactness and simplicity of GA,
hence contributing to broaden the field to further applications in computer graphics
and scientific visualization.

The next section will briefly present the main concepts and the basic manipula-
tion rules of Clifford and geometric algebras. Then, the specific case of vector fields
defined on d-dimensional spaces or on differential manifolds will be addressed in
Sect. 3. In the last section, we will show how geometric algebra can be efficiently
used to understand the algebraic structure of vector fields and implemented (Fig. 1).

2 Clifford and Geometric Algebras

Leaning on the earlier concepts of Grassmann’s exterior algebra and Hamilton’s
quaternions, Clifford intended his geometric algebra to describe the geometric
properties of vectors, planes and eventually higher dimensional objects. Basically,
Clifford algebra for R” is the minimal enlargement of R” to an associative algebra
with unit capturing the metric, geometric and algebraic properties of Euclidean
space [16]. In general, geometric algebras are distinguished from Clifford algebras
by their restriction to real numbers and their emphasis on geometric interpretation
and physical applications.
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Note. Our intent in this section is to give an elementary and coherent account
of the main concepts of Clifford and geometric algebras. The reader who is
interested in the theoretical aspects of geometric algebras is referred to the
textbooks [16, 19, 22], among others. Computational aspects of geometric algebra
and its usability in research or engineering applications are discussed in [7, 20].
We privileged a continuous and straightforward digest, deliberately avoiding the
conventional succession of definitions and theorems commonly found in most
textbooks. Furthermore, most of the concepts in this section are presented in a
general setting. The material in this section is intended to be fairly basic but readers
unfamiliar with abstract mathematical concepts should skip the formal definition, as
well as the advanced concepts in Sects. 2.1.2 and 2.2.1.

2.1 Clifford Algebra

Clifford algebra can be introduced in many ways; the approach we follow here
separates the algebraic structure from the geometric interpretation of the product.

2.1.1 Basic Notions and Definitions

Formal Definition Let V be a vector space over a field K, andlet Q : V — K bea
quadratic form on V. A Clifford algebra CI(V, Q) is an associative algebra over K,
with identity element 1, together with a linear map i : V' — CI(V, Q) satisfying,
for all v € V, the contraction rule i (v)> = Q(v)1, such that the following universal
property is fulfilled [24]:

Given any other associative algebra A over K and any linear map j : V — A
such that, forall v € V, j(v)> = Q(v)1y, there is a unique algebra homomorphism
f :Cl(V, Q) — A, for which the following diagram commutes:

V ——=CI(V,0)

N

A

Note that the existence and the uniqueness (up to unique isomorphism) of a
Clifford algebra for every pair (V, Q) can be established by considering a quotient
algebra of a tensor algebra.

The product defining the Clifford algebra will be called geometric product and
denoted as: u v, for u,v € CI(V, Q) (with a small space between the factors). One
usually considers V' as a linear subspace of CI(V, Q), thus dropping the inclusion
in the definition of the Clifford algebra, leading uu = u?> = Q(u). Consequently,
the vector space V is not closed under multiplication as, for example, u u is a scalar
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and not an element of V. The contraction rule also implies that every v € V has an

inverse v = ﬁ, unless Q is degenerate.

Intuitive Interpretation of the Geometric Product One can classically consider the
product of two elements a,b € V as the sum of a symmetric and an antisymmetric
part:

1 1
ab= E(ab—}—ba)—}—z(ab—ba).

<a,b> anb

— In this setting, the symmetric part < a,b > corresponds to the bilinear form ¢
associated to the quadratic form Q thanks to the polarization identity: ¢ (a, b) =
%(Q(a +b)—Q(a)—0(0b)) = %((a +b)(a+b)—aa—-bb)=<a,b >,
this, of course, as a consequence of the contraction rule v> = Q(v). When Q is
non-degenerate, it is an inner product.

— The antisymmetric part a A b has, if non-zero, to be understood as a new entity,
that is neither a scalar nor a vector. For Q non-degenerate, the so defined outer
product has a very simple interpretation: a A b, for a,b € V, geometrically
represents an oriented plane segment, and can be characterized by an algebraic
area (the usual area of the parallelogram with the vectors a and b as sides) and
the attitude (angular position) of this plane.!

The Graded Clifford Algebra Consider again the Clifford algebra CI(V, Q), V
and Q like above. We define G as the inclusion of the scalars K in CI(V, Q). Given
an orthonormal basis {e;, e,,...} of V, let G, be the part of CI(V, Q) generated

n o

from the products l_[ €, for1l <i; < .-+ < i,. The direct sum @ G, is then the
j=1 n=0

graded Clifford algebra. The elements of G, are called n-vectors, where n is the

grade. Elements can be of “mixed grade”, like the product a b of two elements in

V', which is a sum of a scalar (grade 0) and a bivector (grade 2). A multivector A

can be decomposed as asum A = > oo | A,, where A, = (A), is of grade r.

Extension of the Definition of Outer Product The outer product of two multivectors
Ay (grade k) and By (grade /) is defined as the grade |k + £|- part of the product
Ay By, writing Ay A By = (Ag By)k+¢ . This product extends by linearity on the
whole Clifford algebra. For any n < dim(V'), n-blades are defined recursively as
outer products of n vectorsa; A --- Aa, = (a; A--- Aay,—1) A a,. By convention,
0-blades are scalars. A n-blade is a n-vector, but the converse is not true. More
precisely [15], a sum of two blades A and B is another blade iff they are of the same
grade k and share a common factor of grade k — 1 or k.

IThe geometric interpretation of the decomposition of the geometric product in outer and inner
products will be explained again for ¥ = R3 at the beginning of Sect. 2.2.
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2.1.2 Advanced Concepts

Factorization of blades with the geometric product yields two equivalent forms for a
blade: one based on the outer product, the other on the geometric product. Actually,
for any arbitrary quadratic form Q, given a k-blade Ay, it is possible to find an
orthogonal basis {vi,--- , v} of this blade.? It implies the double formulation 4y =
VIAVRA - AV =V v, --- V. For example, if a, b € V, with Q(a) non-zero, we

_ _ <ab> _ _ <ab>
haveaAb-aA(b 10 a) =a (b 0@ a).

The meet and join are non-linear operations, corresponding to the blade intersec-
tion and union. Suppose we have an orthogonal factorization of two blades A and B,
i.e., they are given with their orthogonal factorizations A = A’C and B = C B, C
being the largest common factor. In this very simple case,” M = AN B = C and
J=AUB=(AC)nB.

Two important involutions are defined on CI(V, Q): reversion and grade involu-
tion. On a r-blade A = (a; A az A --+ A a,), the reversion AT consists of reversing
the order of the constitutive vectors (or, because the outer product is antisymmetric
on vectors, changing the sign r (r — 1)/2 times); the grade involution A* consists of
reversing the sign of every constitutive vector:

At =a, nar~Nnap =) D20 nay Ao na, AT = (1) A.

The reversion and grade involution extend by linearity on CI(V,g): if A =

Y20 Ar
o o0
AT =3y A=Y (-4,
r=0 =0
The even (resp. odd) multivectors are the ones with A* = A (resp. A* = —A).

Using the reversion and the selection of the scalar part (-)o, let us define a
bilinear form on CI(V, Q). On blades Ay and By, we set:

(A} Beoifk =€ #0
AcxBi=1{ Ay-By ifk=£=0 .
0 else

Extending it linearly to multivectors A and B, we obtain the general formula
A x B = (A" B),. Proof of the equivalence between both formulations can be
found in [22, p. 13]. On vectors, this bilinear form clearly corresponds to the inner

2A general demonstration (also valid for a degenerate Q) is given for example in [9, p. 88]. In
Euclidean spaces, the well-known Gram-Schmidt orthogonalization can be used.

3The dualization introduced in Sect. 2.2 makes more general equations for M and J possible.
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product: a * b =< a,b >. When Q is non-degenerate, it is non-degenerate, and it
is sometimes called Clifford scalar product.

2.2 Geometric Algebras

The case IV = R" and Q non-degenerate leads to a series of specific definitions and
results. As a matter of fact, we have for example:
Af Al

— Every non-zero blade A, has an inverse 5 = A

— If, in addition, Q is positive definite, then we can define the modulus of
element A as |A] = VATx A = \/W, since for an element a; ---a,,
(ay - 'ar)T(al ray) = Q(ar) -+ Qar) = 0.

— In R?, the existence of an inverse vector has a very clear interpretation. For a
given vector v € R3 and a given scalar a, the equation < v, w >= a defines the
affine plane wy + v*. Likewise, given v and a bivector A, the equation v Aw = A
defines the affine line wy+Av. In both cases, there is no unique solution. However,
in the setting of geometric algebra, the equation vw = A leads to the unique
solution w = v~! A (corresponding to the intersection of a plane < v,w >= A4,
andof alinev Aw = A)).

Such a Clifford algebra, in the case V' = R”" and Q non-degenerate, is called
geometric algebra. Let (p,q) be the signature of the quadratic form Q, i.e., Q
diagonalizesin Q(v) = vi 44V, —vi  —---—v2 (Sylvester’s law of inertia).
We write R?4 for V and CI, , for the associated geometric (Clifford) algebra.

Taking a basis {ej, €2, ..., e, } of R”, using the element 1 to span the scalars and

r

all products l—[ ei; forl <i; <--- <i, <n(r €N,) to span the multivectors, the
j=1

set {1,e1,ez,...,ep,e1€2,€1€3,...,e1€3 ... ey} Will form a basis for Cl,, ,, with

2" = Zf:o (’r’) elements. The element I, = e e, ... e, is called pseudoscalar and

is defined to a scalar multiple, since all n-blades are proportional.

2.2.1 Duality and Reciprocal Frames

The dual A* of a multivector A is defined as A* = 4 I;l. The duality operation
transforms a r-vector A, into an (n — r)-vector A, In_l; in particular, it maps scalars
into pseudoscalars. The duality relation states (A A B)* = A|B*, where | denotes
the left contraction.* The inclusion of an element x in a given subspace <7 specified
by a blade A can be defined in two ways:

“For two blades A and B of grades a and b, the left contraction A| B is (4 B),—, whena < b, it
is zero otherwise. When blade A is contained in blade B, it equals the geometric product 4 B [7].
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— thedirectway: x € &/ <= xAA =0
— thedual way: x € & < x]A* =0.

Given a basis {by,...,b,} of R?Y n = p + g, we can define a reciprocal frame
{b',....b"}, through the formulab’ = (—1)' "' (b ---Abi_ i Ab; Abj 1y - -Ab) T
where I, = by A ... A b, and the ~ -sign mentions the element removed from the
list. The two basis are mutually orthogonal: < b;, b/ >= 8’] Since the reciprocal of
an orthonormal basis is itself, this definition is needed only in non-Euclidean cases.
It is also useful in differential geometry.

A vector of R”Y can be written a : Z?:l aje witha; =< a,e; >ora =
Y'_,a'e; witha; =< a,e; >anda’ =< a,e' >.If we have a multivector basis
{eq| € {1,---,2"}}, we can also define a reciprocal frame {e“|o € {1,---,2"}}.

2.2.2 Versors, Rotors, Spinors and Rotations

One of the main features of GA is its ability to deal with the rotations. Indeed, a
unique object R can be used to compute the rotation of any subspace X, writing a
conjugation with the geometric product:

#X)=RXR'".

The equation x = a xa™' gives the reflection of an arbitrary vector x along
the a-line (a invertible). Its opposite x = —a x a~' gives the reflection in the dual
hyperplane A = a*. Two consecutive reflections form a simple rotation, which
can be written as follows: x” = —bx'b~! = baxa™'b~! = (ba)x (ba)™'. It
is a rotation of twice the angle between a and b in the plane containing a and b.
The element a b is called a 2-versor. In general, a k-versor is a multivector that
can be written as the geometric product of k invertible vectors v = vy vy ... V.
By the Cartan-Dieudonné Theorem [6, 8], every isometry of R”¢ can be reduced
to at most n = p 4+ g reflections in hyperplanes. It means that we can write
every orthogonal transformation f with a k-versor U (k < n) and the conjugation:
f(x) = (DU xU.

In all spaces of signatures (n,0), (0,n), (n — 1,1) or (1,n — 1), including the
Euclidean spaces, every rotation can be written in exponential form?:

H(x)=Sx ST with § = ¢2 (1 01+Fin On) iy i orthogonal 2-blades .

Note that a rotation of a non-Euclidean space is defined to be an orthogonal
transformation of determinant one continuously connected to identity. The element

3Quite naturally, the exponential of a blade A is defined with the usual power series Z,fio ‘;—T.
The additivity exp(4 + B) = exp(A) exp(B) is not true in general. The circular and hyperbolic

functions of blades are also defined with power series.
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S given by the exponential form of preceding equation is a rotor, i.e., an even versor
S satisfying § ST = 1.

A linear map f: V' — V can be extended in a function f : CI(V, Q) — CI(V, Q)
while preserving the outer product: B

Slanayn---nay) = fla) A fla) A=A flar).

It is then called an outermorphism. In particular, the reflection of a blade Ay in a
dual hyperplane a* is (—1)*a Ay a~' and the rotation of a blade by a rotor is RA; R
according to the previous equations for vectors.

2.2.3 Geometric Calculus
Differentiation We consider a finite-dimensional vector space V' with quadratic

form Q and a multivector-valued function F : U C V — CI(V, Q). It comes
of no surprise that the directional derivative of F in direction r is simply:

Fox) = lim ZXH SN = FE)
s—0 S

This expression will be most of the time written (r x V)F instead of F,,
expressing the idea of a scalar product between r and the operator V, seen as a
vector, as will be clearer below. The linearity in r is straightforward; the sum,
the geometric product and the grade are preserved. If we want to differentiate a
multivector-valued function F : U C V — CI(V, Q) directly relative to the
variable, we consider a base {e;,--- , e} of V and the coordinate functions of the
vector x in this basis x = Y '__, x’e;. The directional derivatives along the basis

directions, (¢; x V) = 31, combine into a total change operator6 as:
X

. OF (x)
o,

i

V= Zei (e, * V) meaning V F(x) = Ze

i=1 i=1

Note that we also have to define the differentiation from the right, because of
the non-commutativity: for a function F, F(x)V = Y I (e; * V)F(x)e' =
Y 3‘;—5") e'. Thanks to the geometric product, we can write V as follows: V F =
VAF —Fl < V, F >. In the case of a vector-valued function F, we have the usual
definitions of the divergence and curl operators:

1 1
curl(F) := VAF = Z(VF=FV) and div(F):=<V.F >= 2(VF+F V).

6 This explains the notation F, = (r * V) F for the directional differentiation.
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To write the product rule, accents are necessary to specify on what factor the
differentiation acts: V(F G) = VF G + VF G. The definition of a differentiation
with respect to a multivector, for a function F : U C CI(V, Q) — CI(V, Q), is
quite straightforward, given a reciprocal frame for the whole space CI(V, Q).

Integration Consider again a multivector-valued function F'; the line integral is
no_ . ) . 1
[ Ferax= tim Y F av . with = 3 (F o)+ Fi)
C n—o00 = 2

where the chords Ax! = x; — x;_; correspond to a subdivision of the curve C. The
measure dx is said to be a directed measure, since it is vector-valued. The product
between F(x) and dx is the geometric product. If F is vector-valued,

/CF(x)dx=/C<F(x),dx>+/CF(x)/\dx.

Similarly, if D C R? is a triangulated planar domain, fk is the average of F
over the k-th simplex,

/ F(de= lim Y F Ax*.
D n—>oo
k=1
The surface measure of the k-th simplex given by vertices xo, X1, X7 is

Axk:%(xo/\xl—}—xz/\xo—i—xlez).

This integral definition can be generalized to higher dimensions [5].
The fundamental theorem states:

95 FdS = / FVdx ,  for a function F defined over a volume V' .
v v

2.2.4 Clifford Convolution and Clifford Fourier Transform

For F and H two multivector-valued functions F, H : R™ — CI the left- and

the right-Clifford Convolution of the functions write respectively:

Pq>

(H % F)(x) = /R CHOOFG—x)ldY], (Hox, F)) = fR H—)F ()]

The quantity |dx| is used to make the integral grade-preserving since dx is
a vector within Clifford algebra. Modifying x — x’ into x + x’, we get the



192 C. Oberson Ausoni and P. Frey

left- and right-Clifford correlations [11]. The Clifford convolutions generalize the
known convolution of scalar-valued functions.

A vector field F' can be smoothed through convolution with a scalar field, for
example a Gaussian kernel. In the case of two vector fields, the formula for the
geometric product leads to the integration of a scalar function < H(x—x’), F(x") >
and a bivector function H(x — x") A F(x) [29].

In the case of a multivector-valued function F : R? — Cls, it is possible to
define the Clifford Fourier Transform (CFT) of F and its inverse as follows:

F{Fyu) = /R P e ja . FTHEF () = /R Feh = ).

The function e=27l<xu> — cos(2m < x,u >) + I3sin(2r < x,u >) is often
called Clifford Fourier kernel.

The convolution theorem is also valid for the Clifford Fourier Transform and
Clifford convolutions as defined here. For example, using the left convolution,

FH s Fi(u) := F{H}(u) F{F}(u).

As mentioned before, the reader willing to get a deeper understanding of the
mathematical basics about Clifford algebras and geometric algebras is referred to
[16,19,22]. In the next section, we will focus on the analysis of vector fields in the
context of GA.

3 Vector Fields in Geometric Algebra

Our main focus in this paper is the analysis of vector fields, more precisely of
steady, linear and non-linear vector fields in Euclidean space and on manifolds.
One is classically interested in streamlines, critical points with their classification,
separatrices, leading to the topological graph of a vector field. We will show how
the analysis of vector fields can benefit from the richer context of geometric algebra.

3.1 Vector Fields on Domains of Euclidean Space

Classically, vector fields are mappings of the form v : U C R" — R”", where U
is an open set. Using the notions of GA defined in Sect.2.2, if CI} , is the set of
1-vectors of Cl, o, amap v : R" — ClI, , is also a vector field. This definition can
be easily extended to bivector, trivector, or spinor fields, for example.

The identification of vector fields (satisfying the Lipschitz regularity condition)
with ordinary differential equations %/4, = v(x) can also be transposed from the
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Fig. 2 Frenet ribbons
constructed from a discrete
vector field. The colour
encodes the torsion (reprinted
from [4])

classical to the GA setting. The Lipschitz continuity condition can be written in this
frame, i.e., there exists a scalar constant K > 0 such that

lv(x1) —v(x)|ln < K||x1 —x2|l, forall xi,x€U.

Furthermore, the defined derivation and integration make it possible to state the
existence of an unique solution (streamline or integral curve) through a given point,
exactly like in the classical frame. In 2D and 3D, drawing the streamlines is a very
classical way to represent a vector field. In order to avoid occlusions and empty
areas, departure points (seeds) for these curves are to be placed efficiently.

Let us consider a small example. To a given classical vector field, we can
associate curvature and torsion scalar fields: the curvature (resp. torsion) in a point is
the curvature (resp. torsion) of the unique streamline in this point [35]. The curvature
field associated to a vector field can be used for the seeding, or can be displayed as a
further scalar value in the form of isosurfaces or by color coding. In the GA settings,
instead of scalar fields, a curvature bivector field and a torsion trivector field can be
defined. Visualizing the curvature bivector along a streamline, we get what is called
the Frenet ribbon [4], see Fig. 2 for such a representation of the vector field.

3.2 Vector Fields on Differential Manifolds

Now we turn to vector fields on differential manifolds, having in mind to embed
the differential geometry formalism into geometric calculus. For a more detailed
presentation of this combined approach, see [22,31].

In differential geometry, if M is a smooth manifold, a tangent vector in p € M
is a derivation, i.e., a linear operator D on C;° (the algebra of germs of smooth
functions at p) satisfying the Leibniz rule D(f -g) = f-D(g) + g-D(f). The
tangent space of M in p is T, M, the set of such derivations. A vector field is a
function assigning to every p € M an element of 7, M .

In R3, in a more intuitive way, we can imagine giving in each point p of a
surface S a vector tangent v(p) to the surface. The link between this v and the
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associated derivation D, is the derivative D, (f)(p) = Df(p)(v(p)). The operator
point of view makes it easier to manipulate vector fields and compose them with
other operators. Furthermore a discretization can be made without working with
coordinates [1].

To translate this definition into GA, we give the tangent spaces a Clifford algebra
structure. Taking a chart (U, ¢) around p € M, the derivations e/ defined by

0
el (f) = g(f 0 Nlr=p(p)

form a basis for T, M. Forming the blades of these basis vectors, we can build a
geometric algebra structure on 7, M .

With a little more abstraction, a vector field can classically be seen as a section of
the tangent bundle, a particular vector bundle: Taking TM to be the disjoint union of
tangent spaces on M, TM = UyeyTxM, and w : TM — M defined by 7 (v) = x
for x € Ty, we can see M as the base space, TM as the total space and r as the
projection, these three elements defining a fibre bundle called the tangent bundle.
The section is a continuous map s with = o s = idys, meaning s(x) € T, M, hence
what we understand as a vector field. The adding of a geometric algebra structure
can be done in the general case of a vector bundle on a manifold with some metrics,
using a construction very similar as the one made in Sect. 2.1.1: quotienting a tensor
algebra with a two-sided ideal.

Scalar fields, vector fields, bivector fields, spinor fields on surfaces, for example,
are natural extensions of this definition of vector fields (or can be seen as sections
of the Clifford tangent bundle, see above), and, as long as M is simply connected, it
is also the case for rotation fields r : M — SO(n), since they can be lifted to spinor
fields. Since every differentiable manifold is locally diffeomorphic to an Euclidean
space (via the charts), the existence and uniqueness of streamlines is also granted
on manifolds, within or outside GA context.

3.3 Critical Points, Orbits and Topological Graph

The topological graph is an important tool of analysis: it goes one step further
than the streamline representation and decomposes the vector field domain into
regions of similar behavior. The critical points and closed orbits (with their type,
like defined below) and the separatrices (streamlines or surfaces between areas of
different behavior) form the topological graph of the vector field, that eventually
describes the underlying structure of the field in a more efficient way as a collection
of streamlines. Such a graph does not take into account the norm of the vector
field [12].

The classification of critical points finds its origin in the theory of dynamical
systems. For regular critical points, i.e., for critical points with an invertible Jacobian
matrix, a linear approximation of the field can be considered. Studying eigenvalues
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and eigenvectors of the Jacobian matrix makes the classification possible, provided
none of the eigenvalues is pure imaginary. The so-called hyperbolic critical points,
satisfying this condition, are isolated and are structurally stable: a small local
perturbation does not modify the topology. This justifies the use of the linear
approximation to describe the field’s behavior around this point. In two dimensions
for example, the hyperbolic critical points are sources, sinks, saddles and spirals.
Unstable critical points are centers. A similar classification can be done for orbits,
according to the derivative of the Poincaré map [2]. For non-linear critical points,
said to be of higher order, the non-invertibility of the first derivative leads one to
consider a higher order Taylor expansion. For the isolated ones, the index’ can help
discriminate critical points of different types. Sometimes this proves insufficient,
since two critical points with same index can be of different types. The GA
formalism provides an elegant alternative for the computation of the index: for
example, in 3D,

ind(c) 1 / v Adv
m - )
8713 Jpey IV

for v the vector field, ¢ the critical point, B(c) an arbitrary small ball around ¢ [25].
A corresponding discrete computation will be introduced in Sect.4.2. Unlike the
index, the ordered list of all different behavior sectors (i.e., elliptic, hyperbolic and
parabolic sectors) makes an unambiguous classification possible [14,18,33,34] (see
Fig 3).

Next, we turn to a more practical view of geometric algebras, as this chapter is
also intended for engineers and practitioners. In particular, we will briefly explain
how GA can be implemented and the potential advantages of using Clifford algebra
when, for example, dealing with rotations in spaces of high dimensions.

Fig. 3 Classification of sectors: hyperbolic, parabolic and elliptic sectors (reprinted from [33])

7In 2D, the index corresponds the number of turns the field makes around a critical point.
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4 Geometric Algebra for Computer Graphics
and Visualization of Vector Fields

Nowadays, geometric algebra is mostly recognized as a promising mathemat-
ical concept and is beginning to find broader application. Emerging computer
architectures (multicore, many-core, parallel) lead us to believe that the language
of GA may find a new playground and evolve towards what Hildenbrand calls
Geometric Algebra Computing (GAC) [21]. However, GA is not yet a widespread
method in engineering applications, mainly because of two reasons, academic and
practical [26]. On the one hand, GA combines many mathematical concepts that
were developed separately over the years and are taught as such in curriculum. On
the other hand, most engineering applications in three-dimensional space can be
dealt using standard vector and matrix algebra tools. The goal of this last section is
to introduce how GA can be used advantageously in computer graphics applications
and vector field analysis and visualization.

4.1 Geometric Algebra for Computer Graphics

Computer graphics is surely the most obvious field of application of GA. In
geometrical applications, operations and transformations are applied on primitives
that are combined to represent an object (model). Linear geometric transformations
are usually represented using matrices, vectors and scalars. But while 3 x 3 matrices
encode the 3D-rotations about an axis through the origin, quaternions are better
suited instead, because they are easier to interpret.

The quaternion representation of a rotation is a nearly minimal parametrization
that requires only four scalars. Given a quaternion, one can easily read off the axis
and angle of the rotation, it is not the case with the Euler angles representation. The
composition of rotations in quaternion form is faster and more stable numerically
(the renormalization is more efficient than with matrices). Furthermore, the interpo-
lation in the set of quaternions H (for example to get an animated view of a rotated
object) consists in defining a path on S* which is mapped to SO(3). The Euler
angles parametrization, from the 3-torus to SO(3) is not a local diffeomorphism:
problem known as the gimbal lock. This is why, in graphic libraries such as OpenGL,
rotations are given in terms of a rotation axis and a rotation angle and converted
internally into rotation matrices.

Note that H forms a subalgebra of a geometric algebra [27]: it is trivially
isomorphic to the even algebra Cl;? o (the set of even multivectors of Cl3). We
can identify the unit and the basis elements i, j, k of H with the unit and the
products e ez, ej e3 and e; e3 of Clzo [19]. Thus, the aforementioned quaternion
representation of a rotation (of angle 6 around unit axis u):

L
q = 2Tt = cos 10 4 (uci+uyj+uk)sin 10 with Z(x) =qgxq7",
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can be seen as a rotor of Clzy. The products and the conjugation on H and on
Cl;? o are defined likewise. Similarly, identifying the pseudoscalar I of Cl, o with the
imaginary unit i of C, we have an algebra isomorphism between Cl; o and C.

Clearly, geometric algebra exhibits structural simplicity in the formulations, but
its naive implementation may be far less efficient than classical analytical geometry
implementations, especially for high dimensions. Fortunately, GA expressions can
benefit from compilation (e.g. operator overloading) and parallelization techniques
(including GPUs) [15,21].

In practice, GA has been implemented in two ways. The additive approach
encodes each multivector of Cl, o with its 2" coordinates. It leads typically to a
O(2*") time complexity for linear operations and for products (inner, outer and
geometric), and to a storage complexity in O(2"). The multiplicative approach,
restricted to blades, stores the coordinates of the unit orthogonal factors in a
matrix and the magnitude using a scalar. Although the storage complexity is
smaller than in the additive approach, there is still no available strategy for an
efficient implementation of addition. Nevertheless, factorization and simplification
operations allow a trivial implementation of “meet” and *“join” operations.

As suggested by its name, the conformal model Cl;; of R* can be used
to represent various angle-preserving geometries. In this model, all conformal
transformations can be represented by versors, especially the ones preserving the
Euclidean distances.

To define the conformal model Cly ; of R3, two vectors ey and e_ are adjoined
to the basis vectors e, e;, e3 of R® embedded in R. They are chosen to form an

orthogonal basis, with e;?> = Q(ey) = 1 and e-> = Q(e—) = —1. If we
define respectively ny = 1/\ﬁ(e_ + e4) and nee = l/\ﬁ(e_ — e4), the new
basis {ey, €2, €3, no, Noo} is NOt orthogonal (< ng, nee >= —1), but makes intuitive

definitions for the model possible. The representation p of a point p, € R? in the
conformal model is defined by the following mapping:
p=F(py) =pr+no+3p;nc-

The element n( has the same translation role as the origin vector ey in the
homogeneous model. The vector n represents the point at infinity and the axis
of symmetry of the horosphere, the set of elements defined by this equation. The
Euclidean distance between two points pj,q, € R? is directly proportional to the
squared root of the inner product < F(py), F(gp) > of their representations in the
model Cly ;. The horosphere is formed of null vectors, i.e., vectors of zero norm, as
consequence of the fact that p> =< p, p > is proportional to (py — py)> = 0.

The spheres, planes, circles and lines of R? can be expressed in the conformal
model space Cl4; with two different conditions, using the inner or the outer product.
For the example of the sphere:

— A sphere S(ap,r) centered in ap, with radius r corresponds to: S(ap,r) =
F(ap) —"/2r’*noo € Clyy with p, € S(a,r) << F(pp).S(ap,r) >=0.
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— The sphere containing the four points ay, by, cp,dp € R3 corresponds to the
element: S = F(ap) A F(by) A F(cp) A F(dp) € Clyy with pp € § <—
F(pp) S =0.

Since any vector x € Cly; can be written x = F(ap) * 1/zrznoo, for an
a, € R3and ar € R, the building blocks of CI; 4 are spheres, points (spheres
with radius zero) and imaginary spheres (spheres with imaginary radius). The
reflection in an hyperplane corresponds to a conjugation by a vector in Cly ;. To
the other transformations, translations, rotations and scalings, correspond rotors
in exponential form (e.g. T = e~ '/2tnoo for the translation of vector ). All
orthonormal transformations can be expressed by rotors, since translations enjoy
this property.

4.2 Geometric Algebra for the Visualization of Vector Fields

For the sake of clarity, we restrict ourselves here to 2D and 3D vector fields or vector
fields defined on surfaces embedded in R3. The objective is to show that GA allows
one to perform the local analysis of the fields using differential geometry in a rather
classical way, but offers more flexibility and efficiency when identifying the global
structures.

With vector data defined at the vertices of a simplicial triangulation 7}, or of a
regular sampling (Cartesian grid), discrete equivalents of geometric and topological
entities (e.g. curve, ball) are needed, as well as interpolations, giving vector values
at arbitrary locations. This can be achieved in several ways but requires special
attention to avoid ambiguous or non-conformal situations [23].

To compute the topological index in 2D, we recast the formulation given in
Sect. 3.3 in a discrete setting [18]. Let B(c) denote a closed polygonal curve around
the critical point. For every couple of neighbor vertices (p;, p2), form the bivector
1/,(¥(p1) AV(p2)) with the values of the normalized vector field ¥ = /. The sum
of all bivectors, divided by the volume of the unit disk 7z, will give an approximation
of the winding number of v on the curve, which is in turn an approximation of the
index of vin c.

It can be shown that two closed polygonal curves discretizing the same underly-
ing continuous curve lead to the same winding number, as long as they are e-dense
(i.e., any point of the continuous curve between two neighbors will be within
e-distance of both neighbors). In a continuous setting, the index of a critical point
is well defined as the winding number of every circle containing this only critical
point, since a nonvanishing vector field v in the interior of a closed path y implies a
zero winding number of v on y.

A similar computation can be done for 3D vector fields, on a triangulated surface
around the critical point (see Fig. 1). For a triangle of neighbor vertices (p1, p2, p3)
on this surface, form the trivector !/¢(3(p1) A 9(p2) A ¥(p3)) with the values of the
normalized vector field. The normalization factor is %n for the volume of the unit
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ball [7, 25]. For a vector field on a surface, the computation is less straightforward
than in 2D, since vectors should be projected on a plane, before the sum is computed.

A common aforementioned technique in visualization is to integrate the vector
field along a curve, the integral line (or streamline in a fluid). Given a Lipschitz
continuous vector field v defined on an open subset U C R”, one defines curves y(¢)
on U such that for each 7 in an interval I, () = v(y(¢)). Picard’s theorem states
that there exists a unique C '-curve y, for each point x in U, so that y,(0) = x, and
yL(t) = v(yx (1)) fort € (—e, +¢). These curves partition the set U into equivalence
classes.

Numerically, the discretization of streamlines relies on an integration method;
Euler or Runge-Kutta methods are the most common schemes to advance a point
along the integral curve given its previous location and a time step §¢. Any such
method requires to interpolate the field vector at a new location x. The interpolation,
defined on classical vector fields using barycentric coordinates, can be written
exactly the same way for GA vector fields v : R" — Cl,,p (m = 2,3). For
example, if x is contained in a simplex then the linear interpolate reads: v(x) =
25=1 A;vi, where v; (resp. A;) denotes the values of v at the simplex vertices (resp.
corresponding barycentric coordinates). Note that the interpolation of a vector field
v defined on a triangulated surface S is not straightforward, since the interpolated
vectors need to be defined in the tangent planes.

Not every characteristic of the field lies in the topological graph: features such
as vortices, shear zones, shock waves, attachment lines or surfaces are not captured
in this description and are very important elements to specify the structure of a
vector field. The computation methods reviewed in [28] to extract features in vector
fields are presented in the classical frame but can be extended naturally to the GA
frame. Several scalar fields deliver information on the presence of vortices: the
vorticity magnitude, the helicity magnitude, the pressure for example. For instance,
the vorticity is exactly half of the curl defined in GA.

In some specific situations, the vector field may exhibit local patterns with

repetitions over the domain. Their localization would help to apprehend the overall
structure of the field. For example, in 2D, we could look for the repetition of
singularities like monkey saddles, zones with axis drain, or S-shaped zones. The
following approach is inspired by image processing.
Correlation. Given a 2D (resp. 3D) pattern, i.e., a vector field defined on a small
square (resp. cubic) domain, we can compute the Clifford correlation (introduced
in Sect.2.2.4) between this pattern and a vector field. At each point of the
domain, this function gives the similarity of the vector field (in the neighborhood
of this point) with the given pattern [10]. The correlation implies a convolution
(quadratic complexity), which can be replaced, via Clifford Fourier Transform, by
a multiplication (linear complexity) in the frequency domain. Furthermore, since
the 3D CFT can be written as a sum of four complex Fourier transforms through
the identification of the pseudoscalar I3 with the imaginary unit i, Fast Fourier
Transforms can be used. However, the main drawback of this method is related
to the necessity to check the presence of a given pattern in all positions, for many
scales and in many orientations, or the search of the pattern will not be complete.
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Fig. 4 Search for an S-shaped pattern in a 2D swirling jet flow dataset. The original pattern is
shown in a green circle, whereas the found occurrences are shown in red circles, overlapping for
different scales. The method used is the comparison of computed values for a family of moment
invariants on the dataset, comparing with the tabulated values for the pattern (reprinted from [30])

Invariants. Suppose that we have again a particular feature (patch) we want to
identify in a given vector field. Let us attribute values to the different patches through
a mapping. Such a mapping, if it exhibits rotation, translation and scale invariance
is called shortly RTS-invariant. If it is, for example, not rotation invariant, then its
value has to be computed for all rotated variants of the patch of interest.

A family of RTS-invariants and non-redundant moments of order < d [30] can
be built for 2D scalar and vector fields, using the complex numbers to get a nice
formulation of the rotation invariance in the equations. In Fig.4, showing a 2D
swirling jet flow dataset, the occurrences of a given S-shaped pattern can be seen, as
obtained by this method. For 3D scalar functions, one of the ways of defining such
moments is to use the spherical harmonic functions as building bricks. To extend to
3D vector fields, complex numbers are no help anymore, and quaternions generate a
dimension 4 algebra. If the nice formulation of rotations in Clifford algebra and the
existence of a product of vectors seems to pave the way for this generalization, the
defining of building bricks (perhaps with the spherical vectorial harmonics) for the
moments is the first difficulty, followed by the formulation of a rotation invariance
condition. To our knowledge, the extension has not been written yet.

Several alternatives to moments as RTS-invariants are defined in literature. For
example, the harmonic power spectrum and harmonic bispectrum defined in [13]
for 3D vector fields rely on spherical vectorial harmonics. The theory is explained
in the classical frame, using representation theory, but possibly further invariants
could be defined and a substantial gain of clarity could be achieved if using GA.
Heat equation. On a Riemannian manifold M, consider the Clifford bundle obtained
from the tangent bundle. The Riemannian metric g;;(p) =< ele ]p >, since positive
definite, leads to Euclidean tangent spaces. Let us define now a connection on the
manifold V£ compatible with the metric (for example the Levi-Cevita connection)
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Fig. 5 A color image (left) with the corresponding unit vector field of edge orientations (middle)
and a Clifford-Beltrami regularization of this vector field (reprinted from [3])

and extend it as V¢ to the Clifford space such that it preserves the graduation, we
define a generalized Laplacian as follows:

= gi'(VeC.Vec 1 ch
G\ Ve
r

Considering the heat equation 35’ + A€s, = 0, with initial condition sy = s,
associated with these operators, the solution is a regularization of the section s.
It can be approximated through the convolution with the heat kernel. Varying the
operators (Clifford-Hodge, Clifford-Beltrami), different flows are obtained, leading
to different regularizations. This approach was introduced in [3], and was applied to
reducing noise in color images, see Fig. 5, but not yet, to the best of our knowledge,
as a global approach tool for vector fields.

In addition to regularization, heat kernel signatures, like they are defined for
scalar fields [32], could be used to define signatures of vector field patches.
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Computing Accurate Morse-Smale Complexes
from Gradient Vector Fields

Attila Gyulassy, Harsh Bhatia, Peer-Timo Bremer, and Valerio Pascucci

1 Introduction

As scientific data is becoming increasingly complex, domain experts are turning
to more sophisticated techniques for its analysis. The Morse-Smale (MS) complex
summarizes the gradient flow behavior of a scalar function and is recognized as a
useful structure in such analyses. For example, it has been used to analyze Rayleigh-
Taylor instabilities [15], to study the core structure of porous materials [9], to
analyze burning regions in turbulent combustion simulations [1], to identify vortical
structures [13], and to compute the filamentary structure of the cosmic web [27], to
name just a few.

With the expanding use of the MS complex in analysis, improving the geometric
accuracy of computed results is increasingly important. This paper extends previous
work by Gyulassy et al. [11] in this domain. In the previous approach, the discrete
gradient field was computed by identifying the probability of flowing to any given
critical cell. The algorithm relies on processing cells in order of increasing function
value to compute these probabilities. In contrast, the algorithm proposed in this
paper works directly on a rotation-free vector field, with no knowledge of the
underlying scalar values. This is achieved by first converting the vector field into a
dependency graph, and reformulating the probability computation algorithm to work
on a traversal of this graph. We show the effectiveness of this approach for several
two-dimensional examples, first comparing the result against a similar construction
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on a scalar field, and then computing a segmentation of two rotation-free vector
fields.

2 Related Work

Despite the fact that the initial ideas were already discussed more than a century
and a half ago [2, 18] the first practical algorithm to compute MS complexes of
two dimensional, piecewise linear functions was introduced fairly recently [7]. In
Sect. 2.1 we discuss the most successful approaches for computing MS complexes
based on discrete Morse theory. In Sect.2.2 we review relevant topology-based
analysis of vector fields.

2.1 Discrete Morse Theory

The main mathematical tool for computing MS complexes has been discrete Morse
theory, as proposed by Forman [8], a formulation that has given rise to many
efficient combinatorial algorithms. Lewiner [17] presented the first technique for
constructing a discrete gradient field that agrees with the flow behavior of a
scalar function. King et al. [14] introduced a technique to generate discrete Morse
functions on simplicial complexes by modifying the Hasse diagram. Gyulassy et
al. [10] introduced an algorithm that assigns cells in order of increasing function
value and increasing dimension, using the ordering to avoid acyclicity checks.
Reininghaus et al. [20, 22] presented an approach for generating discrete vector
fields at multiple scales by computing matchings of a cell graph using the Hungarian
method. Robins et al. [24] present an embarrassingly parallel technique that
computes the discrete gradient on the lower star of a vertex. Shivashankar et
al. [25,26] also present an embarrassingly parallel technique for computing the
gradient by carefully constructing a discrete Morse function. One commonality of
all these techniques is that they pair cells into gradient arrows in the direction of
steepest descent. This local optimization leads to significant error, and the geometric
accuracy of the MS complex is further affected by the mesh orientation.

A randomized approach was independently introduced by Reininghaus et
al. [23], for two-dimensional simplicial complexes, and by Gyulassy et al. [11],
for volumetric meshes. This technique was shown to produce a better geometric
reconstruction, and proven to converge to the smooth flow features under mesh
refinement [11]. In a related field, Sousbie et al. [28] introduced a technique
that integrated the probabilities of a randomized selection to produce watershed
transforms with accurate geometry. The most geometrically accurate algorithm for
computing MS complexes to date was presented by Gyulassy et al. [11], using a
similar construction to Sousbie’s, but in the context of discrete Morse theory.
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2.2 Topological Analysis of 2D Vector Fields

An important research thrust of the past two decades is concerned with computing
vector field topology. In their seminal paper Helman and Hesselink [12], define
and compute the topological skeleton of a vector field. This structure segments
the domain of a 2D field using streamlines, traced from each saddle of the field
along its eigenvector directions. The nodes of the skeleton are critical points of the
vector field and arcs are the separatrices connecting them. Since then, a number of
techniques have been proposed to extract the topological skeleton in a stable and
efficient manner.

For example, Chen et al. [4] create a triangle level graph by determining
how the image of a triangle is advected and deformed by the PL flow. This
triangle level graph can then be used to decompose the domain into topological
structures. Szymczak and Zhang [29] focus on piecewise constant (PC) vector fields,
and extract a similar graph, that subsequently can be used to extract topological
structures. Recently, Levine et al. [16] computed the topological structure for PL
flow by quantizing the flow along the edges of the triangulation, leading to a prov-
ably consistent streamline computation. This enables combinatorial and consistent
extraction the topological structure of the field. Recent works of Reininghaus and
Hotz [20, 22] construct a combinatorial vector field based on Forman’s discrete
Morse theory [8]. Using combinatorial fields allows the extraction of a consistent
topological structure, however these techniques typically suffer from poor geometric
accuracy due to the discretization of the flow.

3 Background

We present necessary background in discrete Morse theory and the algorithm to
compute a geometrically accurate MS complex.

3.1 Morse Functions and the MS Complex

Let f be a real-valued smooth map f : M — R defined over a compact
d-manifold M. A point p € M is critical when |V f(p)| = 0, i.e. the gradient is
zero, and is non-degenerate when its Hessian (matrix of second partial derivatives)
is non-singular. The function f is a Morse function if all its critical points are
non-degenerate and no two critical points have the same function value. In this case
the Morse Lemma states that there exists local coordinates around p such that f has
the following standard form: f, = :bx12 + x% sk xfl. The number of minus signs
in this equation gives the index of critical point p. In three-dimensional functions,
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minima are index-0, 1-saddles are index-1, 2-saddles are index-2, and maxima are
index-3.

An integral line in £ is a path in M whose tangent vector agrees with the gradient
of f ateach point along the path. The integral line passing through a point p is the
solution to %L(t) = V f(L(t)),Vt € R, with initial value L(0) = p. Each integral
line has an origin and destination at critical points of f. Ascending and descending
manifolds are obtained as clusters of integral lines having common origin and
destination respectively. The descending manifolds of f form a cell complex that
partitions M; this partition is called the Morse complex. Similarly, the ascending
manifolds also partition M in a cell complex. A Morse function f is a Morse-Smale
function if ascending and descending manifolds of its critical points only intersect
transversally. An index-i critical point has an i-dimensional descending manifold
and a (d — i)-dimensional ascending manifold. The cell complex formed by the
intersection of the ascending and descending manifolds of a Morse-Smale function
is the Morse-Smale complex.

3.2 Discrete Morse Theory

Discrete Morse theory is at the heart of current techniques for efficiently computing
Morse-Smale complexes. We provide a brief overview with basic definitions from
Forman [8], and we refer the reader to this introductory work for an intuitive
description. A d-cell is a topological space that is homeomorphic to a Euclidean
d-ball BY = {x e E? : |x| < 1}.Forcells @ and 8, & < f8 means that « is a face of
B and B is a co-face of . If dim(a) = dim(B) — 1, we say « is a facet of B, and
B is a co-facet of «, and denote this ¢ <. When necessary to clarify the discussion,
we may denote the dimension of a d-cell & with &'®). The star of a cell «, denoted
St(a), is the set of co-faces of . The link of « is the closure of the star, minus the
star itself, Lk() = St(a) — St(w).

Let K be a regular complex that is a mesh representation of M. The barycenter
of a cell « is the image of a map B : K — M from cells of K to their center of
mass, points in M. A function ' : K — R that assigns scalar values to every cell
of K is a discrete Morse function if for every «¥ € K, its number of co-facets
{BYT V3 |F(B) < F(a)}| < 1, and its number of facets |[{y“~D<a |F(y) >
F(a)}| < 1. A cell a'¥ is critical if its number of co-facets [{f“¢TV>a |F(B) <
F(e)}| = 0and its number of facets |{y“~V <a|F(y) > F(a)}| = 0, and has index
of criticality equal d. The lower star of «, denoted St~ («) is subset of St(«r) where
each element has lower function value. Similarly, the lower link of « is Lk (@) =
St () — St (o).

A vector in the discrete sense is a pairing of cells (@@, B¢+1), where o <. We
say that an arrow points from a?) to B+ The direction of the arrow relates the
combinatorial notion of the pairing to the geometric interpretation of the flow, and is
given by B(8“*D) — B(a'?). Intuitively, this vector simulates a direction of flow.
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A discrete vector field V on K is a collection of pairs (c; @) ,3(d+1)) of cells of K
such that each cell is in at most one pair of V. A cr1t1ca1 cell is unpaired. Given a
discrete vector field V on K, a V-path is a sequence of cells

(d) d+1) (d) (d+1) (d) d+1) _(d)
,3 , 0 ,,31 , 0y a"'aﬁ;(~ )705r+1

(d) ,B(d+1)>

such that for each i = 0,..., 1, the pair (¢; e V, and a ) and ozl + | are

distinct facets of ,Bi(dﬂ) LA V—path is the discrete equivalent of a streamline in a
smooth vector field. A discrete vector field in which all V' -paths are monotonic in F
and do not contain any loops is a discrete gradient field, denoted G, of the discrete
Morse function F. When constructing a discrete gradient field, we say that G is
valid if these two conditions are met. One interpretation of discrete equivalent of

flow in a continuous gradient is taklng a step in a V-path, i.e., we say that 0‘1( +)1 is

one step from 0{( ). The crltlcal cell a , at the end of a V-path is the destination of

the V-path. We also say a 1 terminates the V-path.

Ascending and descendmg manifolds of a critical cell o are obtained as the
collection of V-paths that originate and terminate at «. The 1-skeleton of the discrete
MS complex is composed of the critical cells and the V-paths that connect them.

3.3 Computing Morse-Smale Complexes with Accurate
Geometry

Here we briefly review the algorithm presented by Gyulassy et al. [11] for
computing discrete gradient fields with accurate geometry, and refer the reader
to the original work for a more complete description. The algorithm is based
on the observation that if gradient arrows are paired randomly in a downwards
direction with appropriate probabilities, the discrete gradient field produced will
have convergent geometry. The probability for selecting a potential gradient arrow
is given by the alignment of the arrow with the gradient, normalized over all possible
arrows. Specifically, the alignment is given by the dot product of the (continuous)
gradient evaluated at the barycenter of the cell, and the “displacement” implied by
the gradient arrow in the discrete flow, i.e., the difference in the coordinate locations
of the cells at the head and tail of a gradient arrow. The function f is a continuous
function, typically obtained by interpolating samples on the vertices of the mesh K.

w({a. i) = max{(B(@) — B(B:)) - (=V f(B(a)). 0} (1)

Using these alignment weights, the probability of picking (o, B;) is defined as

Pr({e, Bi)) = w((@, i)/ D wlle.B))). 2

B €St (@)
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Although V-paths in a purely randomized discrete gradient field constructed
using these probabilities converges to integral paths in f under mesh refinement,
the rate of convergence is slow. This motivated a second algorithm, that computed
the exact probability that a cell would belong to the ascending manifold of any
critical cell. The probability that a? flows to any critical cell k¢ is given by a map
u: K — R, called a membership distribution. In the following, let 8 be a co-facet
of a?, and Lkg () denote the set of d-cells in the lower link of « that are also facets
of B.

0 ifdim(a) # dim(k)
1 if o is critical and k = «

po(k) = 4 0 if oriscritical and k # « 3)
S P ) Y A oherwise.
- ~ ks (@)]
BESt™ (@) pELKy (@)

This recurrence relation is solved by processing d-cells in order of increasing
function value, with ties broken by simulation of simplicity [5]. Through this
ordering, it is guaranteed that the membership distributions of every d-cell in the
lower link of o has already been computed. Gradient arrows between d-cells and
(d + 1)-cells are assigned to minimize the likelihood that a new gradient arrow
crosses the boundary between any two ascending manifolds.

When pairing o, each cell in the lower link y; € Lk™ (@) has already been paired.
In fact, y; is part of V-paths that do not change below y; with any subsequent
gradient arrow assignments, and we can find their terminating critical cells. It is
well-known that in dimensions higher than one, V-paths can split, therefore, let D,,
be the set of critical cells that terminate V-paths flowing through y;. The weight of
(o, B;) is defined as:

wilew B = Y. D ali) “)

yELK™ (a),y<Bi \KEDy

Intuitively, this weight represents the likelihood that o belongs to the same
ascending manifolds as the facets of 8. Therefore, higher weights indicate potential
pairs that are less likely to cross boundaries of ascending manifolds.

4 Approach

The algorithm described in Sect.3.3 relies on sorting the d-cells of a mesh
according to function values. However, these may not be available when given only
a continuous gradient field. Although it is possible to create a valid scalar field from
any gradient field, we instead present an algorithm that bypasses this step and works
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directly with the vector values. Our algorithm first computes a directed graph that
encodes the dependencies in Eq. (3). For a scalar field this graph should be acyclic,
however due to numerical instability as well as sampling artifacts, cycles occur
in practice, and we present a technique to break these cycles. Next, the algorithm
constructs the membership distributions and gradient arrows by processing elements
in order of traversal of the dependency graph.

4.1 Dependency Graph from Vector Field

Let V be a vector-valued function defined on a manifold M, and let K be a
mesh representing M. We construct a dependency graph that encodes the ordering
relationship needed to evaluate membership distributions. We start with the Hasse
Diagram H of K, the directed graph where each cell of K is represented as a node
with arrows pointing to each of its facets. Next, we modify H to H' by reversing all
arrows that are aligned (positive dot product) with the vectors of V' at the tail of the
arrow. Now H' represents flow in a “downwards” direction, where the processing
of a cell at the tail of an arrow depends on the prior processing of the cell at the head
of an arrow. This procedure is illustrated in Fig. 1.

The algorithm for assigning gradient arrows assigns all d-cells before all
(d + 1)-cells, therefore we must further modify H’ to ensure no deadlocks occur.
This is partly ensured by reversing the lowest weight arrow for any cell having
only incoming arrows from its facets, where the weight is defined as magnitude
of alignment with the vector value. These local changes modifying H' to H” now
ensure that all the faces of a cell will be assigned prior to the cell itself.

Finally, in order to represent the dependency graph of a scalar function, H” must
be acyclic. In practice, H” can admit cycles where numerical error or sampling
artifacts simulate rotation in V. These cycles can be found efficiently by first
flood-filling H” from sinks in the graph, following arrows in a head-to-tail manner,

Fig. 1 The vector field is sampled at the barycenter of each cell (left). The Hasse Diagram H of
the grid encodes facet relationships (center). H is modified to H’ by reversing any arrow that is
aligned with the underlying vector field (right)
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Fig. 2 An edge in the modified Hasse Diagram H’ has two vertices depending on it (far left) due
to numerical instability. This dependency is broken by reversing one arrow (middle left). A cycle
is detected in H” (middle right), and broken by removing the lowest weight arrow (far right)

and marking cells as visited. Any cell not marked in this flood fill depends at some
point on a cell that is part of a cycle. This cycle can be found by depth-first search
from an unmarked cell. A cycle is broken by deleting its arrow in H” that has
the lowest weight, where the weight is the magnitude of the dot product of the
arrow with the vector value. Breaking all cycles results in modifying H” to the final
dependency graph G. Converting H' to H” to G is illustrated in Fig. 2.

If the scalar values are known, the construction of the dependency graph is
simplified. We construct the modified Hasse diagram H’ as before by reversing
arrows aligned with the gradient. However, cycles are removed by deleting any
arrows where the scalar value at the tail is lower than the scalar value at the head.
Simulation of simplicity ensures consistency in the comparison and eliminates flat
regions. This embarrassingly parallel technique produces a cycle-free dependency
graph.

4.2 Accurate Algorithm

In this section we present a modified version of the accurate geometry algorithm [11]
that uses vector values and our dependency graph G. As in the previous approach,
discrete gradient arrows are assigned in rounds of increasing dimension, first by
assigning arrows that maximize the weights based on membership distributions, and
then by simple homotopy expansions. However, in each case, the sorted ordering is
replaced by a traversal of the dependency graph G, and operations such as lower star
St~ and lower link Lk~ are replaced by a lookup of dependencies in G. In particular,
define D () to be the set of cells reachable by one tail-to-head arrow in G, replacing
St~ (). In the following, let K be the mesh, V' be the vector-valued function, and I”
be the discrete gradient field.
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1: ComputeGradient(K, V) :
2 I'={}
3: for d € [0, D] do
4: I' = AssignArrows(d, K, V, I')
5 I' = HomotopyExpand(K, V, I'")
6: end for
7: return I”

The algorithm to assign gradient arrows for d-cells, AssignArrows, uses a queue
Q to traverse the dependency graph. In the following SeedQueue(d, G, Q) traverses
G and inserts into Q all d-cells having no dependencies, i.e. no outward pointing
arrows in G. The UpdateQueue(d, G, Q) inserts d - and (d + 1)-cells into Q whose
dependencies have been resolved, those cells for which every neighbor at the head
of a downwards pointing arrow in G has been processed by the algorithm.

1: AssignArrows(d, K, V, I') :

—

HomotopyExpand(d, K, V, I'") :

2: 0=0 2: H ={a € K| # unassigned facets in
3: SeedQueue(d, G, Q) Iis1}

4: while not Q.empry() do 3: while H # @ do

5 a = Q.top(); O.pop() 4: o = PopFirst(H)

6: if dim(e, K)=d then 5: B =unassigned facet of
7 C={p € D(o)} 6: if o € D(B) then

8 if C =0 then 7: r=ruapB)

9: I' =TI Ua <« critical 8: update(H )

10: else 9:  endif

11: B; = argmaxg,cc w({et, Bi))) 10: end while

12: I''=TU(a,B;) 11: return I

13: end if

14:  endif

15: process(a)

16:  UpdateQueue(d, G, Q)
17: end while

18: return I”

Let K" C K be the subcomplex of assigned cells of K after selecting n pairs.
Assigning a gradient arrow adds exactly two cells to this subcomplex and marking
a cell as critical adds one. Each subcomplex K” either adds a new critical d -cell, or
attaches a (d + 1)-cell to d-cell pair to K"~!. An assignment of a gradient arrow
is a simple homotopy expansion if K" is homotopic to K"*!. In practice, a d-cell
to (d + 1)-cell arrow can be inserted without changing the homotopy type of the
subcomplex when (1) all faces of the d cell are assigned, and (2) the d-cell is the
only unassigned face of the (d + 1)-cell. The only time we prohibit this expansion
is when the arrow would point “uphill”, i.e., the (d + 1)-cell depends on the d-cell
in the dependency graph G.
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The above algorithm produces accurate geometry for the boundaries of ascending
manifolds, and to obtain accurate geometry for descending manifolds as well we
perform a second pass. The second pass operates on the dual of the grid, with vector
values negated, and the added constraint that each cell can only be paired with other
cells of the same dimensional ascending manifold, as identified in the first phase.

5 Results

We present results for two-dimensional examples, both for gradient fields derived
from scalar functions, and also for rotation-free vector fields. We also discuss
limitations of the current approach.

5.1 Comparison of Constructions

In many instances the gradient of a scalar function is known, for instance in
scientific simulations. Often, this gradient is of much higher quality than the local
approximation obtained by interpolating and comparing scalar values. We compare
the result of working directly with the gradient field to the result of the scalar
approximation in Fig. 3. Here, the first technique uses difference in scalar values
to determine the steepness of an edge, while the second technique uses a central
difference approximation of the gradient. While working directly with the gradient
produces slightly smoother results, the central difference creates many additional
critical points along flat ridge-like structures.

Fig. 3 The scalar-value based algorithm [11] is applied to a scalar field (/eft). A central difference
formula is used to find the gradient of this function, and the complex is computed with our vector-
value based algorithm (middle). The two results are overlaid for comparison (right)
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Fig. 4 A two-dimensional vector field (left) is decomposed into a rotation free (middle), and
7 /2-rotated divergence-free (right) components. These derived fields are segmented with our new
approach

5.2 Rotation-Free Vector Fields

Another source of gradient-like vector fields comes from the Helmholtz-Hodge
decomposition (HHD). We restrict the discussion here to two-dimensional simply
connected domains. The HHD [3] decomposes a smooth vector field (V') into its
curl-free (r) and divergence-free (d) component fields. It is an important result, and
assists in the analysis of complex flows in terms of their simpler components [19,
30, 31]. In two-dimensions, the components d and r can be represented as the
gradient and co-gradient of two scalar potentials respectively. If J is defined as
the 7r/2-rotation operator, then both d and Jr are rotation-free fields. Reininghaus
and Hotz [21] showed that the topology of a 2D divergence-free vector field could
be recovered by the scalar topology of a r/2-rotation, using the HHD to remove the
divergent vector field component. For the purpose of our examples, we compute the
HHD of synthetic vector fields defined on a regular grid to obtain the rotation-free
fields. We illustrate the results of this segmentation in Fig. 4.

5.3 Known Limitations

The proposed technique is based on the ability to detect to which ascending
manifold a cell is most likely to belong, and produces a gradient field that avoids
crossing boundaries between them. This produces artifacts in practice in two
instances: first, in the case of a strangulation, i.e. where both sides of a separating
line belong to the same ascending manifold, such as in the interior of a volcano-
shaped region; and second, where new critical points are added due to geometric
constraints in the second pass of the algorithm. Since these critical points are never
detected in the first pass, accurate boundaries are never computed for their ascending
manifolds. In the scalar field construction, these spurious critical points have low
persistence and are immediately removed during simplification [6]. However, the
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Fig. 5 The limitations for the approach are highlighted for a two-dimensional vector field. When
both “sides” of a separatrix belong to the same ascending or descending manifold, the geometric
accuracy of the separatrix is poor (middle). When critical points are added by the second pass of
the algorithm, the boundaries of their ascending manifolds have poor geometric quality (right)

vector-valued construction does not assign scalar values to the nodes of the resulting
Morse-Smale complex, and therefore an additional procedure, such as integrating
alignment with the vector field along the path, must be applied to remove them, as
proposed by Reininghaus et al. [20]. Figure 5 illustrates these artifacts.

Conclusions and Future Work

We have modified the algorithm presented by Gyulassy et al. [11] to operate
on rotation-free vector fields. Our approach generated a dependency graph,
resolving numerical problems such as cycles, and converted the sorted
order of the scalar-valued algorithm into a more general dependency-graph
traversal. We presented the results of our algorithm for a gradient field derived
from a scalar field, as well as for rotation-free vector fields derived from
Helmholtz-Hodge decomposition.

One of the main advantages of this approach is the more relaxed ordering
of computation provided by the dependency graph. Indeed, many portions of
the discrete gradient field can be computed independently from one another,
which provides a potential avenue for parallelizing this construction. In
particular, we will use this dependency graph constructed for scalar functions
as a basis for a block-parallel approach to handle large-scale data.
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Maximal Poisson-Disk Sampling and k-d Darts
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1 Introduction

1.1 Maximal Poisson-Disk Sampling (MPS) Definition

Sample points are called well-spaced if they have a limited ratio between the
maximum distance between any domain point and its nearest sample point, and the
minimum distance between two sample points. A well-spaced sampling is efficient
at exploring a space. The maximum distance ensures that the domain is adequately
covered and reduces interpolation error. The minimum distance ensures that we do
not waste time or generate noise with samples that provide similar information to
nearby samples. Typically well-spaced is defined locally, by stating that the aspect
ratio of Voronoi cells is bounded. Samples that have random positions are often
preferred because they do not introduce directional bias in the estimates.
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Fig. 1 A maximal Poisson disk sample over a non-convex domain and a uniform sizing function

Maximal Poisson-disk Sampling (MPS) is a process that selects a random set
of points, X = {x;}, from a given domain, &, in some d-dimensional space. The
samples are at least a minimum distance apart, satisfying an empty disk criterion:
Eq. (2). For simplicity we focus on the uniform case, where the disk radius, r,
is constant regardless of location or iteration. Inserting a new point, x;, defines
a smaller domain, ¥; C &, available for future insertions, where &, = ¥, see
Eq. (1). The maximal condition, Eq. (3), requires that the sample disks overlap, in
the sense that they cover the whole domain leaving no room to insert an additional
point. This property identifies the termination criterion of the associated sampling
process. Bias-free or unbiased means that the likelihood of the next sample being
inside any remaining subdomain is proportional to the area of the subdomain; see
Eq. (1). This is uniform sampling from the uncovered area, equivalent to uniform
sampling over the entire domain, and rejecting already-covered points. See Fig. 1
for an example MPS over a non-convex domain. Extending MPS disks to squares,
or ellipses and rectangles in anisotropic spaces, is natural, yet unexplored.

i Area(£2)
Bias-free: Vx; e X,VR C Y_1 : P(x; € 2) = —— 1
ias-free: Vx; i—1 0 P (X ) Arca(Z 1) (1)
Empty disk: Vx;, x; € X, x; # x; 1 ||x; —x;|| > 2)
Maximal: Vx € 2,3x; € X 1 ||x —x;|| < r 3)

1.2 Applications of MPS

Random point distributions, including MPS, have found widespread use in computer
graphics [17, 18]. Most applications are in dimensions below 6. Rendering Sect. 5.2
makes use of sampling light rays. The global illumination problem is concerned
with computing indirect lighting, light from sources that are reflected off surfaces
before illuminating an object in a scene. Computing the light in a scene exactly is
intractable because of the number of combinations of light sources, ray directions,
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Fig. 2 Fracture after injecting CO, below caprock. The color represents maximum principal
stress. The initial fracture joints are sealed, but opened and spread due to the high injection
pressure. (a) Initial Voronoi mesh. (b) Early time. (¢) Late time

surface reflection angles, and observer positions. This is made worse if these
quantities are unknown a priori, such as the location of an observing character in a
game. An approximate solution makes use of MPS points. These points sample the
scene space, and we can precompute the approximate contribution of each sample
point, the inter-sample transmissions. Then, in real time, we may magnify by light
source intensity and interpolate and combine with other information. A similar MPS
sampling and workflow is done for texture synthesis. A small piece of a texture is
placed at each MPS sample point, and the boundaries between patches are blended
S0 as not to stand out to an observer.

In these graphics applications and some others, all three properties of MPS are
desired: maximality ensures the accuracy of the sampled approximate solution;
empty disk ensures efficiency by avoiding nearby, redundant points; and bias-
free avoids artificial visual artifacts, repeating patterns, that a deterministic regular
spacing produces. Humans are expert at detecting patterns, even imagining them
where none exists. The distribution of retinal cells in our eyes has a Fourier spectrum
much like that of MPS, which may help explain why MPS works so well.

MPS points are well-spaced, which leads to meshes with well-shaped elements.
Other meshing algorithms generate well-spaced points, but MPS is also random.
For simulating fracture, e.g. for carbon sequestration in Fig.2, meshes with both
properties are required [2, 7]. The mesh randomness models some of the natural
material strength variability. Generating different meshes for the same geometry
using the same sizing function provides a useful tool to study the sensitivity of the
solution to the mesh, complementary to refinement studies; see Fig. 6a.

1.3 Potential Ties to Computational Topology

We speculate that some MPS techniques and applications may be useful for analysis
of data for computational topology. For example, as in global illumination, MPS
could be used as cluster centers as a form of resampling the domain data, to reduce
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the size of a computational topology point cloud. MPS processes could also be used
to generate the initial data points, perhaps modified to place more points where they
are topologically significant. In particular, many computational topology algorithms
rely on a mesh. Our sampling techniques can be used to create such a mesh. Going
further, we may circumvent the need for a mesh by using the structure implied by the
disks. For example, we are investigating implicit Voronoi diagrams for traversing a
point cloud to construct the Morse-Smale complex.

One recent use of MPS points in high dimensions is real-time robot motion
planning, where the space is the configuration space of the robot and its obsta-
cles [19]. The challenges for motion planning are similar to those for some discrete
computational topology calculations. Both rely on an imperfect representation of
the space by point clouds. Algorithms for both problems typically suffer from
the curse of dimensionality, and the point clouds are typically high dimensional.
In motion planning the goal is to find one path between two points, which has
similarities to finding Morse-Smale or Reeb graph paths, and contrasts to trying
to characterize the entire space in homology calculations. Recently a realtime robot
motion planning problem was solved using our MPS sampling of its 23-dimensional
configuration space, so there is hope that large spaces from topology might become
computationally tractable as well. Conversely, it is possible that computational
topology techniques for finding smooth and short paths, e.g. homology generators
and Morse-Smale paths, could be used to smooth and shorten a robot path. Smooth
and short paths mimic human motions and are more efficient.

2  MPS Algorithms in Low Dimensions

2.1 Algorithmic Challenges

Poisson-disk sampling is defined as a serial statistical process of rejection sampling:
generate a disk uniformly at random and reject it if its center lies inside a prior disk.
A maximal sampling is defined as achieving the limit distribution. A straightforward
implementation of the statistical process is called “dart throwing,” where a dart is
synonymous with a candidate disk center point. In dart throwing, most darts are
accepted in the beginning of the process, but the likelihood of accepting the next
point is proportional to the volume fraction of the domain left uncovered by a disk,
which typically becomes vanishingly small as the process continues.

A process definition is not the same as an output definition, nor necessarily the
most efficient way of achieving that output. (Consider defining “sorted order” as the
output of the bubble sort process. Only after “sorted order” is defined independent
of the process that produced it do we have the chance to discover quicksort.)
Unfortunately we (the community) do not have a precise closed-form description
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of the MPS output distribution, nor are we sure that it is the ideal for random
well-spaced points [14]. One branch of research has modified the MPS process in
order to achieve efficiency [5]. Our (the authors’) first solutions are in a different
research branch, where we propose algorithms that produce equivalent outputs to
dart throwing, but more efficiently.

2.2 Our Algorithmic Solutions

In particular, to find an efficient equivalent process, we rely on the observation that
the probability of introducing the next disk center in any uncovered subregion is
proportional to the area of the subregion. We use a background grid subdivision of
the domain to track a superset of the remaining uncovered subregions. Cells that
are completely covered by a single disk are discarded. Efficiency follows from the
superset being not much bigger than the uncovered region. The background grid is
uniform with cell diagonals of length r. This size ensures a cell can have at most one
point, whose disk completely covers the cell. The background grid also speeds up
retrieving nearby disks, to check if a sample point is inside one. We now summarize
two variations that use this grid [11, 12].

2.2.1 Efficient MPS by Polygon Tracking

The first MPS algorithm we developed has two phases [12]. The first phase is dart
throwing, but each dart is selected within a grid cell, not the entire domain. After
a number of dart throws proportional to the number cells, we switch to the second
phase. We further refine each cell by constructing a polygon that is closer to the
uncovered region inside the cell, but is still a superset; see Fig. 3. Now we do dart
throwing inside the polygons: we select a polygon uniformly by area, then a dart
uniformly inside it. If the dart is uncovered we accept it and update the polygons.
The chance of a dart being uncovered is provably large, which leads to a provable
expected run-time of E(n logn). (There is typically no deterministic time bound,
e.g. O(nlogn), for these types of algorithms because of the random decisions they

Fig. 3 Generating a tight polygonal superset of the uncovered regions. From left to right, we start
with the cell, then subtract disks. We use the chords instead of the arcs between intersection vertices
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must make.) Unbeknownst to us there was a prior method with the same guarantees
of maximality, bias-free, and E(n logn) time [15]. It uses the evolving Delaunay
triangulation to keep track of the remaining void. Ours [12] was the first method
based on grids with these guarantees; grids are preferred in some settings due to
their locality, simplicity, and speed. Our method was easily parallelized on a GPU.
However, keeping track of polygon intersections is both cumbersome and requires
a large amount of memory. If we increase the domain dimension the memory
consumption explodes, restricting this method to low-dimensional spaces. The next
method we developed addresses these shortcomings for slightly higher dimensions,
and we prefer it even for lower dimensions.

2.2.2 Simple MPS by Implicit Quad-Trees

The second method [11] we developed, Simple MPS, maintains all of the desirable
qualities of our previous method, Efficient MPS [12], namely maximality and bias-
free, with the added benefits of being simpler to code; using less memory; faster
run-time even in low dimensions and scalable to higher dimensions in practice
(but without a run-time proof). It starts with dart throwing in the background grid;
described in Sect. 2.2.1 and identical to the first algorithm [12]. However, instead of
proceeding to polygons, we simply subdivide all the remaining child cells. Covered
child cells are discarded, and we repeat the algorithm on the remaining cells. Since
the cells are all the same size, it is easy to represent them by indices, and we do not
need the overhead of a tree as in a true quadtree.

The key to this strategy’s efficiency is that the collection of active cells is a
close approximation to the entire uncovered area, even if one particular cell is
much larger than the uncovered area it encloses. In practice the number of cells
decreases geometrically per refinement, which helps both runtime and memory, and
allows us to reach maximality by refining down to machine precision. We were
able to maximally sample 6d domains on a CPU. On the GPU, we sampled at an
impressive rate of 1 M samples/s in 2d and 75 K samples/s in 3d. More details on
how to parallelize, and proofs of maximality and bias-free, can be found in our

paper [11].

2.3 Variable Radii MPS

We define two useful variations of MPS [16]. In the first version, the size of the
disks varies spatially over the domain; see Fig. 5b for a classic stippling application.
We still get locally well-spaced points if this variation is slow, e.g. the disk sizing
function satisfies a Lipschitz condition. The quality of the meshes generated from
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Fig. 4 Variable radii MPS. (a) Two-radii, . > r . (b) Spatially varying radii

those points degrades smoothly as the variation increases, up to some critical
threshold after which there are no guarantees. The run-time also increases with the
variation, because proximity checks must search a larger neighborhood. Spatially
varying radii had been considered previously by other authors [3], but we appear to
be the first to quantify these conditions and their effects [16].

If the radii of two disks differ, there are several ways of defining “conflict,” the
conditions under which a dart is rejected because it fails to satisfy a version of
Eq. (2). There are variations based on size and generation order. Each variation has
advantages and disadvantages. Defining conflict as the smaller disk containing the
center of the larger disk provides the best quality and it can tolerate the largest
Lipschitz constant (< 1), but generates the largest point sets. If we define a conflict
as a candidate disk center lying inside a previously accepted disk, then this is the
easiest to implement, as it is a minor change to Simple MPS and other algorithms.
However, it has the biggest restriction on the Lipschitz constant (< 1/2) and
provides the weakest output quality guarantees. We have also explored sifted disks
for reducing the discrete density of a maximal point set, by removing and relocating
points, while still maintaining the MPS conditions [9].

Our second useful variation of MPS [16] is to use two radii for each point,
two-radii MPS; see the concentric blue and red disks in Fig.4. We decouple the
maximality (coverage, blue) and conflict (empty-disk, red) conditions, by using
different disk radii for each. I.e. we replace the disk-free “r” in Eq.(2) with ry,
and replace the coverage “r” in Eq.(3) with r.. One benefit of a larger coverage
radius r, is a smoother noise spectrum [20], defined by the Fourier transform of
all pairwise point distances; see Fig. 5. We have also explored adapting a point set
to obtain a smaller coverage radius, which improves interpolation error and mesh
quality, by a method we call opt-beta, locally optimizing the position of nodes [6].
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Fig. 5 Spectral properties [20] of single-radii and two-radii MPS. (a) Single radius MPS. (b) Two
radii, r. = 2ry

3 Meshing Algorithms Based on MPS

We consider two types of meshes: constrained Delaunay triangulations [10] and
Voronoi polyhedra [8]. See Fig.6 for triangles and Fig.8 for poyhedra. MPS
produces well-spaced points, which can lead to well-shaped elements immediately,
without the need for post-processing such as smoothing or edge swapping; see
Fig. 7b. For Delaunay triangulations we must place points exactly on the domain
boundary to get a conforming mesh. We must place boundary points more densely
than in the interior to ensure good quality triangles. In Voronoi meshing, the MPS
points are the Voronoi cell seeds, and it is better if the points lie strictly interior to
the domain, and the cells are clipped by the domain boundary. Using interior points,
cells have better aspect ratios, and the Voronoi mesh is smaller; see Fig. 8 cut-away.

Delaunay refinement [4] is the most popular method for well-spaced points and
well-shaped triangles. It creates triangles first, and adds points to remove bad-
quality triangles. In contrast, MPS generates well-spaced points first, and only forms
triangles at the end. The theoretical guarantees about the outputs, the numbers of
points and elements’ qualities, are nearly identical. In practice, freedom from the
vagaries of intermediate triangles appears to allow MPS to change mesh size more
quickly [1], and more closely adhere to a sizing function, for the same quality



Exercises in High-Dimensional Sampling 229

S ANV S A A VAo A VAVAY AV AVATS AV N A A e A VA A YA

WY NS 2
RKEA KR USSR OV AR A SN A EORRINANIN
Rl S S et Sl SR IR AR AR
SSERSOARNIAAHED RRGROI XN <4 R KRN RURIOELI S
RASOBEORNCIARK SRPAPROSE SR R RIS =
RGOSR ORISRV B STATAN S g v 2y X SCANEPON
ISR SRR ENARENIIN TRRRARE K RN A K
PSRN SRR "p‘%ﬁh‘;‘]?{“ RO X R ARSI
S TSR A RN RN R AN
S, Sty R & S R DI
SRR e SRS AR e
NSRS e arAVy dIs PREDREOR
NRDALEIRE T KRR R IS R AXEKS
VAN v S VAVAY S W DIRRIKES PSS I R S X IR I AT L
NAZPKAZRANA R RRRRRANNAZO! KRR ORI AR IAARIOA

Fig. 6 Delaunay triangulations via Poisson-disk sampling. (a) Two random meshes with the same
radius and domain. (b) Random meshes of non-convex domains. Red internal interfaces are
represented in the mesh
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Fig. 8 MPS Voronoi meshes. The boundary elements are nearly as large and well-shaped as the
interior elements. Operations are local so it is easy to handle complicated global topology
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requirements. The local nature of MPS operations leads to near-linear time in serial;
see Fig. 7. It also leads to easy parallelism with little communication [10]. In contrast
Delaunay refinement must build very large intermediate triangles between distant
points.

4 Sampling in High Dimensions
4.1 Algorithmic Challenges

Although the definition of MPS is dimension-independent, some properties of the
distribution change as the dimension increases, and the algorithms that work well
in low dimensions take more memory and time. High-dimensional spaces present
several challenges. As dimension increases, the volume of a sphere relative to its
bounding box decreases, and relative to its inscribed box it increases. A unit box
can contain an exponential-in-d number of unit disks. The box becomes a worse
approximation of a sphere, and this dooms grid-based methods as expensive in time,
memory, or both. Regardless of the methods used to generate the sampling, each
disk can have exponentially more nearby disks as the dimension increases. This
increases the combinatorial complexity of computing intersections of disks, or disks
with grids.

If we take a step back from MPS, a typical underlying goal is to sample the
space in a way that gives unbiased estimates, with low variance, of some quantity.
Typically this still means our sampling should be random. However, points are just
one way of sampling, a zero-dimensional way. MPS points are chosen uniformly
at random by volume without regard to the shape of the domain. Thus it is hard to
hit narrow regions with point samples, even though some of their dimensions might
be large. In particular, in standard MPS algorithms it is hard to tell if maximality
has been reached and the domain is covered by disks. More generally, it is hard to
track narrow regions of interest. In uncertainty quantification, the domain may be the
parameter space of a simulation, and the region of interest is where the simulation
returns a value below a threshold. Typically the simulation is more sensitive to some
parameters than others, so this subregion is narrow in those dimensions, but large in
the insensitive parameter directions.

4.2 Algorithmic Solution: k-d Darts

To address such a scenario, rather than evaluating a function at a single point,
we consider higher-dimensional evaluations along k-dimensional hyperplanes or
“flats” [13]; see Fig. 9. Initially, we defined a “k-d dart” as a set of axis-aligned
hyperplanes spanning all combinations of k free and d — k fixed coordinates. How-
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99 Point Darts Six Line Darts One Plane Dart

Fig. 9 Sampling a narrow region with hyperplanes increases the amount of information we
capture. While the number of random points landing in the gray area approaches zero as its
thickness decreases, each random line is destined to capture a portion of it

ever, further analysis and experimentation showed that just picking k-dimensional
hyperplanes with random free-coordinate indices is simpler and works just as well.
This is all predicated on the assumption that it is possible to evaluate a function
along a flat. A particularly nice situation is when the function is analytic, and we
can substitute the flat’s fixed coordinates for its parameters. As a last resort, one
could estimate the evaluation of a function along a flat numerically. In general the
cost of evaluating a higher-dimensional flat is typically larger than a 0-d flat (i.e. a
point). However, the amount of information gained and the ability to find narrow
regions is often worth the cost. We get faster convergence, and higher quality in our
examples.

5 High-Dimensional Algorithms Using k-d Darts

We next show the utility of darts over several algorithmic examples: generating
relaxed maximal Poisson-disk samples, approximating depth of field blur [13,21],
and volume estimation [13].

5.1 Relaxed Maximal Poisson-Disk Sampling (RMPS)

In a maximal Poisson-disk sample, the coverage disks overlap to cover the entire
domain, leaving no room to increase the sample size. At maximality, the achieved
coverage radius 7. is at most the prescribed conflict radius r; recall Sect.2.3.
Achieving this condition is extremely hard in high dimensions (e.g. d > 6). A
relaxed version of this condition allows the coverage disks to be slightly larger than
the conflict disks, quantified by their ratio, the distribution aspect ratio f = r’—; >
1.0. Increasing the allowable upper bound on 8 makes solving the problem easier.
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k-d darts [13] utilize line darts to capture the narrow voids between existing conflict
disks while simultaneously estimating the volume of the remaining void. Line darts
are much faster than point darts for RMPS, because it is fast and easy to subtract
a set of spheres from an axis-aligned line. The remaining segments are uncovered,
and we introduce a new sample along them.

Our k-d darts RMPS method produces nearly-maximal distributions whose
spectral properties (randomness) are nearly identical to those of MPS. It uses much
less memory than previous methods, allowing us to examine larger and higher-
dimensional domains. We sample domains of up to six dimensions on a CPU, and
three dimensions on a GPU.

5.2 Depth of Field by Line Darts (DoF)

Optical camera lenses focus at a single distance from the camera, so captured images
typically exhibit blur effects at other distances. Computer-generated images, on the
other hand, by default are in focus at all distances. Simulating the depth-of-field
effects of a real camera is helpful in adding realism to computer graphics. Using
one-dimensional darts or line darts or line samples [13,21], one can produce high-
quality low-noise images with depth-of-field effects. Compared to traditional point
sampling, line darts are able to capture more information per sample. Although each
line dart is computationally more expensive than a point dart, in practice line-darts
reduce the overall run time to produce an image of comparable quality.

Depth of field involves sampling the image in 4-d (x, y,u,v) space, where
(x, y) is screen space and (u, v) is lens space. In k-d darts [13], each dart sample
consists of four orthogonal lines, one spanning each of the 4-d coordinates. In wagon
wheel [21], each dart sample consists of a radial line in («, v) space, passing through
the center of the lens; see Fig. 10. The remainder of this section elaborates on the
wagon wheel approach.

“, >

Point Samples in Line Samples in
the lens domain the lens domain

Fig. 10 Depth of field line sampling vs. point sampling. We have four colored samples in scene
space (middle). For each one, point sampling generates one point in lens space (left), while our
method generates multiple line samples (right)
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Fig. 11 256 point samples (fop) and 16 wagon-wheel line samples (bottom) per pixel produce
nearly the same image, but line samples are about four times faster. (a) Example 800 x 800 pixel
scenes rendered using 256 point samples. (b) Example 800 x 800 pixel scenes rendered using 16
line samples

For each pixel we generate several sampling locations (x,, y,) within the pixel
and then perform line sampling along the lens (u,v) space. Rendering starts by
computing intersections between line darts and incoming primitives that represent
the scene. Primitives that intersect the line samples then generate colored line
segments, whose contribution is aggregated in to the final color of the pixel. How
line samples are placed along the lens plays a crucial role in the final image quality.

A wagon wheel line sampling pattern (Fig. 10) has several advantages when
compared to alternatives. First, it has uniform line sample lengths. This helps when
implementing the algorithm on highly parallel architectures, such as a GPU. Second,
line samples passing through the origin can be expressed in a simple slope-intercept
form v = mu, simplifying the math. Lastly, the bias that is associated with such
a pattern can be easily removed by a reweighting during filtering. An alternative
would be a grid-like pattern, as the ridges of a waffle, using k-d darts in just (u, v)
space.

Figure 11 shows the results of several scenes rendered with 256 point samples
versus 16 wagon wheel line samples, run in parallel on a NVIDIA GTX 580 GPU.
Also, for k-d darts, 16 line-darts produce a better picture, more quickly, than 1024
points. Using either wagon wheels or k-d darts, line sampling demonstrates a clear
win in terms of both quality and performance.

5.3 Volume Estimation by Hyperplane Darts

We study the accuracy of high-dimensional sampling using k-d darts, on the classi-
cal problem of estimating the volume of an object [13]. We seek to experimentally
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quantify the effects of the object orientation, dart orientation, object surface area
to volume ratio, and dimensions of the object and dart. We create a d-dimensional
hyper-ellipsoid object as follows.

— Start with a unit d-ball (d -dimensional unit sphere);
— Scale along the x-axis by a factor squish s to generate an elliptical profile; and
— Perform r random Givens rotations to randomly orient it.

We compute the volume of the ellipsoid analytically, for the ground-truth. For
comparison, we estimate the volume of the ellipsoid using k = 0 darts, i.e.
classical Monte Carlo point sampling: sample random points from the ellipsoid’s
bounding box and count the fraction inside the ellipsoid. The accuracy decreases as
d increases.

For k-d darts, we can choose to throw line darts, plane darts, or darts of any
dimension k < d. Figure 12 show how k-d darts consistently outperform point
darts. Their advantage increases as k increases.

Darts may be axis-aligned or arbitrarily oriented. We recommend axis-aligned
darts for three reasons. First, it is easy to distribute aligned darts uniformly, which
ensures that the expected mean of the function estimates is accurate. Second, it is
easiest to implement aligned darts, since it involves simply fixing coordinate values.
Third, in many cases it is most efficient because we may obtain an expression for the
underlying function along a dart by substituting in the fixed coordinate values. We
compare the accuracy of aligned and unaligned darts in the top row of Fig. 12. For
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Fig. 12 d-Dimensional hyper-ellipsoid volume estimation, for varying squish factor s scaling the
main axis, dart dimension k, and fixed number of random rotations r = 10 of the ellipsoid. Top
uses axis-aligned (la), randomly oriented (1r), and orthogonal pairs of randomly oriented darts
(lo). Bottom uses axis-aligned darts in 10-d. Left shows the ratio of the estimated to true volume
by frequency for a fixed number of samples, 1. Right shows |mean — true|/true volume by the the
number of darts, n
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squished ellipsoids, aligned darts are slightly more accurate, but the prior reasons
are more significant.

6 Summary

We have highlighted the main research results of our sampling group from 2011
to 2013. We consider MPS, or more generally point sets that are both well-spaced
and random, to be a very rich area, crossing many fields and applications. Over the
course of our research, we have explored many modifications to our algorithms and
used the output for many different applications. Uses and features of our sample
generation and modification algorithms are summarized in Tables 1 and 2. We
have compared and contrasted these to the works of others. These variations [6, 9],
and their tradeoffs, led us to the conceptual framework for sampling illustrated in
Fig. 13.

Table 1 Our sample generation and modification algorithms’ application context

Name Goals Mesh | Nodes Beta Dim

Opt-beta Reduce beta Ok Move Tune <1 |2

Steiner reduction Fewer points, preserve mesh Yes (Re)ymove | >1 2
angles

Sifted disks Fewer points, preserving Ok (Re)ymove |1 2
beta = 1

k-d darts Create points, integration, in Create —>1 2-23
high dimensions

Variable radii MPS | Create points with sizing Yes Create Tune>1 |2
function or spacing

VorMesh MPS Create Voronoi polyhedral Yes Create 1-2 2-3
mesh

DelMesh MPS Create Delaunay triangle mesh | Yes Create 1-2 2-3

Simple MPS Create points in moderate Ok Create 1 2-6
dimensions

Efficient MPS Create points in two dimensions | Ok Create 1 2
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Table 2 Our algorithms’ performance and features

Name GPU Time Memory Features Ref.

Opt-beta Numeric n Local position optimization, [6]
as smoothing

Steiner reduction ~n 2-to-1 node replacement [1]

Sifted disks n 2-to-1 node replacement [9]

k-d darts n2d? nd High-d, global hyperplanes, [13]
many applications

Variable radii MPS ~n Provable qualities [16]

VorMesh MPS ~n Bounded domains, provable [8]
quality

DelMesh MPS GPU ~n n Bounded domains, provable [10]
quality

Simple MPS GPU ~ n24 n2¢ Efficient flat quadtree [11]
tracking voids

Efficient MPS GPU nlogn n Provable runtime, polygon [12]
approx. voids

Many [8, 10, 16] use a form of Simple MPS [11]

Process randomness is a hidden axis,
merely a means to obtain spatial randomness.

Spatial

Randomness Biue Noise

MPS

uniform-random coordinates {
jittering

injecny

optimization
CcVvT

Discrete Density
n number of samples
kissing number

number of neighbors, edges, cells,

\

Fourier Spectrum, Power and Anisotropy
Pairwise Distances, Edge Orientations
Dimension d
sifting
off-centers
bubble mes
oin and sample optimization

r, free radius, nearest-neighbor distance; Delaunay edge lengths

7. coverage radius, Vornoi vertex distance

B =r,/r, Distribution Aspect Ratio; DT angles,Vor cell aspect ratio

Lipschitz Conditions

Unique Coverage

Fig. 13 A conceptual space parameterizing the output of any sampling method. Note methods
such as jittering add randomness, while optimization methods tend to remove randomness. Each
axis may be varied, but the axes are not independent. For example, two-radii MPS places points
further apart, and hence produces fewer of them, and their positions are more random. Achieving
maximality tends to add regularity and improve mesh quality. Bubble mesh interleaves changing
the position and number of points; again optimizing positions leads to greater regularity
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Realization of Regular Maps of Large Genus

Faniry Razafindrazaka and Konrad Polthier

1 Introduction

Tiling of closed surfaces into non-overlapping faces is one of the central topics in
surface topology and computer graphics. Either the surface is given and a nice tiling
of this surface has to be found or the tiling is given and the surface on which this
tiling is the most symmetric has to be found. This paper explores the later case but
restricts the tiling scheme to the class of regular maps.

The concept of map was first introduced by Coxeter and Moser [2]. A map is a
family of polygonal faces such that any two faces share an edge or a vertex, or are
disconnected; each edge belongs precisely to two faces; the faces containing a given
vertex form a single cycle of adjacent faces; between any two faces is a chain of
adjacent faces. In other words, it is a closed 2-manifold, without boundaries obtained
by glueing topologically equivalent polygonal faces. If the map has p-gonal faces
and g-gonal vertex-figures (number of faces around at a vertex), then it is said to be
of type {p. q}.

A regular map is a map which is flag transitive. It means that, on the surface, if
a vertex or an edge or a face is mapped to another vertex an edge or a face, then
the map is one to one and preserves all adjacency properties between the vertices,
edges and faces. Regular maps can be viewed as generalization of the Platonic solids
to higher dimension. They define regular tilings of closed surface and their group
structure can be used to move along the surface which behaves like an “hyperbolic”
parameterization.
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Fig. 1 Example of genus 0 and genus 1 regular maps, where the first set corresponds to the
Platonic solids and the second set to tilings of the torus. (a) Spherical regular maps. (b) Genus
1 regular maps

Fig. 2 Visualization of a genus 61 surface tiled with 480 hexagons following the regularity of the
map R61.1'{6, 4}

Figure 1 illustrates some examples of low genus regular maps which include the
Platonic solids, the Hosohedron and some tiling of the torus.

In this report, we give realizations of regular maps of genus > 20 that we classify
to be large genus regular maps. In Fig. 2 is an example of a genus 61 regular map
which is the highest genus regular map ever visualized so far. Our main contribution
is the targetless tubification described in Sect.4.2. All the images generated in this
paper are produced by our algorithm.

The chapter is organized as follows: first, we will give theoretical backgrounds
on regular map including geometric and algebraic characterization; second, we
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will describe the basic procedure to obtain, with maximal symmetry, large genus
surfaces; and last, we will give a description of the method used to produce tilings
on these large genus surfaces.

2 Related Works

Up to now, there is no general method to visualize regular maps but a lot is already
known about their symmetry group, see for example Conder [1]. The problem
is two-fold, understanding the symmetry group of the regular map and finding a
suitable space model for it. Jack van Wijk [3], in his Siggraph paper, suggested a
generic approach which gives interesting visualization of some of the lower genus
regular maps up to genus 29. He succeed to handle about 50 cases by using a brute
force computer search. However, his method is too restrictive and cannot realize
even some of the simplest cases. Séquin’s investigations [8—10] are also a huge
source of inspiration. He uses physical modelling techniques, including sketches,
paper models and Styrofoam, to finally obtain a computer generated model. Some
cases have been solved by his method from genus 2 to genus 5 but each regular
map is handled separately. Sequin’s approach are useful for a better understanding
of the structure of regular maps but too primitive to handle the large ones. In our
early work [5,6], We uses the same approach as van Wijk but we added a relaxation
procedure to obtain more symmetrical and smooth tubular geometry. We use this
relaxation scheme as a second step of the targetless tubification algorithm.

In this paper, we aim at surfaces having more than two junctions and with rich
structure to accommodate regular maps. We are not interested in the hosohedral kind
of surface. These are the surfaces obtained by taking the tubular neighborhood of
Hosohedra.

3 Background Notions

3.1 On Standard Geometry

Isometric realization of tilings depends on the ambient spaces where they are
embedded. These are: the Sphere, the Euclidean plane and the Hyperbolic plane.
For spherical and hyperbolic geometry, we use [7]. Examples of spherical isometric
tilings are the Platonic solids; the Euclidean plane can be isometrically tiled by
checker-board patterns; and the Hyperbolic plane are tiled by p-gons for large p’s.
A closed 3D realization of a sub-tiling of the Euclidean plane is a torus (see Fig. 2 in
Chapter 6). The closeness of the torus is topologically derived from a parallelogram
in the Euclidean plane wrapped in 3D by identifying opposite sides. In this 3D
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realization, isometry is lost but the topology of the tiling is still preserved. We then
only talk about combinatorial transitivity.

Similar 3D realizations can also be done from the Hyperbolic plane. A genus
g > 1 surface is derived by taking a 4g-gon in the Hyperbolic plane and identifying
pairwise edges. Hence, any tiling of the Hyperbolic plane can be realized as 3D
surfaces by finding a 4g-gon partitioning this tiling with the correct identification at
the boundary. Special case of these tilings are regular maps.

3.2 On Regular Map

A finitely generated group is a group of the form (¢ | #Z), where ¢ is a set of
generators and Z is a set of relations. If R; € Z, then R; = I which is the identity
of the group.

A regular map is a finitely generated group of the following form

Sym(Ms) = (R, S, T|R”, S, T? (RS)*, (ST)*, (RT)*, ). ... %n). ()

where R is a rotation of 27r/q; S is a rotation of 27/ p and T is a reflection. They
are transformations acting on a fundamental triangle with corner angles 7/ p, /¢
and /2 (see Fig. 3). Depending on p and ¢, they can be euclidean motions, special
orthogonal matrices (for spherical) or Mog&bius transformations (for hyperbolic).
R, ..., %y are extra relations making the group finite. The expression 1 is called
the symmetry group of the map. It is the set of all automorphisms of the regular
map [2].
The symmetry group of the cube (a regular map of type {4, 3}) is defined by

Sym(Cube) = (R, S, T|R*, §*, T?, (RS)*, (ST)*, (RT)?), )

Fig. 3 Two different representations of the Cube using: (a) a Sphere and (b) stereographic
projection into the plane
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Sym(Cube) can be realized on a blown up Cube, taking as fundamental triangle
a spherical triangle with corner angles /4, /3 and 7 /2 (Fig.3a). It can also be
visualized as a 2D surface using stereographic projection which is only conformal
(Fig. 3b) but not isometric.

Orientable regular maps are denoted in Conder [1] by Rg.i{p, g}, which is the
ith—reflexible orientable map of genus g. {p, ¢} is the Schlifi symbol of the tiling.
Reflexible means that the transformation 7" in Eq. 1 is also an automorphism of the
map. Analogously, the dual map is represented by Rg.i’{g, p}. Conder [1] listed all
reflixible regular maps of genus 2 to 302. They are given as symmetry groups and
used as input to our algorithm.

4 Generating Large Genus Surfaces

In this section, we explore in depth techniques to generate and visualize large genus
surfaces. Our aim is not only to generate some genus g surface but also a surface
with rich topological structure and nice looking shape.

4.1 Tubification Process

A genus g surface can be generated by taking a sphere and drill non intersecting g
tunnels on it. Another approach, very used for teaching, is the sphere with g handles.
It consists mainly of taking Tori and glueing them on a Sphere to form handles. It
is then unclear where the Tori should be placed and if the resulting surface can be
used to visualize symmetric tilings.

A better approach is the use of a tubification process. It consists of taking a tiling
of a surface, turning its edges into tubes, its vertices into junctions and its faces into
tunnels. For example, a genus 2 surface can be derived from a tubified Hosohedron
{2, 3} as illustrated in Fig. 4b. Surfaces with rich structure or regular surfaces can be
derived by taking regular tilings having more than two vertices. The Platonic solids
are direct examples of these. Even more, we can take any regular maps and apply

Fig. 4 Recursive tubification starting from: (a) hosohedron {2, 3}, (b) tubification of its edge
graph, (¢) regular map R2.8'{8,3}, (d) tubification of its edge graph and (e) regular map
R9.3'{6, 4}
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the tubification process to derive large genus surfaces. In Fig.4c, d, we show an
example of a tubification of the regular map R2.8’{8, 3}.

As in [3], a pairing of source and target map is used to generate higher genus
surfaces. The source map is the actual regular map that we want to realize and the
target map is the regular map which after tubification gives a space model for the
source map. More precisely, let (M;);c; be a finite sequence of regular maps such
that a space model of M; 4 is the tubification of M;. For a given n, if for all i < n,
the M;’s are realized, then a tubification of M,,_, is a space model of M,,. Otherwise,
we cannot give a space model for M,,. This become now a classical method used to
visualize successfully large class of regular maps. In the next section, we show that,
in fact, the sequence of M;’s is not needed, only the pairing of source-target map is
enough.

4.2 Targetless Tubification

The tubification of an existing regular map has a critical issue since it needs an
actual realization of the target regular map. Hence, if the target regular map does
not have a 3D embedding, then the tubification cannot be applied and thus no higher
genus surface is generated.

We give a solution to this restriction by taking advantage of the planar repre-
sentation of the target regular map. We call the process a targetless tubification.
Targetless in the sense that no actual 3D embedding of the target regular map is
needed but only an embedding of its edge graph is sufficient.

We generalize the torus case to Hyperbolic space. More precisely, suppose we
have a tiling of a flat torus with its 2D edge graph. This edge graph can be mapped
to 3D using the usual parameterization function and hence a tubular surface is
derived naturally. In this process, only the edge graph is needed to be embedded
in space, not the 2D tiling. We do also the same process in Hyperbolic space
but since we do not have an explicit parameterization, we do as follows: first, we
identify explicitly boundary edges of the map and second, we apply the constrained
relaxation procedure described in [5] to get symmetry and smoothness. All the
higher genus surfaces in this paper were produced by this simple procedure. An
example of a genus 5 surface obtained by the edge graph of the regular map
R2.4{5, 10} is illustrated in Fig.5. In this illustration, we start with the hyperbolic
realization of R2.4 with the identification at the boundary (represented by the
arrows). We then match the boundary edges having the same label, head to head and
tail to tail. This results in a 2D connected graph which has the same combinatorics
has the edge graph of the underlying regular map. This 2D graph is then smoothed
using spring energy.
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Mapping only the edge graph by the parameterization

Identification Smoothing

Mapping the edge graph by identifying explicitely the edge greaph

Fig. 5 Construction of a high genus surface by embedding directly the edge graph of the target
regular map

Notice that no actual embedding of the regular map R2.4 is needed (see [10]
for a 3D realization of this map). Our technique can be applied to any planar
representation of a regular map to generate a 3D tubular surface obtained from its
edge graph. Below are some examples of large genus regular map generated by the
above method.

5 Topological Group Structure

In this section, we define a topological group structure on the surface generated
previously that we denote S,.

5.1 Partition by Tube Elements

The recursive tubfication procedure derived in Sect. 4.1 allows us to choose a tiling
of S;. We have for example a tiling with quarter-tubes, with half-tubes, with tube
junctions, with full tubes or with multiple quarter-tubes (see Fig. 6). We call one of
these a fundamental domain of S, and as for every group, we can cover the surface
by copies of this fundamental patch. These tilings are induced naturally from the
underlying regular map used to derive the tubular surface.
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Fig. 6 Example of a partition of S, with some elements of the tubes. (a) Quarter-tubes; (b) half-
tubes; (c) tube junctions; (d) full tubes

b

Fig. 7 The adjacency operator defined on the set of quarter-tubes

The next step is now to define a group structure induced by the tube element in
order to define a parameterization of S,. This parameterization will be then used to
map other regular maps as described in Sect. 6.

5.2 Deriving the Symmetry Group

We restrict our construction to the case of a tiling with quarter-tubes as in [3]. The
other cases can be handled analogously.

Let 2 be the set containing all colored quarter-tubes of S,. We label the edge
of a quarter-tube by a, b, ¢ and d, where a is the one at the junction and b, ¢, d are
the next counter-clockwise edges. The orientation is defined by the normal of the
surface at each quarter-tube (Fig. 7).

We define a basic operation Adj, on 2 which takes a quarter-tube Q and returns
the quarter-tube adjacent to Q at edge x:

Adj: 2 - 2
0 +— quartertube adjacent to Q at edge x

For example, (Adj,)? is the identity since making two quarter-tube steps around
a tube get back to the start. (Adj,)? is also the identity. Let Q; be a fundamental
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domain of 2 (it can be any quarter-tube of 2). We define three operations A, B and
C on 2 as follows:

— A shifts Q; two positions positively around a hole, more precisely Q4 =
Adj, (Adj.(Q1));

— B rotates Q around the junction, Q3 = Adj,; (Adj,(Qr));

— C shifts Q; one position down, Q¢ = Adj,(Q7).

Here, Qs denotes the quarter-tube obtained by applying a transformation M to
Q.

We can see A as a transformation moving a tube around a hole, B switches from
one hole to another hole and C enables to reconstruct a full tube from a quarter of a
tube. Using Adj, , we can derive the following relation

(CBA)? = (BA)> = (CB)* = I

where, I denotes the identity transformation. Using the underlying symmetry group
of the tiling used to build S, we can define a symmetry group of S, as

Sym(S,) = (4, B, C | A”, B%,C?,(CB)*, (BA)*, (CBA)?,
g1(A,B,CB),...,g.,(A, B,CB)),

where, the g;’s are the extra relations of the symmetry group of the underlying
regular map.
A group structure on the genus 5 surface shown in Fig. 8 is given by

Sym(Ms) = (4, B,C | A*, B*,C?, (BA)*, (CB)*, (CBA)?).

This group has exactly 12 x 4 quarter-tubes highlighted in Fig. 8. Once the group
structure is introduced on S,, we can unfold this surface in hyperbolic space to
embed a regular map on it.

Fig. 8 Three adjacency
operators acting on the
quarter-tube tiling: A shifts
Q two positions positively
around a hole; B rotates Q
around the junction; C shifts
QO one position down




248 F. Razafindrazaka and K. Polthier
6 Tilings
6.1 Matching Symmetry Groups

In this section, we give a brief description of the use of the symmetry group
introduced on S, to realize a regular map. The regular map is defined with its
symmetry group Sym(Sy,p) realized as planar tiling in Hyperbolic space.

The first step is to make an hyperbolic parameterization of S. This process is
similar to the torus case (space model for genus 1 regular map) where the parameter-
ization is done onto the unit square. For high genus surfaces, the parameterization is
done by choosing a suitable fundamental quadrilateral 2Q; in hyperbolic space and
set it as fundamental domain of Sym(S,). The idea here is to make a 2D realization
of Sym(S,) using another fundamental domain. Once the parameterization is
done, the regular map can be naturally mapped using the inverse mapping. An
overview of the algorithm is illustrated in Fig.9. The remaining problem is then
on the construction of 2Q; and the hyperbolic transformations corresponding to the
elements of Sym(Sy).

Abstract tiling of 3D structured
a genus g surface genus g surfac
(ex: regular map)

| Parametrization
using the group
structure

v

\

Projection on

a fundamental \ & A /
quarter-tube ~— 7

Using the parametrization
Using the symmetry group

Realization of the regular map

Fig. 9 Pipeline to visualize a regular map on a structured genus g surface
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The construction of #Q; depends on the matching between Sym(S,) and
Sym(Smap). These matchings are heuristics which check if there exists a partition of
Sym(Smap) by Sym(S,). A necessary condition is that the order of Sym(S,) should
dives the order of Sym(Smap) and a sufficient condition is the existence of a subgroup
of Sym(Smap). In the successful case, 1Q; can be constructed, otherwise S, is not
a suitable space model for Sym(Smap) and the mapping cannot be done. Matchings
between regular maps are generated using van Wijk [3] heuristics. It consists of a
pairing of source map and target map where the second is a lower genus regular map
which after tubification gives a space model the first. His heuristic also provides the
exact position of the four points of 2Q in hyperbolic space.

In his lists, there are several mappings which cannot be visualized since the target
map does not have a 3D realization. This is mainly the case for the large genus
regular maps which depend on several low genus ones. These cases are handled by
the targetless tubification in Sect. 4.1.

7 Geometric Construction

In this section, we assume that the target map has a 3D realization and describe
the geometrical tools used to construct the tubes. As stated in Sect. 4, the tubes are
derived from the edges of an existing regular map. These edges define a control
skeleton .7 of the tubular surface and is used to deform the shape of the tube.

The normals along .# are induced from the surface. Using these normals, we
construct the tube from four quarter tubes, highlighted in Fig. 10. Each quarter tube
consists of half ellipses connected to each other which starts at the center of an edge
and rotates from O to ¢p/2 when approaching a junction, where ¢ is the angle with
the adjacent edge at the junction. This is illustrated in Fig. 10.

Fig. 10 Generating tubes from quarter tubes. The red arrow represent the normals along the edge
of the tiling, induced from the surface (left). At the junction, each quarter tube meets with the
correct angle and then identified to form a connected surface (right)
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We did not write the mathematical construction of the tubes here, this is
extensively studied in [5]. For the targetless tubification, the normals are obtained
from the local orientation at the node junctions. These local orientations are derived
from the group structure of the underlying regular map which tells us that it must be
an orientable surface and hence the normals along its edge-graph must be continuous
(take a normal and parallel transport it along any cycle of the graph, then it should
give the same normal when it comes back). Normals along an edge are generated by
interpolating the two normals at the two endpoints of its junction.

For a better smoothness at the junctions, we do a Catmull-Clark smoothing [4].
New points are not inserted but are only used as mask to relax the points. This is
similar to a laplacian smoothing for quad meshes.

8 Examples of High Genus Regular Map

In Fig. 11, few examples of large genus regular maps generated by our targetless
tubification are illustrated. The arrows are the matchings between source and target
map. These are found using the heuristics presented in [3]. We choose especially
large genus regular maps which are closed to spherical and euclidean tilings.
Namely, maps for which the integer distance between p and ¢ is not so big.

We succeed to generate all the regular maps missing in [3] which are more
than two-fold increases of the current results. In this paper, we emphasis on the
visualization of large genus regular maps with self-intersection free even for very
high genus surfaces.

The choice of the tube radius is crucial in this process but it is closely related to
the spring energy parameter (attraction and repulsion). Hence, we leave it interactive
and modified by visual inspection. In all of our experiment, only few adjustment is
needed to have a non self-intersecting surface.



Realization of Regular Maps of Large Genus 251

R28.6'{6,4} — R10.10/{12,4} R31.3'{6,4} — R10.3/{15,3}

Fig. 11 Some large genus regular maps generated by the targetless method



252 F. Razafindrazaka and K. Polthier

Conclusion

We presented a method to generate large genus regular maps. Regular maps
are generalization of the Platonic solids into higher genus surface. These
are realized by using a new targetless tubification procedure which does not
require any actual embedding of a target shape to generate a genus g surface.

Regular map is an intriguing surface and having a nice visualization of
them remains an interesting and unsolved problem. So far, we did not find
any practical application of those shapes if not for symmetric tiling of closed
surface. They can also be good models used for teaching and understanding
how symmetry group work.

Similar to the Platonic solids, regular maps are the most symmetric tiling
we can use for high genus surfaces but we need to find the correct space model
where these symmetries can be appreciated.

What is not described in this paper is an automatic algorithm which gives
the identified edges in the planar representation of the target maps. We will
leave this detail as future work.
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1 Introduction

As students, we are often asked to draw (hopefully without a calculator) real zero
sets of low degree polynomials in few variables. As scientists and engineers, we are
often asked to count or approximate (hopefully with some computational assistance)
real and complex solutions of arbitrary systems of polynomial equations in many
variables. If one allows sufficiently coarse approximations, then the latter problem
is as easy as the former. Our main results clarify this transition from hardness
to easiness. In particular, we significantly speed up certain queries involving

E. Anthony

Mathematics Department, University of Mississippi, Hume Hall 305, P.O. Box 1848,
MS 38677-1848, USA

e-mail: ecanthon@go.olemiss.edu

Partially supported by NSF REU grant DMS-1156589.

S. Grant

Mathematics Department, 640 North College Avenue, Claremont, CA 91711, USA
e-mail: sheridan.grant@pomona.edu

Partially supported by NSF REU grant DMS-1156589.

P. Gritzmann

Fakultit fiir Mathematik, Technische Universitdt Miinchen, 80290 Miinchen, Germany
e-mail: gritzmann@tum.de

Work supported in part by the German Research Foundation (DFG).

J.M. Rojas (PX)

Mathematics Department, Texas A&M University, TAMU 3368, College Station,
TX 77843-3368, USA

e-mail: rojas @math.tamu.edu

Partially supported by NSF MCS grant DMS-0915245.

© Springer-Verlag Berlin Heidelberg 2015 255
J. Bennett et al. (eds.), Topological and Statistical Methods for Complex Data,
Mathematics and Visualization, DOI 10.1007/978-3-662-44900-4__15


mailto:ecanthon@go.olemiss.edu
mailto:sheridan.grant@pomona.edu
mailto:gritzmann@tum.de
mailto:rojas@math.tamu.edu

256 E. Anthony et al.

distances between points and complex algebraic hypersurfaces (see Theorems 1.4—
1.6 below). We then apply our metric results to finding specially constructed start
systems—dramatically speeding up traditional homotopy continuation methods—to
approximate, or rule out, roots of selected norm (see Sect. 3).

Polynomial equations are ubiquitous in numerous applications, such as algebraic
statistics [29], chemical reaction kinetics [42], discretization of partial differential
equations [28], satellite orbit design [47], circuit complexity [36], and cryptography
[10]. The need to solve larger and larger equations, in applications as well as for
theoretical purposes, has helped shape algebraic geometry and numerical analysis
for centuries. More recent work in algebraic complexity tells us that many basic
questions involving polynomial equations are NP-hard (see, e.g., [13, 52]). This
is by no means an excuse to consider polynomial equation solving hopeless:
Computational scientists solve problems of near-exponential complexity every day.

Thanks to recent work on Smale’s 17th Problem [8, 14], we have learned that
randomization and approximation can be the key to avoiding the bottlenecks present
in deterministic algorithms for solving hard questions involving complex roots of
polynomial systems. Smale’s 17th Problem concerns the average-case complexity
of approximating a single complex root of a random polynomial system and is well-
discussed in [54-58, 60, 61]. Our ultimate goal is to extend this philosophy to the
harder problem of localized solving: estimating how far the nearest root of a given
system of polynomials (or intersection of several zero sets) is from a given point.
Here, we start by first approximating the shape of a single zero set, and then in
Sect. 3 we outline a tropical-geometric approach to localized solving. Toward this
end, let us first recall the natural idea (see, e.g., [65]) of drawing zero sets on log-
paper. In what follows, we let C* denote the non-zero complex numbers and write
(C[xlil, . ,xfl] for the ring of Laurent polynomials with complex coefficients,
i.e., polynomials with negative exponents allowed. Also, for any two vectors u :=
(u1,...,uy) and v:= (vi,...,vy) in RY, we use u-v to denote the standard dot
product ujvy + -+ 4+ uyvy.

Definition 1.1 We set x :=(xy, ..., x,) and Log|x|:= (log | x|, .. ., log | x,]|), and,
for any f € C[xif',.... xF!], we define Amoeba(f) to be the set {Log|x|

n
f(x) =0, x € (C*"}. We call f an n-variate t-nomial when we can write

flx)= Zlf:(ll _ci)ac”f withac,_- #0,a; .= (ai;,...,a,;), the a; are pair-wise distinct,
and x% :=x"" x5>" +--x,"" forall i. When f is not the zero polynomial, we define

the Archimedean tropical variety of f, denoted ArchTrop( f), to be the set of all
weR" for which max; |c;e® "] is attained for at least two distinct indices i. Finally,
we define ArchTrop(0) to be R". ¢

In Sect. 3 we will see how amoebae and tropical varieties are useful for speeding up
polynomial system solving.
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(210g3,310g3)

—log3.0
e \ (0, —1log3)

Example 1.2 Taking f(x) =1+ xj 4+ x5 —3xx,, an illustration of Amoeba( /) and
ArchTrop( f), truncated to [—7, 7]*, appears above. Amoeba( f) is lightly shaded,
while ArchTrop( f) is the piecewise-linear curve. ¢

One may be surprised that Amoeba( /) and ArchTrop( f) are so highly structured:
Amoeba( /) has tentacles reminiscent of a living amoeba, and ArchTrop(f) is a
polyhedral complex, i.e., a union of polyhedra intersecting only along common
faces (see Definition 2.7 below). One may also be surprised that Amoeba( /') and
ArchTrop( f') are so closely related: Every point of one set is close to some point of
the other, and both sets have topologically similar complements (4 open connected
components, exactly one of which is bounded). Example 2.2 below shows that we
need not always have ArchTrop( f) € Amoeba( f).

To quantify how close Amoeba( ) and ArchTrop(f) are in general, one can
recall the Hausdorff distance, denoted A(U, V'), between two subsets U, V CR": It
is defined to be the maximum of sup,; inf,ey |4 — v| and sup,oy inf,ey |u — V.
We then have the following recent result of Avendafio, Kogan, Nisse, and Rojas.

Theorem 1.3 ([4]) Suppose f is any n-variate t-nomial. Then Amoeba( f) and
ArchTrop( f) are (a) identical for t <2 and (b) at Hausdorff distance no greater
than (2t — 3)log(t — 1) for t > 3. In particular, for t >2, we also have

sup inf lu—v| <log(t —1).
u € Amoeba(f)V € ArchTrop( f)
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Finally, for any t >n > 1, there is an n-variate t-nomial | with
A(Amoeba( ), ArchTrop( f)) > log(t—1). |

Note that the preceding upper bounds are completely independent of the coeffi-
cients, degree, and number of variables of f. Our upcoming examples show that
Amoeba( /) and ArchTrop( f) are sometimes much closer than the bound above.

Our first two main results help set the stage for applying Archimedean tropical
varieties to speed up polynomial root approximation. Recall that Q[+/—1] denotes
those complex numbers whose real and imaginary parts are both rational. Our
complexity results will all be stated relative to the classical Turing (bit) model, with
the underlying notion of input size clarified below in Definition 1.7.

Theorem 1.4 Suppose w e R" and f € (C[xlil, ... ,xj:l] is a t-nomial with t > 2.
Then
—1 r—1)< inf — — inf — <2t —3)1 t—1).
Og( ) - MEAII'IIIOlea(f) |M W| vEArClhr"}"rop(f) |V W| - ( ) Og( )

In particular, if we also assume that n is fixed and ( f, w) € Q[v/—1] [xlil, ce, xj“] X
Q" with f a t-nomial, then we can compute polynomially many bits of
infyearchTrop( r) [V — W| in polynomial-time, and there is a polynomial-time algorithm
that declares either (a) infueamoeba(s) 4 — w| < (2t — 2)log(t — 1) or (b)
w¢ Amoeba( ) and inf,camocba( 1) |4 — w| > inf,eArchTrop(r) [V —w| —log(t — 1) > 0.

Theorem 1.4 is proved in Sect.5. The importance of Theorem 1.4 is that deciding
whether an input rational point w lies in an input Amoeba( f), even restricting to
the special case n =1, is already NP-hard [4].

ArchTrop( f) naturally partitions R” into finitely many (relatively open) poly-
hedral cells of dimension 0 through n. We call the resulting polyhedral complex
Y (ArchTrop(f)) (see Definition 2.7 below). In particular, finding the cell of
Y (ArchTrop( f)) containing a given w€R” gives us more information than simply
deciding whether w lies in ArchTrop( f).

Theorem 1.5 Suppose n is fixed. Then there is a polynomial-time algorithm that,
for any input (f,w) € @[\/—_1] [xEL ... xE] x Q" with f a t-nomial, outputs
the closure of the unique cell o,, of X (ArchTrop( f)) containing w, described as an
explicit intersection of O(t*) half-spaces.

Theorem 1.5 is proved in Sect.4. As a consequence, we can also find explicit
regions, containing a given query point w, where f can not vanish. Let d
denote the degree of f. While our present algorithm evincing Theorem 1.5 has
complexity exponential in 7, its complexity is polynomial in logd (see Defini-
tion 1.7 below). The best previous techniques from computational algebra, including
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recent advances on Smale’s 17th Problem [8, 14], yield complexity no better than
polynomial in (”il;”!)! > max {(ddﬂ)d , (dﬂ)n}

n

Our framework also enables new positive and negative results on the complexity
of approximating the intersection of several Archimedean tropical varieties.

Theorem 1.6 Suppose n is fixed. Then there is a polynomial-time algorithm
k
that, for any input k and (fi,..., fr,w) € (Q[x/—l][xlil,...,xfl]) x Q",

outputs the closure of the unique cell o, of X (U;{=1 ArchTrop( f,)) containing w,

described as an explicit intersection of half-spaces. (In particular, whether w lies
in ﬂf.;l ArchTrop( f;) is decided as well.) However, if n is allowed to vary, then

n
deciding whether o,, has a vertex in (| ArchTrop(f;) is NP-hard.
i=1

Theorem 1.6 is proved in Sect.6. We will see in Sect.3 how the first assertion
of Theorem 1.6 is useful for finding special start-points for Newton Iteration and
Homotopy Continuation that sometimes enable the approximation of just the roots
with norm vector near (e"!,...,e""). The final assertion of Theorem 1.6 can
be considered as a refined tropical analogue to a classical algebraic complexity
result: Deciding whether an arbitrary input system of polynomials equations (with
integer coefficients) has a complex root is NP-hard. (There are standard reductions
from known NP-complete problems, such as integer programming or Boolean
satisfiability, to complex root detection [21,52].)

On the practical side, we point out that the algorithms underlying Theorems 1.4—
1.6 are quite easily implementable. (A preliminary Mat 1ab implementation of our
algorithms is available upon request.) Initial experiments indicate that a large-scale
implementation could be a worthwhile companion to existing polynomial system
solving software.

Before moving on to the necessary technical background, let us first clarify our
underlying input size and point out some historical context.

Definition 1.7 We define the input size of an integer ¢ to be size(c) :=1log(2 + |c|)
and, for p,q € Z relative prime with |gq| > 2, size(p/q) := size(p) + size(q).

Given a polynomial f € Q[xi,...,x,], written f(x) = Y i_, ¢;x%, we then
define size(f) tobe Y _, (size(ci) + Z;':l size(a,-,j)), wherea; =(a; 1,...,ai,)
for all i. Similarly, we define the input size of a point (vi,...,v,) € Q" as

> I, size(v;). Considering real and imaginary parts, and summing the respect
sizes, we then extend the definition of input size further still to polynomials in

Q[v—l][xl, ..., Xp]. Finally, for any system of polynomials F := (fi,..., f),
we set size(F):= Zf;l size( f;). ¢
Note in particular that the size of an input in Theorem 1.6 is size(w)+ Zﬁ;l size( f;).

Remark 1.8 The reader may wonder why we have not considered the phases of
the root coordinates and focussed just on norms. The phase analogue of an amoeba
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is the co-amoeba, which has only recently been studied [30, 46, 48]. While it is
known that the phases of the coordinates of the roots of polynomial systems satisfy
certain equidistribution laws (see, e.g., [35, Thm. 1 (pp. 82-83), Thm. 2 (pp. 87—
88), and Cor. 3’ (p. 83)] and [2]), there does not yet appear to be a phase analogue
of ArchTrop( f). Nevertheless, we will see in Sect. 3 that our techniques sometimes
allow us to approximate not just norms of root coordinates but roots in full. ¢

Historical Notes Using convex and/or piecewise-linear geometry to understand
solutions of algebraic equations can be traced back to work of Newton (on power
series expansions for algebraic functions) around 1676 [44].

More recently, tropical geometry [6, 17, 32, 38, 39] has emerged as a rich
framework for reducing deep questions in algebraic geometry to more tractable
questions in polyhedral and piecewise-linear geometry. For instance, Gelfand,
Kapranov, and Zelevinsky first observed the combinatorial structure of amoebae
around 1994 [22]. ¢

2 Background

2.1 Convex, Piecewise-Linear, and Tropical Geometric Notions

Let us first recall the origin of the phrase “tropical geometry”, according to [51]:
the tropical semifield Ryqp is the set R U {—oo}, endowed with the operations
X ©y:=x+yand x & y :=max{x, y}. The adjective “tropical” was coined by
French computer scientists, in honor of Brazilian computer scientist Imre Simon,
who did pioneering work with algebraic structures involving Ry, Just as algebraic
geometry relates geometric properties of zero sets of polynomials to the structure of
ideals in commutative rings, tropical geometry relates the geometric properties of
certain polyhedral complexes (see Definition 2.7 below) to the structure of ideals in
Rtr0p~

Here we work with a particular kind of tropical variety that, thanks to Theo-
rem 1.3, approximates Amoeba( /) quite well. The binomial case is quite instruc-
tive.

Proposition 2.1 For any a € Z" and non-zero complex ¢; and c,, we have
Amoeba(c; + c2x*) =ArchTrop(c; + c2x*) ={weR" | a-w=log|ci/c2|}.

Proof If ¢; + cx* = 0 then |cpx“| = |c1|- We then obtain a-w = log|c;/c3|
upon taking logs and setting w = Log|x|. Conversely, for any w satisfying a -w =
log |c1/c2], note that x = e"t0V=1 witha - 0 the imaginary part of —c; /c», satisfies
c1 + c2x% = 0. This proves that Amoeba(c; + c,x?) is exactly the stated affine
hyperplane. Similarly, since the definition of ArchTrop(c; + c2x“) implies that we
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seek w with |c2e? ™| = |c1|, we see that ArchTrop(c; + c>x“) defines the same
hyperplane. |

While ArchTrop( /) and Amoeba( f) are always metrically close, ArchTrop( f)
need not even have the same homotopy type as Amoeba( f) in general.

Example 2.2

Letting f := 1 + x5 + x5 + x1x3 + x1x5 + x}x2 + x{x + x{ and g :=
0.1+0.2x3 4 0.1x5 + 10x1x3 +0.001x1x5 +0.01x7x5 +0.1x7 x3 +0.000005x7 we
obtain the amoebae and tropical varieties (and more lightly shaded neighborhoods),
restricted to [—11, 11] x [-9, 9], respectively drawn on the left and right above. The
outermost shape in the left-hand (resp. right-hand) illustration is a neighborhood of
ArchTrop( f) (resp. Amoeba(g)).

It turns out that every point of Amoeba( f) (resp. ArchTrop(g)) lies well within
a distance of 0.65 (resp. 0.49) of some point of ArchTrop( f) (resp. Amoeba(g)),
safely within the distance log7 < 1.946 (resp. 13log7 < 25.3) guaranteed by the
second (resp. first) bound of Theorem 1.3. Note also that ArchTrop(g) has two holes
while Amoeba(g) has only a single hole.! ¢

Given any f one can naturally construct a convergent sequence of polynomials
whose amoebae tend to ArchTrop( f). This fact can be found in earlier papers of
Viro and Mikhalkin, e.g., [41, 65]. However, employing Theorem 1.3 here, we can
give a 5-line proof.

Theorem 2.3 For any n-variate t-nomial | written Z;=1 c;x%, and s > 0, define
F*x):="0_, ¢fx. Then A(+Amoeba( f**), ArchTrop(f)) =0 as s — +oc.

Proof By Theorem 1.3, A(Amoeba( f**), ArchTrop(f**)) < (2t — 3)log(t — 1)
for all s > 0. Since |c;e“ ™| > |cje® ™| = |c;e®V|* = [cje® V|,
we immediately obtain that ArchTrop(f*') = sArchTrop(f). So then

A hole of a subset S CIR” is simply a bounded connected component of the complement R” \ S.
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A(Amoeba( £ *), ArchTrop( f**)) = sA(Amoeba( f**), ArchTrop( f)) and thus
A(2 Amoeba( f**), ArchTrop( f)) < w forall s>0. W

To more easily link ArchTrop(f) with polyhedral geometry we will need two
variations of the classical Newton polygon. First, let Conv(S) denote the convex
hull of> S CR”, O := (0,...,0), and [N] := {1,..., N}. Recall that a polytope
is the convex hull of a finite point set, a (closed) half-space is any set of the
form {w € R" | a-w < b} (for some b € R and a € R" \ {0}), and a (closed)
polyhedron is any intersection of finitely many (closed) half-spaces. Polytopes are
exactly polyhedra that are bounded [27, 66]. The two resulting representations
of polytopes—7¥ -presentation (the convex hull of a finite point set) and .7Z-
presentation (an intersection of finitely many half-spaces)—are equivalent, but can
be exponentially different from an algorithmic point of view. See, e.g., [24,25].

Definition 2.4 Given any n-variate -nomial f written Z;zl c;x%, we define its
(ordinary) Newton polytope to be Newt( f) := Conv({ai }ie[l]), and the Archimedean
Newton polytope of f to be ArchNewt( f):= Conv({(a,-, —log |c; |)}ie[l]). Also, for
any polyhedron P C RY and v € RV, a face of P is any set of the form P, :=
{x € P | v-x is maximized}. We call v an outer normal of P,. The dimension of
P, written dim P, is simply the dimension of the smallest affine linear subspace
containing P. Faces of P of dimension 0, 1, and dim P — 1 are respectively called
vertices, edges, and facets. (P and @ are called improper faces of P, and we set
dim @ := —1.) Finally, we call any face of P lower if and only if it has an outer
normal (wy,...,wy) with wy < 0, and we let the lower hull of ArchNewt( f) be
the union of the lower faces of ArchNewt( f). ¢

The outer normals of a k-dimensional face of an n-dimensional polyhedron P form
the relative interior of an (n — k)-dimensional polyhedron called an outer normal
cone. Note that ArchNewt( /') usually has dimension 1 greater than that of Newt( f').
ArchNewt( /') enables us to relate ArchTrop( f) to linear optimization.

Proposition 2.5 For any n-variate t-nomial f, ArchTrop(f) can also be

defined as the set of all w € R" with max  {x-(w,—1)} attained on a
x€ArchNewt( f)

positive-dimensional face of ArchNewt( f).

Proof The quantity |c;e® ""| attaining its maximum for at least two indices 7 is
equivalent to the linear form with coefficients (w, —1) attaining its maximimum for
at least two different points in {(a;, —log|c;|)}ie[). Since a face of a polytope is
positive-dimensional if and only if it has at least two vertices, we are done. |

Example 2.6 The Newton polytope of our first example, f = 1 + x13 +
x% — 3x1x2, is simply the convex hull of the exponent vectors of the
monomial terms: Conv({(0,0), (3,0),(0,2),(1,1)}). For the Archimedean

Newton polytope, we take the coefficients into account via an extra coordinate:

2That is, smallest convex set containing. ..
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ArchNewt( f) = Conv({(0,0,0), (3,0,0),(0,2,0), (1,1,—1og3)}). In particular,
Newt(f) is a triangle and ArchNewt(f) is a triangular pyramid with base
Newt( f) x {0} and apex lying beneath Newt( /') x {0}. Note also that the image of
the orthogonal projection of the lower hull of ArchNewt( /) onto R? x {0} naturally
induces a triangulation of Newt( /'), as illustrated below. ¢

Our last example motivates us to consider more general subdivisions and duality.
(An outstanding reference is [15].) Recall that a k-simplex is the convex hull of
k + 1 points in RY (with N > k + 1) not lying in any (k — 1)-dimensional affine
linear subspace of RY. A simplex is then simply a k-simplex for some k.

Definition 2.7 A polyhedral complex is a collection of polyhedra ¥ = {o;}; such
that for all i we have (a) every face of o; is in X' and (b) for all j we have that
o; No; is a face of both 0; and o;. (We allow improper faces like @, 0;, and 0;.)
The o; are the cells of the complex, and the underlying space of X is | X|:=J; 0;.
In particular, we define X' (ArchTrop( f)) to be the complex whose cells are exactly
the (possibly improper) faces of the closures of the connected components of R” \
ArchTrop( f).

A polyhedral subdivision of a polyhedron P is then simply a polyhedral complex
Y = {o0;}; with |¥| = P. We call ¥ a triangulation if and only if every o;
is a simplex. Given any finite subset A C R”, a polyhedral subdivision induced
by A is then just a polyhedral subdivision of Conv(A) where the vertices of
all the o; lie in A. Finally, the polyhedral subdivision of Newt(f) induced by
ArchNewt( f), denoted X 7, is simply the polyhedral subdivision whose cells are
{m(Q) | Q is alower face of ArchNewt( f)}, where 7 : R"*! — R" denotes the
orthogonal projection forgetting the last coordinate. ¢

Recall that a (polyhedral) cone is just the set of all nonnegative linear combi-
nations of a finite set of points. Such cones are easily seen to always be polyhedra
[27,66].

Example 2.8 The illustration from Example 2.6 above shows a triangulation of the
point set {(0,0), (3,0), (0,2), (1, 1)} which happens to be X for f =1+ x3 +
x% —3x1x,. More to the point, it is easily checked that the outer normals to a face of
dimension k of ArchNewt( /') form a cone of dimension 3 — k. In this way, thanks to
the natural partial ordering of cells in any polyhedral complex by inclusion, we get
an order-reversing bijection between the cells of X'y and pieces of ArchTrop(f). ¢



264 E. Anthony et al.

That ArchTrop( f) is always a polyhedral complex follows directly from Proposi-
tion 2.5 above. Proposition 2.5 also implies an order-reversing bijection between the
cells ¥'; and the cells of X'(ArchTrop( f'))—an incarnation of polyhedral duality
[66].

Example 2.9 Below we illustrate the aforementioned order-reversing bijection of
cells through our first three tropical varieties, and corresponding subdivisions X'r
of Newt( f):

Note that the vertices of X (ArchTrop(f)) correspond bijectively to the
two-dimensional cells of X', and the one-dimensional cells of X (ArchTrop(f))
correspond bijectively to the edges of X' . (In particular, the rays of X (ArchTrop
(f)) are perpendicular to the edges of Newt(f).) Note also that the vertices
of Xy correspond bijectively to connected components of the complement
R2\ ArchTrop( f). ¢

2.2 The Complexity of Linear Programming

Let us first point out that [3, 21, 49, 59] are excellent references for further
background on the classical Turing model and NP-completeness. The results on
the complexity of linear optimization we’ll use are covered at a more leisurely pace
in standard monographs such as [26, 53]. See also [23].

Definition 2.10 Given any matrix M € QYN with i® row m;, and b :=
(by,...,by)T € QF, the notation M x < b means that m,-x <by,...,my-x < by
all hold. Given any ¢ = (¢, ...,cy) € QY we then define the (natural form) linear
optimization problem £ (M, b, c) to be the following: Maximize ¢ - x subject to
Mx <b and x € RY. We also define size(.Z(M, b, ¢)) := size(M) + size(b) +
size(c) (see Definition 1.7). The set of all x € RV satisfying M x <b is the feasible
region of £ (M, b, c), and when it is empty we call £ (M, b, ¢) infeasible. Finally,
if £ (M, b, c) is feasible but does not admit a well-defined maximum, then we call
ZL(M, b, c) unbounded. <

Theorem 2.11 Given any linear optimization problem £ (M,b,c) as defined
above, we can decide infeasibility, unboundedness, or (if £ (M, b, c) is feasible,
with bounded maximum) find an optimal solution x*, all within time polynomial in
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size(Z(M, b, ¢)). In particular, if (M, b, c) is feasible, with bounded maximum,
then we can find an optimal solution x* of size polynomial in size(£ (M, b,c)). R

Theorem 2.11 goes back to work of Khachiyan in the late 1970s on the Ellipsoid
Method [34], building upon earlier work of Shor, Yudin, and Nemirovskii.

For simplicity, we will not focus on the best current complexity bounds, since
our immediate goal is to efficiently prove polynomiality for our algorithms. We will
need one last complexity result from linear optimization: Recall that a constraint
m;-x < b; of Mx < b is called redundant if and only if the corresponding row
of M, and corresponding entry of b, can be deleted from the pair (M, b) without
affecting the feasible region {x eRY | M x <b}.

Lemma 2.12 Given any system of linear inequalities Mx < b we can, in time
polynomial in size(M) + size(b), find a submatrix M' of M, and a subvector b’
of b, such that {x eRY | M'x <b'} ={x €eRN | M'x <b'} and M'x < b’ has no
redundant constraints. W

The new set of inequalities M’'x < b’ is called an irredundant representation of
M x < b, and can easily be found by solving < k linear optimization problems of
size no larger than size(.Z (M, b, O)) (see, e.g., [53]).

The linear optimization problems we ultimately solve will have irrational “right-
hand sides”: Our b will usually have entries that are (rational) linear combination
of logarithms of integers. As is well-known in Diophantine Approximation [5],
it is far from trivial to efficiently decide the sign of such irrational numbers.
This problem is equivalent to deciding inequalities of the form a’f ! -~~oz§,N > 1,
where the «; and f; are integers. Note, in particular, that while the number of
arithmetic operations necessary to decide such an inequality is easily seen to be
0((2?;1 log |B;|)?) (via the classical binary method of exponentiation), taking bit-
operations into account naively results in a problem that appears to have complexity
exponential in log |B1| + - - - 4+ log |Bx|. But we can in fact go much faster. ..

2.3 Irrational Linear Optimization and Approximating
Logarithms

Recall the following result on comparing monomials in rational numbers.

Theorem 2.13 ([11, Sec. 2.4]) Suppose «y,...,ay € Q are positive and
Bi,..., BN € Z. Also let A be the maximum of the numerators and denominators
of the «; (when written in lowest terms) and B :=max;{|B;|}. Then, within

O(N30" log(B)(loglog B)* logloglog(B)(log(4)(loglog A)*logloglog A)™)

bit operations, we can determine the sign ofozfg1 . -ag’v - 1. |
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While the underlying algorithm is a simple application of Arithmetic-Geometric
Mean Iteration (see, e.g., [9]), its complexity bound hinges on a deep estimate of
Nesterenko [43], which in turn refines seminal work of Matveev [40] and Alan
Baker [5] on linear forms in logarithms.

Definition 2.14 We call a polyhedron P {-rational if and only if it is of the form
{xeR" | Mx<b} with M eQ**" and b= (by,...,b;) " satisfying

bi =B loglar| + -+ Bi log|a/,

with B; ;,o; €Q for all i and j. Finally, we set

k
size(P):=size(M) + size([Bi ;]) + Z size(q;).o

i=1

Via the Simplex Method (or even a brute force search through all n-tuples of facets
of P) we can obtain the following consequence of Theorems 2.11 and 2.13.

Corollary 2.15 Following the notation of Definition 2.14, suppose n is fixed. Then
we can decide whether P is empty, compute an irredundant representation for
P, and enumerate all maximal sets of facets determining vertices of P, in time
polynomial in size(P). |

The key trick behind the proof of Corollary 2.15 is that the intermediate linear
optimization problems needed to find an irredundant representation for P use linear
combinations (of rows of the original representation) with coefficients of moderate
size (see, e.g., [53]).

3 Tropical Start-Points for Numerical Iteration
and an Example

We begin by outlining a method for picking start-points for Newton Iteration
(see, e.g., [12, Ch. 8] for a modern perspective) and Homotopy Continuation
[7,31,37,62,64]. While we do not discuss these methods for solving polynomial
equations in further detail, let us at least point out that Homotopy Continuation
(combined with Smale’s a-Theory for certifying roots [7,12]) is currently the fastest,
most easily parallelizable, and reliable method for numerically solving polynomial
systems in complete generality. Other important methods include Resultants [18]
and Grobner Bases [20]. While these alternative methods are of great utility in
certain algebraic and theoretical applications [1, 19], Homotopy Continuation is
currently the method of choice for practical numerical computation with extremely
large polynomial systems.
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Algorithm 3.1 (Coarse Approximation to Roots with Log-Norm Vector Near a
Given Query Point)

INPUT. Polynomials fi,...,f, € Q[\/—l:l[xlil, e ,x,jtl], with fi(x) =

Zt]{=1 ci j x4 ) an n-variate t;-nomial for all i, and a query point we Q".

OUTPUT. An ordered n-tuple of sets of indices (J;)}_, such that, for all i,
gi:= Zje]l- ci j x4 ) is a sub-summand of f;, and the roots

of G:=(g1,...,gn) are approximations of the roots of
F:=(f1,..., fu) with log-norm vector nearest w.
DESCRIPTION.

1. Let 0,, be the closure of the unique cell of X (|J;_, ArchTrop(f;)) (see Defini-
tion 2.7) containing w.

2. Ifo,, has no vertices in (\;_, ArchTrop( f;) then output an irredundant collection
of facet inequalities for o,, output “There are no roots of F in
o, . ", and STOP.

3. Otherwise, fix any vertex v of 0,,N()_, ArchTrop( f;) and, for eachi € [n], let E;
be any edge of ArchNewt( f;) generating a facet of ArchTrop( f;) containing v.

4. Foralli € [}’l], let J; Z{] | (aj (l), —IOg IC,',]' |) EE,‘}.

5. Output (J;)7_,. |

Thanks to our main results and our preceding observations on linear optimization,
we can easily obtain that our preceding algorithm has complexity polynomial in
size(F) for fixed n. In particular, Step 1 is (resp. Steps 2 and 3 are) accomplished
via the algorithm underlying Theorem 1.5 (resp. Corollary 2.15).

The key subtlety then is to prove that, for most inputs, our algorithm actually
gives useful approximations to the roots with log-norm vector nearest the input
query point w, or truthfully states that there are no root log-norm vectors in o,.
We leave the precise metric estimates defining “most inputs” for future work.
However, we point out that a key ingredient is the <7 -discriminant [22], and a recent
polyhedral approximation of its amoeba [50] refining the tropical discriminant [16].
So we will now clarify the meaning of the output of our algorithm.

The output system G is useful because, with high probability (in the sense of
random liftings, as in [18, Lemma 6.2]), all the g; are binomials, and binomial
systems are particularly easy to solve: They are equivalent to linear equations in
the logarithms of the original variables. In particular, any n x n binomial system
always has a unique vector of norms for its roots.

Recall the standard notation Jac(F) := [%] . The connection to Newton
“J dnxn

Iteration is then easy to state: Use any root of G as a start-point z(0) for the
iteration z(n + 1) := z(n) — Jac(F) ™| ) F(z(n)). The connection to Homotopy
Continuation is also simple: Use the pair (G, {) (for any root ¢ of G) to start a
path converging (under the usual numerical conditioning assumptions on whatever
predictor-corrector method one is using) to a root of F' with log-norm vector near
w. Note also that while it is safer to do the extra work of Homotopy Continuation,
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there will be cases where the tropical start-points from Algorithm 3.1 are sufficiently
good for mere Newton Iteration to converge quickly to a true root.

Remark 3.2 Note that, when applying Algorithm 3.1 for later Homotopy Continua-
tion, we have the freedom to follow as few start-points, or as few paths, as we want.
When our start-points (resp. paths) indeed converge to nearby roots, we obtain a
tremendous savings over having to follow all start-points (resp. paths). ¢

Definition 3.3 Given any n-dimensional polyhedra Py,..., P, C R", we call a
vertex v of (7, P; mixed if and only if v lies on a facet of P; for alli. ¢

Note that, by construction, any vertex chosen in Step 3 of Algorithm 3.1 is mixed.
Example 3.4 Let us make a 2 x 2 polynomial system out of our first and third
examples:
fii= 1+x13 +x§—3x1x2
fr:= 0.1 +0.2x3 + 0.1x5 + 10x;x3 + 0.001x;x5
40.01x2x; 4 0.1x?x2 + 0.000005x3

Log [root| —
nearest (1,2

*
(1,2) € 0(12)

non—qlixed
vertex

The system F := (f;, f>) has exactly 12 roots in (C*)?, the coordinate-wise log-
norms of which form the small clusters near certain intersections of ArchTrop( f1)
and ArchTrop( f2) shown on the left illustration above. In particular, o(, 1y is the
heptagonal cell® magnified on the right of the figure above, and has exactly 2 vertices
that are mixed. (The other 5 vertices of oy ») are vertices of ArchTrop( f;) lying in
the interior of a two-dimensional cell of X' (ArchTrop( f5—;)) fori €{1,2}.)
Applying Algorithm 3.1 we then have two possible outputs, depending on which
mixed vertex of o(; 2 we pick. The output corresponding to the circled vertex is
the pair of index sets ({2, 3}, {3, 4}). More concretely, Algorithm 3.1 alleges that

3The cell looks hexagonal because it has a pair of vertices too close to distinguish visually.
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the system G := (g1, g2) := (x] + x3,0.1x5 + 10x;x3) has roots with log-norm
vector near a log-norm vector of a root of F that is in turn close to w. Indeed,
the sole log-norm vector coming from the roots of G is (log 10, 2 log 10) and
the roots themselves are {(£10, +/F1000)} (with both values of the square root
allowed). All 4 roots in fact converge (under Newton iteration, with no need for
Homotopy Continuation) to true roots of F. In particular, the root (—10, +/1000)
(resp. (—10, —+/1000)) converges to the root of F with closest (resp. third closest)
log-norm vector to w. The other two roots of G converge to a conjugate pair of roots
of F with log-norm vector (2.4139,3.5103) (to four decimal places) lying in the
small circle in the illustration. ¢

Remark 3.5 While we have relied upon Diophantine approximation and subtle
aspects of the Simplex Method to prove our bit-complexity bounds in Theo-
rems 1.4-1.6, one can certainly be more flexible when using Algorithm 3.1 in
practical floating-point computations. For instance, heuristically, it appears that one
can get away with less accuracy than stipulated by Theorem 2.13 when comparing
linear combinations of logarithms. Similarly, one should feel free to use the fastest
(but still reliably accurate) algorithms for linear optimization when applying our
methods to large-scale polynomial systems. (See, e.g., [63].) ¢

4 Proof of Theorem 1.5

Using t — 1 comparisons, we can isolate all indices i such that max; |c;e® ""| is
attained. Thanks to Theorem 2.13 this can be done in polynomial-time. We then
obtain, say, J equations of the form a; -w = —log|c;| and K inequalities of the
forma; -w>—log|c;| or a; -w<—1log|c;]|.

Thanks to Lemma 2.12, combined with Corollary 2.15, we can determine the
exact cell of ArchTrop( f) containing w if J > 2. Otherwise, we obtain the unique
cell of R"\ ArchTrop(f) with relative interior containing w. Note also that an
(n — 1)-dimensional face of either kind of cell must be the dual of an edge of
ArchNewt( f). Since every edge has exactly 2 vertices, there are at most #(t — 1)/2
such (n — 1)-dimensional faces, and thus o,, is the intersection of at most (¢ — 1)/2
half-spaces. So we are done. B

Remark 4.1 Theorem 1.5 also generalizes an earlier complexity bound from [4] for
deciding membership in ArchTrop( f). ¢

5 Proof of Theorem 1.4

Note The hurried reader will more quickly grasp the following proof after briefly
reviewing Theorems 1.3, 1.5, and 2.13.
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Since ArchTrop( ) and Amoeba( /') are closed and non-empty, inf,e archTrop( ) [V—
w| = |w —V/| for some point v' € ArchTrop( /') and inf,camoeba( ) [t — w|=|w — 1|
for some point ' € Amoeba( f).

Now, by the second upper bound of Theorem 1.3, there is a point Vv’ €
ArchTrop( f) within distance log(t — 1) of . Clearly, [w —V'| <|w —V"|. Also, by
the Triangle Inequality, |[w —V'| <|w — «/| + |/ —V"|. So then,

inf lv—w|< inf  |u—w|+log(t —1),
vE€ArchTrop(f) u€Amoeba( f)

and thus inquAmoeba(f) |“ - W| - infvEArchTro]:)(_}’) IV - W| > — log(t - 1)

Similarly, by the first upper bound of Theorem 1.3, there is a point u” €
Amoeba( f) within distance (2t — 3) log(t — 1) of V'. Clearly, |w —u'| <|w —u"|.
Also, by the Triangle Inequality, |w — u”| < |w — V| + |V — «”|. So then,
inf,camoeba( ) |4 — | <infyearchtrop(f) [V — W] + (2¢ — 3) log(t — 1), and thus

inf —w|— inf —w|=< (2t —3)log(r — 1).
uEAnllgeba(f) IM W| veArcg"}‘rop(f) IV W|_( ) Og( )

So our first assertion is proved.

Now if f has coefficients with real and imaginary parts that are rational, and
n is fixed, Theorem 1.5 (which we’ve already proved) tells us that we can decide
whether w lies in ArchTrop(f) using a number of bit operations polynomial in
size(w) + size(f). So we may assume w & ArchTrop( f) and dim o,, =n.

Theorem 1.5 also gives us an explicit description of o0,, as the intersection
of a number of half-spaces polynomial in ¢. Moreover, o,, is {-rational (recall
Definition 2.14), with size polynomial in size( f). So we can compute the distance
D from w to ArchTrop(f) by finding which facet of o,, has minimal distance to
w. The distance from w to any such facet can be approximated to the necessary
number of bits in polynomial-time via Theorem 2.13 and the classical formula
for distance between a point and an affine hyperplane: infye(y | . x=y) [0 — W| =
(|r - w| —sign(r - w)s)/|r|. More precisely, comparing the facet distances reduces to

checking the sign of an expression of the form y; + y» log(%) + 3 log(%) where
i J

y1 (resp. y», ¥3) is a rational linear combination of /|a; —a;/| and /|a; —a /|

(resp. rational multiple of /|a; — a;/| or Vlaj —aj/]), with coefficients of size
polynomial in size( f), for some indices i,i’, j, j’ € [t]. We can then efficiently
approximate D by approximating the underlying square-roots and logarithms
to sufficient precision. The latter can be accomplished by Arithmetic-Geometric
Iteration, as detailed in [9], and the amount of precision needed is explicitly
bounded by an earlier variant of Theorem 2.13 covering inhomogeneous linear
combinations of logarithms of algebraic numbers with algebraic coefficients [5].
The resulting bounds are somewhat worse than in Theorem 2.13, but still allow us
to find polynomially many leading bits of inf,camoeba( 1) [V — w| (for we Q") in time
polynomial in size(w) + size(f).
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To prove the final assertion, we merely decide whether inf,earchtrop(f) [V — W]
strictly exceeds log(# — 1) or not. To do so, we need only compute a polynomial
number of leading bits of inf,e Archtrop(f) [V — W/ (thanks to Theorem 2.13), and this
takes time polynomial in size(w) + size(f). Thanks to our initial observations using
the Triangle Inequality, it is clear that Output (b) or Output (a) occurs according as
inf,earchtrop( £y [V — w| >1log(¢ — 1) or not. So we are done. l

6 Proving Theorem 1.6

6.1 Fast Cell Computation: Proof of the First Assertion

First, we apply Theorem 1.5 to (f;, w) for each i € [k] to find which ArchTrop( f;)
contain w.

If w lies in no ArchTrop(f;), then we simply use Corollary 2.15 (as in our
proof of Theorem 1.5) to find an explicit description of the closure of the cell of
R”\Uf=1 ArchTrop( f;) containing w. Otherwise, we find the cells of ArchTrop( f;)
(for those i with ArchTrop( f;) containing w) that contain w. Then, applying Corol-

lary 2.15 once again, we explicitly find the unique cell of N ArchTrop( f;)
ArchTrop( fj)aw
containing w.

Assume that f; has exactly #; monomial terms for all ;. In either of the preceding
cases, the total number of half-spaces involved is no more than Zf;l t;(ti—1)/2.So0
the overall complexity of our redundancy computations is polynomial in the input
size and we are done.

6.2 Hardness of Detecting Mixed Vertices: Proving the Second
Assertion

It will clarify matters if we consider a related NP-hard problem for rational
polytopes first.

Ultimately, our proof boils down to a reduction from the following problem,
equivalent to the famous NP-complete PARTITION problem (see below): Decide if
a vertex of the hypercube [—1, 1]" lies on a prescribed hyperplane defined by an
equation of the form a - x =0 with a € Z". Because the coordinates of a are integral,
we can replace the preceding equation by the inequality 0 < a-x < 1/2. With a
bit more work, we can reduce PARTITION to the detection of a mixed vertex for a
particular intersection of polyhedra. We now go over the details.
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6.2.1 Preparation over Q

In the notation of Definition 3.3, let us first consider the following decision problem.
We assume all polyhedra are given explicitly as finite collections of rational linear
inequalities, with size defined as in Sect. 2.2.

MIXED-VERTEX:

Given n € N and polyhedra Py,..., P, in R", does P := ﬂ;;l P; have a mixed
vertex? |
While MIXED-VERTEX can be solved in polynomial time when # is fixed (by a
brute-force check over all mixed n-tuples of facets), we will show that, for n varying,
the problem is NP-complete, even when restricting to the case where all polytopes
are full-dimensional and Py, ..., P,_; are axes-parallel bricks.

Let ¢; denote the i standard basis vector in R” and let M T denote the transpose
of a matrix M. Also, given ¢ € R” and b € R, we will use the following
notation for hyperplanes and certain half-spaces in R” determined by « and b:
Hgpy :={x e R" | a-x = b}, H(ib) ={x € R" | a-x < b}. Fori € [n],
let NS N, M,‘ = [m,-,l, e ,m,-,sl.]T (S Zsixn, bl‘ = (bi,h A ,b,',sl.)T (S ZSi, and
Pi:={x € R" | M;x < b;}. Since linear optimization can be done in polynomial-
time (in the cases we consider) we may assume that the presentations (n, s;; M;, b;)
are irredundant, i.e., P; has exactly s; facets if P; is full-dimensional, and the sets
Pi N Hn, ; 5, j)» for j €[s;], are precisely the facets of P; for all i € [n].

Now set P := (")/_; P:. Note that size(P) is thus linear in ) ;_, size(P;).

Lemma 6.1 MIXED-VERTEX € NP.

Proof Since the binary sizes of the coordinates of the vertices of P are bounded by
a polynomial in the input size, we can use vectors v € Q" of polynomial size as
certificates. We can check in polynomial-time whether such a vector v is a vertex
of P. If this is not the case, v cannot be a mixed vertex of P. Otherwise, v is a
mixed vertex of P if and only if for each i € [n] there exists a facet F; of P; with
v € F;. Since the facets of the polyhedra P; admit polynomial-time decriptions as
JC-polyhedra, this can be checked by a total of 1 +- - - 45, polyhedral membership
tests. These membership tests are easily doable in polynomial-time since any of the
underlying inequalities can be checked in polynomial-time and the number of faces
of any P; no worse than linear in the size of P;.

So we can check in polynomial-time whether a given certificate v is a mixed
vertex of P. Hence MIXED-VERTEX is in NP. l

Since (in fixed dimension) we can actually list all vertices of P in polynomial-
time, it is clear that MIXED-VERTEX can be solved in polynomial-time when 7 is
fixed. When n is allowed to vary we obtain hardness:

Theorem 6.2 MIXED-VERTEX is NP-hard, even in the special case where
Py, ..., P,_ are centrally symmetric axes-parallel bricks with vertex coordinates
in {x1,+£2}, and P, has at most 2n + 2 facets (with 2n of them parallel to
coordinate hyperplanes).
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The proof of Theorem 6.2 will be based on a reduction from the following
decision problem:
PARTITION

Givend,ai, ... ,aq € N, is there an I C[d] such that 3 ;c; & = 3 i epapg %7
|
PARTITION was in the original list of NP-complete problems from [33].

Let an instance (d;oj,...,0y) of PARTITION be given, and set o :=
(a1, ..., aq). Then we are looking for a point x € {—1,1}¢ witha-x = 0.

We will now construct an equivalent instance of MIXED-VERTEX. With n :=
d+1,x:=(x,...,xs—1)and 1,, :=(1,...,1) e R" let

Pi={(X.x)|—1=<x; <1, -2<x; <2forall j €[n]\{i}}.
Also, fori € [n — 1], let
Po={& x| =21, <x<2-1,y,-1<x,<1,0<2a-Xx <1}
andset P:=(/_, P;, & := (a,0).

The next lemma shows that P, N {—1, 1}" still captures the solutions of the given
instance of partition.

Lemma 6.3 (d;«y,...,aq) is a “no”-instance of PARTITION if and only if P, N
{—1,1}" is empty.
Proof Suppose, first, that (d; aq, ..., ay) is a “no”-instance of PARTITION. If P, is

empty there is nothing left to prove. So, let y € P, and w € {—1,1}"~! x R. Since
a € N? we have |&-w| > 1. Hence, via the Cauchy-Schwarz inequality, we have
L<l|ag-w=lg-y+a-w—y|<la-yl+la-w=—y|<3+lal-lw—yl =
% + |a|-|w — y| and thus |w — y| > ﬁ > 0. Therefore P, N ({—1,1}""' x R) is
empty.

Conversely, if P, N {—1,1}" is empty, then there is no x € {&1}"~! such that
O0<a-x< % Since & € N"~!, we have that (d, a1, ...,az) is a “No”-instance of
PARTITION.

The next lemma reduces the possible mixed vertices to the vertical edges of the
standard cube.

Lemma 6.4 Following the preceding notation, let v be a mixed vertex of P :=
iz, Pi. Thenve{—1,1}""" x [-1,1].

Proof First note that Q := ﬂ:’;i P; = [-1,1]""! x [=2,2]. Therefore, for each

i € [n—1], the only facets of P; that meet Q are those in H(,; +1y and Hy,, +2). Since
P C [-1,1]", and for each i € [n — 1] the mixed vertex v must be contained in a

n—1

facet of P;, we havev € [—1,1]" N ﬂ U He 5y | ={-1. 1 x =1, 1],
i=1 \§e{-1,1}

which proves the assertion. l
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The next lemma adds P, to consideration.
Lemma 6.5 Let v be a mixed vertex of P:=(\/_, Pi. Thenve{—1,1}".

Proof By Lemma 6.4, v € {—1,1}"~! x [-1, 1]. Since the hyperplanes H(,, +2) do
not meet [—1,1]", we have v & H,; —2 U H, 2 for all i € [n — 1]. Hence, v
can only be contained in the constraint hyperplanes H ), H24.1), H(e,.~1)s He, 1)-
Since & € R"~! x {0}, the vector @ is linearly dependent on ey, ..., e,—;. Hence,
vEHe, -1y U He, 1), 1.6,V € {—=1,1}". 1

We can now prove the NP-hardness of MIXED-VERTEX.

Proof of Theorem 6.2 First, let (d;ay,...,0q) be a “yes”-instance of PARTITION,
let x* := (§F,...,&" ) € {—1,1}""! be a solution, and set £* :=1, v:= (x*,£¥),
F;:= H(ei,é‘,-*) N P; for all i € [n], and 13,1 :=Hgo N P,. Thenv € F,, C P,, hence
v € P and, in fact, v is a vertex of P. Furthermore, F; is a facet of P; for all i € [n],
Ve ﬂ?:l F;, and thus v is a mixed vertex of P.

Conversely, let (d;aq,...,0q) be a “no”-instance of PARTITION, and suppose
that v € R" is a mixed vertex of P. By Lemma 6.5, v € {—1, 1}". Furthermore, v
lies in a facet of P,. Hence, in particular, v € P,,i.e., P, N {—1, 1}" is non-empty.
Therefore, by Lemma 6.3, (d; a1, ...,ay) is a “yes”-instance of PARTITION. This
contradiction shows that P does not have a mixed vertex.

Clearly, the transformation works in polynomial-time. l

6.3 Proof of the Second Assertion of Theorem 1.6

It clearly suffices to show that the following variant of MIXED-VERTEX is NP-hard:
LOGARITHMIC-MIXED-VERTEX:

Given n € N and {-rational polyhedra Py, ..., P, CR", does P := ﬂ:;l P; have
a mixed vertex? B

Via an argument completely parallel to the last section, the NP-hardness of
LOGARITHMIC-MIXED-VERTEX follows immediately from the NP-hardness of the
following variant of PARTITION:

LOGARITHMIC-PARTITION
Givend € N, ai,...,aq € N\ {0}, is there an I C [d] such that ) ;. loga; =
Yicaps loge;?

We measure size in LOGARITHMIC-PARTITION just as in the original PARTITION
Problem: Zf’l=1 loga;. Note that LOGARITHMIC-PARTITION is equivalent to the
obvious variant of PARTITION where we ask for a partition making the two resulting
products be identical. The latter problem is known to be NP-hard as well, thanks to
[45], and is in fact also strongly NP-hard.
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Slycat Ensemble Analysis of Electrical Circuit
Simulations

Patricia J. Crossno, Timothy M. Shead, Milosz A. Sielicki, Warren L. Hunt,
Shawn Martin, and Ming-Yu Hsieh

1 Ensembles and Sensitivity Analysis

With recent advances in computational power, scientists can now run thousands of
related simulations to explore a single problem. We refer to such a group of related
simulations as an ensemble. More generally, an ensemble can be thought of as a
set of samples or observations, each consisting of the same set of variables, in a
shared high-dimensional space describing a particular problem domain. Practically,
an ensemble is a collection of data sets with common attributes that we wish to
analyze as a whole. Thus ensemble analysis is a form of meta-analysis that looks at
the combined behaviors and features of the ensemble in an effort to understand and
describe the underlying problem space. By looking at the collection as a whole,
higher level patterns emerge beyond what can be seen by examining individual
simulation runs.

As an example, sensitivity analysis is a type of ensemble analysis that evaluates
how changes in simulation input parameters correlate with changes in simulation
results. In addition to revealing the types and strengths of relationships between
inputs and outputs, sensitivity analysis can be used to verify that simulation results
are within expected ranges and to validate that the underlying model is behaving
correctly. Unexpected results could point to unexplored physical regimes, poorly
understood parameter spaces, or something as mundane as flaws in simulation
codes. Input parameters form the set of independent variables, and outputs the set
of dependent variables. Commonly, sensitivity analyses are performed using either
simple regression (correlating a single input to a single output at a time), or multiple
regression (correlating a group of inputs to a single output). However, neither of
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these approaches provides a means for evaluating the collective relationships among
multiple inputs and multiple outputs.

Our introduction to this work began while evaluating the likely impacts on
workflows in analysis and visualization from proposed architectural changes for
exascale computing. As part of the evaluation, we interviewed analysts working at
Sandia National Laboratories in a variety of simulation domains, including thermal,
solid mechanics, and electrical circuit analysis. Sensitivity analysis is a common
component within each domain’s work flow, although the simulation results vary
widely, ranging from simple tables of metrics to time series and finite element
models. The analysts typically use Dakota [2] to manage ensemble creation, using
custom scripts to extract scalar metrics from finite element outputs or time series.
The metrics are merged with tables of original input parameters and analyzed using
Dakota, JMP, Matlab, Minitab, Excel, and other tools. Existing visualization tools
such as ParaView [13] and EnSight [7] are used for remote visualization of large
simulation results. However, these tools are fundamentally designed to visualize
individual simulations, or handfuls of simulations that are loaded into memory
simultaneously and visually superimposed. Ensembles containing hundreds or
thousands of simulations require a different type of analysis, a different visual
abstraction, and a different system architecture to effectively integrate so many
results.

Our investigation led to the creation of Slycat, a system designed to meet
the needs of ensemble analysis. For sensitivity analysis, and parameter studies in
particular, Slycat provides a visual interface to answer the following questions about
a given ensemble:

— Which input parameters are most strongly correlated with specific outputs?
— Which input parameters exhibit little or no impact on output responses?
— Which simulations are anomalous, and in what ways are they different?

We use Canonical Correlation Analysis (CCA) to model the relationships
between input and output parameters because it maps well to the structure of
our problem, especially in its ability to correlate multiple inputs against multiple
outputs. Although powerful and ideally suited to the problem, CCA results can be
difficult to interpret; making CCA accessible to domain experts through the tight
integration of useful visualizations with iterative exploratory analysis is the central
contribution of this work.

2 Related Work

The work that most closely aligns with our own is that of Degani et al., which
applies CCA to the analysis of correlations between the operating environment of
a Boeing aircraft and the actions and responses of the pilots [8]. Presenting the
CCA correlations in a circular layout called a heliograph, the positive or negative
correlation weights of different variables are represented as outward or inward
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facing bars, respectively. The concentric stacking of CCA components in the same
plot leads to overlapping bars from adjacent components, potentially leading to
misinterpretations of the results. Our system provides a simpler, easier to understand
visualization of CCA results as applied to multiple inputs and outputs.

Much of the earlier ensemble research deals with data sets that are either
geospatial or spatiotemporal in nature. Consequently, their analysis and visual-
ization approaches rely on this, making them unsuitable for ensembles that lack
a spatial component. For example, Wilson and Potter explore geospatial weather
data and discuss how ensembles mitigate uncertainty in simulations [31]. A similar
approach from Potter employs isocontours over spatial domains [20, 21]. Noodles,
another tool for modeling and visualizing uncertainty in ensembles of weather
predictions, displays the spatial distributions of inter-simulation uncertainty through
a combination of ribbons and glyphs drawn as map overlays [22]. Waser et al.
integrate computational steering controls into a spatiotemporal flood simulation
framework, enabling users to steer parameter studies and generate ensembles on
demand [29, 30].

Another branch of ensemble visualization research uses feature extraction.
However, these techniques can still have spatial dependencies. In the technique of
Smith et al., clustering based on feature identification is performed on time-varying,
spatial data [24]. A suite of feature detection techniques, including CCA, is used
by Sukharev et al. to reveal structure in multivariate, time-varying climate data
sets. Once their data has been clustered, segmented, and correlations computed, the
results are geo-spatially overlaid on the weather prediction region for visualization
and interpretation [27]. Hummel et al., classifies fluid transport variance within
neighborhoods over flow field ensembles. Linked views enable selection in the fluid
feature space to produce a visualization over the physical domain [11]. Another
system, EDEN, incorporates several multivariate feature detection techniques in a
single interface [26]. Piringer et al. visualize multivariate data using downsampling,
3D surface plots, extracted scalar features, and glyph-based visualizations to explore
an ensemble of 2D functions. In addition to comparing ensemble member functions
against each other, this work attempts to illustrate the distribution of features across
the ensemble [19].

CCA has also been used to analyze spatial data. To more clearly identify the
relationships in functional magnetic resonance imaging data, Karhunen et al. have
developed a method that exploits CCA prior to applying blind source separation
techniques [12]. The research of Ge et al. demonstrates CCA correlations that reflect
the spatial correlations in multiple sensor arrays, even in the presence of noise [9].
In a recent paper by Marzban et al., CCA is shown to capture complex weather
relationships between model parameters and forecast quantities [15].

More broadly, parameter studies have a relationship to our work, though their
intent is often either based on the design of experiments or on directing simulation
results towards a particular outcome, neither of which aligns with our particular
system goals. Examples include systems for exploring the relationship between
input parameters and aesthetic visual effects in animations [5], and the steering of
designs [6].
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Matkovic et al. recognize the need for advanced tools to support engineers in
visualizing and understanding ensembles, and incorporate in their system multivari-
ate visualization techniques such as parallel plotting, multiple linked views, and
scatterplots to display one-to-one correlations [16]. However, one-to-one correla-
tion analysis is insufficient for evaluating the complex, multivariate relationships
inherent in our user’s data.

Within sensitivity analysis, sampling tools are typically relied on to provide
coverage of the simulation parameter space [1, 2]. Even with a sampling method
in place, much system behavior is unknown and there is more work to do to
uncover input-output relationships. A study by Song and Zhao employs a variance-
based method to identify the first-order model sensitivities when applied to forest
growth simulations [25]. Other sensitivity analysis work applies classic statistical
methods, such as ANOVA, to U.S. immigration model results [23], and statistical
aggregation to models of large distributed computing systems [17]. In contrast, our
research is focused on understanding the behavior of an ensemble with the intent
of exposing hidden relationships between the simulation input parameters and the
results, without the emphasis on numerical quantification of uncertainty.

3 System Architecture

To support answering the questions outlined in Sect. I, and to support additional
analysis types in the future, we designed Slycat around the following general
requirements:

— Remote ensemble analysis, in which large data is analyzed in-place to minimize
data movement.

— Ubiquitous access to analysis results regardless of the availability of the original
data sets or source platforms.

— Desktop delivery providing interactive exploration of ensemble analysis results,
and collaborative sharing with appropriate access controls.

The need for remote ensemble analysis is driven by the ever widening gap
between high performance computing (HPC) computational performance and I/O
performance. Practically speaking, we have reached a point where computation is
effectively “free” while data movement has become very expensive, and moving raw
ensemble data from the HPC platform where it was generated to the host running
Slycat would take significantly more time than the analysis computations to follow!
Better instead to perform those computations on the machine where the ensemble
data is located, so that only the model—typically orders of magnitude smaller than
the original data—is moved across the network to the Slycat host. This leads to the
Slycat architectural design of Fig. 1.

An important practical consideration for users of HPC platforms is that ensemble
results may often become temporarily or permanently unavailable—login nodes
come and go due to resource contention, users often must archive or delete their
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Fig. 1 Slycat system diagram depicting how large data on an HPC platform is analyzed in-place
to produce greatly reduced model artifacts that are stored by the Slycat web server. Later, these
artifacts are delivered—incrementally and on-demand—to interactive clients

data as scratch filesystems near capacity, and so on. Because Slycat stores its
own greatly-reduced models of the underlying raw data, and only those models
are necessary to produce a visualization, users can continue to access their Slycat
analysis results even when the original HPC resources are unavailable.

Finally, we want a system architecture that supports easy desktop delivery and
collaboration, enabling users to share results seamlessly with colleagues across
the network without requiring any software downloads or installation. That means
using existing web standards and clients, dictating much of the subsequent design
and derived requirements. It means adopting a web server as the front-end for the
system and standard web browsers as clients (or custom clients using standard
web protocols to communicate). In turn, interactions and visualizations must be
developed using only the set of technologies that are widely available within web
browsers, such as HTMLS, JavaScript, AJAX, SVG, and Canvas.

Unlike dedicated visualization tools such as ParaView or Ensight, we cannot
rely on the client to perform serious calculations. This necessitates Slycat’s pre-
computation of visualization artifacts, organized for rapid, incremental retrieval
from the server on-demand. As an example, we allow users to interact with data
tables that can contain thousands of columns and millions of rows - which would
cause unacceptable slowdowns if they had to be transferred from server to client
in their entirety. Instead, only the data needed to display the currently-visible
table rows are transferred as the user scrolls through the table. This “just-in-
time” approach to data is used throughout the client, minimizing total bandwidth
consumption and keeping the interface responsive.

Although working around the constraints of web browsers has been a challenge,
the rewards have been significant, enabling Slycat users to “bookmark” the state of
a visualization and share it with colleagues simply by sharing a hyperlink.
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4 Canonical Correlation Analysis

H. Hotelling, who was also instrumental in developing Principal Component Analy-
sis, proposed Canonical Correlation Analysis (CCA) [10]. CCA is a method that can
be used to understand relationships between two sets of multivariate data. Writing
our sets as matrices, X = [Xy,...,X,]px» is presumed to be independent, and ¥ =
[Y1,...,¥nlgxn to be dependent, where the x; and y; lie in R” and RY, respectively
(i.e. each vector x; has p components and each vector y; has ¢ components). CCA
attempts to find projections a and b such that R> = corr(a” X, b’ Y) is maximized,
where corr(e, ) denotes the standard Pearson correlation, which in our case is
given by

a’ Cyyb

yal' Cab”Cy,b '

where Cy, is the p X p covariance matrix %XX r C,, is the g X ¢ covariance matrix
%YYT, and Cy, is the p x g covariance matrix %XYT. (Note that we are assuming
for convenience that X and Y are mean-subtracted and unit variance.)

Thus to find the projections a and b we want to solve

corr(a’ X,b’Y) =

maximize aTnyb
subjectto a’ C,a =bTCpb = 1.

This problem reduces to a generalized eigenvalue problem, and thus has a unique,
global minimum (up to subspace isomorphism and assuming adequate matrix
ranks). CCA is a linear method and is a direct generalization of several standard
statistical techniques, including PCA, multiple linear regression (MLR), and Partial
Least Squares (PLS) [3,4].

The vectors a’” X and b’ Y are known as the first pair of canonical variables.
Further pairs of canonical variables are orthogonal and ordered by decreasing
importance. In addition to the canonical variables, the R? value for each variable
pair is obtained, and various statistics can be computed to determine the significance
of the correlation. A common statistic used in this context is the p-value associated
with Wilks’ A [14].

Once the canonical variables are determined, they can be used to understand
how the variables in X are related to the variables in Y, although this should
be done with some caution. The components of the vectors a and b can be
used to determine the relative importance of the corresponding variables in X
and Y. These components are known as canonical coefficients. However, the
canonical coefficients are considered difficult to interpret and may hide certain
redundancies in the data. For this reason, it is more typical to analyze the canonical
loadings, also known as the structure coefficients. The structure coefficients are
given by the correlations between the canonical variables and the original variables
(e.g. corr(a’ X, X)). The structure coefficients are generally preferred over the
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canonical coefficients due to the fact that they are more closely related to the original
variables.

CCA is a powerful method that is particularly useful for certain problems because
it acts on pairs of data sets (unlike PCA, which acts on a single data set). However,
itis also complex and difficult to interpret. One of our central goals in this work has
been to provide CCA-based analysis for data ensembles, but in a framework more
understandable to domain experts.

5 Visualization

In Slycat, sensitivity analysis is performed through an iterative cycle of designating
which input and output variables to include in the analysis, performing CCA, and
visually exploring the resulting model. Analysis typically starts with an all-to-all
evaluation to get an initial sense of the data, revealing the most strongly correlated
combinations of variables. Some cases require iterative refinement to tease apart
disparate groups of inputs and outputs.

To provide integrated perspectives, Slycat combines three levels of detail in a
single web page using multiple linked views, as shown in Fig. 2. In the upper left,
the Correlation View shows the relationships found for the ensemble as a whole,
displaying structure coefficients in tabular form, grouped by correlation components

Fig. 2 Slycat visualization showing an all-to-all CCA analysis of a 250 simulation electrical
circuit ensemble. As seen through the lengths and shared colors/directions of the bars in the
Correlation View in the upper left, the first CCA component exhibits a strong positive correlation
predominantly between the combined inputs X25 and X14 and both of the outputs Y1 and Y2,
an example of a many-to-many relationship. In the Simulation View scatterplot on the upper right,
the highlighted simulation (enlarged point) on the lower left can be seen to be anomalous given its
offset from the diagonal and its lower Y1 value ( pink) relative to other simulations with similar
inputs (reds)
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into columns and by ensemble variables into rows. The top two rows display each
component’s R? and p-value. Variable names are shown along the left edge of
the view. Rows for input variables are colored green, while output variable rows
are lavender. This green/purple color coding is used consistently throughout the
interface to designate inputs and outputs. The rows in each column can be sorted by
the correlation strengths of the variables in either ascending or descending order.

Users select a component by clicking its column header, expanding the coef-
ficients into an inline vertical bar chart. The bars visually encode the signed
values of the structure coefficients for each variable, with left-facing blue bars
representing negative values and right-facing red bars representing positive ones.
Color coding the bars visually reinforces the relationship types. Variables with
matching colors are positively correlated, and variables with mismatched colors are
negatively correlated. Bar length indicates a variable’s relative importance. Sorting
a component in descending order separately displays the input and output variables
in order of significance with the longest bars at the top and the shortest at the
bottom. This ordering makes it simple to evaluate which variables exhibit strong
correlations, whether the correlations represent positive or negative relationships
between the variables, and which inputs are driving a particular group of results.

The scatterplot in the upper right of Fig. 2 is the Simulation View. It displays how
well individual simulations are described by the correlations for the ensemble as a
whole. The axes are the canonical variables, a” X and b7 Y, and each simulation
is rendered as a point with x and y coordinates computed as sums of input and
output values, respectively. This coordinate space is highly abstract, with the x-
axis representing a metavariable that is the sum of all the inputs and the y-axis a
metavariable of all the outputs. Consequently, the scatterplot changes whenever a
new canonical component is selected, since each component’s structure coefficients
are different. If the model finds a perfect linear correlation between inputs and
outputs, the scatterplot points will form a diagonal line. Anomalous simulations
will appear offset from the diagonal as positional outliers.

Points can be color coded by the values of input or output variables, providing
another way to identify outliers. Selecting a row in the Correlation View or a
column header in the Variable Table (see below) selects that variable’s values for
color coding in the scatterplot. We use a diverging blue/white/red color map [18] to
encode the values, where blue is at the low end of the scale, and red is at the high
end. While we do not assign any particular meaning to the central values shown in
white, we find in practice that the diverging color map makes it easier to interpret
values of nearby points.

Across the bottom of the page, the Variable Table displays raw data with a row
for each individual simulation and a column for every ensemble variable. Column
(variable) selections in the Variable Table are linked with row selections in the
Correlation View and the scatterplot color map. The selected column is color coded
using the same color map as the scatterplot to visually correlate the two views. The
table columns can be sorted in ascending or descending order. Additionally, row
(simulation) selections are linked with point selections in the scatterplot. Darker
green/purple backgrounds highlight selected table rows, while selected points in the
scatterplot are drawn with a larger radius.
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6 Electrical Simulation Sensitivity Analysis

Our users model electrical circuits using Xyce, an open source, high-performance
circuit simulator developed by Sandia National Laboratories as part of the Advanced
Simulation and Computing (ASC) Program [28]. We will examine two circuit
ensembles of differing scales: a small ensemble of 250 runs, and a large ensemble of
2,641 runs. In both cases, some of the input variables take a restricted set of values
(=1, 0, or 1). These values are used to select different simulation models whose
responses are low, nominal, and high, respectively. The models act to encapsulate
groups of input variables, thereby reducing the number of variables and the size of
the ensemble.

6.1 Small Ensemble

The small ensemble has 250 simulations, each with 25 input variables and 4 output
variables. Outputs Y1 and Y2 measure voltage responses, while Y3 and Y4 measure
current. The goal of this analysis is to answer the first two questions from the list in
Sect. 1: Which inputs are most strongly correlated with specific outputs, and which
inputs exhibit little or no impact on the outputs?

As seen in the Correlation View bar chart in Fig.2, the first CCA component
shows a positively correlated relationship that is mostly between the input parame-
ters X25 and X14 and both of the voltage outputs. The inputs are listed in decreasing
order of importance, so the parameters at the bottom of the green region in the first
column exhibit little or no impact on voltage responses.

In Fig. 3, the sorted variables for the second CCA component reveal a strong
negative correlation predominantly between the input X23 and the current response,
Y4. Color coding the simulations first by the input values (upper image), then by
the outputs (lower image), we can see a strong correspondence between the low,
nominal, and high values of X23 and groups in the Y4 response values. Although
the other current response, Y3, is present in the second CCA component, it is
more strongly described by the third component, as shown in Fig.4. The central
relationship there is a negative correlation between the input X8 and the output Y3.

6.2 Large Ensemble

The large ensemble is roughly two orders of magnitude larger than the small
ensemble, containing 2,641 simulations of a different electrical circuit with 266
input variables and 9 outputs. The outputs for this circuit are more varied than
the previous circuit, capturing events and features rather than simple voltages or
currents. Slycat easily scales to handle this data, and our largest ensemble to date
has contained more than 500,000 simulation runs.



288 P.J. Crossno et al.

Fig. 3 In the second CCA component, the correlation is predominantly a negative relationship
between input X23 and output Y4. Color coding the scatterplot by the values of X23 (top image)
and Y4 (bottom image), we can see a one-to-one correspondence between the low values of X23
and the high Y4 responses. The nominal and high values of X23 combine into a single low-valued
group in Y4. In both images, table rows are sorted by Y4 value. Note the selected (enlarged)
simulation point near the scatterplot center, which lies on the boundary between the two groups

Given the large number of input variables, an initial analysis goal is to reduce
the number of variables required to drive the simulations. Using a process similar to
that of the previous section, we are able to cull the number of input variables needed
to drive future simulations of this circuit from 266 down to 21.

Finally, we demonstrate how Slycat can be used to answer the third analysis
question from Sect. 1: which simulations are anomalous, and in what ways do they
differ from the norm? In our initial all-to-all analysis, we noticed four anomalous
simulations in the upper part of the scatterplot, the highlighted red points shown in
Fig.5. Distance from the diagonal is a metric for how well the linear correlation
found by CCA describes a particular simulation, so these four runs immediately
stand out as anomalous. What sets them apart? Since the Y-axis in the scatterplot is
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Fig. 4 In the third CCA component, the input parameter X8 is negatively correlated with the
current response Y 3. Color coding the scatterplot by the values of X8 (top image) and Y3 (bottom
image), we can see the negative relationship between low values (dark blue) in the input parameter
and high values (dark red) in the output. In both images, the table rows are sorted by decreasing
X8 values and we have selected the four simulations with the lowest values in X8

a metavariable based on the simulation outputs, vertical placement is a function of
output variable values. Interactively switching the color coding between the various
outputs, we discover that the Y4 values for these four simulations are at the high end
of the scale. Sorting the Y4 values in the table, we see that these four simulations
have Y4 values that are distinctly higher than any of the others (notice that they are
in red, while the next largest values are in orange).

Next we investigate similarities amongst the four simulations’ inputs, hypothe-
sizing a common factor leading to the higher responses. We perform a many-to-one
CCA analysis between all of the inputs and Y4. The two most highly correlated
input variables, X248 and X255, both have identical values for all four simulations.
However, each of these variables provides a range of other Y4 responses for
the same input values, as seen in Fig.6, so neither variable in isolation is the
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Fig. 5 In the first CCA component of the all-to-all analysis of the large ensemble, anomalous
runs (in red) are highlighted near the top of the scatterplot. We initially notice them based on
their position. The vertical position indicates that the difference between these simulations and the
others is based on one of the outputs. Color coding, combined with sorting the table, shows that
these four simulations have much higher values in Y4 than any of the other simulations. Note that
since color encodes value, selection in the scatterplot is shown by increased point radius

Fig. 6 We perform an all-to-one analysis to discover which input variables are most highly
correlated with Y4, and which could be driving the four anomalous output values. The top two
variables, X248 (left image) and X255 (right image), have identical input values for the four runs,
but neither is the sole driver, since both demonstrate the same inputs driving a variety of outputs.
The anomalous outputs must stem from a combination of inputs acting in concert

cause. Using the table, we find nine variables that share identical values for
all four simulations (X248, X255, X224, X175, X176, X187, X196, X213, and
X229). Given X248’s strong correlation with Y4, it is definitely involved. Further
simulation by our collaborators is needed to isolate which additional input variables
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are involved, but Slycat allowed us to narrow down the possibilities to a handful of
variables.

7 Performance

The use cases that we have presented each took less than a minute to compute.
To better characterize the performance of Slycat’s CCA implementation, we
synthesized a series of test ensembles, varying the number of observations and
variables in each, then timed how long it took to upload the data into Slycat and
compute a CCA model.

The test hardware included a Mac OSX workstation client that generated the
ensembles, uploading them via a 10 Gb ethernet network to a Linux server running
the Slycat software with eight 2.4 GHz Quad-Core AMD Opteron processors and
78 GB of RAM. Each test was run three times and the timings averaged. Note that
some combinations of observations and variables could not be tested, either because
there were too few observations for a given number of variables, or because the
CCA computations for the combination would have exceeded the available memory
on the server.

During ingestion, the data was uploaded one-variable-at-a-time to avoid exceed-
ing request size limits imposed by HTTP. Reading from left-to-right in Table 1,
the ingestion times are almost perfectly linear in the number of variables uploaded.
Reading top-to-bottom, we would expect similarly linear behavior as we increase
the number of observations; however, the timings are complicated by other factors,
including overhead for HTTP request handling, database access, and disk I/O for
each upload.

Each test dataset contained an even number of variables, and we configured
the CCA computations to split them into equal numbers of inputs and outputs.
This configuration ensured that the CCA computation would produce the maximum
number of CCA components possible for a given dataset. From Table 2, we see
that increasing the number of variables (reading left-to-right) has a larger impact
on runtimes than increasing the number of observations (reading top-to-bottom).

Table 1 Data ingestion times (s)

Variables
Observations |4 8 16 32 64 128 256 512 1024
10 1.901 | 2.6
100 1.897 | 2.583 | 4.114 | 7.019 | 13.17
1,000 1.967 | 2.607 | 4.13 7.112 | 13.08 | 25.96 | 51.61 |104.7
10,000 2.191 | 2998 | 4.735 | 8577 | 16.13 | 31.94 | 63.48 | 133.8 |276.9
100,000 3.238 | 5.567 | 7.996 |15.43 29.29 | 57.35 |116.9 |233.7

1,000,000 12.53 |24.66 |4854 |96.02 |193 381.7 |761.4
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Table 2 CCA compute times (s)

Variables
Observations | 4 8 16 32 64 128 256 512 1024
10 2.515 |2.724
100 2.516 |2.71 3.289 | 4.489 7.025
1,000 2.642 |2.73 3.326 | 4.562 7.146 13.82 30.35 85.84
10,000 2.667 |2.827 | 3.576 | 4.907 8.023 18.13 74.87 | 279.4 | 966
100,000 2.812 |3.417 | 5.952 | 14.06 35.13 120.4 419.6 | 1791

1,000,000 4.727 19.361 |26.58 |86.04 |317.2 1176 5419

This is consistent with our expectations for the CCA implementation. Since CCA
solves an eigenvalue problem based on a covariance matrix, its expected complexity
is O(n) + O(p?), where n is the number of observations and p is the number of
variables.

Conclusions and Future Work

‘We have demonstrated how Slycat meets our design goals, illustrated its utility
on two real-life electrical circuit analysis examples of varying scale, and
presented performance results for a series of synthetic test ensembles. Slycat’s
linked views display multiple levels of abstraction from high level ensemble-
wide context to deep exploration of relationships at the level of individual
simulation inputs and outputs. This combination of iterative analysis and
visualization makes CCA more approachable, allowing users to interactively
develop and test hypotheses about relationships among variables.

As of this writing, Slycat includes a second analysis type based on
time series clustering, which allows us to directly analyze time series data
such as the voltage and current waveforms that were reduced to individual
output features in our examples. We are also considering a new type of
analysis model based on factoring of arbitrary-dimension tensors. The Slycat
source code and documentation are freely available under an open source
license at https://github.com/sandialabs/slycat, and we welcome collaborators
interested in incorporating their own models into Slycat.
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