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Preface

It is with great pleasure that we present the proceedings of the 15th IFIP
TC-6 and TC-11 Conference on Communications and Multimedia Security (CMS
2014), which was held in Aveiro, Portugal during September 25–26, 2014. The
meeting continues the tradition of previous CMS conferences which were held in
Magdeburg, Germany (2013), Canterbury, UK (2012), Ghent, Belgium (2011)
and Linz, Austria (2010).

The Program Committee (PC) received 22 submissions, comprising 16 full
papers, 3 short papers and 3 extended abstracts, out of which only 4 full pa-
pers were accepted (25% acceptance rate). In this edition, we have included 6
short papers, which describe valuable work-in-progress, as well as 3 extended ab-
stracts, which describe the posters that were discussed at the conference. Some
of the latter two categories are shortened versions of original full or short paper
submissions respectively, which the PC judged to be valuable contributions but
somewhat premature for submission under their original category.

We are grateful to Paulo Mateus, of the Instituto Superior Técnico/Uni-
versity of Lisbon and Rui Melo Biscaia, of Watchful Software, for accepting our
invitations to deliver keynote addresses, the abstracts of which can be found at
the end of these proceedings.

We would also like to say a word of appreciation to our sponsors, the Institute
of Electronics and Telematics Engineering of Aveiro (IEETA) and the University
of Aveiro, for hosting the conference and providing all the human and material
support requested by the Organizing Committee.

Finally, special thanks go to the Organizing Committee who handled all local
organizational issues and provided us with a comfortable and inspiring location
and an interesting evening event. For us, it was a distinct pleasure to serve as
program chairs of CMS 2014.

We hope that you will enjoy reading these proceedings and that they may
inspire you for future research in communications and multimedia security.

September 2014 Bart De Decker
André Zúquete
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Simone Fischer-Hübner Karlstad University, Sweden

Steven Furnell Plymouth University, UK
Jürgen Fuß University of Applied Sciences Upper Austria,

Austria
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Malicious MPLS Policy Engine Reconnaissance

Abdulrahman Al-Mutairi2 and Stephen Wolthusen1,2

1 Norwegian Information Security Laboratory,
Department of Computer Science,
Gjøvik University College, Norway

2 Information Security Group,
Department of Mathematics,

Royal Holloway, University of London, UK
{Abdulrahman.Almutairi.2009,stephen.wolthusen}@rhul.ac.uk

Abstract. Multi-Protocol Label Switching (MPLS) is widely used on
telecommunications carrier and service provider backbone networks,
complex network infrastructures, and also for the interconnection of dis-
tributed sites requiring guaranteed quality of service (QoS) and service
levels such as the financial services sector, government and public safety,
or control networks such as the electric power grid.

MPLS is a policy-based system wherein router behaviour is deter-
mined not only by the base protocols, but also by a set of further poli-
cies that network operators will typically wish not to reveal. However,
sophisticated adversaries are known to conduct network reconnaissance
years before executing actual attacks, and may also wish to conduct de-
niable attacks that may not be visible as such that appear as service
degradation or which will cause re-configuration of paths in the interest
of the attacker. In this paper we therefore describe a probing algorithm
and a model of MPLS state space allowing an adversary to learn about
the policies and policy state of an MPLS speaker. In spite of the restric-
tions on the adversary, our probing algorithm revealed the policy states
of non-directly connected routers. Also, we analyse the confirmed infor-
mation using a Bayesian network and provide simulative validation of
our findings.

Keywords: Multi-protocol Label Switching, Real-Time Networks,
Quality of Service, Reconnaissance, Bayesian networks.

1 Introduction

The Multi-Protocol Label Switching (MPLS) protocol provides a highly efficient
mechanism for packet forwarding based on a label switching approach that seeks
to reduce the need for explicit per-packet routing in wide-area networks by pre-
identifying optimum paths to the final destination, thereby allowing intermediate
routers to forward information traffic based on a once-applied label rather than
an explicit lookup at each intervening router. This is of interest not only for
network operators seeking to improve the effective throughput of routers and

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 3–18, 2014.
c© IFIP International Federation for Information Processing 2014



4 A. Al-Mutairi and S. Wolthusen

overhead required, but also particularly for applications where so-called flows
can be identified. Consequently flows that share common characteristics such as
source and destination as well as other service characteristics could be treated
in the same way. By analysing flow requirements and characteristics, it is thus
possible to also provide a defined quality of service (QoS) for a flow, typically
through a process of resource reservation. This is crucial for network operators
seeking to accommodate traffic on consolidated IP networks that may also be
sensitive, e.g., to real-time characteristics.

Where adversaries seek to analyse and ultimately disrupt service availability
such as by disabling and impeding links or routers, a first step will need to be the
analysis of network behaviour, which is determined not only by the basic MPLS
protocol and real-time or QoS extensions, but also by a number of policies. The
revelation of the used policies may not be considered as a vulnerability, but
that would make the attack more easy for an adversary and assist or enable the
adversary to launch accurate attacks against the policy engines as this type of
attacks is referred to as foot-printing attacks [1]. For example, such information
would assist the attacker to estimate to what extent the manipulation of labels
would propagate or the sensitivity of MPLS networks to sudden changes in
specific MPLS nodes. A main purpose of this paper is therefore to study the
ability of attackers to learn about the configured policies on MPLS routers whilst
having access to limited resources using a limited and legitimate probing within
the MPLS network.

The remainder of this paper is structured as follows: we review related work
on MPLS security analyses and policy reverse engineering in section 2, followed
by a description of the MPLS policy engine in general. A simplified policy model
employed for subsequent analysis is introduced in section 3. We then provide
a description of the policy state analysis framework in section 4 and study the
validity and mapping of our model onto a simulated instantiation in section 5.
Then, we introduce a probability model for the confirmed traces left by each of
the MPLS policies as well as the relationships among MPLS policies themselves
in section 6. We conclude with a brief discussion and summary of our findings
as well as an outlook on on-going research in section 7.

2 Related Work

In policy-based protocols among peer networks, the policy under which a net-
work operates must be considered sensitive as this may, e.g., reveal commercial
information for operators or can have security implications as it allows adver-
saries to deliberately target policy behaviour. Research in this area has been
largely limited to the exterior Border Gateway Protocol (BGP) [2] where a more
state information is revealed in a larger body of security analysis [3–5].

However, few research studies have been conducted on MPLS, generally in the
field of integrity and availability. The MPLS label distribution protocol (LDP)
was analysed by Guernsey et al. [6]. Guernsey et al. demonstrated several ex-
ploits that may cause route modification, traffic injection and Denial-of-Service
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(DoS) mainly by BGP update messages poisoning or directly injecting malicious
traffic into Label Switched Paths (LSPs). Grayson et al. [7] provided a further
analysis of MPLS security with special emphasis on the use of MPLS to realise
Virtual Private Networks (VPNs). Mainly, the authors focused on route injec-
tion and traffic injection attacks and paid some attention to DoS-type attacks,
but placed less emphasis on the reconnaissance and targeted quality of service
(QoS) degradation resulting in policy-driven attacks that we are considering in
this paper. It should be noted that DoS or integrity violations might not be
the main objectives of attacks where the adversary aims to affect the QoS of
the routed traffic. The failure to realise such facts in networks operation may
have long-lasting impacts on QoS and the direction of flows that go far beyond
transitive faults [8].

The main alternative for the MPLS control plane to LDP is the extension
of existing protocols for signalling; this is realised both in the form of Traffic
Engineering extension of Resource Reservation protocol (RSVP-TE) and Multi-
Protocol Extension for BGP (MP-BGP). The security properties of RSVP-TE
were studied by Spainhower et al. [11]. The authors demonstrated some recon-
naissance and DoS attacks. The introduced reconnaissance attacks aim to reveal
the record route object (RRO) in the reservation message that contains some
topology information, e.g., core addresses as well as the identification of MPLS
ingress. However, in our work we aim to reveal the MPLS nodes’ states rather
than the network topology.

The security properties of MP-BGP, on the other hand, were studied by Li-
orens and Serhouchni [12]. The authors introduced the notion of using Bayesian
networks for defining an approach to penetrate VPNs in order to rank the VPNs
perimeter and deciding the probability of the best VPN perimeter to ensure
VPNs isolation and integrity in MP-BGP protocol. We are going to use the
Bayesian network in slightly different way to demonstrate the probability of
different MPLS policies and the relationships amongst them.

The analysis and reverse-engineering of inter-domain routing policies has, e.g.,
been studied by Machiraju and Katz [2] who proposed a technique for BGP
routing policies’ reverse engineering by examining the BGP updates in order to
reveal local preferences used by Autonomous Systems (ASs). Similarly, Wang
and Gao [13] introduced a method to characterise routing policies used in the
Internet. Wang and Gao could infer the route preference that influences route
selection in import policies by associating local preference values to the inferred
relationships among ASs. In addition, the author could infer the export policies
that are used for controlling the inbound traffic. Furthermore, Liang et al. [14]
developed a model to infer routing policy for individual ISPs. Basically, Liang
et al. aimed to abstract the policy patterns from BGP routing tables and then
group the collected data for translation into the high-level policy objectives
as a method of routing policy reverse engineering. Liang et al. claimed that
the developed model achieves over 78.94% average accuracy in routing policy
inference.

Siganos and Faloutsos [3] developed a tool (Nemesis) to infer business relation-
ships of ASs by parsing and restoring the information found in Internet Routing
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Registries (IRRs) in an easy relational database. Basically, the authors’ method-
ology was to convert the simple text polices into equivalent link-level policies,
infer the business relations of ASs (customers, peers and providers), then validate
the results against the BGP routing updates to check the consistency of IRRs.
Alternatively, Ming et al. [15] applied reverse engineering techniques in order to
reveal the actions taken by certain ASs in response to false announcements in
false Multiple Origin AS (MOAS) events using BGP updates. Ming et al. con-
cluded that the bad announcements are not only arising from the originating
AS, but other ASs took early actions to withdraw such bad announcements.

To the best of our knowledge, all of the existing studies on routing policy
inference are based on BGP updates and mostly aim to reveal the import and
export routing policies rather than the other policies that might affect the routing
operation such as the MPLS policies, thereby making a direct application of these
results difficult. Going beyond this, our aim is to reveal the more limited MPLS
state information by analysing the actual effects on signalling behaviour.

3 MPLS Policy Engine

Network operators and service providers employ routing policies not only for the
sake of efficiency, e.g., load balancing, but also for business relationships or other
operational and political factors that are hard to consider in the classic shortest
path routing. Unfortunately, there are many routing policies to be considered and
hard to be defined in addition to the complexity of the policies implementation
which is well known as an error prone process [16, 17].

In addition, MPLS networks are associated with other mechanisms such as
Differentiated Services (DiffServ) or Traffic Engineering (TE) in order to deliver
QoS [18] which would result in more complicated policies other than those found
in IP based routing networks. However, there is a certain number of policies
in the pure implementation of MPLS and included in the MPLS architecture
design [19] as well as in LDP specification [20].

Mainly, MPLS networks treat packets based on common classes which are
known as Flow Equivalent Classes (FECs) where each FEC presents a group
of packets to be treated in the same manner. Furthermore, each FEC is bound
to a unique label before each MPLS enabled router or what is known as Label
Switch Routers (LSR) could treat them differently as configured. For that reason,
there are certain policies used to govern the way of binding labels to FECs and
exchanging of the bindings among LSRs as well as the way of treating packets
differently.

Policies in MPLS could be divided into two main classes. The first class is
traffic policy class which governs the operation carried by LSRs on traffic as
per packet by packet. Generally, once each LSR receives a packet, it would
carry one of the label operations (push, swap, pop or drop) on it based on the
configured policies. It should be noted that the only label operations could be
done on unlabeled packets, usually by the MPLS ingress LSRs, are push and
drop operation. Then, each packet is scheduled and buffered according to the
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experiment field (EXP) of MPLS label which has 3 bits (8 values) that could be
sorted as different classes of services to be delivered in each LSR separately which
is defined by Per-Hop-Behaviour (PHB). Moreover, each LSR could readjust that
field depending on the configured policies. The other type is the label policies
that are related to the management of labels inside the MPLS domain.

The other class of policies is the label management class. The label bindings
could be distributed to other LSRs that have not explicitly requested them when
Unsolicited Downstream (UD) label distribution policy is configured. Alterna-
tively, the upstream LSR has to explicitly request the label bindings from the
next LSR when Downstream on Demand (DD) label distribution policy is used.
In addition, there are two policies govern label allocation in each LSR. The first
policy is called Independent Label Allocation (ILA) where each LSR assigns a
label to the recognised FEC whether or not it received the label assignment from
the next hop. However, LSRs need to receive a label assignment for specific FEC
in order to create and propagate their own label bindings in the Ordered Control
(OC) label allocation policy. Also, there are two policies control labels retention
strategy as LSRs may receive multiple labels but only use one of them. The
Liberal Retention (LR) policy keeps the received labels even if they are unused.
Alternatively, the Conservative Retention (CR) policy leads the LSR to only
keep the labels those are used previously and discard the unused ones.

State Space Reduction
As the two MPLS policy classes mentioned above have essential differences in
functionality, setting a restriction on the MPLS policy engine state space by
focusing on one of the policy classes would unify and increase the accuracy
of the analysis in later sections. While, traffic policies could be generalised by
how the LSPs are managed as the routing in MPLS is based on per-flow basis
rather than per-packet basis and influences certain flows rather than the MPLS
environment, analysis of such policies is beyond the scope of this work and would
be investigated in future work. Instead, we concentrate on the analysis of the
label management policies that concern with label distribution, allocation and
retention strategies.

In addition, the label management policy state space could be reduced due to
the limitation of our simulation tool as well as the dynamical nature of certain
policies which leave a unified trace. According to Andersson et al. [20], when
implementing DD policy with ILA policy which we refer to as ID policy, LSR
would answer the requested label binding immediately without waiting for label
binding from next hop. On the other hand, LSR would advertise label bindings
to its LSR peers whenever it is prepared to label switch those FECs when it is
operating in ILA policy with UD policy which we refer to as IU. However, a LSR
that is operating in OC policy must only issue a label mapping after receiving a
label mapping from the egress LSR.

The label retention policy is going to be addressed only in section 6 due
to the limitation of our simulation tool where only CR policy is applicable.
Knowledge of retention policy is critical for our analysis because it represents
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one of the three main operation policies in MPLS network. Also, there are some
dependency could be drawn among these MPLS operation policies. For example,
CR policy is typically implemented with DoD policy unlike the case with UD
which may implement one of the retention policies fairly [20].

Therefore, the state space we are interested in is restricted in our simulation
to a set of three policy states which we denote by S. The set of policy states are
Independent Unsolicited (IU), Independent Downstream on Demand (ID) and
Ordered Control (OC). Formally, each policy state s is an element of the policy
state set S as s ∈ S : IU, ID,OC. All of the three policy states mentioned above
are mutually exclusive. Moreover, two of the policy states which are (IU & ID)
represent four policies combined together as the IU policy represents ILA policy
and UD policy, also the ID policy represents ILA policy and DD policy. However,
the third policy state (OC) represents only one policy for two reasons. The first
reason is due to the limitation of our simulation tool which only implements
OC policy with UD policy. The second reason that the allocation policy OC
was taken as an independent state is because the implementation of OC policy
dominates other policies, particularly the label distribution policies, i.e., UD &
DD. In other words, if any label request message was sent to the egress LSR,
each LSR in MPLS domain receive that message would forward it towards the
egress LSR as well as forwarding the response, i.e., mapping message from the
egress towards the ingress LSR.

4 Policy Engine State Analysis Design

In this part of the paper, we would like to introduce the analysis framework
which includes the assumptions and facts that our analysis of MPLS policy
engine states is based on. We used NS-2 [21] network simulator in our analysis
study. NS-2 is a discrete events simulator that has an extension model for MPLS.
Our analysis design consists of the network model, adversary model, probing
elements and simulation scenario as follows:

4.1 Network Model

Our network is based on pure MPLS implementation for the sake of simplic-
ity and generality. Network topology is assumed to be stable and unchanged
throughout the analysis process, e.g., no new addition or removal of nodes).
Each LSR is trusted to process and response accurately to the received LDP sig-
nals, also the possibility of signals loss is excluded as well as all cases of channel
errors, e.g., channel loose). Even though, the instability, connectivity or changing
of nodes states could benefit our adversary to observe most of the needed infor-
mation passively, the same assumption could affect the accuracy of our probing
process.

There are two sources of traffic represented by node-0 and node-1 to
two destinations presented by node-14 and node-15 respectively. Also there
are twelve LSRs represented by LSR-2,...,LSR-13 where the network ingress



Malicious MPLS Policy Engine Reconnaissance 9

0

1

14

15

2 4 6 8 10 12

3 5 7 9 11 13

Source

Source

Destination

Destination

Ingress

Ingress

Egress

Egress

Fig. 1. MPLS Network Topology

and egress edges are LSR-2&3 and LSR-12&13 respectively as shown in fig-
ure 1. Each two adjacent LSRs are connected by at most one link. There
are two flows which are assigned to FEC-14&15 and pass through the path
on node-0→LSR-2→LSR-4→LSR-6→LSR-8→LSR-10→LSR-12→node-14 and
the path on node-1→LSR-3→LSR-5→LSR-7→LSR-6→LSR-8→LSR-9→LSR-
11→LSR-13→node-15 respectively. It should be noted that this simple network
has been chosen for illustration purposes, also to distribute flows throughout
the MPLS domain without using traffic engineering which would add a complex
routing decision possibility according to the configured policies.

For example, in case of a resource release scenario, different back-up LSPs
could be used for forwarding the affected flows, the ingress LSR could com-
municate with the LSRs alongside the torn-down LSP immediately or different
actions could be taken by each LSR that receives the affected flows according to
the configured policies on it. Also, the added restrictions on our adversary, as we
will see later, limit the ability of probing non-directly connected node. However,
there is a possibility that our adversary could discover and manipulate the non-
directly connected LSRs by using different exist signalling mechanisms which is
beyond the scope of this work and have been avoided by our network model.
For example, the adversary could use the LDP extended discovery mechanism
which is a mechanism that allows LSRs to establish sessions with potential LDP
peers [20], otherwise the adversary could just trick the non-directly connected
LSR to exchange fake labels for malicious intents.

4.2 Adversary Model

Most of the service providers and network operators make sure that their net-
work edges and core nodes are well configured and physically secured which re-
duces the chances of the compromised node scenario [22], hence the compromised
node scenario is excluded from our adversary model. We are going to extract a
restricted adversary model which we refer to as a probing adversary following
the same method that was introduced by Al-Mutairi and Wolthusen [23] to ex-
tract MPLS adversary models. Basically, the method was to extract a specific
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adversary model for a specific analysis purposes from an abstracted framework
for the adversarial properties of any adversary that could emerge in MPLS net-
works.

Therefore, we assume the adversary to have knowledge about the physical
information of the network topology, e.g., topological address information. Also,
the adversary has access to control information regarding the labels of related
flows and can identify them. Moreover, we assume the probing adversary to have
access to at most one arbitrary chosen core link which is the link between LSR-6
and LSR-8 with a write/read operation. Also, the probing adversary is capable of
fabricating and sending LDP signalling messages to the LSRs that are attached
to the compromised link.

4.3 Probe Elements

The main task of LDP is the establishment of adjacency relationships among
peer LSRs and mapping the FECs into the established LSPs [20]. Therefore, we
are going to use LDP messages, particularly, label withdraw and release messages
in our probing processes to stimulate LSRs to communicate among each other
for adversarial analysis. It should be noted that the label withdraw message is
sent towards the ingress (imposing) LSR of the withdrawn label and the label
release message is sent towards the egress (deposing) LSR of the released label.
Also, LDP signalling messages have a common structure that uses type length
value (TLV) encoding scheme which would typically include path vector TLV.
Path vector TLV records the path of LSRs that label request and mapping
messages have traversed [20]. Basically, the path that the message has traversed
is presented as a list of router-Ids as shown in figure 2. Each LSR Id is the
first four octets of the LDP Identifier for the corresponding LSR for the sake of
uniqueness within the MPLS network.
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4.4 Simulation Scenarios

We configured all of the LSRs with the policy engine states (IU, ID, OC) one
by one in order to analyse the traces left by each state and the ability of our
adversary to reveal the LSRs policy engine state. In each one of the above sce-
narios, the adversary sent release messages for the label related to FEC-14&15
towards LSR-6 as well as withdraw messages for the label related to the same
FECs towards LSR-8 and waits for replies from the affected LSRs for analysis
purposes in order to reveal the LSRs policy engine states as every policy engine
state has a different allocation process.

5 Analysis Results

In this part of the paper we are going to introduce a description of the validation
of the probing process and the affect that was noticed on LSRs. Then, we are
going to show the ability of our adversary to reveal LSRs policy engine states.

5.1 Probing Process Validation

The probing messages that were sent by our adversary propagated differently
through LSRs according to the method that was used to allocate the related
labels, i.e., upstream or downstream allocation. While, label withdraw messages
were successfully propagated to the ingress LSRs in all cases and the label en-
tries were removed from the upstream nodes (LSR-2,3,4,5,6,7), released mes-
sages only propagated in case the released label was upstream allocated and
the label entries were removed from downstream nodes (LSR-8,9,10,11,12,13).
However, label release messages failed to propagate in case the label was down-
stream allocated. This problem could be mitigated by our adversary by sending
a downstream label mapping or request message depending on the configured
policy for the downstream node which is LSR-8. Consequently, after the label
entries were removed, the affected LSRs responded differently according to the
configured policy as following:

– Independent Unsolicited (IU): Label mappings for the withdrawn and
released labels were sent independently from LSR-2,3,4,5,6,7,8,9,10,11,12,13.

– Independent Downstream on Demand (ID): Label requests for the
withdrawn and released label were sent from LSR-2,3,4,5,6,7,8,9,10,11,12,13
and independent label mappings were sent by the peer LSRs in response to
the request messages.

– Ordered Control (OC): Label requests for the withdrawn labels were sent
from the ingress LSR-2&3 to LSR-8. It should be noted that LSR-8 did not
forward the request messages for the withdrawn labels because it already has
received the label binding from the egress LSRs, hence LSR-8 answered the
request messages immediately and sent the label bindings for FEC-14&15.
However, a label request for the released label were sent only from LSR-
10&11 for the penultimate hop popping mechanism [19]. Clearly, sending a
request message to LSR-8 would mitigate this problem by stimulating the
downstream LSRs to intervene in the label allocation processes.
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5.2 Policy Reveal

Our simulation has showed different responses to the used probes which we used
to reveal the policy states for directly connected LSRs. For the non-directly
connected peers we analysed the TLV path vector that is included in the mapping
or request messages to discover the LSRs that the messages propagated through.
The following policy reveal algorithm 1 was used to analyse the response by the
direct LSRs and try to reveal the policy states of other LSRs in the MPLS
domain.

Given the LDP signals, the algorithm outputs the policy states for spe-
cific LSRs. The algorithm takes the LDP message LDPm related to the with-
drawn/released label l as an input and checks if it is a request for the label
REQl where the request message is processed to check if the TLV entry includes
the ingress LSR to assign all of the LSRs found in TLV entry to the OC state
otherwise the LSRs in the TLV entry are set to ID state. However, if it was a
mapping message MAPl, all of LSRs found in TLV entry are set to IU state.

Algorithm 1. Policy Reveal Algorithm

Require: LDP messages LDPm on the compromised link
Ensure: The policy states S of LSRs

S[n] where n is the number of LSRs
if LDPm = REQl then

if TLV [1] = 1 then
for all i ∈ TLV do

x = TLV [i];
S[x] = OC

end for
else

for all i ∈ TLV do
x = TLV [i];
S[x] = ID;

end for
end if

else if LDPm = MAPl then
for all i ∈ TLV do

x = TLV [i];
S[x] = IU ;

end for
end if
return S

The results that our adversary gained from the reconnaissance probing using
the policy reveal algorithm 1 to reveal the policy state of LSRs in MPLS do-
main are listed below for each one of the configured policy states with a brief
description of the results:
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Fig. 3. Independent Unsolicited state response to the probing withdraw message

Fig. 4. Independent Downstream on Demand state response to the probing withdraw
message

– Independent Unsolicited (IU): Only LSR-6 state has been confirmed as
shown in figure 3. Theoretically, at least LSR-8 state should be confirmed
too in case it sends a mapping message to LSR-6 1.

– Independent Downstream onDemand (ID): The upstream LSRs (LSR-
6&4) states have been confirmed as shown in figure 4. Theoretically, even the
downstream LSR (LSR-8) state should be revealed by sending a request mes-
sage to LSR-6.

– Ordered Control (OC): The upstream LSRs (LSR-2,3,4,5,6,7) states
have been confirmed as shown in figure 5.

Obviously, the reported results have been captured by a restricted adversary
with a limited ability and a very simple and stable environment, i.e., network
model where some relaxation of restriction on both models (adversary or network
model) would reveal more information about other LSRs in MPLS domain. For
example a slight change on the network model such as assuming there is another

1 All or some of the upstream LSRs states could be revealed depending on the time
that LSR-6 takes to send the mapping messages for the withdrawn labels.
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Fig. 5. Order Control state response to the probing withdraw message

source of flow that is routed in the opposite direction would reveal at least the
policy state of LSR-8 in case it was running on IU policy state, the policy states of
LSR-8,9,10 in case they were running on ID policy state and LSR-8,9,10,11,12,13
in case they were running on OC policy state. Alternatively, making a relaxation
of restrictions on adversary model by giving the adversary a read access on more
links (in the worst case n/2 links where n denotes the number of LSRs) would
reveal the policy state of all LSRs in all cases with no need to analyse the TLV
entry that is included in each LDP messages.

6 MPLS Policy States Probability

The results we gained from the simulation in addition to the knowledge we have
about different policy states in MPLS network could be represented in Bayesian
Network (BN). Our main aim here is to be able to give approximate estimation
about how much to reveal about the policy state by getting some information
related to them and to what extent in order to demonstrate the probability of
revealing MPLS policies with zero or less prior information.

The BN could answer some useful questions about the probability of the policy
states, for example, if a label allocation for the origin LSR’s FEC was observed
what is the probability that the origin LSR is on independent unsolicited mode.
Therefore, we need to define the random variables those playing the roles in
MPLS policies after describing the scenario we are interested to model.

Problem Domain
There are three mutually exclusive states that we suppose each LSR in MPLS
domain to have, which are: Independent Unsolicited (IU), Independent Down-
stream on Demand (ID) or Ordered Control (OC). By having the first state
implemented on any LSR, the label allocation of a known FEC will highly be
sent to the directly connected peer independently, however a request for label
mapping of that FEC will never be sent. On the other hand, a label allocation
will not be sent from a node with ID or OC states (except as an answer for
a request), however a label request will be sent for the recognised FEC. The
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other involved concept is whether the node implements the liberal or conserva-
tive retention mode because as we mentioned in section 3 that typically ID will
include conservative retention mode other than the liberal mode.

Consequently, the LSR policy state could be presented in various methods,
but, the simplest method is to use the graph structure of Bayesian Network to
represent policy states (IU, ID, OC) as well as the retention policy and traces
found on the simulation where the root node is State (S) and the leaf nodes
under the root node are Label Allocation (L) and Label Retention as shown in
figure 6. The theoritcial foundation of BN is the Bayes rule:

p(h|e) = p(e|h).p(h)
p(e)

(1)

As p(h) is the prior probability of hypothesis h, p(e) is the prior probability
of evidence e, p(h|e) is the probability of h given e and p(e|h) is the probability
of e given h. Our BN has a root node S that has three values (IU, ID or OC).
The probability of a node having an explicit state is represented by p(S = IU),
p(S = ID) and p(S = OC) respectively. Unfortunately, the prior probability
for the our root nodes is not available. Therefore, we are going to chose an
equi-probable condition for each node. It should be noted that when we reduced
the state space for MPLS policies, we specified the three policies based on the
label allocation policies, i.e., ILA & OC policy. Which means that the prior
probability for each one of the label allocation policy is set to 0.5. Hence, the
prior probability of ILA policy should be equally divided between the other two
policies, i.e, IU & ID and set to 0.25 for each policy. The prior probability of
each root node is calculated as per the following equation:

p(S) = p(S = IU) + p(S = ID) + p(S = OC) = 1 (2)

The leaf nodes under the root node represent the other policy (retention mode)
that would be associated with the MPLS state and the traces observed on MPLS
simulation (label allocation). Each leaf node is associated with a conditional
probability table (CPT). The retention mode node, denoted by R, includes two
values as “Conservative” and “Liberal”. The label allocation node, denoted by L,
includes two values as “Label Assignment” and “Request”. The CPTs correspond
to both nodes are shown in Table: 1 and Table: 2 respectively. Each column
follows one constraint, which corresponds to one value of the root node. The
sum of values of each column is equal to 1. p(R = “Conservative”|S = IU)
is the conditional probability with the condition that the state is independent
unsolicited which is 0.5 in the first entry of Table: 1. It measures the probability
that the MPLS node is implementing conservative retention mode, given the
state as independent unsolicited and so on with the other entries in both CPTs.
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Table 1. The CPT for node R

State S=IU S=ID S=OC

Conservative 0.5 0.9 0.5

Liberal 0.5 0.1 0.5

By filling the entries in CPTs of MPLS node states BN, the probability of
the MPLS node’s state could be computed in different aspects by using the
Bayes rules. For example, p(S = IU |R = “Conservative”) gives the probability
that the MPLS node’s state is IU by knowing that it is in conservative mode,
p(S = IU |R = “Liberal”) gives the probability that the MPLS node’s state is IU
by knowing that it is in liberal mode, while, p(S = IU |R = “Conservative”, L =
“LabelAssignment”) gives the probability that the MPLS node’s state is inde-
pendent unsolicited by knowing that it is in conservative mode and a label
assignment has been observed.

Therefore, we could now fully specify the joint distribution for MPLS policy
states using the following general equation:

p(S,R, L) = p(S)p(R|S)p(L|S) (3)

Using equation 6 we could calculate the possible twelve entries for the joint
distribution over the three relevant variables S, R and L as shown in Table 3.

Table 2. The CPT for node L

State S=IU S=ID S=OC

Label Assignment 1 0 0

Request 0 1 1
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Table 3. The probability table for MPLS policy states

State Retention Mode Label Assignment Probability

IU Conservative Label Allocation 0.25 × 0.5× 1 = 0.125

IU Conservative Request 0.25× 0.5× 0 = 0

IU Liberal Label Allocation 0.25 × 0.5× 1 = 0.125

IU Liberal Request 0.25× 0.5× 0 = 0

ID Conservative Label Allocation 0.25× 0.9× 0 = 0

ID Conservative Request 0.25 × 0.9× 1 = 0.225

ID Liberal Label Allocation 0.25× 0.1× 0 = 0

ID Liberal Request 0.25 × 0.1× 1 = 0.025

OC Conservative Label Allocation 0.5× 0.5× 0 = 0

OC Conservative Request 0.5× 0.5× 1 = 0.25

OC Liberal Label Allocation 0.5× 0.5× 0 = 0

OC Liberal Request 0.5× 0.5× 1 = 0.25

7 Conclusions

In this paper we analysed the problem of revealing the internal MPLS policy
engine state. We have, particularly, paid attention to policy parameters that are
based on a pure MPLS implementation. We analysed the ability of an adversary
with a limited capability to reveal MPLS policy engine states with simulation.
Also, based on our simulation findings as well as knowledge of MPLS specifica-
tion, we modelled a Bayesian network to illustrate to what extent we could gain
information about some policies by getting information about other policies or
about the traces founds on MPLS networks.

Future work will seek to extend the policy model and states which could
be captured on one hand, but also will investigate different adversary models
and capabilities to understand how policy state information can best be kept
private. Building on this we are also developing novel attacks aiming to degrade
and disrupt MPLS flows both overtly and in deniable form, also focusing on
performance parameters relevant for quality of service.
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Abstract. We expose an USB vulnerability in some vendors’ customization of 
the android system, where the serial AT commands processed by the cellular 
modem are extended to allow other functionalities. We target that vulnerability 
for the specific vendor system and present a proof of concept of the attack  
in a realistic scenario environment. For this we use an apparently inoffensive 
smartphone charging station like the one that is now common at public places 
like airports. We unveil the implications of such vulnerability that culminate  
in flashing a compromised boot partition, root access, enable adb and install a 
surveillance application that is impossible to uninstall without re-flashing  
the android boot partition. All these attacks are done without user consent or 
knowledge on the attacked mobile phone. 

Keywords: Android, Security, USB vulnerability, privileges escalation, vendor 
vulnerabilities. 

1 Introduction 

Nowadays the extended features that smartphones possess are crucial to explaining its 
success, we see a yearly increase of its market share over traditional phones. The 
extra features like phone banking, e-mail, GPS, together with the traditional features 
of phone calling and SMS make the smartphone essential to our daily lives and ease 
our existence in this day and age. These benefits lead us to expose our personal data 
increasingly more, as such, the security associated with these systems is essential. 

The Android system composes 80% [1] of the worldwide market share, making it a 
big player on the smartphone business. Since it is an open source Operating System (OS), 
the research of vulnerabilities on the system is in the best interest of the community. 

Vendor customization is one of the advantages of the Android ecosystem, but this is 
a double-edged sword, since it can introduce security breaches. Attackers could exploit 
different attack vectors on many of the different ROMs, as vendors add software, such 
as applications and system owned processes, for dealing with things like USB pairing. 
According to a recent study [2], vendor customization accounts for 60% of the vulne-
rabilities found in the Android ecosystem. We researched Samsung’s Android  
customization and discovered the possibilities introduced to exploit the system.   
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In this paper we present a newly found vector to exploit the USB connection, more 
precisely to a vendor customization that extends the AT commands1. The system un-
derstands and lets these commands be sent by USB. We also describe a proof of con-
cept of the attack and a scenario where this attack could be used.  

In the proof of concept, we were able to effectively flash a compromised boot par-
tition without the user consent. This enabled the three main objectives of the attack: 
gain root access, enable adb2 and install a surveillance application that is impossible 
to uninstall without re-flashing the android boot partition.  

2 Attack Scenario 

The main purpose of the attack is to explore the vulnerabilities found on the Andro-
id OS, namely the vulnerabilities found in its USB connection. This mandates that the 
attacker must possess a physical USB connection linking the computer of the attacker 
to the victim’s device. 

A practical scenario would be the installation of a public kiosk for charging devic-
es’ batteries. However, the true purpose  would be to inject malicious code into the 
devices. Unbeknownst to this malicious purpose, the victim would willingly place its 
device in a compromised situation, hoping that it would charge the phone’s batteries. 

Such scenario could be very fruitful, as we expect easy acceptance by the victim to 
place the phone in such a manner. There are a couple of reasons for this. First the lack of 
knowledge of the dangers of an exposed USB connection. As this is such an uncommon 
practice, even an IT experienced user could possibly lack this knowledge. The second 
reason is the emergency state in which the victim is in. Nowadays our cellphone is an 
extension of ourselves, it is completely implanted in our daily life and the lack of it is 
unthinkable. This is even truer for smartphones, since you can perform additional tasks 
on it, like phone banking and e-mails. So a situation where the cellphone battery is empty 
or almost empty, would easily lead the victim to expose its device to the charging kiosk.  

Given the nature of such an attack, a script is necessary on the computer holding 
the other end of the USB cable. A script capable of accurately detecting the smart-
phone, match its vulnerabilities and proceed with the attack. For example we would 
execute a different type of attack for different Android versions, for different firm-
ware versions, as well as different brands and different products of those brands. As 
an example, in the Samsung smartphone family, we could have an attack for the Ga-
laxy S2 and another attack using different vulnerabilities found for the Galaxy S4.  

3 Vulnerabilities 

The following vulnerabilities are used in the proof of concept described in the  
next section. We will first elaborate on said weaknesses and then describe the overall 
attack. Some vulnerabilities are documented commands, like the standard AT  
commands and others were discovered in our work. AT commands by themselves are 
not the vulnerability, but the vendors’ implementation of them make them so. 

                                                           
 1 Serial commands for modem configuration and management. 
 2 Android Debug Bridge [10]. 
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3.1 AT COMMANDS 

The AT commands (ATC) define a command language that was initially developed to 
communicate with Hayes Smartmodem. Nowadays it stands as the standard language 
to communicate with some types of modems. For example, protocols like GSM and 
3GPP use this type of commands as a standard way of communicating with the mod-
em. With ability to issue these commands to the modem, we are able to [3]: 

• Issue calls; 
• Send SMSs; 
• Obtain contacts stored inside the SIM card; 
• Alter the PIN. 

In order to understand this attack vector, we need to comprehend how a modern 
smartphone works. A modern smartphone is built with two OSs, running in two very 
different environments [4]. On one hand we have the AP, Application Processor, 
where the android OS and all the applications with which the user interacts run. On 
the other we have the Baseband/Cellular Processor (BP/CP), where the entire cellular 
(ex.: GSM) communication is done and where the modem lies. Issuing AT commands 
is not the only way to communicate with the modem, but it is the most popular way, 
together with RPC (Remote Procedural Calls).  

The RIL, Radio Interface Layer [5], is the layer on the OS responsible for estab-
lishing a communication between the android OS and the modem. If a component in 
the application framework needs to send messages or make calls, it uses the RIL in 
the application framework to do so.  

Fig. 1 details the communication stack, from the applications to the baseband. 
Where in the application framework, the RIL uses the Linux IP stack as a way of 
communicating with the baseband, establishing the communication channel.  

In our scenario we can use the USB connection to issue such commands. This vul-
nerability is only made possible due to the fact that some Android smartphone manu-
facturers, like Samsung and HTC, enable this through the USB channel. This means 
that it is possible to send, using the USB connection, AT commands directly to the 
baseband. We stress the fact that this is not a default feature of the Android OS, but 
manufacture added. 

In a practical scenario, upon the detection of a new USB device, the driver respon-
sible for that device recognizes that the device has a modem type of interface through 
the USB, notifying the OS of such. Hence forward the OS has a way of communicat-
ing with the modem, which can be used in our attack scenario. We can thus send AT 
commands to make phone calls or send SMS to premium cost numbers. This way 
making the attacker earn money, or more accurately stealing it.  

Complementing this, some manufacturers extend this list, adding some proprietary 
commands, with the purpose of enabling control and capabilities that they want to 
have on the system. These commands are private and manufacturers do not publish 
them. But without the use of some form of encryption, anyone is able to eavesdrop the 
communication channel and try to understand, what lies under the system. 
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3.3 ADB Enabled 

It is important to mention adb, the android debug bridge, since later we use it to gain 
further capabilities on the system.  

The adb serves as a means of communication between a computer (host) and a 
smartphone (device). The communication is done via USB, but it is also possible to 
configure the device so that the connection is made through WiFi.  

An USB connection and an adb enabled Android, could pose a serious security 
threat to the smartphone, so serious that since Android version 4.2.2 [9] Google made 
a security enhancement to the adb connection. Making sure that every USB connec-
tion has an accepted RSA key pair with the host computer the android is connected to. 
So every new USB host the android smartphone tries to connected, needs to be pre-
viously accepted by the user.  

With adb enabled we can [10]: a) get shell access to the device; b) install  
applications that were not verified by the Google app store bouncer6; c) uninstall ap-
plications; d) mount the SD card; e) read the contents of logcat; and f) start an 
application. 

Shell access through adb could also unveil new attack vectors has shown in  
[11], were it is possible to gain privileged access, with rooting techniques like Super 
One-Click root [12] and also Cyndia impactor [13].  

In fact Kyle Osborn presented in Derbycon 2012, a shell script suite7 that uses adb 
to injected several rootkit malwares and tools, to help in the extraction of the screen 
pattern, user information and other data. Prior to that, in Defcon 2011, Joseph Mlod-
zianowski and Robert Rowley built a public charging kiosk, to raise awareness about 
the dangers with USB connections. The users would plug the device, and the kiosk 
would prompt the device id of the user, with no other malicious intent.  

4 Anatomy of the Attack (Script) 

As mentioned in section 3.3.2 we developed a script to automate the attack process in 
our proof of concept development. We will describe it in this section. 

4.1 Architecture 

The script has to be fast, fully automated, effective and able to perform operations on 
numerous levels of the OS stack.  

We had the need to make use of the functionalities of two different OSs, Windows 
and Linux. For that we deployed the script in a guest virtual machine containing  
Xubuntu that is able to communicate with its Windows7 host machine.  We use a 
Xubuntu virtual machine so that the script can take advantage of the Linux OS script-
ing environment. Linux comes with libusb8 as a generic driver to handle USB devices, 
which in turn is used by the usbutils, making it more practical for scripts like this to 
be developed. We will detail its functionalities further down. 
                                                           
 6 Dynamic heuristic malware detection system, for the Google app store. 
 7 https://github.com/kosborn/p2p-adb: p2p-adb Framework 
 8 http://www.libusb.org/ 
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The script running on the Xubuntu  (guest) is responsible for:  

• Detecting plugged USB devices; 
• Identifying the type of device;  
• Identifying the vulnerabilities known for that device; 
• Attacking using the known vulnerabilities; 
• Communicating with the host, in case the vulnerabilities require the use of the 

Odin tool; 
• Identifying the mounted external cards of USB devices. 

The Windows 7 (host) is responsible for:  

• Communicating with the guest, to know which device to flash;  
• Identifying the flash image that matches the device and its firmware ; 
• Identifying the correct version of Odin for flashing ; 

It uses GUI automation libraries, namely Pywinauto [14], to control Odin without 
human intervention. 

4.2 Using the Vulnerabilities Found  

As we mentioned in the previous sub-section, the guest machine detects plugged de-
vices, identifies them, matches them to the vulnerabilities found and executes the 
attacks that target those vulnerabilities. We will now cover the vulnerabilities and the 
attacks.  

Device Identification 
The purpose of this attack is firstly to identify the firmware version of the smartphone 
with the command AT+DEVCONINFO, as it was shown in Fig. 4. Enabling us to iden-
tify the firmware version of the smartphone in question. In Fig. 4 it is identifiable by 
VER (S5839iBULE2/ EUR_CSC /S5839iBULC1/ S5839iBULE2) that 
shows the following details as per the format PDA CSC Modem Boot: 

• PDA: The build version, which includes the system partition. 
• CSC: (Country Sales Code): Language and country parameters. 
• Modem: Identifying the modem firmware version.  
• Boot: For the version of the Boot partition. 

Changing the Boot Image 
As we described in 3.3.2 the AT command AT+FUS? places the phone in download 
mode and allows flashing a new boot partition.The primary functions of the boot par-
tition are: 

• Mount the primary partitions necessary for the system to boot; 
• Start the first process of all OSs based on Linux, i.e. the init process; 
• Read and execute the init.rc boot configuration file; 
• Load the kernel and the ramdisk.  
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su file inside the ramdisk, being placed on the root of the system and then copying it 
to /sytem/xbin/. This is done adding these lines to the init.rc file. 

• COPY /SU /SYSTEM/XBIN/SU  
• CHMOD 06755 /SYSTEM/XBIN/SU  
• CHOWN ROOT /SYSTEM/XBIN/SU 

This will allow root access to any operation, for example when adb is enabled it 
will have root access.  

For the third objective we want to install a surveillance application, in this case 
Androrat which stands for Android RAT (Remote Access Tool), in a way that the user 
does not know of its existence. First we place the application .apk file in the ram-
disk directory, so that once it boots, it places the .apk in the root of the system, simi-
lar to what we did for su. Then we add again to the init.rc script, the following 
code: 

COPY /ANDRORAT.APK /SYSTEM/APPS/ANDRORAT.APK 

Once the phone boots, the application is installed as a system app. This makes the 
removal of the application extremely difficult for regular users even with root access. 
As described the application gets installed each time the phone boots.  

The AndroRat application enables several remote surveillance capabilities on the 
phone, such as get contacts, get call logs, get all messages, GPS location. 

AndroRat is composed of a client and a server, the client is the application that gets 
installed on the phone, the server runs on a PC, regardless if it is a Windows, Linux or 
Mac, since it runs in a java virtual machine. The client communicates with the server 
by TCP/IP. We altered the AndroidManifest.xml of the original application, deleting 
the following lines: 

           <intent-filter> 
                <action android:name="android.intent.action.MAIN" /> 
                <category android:name="android.intent.category.LAUNCHER" /> 

             </intent-filter> 
This way making the icon is not visible in the app section of the phone, so an inex-

perienced user would not detect the malicious application.  

Installing the New Boot Image 
For a successful attack we need to create a dictionary of previously altered boot  
partitions, to encompass all the different smartphones that we want to attack. For  
example, for the bundle version presented in VER(S5839iBULE2/ EUR_CSC/ 
S5839iBULC1/ S5839iBULE2), we have to specifically map this bundle ver-
sion to a boot previously altered that matches it.  

After an initial identification of the smartphone version from the Linux guest ma-
chine, it is necessary that we place the smartphone in download and notify the host 
machine, handing over the control of the USB device to the host. When putting the 
device in download mode, its product Id and vendor Id gets altered, to a non-filtered 
combination of vendor Id and product id by Virtual Box, rendering the process of 
handing over the control of the USB device automatic. The guest machine saves the 
IMEI of the smartphone, so that once the phone reboots, it already knows that it is a 
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compromised smartphone, which would enable the guest to do other types of attacks, 
since the adb is on and we have root access.  

After the host is notified to flash the device with the firmware version, it maps the 
given version to a previously altered boot image that is ready to be flashed. It also 
maps the correct version of Odin.  

Using a GUI automation tool for Windows, the host commands Odin to choose the 
correct image file folder and name and then to flash the phone. The smartphone 
proceeds with the flashing of the partitions and reboots normally. After rebooting, its 
product id and vendor id changes once more to the previous ones, handing over again 
the control of the USB connection to the guest machine, so that it can proceed with 
the attack.  

First the Guest Linux does: 

1. Detection of plugged USB devices. 
2. Matching of its vulnerability. 
3. Checks if it has a compromised boot partition. 
4. Notifies the boot image to flash the device and saves the IMEI. 
5. Places the phone in download mode. 

Then the Host Windows does: 

6. Identification of which file matches give version. 
7. Makes use of GUI automation tools to control Odin and flash the phone 

And again the guest Linux finishes with: 

8. Proceeds with the rest of the attack, now that it possesses root access and adb 
enabled. 

List of Phones Tested with the Vulnerabilities Found  
We successfully verified the attack on the following phones: 

• Samsung GT-S5839i 
• Samsung GT-I5500 

And it was also possible to confirm that the attack was possible, by issuing AT com-
mands that the fallowing phones had the vulnerability: 

• Samsung GT-S7500 
• Samsung GT-S5830 
• Samsung I9100 
• Samsung S7560M 

It is necessary that the smartphone has an original ROM from Samsung. We expect 
that the span of vulnerable versions of Samsung smartphones be much more wide 
than this, since in our assumption, having the vulnerability or not is implicitly related 
with the ability that the smartphone has on communicating with Kies software. So as 
far as we now, most (if not all) Samsung smartphones are supported by Kies. 
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List of Tested Anti-Virus Apps 
AVG, Avast and Virus Scanner were the anti-virus chosen for testing. First we  
examined if any of them detected/prevented the attack, and later, after the attack if 
any of them detected malicious software on the phone.  

The results are that none of them prevented the attack at first. After the attack,  
and after a scan had been performed, AVG detected that androrat was installed 
and informed the user that it could be malicious. However, upon trying to uninstall 
the threat it states that it cannot. Nothing more has been detected by AVG, or by the 
other two anti-viruses. They did not detect alterations to the init.rc file, or that su 
binary was added when compared to the previous state. 

5 Conclusion 

We exposed a serious vulnerability on some vendor customization of the android OS. 
We described our proof-of-concept with which we were able to explore the implica-
tions of that vulnerability, such as gaining root access by flashing a compromised 
boot partition. As the extended functionalities are intended to be used by the computer 
application of the vendor to configure and manage the smartphone, they were devel-
oped knowingly and with the mentioned intent.  In our view, implementation of such 
“features” should be at least disclosed to users, in order that they understand the risks 
of an exposed USB connection. Our future work will involve developing a smart-
phone application to warn and advise the user regarding these possibilities. Depend-
ing on the smartphone’s root access it can also be possible to allow the charging by 
possible hibernating the process responsible for handling the AT commands. Another 
future investigation will be to confirm that the “features” are still present in the latest 
version of the Samsung Kies software and the latest version of Android. 
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Abstract. Information is increasingly in a digital-only format and al-
most everything we do nowadays depends on a digital identity for au-
thentication and authorization. No matter how strong the authentication
system is, after the authentication phase, there is no continuous verifi-
cation that user is still the same human being that successfully logged
in, thus leaving the system unprotected. This paper presents a usable
breakthrough approach for continuous authentication with free typed
text through the use of biometric techniques based on keystroke dynam-
ics. Our main purpose is to achieve a reduction of the required sample
size, while improving (or at least not worsen) precision performance, by
adapting and improving parameters on a keystroke dynamics algorithm.

Keywords: Identity verification, User authentication, Biometrics,
Keystroke dynamics, Host-based intrusion detection, Security.

1 Introduction

In a world governed by digital information, computing is the main activity and
user authentication plays an important role in access control. One of the most
common situations of intrusion occurs when a worker leaves his/her workstation
unlocked or when someone knows a user password and tries to use a false identity
to do something malicious (for example, to send an e-mail, to change a document,
to write on facebook or twitter)[1,2].

Keystroke dynamics, as a biometric for authentication, can be used to mitigate
the above threat, continuously detecting intrusions[3]. But false alarms in such
intrusion detection systems are quite common[4] and the european standard for
access-control systems (EN-50133-1) specifies a false alarm rate of less than 1%
for this type of solution [5]. For that reason, it is crucial to optimize algorithms
to achieve low false rejection rate (FRR) and false acceptance rate (FAR).

In this paper, we present an heuristic optimization of an algorithm based on
keystroke dynamics and results obtained from a real experiment, for validation
purposes.

The rest of the paper is organized as follows. Section 2 is dedicated to the
study of keystroke dynamics and how it can be used to verify user identity and

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 33–45, 2014.
c© IFIP International Federation for Information Processing 2014

http://www.watchfulsoftware.com
http://www.uminho.pt


34 P. Pinto, B. Patrão, and H. Santos

section 3 is the state of the art. In section 4, we start defining main functions used
for the intrusion detection and we also define the decision criterion. In section 5
we present techniques that will allow us to improve the algorithm as well as how
these techniques can be implemented. On the same section we describe a new
decision criterion that will allow us to get FRR lower than 1% (validated with
results on a real environment) and in section 6 we write the main conclusions of
this work.

2 Biometrics and Keystroke Dynamics

Using biometrics, each individual can be uniquely identified by physical and
behavioural characteristics and, unlike passwords, biometrics can not be lost,
stolen or copied. There are several biometric techniques such as fingerprints,
the way you walk, your eye geometry or even the way you speak[6]. Each one
can be used to identify or to authenticate. In a very simplified way, identification
involves the comparison of a given biometric pattern with all of previously stored
patterns. Authentication is similar but involves only one comparison with the
pattern belonging to someone claiming identity checking. In both cases, one main
concern is to avoid false rejections and false acceptances: for access control the
objective of the application is to not allowing access to unauthorized individuals
under all circumstances while granting access to all legitimate users. It is clear
that the surveillance software has to be set up with a very low FAR even if it
comes at the price of a higher FRR. On the other hand, identification within
surveillance software has to be set up with a low FRR even if FAR gets higher.

Keystroke dynamics is a technique aiming to find patterns based on timing
information from pressed and released keys when a person is typing at a key-
board. Most common features are dwells (time between key down and key up of
a specific key), flights (time between key up and key down of two consecutive
keys), digraphs, trigraphs and fourgraphs[3]. Weather conditions, fatigue, stress
or any sort of influence, can drastically impact the result but with a constant
user profile update, even the effect of these weird behaviours can be drastically
reduced.

3 State of the Art

Keystroke dynamics is a behavioural based furtive biometric technique[7] that
does not require any special resources (hardware), besides a normal keyboard
and the support low-level software usually available in any PC like system. These
properties make it a good candidate for continuous authentication[8]. Recently
this research topic received some important contributions, being evident that
one of the main issues is the training data used. Solami et. al present a generic
model for a Continuous Biometric Authentication System (CBAS), discussed
some proposed solutions and propose a classification based on the type of target
scenario: class I, when legitimate users’ profiles are available and the identities
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of all possible impostors are known (i.e., a closed system); class II, otherwise[9].
In this work we are targeting a class I system, aiming to improve only its per-
formance over the internal user universe.

4 Software Design and Algorithm

4.1 Architecture

The base of the software architecture is the one proposed in[8,10]. It is composed
of a central server, a database where user profiles are saved and a constant
validation mechanism for each sample produced by the user (see above references
for more detailed information).

The mechanism receives an attempt sample and needs to decide whether it
is an intrusion or not (see Fig. 1). The decision algorithm is the heart of the
mechanism and, as we will see later, with a generalization of the scores function
proposed in [3] (by defining new parameters and new metrics), varying accep-
tance thresholds and implementing a dynamic decision criterion, it is possible
to substantially decrease the FRR, the FAR and the attempt sample size.

Fig. 1. Algorithm architecture
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4.2 Absolute Scores

The user profile, stored in the database, consists essentially in one merged sample
with all characteristic user features. This profile is constructed and constantly
updated every time the user produces a new valid sample.

Let us define AS(l) as the set of all features from an attempt sample with
length l and DB as the set of all features from the merged sample stored on
the database. Let us also define, if exist, DW (x(y)) as the average of x(y) where

x(y) ∈ IDW (y) = {all dwells in y}

and
y ∈ J = {AS(l), DB}.

Intuitively, we define FL(x(y)), DI(x(y)), TR(x(y)) and FR(x(y)) for flights, di-
graphs, trigraphs and fourgraphs, respectively, andthe corresponding sets IFL(y)=
{all f lights in y}, IDI(y) = {all digraphs in y}, ITR(y) = {all trigraphs in y}
and IFR(y) = {all fourgraphs in y}.

For each feature x on the merged sample (x(DB)), we define the acceptance
neighbourhood as

V (x(DB)) = [(2− p(z))z(x(DB)), p(z)z(x(DB))],

where

z(x(y)) =

⎧⎪⎨
⎪⎩

DW (x(y)) if x is a dwell in y,
FL(x(y)) if x is a flight in y,
DI(x(y)) if x is a digraph in y,
TR(x(y)) if x is a trigraph in y,
FR(x(y)) if x is a fourgraph in y.

and p(z) ∈ [1, 2] is a parameter that defines the interval around z(x(y)). Note
that we write z without arguments in p(z) because we are referring to the type of
feature and not to some specific feature, meaning that features of the same type
(for example dwells) all have the same parameter value to define his acceptance
neighbourhood.

For each feature x ∈ AS(l) that is shared with the merged samples, the
acceptance feature function is defined as

A(x) =

{
1 if z(x(AS(l))) ∈ V (x(DB)),
0 otherwise.

Defining N(z) as the number of shared features between AS(l) and DB of the
type z (for example, if z = DW then N(z) is the number of all shared dwells
between the attempt sample and the merged sample), we write the absolute
score as

Ab(AS(l)) =
∑
z∈Z

(
w(z)

(
1

N(z)

∑
x∈Iz

A(x)

))
,

with
∑

w(z) = 1, where w(z) is the weight parameter associated to each type of
feature. Note that the formula proposed by Monrose and Rubin[3] is a particular
case of the absolute score defined here.



Free Typed Text Using Keystroke Dynamics for Continuous Authentication 37

4.3 Relative Scores

The relative score value is based in time disorder divided by the maximum
disorder. For each type of features in our AS(l), a list is created ordering all
features by time. Then this order is compared with the one from DB. Let us
define D(z, AS(l)) as the function that give us the disorder between all shared
features of the type z in AS(l) with DB(see [8], 5.3.2 for more details). Then,
the relative score is written as

Rl(AS(l)) = 1−
∑
z∈Z

D(z, AS(l))

Dm(z, AS(l))
,

where Dm(z, AS(l)) is the maximum possible disorder between AS(l) and DB
for some z type of feature.

4.4 Decision Criterion

The value to compare with a fixed threshold is a linear combination of the two
quantities defined before:

S(AS(l)) = wAbAb(AS(l)) + wRlRl(AS(l)), (1)

where wAb and wRl are weights.
We define 3 thresholds for different intrusion levels: yellow, orange and red

level represented by thy, tho and thr, respectively. The intrusion is detected
when

S(AS(l)) < thy.

4.5 Parameter Space

The parameter space is composed by p(z) ∀z ∈ Z, w(z) ∀z ∈ Z, thy, wAb, wRl

and l. The trivial configuration is the configuration where each event has the
same weight as well as each score function.

5 Validation

All results presented in this section come from a real environment composed,
most of the times, by more than 10 users. The users are, for the most part,
software developers, meaning their input can result from coding and/or writing,
both formally and informally, in English and Portuguese, in several distinct
software environments. In some sense it is the worst case scenario to classify
behaviour since there is a great variety on the user actions.

According to initial requirements we assume no other users have access, i.e.,
intruders are internal users trying to circumvent access control rules.
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5.1 Tool Description for Artificial Attacks

On the database, each user has his own merged sample with all characteristic
features. This merged sample is the user profile previously saved and constructed
using the user samples also saved on the database.

With all samples from the database we can test the algorithm. For a partic-
ular user, we can simulate authentications using the samples from the database
against the merged sample of the same user. In that way we can calculate the
FRR. Also, we can calculate the FAR of the entire group using all samples
against each merged sample. It is an artificial attack because people are not
intentionally attacking but it is the easiest way to simulate a large number of
attacks and it is according to the scenario specification.

5.2 Acceptance Neighbourhoods Study

Acceptance neighbourhoods are controlled by the parameters p(z). Considering
w(z) = 0.2 ∀z ∈ Z, wAb = 0.5 and wRl = 0.5 (trivial configuration), what we
study first is the ”best” (heuristically speaking) acceptance neighbourhoods for
each type of features looking at the FRR and FAR calculated from artificial
attacks. Fig. 2 is a summary of the best scenarios tested with l = 750. The first
column of the second table represents different thresholds to detect intrusion.

Fig. 2. Summary of the acceptance neighbourhoods study. All FRR and FAR values,
for each fixed configuration (A,B,C,D and E) and for each fixed threshold, were
obtained from 11 users each with 15 samples of 750 keys.
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As an example, for the value 0.06, thy is defined as thy = (S(DB)−0.06), where
S(DB) is the score from the user profile.

As we can see from Fig. 2, when we increase the threshold we get a high
FRR and when we decrease the threshold the FAR tends to increase. Situation
A produces a very high FRR with high security level (threshold= 0.06) and
situation E produces a very low FAR with low security level (threshold= 0.12).
The table shows that situation B is the one that produces the best results to
minimize FAR and FRR.

5.3 Transients Study for Sample Reduction

This part of the study allows us to understand if it is possible to reduce the size
of the attempt sample and how much we can reduce. The more information we
have, the more accurate are our decisions. On the other hand, the fewer keys
the intruder types, the less damage the intruder does before being detected. The
aim is always to find best of both parts.

Transient is a common term in differential equations theory and essentially
represents states that actually are not the common states on some dynamical
system. A simple example is throwing a rock to a lake: The waves produced by
the rock is a transient state since most of the time the lake has no waves. The
classical example for transients is the harmonic oscillator[11]. In our mechanism,
we have

S(AS(l))l→∞ −→ a

with a representing the characteristic value for the user (in theory close to 1).
Here, the transients are the values we get when l is too small and, consequently,
are not user representative. Identifying the minimum l for which we do not have
any more transients means identifying the minimum size of the sample to get a
reasonable value for a.

Fig. 3 shows the transients study using 3 samples with 750 keys each from
3 different users. The horizontal axis represents sample reduction process and
the vertical axis is the score defined in (1). In each iteration of the reduction
process, we erase 11 or 12 features from the samples (on the same proportion as
they exist for any sample with length l). This figure shows that after 11 sample
reductions, the value of S(AS(l)) starts to be a bit unstable. Using 11 as the
maximum number of reductions for the trivial configuration means that we can
reduce the sample size in 40% (around less 300 keys) but 450 keys is still a
considerable number for an attempt sample.

The question we would like to answer is: It is possible to get a better reduction
result with a different parameter configuration? Next section we answer this
question with an heuristic study of the weights.

5.4 Weights Study

The study of weights has three distinct phases. The first one is the absolute
and relative weights study. With the good weights from the first phase a study



40 P. Pinto, B. Patrão, and H. Santos

Fig. 3. Transients study. The horizontal axis represents the number of reductions that
were made on each sample. The vertical axis represents the scores defined in (1) for
each sample in different reduction phases. The more reductions we do, the smaller is
the sample. The initial sample size is 750 keys and this picture shows samples from 3
different users, the reduction process and the score in each reduction phase.

of the weights of each type of feature in the absolute score is done (the reason
we are only considering the absolute score is justified by the first phase study).
Finally, we check if, after the second phase, we still have the same weight results
for absolute and relative scores. There might be more efficient ways to conduct
this study like using genetic algorithms[12] but, apart from the fact that this
approach takes much less time, even using this simplified technique, the results
should be very similar to the ones from a genetic algorithm strategy.

In Fig. 4, the chart on the left shows how the gap between the average intrusion
score and the average user score increases at the same time as we increase the
weight of the absolute score. On the horizontal axis, we start with S(AS(l))
calculated using only the relative score. Then we increase the weight of the
absolute score until we have S(AS(l)) calculated using only the absolute score.
The gap represents how much separate is the intrusion score region and the user
score region. The chart on the right shows some stability when the absolute score
weight is more than 70%. We conclude, among all the distinct combinations, that
70%−30% or even 80%−20% are the best configurations for wAb−wRl to get an
higher gap and, at the same time, to consider the relative score in our evaluation.

Fig. 5 shows a summary of many simulations, using 80%−20% for wAb−wRl,
for many different parameters w(z) ∀z ∈ Z. From here we observe an important
fact: dwells, flights and digraphs are the most efficient type of features to identify
or to authenticate the user. On the other hand, in a real environment, when we
try to isolate the most important type of feature (dwell) the FAR typically
tends to increase because the validation mechanism tends to be more sensible.
We conclude that (42%− 24%− 16%− 10%− 8%) is, heuristically speaking, the
best configuration for w(z) and with this configuration the results from the first
phase (Fig. (4)) were exactly the same.
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Fig. 4. Absolute and relative weights study for user samples with 750 keys. The gap
between the typical intrusion score and the typical user score increases whenever we
increase the importance (weight) of the absolute score. On the other hand, it is impor-
tant to have more than one measure to evaluate identities, we should not ignore the
relative score at all. Instead of ignoring it, we should decrease his importance.

Fig. 5. Features weights study

Finally, the transient study was repeated but this time taking into account
the previous best configurations (the best acceptance neighbourhood parameters
and the best weights previously presented). Fig. 6 shows S(AS(l)) for different
values of l. As we can see, the value stays stable during all the reduction process
(starting with l = 750). After 20 reductions, the value shows no relevant fluctu-
ations. This means a reduction of 80%, equivalent to a reduction of around 600
keys. At this point we are able to use attempt samples with 150 keys.

5.5 ROC Curve

The Receiver Operating Characteristics (ROC) curve illustrates the performance
as its discrimination threshold is varied. We present, in Fig. 7, a pseudo ROC
curve using the best parameters configuration presented here and attempt sam-
ples with 250 keys (l = 250). At this point we are able to produce rates close to
2%. Next section we present a simple way to reduce even more these rates.
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Fig. 6. Transients study with an improved configuration and considering only one user.
The initial sample size is 750 keys.

Fig. 7. Pseudo ROC curve (left) with logarithmic scale and DET curve (right) for an
improved configuration. The sample size is 250 keys and all simulations were done using
a group of 11 real users.

5.6 Evaluations Scheme

One of the main focus in any continuous detection system using keystroke dy-
namics is to reduce the size of the required sample to detect intrusions and, at
the same time, not increase FRR and FAR. For a static biometric system it is
important to know how often a wrong decision is made but the purpose of a
performance evaluation for a continuous biometric authentication system is not
to see if an impostor is detected, but how fast he is detected[13].

An interesting way to detect intrusions fast is dividing the evaluation process
in more than one part. Let us suppose that, after each l keys, we want intrusion
detection probability p. So, p is what we want after l keys and the question is:
What should we have in l/2 keys to achieve p in l keys?
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To simplify our example, let us divide the process in only two parts and let us as-
sume that l/2 ∈ N . If we defineX = ”number of authentications in 2 attempts”
then X −Bi(2,m) with

P (X = k) = (2k)m
k(1−m)2−k, k = {0, 1, 2}

If we define Y = ”detect intrusion” then we want to know m for P (Y ) ≈ p:

P (X ≥ 1) ≈ p ⇔ 1− P (X = 0) ≈ p ⇔ 1− (1−m)2 ≈ p ⇔ m ≈ 1− (1− p)1/2.

So,m < p for p �= {0, 1}meaning that we do not need p probability after each l/2
keys but usually much less! As a consequence, we do not need to be so accurate
with l/2 keys to have probability p in l keys and we have the opportunity to
catch the intrusion in less than l keys(in our example, in l/2). Another direct
consequence of not being so accurate is the fact that the FRR decreases.

As a conclusion, if we divide the process in two parts then we just need to
have intrusion probability m (less than p) and we automatically have a lower
FRR. Also, during this process, the yellow (thy) and orange (tho) warnings are
ignored and only red warnings are considered intrusion. At the end of the process
(in this example after each 2 evaluations) some particular situations with yellow
and orange warnings are considered intrusion. All these considerations on the
yellow and orange warnings will help us on the FRR reduction.

We already have some good and stable results using this approach and con-
sidering evaluations after each 125 keys but it is still a work in progress. Fig. 8
shows DET curve for 125 keys and for 250 keys (process divided in two parts)
from a real scenario of users (11 users) and considering the best configuration,
presented here, for the parameters.

Fig. 8. DET curve at the middle of the evaluation process and with 125 keys (left) and
DET curve at the end of the process and with 250 keys (right). In this example the
process was only divided in two parts.
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6 Conclusions

The purpose of this paper is to present improvements of some of the keystroke
dynamics biometrics to identify/authenticate users and to detect intrusions, us-
ing data from a real environment to validate.

The main conclusions of this work are the huge importance of dwells (time
difference between key up and key down for any key) to identify/authenticate
users. Also, the importance of the right weights on all features to reduce the size
of the attempt sample (sample used to verify user identity or to detect intrusion)
and to reduce FAR and FRR at the same time. In our particular scenario, we
were able to get an amazing reduction of the sample size from 750 keys to 150
keys with FRR and FAR close to 2%. Also, using an evaluation scheme we were
actually able to get an impressive FRR and FAR lower than 1% with the strong
possibility to detect the intrusion after only 125 keys.

It is important to refer that in [8] all the presented simulations are with
samples of 750 keys and what we present here is a huge reduction of the sample
size which is crucial to have an earlier intrusion detection. Also, Kevin Killourhy
and Roy Maxion [4] referred, in a recent study, that at present no anomaly
detector has archived a false alarm rate specified in the european standards
which makes our results even more interesting.

We believe that the strategy presented here to calculate the weights in order
to improve the FAR, FRR and attempt sample reduction is something that can
be implemented in any group of users. Also, the weights study can be done
periodically, continuously calculating the best parameters for an specific group
of users.
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Abstract. Android devices are increasingly used in corporate settings.
Although openness and cost-effectiveness are key factors to opt for the
platform, its level of data protection is often inadequate for corporate use.
This paper presents a strategy for secure credential and data storage in
Android. It is supplemented by a context-aware mechanism that restricts
data availability according to predefined policies. Our approach protects
stored data better than iOS in case of device theft. Contrary to other
Android-based solutions, we do not depend on device brand, hardware
specs, price range or platform version. No modifications to the operating
system are required. The proposed concepts are validated by a context-
aware file management prototype.

Keywords: secure storage, context-aware security, mobile devices,
Android, interoperability.

1 Introduction

For years mobile devices have mainly been used privately. More recently, their
potential has become apparent to enterprises. For instance, a sales representative
could retrieve product information on-site to convince prospective clients and,
in case of success, sign an agreement. Similarly, home care nurses could use their
tablet or smartphone to consult a patient’s dietary prescriptions. Additionally,
in confined setups like retirement communities, nurses may also be granted con-
trolled access to the locks of serviced flats. The result is a myriad of sensitive
data becoming present on these devices, which are at the same time prone to
theft and loss. In the end, this increases the risks of data compromise.

Nevertheless, many companies are issuing smartphones or tablets to their
employees. The iOS platform is often selected for its built-in security features,
offering protection against malware and theft. This is mainly due to strong ap-
plication vetting and tight hard- and software integration. For instance, data
protection is based on a crypto engine with keys fused into the application pro-
cessor, making offline attacks to retrieve data very hard - even for jailbroken
devices. Moreover, iOS supports multiple availability levels for data and cre-
dentials (i.e. data protection classes). On the other hand, opting for an Android
device also offers benefits. A broad range of prices and specifications is available.

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 46–59, 2014.
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The hard- and software costs are typically lower than iOS devices. However, re-
garding data protection, Android does not impose hardware constraints on device
crypto, which makes asset protection (i.e. sensitive data and credentials) more
difficult. Optionally, the file system can be encrypted, using a passcode-derived
key. As a result, offline brute force and dictionary attacks remain possible.

Contribution. This paper presents a secure asset storage mechanism for
Android-based devices. It is supplemented by a context-aware mechanism that
further limits asset exposure. The secure storage mechanism is backed by a secure
element, which is readily or optionally available for most Android tablets and
smartphones. On-device passcode attacks are made infeasible, as opposed to iOS.
The context-aware module provides decision support by automating asset man-
agement tasks and only releasing data to external apps, according to predefined
policies. Note that no modifications to the operating system are required. This
work is validated through the development of a context-aware file-management
system.

The rest of this paper is structured as follows. Section 2 presents related
work. Our general approach is described in section 3. Thereafter, the secure
storage strategy and the context-aware management module are presented in
section 4. The prototype is described in section 6. Both components are evaluated
in section 7. Finally, conclusions are drawn and future work is suggested in
section 8.

2 Related Work

Many security-sensitive applications, across mobile platforms, use custom, weak
storage mechanisms [7, 10]. Yet platform-provided facilities offer strong crypto
as well as MDM integration [1, 2, 4].

Device encryption in Android can optionally be enabled since version 3. Even
so, the external storage is never encrypted. From Android 4 onwards, the Key-
Chain introduces per-app private key storage. This component is still prone to
offline attacks on the user’s passcode. Version 4.3 further improves the KeyChain
by adding hardware backing, although not many devices currently support this.
It relies on the ARM TrustZone extensions, an implementation of GlobalPlat-
form’s Trusted Execution Environment (TEE). The same approach is introduced
in Windows Phone 8 and iOS 4. The hardware-enforced OS isolation allows the
three platforms to partly implement their credential storage as trustworthy code.
Passcode attacks are thus throttled, since they are confined to the device. Nev-
ertheless, the number of attempts can be unlimited. Windows Phone and iOS
also apply the above approach in how they implement file system encryption, a
feature not yet supported by Android.

Android has two types of persistent memory. The internal storage is sand-
boxed and provides each app with exclusive access to its files. The external stor-
age, on the other hand, is accessible to every application with the corresponding
Manifest permission(s). It is used by many popular apps to keep permanent and
temporary data and copies of IPC-obtained data [12,17]. Relying on the user to
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meticulously manage this data, is not only user-unfriendly, it would likely lead
to the increased exposure of sensitive information. This is a key motivator for
the context-aware management module in section 5.

In the light of an integrated user experience, Android offers developers numer-
ous IPC capabilities. However, this leads to heightened security risks [8], which
are made worse by the BYOD trend in corporate mobile computing. In antici-
pation, Samsung has been equipping Android with the KNOX extension [3]. It
divides the OS into application containers, f.i. in a private and a work-related
one. IPC and data sharing are only allowed within the same container. This sepa-
ration is hardware-enforced, also relying on the TrustZone extensions. Moreover,
the use of hardware-based certificates is supported, notably CAC cards (used by
the US Department of Defense). Apps can access them through a PKCS inter-
face. Other uses include setting up VPN connections and unlocking the screen.

Context-aware resource protection is a well-discussed topic in scientific liter-
ature. ConUCON [5] presents an Android-based model for resource usage and
access control. It provides both specification and enforcement. However, being
merely OS-based, information is left vulnerable in case of device theft or loss.

Saint [13] provides Android apps with mechanisms to restrict their interfaces
towards other applications. Its decision making is context-aware. As Saint mod-
ifies the OS, it succeeds in providing far-reaching enforcement. Secure storage is
not considered.

The approach by Feth and Jung [11] uses TaintDroid’s [9] capability to analyse
data flows throughout the device. Here as well, the approach is purely OS-based.

Bubbles [16], by Tiwari et al, allows users to assign resources like data, appli-
cations, cameras and network connections, to one or more bubbles. The authors
describe these as representations of different social contexts, separated by digital
boundaries. A combination of bubble-assigned resources can only be used within
that particular bubble. Administration is user-centric, and therefore less suitable
for corporate use.

Riva et al propose a user authentication model based on a contextual learning
component [14]. It implements different forms of authentication, each of which is
assigned a confidence level. Depending on how sensitive a resource is deemed, a
higher confidence level is required to access it. Contrary to this work, the focus
lies on making authentication more usable, rather than on resource protection.

In a nutshell, we observe that iOS and Windows Phone devices tend to outper-
form many of their Android counterparts regarding secure storage. Much can be
attributed to the device requirements imposed by platform vendors. The choice
that organisations are left with, is either to adopt a different platform or to be
limited to a specific subset of Android devices. This restriction is stringent, bear-
ing in mind that Android accounts for a 78.9% marketshare (source: Strategy
Analytics, 2013 Q4). At the same time, it goes without saying that approaches
that modify the platform, are less likely to be adopted. In this work we explicitly
aim not to change the OS. From thereon, we explore the data protection level
that can be offered.
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3 General Approach

Prior to introducing the architecture, we list the requirements it must satisfy
and the assumptions it is subject to.

3.1 Security Requirements

S1 Assets on the mobile device can be managed and selectively disclosed ac-
cording to specified policies.

S2 Following device theft or loss, computational attacks to retrieve the assets,
are infeasible. Physical attacks are more difficult than against the state of
the art (see section 2).

3.2 Usability Requirements

The approach should not impose an insurmountable burden on the user, f.i. by
requiring a long, complex passcode.

3.3 Interoperability Requirements

I1 Our solution must be deployable on a device base that is representative of
existing Android versions, hardware specifications and price ranges.

I2 No platform modifications are allowed.
I3 Standard platform building blocks are preferred over custom-made compo-

nents.

3.4 Assumptions

A1 The security controls of the OS are enforced correctly during legitimate use.
A2 The user does not weaken platform security, f.i. by rooting the device.

Given that installation channels other than the trusted repositories are dis-
abled by default, it is reasonable to assume A1. An internal corporate store
only contains trusted applications, while Google Play has several mechanisms
to fend off malware outbreaks: automated scanning, manual removal from the
Store and over-the-air updates. Assumption A2 implies that eligible users are
not considered potential adversaries.

3.5 Architecture

To address the Android shortcomings listed in section 2, we propose 2 comple-
mentary approaches. First, a context-aware management module provides soft
security by managing assets semi-automatically. It thereby relieves the user from
this task. In addition, it selectively discloses them to trusted apps under pre-
defined contextual conditions. The second, hard security approach introduces
secure storage that is backed by tamper-resistant hardware.
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Fig. 1. Overview of the modules for both the soft (grey) and strong (white) security
approaches

The architecture is depicted in figure 1. Five components make up the context-
aware module. The Policy Management Module allows the user or corporate
administrator to manage its policies. A policy event may be triggered when an
application tries to access an asset. As a result, the Policy Enforcement Module
inquires the Policy Decision Module. It thus obtains and enforces an access de-
cision, along with actions that must be carried out before or afterwards, if any.
The Context Sensing Module serves as a policy information point, as it is respon-
sible for retrieving policies and sensory information and making them known to
the PDP. The Policy Retrieval Point exists in the form of a database on the de-
vice, in conjunction with a remote policy server with which it synchronises. The
context may change, potentially triggering additional operations. For instance,
when a tablet leaves the company premises, certain assets might be erased. In
such cases, the Context Sensing Module is also a Policy Enforcement Module.

The second approach improves secure storage on the mobile device. App-
controlled encryption is provided, backed by a secure element. The latter ensures
that only predefined users and apps can access protected assets: it only exposes
cryptographic key material upon successful user and app authentication. The
component implementing this –the Secure Component Communication Module–
resides on both the device and the secure element. Since communication between
the app and the secure element takes place over a secure channel, a contactless
smartcard can be used without concessions regarding confidentiality and data
authentication.
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4 Secure Asset Storage

The first part of our approach is application-controlled secure storage. The im-
portant concerns are access control, data authentication and confidentiality. We
propose using a secure element for hardware backing. Different types are avail-
able: a SIM card, a secure microSD card, a contactless smartcard or an embedded
secure element. This makes our solution deployable on nearly every Android de-
vice. The tamper-resistance property also provides better security guarantees
than solutions based on a Trusted Execution Environment (see section 2).

Cryptographic keys on the secure element can be used to encrypt assets, to
authenticate to a server or for digital signatures. For the encryption of large
amounts of data, symmetric keys are the method of choice. Different strategies
are conceivable. A first one is for all crypto operations to take place on the
secure element. This provides the highest level of protection, but is not feasible
due to the computational and bandwidth constraints of such tamper-resistant
hardware. In a second option, the secure element maintains a key pair for each
application, while wrapped symmetric keys are stored on the persistent memory
of the mobile device. Upon an app’s request, the secure element unwraps and
returns these keys. Alternatively, symmetric keys can be stored and retrieved
directly. While the latter approach imposes less overhead, the former allows
confidential asset sharing on untrusted servers, using a PKI-based approach.

The threats we take into account, are the following.

Eavesdropping. The communication between the app and the secure element
cannot necessarily be trusted (e.g. when using a contactless smartcard). To ad-
dress this, the secure element exposes a –certified– public key, designated to set
up a secure channel.

Illegitimate Access. Authorised apps have exclusive access to their keys. Be-
fore being granted access, two conditions must be fulfilled. First, the user must
authenticate using a personal passcode. Since the number of entry attempts is
limited, this can safely be a PIN. Second, the app must prove knowledge of a
secret that it obtained during an initial pairing phase.

Denial of Service Against PIN Entry. The aforementioned PIN limit pre-
cludes brute-force attacks. However, illegitimate applications could perform tri-
als until the allowed attempts are exhausted. To prevent this, the secure element
first verifies the application secret and subsequently authenticates the user. Only
then, a PIN attempt is counted. The application secret is a 128-bit pseudorandom
string, making resilient enough against unlimited trials from unauthorised apps.

4.1 Protocols

This section elaborates on the protocols, used by our approach.

Pairing. In this phase, the application registers to the secure element. Upon
success, the latter creates an app-specific credential store. Both parties now also
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share the same app secret KSE,A. Furthermore, the application obtains the secure
element’s public key pkSE. The most simple approach is for the user to express
his consent using a long PUK code. Alternatively, a third party can mediate
between the app and the secure element.

Access to Assets. Once the pairing phase is complete, the application
can access its credential store upon user consent. This is depicted in
protocol 1. First, a session key is established using the secure element’s pub-
lic key [step 1]. The key agreement protocol used, is dhOneFlow, from the NIST
800-56A specification [6]. Next, the app requests the user’s passcode and trans-
fers it together with its secret KSE,A (NSE represents a nonce) [steps 3-4]. Sub-
sequently, the secure element verifies KSE,A and the user’s passcode [steps 5-6].
The secure channel is now set up and the app can retrieve its credentials.

Protocol 1 (setupSecureChannel).

(1) SE � A : Ksess � authKeyAgreement�skSE; pkSE�
% further communication is encrypted with key Ksess

(2) SE � A : NSE

(3) U � A : passcode� enterPasscode��
(4) SE � A : h�KSE,A��NSE � 1�, passcode
(5) SE : if �not verifyA�KSE,A�� abort
(6) SE : if �not verifyU�passcode�� abort

5 Context-Aware Asset Management

The rationale behind the second part of our approach is to selectively constrain
the availability and the presence of assets towards apps. Note that the context-
aware component provides soft, user-assistive security. It assumes the user is
already authenticated, a concern addressed in section 4. If this is not the case,
the app’s symmetric key is not released by the secure element and the stored
assets cannot be decrypted.

Each asset is accompanied by a policy, which specifies the apps that can ac-
cess it and under what contextual conditions. Apart from access control for apps,
actions executed before or after such a request or following the triggering of an
event, are also part of the policy. Typical examples are asset download, syn-
chronisation and removal. Metrics that qualify as context include time, location,
application white- or blacklists and the presence of nearby wireless networks.
The party acting as policy administrator can vary, depending on the applica-
tion scenario: an individual user, a corporate administrator or a third party
service provider. The policies described here, are related to both access control
and device self-management. Prominent languages in these domains are XACML
and Ponder2, respectively. Regardless of the overlapping expressiveness in each
other’s domains, we have opted for XACML. There are advantages to using a
standardised policy language: portability across platforms, tool support, exten-
sibility and familiarity among security administrators.
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To further illustrate the intended approach, two example policies are demon-
strated below. To get around XACML’s extensive syntax, they are shown in
pseudocode. The first one constrains the availability of door credentials on a
home nurse’s tablet. Door credential Y is removed if it has not been used for
over one hour or if the device is away from the residence of patience X.

If location offsite "Residence of patient X"

OR unused > 1hr

Then Remove "DoorCredential Y"

In the second policy, access to a contract on a sales representative’s tablet,
is restricted. The contracting app is only granted read and write access during
working hours.

If 8:00 <= time <= 18:00

Then App.Contract has R/W-access

to "Contract Z"

Lastly, access to privileged code invocation can also be controlled. The ex-
act implementation of the above concepts is platform-specific and is therefore
described along with the prototype in section 6.

6 Prototype: Context-Aware File Management

The proof-of-concept implements a corporate file management system, consisting
of three parts: a corporate file server, an administration component and a mobile
component on a phone or tablet.

6.1 File Server

The file server is considered to be legacy infrastructure. State of the art file
management solutions offer a myriad of functionality. However, to validate the
interoperability of our approach, we limit ourselves to a simple FTP server with
confidentiality and mutual authentication over a TLS layer (FTPS). Apache
Commons Net 3.2 is used for this purpose.

6.2 Administration Component

The MDM server resides on the same machine as the file server. In more com-
plex deployments, they can be hosted separately. The administration component
allows to create and modify policies and to push them to the file server and to
affected mobile devices. A notification is sent to each of these devices. Con-
sequently, their mobile component connects to the file server and retrieves the
policies involved. Push notifications serve to relieve mobile devices from listening
to incoming connections. The push service we use, is Google Cloud Messaging.
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6.3 Mobile Component

The mobile component –a file management app– uses the mechanisms described
in section 4, to protect its files.

File Synchronisation and Secure Storage. The secure element is a Giesecke
& Devrient Mobile Security Card. It runs Java Card 2.2.2 and offers tamper-
resistant storage of key material. A symmetric key belonging to the mobile com-
ponent, is housed in it. This key is created when the pairing phase is successfully
completed (see section 4.1). The Mobile Security Card can be easily addressed
using the MSC SmartcardService from the SEEK4Android project, installable
in the same way as any app.

Managed files must be confidential and authentic, while policies are not con-
sidered confidential. To fulfill both, AES-GCM (AES in Galois Counter Mode) is
used. Not only do authentication and encryption take place in a single step, GCM
takes better advantage of parallellism than f.i. the more frequently-used CBC
mode. To quantify the performance of our approach, we executed 100 encryp-
tions and decryptions of 10KB, 100KB, 500KB, 1MB, 5MB and 10MB files from
the internal app storage to the external storage and vice versa. We compared
our results to Android’s file system encryption, which uses Linux’s dm-crypt. To
obtain meaningful test results, we switched to AES-CBC, the algorithm used by
dm-crypt. Table 1 lists the mean values of four setups: unencrypted I/O, An-
droid’s file system encryption and two versions of the proposed secure storage
mechanism: a Java-based (Bouncy Castle v1.47) and a C-based one (PolarSSL
v1.3.2) that is accessed through the Java Native Interface. The tests were run
on a Samsung Galaxy Tab 2, with Android 4.1.2. Note that dm-crypt is nearly
as fast as having no encryption at all. The Java-based implementation, on the
other hand, is prohibitively slow: between 7 and 27 times. This has led us to
create a native implementation. A performance gain can clearly be observed.
For 10MB, the C implementation with a 20KB buffer encrypts and decrypts
only 1.5 and 3 times slower than dm-crypt, which operates at the kernel-level.
The C-based implementation can be further optimised by not only executing the
cipher operations natively, but the I/O as well.

Confidentiality and authenticity are also a concern when files are in transit
between the file server and the mobile component. We address this using a TLS
layer with mutual authentication. For prototyping purposes, trust is established
by exchanging and trusting public keys offline. In large-scale setups, this is typi-
cally realised using a public key infrastructure. The app’s private authentication
key is stored in the secure element.

Setting up a secure channel between the mobile component and the secure
element involves an authenticated key agreement step. 192-bit ECDH (Elliptic
Curve Diffie-Hellman) is chosen over RSA, as it is less computationally intensive.
This is particularly a point of attention for resource-constrained secure elements.
A performance test of 100 runs shows that the average time to set up the secure
channel and retrieve the app encryption key is 1667ms. Note that this step only
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Table 1. Secure storage performance: comparative test results (milliseconds)

File size 10KB 100KB 500KB 1MB 5MB 10MB

No encryption

Outgoing stream 1.17 5.06 24.14 48.56 239.83 638.28

Incoming stream 2.13 17.73 86.23 171.53 871.87 1784.20

Android file system encryption (dm-crypt)

Outgoing encryption 1.18 5.58 23.95 49.78 250.13 903.48

Incoming decryption 2.61 17.69 95.65 181.22 937.48 1962.45

Java-based AES (Bouncy Castle)

Outgoing encryption 19.46 140.98 644.34 1309.11 6940.81 13801.72

Incoming decryption 18.78 147.93 688.69 1438.58 7222.27 14607.33

C-based AES through JNI (1K buffer)

Outgoing encryption 3.84 37.90 194.22 402.09 1977.56 4138.84

Incoming decryption 6.93 55.89 272.75 539.62 2678.56 5333.50

C-based AES through JNI (20K buffer)

Outgoing encryption 15.50 45.95 143.60 277.94 1384.46 2799.56

Incoming decryption 15.32 45.98 158.44 308.13 1491.25 2957.24

takes place when the app is started: the key remains available as long as the it
is running. A usability-security tradeoff exists in how frequently a user is asked
to enter his PIN.

Our secure storage API consists of two layers. The first one is specific to
the storage of cryptographic keys. It enables the developer to interchangeably
use different technologies. As a validation case, we created an implementation
with the Mobile Security Card as well as with the Android KeyChain. The
biggest challenge in the adding the latter, was how to deal with its asynchronous
invocation. The second layer encrypts and decrypts the stored items and exposes
them to the application. It is realised as an intuitive key-value store.

Contextual Sensing, Decision and Enforcement. The Context Sensing
Module is built on top of a generic codebase, which can be extended to con-
tain various types of context. The internal policy representation is hierarchical
and event-driven. Monitoring change events is necessary, as policy decisions do
not only occur in relation to an access request, but also as a result of context
change. This proof of concept incorporates the following contextual metrics: loca-
tion, absolute and recurring time intervals and application black- and whitelists.
Multiple implementations of the same contextual variable are supported. For
instance, time can be retrieved from the mobile device or through a trusted time
server, for more critical uses.

The Context Sensing Module interfaces with a ContentProvider that is
extended to act as a Policy Decision Module and a Policy Enforcement Mod-
ule. A ContentProvider is a flexible Android building block that offers dy-
namically assignable and revocable permissions. It can essentially supply any
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structured data type, including files. Two-way context-aware synchronisation is
implemented between local files and their remote counterparts.

To denote the type and id of a requested file, an external app constructs and
sends an Intent with a local URI to the ContentProvider. This allows per-
file decisions and enforcement. Note that nothing prevents receiving apps from
saving a copy of acquired files. Determining which apps to trust, is seen as part
of the administrator’s task. This trust preference is specified as an application
white- or blacklist in the policy. The beneficial result of this approach is that
neither Android nor the requesting app need modification: secure storage and
policy enforcement are handled transparently by the ContentProvider.

Automatic download, synchronisation and deletion tasks are executed by a
subclassed Android Service. It also interacts with the Context Sensing Module.
The tasks are executed in two different manners: relative to a user’s workflow
(e.g. deleting a credential one hour after last use), or completely automated (e.g.
periodic cleanup of assets not used for more than a given time span).

More advanced functionality can be realised if we allow modifications to ex-
ternal applications. ContentProvider’s API provides a call function for the in-
vocation of custom methods it exposes. Similarly, RPC interfaces can be offered
by extending the above Android Service implementation. External applications
can bind to it and invoke its exposed set of methods. The Service enforces con-
trolled access in much the same way as the ContentProvider. This approach
allows support for credential-based operations without releasing the secrets (e.g.
signing and proof generation).

7 Evaluation

This section evaluates the added value of the context-aware management module
(CAM) and the secure storage module (SST). It mainly focuses on the added
security that CAM and SST offer in comparison to major mobile platforms.
Moreover, we argue that the interoperability and the usability of our approach,
positively contribute to its adoption. Table 2 summarises the main benefits.

For the security analysis, we assume that the sandboxing mechanism works
correctly on both Android and iOS. More specifically: malware without root
privileges cannot steal data that is stored in an app’s context. We also assume
this malware cannot intercept entered passwords. Similar assumptions are taken
in [15] and are reasonable if a user does not root or jailbreak his device. However,
a skilled adversary can access the –encrypted– file system on a stolen device and
launch dictionary and brute-force attacks on the passcode.

Android’s file system encryption uses dm-crypt. It wraps the file system key
with a passcode-derived one using the PBKDF2 algorithm. A adept attacker can
extract the contents of the encrypted file system and perform offline passcode
attempts, thus exploiting additional computing power. iOS’ file encryption keys
are derived from a passcode as well as a hardware-backed secret (i.e. the device
UID). This precludes offline passcode attacks. If configured by the user or the
mobile device management admin (MDM), Android and iOS can automatically
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Table 2. Comparison of security and usability properties of Android, iOS, the context-
aware management module (CAM), and the secure storage module (SST)

Android iOS CAM SST SST � CAM

Security
-Factors passcode passcode, device n/a passcode, SE passcode, SE
-Attack barriers PBKDF2 PBKDF2 (Δt) n/a attempt limit attempt limit
-Local asset mgmt app/user app/user semi-auto app/user semi-auto
-Data revocation wipe wipe n/a implicit implicit
Prerequisites Internet Internet none none

Usability
-Passcode complexity high medium high low low
-Hardware reqs? no yes: on board no yes yes
-Context mgmt gran. none coarse fine none fine

wipe themselves after a specified number of failed attempts. However, this cir-
cumventable if the device is rooted or jailbroken. As a result, iOS’ key derivation
function and its hardware backing only slow down passcode attacks (the imposed
time delay is denoted by Δt in table 2).

SST surpasses the security offered by both platforms. It is based on a PIN
and a tamper-resistant secure element (SE). The attempt limit cannot be cir-
cumvented without successfully tampering with the SE. This protection holds,
regardless if the device is rooted or not. The remaining possibility is to attack
the cryptosystem, a computationally infeasible option. Also note that an Inter-
net connection is needed to initiate a wipe on a default Android or iOS device.
The secure element in our approach is blocked after a number of failed PIN
attempts, de facto wiping the device. Initiating this requires no network con-
nectivity. Furthermore, unauthorised applications cannot exhaust the PIN entry
limit, since an attempt is only counted after successful verification of the app
secret. An attacker with physical access to the device, cannot decrypt the data
for lack of the PIN. A blocked secure element can be conveniently reactivated
by the organisation when the device is back in the hands of the eligible user.

Although CAM is not resistant to physical and rooting attacks, it does min-
imise the presence of temporary and residual data during its uncompromised
use. This means that less sensitive information is harvestable in general. It also
provides an effective countermeasure against information-hungry greyware, a
significant problem in today’s app ecosystem.

Although SST and CAM increase protection level of corporate assets, they
do not impose high usability barriers. On the contrary. Passcode complexity
is reduced: the attempt limit makes a 4-digit PIN acceptable. Adding to that,
asset management is partly automated, which relieves the user from doing this
manually.

As for interoperability, the secure element in our solution is –readily or
optionally– available in different forms: a SIM card, a secure microSD card,
a contactless smartcard or an embedded SE. This makes deployment possible on
nearly every Android device. This is in contrast to Android 4.3 and Samsung
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KNOX, where an organisation would be limited to a handful of devices with
hardware support or to Samsung’s high-end range, respectively. The operat-
ing system is never altered, lowering the adoption barrier even further. If a
ContentProvider-based approach is taken, as described in section 6, our ap-
proach is interoperable with many third-party apps without having to modify
them.

8 Conclusions and Future Work

This paper has presented a secure asset storage strategy for the Android plat-
form. It is backed by a secure element that verifies the eligibility of the user and
the app before key material can be accessed. This approach is supplemented by
a semi-automated context-aware, management module. It selectively constrains
the availability and the presence of assets according to predefined policies. Our
approach protects stored data better than iOS in case of device theft and requires
no modifications to the operating system. The secure element-based approach
ensures that nearly every Android phone can be equipped, contrary to Sam-
sung KNOX or Android 4.3. The proposed concepts have been validated by a
context-aware file management prototype.

An interesting extension to this work, is to integrate the secure element in
the Android KeyChain, so that API-level support is offered to any application
using Android’s standard credential storage. Additionally, this would allow the
integration of our secure storage strategy into the Device Administration (i.e.
MDM) API. A limitation to this approach is that the KeyChain has only been
publicly available since Android 4.

Another promising track is trustworthy PIN entry on smartphones and tablets.
An increasing number of mobile devices are equipped with a Trusted Execution
Environment. Implementing the PIN input as a trusted application, would pre-
vent malware with root access from intercepting it. In addition, trust indicators,
such as a blinking LED when the TEE is active, would empower users to ap-
praise the trustworthiness of a PIN input prompt. However, this extension must
be traded off against deployability on a more narrow range of devices.
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Abstract A recent class of threats, known as Advanced Persistent
Threats (APTs), has drawn increasing attention from researchers, primar-
ily from the industrial security sector. APTs are cyber attacks executed
by sophisticated and well-resourced adversaries targeting specific inform-
ation in high-profile companies and governments, usually in a long term
campaign involving different steps. To a significant extent, the academic
community has neglected the specificity of these threats and as such an
objective approach to the APT issue is lacking. In this paper, we present
the results of a comprehensive study on APT, characterizing its distin-
guishing characteristics and attack model, and analyzing techniques com-
monly seen in APT attacks. We also enumerate some non-conventional
countermeasures that can help to mitigate APTs, hereby highlighting
the directions for future research.

Keywords: advanced threat, APT, sophisticated attacks, cyber
security.

1 Introduction

Cyber attacks have existed since the adoption of the Internet and have evolved
a lot in the past decades, from viruses and worms in the early days to malware
and botnets nowadays. In recent years, a new class of threat, the “Advanced
Persistent Threat” (APT) has emerged. Originally used to describe cyber in-
trusions against military organizations, the APT has evolved and is no longer
limited to the military domain. As highlighted in several large-scale security
breaches [12,15,1,29], APTs are now targeting a wide range of industries and
governments.

While APT has drawn increasing attention from the industrial security com-
munity, a comprehensive and clear understanding of the APT research problem
is lacking. This paper presents the result of a detailed study of the APT phe-
nomenon, and contributes a taxonomy of phases, mechanisms, and countermeas-
ures. In this paper, we first identify the characteristics of APT, and compare it
to traditional threats in Section 2. In Section 3, we dissect a typical APT attack
into six phases, analyzing the techniques that are commonly used in each stage.
We also enumerate various countermeasure that can be applied to defend against
APT attacks. In Section 3.2, we provide case studies of four APTs, illustrating
the adversaries’ tactics and techniques by applying our presented taxonomy and
technical analysis.

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 63–72, 2014.
c© IFIP International Federation for Information Processing 2014
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2 Definition: What Is APT?

APTs frequently made global headlines in recent years, and many feel that this
term is overloaded, since different people refer to it as different things. Because
so many different opinions of what constitutes an APT exist in the commercial
market [2,14,23], a clear definition is needed. In this paper, we adopt the defini-
tion given by US National Institute of Standards and Technology (NIST), which
states that an APT is [17]:

“An adversary that possesses sophisticated levels of expertise and significant
resources which allow it to create opportunities to achieve its objectives by using
multiple attack vectors (e.g., cyber, physical, and deception). These objectives
typically include establishing and extending footholds within the information
technology infrastructure of the targeted organizations for purposes of exfiltrat-
ing information, undermining or impeding critical aspects of a mission, program,
or organization; or positioning itself to carry out these objectives in the future.
The advanced persistent threat: (i) pursues its objectives repeatedly over an ex-
tended period of time; (ii) adapts to defenders’ efforts to resist it; and (iii) is
determined to maintain the level of interaction needed to execute its objectives”.

This definition provides a good base for distinction between traditional threats
and APTs. The distinguishing characteristics of APTs are: (1) specific targets
and clear objectives; (2) highly organized and well-resourced attackers; (3) a
long-term campaign with repeated attempts; (4) stealthy and evasive attack
techniques. We elaborate on each of these characteristics below.

Specific Targets and Clear Objectives. APT attacks are highly targeted
attacks, always having a clear goal. The targets are typically governments or
organizations possessing substantial intellectual property value. Based on the
number of APT attacks discovered by FireEye in 2013 [11], the top ten industry
vertical targets are education, finance, high-tech, government, consulting, energy,
chemical, telecom, healthcare, and aerospace. While traditional attacks propag-
ate as broadly as possible to improve the chances of success and maximize the
harvest, an APT attack only focuses on its pre-defined targets, limiting its attack
range.

As for the attack objectives, APTs typically look for digital assets that bring
competitive advantage or strategic benefits, such as national security data, intel-
lectual property, trade secrets, etc., while traditional threats mostly search for
personal information like credit card data, or generically valuable information
that facilitates financial gain.

Highly Organized and Well-Resourced Attackers. The actors behind
APTs are typically a group of skilled hackers, working in a coordinated way.
They may work in a government/military cyber unit [15], or be hired as cyber
mercenaries by governments and private companies [9]. They are well-resourced
from both financial and technical perspectives. This provides them with the abil-
ity to work for a long period, and have access (by development or procurement)
to zero-day vulnerabilities and attack tools. When they are state-sponsored, they
may even operate with the support of military or state intelligence.
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A Long-Term Campaign with Repeated Attempts. An APT attack is
typically a long-term campaign, which can stay undetected in the target’s net-
work for several months or years. APT actors persistently attack their targets
and they repeatedly adapt their efforts to complete the job when a previous at-
tempt fails. This is different from traditional threats, since traditional attackers
often target a wide range of victims, and they will move right on to something
less secure if they cannot penetrate the initial target.

Stealthy and Evasive Techniques. APT attacks are stealthy, possessing
the ability to stay undetected, concealing themselves within enterprise network
traffic, and interacting just enough to achieve the defined objectives. For ex-
ample, APT actors may use zero-day exploits to avoid signature-based detection,
and encryption to obfuscate network traffic. This is different from traditional at-
tacks, where the attackers typically employ “smash and grab” tactics that alert
the defenders.

In Table 1, we summarize the differences between traditional threats and
APTs for several attack attributes.

Table 1. Comparison of traditional and APT attacks

Traditional Attacks APT Attacks

Attacker Mostly single person Highly organized, sophisticated,
determined and well-resourced group

Target Unspecified, mostly individual
systems

Specific organizations, governmental
institutions, commercial enterprises

Purpose Financial benefits,
demonstrating abilities

Competitive advantages,
strategic benefits

Approach Single-run, “smash and grab”,
short period

Repeated attempts, stays low and slow,
adapts to resist defenses, long term

3 Attack Model: How Does APT Work?

APT attacks are meticulously planned, and typically have multiple steps in-
volved. While a specific APT attack may have its unique features, the stages of
APT attacks are similar and they differ mostly in the techniques used in each
stage. To describe the phases of an APT attack, we adopt a six-stage model
based on the concept of an “intrusion kill chain” introduced in [7]. Using such
a kill chain model helps to understand threat actors’ techniques in each stage,
and provides guidance for defense against APT attacks as well.

3.1 Phases of an APT Attack

A typical ATP attack will have the following six phases: (1) reconnaissance and
weaponization; (2) delivery; (3) initial intrusion; (4) command and control; (5)
lateral movement; (6) data exfiltration.
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(1) Reconnaissance and Weaponization. Reconnaissance is also known as
information gathering, which is an important preparation step before launching
attacks. In this stage, attackers identify and study the targeted organization,
collecting as much as information possible about the technical environment and
key personnel in that organization. This information is often gathered via open-
source intelligence (OSINT) tools and social engineering techniques.

– Social Engineering. Social engineering refers to psychological manipula-
tion of people into accomplishing goals that may or may not be in the target’s
best interest. In cyber attacks, it is often used for obtaining sensitive inform-
ation, or getting the target to take certain action (e.g. executing malware).

– OSINT. OSINT is a form of intelligence collection from publicly available
sources, and nowadays it typically refers to aggregating information about a
subject via either paid or free sources on the internet. Various information
can be collected via OSINT, ranging from the personal profile of an employee
to the hardware and software configurations in an organization.

Besides simply grabbing information from the web, attackers may also em-
ploy data mining techniques and big data analytics to automatically process the
gathered data, in order to produce actionable intelligence. Based on the gathered
intelligence, APT actors construct an attacking plan and prepare the necessary
tools. In order to be successful, attackers typically prepare various tools for dif-
ferent attack vectors, so that they can adapt tactics in case of failure.

(2) Delivery. In this stage, attackers deliver their exploits to the targets. There
are two types of delivery mechanisms: direct and indirect delivery. For direct
delivery, the attackers send exploits to their targets via various social engineering
techniques, such as spear phishing.

Indirect delivery is stealthy. In this approach the attackers will compromise
a 3rd party that is trusted by the target, and then use the compromised 3rd
party to indirectly serve exploits. A trusted 3rd party can be a supplier of soft-
ware/hardware used in the targeted organization, or a legitimate website that is
frequently visited by the targeted persons (watering hole attack).

– Spear Phishing. Spear phishing is a targeted form of phishing in which
fraudulent emails only target a small group of selected recipients. It typ-
ically use information gathered during reconnaissance to make the attack
more specific and “personal” to the target, in order to increase the probabil-
ity of success. The recipient is lured to either download a seemingly harmless
attachment that contains a vulnerability exploit, or to click a link to a mali-
cious site serving drive-by-download exploits [27]. In APT attacks, malicious
attachments are used more often than malicious links, as people normally
share files (e.g., reports, business documents, and resumes) via email in the
corporate or government environment.

– Watering Hole Attack. The concept of a watering hole attack is similar
to a predator waiting at a watering hole in a desert, as the predator knows
that the victims will have to come to the watering hole. Similarly, rather
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than actively sending malicious emails, the attackers can identify 3rd party
websites that are frequently visited by the targeted persons, and then try to
infect one or more of these websites with malware. Eventually, the delivery
accomplishes when the infected webpages are viewed by victims [18]. The use
of watering hole attacks have been seen in several APT campaigns [5,6,10].

(3) Initial Intrusion. Initial intrusion happens when the attacker get a first
unauthorized access to the target’s computer/network. While the attackers may
obtain access credentials through social engineering, and simply use them for
“legitimate” access, the typical way for intrusion is executing malicious code
that exploits a vulnerability in the target’s computer. The attackers first deliver
malicious code in the delivery stage, and then in the intrusion stage gain access
to target’s computer when the exploit is successfully executed.

In APT attacks, the attackers often focus on vulnerabilities in Adobe PDF,
Adobe Flash and Microsoft Office as well as Internet Explorer. While several
APT attacks [12,20] have leveraged zero-day exploits for initial intrusion, many
APT attacks also employ older exploits that target unpatched applications.

The initial intrusion is a pivotal phase in an APT attack, since the APT
actors establish a foothold in the target’s network in this stage. A successful
intrusion typically results in the installation of a backdoor malware. From this
point, the threat actors connects to the targets’ network. As a result, network
traffic is generated, and file evidences are left on the victims’ computers, which
gives defenders the chance to detect an APT in an early phase.

(4) Command and Control. Upon successfully establishing a backdoor, APT
actors use Command and Control (C2) mechanisms to take control of the com-
promised computers, enabling further exploitation of the network. In order to
evade detection, the attackers increasingly make use of various legitimate services
and publicly available tools.

– Social Networking Sites. The attackers register accounts on various so-
cial networking sites, and put control information into blog posts or status
messages [16].

– Tor Anonymity Network. Servers configured to receive inbound connec-
tions only through Tor are called hidden services. Hosting C2 servers in Tor
as hidden services makes them harder to identify, blacklist or eliminate.

– Remote Access Tools (RATs). Although often used for legitimate remote
administration, RATs are often associated with cyber attacks [3,28]. A RAT
contains two components: a “server” residing on a victim’s endpoint, and a
“client” that is installed on the attackers machine. In order to make it work,
the “server” component needs to be delivered to the target’s machine first,
which is often accomplished via spear-phishing emails.

(5) Lateral Movement. Once the communication between the compromised
systems and C2 servers is established, threat actors move inside the network,
in order to expand their control over the targeted organization, which in turn
enables them to discover and collect valuable data. Lateral movement usually
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involves the following activities: (1) performing internal reconnaissance to map
the network and acquire intelligence; (2) compromising additional systems in
order to harvest credentials and gain escalated privileges; (3) identifying and
collecting valuable digital assets, such as development plans, trade secrets, etc..

This stage typically lasts a long period, because (1) the attackers want to har-
vest a maximum of information over a long term; (2) the activities are designed
to run low and slow in order to avoid detection. As APT actors move deeper
into the network, their movements become difficult to detect. APT actors often
utilize legitimate OS features and tools that are typically used by IT adminis-
trators, and they may also crack or steal credentials to gain legitimate access,
which both make their activities undetectable or even untraceable.

(6) Data Exfiltration. The primary goal for an APT attack is to steal sensitive
data in order to gain strategic benefits, thus data exfiltration is a critical step for
the attackers. Typically the data is funneled to an internal staging server where it
is compressed and often encrypted for transmission to external locations under
the attackers’ control. In order to hide the transmission process, APT actors
often use secure protocols like SSL/TLS, or leverage the anonymity feature of
Tor network [16].

3.2 Case Study of APT Attacks

In order to better understand the APT attack model, we studied four APT
attacks reported in various sources [12,20,29,10], mapping the attackers’ action
into our six-stage model. The results are shown in Table 2.

3.3 Countermeasures

Due to the complexity and stealthiness of APTs, there is no single solution that
offers effective protection. The current best practice is a wide range of security
countermeasures resulting a multi-layered defense. However, due to the specific
nature of APTs, some of the existing defense systems need to be reengineered
to work in the APT context, hereby requiring additional research. For example,
while genetic algorithms have been proved useful for malware detection, their
applicability in a large dataset is subject of further study. We elaborate on some
defense techniques below.

Security Awareness Training. Considering the wide use of social engineering
techniques (e.g., spear-phishing emails) in APT campaigns, security awareness
training plays an important role in defense. Besides the general best security
practices, the training should also provide education about APT attacks. Ac-
cording to an APT awareness study [8], more than half of the industries are not
awareness of the differences between APTs and traditional threats, and 67% of
respondents report the lack of awareness training relative to APTs.

Traditional Defense Mechanisms. Traditional defense mechanisms are ne-
cessary since they block known attack vectors, and hence increase the difficulty
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Table 2. Comparison of different APTs

Name Operation
Aurora [12]

RAS Breach [20] Operation
Ke3chang [29]

Operation
SnowMan [10]

Active
Time

June 2009 -
December 2009

Unknown -
March 2011

May 2010 -
December 2013

Unknown -
February 2014

Recon. and
Weaponi-
zation

employees’ emails,
zero-day exploits,
backdoor, and C2
tools

employees’ emails,
zero-day exploits,
trojanized docs,
backdoor, RAT

officials’ emails,
trojanized docs,
backdoor, and C2
tools

identify weakness
in vfw.org, RAT,
backdoor

Delivery spear phishing
(malicious links)

spear phishing
(malicious xls file)

spear phishing
(malicious zip file)

watering hole at-
tack (compromise
& infect vfw.org)

Initial
Intrusion

drive-by download
(CVE-2010-0249)

xls vulnerability
(CVE-2011-0609)

victims open the
executable file

drive-by download
(CVE-2014-0322)

Command
and Con-
trol

custom C2 pro-
tocol, operating
on TCP port 443

Poison Ivy RAT custom C2 pro-
tocol, based on
HTTP protocol

ZxShell,
Gh0st RAT

Lateral
Movement

compromise SCM,
and obtain source
code

Perform privilege
escalation, gather
SecureID data

compromise in-
ternal systems,
collect data

unknown

Data
Exfiltration

upload data to C2
servers

compress, encrypt
data as RAR files,
use FTP for trans-
mission

compress, encrypt
data as RAR files

unknown, could
be US military
intelligence

for APT actors. Common countermeasures that must be used are: patch man-
agement, anti-virus software, firewalls, host-based intrusion detection systems
(HIDS), network-based intrusion detection systems (NIDS), intrusion prevention
system (IPS), Security Information and Event Management (SIEM), content fil-
tering software, etc..

Security awareness training and traditional defense mechanisms do not ad-
equately address APTs. Defenders should combine them with the following state-
of-the-art countermeasures that are proposed to mitigate APTs.

Advanced Malware Detection. Malware is critical for the initial intrusion.
Since APT actors often leverage zero-day exploits or custom-developed evasive
tools that bypass traditional defenses, the ability to detect advanced malware is
important for defense against APTs. Sandboxing execution is a proven technique
for analyzing malware’s behavior, which allows defenders to identify unknown
advanced malware [19]. As advanced malware may leverage various sandbox-
evasion techniques [22] to detect the VM environment, it is important to take
these sandbox-evasion techniques into consideration when using sandboxing ex-
ecution. Also, the research challenge in this area is to perform the malware
analysis on-line, and in a non-intrusive fashion.
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Event Anomaly Detection. Since APT actors use various stealthy and evasive
techniques, there is no “known bad” pattern that traditional signature-based de-
fense mechanisms could use. Instead of looking for “known bad” item, an effective
APT detection approach is to study normal behavior and search for anomalous
activities. Anomaly detection includes the detection of suspicious network traffic
and suspicious system activities, or “irregular” clusters of activities (potentially
obtained through machine learning). Due to the massive amount of data the
need to be analyzed in a reasonable time, anomaly detection typically relates
to the research problem of big data analytics. There are several researchers pro-
posing the use of big data analytic for APT detection. In [4], Giura & Wang
implemented a large-scale distributed computing framework based on MapRe-
duce to process all possible events, which can be used to detect APT attacks.
Liu et. al. [13] proved that analyzing a huge volume of HTTP requests with
Hadoop and Lucene can help to quickly uncover potential victims based on a
known APT victim.

Data Loss Prevention. Since the ultimate goal of an APT attacks is the trans-
mission of valuable data from the target’s network to outside, a fully contextually
aware data loss prevention (DLP) solution can be deployed as the last line of
defense to protect sensitive data against exfiltration. A DLP solution is a sys-
tem that is designed to detect and prevent potential data breach by monitoring
and blocking sensitive data while in-use, in-motion, and at-rest. It requires the
defender to identify its sensitive and critical data first, and define policies and
rules in a DLP application for protection. An example research solution is [21].

Intelligence-Driven Defense. Intelligence-driven defense is not a specific de-
fense solution, it is a defense strategy that leverage the knowledge about the
adversaries, and adapt defense based on the gathered intelligence [7]. Since APT
actors are determined, and typically launch repeated attacks against the target,
defenders can create an intelligence feedback loop, which allow them to identify
patterns of previous intrusion attempts, understand the adversaries’ techniques,
and then implement countermeasures to reduce the risk of subsequent intrusions.

In Table 3, we summarize the attack techniques and tools that commonly seen
in each stage of an APT attack. Additionally, we also identify the countermeas-
ures that can be applied in each stage.

4 Related Work

Existing research on APTs are mostly from industrial security community. Tra-
ditional security service providers (e.g., McAfee, Symantec) and emerging APT-
focused companies (e.g., FireEye, Mandiant) regularly publish technical reports
that document cases of APT attacks [18,1,15,11]. In [26], Thonnard et al. con-
ducted an in-depth analysis of of 18,580 email attacks that were identified as
targeted attacks by Symantec, and through the analysis, they showed that a
targeted attack is typically a long-running campaign highly focusing on a lim-
ited number of organizations.
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Table 3. Attack techniques and countermeasures in each stage of an APT attack

Stages Attack techniques/tools Countermeasures

Reconnaissance and
Weaponization

OSINT, Social engineering
Preparing malware

Security awareness training,
Patch management, Firewall

Delivery Spear phishing,
Watering hole attack

Content filtering software,
NIDS, Anti-virus software

Initial Intrusion Zero-day exploits,
Remote code execution

Patch management, HIDS,
Advanced malware detection

Command and
Control

Exploiting legitimate services,
RAT, Encryption

NIDS, SIEM,
Event Anomaly detection

Lateral Movement Privilege Escalation,
Collecting data

Access control, HIDS, NIDS,
Event Anomaly detection

Data Exfiltration Compression, Encryption,
Intermediary Staging

Data Loss Prevention

There are several articles [24,25] that briefly explained APT attacks and dis-
cussed the detection techniques. However, they are not as comprehensive as our
presented analysis. As for the countermeasures, several academic researchers
proposed the use of big data analytics for APT detection [4,13].

5 Conclusion

APTs are sophisticated, specific and evolving threats, yet certain patterns can be
identified in the their process. In this paper, we focused on the identification of
these commonalities. Traditional countermeasures are needed but not sufficient
for the protection against APTs. In order to mitigate the risks posed by APTs,
defenders have to gain a baseline understanding of the steps and techniques
involved in the attacks, and develop new capabilities that address the specifics
of APT attacks. By studying public APT cases and the offerings of the security
industry, we presented this broad perspective on APT, which should establish
common ground within the security community and provide guidance for further
defensive research.
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Abstract. Public IaaS cloud environments are vulnerable to misbehav-
ing applications and virtual machines. Moreover, cloud service availabil-
ity, reliability, and ultimately reputation is specifically at risk from Denial
of Service forms as it is based on resource over-commitment.

In this paper, we describe a stealthy randomised probing strategy to
learn thresholds used in the process of taking migration decisions in the
cloud (i.e. reverse engineering of migration algorithms). These discov-
ered thresholds are used to design a more efficient, harder to detect, and
robust cloud DoS attack family. A sequence of tests is designed to ex-
tract and reveal these thresholds; these are performed by coordinating
stealthily increased resource consumption among attackers whilst observ-
ing cloud management reactions to the increased demand. We can learn
the required parameters by repeating the tests, observing the cloud reac-
tions, and analysing the observations statistically. Revealing these hidden
parameters is a security breach by itself; furthermore, they can be used
to design a hard-to-detect DoS attack by stressing the host resources
using a precise amount of workload to trigger migration. We design a
formal model for migration decision processes, create a dynamic algo-
rithm to extract the required hidden parameters, and demonstrate the
utility with a specimen DoS attack.

Keywords: CIDoS, IaaS security, Cloud Computing Security, Migration
Security in the Cloud.

1 Introduction

Attacks specific to cloud infrastructure have recently gained attention [1,2]. Most
of this earlier work targeted availability which affects reliability and might cause
Service Level Agreement breaches.

High availability is critical in the cloud and it is a main concern for enter-
prises moving to cloud. There is competition between providers for high avail-
ability; they publish annually service outage status reports, where SLA only
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specify minimum availability requirements. In this paper, we design a stealthy
randomising testing strategy to learn thresholds that are used in the process
of taking migration decisions (i.e. reverse engineering of migration algorithms).
We perform a series of tests to reveal these thresholds; these tests are based
on a cloud specific DoS attack called Cloud-Internal Denial of Service (CIDoS)
described earlier [3] together with statistical analysis. The attack mis-uses mi-
gration and over-commitment features, which are essential to cloud systems as
permits elasticity, allowing virtual machines (VMs) to expand. Cloud systems
rely on resource sharing to reduce cost by maximising utilisation of cloud hosts.
If one of the VMs in the highly utilised host decides to expand, some of the
co-resident VMs may be migrated to provide space for expansion. Moreover, as
stated in [4] ”the host is oversubscribed; that is, if all the VMs request their max-
imum allowed CPU performance, the total CPU demand will exceed the capacity
of the CPU ”; this is what we call misusing over-commitment and it is most
harmful when there is rapid coordination between a group of malicious VMs.

In CIDoS, m co-resident VMs increase their workload to reach a threshold
(time and strength) to trigger migration. In [3], these thresholds were assumed
known to the attackers while in reality they are hidden and discovering them
requires designing a new attack which we describe in this paper. We perform
tests to reveal some of the cloud migration parameters that are used by migra-
tion algorithms. We design a formal model for migration decision process then
create a dynamic algorithm to extract the required parameters. The mechanisms
to extract these thresholds are adapts to dynamic changes in cloud algorithms.
Revealing parameters is hence a security threat by itself; moreover, these can be
used by malicious VMs to accurately generate the needed workload to repeated
trigger migration resulting in thrashing. It is vital that the generated workload is
no more than required to avoid detection and make the attack live longer. Con-
versely, attackers may also use the revealed parameters to avoid being migrated
as we will see later. The rest of the paper is structured as follows. CIDoS attack
is explained in section 2. Section 3 is the threat model while the literature review
is in section 4. The attack is discussed in section 5; analysis and discussion are
shown in section 6. Finally, section 7 covers conclusion and future work.

2 Attack Mechanism Outline

In the CIDoS family of attacks, attackers are assumed to be co-resident VMs;
these VMs w.l.o.g. coordinate their consumption of host resources following a
pattern distributed by the attack leader. The pattern is designed so that the
total of the attackers’ resource consumption plus the regular consumption will
break a threshold causing migration for some of the VMs to balance the load
in the over-utilised host. The migration process is targeted as it has a relatively
high cost for the cloud operator (network, host utilisation, and ultimately en-
ergy), and may affect availability and reliability, also threatening SLA breaches.
VMs can be migrated either live or offline, but both migration methods are ex-
pensive, particularly where service dependencies exist. Online migration implies
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migrating even the memory while it is running and in use and offline migration
implies turning the VM off, disrupting services.

If attackers successfully force the cloud to enter a continuous state of mi-
gration, the whole service will have difficulty functioning. Furthermore, more
dramatic orders might be issued such as turning on a new host or evacuate a
host and turn it off to save energy which cost more than regular migration.

To prepare for the attack, there should be m malicious co-resident VMs;
achieving co-residency is popular topic in cloud attacks; many techniques are
suggested in [1,3] to attain co-residency or increase its possibility i.e. by misusing
the placement algorithm (VMs distribution algorithm) or by using brute force
strategy (create large number of VMs in the same area and terminate not co-
resident ones).

After achieving co-residency, the attack leader has to create a covert chan-
nel to communicate and coordinate the attack among malicious VMs. Covert
channels are usually used in cloud attacks, see [1,2]. Then the leader checks the
capacity of the covert channel; if the covert channel is too narrow, the attack will
be converted to a brute force scenario. In brute force, the leader only distributes
the signal ”attack now” to all participants and they in turn increase their con-
sumptions as a response to the attacking order then the host might not be able
to cope with the stress and there will be a wave of migration. This scenario is
easy to detect and block by security defences in the cloud; regular host based
intrusion detection system, HIDS, that is anomaly based can detect the sudden
change in behaviour with high accuracy. Brute force scenario is not practically
strong but it is a solution for very narrow covert channels.

If the covert channel is wide enough (over a threshold based on i.e. the amount
of data need to be sent, the value of m and the available time to coordinate the
attack), the leader will check the available number of co-resident malicious VMs
(m); if m is just over the required number of VMs to form the attack (m >= T1),
then apply scenario 2. If m is far over T1 (over another bigger threshold T2,
m >= T2 > T1) then go to scenario 1. T1 and T2 are safe thresholds that are
calculated based on the host specifications, high specifications (i.e. number of
processors and their speeds) means bigger T1 and T2 values [3].

Scenario 1: Attack Pattern Random Sampling
In this scenario, there is no scarcity of co-resident malicious VMs, therefore, there
is no need for a neat distribution of the workload between attackers. Attackers
will benefit from abundance to make it a more robust attack. Each malicious VM
decides locally its part of the attack (the strength and timing of the workload
waves). These choices are not completely random but they rely on two factors;
first the peaks should be around specific points distributed by the leader but
where exactly? and how strong they are? are decided locally. Second, the work-
load pattern of each of the attackers should be as close as possible to its previous
workload (history) to avoid being caught by anomaly based HIDS.
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So each VM decides locally but they are following the same plan distributed
by the leader and the sum of the workloads should trigger migration by breaking
the severity threshold Ts which is also distributed by the leader. The calculation
of Ts will be discussed later in the paper.

Scenario 2: Spread-Spectrum Attack Distribution
Because of the shortage of participants in this scenario, the leader should design
the attack neatly and each participant should know exactly where and how strong
is the peaks that he/she should create. The leader predicts the normal workload
pattern of the host for the next short interval of time and also predicts the attack
pattern (the amount of workload need to be added to the predicted workload to
break the severity threshold Ts); The leader also has to calculate the value of Ts

and distribute it among attackers, see figure 1; the highlighted area in the figure
will be divided into units and distributed among attackers; the distribution is
by using spread-spectrum technique, see [3] for details.

Fig. 1. Qualitative illustration of spread-spectrum attack [3]

The attack is coordinated by a protocol designed specifically for this task.
The protocol establishes a secure communication channel among attackers using
Group Key Agreement protocol. It also synchronises time among VMs with the
consideration of Packet Delay Variation, tolerates failures, hides the identity of
attackers, authenticates participants, and resists number of attacks i.e. reply
attack, see [3] for details.

3 Threat Model

The primary motivation is designing a stealthy testing strategy to reveal migra-
tion algorithms parameters which can be used to improve CIDoS attack, make
it more harmful and harder to detect. We succeed if we can extract these pa-
rameters and calculate their reliability. We target large-scale public cloud.

In the attack there are: the attack leader (i.e. the last to arrive malicious
VM), other co-resident malicious VMs, the cloud host where malicious VMs live
together with other innocent VMs, and a cloud management node where hosts
management algorithms are run.
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In our model we have the following assumptions; first, we assume that mi-
gration feature is enabled in the cloud service (some providers disable migration
support for security and performance reasons but as we said earlier it is a main
feature of the cloud). Second, we assume that the attack leader can monitor
the host workload to be able to predict the workload pattern for future short
interval of time and to be able to build an anomaly host based intrusion detec-
tion system (we will see its need later in the paper). This assumption is realistic
because the host workload can be monitored by gathering observations from the
environment or performing tests and measure the respond time of the host; fur-
thermore, techniques from [2,5] can also be used to monitor the workload. Third,
we assume that virtual servers have relatively steady workload pattern (mixing
services in one VM is against best practice especially that the cost model is
pay-for-use [3]). Furthermore, for simplicity we assume cloud hosts are homoge-
neous (same specifications), however, if this is not the case the attack still work
but instead of discovering the host specifications only once for the whole cloud,
attackers should perform this task once per host.

The attack propagation mechanism is not discussed here; several of them are
described in [3].

4 Literature Review

There are number of cloud DoS attacks in the literature such as in [3,6], however,
to the best of our knowledge, the proposed attack is new and heavily based
on the understanding of migration management algorithms. One of the main
challenges we had that migration policies and algorithms used by today’s cloud
service providers are not publicly revealed; however, many research papers are
investigating them.

VM migration is the process of transferring a whole VM (including the running
memory) from host to another for various reasons which are: to save energy thus
reduce cost by evacuating and turning off (or sleep mode) low utilised hosts,
for fault tolerance when dealing with faulty or malicious VMs, for maintenance
reasons, and to reduce the load in over-utilised host thus avoid SLA violation.

Migration has high cost and should be used with caution; it introduces many
challenges in security and performance i.e. minimising migration time to avoid
consuming the network. In [7] they found because of live migration, applications
performance degraded by 10%. VMs also have to be secured during migration.

Migration Mechanisms: Nodes management servers are responsible of man-
aging migration depending on different factors such as utilisation and power-
consumption. Status reports have to be collected from each host periodically to
show its general status. The data from these reports are the inputs for a collec-
tion of migration algorithms. Many different algorithms are used in the cloud;
we will discuss some of the most popular ones which are: overload detection, VM
selection, and VM placement algorithms.

Beloglazov et al. in [4] proposed algorithms based on dynamic measurements
generated by statistically analysing historical data. They also proposed four
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methods to detect overloaded hosts which are Median Absolute Deviation (spec-
ify the value of upper utilisation based on CPU utilisation deviation strength),
Interquartile Range, Local Regression, and Robust Local Regression. For VMs
selection they proposed three polices: migrate VMs with the minimum migration
time calculated based on memory usage and NT bandwidth, random selection
based on uniformly distributed discrete random variable, migrate VMs with the
highest CPU utilisation correlation with other VMs calculated using multiple
correlation coefficient. For VMs placement problem, they sorted VMs based on
their CPU utilisations and allocated them to hosts that provide the minimum
cost in term of power consumption using Best Fit Decreasing algorithm.

Another research, [8], also used dynamic utilisation thresholds to detect hosts
overloading. The dynamic thresholds were calculated based on workload history
(statistical analysis); Bala et al. measured the statistical dispersion using Median
Absolute Deviation. For VM selection, multipath correlation coefficient had been
used to describe relationship between measurements; these measurements were
grouped in different level, each level affect the subsequent ones. The machine
with the minimum expected workload and has the least influence on others is
migrated (VMs with zero inter-correlation factors can be migrated). This policy
has reduced the migration time and the number of migrations needed.

Overload Detection: Upper utilisation threshold can be set to decide if the
host is overloaded or not; however, as stated in [4] ”fixed utilization thresholds
are not efficient for IaaS environments with mixed workloads that exhibit nonsta-
tionary resource usage patterns”; they suggested dynamic thresholds. Prediction
algorithms are also needed to create these dynamic thresholds; for prediction,
different techniques are used such as statistical analysis or machines learning
algorithms [4, 9].

VM Selection Algorithm: Many policies are applied such as migrate the
minimum number of VMs, the least active VM, a VM randomly, or the VM with
the highest correlation [4,10]. Discovering the used policy can help revealing the
required parameters and improve the CIDoS as we will see later.

Placement Algorithm: The new location can be chosen based on different fac-
tors [4]; the most popular ones are to reduce power consumption and utilisation
reasons (i.e. the minimum utilised host).

5 Estimating Cloud Migration Parameters

Attackers aim to extract some of the main parameters used by migration algo-
rithms and use them to build more efficient and harder to detect DoS attack.
Because of the power saving policy, the number of running hosts is dynamic and,
as a consequence, the used thresholds are dynamics and the process of extract-
ing parameters has to be dynamic too. Furthermore, we need to discover these
thresholds as fast as possible because of the dynamicity of the environment. We
also need to extract the required thresholds, measure their reliability, reduce the
probability of accidental errors, consider the noise, consider not changing the
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host behaviour heavily to avoid affecting prediction algorithms, and measure
the success of the attack. We dealt with this problem as a regular statistical
experiment.

Extract the Required Parameters: This task is accomplished by reverse
engineering the algorithms responsible for migration decisions. We start by de-
signing a formal model of migration decision process.

Migration Decision Process: For the shortage of space we consider over-
loaded host detection migration policy..The host management node collects sta-
tus reports periodically from all hosts. Data from status reports and other data
from the environment are the inputs of the algorithms. Then an algorithm runs
to decide whether the host under examination is over-loaded or predicted to be
overload (to prevent over-utilisation before it occurs). The output of the algo-
rithm is zero (if the host is not over-loaded) or one (if the host is over-loaded).
If the output is one the management node will run VM selection algorithm to
decide the best candidate VMs for migration. Then VMs placement algorithm
will run to choose the best candidate destination hosts for VMs under migration.
Lastly, VMs will be migrated either online or offline. The inputs of the over-load
detection algorithm are: -the general overall status of all hosts in the same avail-
ability zone, -the specifications of the host under examination, -history, current
and predicted CPU utilisations, -history, current and predicted memory utilisa-
tions, -history, current and predicted network traffic rate to and from the host,
-possible errors, -time, and -hidden unknown variables.

We target large-scale public cloud; usually the effects of change on the general
overall hosts status are not dramatic so it can be represented by a constant value
(i.e. the effect on migration decision when having 1000 or 1003 hosts on is too
low). We assumed that the hosts are homogeneous, therefore, the effect of host
specifications can be constant value too. The error can be reduced by replicating
the test many times and use hypothesis testing to decide whether to accept the
revealed parameters or not (as we will see later). For simplicity, we only consider
history, current and predicted CPU utilisations and time.

There are many methods for CPU utilisations prediction most of them are
based on the history of the host; Multivariate Linear Regression model, MLR,
can be used to perform the prediction as in [9]. History of CPU utilisations
are partitioned into intervals and analysed to measure ”how closely prediction
matches observed utilization across the utilisation spectrum” [9].

Algorithm 1 is for over-loaded host detection; the algorithm notations are:
-xhistory, xcurrent, and xpredicted are CPU utilisation history, current, and
prediction, -xcurrent is the current CPU utilisation, -xtime is the time, -α
is the constant value, -upperU is the dynamic upper utilisation threshold f
(α+β1xcurrent+β2xhistory+β3xtime), -mig is a Boolean variable which is set to
’1’ if a migration required, and -if the current or predicted CPU utilisation is
over upperU, migration is required.
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Algorithm 1. Over-loaded Host Detection
Input: α, xtime, xhistory , xcurrent, xpredicted Output: mig
mig = 0
upperU = UpperThreshold(α, xtime, xhistory , xcurrent)
if xcurrent or xpredicted ≥ upperU then

mig = 1
end if
Return mig

Cloud Migration Parameter Estimation: We developed an algorithm to
extract the required parameters, see algorithm 2. First, the attack leader spec-
ifies the range of the test (the minimum, maximum CPU utilisation and time)
that might cause migration (this is the test range). Then the leader designs a
series of all possible test phases, portions them into chunks, and gathers them
into a list called chunksList ; each item in the list is called chunk and it has
two variables, xcurrent and xtime. The inputs of the algorithm are chunksList
and Bprofilenormal which is the profile of the host normal behaviour before the
attack. The algorithm then tests the chunks in the list one by one until finding
parameters that cause migration. CIDoS.run is a function with two arguments
(CPU utilisation and time) to run a phase of CIDoS attack (the whole attack
that has been described in 2). This function is responsible of coordinating ma-
licious VMs resource consumption to stress the host and cause migration. It
attacks using the time and strength passed to it in the variables chunk.xcurrent

and chunk.xtime.
To be able to measure the success of the attack (does the tested parameters

cause migration or not?), we create a new behaviour profile (for after attack) us-
ing the function updateProfile and calculate the distance between the old normal
behaviour profile and the new normal behaviour profile using the function com-
pare(profile1, profile2). The function updateProfile is a regular anomaly based
IDS to detect anomalies in the workload pattern of the host i.e. Hidden Markov
Model based IDS (more details are shown later in the section). The behaviour
profile is updated using fresh data (newly collected data from the current work-
load). The result of comparison between profiles is in the variable SuspicionVa-
lue; if SuspicionValue is greater than the threshold simThreshold that means the
host behaviour has changed (probably because of migration) so initially accept
the tested parameters and replicate the test replicationNum number of times to
increase reliability and reduce the effect of accidental errors. successCounter is
the number of successful replications, if it is greater than or equal to a thresh-
old successThreshold then accept the tested parameters as reliable and exit the
algorithm. The function wait() is to create a gap of time between test phases to
avoid affecting the prediction algorithms.

If a VM has been migrated in the middle of the tests for another non malicious
reason, this will not affect the reliability of the test because it will be discovered
in the replications, as we said replications are to increase reliability and decrease
the effect of accidental errors. The attacker need m malicious VMs to attack
with, the value of m can be calculated depending on the host specifications. The
stronger the host the more malicious VMs are needed to attack.
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Algorithm 2. Dynamic attack permitting cloud migration hidden parameter
estimation
1: Input: chunksList, Bprofilenormal Output: xcurrent, xtime

2: for chunk in chunksList do
3: wait()
4: CIDoS.run(chunk.xcurrent, chunk.xtime)
5: Bprofilecurrent = updateProfile ()
6: SuspicionValue = compare (Bprofilecurrent, Bprofilenormal)
7: if SuspicionValue > simThreshold then
8: successCounter = 0
9: for i = 0 → replicationNum do

10: xcurrent1 = increment xcurrent

11: wait()
12: Bprofilenormal = updateProfile()
13: CIDoS.run(chunk.xcurrent1, chunk.xtime)
14: Bprofilecurrent = updateProfile()
15: SuspicionValue = compare (Bprofilecurrent, Bprofilenormal)
16: if SuspicionValue < simThreshold then
17: successCounter = successCounter + 1
18: end if
19: end for
20: if successCounter ≥ successThreshold then
21: Return xcurrent, xtime

22: end if
23: end if
24: end for

The time complexity of the algorithm depends on how many tests are needed,
the size of the gap between tests and how many replicates should we make to
increase the reliability of the result. The smaller test range, the less number of
tests are needed. Furthermore, if we distribute the tests among different hosts
we can perform them on parallel and the gap of time will be less or there will be
no need for gap at all, however, the communication between attackers through
the network increases the possibility of being caught by network based IDS.

How to Check Migration: The leader checks migration (measure the success
of the attack) by building normal behaviour profiles for the host workload before
and after each phase of the test; if there a deviation in the workload (anomaly
detected in the terms of HIDS), that means it is highly probable that a migra-
tion has happened. If there is no deviation (no anomaly detected), that means
the current test phase has failed and another phase should be performed using
different xcurrent or xtime values.

How to Build Normal Profiles: We assumed that the attack leader can mon-
itor the host workload so it can create a normal behaviour profile for the host
(host based anomaly detection system). The host based anomaly detection sys-
tem detects any significant change in host behaviour. We first have to build a
detection system; different algorithms can be used to build the system some are
based on machine learning techniques such as Hidden Markov Model and others
are based on statistical learning techniques such as regression [11]. These algo-
rithms are used to model the workload of the host (create the normal behaviour
profile of host workload). To obtain the required data for building the model,
the attack leader can gather observations from the host by i.e. calculating host
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respond time or use side channel to collect data. Then, the host normal behaviour
profile can be used to detect any deviations from normal workload pattern. The
attack leader can calculate the SuspicionValue by comparing the normal profile
to the current profile; to compare the two profiles different techniques can be
used such as Kullback Leibler distance metric. If SuspicionValue is high, alert
for anomaly. To decide, if the SuspicionValue is high or not, the leader has to
specify another threshold to perform this task, simThreshold. This threshold is
calculated based on the available resources to attack and the required degree of
assurance attackers need.

If an anomaly has been detected this might mean a migration has happened;
as we said earlier we use Experiment Replication (in statistical terms) to increase
reliability and reduces the effect of noises generated by errors.

Interactive Hypothesis Testing by the Attacker: We replicate the experi-
ment number of times to obtain statistically significant results. The attack leader
has to:

– specify the number of replicates needed, replicationNum,
– specify the acceptable level of reliability, successThreshold,
– count the number of successful replications, successCounter, then
– run an interactive statistical hypothesis testing algorithm to decide whether

to accept and distribute the tested values of xcurrent and xtime as reliable or
not.

The attack leader can form the hypothesis testing in many different ways, for
example:

1. The null hypothesis H0: SuspicionValue = 0
H1: SuspicionValue �= 0 (one sided hypothesis)
SuspicionValue variable is equal to zero if there is no change in the host
behaviour (no migration) and is equal to one if there a change in the host
behaviour (possible migration).

2. Assume H0 is true
3. The null hypothesis distribution is computed by the number of permutations

which is equal to replicationNum (it should be replicationNum+1 however
because successCounter ≥ 1 so there will be at least one successful experi-
ment)

4. Specify the significant level α.
The values of the signification level is calculated based on the cost of com-
mitting a Type I error (accept and distribute inaccurate xcurrent and xtime)
and a Type II error (reject an accurate xcurrent and xtime). The cost can be
calculated depending on different factors i.e. the available resources.

5. The leader calculates the successThreshold based on α
6. Compute the t-test statistic
7. Then a decision rule is formed based on the threshold to decide whether to

reject the H0 (accept the tested values as reliable thus distribute them and
use them for attacking) or to not reject H0 (not accept the tested values and
go to the next test phase)
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8. Collect samples by running the experiment replicationNum number of times
(experiment replications) and count the number of success and number or
fail.

9. Draw a conclusion whether to reject or not reject H0.

Although the test is replicated number of times to obtain statistically signif-
icant results, there is still a possibility for Type I and II errors. Type I error
is rejecting a true null hypothesis, however, after the rejection the leader will
try higher xcurrent and xtime values which will trigger the attack using slightly
higher values than required. Type II error is accepting a false null hypothesis;
the attacker might attack using not enough time and strength and this might
make the attack fail and also increase the possibility of being caught by security
defences in the cloud. Therefore, when selecting the successThreshold value, the
leader should consider the available security defences and balance the two errors.

Attacking Using the Revealed Parameter: After accepting the values of
xcurrent and xtime, the CIDoS attack can be formed based on them. The value
of Ts (the severity threshold to be broken by the attackers) is xcurrent and the
duration of the attack is xtime. As described in section 2, in scenario 1 the leader
will broadcast the value of Ts while in scenario 2 the leader will distribute the
units each malicious VM has to cover and these units are calculated by the leader
depending on the value of Ts.

Without knowing migration parameters accurately, attackers have to increase
the workload to put the host in an over-utilised state; while by using relatively
accurate parameters, attackers can trigger migration without over-utilising the
host but with making the cloud management algorithms predict that the host
will be in an over-utilised state then migrate some of the VMs to avoid future
SLA violation (so the current workload will not break the thresholds but the
predicted workload will do). This will make the attack harder to detect and
also attackers will need less resources to attack with and the parameters can
be broadcasted to all CIDoS VMs even in other hosts. This will increase the
damage heavily especially that usually migration policies are the same for all
cloud hosts.

Also by having a predicted workload that is over the threshold but very close
to it by using accurate parameters, the cloud might migrate only one VM from
the host (not large number of VMs which is the case if the workload is far over
the threshold), migrating one VM increases the lifetime of the attack because
other malicious co-resident VMs can increase their workload to cover the loss of
one VM and continue with the attack. This is valid especially in scenario 1 where
large number of malicious VMs (far over required) are available. The attackers
can keep covering the lost gradually until there are no enough malicious VMs to
attack with or there are no other non-malicious VMs in the host; the leader can
know this information if, for a series of migrations, only malicious VMs are being
migrated. The leader can also know that if the only existed host workload is the
collection of malicious VMs workloads. If the leader found out that this host is
only occupied by malicious VMs, he/she can either reduce the workload to the
minimum to allow for new arrivals or terminate most of the malicious VMs to
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activate the policy of save energy by migrating all VMs in that host then turn
it off which is a bigger damage than regular migration especially if the host
has to be turned on again after short time; it will consume the cloud resources
and make the cloud management machine takes decisions based on false reasons.
What is more, causing a migration for only one VM will also make the attack
harder to detect because migrating large number of VMs in the same time might
raise suspicion and lead to further investigations.

6 Analysis and Discussion

If this attack is coordinated between hosts (not only one host) the cloud man-
agement node will make a series of false resources consuming decisions which
might saturate the network; the cloud management might also start turning on
more hosts to cope with the fake increased demand. Moreover, if the attacker
discovers the VM selection algorithm, he/she can avoid being migrated by for
instance intensely using the memory which will make the cost of migrating the
attacker VM high thus avoid being selected by the VM selection algorithm for
migration. This is just an example, but how to escape migration depends on the
used selection algorithm, however, the number of used algorithms is relatively
small which ease the attacker task of discovering them. By avoiding migration,
the attack will live longer because the group of malicious VMs that form the
attack will stay together for long time and constantly attack the same host.

7 Conclusions and Future Work

In this paper we introduced a technique to reverse engineer the cloud migration
algorithms, overload detection algorithm and save energy algorithm, to reveal
hidden parameters and thresholds. Then these parameters are used to improve
the CIDoS attack. We also designed a formal model for migration decision process
and then an algorithm has been developed to extract the parameters from the
model. We used anomaly based HIDS to measure the success of the attack. The
reliability of the extracted values is calculated using an interactive statistical
hypothesis testing. These values can be used to attack the host and also can be
distributed to other malicious VMs in different hosts.

Based on the theoretical analysis reported in this paper, on-going and future
work seeks to validate results experimentally and to refine both the precision
and speed of parameter estimation, including by modulating the use of main
memory.
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Abstract. Authentication is a process which is used for access control
in computer security. However, common existing methods of authenti-
cation, which are based on authentication during the login stage, are
insecure due to the lack of authentication after the initial instance. Ide-
ally, authentication should be continuous and should not interfere with
a user’s normal behavior as to not create an inconvenience for the user.
Behaviometric identification, for example, verifies a user’s identity based
on his behavior, both continuously and without interruption. This work
shows that it is possible, with great accuracy, to identify different users
based on their touchpad behaviors. While linear classifiers proved inef-
fective at classifying touchpad behavior, kernel density estimation and
decision tree classification each proved capable of classifying data sets
with over 90% accuracy.

Keywords: behavior, biometrics, behaviometrics, touchpad.

1 Introduction

In the context of digital security, authentication is a method of verifying identity.
Authentication typically functions as a gatekeeper, granting certain users access
to resources restricted to others. A web administrator, for example, a trusted
user maintaining a website, can grant other users privileges and shut down the
website. In order to grant the administrator access to such privileges while ex-
cluding all others, the administrator must verify his identity via authentication.

Authentication is dependent on three factors, which can be combined to in-
crease security: ownership, knowledge, and inherence [2]. Ownership refers to a
physical token that a user has, such as a credit card or a passport. Knowledge
refers to something a user knows, such as a password. Inherence refers to fea-
tures inherent to the user, or physical characteristics and behavior, for example,
a fingerprint or typing rhythm.

In addition to these three factors of authentication, there are two main types
of authentication, static and continuous. Static authentication methods verify a
user’s identity only once, at the first moment of access [1]. Once authenticated
statically, however, any new user can subsequently obtain access to the original
user’s data simply by using the same device. Vulnerabilities such as these suggest
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that static authentication is inadequate for many situations in which security is
a priority.

Continuous authentication minimizes this vulnerability. Unlike static meth-
ods, continuous authentications continuously verify a user’s identity during ses-
sion use, even long after the initial verification [1]. The simplest method for
continuous authentication is repeated prompting for authentication (e.g. a pass-
word). However, this method is certain to inconvenience the user in proportion
to the frequency of prompting or the level of security. Behaviometric identifiers,
on the other hand, which monitor a user’s behavior and authenticate the user
by means of that behavior, solve this problem.

In this study we assess the usefulness of a touchpad, an input device found
on many laptops, as a tool for behaviometric identification. It is found that the
ability to authenticate a user based on touchpad data is achieved. Section 2
discusses related works, and our approach is presented in Section 3. Section 4
states our experimental results, and we conclude in Section 5.

2 Related Work

Behavioral biometrics have been widely explored with many different identifiers,
including eye movements and pointing devices (mice) [4][5]. These authentica-
tion processes use pattern recognition. Gamboa et al. developed a preliminary
biometric authentication system using two types of density estimation, multi-
modal non-parametric estimation and unimodal parametric estimation [4]. It
was shown that there was no difference in the Equal Error Rate (EER), or the
rate at which the false acceptance and rejection rates are equal, between the
two algorithms. In addition, it was discovered that as the time the user used the
pointing device to train the algorithm increased, the EER decreased.

In addition to the aforementioned examples of biometric identifiers, there have
been numerous studies exploring touch sensors as a behavioral biometric, most
commonly touchscreens [3][6][9][11]. Some of these studies focus on the act of
drawing a “lock pattern” [1]. It was shown that each participant drew the lock
pattern differently, and users could be differentiated. However, it was also shown
that in order to obtain a low EER of 2%, at least 250 keystrokes were required.
This time taken to train and build a classification model can be an inconvenience
to users. Another disadvantage of authentication method is that it is static. It
only analyzes initial login behavior.

Similar to this is biometric authentication using touch gestures on multi-touch
devices. Sae-Bae et al. showed that touch gestures can uniquely identify users
[9][10]. However, this study, like the one by Angulo et al., focused solely on static
authentication.

Touch gestures as a means of continuous identification was explored by Frank
et al. and Roy et al. [3][7]. Frank et al. analyzed smartphone scrolling behavior,
classifying thirty different variables via k-nearest neighbor and support vector
machine. Roy et al. used a Hidden Markov Model on mobile systems, improving
on previous studies as to ease updating of trained classifiers, and as only the
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user of the device needs to provide training data. We expand on this approach
by testing touchpad behavior, and comparing multiple algorithms to identify the
most accurate and efficient one.

3 Data Collection

Data was collected exclusively from the built-in Multi-touch trackpad of a Mac-
Book Air. The “MacBook Multitouch”1 program was used to collect raw gesture
data from each user’s touchpad behavior for 15 minutes. Each participant “surfed
the web.”

Data from six different participants were collected. The participants were
unaware that their behavior was being recorded, and so the program recorded
their normal behavior. The data collected was stored in separate plain text log
files. The structure of this raw data included a timestamp, an identifier for each
individual finger, the finger size, the finger angle, the major and minor axis of
the finger, the position, velocity and pressure of the finger, two relative position
measures, and two different states. “States” refer to notable events such as lifting
a finger or stopping finger movement. The relative position values indicated how
far a finger was from the center or the edge of the touchpad.

A MATLAB script was written to format the raw data into a comma-separated
value file. This file contained the same values as the raw data, except that data
associated with distinct fingers was placed into distinct lists. Only the first 10,000
values were used from each file, and five participant’s data were combined into a
larger file. The data of the sixth participant was unable to be read by the software
used, and was therefore omitted from the data analysis. This combined file also
included new data values, the results of calculations performed on the original
raw data. These calculations included the finger area, equal to the product of
the major and minor axis; finger location, equal to the product of the x position
and y position; absolute velocity (v2x + v2y); and the velocity angle (arctan vx

vy
).

The combined data file incorporated 12 features for each finger for five fingers,
plus a value for the number of fingers on the touchpad at that instance, for a
total of 61 features. Each individual participant’s data was assigned a class name,
a requirement for data set classification. Waikato Environment for Knowledge
Analysis (WEKA) was used for data classification, a process in which algorithms
build models based on training data to be able to predict the classification of
future data points.
Six algorithms were tested in this work:

1. Simple logistic regression
2. Naive Bayes
3. Bayes network
4. J48
5. Random forest
6. k-nearest neighbor

1 http://www.steike.com/code/multitouch/

http://www.steike.com/code/multitouch/
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Simple logistics, naive Bayes, and Bayes network are linear type classifiers. J48
and random forest both use decision trees as the primary classification technique.
k-nearest neighbor, a kernel density estimation type classifier, was tested four
different times, each time with a different k value.

For each trial, the model was built using a 10 fold cross validation. The data
was partitioned into 10 sections. For each class, nine sections, or 9000 values,
were used as training data, and the remaining section (1000 values) were used
as test data. This was repeated ten times, such that each section was used as
test data.

4 Results

The classification accuracy (identification rate), kappa statistic and relative ab-
solute error were calculated using the number of correct classified instances by
each classifier. The accuracy (identification rate) is simply the number of cor-
rectly classified instances over the total number of instances, in this case, 50,000.
The kappa statistic takes into account chance agreement, and so is generally a
more accurate indicator of how well a classifier performs than is the sample
accuracy. The relative absolute error normalizes the total absolute error.

These values are listed in Table 1 for each classification algorithm.

Table 1. Performance accuracy of different algorithms

Classification Algorithm Classification Accuracy Kappa Statistic (κ) Relative Absolute Error

Simple logistic regression 65.47% 0.5684 62.07%
Naive Bayes 29.65% 0.1207 87.53%
Bayes network 70.88% 0.6360 36.92%
1-nearest neighbor 95.13% 0.9391 6.10%
2-nearest neighbor 94.28% 0.9285 7.16%
3-nearest neighbor 94.14% 0.9267 8.14%
4-nearest neighbor 93.72% 0.9215 9.04%
Random forest 96.37% 0.9546 15.39%
J48 94.12% 0.9265 8.39%

Both the simple logistic regression and naive Bayes algorithms had a low
sample accuracy when tested against the data set. Random Forest, J48, and k-
nearest neighbor all performed well. The kappa statistic showed lower accuracy
values for all classification algorithms, with a large reduction in accuracy for the
naive Bayes, simple logistic regression, and Bayes network classifier. The relative
absolute error values for the three poorest classifiers, simple logistic regression,
naive Bayes, and Bayes network, were higher than the error rates for the other
classifiers. Interestingly, the random forest classifier, although it had the highest
sample accuracy and kappa statistic, also had a higher error rate than other
similarly performing classifiers.

The k-nearest neighbor algorithm shows an interesting trend, namely, as the
value of k increases, the sample accuracy and kappa statistic decrease, while the
relative absolute error increases.
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Confusion matrices were also generated for each algorithm. We have selected
one confusion matrix representing each type of classification in Table 2-4.

Table 2. Naive Bayes

a b c d e

205 444 269 2522 6560 a

44 365 132 4012 5447 b

62 75 1376 4847 3640 c

0 0 36 4040 5924 d

0 0 20 1140 8840 e

Table 3. k-nearest neighbor,
k = 1

a b c d e

9524 54 83 128 211 a

25 9790 83 45 57 b

160 145 9187 233 275 c

121 34 146 9348 351 d

117 24 32 111 9716 e

Table 4. Random forest

a b c d e

9509 31 172 119 169 a

29 9821 100 35 15 b

119 75 9574 141 91 c

120 17 193 9551 119 d

59 13 80 119 9729 e

“a”, “b”, “c”, “d”, and “e” represent the different classes, or the users that
generated test data. The top row represents the predicted class, and the side row
represents the actual class. In the naive Bayes matrix, the majority of values were
classified as either class “d” or class “e”. Both k-nearest neighbor and random
forest algorithms classified most values correctly.

5 Discussions and Conclusions

The low sample accuracy of the simple logistic regression and naive Bayes algo-
rithms suggests that linear classification algorithms are not optimal methods to
classify a data set of this nature. Since linear classification algorithms fail the
data is not linear, which conclusion is in accord with that of other behavioral
biometric studies [1]. Linear algorithms also took the longest time to generate a
model based on test data.

The non-linear classifiers (decision tree and kernel density estimation) have
a high sample accuracy and κ (both > 90%). Random forest classification pro-
duced the highest sample accuracy, but it does not have the lowest relative
absolute error, and it is not the fastest algorithm. k-NN (with k = 1) resulted
in the lowest error rate.

It was reported by Angulo et al. that random forest classification resulted in
the lowest error rate of the algorithms tested, and that performance was constant
when testing various lock patterns [1]. Our study confirms these findings, as the
different patterns tested can be compared to the wide ranges of behavior of a
user on a touchpad. The various lock patterns that participants drew on the
touchscreen can be compared to various touchpad gestures such as dragging a
finger, two-finger scroll, and tapping. Random forest was also found to be the
most accurate algorithm.

In a k-NN classification, the optimal value for k is 1. This is most likely due to
other instances being too far away from the query point, expanding the nearest
neighbors region, and thus lowering overall accuracy.

The confusion matrices reveal that the naive Bayes classifier predicted the
majority of instances as either class “d” or class “e”. This can be explained by
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looking at trends in the raw data. These two participants did not use more than
2 fingers at a time. Therefore, for the values of the other three fingers, zero was
used as a placeholder. This made the model skew its predictions towards these
two classes, and therefore most values were classified as either “d” or “e”. One
way to fix this problem is to ignore zero values, which may increase the accuracy
of the naive Bayes classifier.

Future work includes using only one user’s training data, similar to that de-
scribed by Roy et al.. The classified data can also be modified to consist of entire
strokes or gestures, rather than individual timestamps.
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Abstract. Reliable and secure user identification and authentication
are key enablers for regulating access to protected online services. Since
cloud computing gains more and more importance, identification and
authentication in and across clouds play an increasing role in this do-
main too. Currently, existing web identity management models are often
just mapped to the cloud domain. Besides, within recent years several
cloud identity management models such as the cloud identity broker-
model have emerged. In the aforementioned model, an identity broker
in the cloud acts as hub between various service and identity providers.
While this seems to be a promising approach for adopting identity man-
agement in cloud computing, still some problems can be identified. A
notable issue is the dependency of users and service providers on the
same central broker for identification and authentication processes. Ad-
ditionally, letting an identity broker store or process sensitive data such
as identity information in the cloud brings up new issues, in particular
with respect to user’s privacy. To overcome these problems, we propose a
new cloud identity management model based on the federation between
different cloud identity brokers. Thereby, users and service providers can
select their favorite cloud identity broker without being dependent on
one and the same broker. Moreover, it enhances user’s privacy by the
use of appropriate cryptographic mechanisms and in particular proxy
re-encryption. Besides introducing the model we also provide a proof of
concept implementation thereof.

Keywords: cloud computing, identity management, cloud identity,
cloud identity broker, federated cloud identity broker, privacy, proxy
re-encryption.

1 Introduction

In security-sensitive areas of applications such as e-Government identity man-
agement is a key issue. Over the time, several identity management systems
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have already evolved [2]. The Security Assertion Markup Language (SAML),
Shibboleth, OpenID, or WS-Federation are just a few popular examples. They
all usually follow a similar architectural concept involving the stakeholders user
(U), service provider (SP), and identity provider (IdP) [3]. Thereby, a user wants
to access a protected resource at a service provider. To mitigate efforts for the
service provider, the identification and authentication process is handled by the
identity provider. After successful authentication, the identity provider transfers
identity and user data to the service provider for access decision making.

Since cloud computing plays a steadily increasing role in the IT sector, secure
identity management is equally important in the cloud domain. Identity man-
agement systems in the cloud can benefit from cloud advantages such as high
scalability or cost savings, since no in-house infrastructure needs to be hosted
and maintained. A couple of cloud identity management-systems have already
evolved [7–9]. One example is the so-called cloud identity broker-model, where
an identity broker in the cloud acts as hub between multiple service providers
and identity providers [7]. The advantage of adopting the broker concept is that
the identity broker hides the complexity of different identity providers from the
service provider. Although the cloud identity-broker model is a promising model
in the cloud domain, still some disadvantages can be found. One major drawback
is that both users and service providers have to rely on one and the same cloud
identity provider for identification and authentication. This heavily decreases
user’s and service provider’s flexibility in choosing their cloud identity broker of
choice. In addition, the cloud identity broker-model – when applied in a public
cloud – lacks in privacy, because identity data are stored and processed in the
cloud. However, privacy is one main issue with respect to cloud computing [15].

To eliminate these problems, we propose a new cloud identity management-
model which, on the one hand, increases freedom of choice in terms of cloud
identity broker selection and, on the other hand, preserves user’s privacy with
respect to the cloud identity broker and – whenever possible – to the identity
provider. We address the first issue by applying a federation of cloud identity
brokers and the second issue by incorporating appropriate cryptographic tech-
niques.

2 Federated Cloud Identity Broker-Model

In this section we propose our new cloud identity management-model which
federates cloud identity brokers. The general idea is that users encrypt their
identity data using their public key of a proxy re-encryption scheme and these
data can be re-encrypted to a service provider.

2.1 Cryptographic Preliminaries

Subsequently, we briefly discuss required cryptographic primitives and we denote
a proxy re-encryption and signature key pair of A by (skA, pkA) and (sk′A, pk

′
A)

respectively. Concatenation of two bitstrings a and b denoted as a‖b is assumed to
be realized in a way such that all individual components are uniquely recoverable.
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Digital Signatures: A digital signature scheme (DSS) is a triple (K,S,V) of poly-time algo-
rithms, whereas K is a probabilistic key generation algorithm that takes a security parameter κ
and outputs a private and public key pair (sk, pk). The probabilistic signing algorithm S takes as
input a message M ∈ {0, 1}∗ and a private key sk, and outputs a signature σ. The verification
algorithm V takes as input a signature σ, a message M ∈ {0, 1}∗ and a public key pk, and outputs
a single bit b ∈ {true, false} indicating whether σ is a valid signature for M .

Proxy Re-Encryption: A unidirectional single-use proxy re-encryption (US-PRE) scheme allows
a semi-trusted proxy given a re-encryption key to transform a message encrypted under the key
of party A into another ciphertext to the same message encrypted for party B. The proxy thereby
neither gets access to the plaintext nor the respective decryption keys and can only transform in
one direction (from A to B) and one ciphertext can be transformed only once (no transitivity). A
US-PRE is a tuple (S,K,RK,ER,RE,DR) of poly-time algorithms. The algorithm S runs a setup
and produces system parameters params. K is a probabilistic key generation algorithm that takes
a security parameter κ and outputs a private and public key pair (ski, pki). The re-encryption
key generation algorithm RK takes as input a private key ski and another public key pkj, and
outputs a re-encryption key rki→j. The probabilistic encryption algorithm ER gets a public key pki
and a plaintext M , and outputs ci = ER(pki,M). The (probabilistic) re-encryption algorithm RE
gets as input a ciphertext ci under pki and a re-encryption key rki→j, and outputs a re-encrypted
ciphertext cj = RE(rki→j , ci) for pkj. The decryption algorithm DR takes private key skj and a
ciphertext cj , and outputs M = DR(skj, cj) or an error ⊥. We base our implementation on the
schemes of [1].

2.2 Model Architecture

The proposed new cloud identity management model relies on a federated ap-
proach. Thereby, dependency on one single cloud identity broker is removed by
using multiple cloud identity brokers that are able to communicate with each
other. Users and service providers can select their preferred cloud identity broker
for authentication, thus both identity brokers can actually provide and support
different functionality. The only prerequisite is that identity data transfer is
possible between the individual cloud identity brokers. Figure 1 illustrates this
federated cloud identity broker-model.

Fig. 1. Federated Cloud Identity Broker-Model
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In the following, we briefly describe the components involved:

User: A user wants to access protected resources from a service provider. For
identification and authentication, the user relies on her favorite cloud identity
broker (user’s home broker), which manages different identity providers and
attribute providers the user is registered with.

Service Provider: A service provider offers various services to users and re-
quires proper identification and authentication.

Identity Provider: The identity provider stores user’s identity data. Further-
more, the identity provider is responsible for user identification and authen-
tication.

Attribute Provider: The attribute provider stores additional attributes of the
user’s identity data. These additional attributes can be retrieved from the
attribute provider during an authentication process.

Home Broker: The user’s home broker constitutes the cloud identity broker
the user is affiliated with. The user trusts this broker and has a contractual
relationship with it. The home broker manages all identity providers and
attribute providers, where the user is registered with.

Service Provider Broker: The service provider broker (SP broker) has an
affiliation with the service provider the user wants to authenticate. The SP
broker manages the communication with the user’s home broker for the
service provider.

2.3 Requirements

When designing this new federated cloud identity broker-model, we kept the fol-
lowing requirements in mind, which need to be fulfilled:

Individual Selection of the Cloud Identity Broker: Both users and ser-
vice providers are able to individually select the cloud identity broker of
their choice.

Trust: The service provider and identity provider are trusted, whereas the cloud
provider which hosts and operates the identity broker, is assumed to be semi-
trusted (honest but curious). This means, the identity broker works correctly,
but might be interested in inspecting users’ identity data. With our model
we can also assume the identity providers to be semi-trusted.

Privacy: For our model we demand the support of the privacy characteristics
user-centricity (the user always stays under full control on which data are
disclosed to the service provider and cloud identity broker) and selective
disclosure (the user is able to select the amount of data to disclose to the
service provider and cloud identity broker). Furthermore, users’ identity data
should be treated confidential and users’ privacy must be preserved with
respect to all entities in the cloud.

Easy Integration into Existing Infrastructures: The new model should be
easily integrable into existing infrastructures, meaning that service providers
and identity providers can easily connect to the cloud identity broker through
standardized and already existing interfaces.
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3 Concrete Model and Proof of Concept

Subsequently, we provide details of the model by means of a proof of concept im-
plementation. Thereby, we designed and developed one demo service provider,
two cloud identity brokers (the user’s home broker and the SP broker), one
attribute provider, and additionally integrated two existing identity providers,
i.e., Twitter and one self-hosted OpenID provider. Figure 2 illustrates the im-
plemented architecture and its components, which will be described in detail in
the next subsection.

Fig. 2. Implementation Architecture of the Federated Cloud Identity Broker-Model

In order to meet the previously defined requirements, three additional com-
ponents need to be introduced. These new as well as the other components will
be described in detail in the next subsection.

3.1 Components

In this section we give implementation details on the individual components.

Demo Service Provider: The demo service provider has actually no partic-
ular functionality, it just requires proper user identification and authenti-
cation. To minimize the amount of data transferred and to respect user’s
privacy, the service provider is able to request only specific attributes from
the user for service provisioning. In addition, the service provider can request
a certain level of quality for the identity and the authentication process. This
form of quality assurance is modeled as authentication levels, similar to the
ones proposed by the NIST [16], STORK [10], or ISO/IEC [12].
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SP Broker: The SP broker has been selected by the service provider and thus
they share a contractual relationship. The SP broker communicates with the
user’s home broker and forwards the authentication request to it. Addition-
ally, the SP broker offers a user interface where the user can provide location
information of her home broker.

Home Broker: The location of the user’s home broker is identified via a user-
specific URL, which points to this broker. The URL format is similar to the
one used by the OpenID protocol. The user-customized URL is not persis-
tent and can be changed by the user anytime. Before being able to use the
functionality of the home broker, the user has to register with it. The home
broker holds metadata for the user which include the identity providers the
user is able to use and is registered with, and which attribute providers can
be connected. The home broker communicates with the identity providers
for user identification and authentication and with the attribute providers
for attribute transfer. During the authentication process, the home broker
presents the user an identity provider selection page and the requested at-
tributes from the service provider. Thereby, the user can select the identity
source the requested attributes should be retrieved from. If data are re-
trieved from different identity data sources (e.g., from an identity provider
and an attribute provider), the home broker does a mapping to a common
(semantic) format.

Broker Authority: The broker authority is responsible for managing the trust
relationships between cloud identity brokers. For that, it issues certificates for
signature public keys of the individual brokers. The respective signing keys
are used to sign messages exchanged between brokers, ensure an authentic
communication channel, and thus verify the trust relationships. Note that
this is merely a virtual entity and any (set of) mutually trusted certification
authorities will be sufficient in practice.

Twitter: In our scenario, we use Twitter as an identity provider. When regis-
tering, Twitter stores a couple of user attributes such as the user’s full name
or language.

OpenID Provider: In this implementation we set up our ownOpenID provider.
The reason is that we want to ensure confidentiality of user’s attributes with
respect to the identity provider and the two brokers. To achieve this, the user
encrypts her attributes under the user’s public key of a proxy re-encryption
scheme before storing them at the OpenID provider. At this stage, only the
user is able to decrypt the attributes again. The sole attribute, which is visible
in plaintext to the OpenID provider, is the user’s OpenID identifier. A similar
approach is discussed in [14], however, in this paper data are not encrypted
by the user but by a host organization.

Attribute Provider: For the attribute provider we use the same approach as
for the OpenID provider. Hence, the user stores her identity data at the at-
tribute provider in encrypted format only. The only attribute the attribute
provider is able to inspect in plaintext is an identifier to link the encrypted
attributes to a specific user. At the attribute provider, no explicit user au-
thentication is required.
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Re-Encryption-Key Generator: The re-encryption-key generator is an en-
tity that runs directly in the user’s domain to avoid any private key transfer
to another party. In our implementation, the user allows her identity data,
which are encrypted for her and stored at the identity/attribute provider,
to be re-encrypted by the home broker for a service provider. This way, the
identity data remains always confidential even if routed through the iden-
tity brokers residing in the cloud. The functionality of the re-encryption-key
generator is computing the re-encryption rkU→SP by taking the private key
of the user skU and the public key of the service provider pkSP.

Encryption Service: The encryption service enables the encryption of data
coming from an identity provider such as Twitter, which does not support
storage of encrypted attributes, by the user. Hence, identity data stays al-
ways confidential before transmission to the cloud identity brokers.

3.2 Communication Interfaces

We now briefly describe the used communication protocols and how they were
implemented. We thereby describe the interfaces and protocols, respectively,
between two entities at a time. All communication interfaces are secured using
SSL/TLS for transport security, hence this fact will not be mentioned again
explicitly in the individual descriptions.

Service Provider ↔ SP Broker: Actually, arbitrary identity and authenti-
cation protocols can be used for this communication channel. Nevertheless,
in our implementation we relied on an amended version of the SAML Auth-
nRequest/Response Protocol [5] using the SAML HTTP-POST Binding [4].
In particular, amendments are the inclusion of requested attributes as well
as the requested authentication level in the SAML authentication request. In
fact, the amended protocol is similar to the STORK protocol [11], which will
play an important role in identification and authentication processes across
Europe in the near future1. Trust is established by means of signature cer-
tificates. However, there is no explicit trust framework required, trust can
be negotiated bilaterally.

SP Broker ↔ home Broker: Again, for this communication path we rely on
the amended SAML protocol. Exchanged messages are also digitally signed
(certificates are signed by the trusted broker authority). This ensures that
only by the authority authorized brokers are able to trust and communicate
with each other.

Home Broker ↔ Twitter: For retrieving identity data from Twitter we used
the OAuth 1.0 protocol. However, the communication path is intercepted
by the trusted encryption service that allows users to encrypt their identity
data before presenting it to the home broker.

1 There are only minor differences between our used SAML protocol and the STORK
protocol. Differences mainly target the format and semantic of transferred attributes,
as e.g., single encrypted attributes are not supported within STORK.
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Home Broker ↔ OpenID Provider: For this communication channel we im-
plemented the OpenID 2.0 interface. This is somewhat related to the work
in [14].

Home Broker ↔ Attribute Provider: For simplicity, in our proof of con-
cept implementation we use a customized web service interface. The request
message includes requested attributes and an identifier of the user, the re-
sponse then simply returns the corresponding encrypted attributes.

Home Broker ↔ re-encryption-key Generator: Communication is based
on the SAML AttributeQuery/Response Protocol [5]. The attribute query
thereby includes the public key of the service provider pkSP. By calling the
local re-encryption-key generator with the users private key skU the user
obtains the re-encryption key rkU→SP, which is wrapped in the response. In
our implementation we use a non-interactive, unidirectional, and single-use
proxy re-encryption scheme of [1].

Broker Authority ↔ SP Broker/Home Broker: The exchange of certifi-
cates between the broker authority and the brokers is actually an offline
process. Exchange is carried out using appropriate organizational mecha-
nisms.

3.3 Process Flows

Subsequently, we present the secure identification and authentication process
using the implementation of our proposed federated cloud identity broker-model.
Identification and authentication is explained by contacting the OpenID and the
attribute provider.

Setup: The following setup is required before running an authentication process:

– We assume the user trusts the service provider, Twitter, the encryption ser-
vice, and the re-encryption-key generator (latter runs in the user’s domain).
In contrast to that, we assume the cloud identity brokers (SP broker and
home broker), the OpenID provider, and the attribute provider semi-trusted
(honest but curious), meaning that they work correctly but might be inter-
ested in inspecting user’s data.

– The broker authority has certified the trustworthiness of the two brokers
by certifying the signature public keys and thus verifying the trust rela-
tionship between the brokers. We denote the respective signature key pairs
as (sk′SP−Broker, pk

′
SP−Broker) and (sk′Home−Broker, pk

′
Home−Broker). These keys are

used for signing the SAML messages exchanged between the two brokers.
– A bilateral trust relationship has been negotiated between the service

provider and the SP broker. To enforce this trust relationship on techni-
cal level, certified signature public keys have been exchanged. We denote
these signing key pairs of the SP (sk′SP, pk

′
SP) and assume that the SP broker

uses (sk′SP−Broker, pk
′
SP−Broker). These keys are used for signing the exchanged

SAML messages between SP and SP Broker. In addition, the service provider
holds a proxy re-encryption key pair (skSP, pkSP).
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– A bilateral trust relationship exists between the user’s home broker and the
individual identity providers. The establishment of this trust relationship
is protocol dependent, however, both channels (between home broker and
Twitter and between home broker and the OpenID provider) are authentic.

– The user possesses a proxy re-encryption key pair (skU, pkU) and has al-
ready stored personal attributes in encrypted format at the OpenID provider
and the attribute provider. We denote a set of user encrypted attributes as
cUi = (cU1 , . . . , cUm) and the corresponding plaintext attributes as ai =
(a1, . . . , am).

– The user has a contractual relationship with the home broker, has regis-
tered in her profile the identity/attribute providers she wants to use, and
has stored appropriate authentication credentials for the attribute provider.
Additionally, the user holds a unique personal identifier (uniqueID) to be
identifiable at the home broker.

Authentication Process:

1. A user wants to access a protected resource from the service provider.

2. Since the service provider requires authentication, it forwards the user to
its affiliated SP broker. This SAML authentication request includes the set
of attributes (req attr), which should be provided during the authentication
process, the requested authentication level (req auth level), and the public en-
cryption key pkSP of the service provider. The request is signed by the service
provider resulting in signature σSP = S(sk′SP, req attr‖req auth level‖pkSP)

3. First, the broker verifies σSP . Furthermore, the SP broker asks the user to
provide location information of her home broker. The user enters a URL,
which is a composition of a uniqueID of the user at the home broker and the
home broker’s domain (e.g., https://user.home-broker.com).

4. The SP broker again creates a signatureσSP−Broker = S(sk′SP−Broker , req attr‖
req auth level‖pkSP‖uniqueID) and forwards the authentication request of the
SP to the user’s home broker (using the SAML protocol).

5. The home broker verifies σSP−Broker . Based on the uniqueID, the user is
identified at the home broker. The home broker presents the user a web
page, which shows the requested attributes req attr of the service provider.
Additionally, the user can select at which identity provider she wants to au-
thenticate (only those identity providers are shown, which were registered by
the user and which support the requested authentication level req auth level).
Furthermore, the user can select for every individual attribute if it should
be retrieved from the identity provider – if providable – or from an affil-
iated attribute provider. In our example we assume that the user selects
the OpenID provider as an identity provider and that additional attributes
should be retrieved from the attribute provider.

6. Based on the user’s OpenID identifier the user is redirected to the OpenID
provider.

7. The user authenticates at the OpenID provider using appropriate credentials.

https://user.home-broker.com
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8. The attributes, which have been selected for retrieval from the OpenID
provider, are returned to the home broker in encrypted fashion. We assume
the user encrypted attributes (cU1 , . . . , cUj ) to be returned.

9. Since in our scenario only a subset of the requested attributes can be re-
trieved from the OpenID provider, additional attributes are fetched from the
attribute provider. Communication and retrieval is based on a pre-negotiated
access token as used in OAuth, which is shared between the home broker
and the attribute provider, to identify the user at the attribute provider and
allow the broker access to the user’s data.

10. The remaining attributes (cUk
, . . . , cUm) are returned to the home broker in

encrypted format.
11. Now all requested attributes (cU1 , . . . , cUm) are located at the home broker,

but they are still encrypted for the user. To make these attributes readable
for the SP, re-encryption needs to be applied. A re-encryption key generation
request is sent by the home broker to the local re-encryption key generator,
which includes the public key of the service provider pkSP. The user addi-
tionally has to provide the key generator access to her private key skU.

12. The re-encryption key generator computes the re-encryption key from the
service provider’s public and the user’s private key and returns the re-
encryption key rkU→SP = RK(skU, pkSP) to the home broker.

13. The home broker re-encrypts all collected attributes for the service provider
resulting in (cSP1 . . . , cSPm) by running cSPi = RE(rkU→SP , cUi) for all 1 ≤
i ≤ m. Additionally, it wraps the re-encrypted attributes and the actual au-
thentication level auth level into a SAML assertion and computes a signature
σHome−Broker = S(sk′Home−Broker , cSP1‖ . . . ‖cSPm‖auth level).

14. The SAML assertion is returned within the authentication response to the SP
broker. The SP broker verifies σHome−Broker , computes a signature
σSP−Broker = S(sk′SP−Broker , cSP1‖ . . . ‖cSPm‖auth level) and forwards the au-
thentication response to the service provider.

15. The service provider verifies the received response by verifyingσSP−Broker and
obtains the decrypted attributes (a1 . . . , am) by running ai = DR(skSP, cSPi)
for all 1 ≤ i ≤ m.

16. Based on the decrypted identity and attribute data (a1 . . . , am) and the
auth level the service provider is able to provide the desired protected re-
sources to the user.

In contrast to the above description, Twitter does not allow to store encrypted
data. However, we still are able to achieve privacy when using Twitter. In this
case, identity data needs to be encrypted by the user before being transferred
from Twitter to the home broker.

Recurring Authentications: Most of the time, running through the com-
plete authentication process described before might be cumbersome for the user.
Therefore, our implementation is able to remember some selections the user did
in her first authentication process, if the user wants so. For instance, in a recur-
ring authentication process the steps 3 and 4 (indicating the home broker) can be
omitted, because the SP broker is able to remember user’s choice during her first
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authentication. In addition, step 9 (providing authentication credentials to the
identity provider) can be skipped if single sign-on (SSO) [6] is supported by the
selected identity provider. Also the key generation steps 13-15 are not necessary,
as the re-encryption key for a particular service provider can be stored for re-use
in the user’s profile at the home broker. Avoiding as many user interactions as
possible definitely increases usability of our solution.

4 Evaluation and Discussion

In this section we evaluate our model and implemented solution regarding the
requirements specified in Section 2.3.

Individual Selection of the Cloud Identity Broker: Both, the user and
the service provider are able to select the cloud identity broker of their
choice. The service provider just needs to establish a trust relationship with
the broker and implement the communication interface it offers. In addition,
the user can contract another broker and registers her desired identity and
attribute providers. The user is identified by the broker by a uniqueID.

Trust: Trust between two broker is grounded through the broker authority. The
pairwise trust relationships between service provider and SP broker, and
between home broker and identity provider depend on bilateral agreements.
There is no direct trust relationship between service provider and identity
provider because the brokers act as intermediary. Hence, trust is brokered
between service provider and identity provider.

Privacy: The requirement of user-centricity is achieved because individual at-
tributes can be stored encrypted for the user only at an identity provider or
attribute provider. If this is not possible (e.g., with Twitter), a trusted en-
cryption service can be used as intermediary to encrypt identity data before
transmitting it to the cloud identity broker. Only the user is in control to
decrypt the data or to generate re-encryption keys. We support selective dis-
closure because the user is able to select the attributes she wants to transfer
at the home broker (i.e. the service provider only gets the attributes which it
has requested and the user gave consent for). In addition, confidentiality of
user attributes with respect to the cloud identity broker is achieved through
proxy re-encryption.

Easy Integration into Existing Infrastructures: The complete model can
be easily adopted by service providers. Service providers just need to es-
tablish a contractual and trust relationship with their desired SP broker.
Furthermore, they just need to implement one specific interface to the SP
broker and not many interfaces to different identity providers as required
in traditional settings. Implementation efforts can be reduced by provid-
ing appropriate software libraries. Additional identity providers or attribute
providers can be easily integrated by home brokers. The brokers just need to
implement their communication protocols offered by the identity providers
or attribute providers.
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5 Conclusions and Future Work

In our proof of concept implementation we showed that federating identity bro-
kers provides greater flexibility to users in identity/attribute provider selection.
However, such a brokered trust relationship might bring up liability discussions,
in particular, if identity providers are grounded by national law.

Besides setting up a more sophisticated and complex network of cloud identity
brokers, future work will include the integration of additional providers such as
Facebook, Google, or even national eID solutions (e.g., based on ideas related
to [17]). Moreover, the integration of the STORK framework [13] could boost
the number of (high quality) identity providers supported. A possible approach,
how this could be realized, has been discussed in [18].
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Abstract. Prêt à Voter is an end–to–end verifiable voting scheme, that
uses paper based ballot forms that are turned into encrypted receipts.
The scheme was designed to be flexible, secure and to offer voters a famil-
iar and easy voting experience. Secrecy of the vote in Prêt à Voter relies
on encoding the vote using a randomized candidate list in the ballots.
In a few variants of Prêt à Voter a verifiable shuffle was used in the
ballot generation phase in order to randomize the candidates. Verifiable
shuffles are cryptographic primitives that re–encrypt and permute a list
of ciphertexts. They provide proofs of correctness of the shuffle and pre-
serve secrecy of the permutation. This paper proposes a new verifiable
shuffle “D–Shuffle” that is efficient. We provide a security proof for the
D–Shuffle. Furthermore, we show that using the D–shuffle for generating
ballots in Prêt à Voter scheme ensures its security against: “Authority
Knowledge Attack” and “Chain of Custody Attack”.

Keywords: E-voting, Verifiable Shuffle, Zero knowledge proofs.

1 Introduction

A shuffle is a permutation and re-randomization of a set of ciphertexts. Shuffling
itself is relatively easy; the challenge is to provide a proof of correctness of a
shuffle that anyone can verify without revealing the permutation. A mix-net is a
series of chained servers each of which applies a shuffle to some input ciphertexts,
before passing the output to the next server. Mix-nets were used widely in e-
voting schemes. The main motivation in using them is to submit encrypted votes
into a mix-net where every mix-server shuffles the votes. The output of the mix-
net is then decrypted providing anonymity to the voters. Using verifiable shuffles
prevents mix-servers from cheating.

In this paper we focus on one of the well known end-to-end verifiable schemes:
Prêt à Voter . The Prêt à Voter approach to verifiable voting, randomizing
candidate order on ballot to encode votes, was first proposed by Ryan in [16].
Since then several papers were introduced to add extra interesting properties to
the original scheme [16, 18, 21]. Verifiable shuffles were used in Prêt à Voter either
to mix the encrypted receipts before publishing them on a public bulletin board,
and/or to randomize the candidates on the ballot. The shuffle we propose in this
paper is focused on the latter case.

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 104–117, 2014.
c© IFIP International Federation for Information Processing 2014
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1.1 Prêt à Voter Overview

In “Prêt à Voter ” ballots are given to voters via a confidential channel. The
ballot has a left hand side (LHS) with a randomly permuted list of candidates,
and a right hand side (RHS) which carries an encryption of the order of the
candidates in the LHS, usually referred to as the onion for historical reasons.
Each ballot has a unique serial number (which could be a hash of the onion),
(SN), for administrative purposes such as searching for the ballot on the bulletin
board, etc (See Figure 3, Original scheme).

The voting takes place in the polling station. In the booth, the voter places a
mark next to the name of the candidate she wants to vote for. She separates the
RHS from LHS, shreds the LHS and takes the RHS to an official who scans and
sends it to the tallying authority. A signed copy of the RHS is given to the voter
to keep. The onions are used in the tabulation to interpret the voter’s mark on
the scanned RHS, enabling the tallying authorities to count the votes. The voter
can verify that her vote has been received by checking the onion, serial number
and choice of index, against the published results on the bulletin board.

The details of the procedure of tabulation, randomization of ballots, tallying,
distributing the ballots, etc, varies in the different versions of Prêt à Voter [16,
18, 21]. On a conceptual level the procedure is the same. Random auditing of
the ballots is used in all versions of Prêt à Voter to ensure the well-formedness
of ballot forms. The auditing procedure involves decrypting onions on selected
ballot forms and checking that they correspond to the LHS order. Given that the
authorities responsible of creating the ballots can not predict which ballots will
be chosen for auditing, it is hard to cheat without a high possibility of getting
caught.

1.2 Motivation and Contribution

The Victorian State elections [5, 4, 3] considered developing the first state
government-level universally verifiable public e-voting system in the world, based
on Prêt à Voter . The proposed mechanism of constructing the ballot was adopted
from [21] and is based on using a verifiable shuffle to permute the candidates on
the ballot. The proof of shuffle is used as proof of well formness of the ballot.
The scheme in [21] had two vulnerabilities:

– Authority knowledge attack: All ballots are generated by one authority.
Therefore this authority is trusted to maintain both privacy and receipt-
freeness. Generating the ballots in a distributed fashion is desirable, because
it ensures that no one but the voter ever learns the candidate ordering.
However, there are three major obstacles preventing from that in [21]:

• Proving the ballot is well-formed in the distributed fashion.

• Printing the ballot without the printer(s) learning the order.

• Ensuring robustness so that the scheme can be run even in the presence
of some dishonest election officials.
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– Chain of Custody: The ballot secrecy in Prêt à Voter relies on the fact that no
one can know the order of the candidates unless they own the decryption key
of the onion. However, the ballot form LHS contains the candidate order as
plaintext. This means that the chain of custody between the ballot generation
and until the ballot reaches the voter should be trusted. Ryan and Peacock
have discussed an alternative approach [17] referred to as Print–on–Demand.
The idea is to print ballot forms at the point they are needed. The ballot will
have two onions–the LHS one which can be decrypted in the polling station,
and RHS one which can be decrypted by the Prêt à Voter tellers as in the
original scheme.

The verifiable shuffle needs to be efficient to cope with the number of ballots
generated and verified in the election time. In this paper we propose an efficient
and secure verifiable shuffle for that purpose referred to as the D–shuffle (it uses
disjunctive proofs for verifying the shuffle hence the name). The D–shuffle can
also provide a distributed way of creating the ballot and can provide parallel
shuffling that enables Print–on–Demand with minimum computational cost.

2 The Design of the Verifiable D–Shuffle

In the design of the D–Shuffle we require an encryption scheme with Homo-
morphism and Re-encryption properties. Assume we have an encryption scheme
E = (KeyGen,Enc,Dec). Let the key pair generated be (pk, sk). Let r1, r2
be the randomization factors used in encrypting. Let M,M1,M2 be plaintext
messages. The properties we require in this paper are:

– Homomorphism: Multiplying two ciphertexts results with a third ciphertext
such that: Enc(pk,M1, r1).Enc(pk,M2, r2) = Enc(pk,M1 +M2, r1 + r2);

– Re-encryption: An encryption CT = Enc(pk,M, r1) can be re-encrypted
such that ReEnc(CT, r2) = Enc(pk,M, r1 + r2).

The general idea behind our shuffle is derived from Theorem 1. We explain the
Theorem using Definition 1 and prove it as follows;

Definition 1. Sequence M = (m1, . . . ,mn) is a super–increasing sequence if
every element of the sequence is positive integers and is greater than the sum of
all previous elements in the sequence (i.e. mk >

∑k−1
i=1 mi ).

Theorem 1. Let M = (m1, . . . ,mn) be a super–increasing sequence and S =∑n
i=1 mi. If X = (x1, . . . , xn) is a solution of

S =
n∑

i=1

xi

such that ∀j ∈ {1, . . . , n} : xj ∈ M , then (x1, . . . , xn) is a permutation of M .
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Proof. Recall the subset sum problem: a sequence of integers M and an integer
S, find any non-empty subset X that sums to S. This problem is proven to
have either one unique solution or none [11] over super-increasing sequences.
Given Theorem 1 assumes the existence of the subset X ⊆ M and assumes that

S =

n∑
i=1

xn then by the uniqueness property X is a permutation of M .

2.1 Intuition Behind the Design

We explain the intuition behind our design of the D–Shuffle using Theorem 1.
The general idea is to assume all elements of Theorem 1 are encrypted and
we prove the theorem holds using zero knowledge proofs. Let M be a super–
increasing sequence that is encrypted and fed to the D–Shuffle as input. Assume
the output is the encrypted version ofX = (x1, . . . , xn). According to Theorem 1
the output is a permutation if the following two conditions hold:

1. The Belonging Condition: ∀j ∈ {1, . . . , n} : xj ∈ M .
In the D–Shuffle this is equivalent to saying “All output ciphertexts belong
to the list of all input ciphertexts”. We require the disjunctive re-encryption
proof shown in Figure 1.

2. The Summation Condition: S =
∑n

i=1 mi =
∑n

i=1 xk.
In the D–Shuffle this is equivalent to saying that the homomorphic summa-
tion of the input ciphertexts and the homomorphic summation of the output
ciphertexts are encryptions of the same plaintext value (i.e. the output sum
is just a re–encryption of the input sum). We require the re-encryption proof
shown in Figure 2.

Statement: Given the ciphertext c̀j and list of ciphertexts {c1, . . . , cn} prove
the knowledge of r such that the following is true: [c̀j = ReEnc(ci, r)] ∧ [ci ∈
{c1, . . . , cn}]
Creating the proof:
πj = DRE.Proof({c1, . . . , cn}, c̀j , pk, r)
Verifying:
{0, 1} = DRE.V erify({c1, . . . , cn}, c̀j , pk, πj)

Fig. 1. Disjunctive Re-Encryption (DRE)

Statement: Given two ciphertexts c, c̀ prove knowledge of r such that: c̀ =
ReEnc(c, r)
Creating the proof: π = RE.Proof(c, c̀, r)
Verifying: {0, 1} = RE.V erify(c, c̀, π)

Fig. 2. Re-Encryption Zero Knowledge Proof (RE)

2.2 The Construction of the D–Shuffle

Let the plaintext we intend to encrypt and shuffle be the super–increasing se-
quence M = (m1, . . . ,mn). We start with creating a list {c1, . . . , cn} such that
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ck = Enc(pk,mk, 1). Note that we can verify correctness of the encryption easily
since the randomization is 1.

The Shuffling Procedure:

1. Choose r1 . . . rn random values.
2. Create the output list {c̀1, . . . , c̀n} of ciphertexts by re–encrypting and per-

muting such that c̀j = ReEnc(ck, rk) for some ck ∈ {c1, . . . , cn}.
3. Create πj = DRE.Proof({c1, . . . , cn}, c̀j, pk, r).

4. Let S =

n∑
k=1

mk and R =

n∑
k=1

rk.

5. Let C = Enc(pk, S, n + 1) =
n∏

k=1

ck. Note that the randomization factor

equals n+ 1 since the randomization factors of the ck is all equal to 1.

6. Let C̀ =

n∏
k=1

c̀k = Enc(pk, S, n+ 1 +R) = ReEnc(C,R).

7. Create Re-Encryption Zero Knowledge Proof π̄ = RE.Proof(C, C̀, R).

One can have a mix–net where each mix–server i runs the D–shuffle on the
output of the server i− 1.

Verifying the Shuffle:

1. Compute from the input ciphertexts C =
n∏

k=1

ck.

2. Compute from the output ciphertexts C̀ =

n∏
k=1

c̀k.

3. For all j s.t. j ∈ {1, . . . , n}; Check DRE.V erify({c1, . . . , cn}, c̀j, pk, πj) = 1.

4. Check RE.V erify(C, C̀, π̄) = 1.

2.3 Security of the D–Shuffle

There are three properties that a verifiable shuffle should achieve: secrecy of the
permutation, soundness of the proofs, and correctness of the proofs.

– Correctness of the verification of the shuffle implies that an honest prover
(shuffler) has to be able to create the re-encryption and zero knowledge proofs
such that they verify correctly. This is achieved by assuming correctness of
the zero knowledge proofs used in Figure 1 and Figure 2.

– Soundness of the verification of shuffle implies that no dishonest prover (shuf-
fler) can produce a proof of shuffle that verifies correctly. This is guaranteed
with the soundness of the proofs and the uniqueness property in Theorem 1.

– Secrecy of the permutation depends on two security notions, the zero knowl-
edge property of the proofs and on the security of the encryption scheme
(see appendix, IND-V-CPA,IND-V-CCA1, or IND-V-CCA2).
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2.4 On Instantiations of the D–Shuffle

The D–Shuffle requires homomorphic properties to verify the sums. Exponential
ElGamal and Paillier were heavily used for voting applications for their homo-
morphic properties. In the Victorian State elections [5, 4, 3] the suggestion was
to use Exponential ElGamal. In this paper we focus on having general construc-
tions of the D–shuffle and Prêt à Voter . Recent security analysis showed that
using IND–CCA2 encryptions for creating ballots [1, 2, 9] is sufficient to guaran-
tee secrecy of vote. If we require both homomorphic properties and IND–CCA2
security then we can use Naor–Yung encryptions [1, 2, 9] or Cramer–Shoup en-
cryption [13, 20]. The two mentioned encryption schemes have an extractable
part of the cipher that is homomorphic.

2.5 On the Efficiency of D–Shuffle

The main advantage of the D–Shuffle is the fact that it is non–interactive. The
first non-interactive verifiable shuffle was proposed in [7], however, the proofs
were extremely large 15n + 120, where n is the number of ciphertexts being
shuffled. In a more recent result by Lipmaa and Zhang [12], the size of the proof
dropped to 6n+11. In the D–shuffle assuming we use ElGamal Exponential, the
disjunctive zero knowledge proof for an ElGamal encryption is 2n and the zero
knowledge proof of Re-Encryption for ElGamal is two more elements, causing
the total to drop to 2n+2. Jakobsson et al [8] proposed a technique for making
mix nets robust and efficient, called randomized partial checking. The general
idea is to ask each server to reveal a pseudo-randomly selected subset of its
input/output relations, therefore providing strong evidence of correctness. The
secrecy of the permutation also gets compromised using such a technique to a
certain level [10]. The D–shuffle allows the verifier to choose the balance between
“correctness proofs vs efficiency” as they require without compromising secrecy.
The verifier can choose randomly the number of disjunctive proofs he would like
to obtain since the proofs are independent and given the disjunctive proofs do
not reveal any input/output relations, the permutation remains secret.

3 The D-Shuffle Used for Prêt à Voter

The ceremony of the voting, tabulation and verification of the vote remain un-
changed as described in §1.1. Each candidate is presented in a code mi such
that the set (m1, . . . ,mn) is super–increasing and is publicly announced. The
onion contains an encrypted list of the different candidates i.e. a permutation of
{Enc(pk,m1, r1), Enc(pk,m2, r2), . . . , Enc(pk,mk, rk)} that corresponds to the
order of the candidates on the LHS.

The ballot creation uses the D–Shuffle such that each mix–server i verifies the
zero knowledge proofs of server i− 1, shuffles the outputs of i− 1 and publishes
the new zero knowledge proofs on a bulletin board. The initial ciphertexts input
to mix–net, i.e. server i = 1, is {Enc(pk,m1, 1), . . . , Enc(pk,mk, 1)} which is
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verifiable by everyone since the randomization factors are 1 and the candidate
codes is public information. The final list of ciphertexts is printed as the onion
on the ballot. The auditing of the ballot and checking its well formness can be
done in three ways depending on level:

– Extreme Auditing: Verifying all the zero knowledge proofs on the bulletin
board. This can be done by any entity that has the means and computational
powers. Partial checking of the proofs can be applied here.

– Basic Auditing: Checking the onion on the ballots against the Serial Number
SN on the bulletin board. This can be by any entity that is willing to act as
an observer to the elections and no computational power or cryptographic
knowledge is required.

– Voter Auditing: Decrypting the RHS and checking it against the LHS. This
is the traditional Prêt à Voter technique used by the voters to audit the
ballots if they want too.

Among the three techniques, the voter auditing technique is the most user
friendly for the voters. However, ballots used for auditing using that technique
should not be used for voting. This can be enforced because the only way to
audit is to ask the authorities with the decryption key to reveal the candidates
order in the onion and at that point the SN is flagged as unusable for election.

Multi-authority Ballot Generation. Each mix-server in the mix-net can be
considered an independent authority such that the values that correspond to the
ciphertexts published on the final ballot are unknown to any of them. Therefore
the privacy and receipt-freeness can not be broken by any of the mix-servers or
any number of them. To break privacy and receipt-freeness all mix-servers have
to collude. This partially solves “Authority knowledge attack”:

– Proving the ballot is well-formed in the distributed fashion. Each mix-server
publishes enough zero knowledge proofs to verify that the shuffling is correct
and honest. Therefore the final printed ballot is proven well formed given all
the proofs published verify correctly.

– Ensuring robustness so that the scheme can be run even in the presence
of some dishonest election officials. This is done using the three auditing
techniques mentioned earlier.

Print–On–Demand vs Preprinted Ballots. In Prêt à Voter secrecy of the
ballot relies on the assumption that the LHS was not revealed to any entity other
than the voter. This means that the chain of custody between the creation of a
ballot form and its use in a polling station needs to be trusted. Alternatively,
the ballot can be printed in the polling station at the time of the vote [19].
This is what is referred to as print–on–demand scenario. The ballot given to the
voter will have two onions one that can be decrypted in the booth in private
and printed out to resemble the LHS and the other is the traditional Prêt à
Voter onion existing on the RHS (See Figure 3) which is decrypted in the tallying
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Fig. 3. Prêt à Voter : The Ceremony

Statement: Given the pair of ciphertext ( `c1,j , `c2,j) and list of pair of ci-
phertexts {(c1,1, c2,1), . . . , (c1,n, c2,n)} prove the knowledge of r1, r2 such that
the following is true: [ `c1,j = ReEnc(c1,i, r1)] ∧ [ `c2,j = ReEnc(c2,i, r2)] ∧
[(c1,i, c2,i) ∈ {(c1,1, c2,1), . . . , (c1,n, c2,n)}]
Creating the proof:
πj = DDRE.Proof({(c1,1, c2,1), . . . , (c1,n, c2,n)}, ( `c1,j , `c2,j), pk, r1, r2)
Verifying:
{0, 1} = DDRE.V erify({(c1,1, c2,1),. . . ,(c1,n, c2,n)}, ( `c1,j , `c2,j), pk, πj)

Fig. 4. Disjunctive Double Re-Encryption

phase. This avoids the chain of custody issues. Ballot forms can be audited in
the same way as previously, by printing the RHS first, and then checking that it
matches the LHS. The voting experience with the exception of printing the LHS
remains the same too. To achieve print–on–demand one can provide a double
ciphertext disjunctive zero knowledge proof as shown in the Figure 4 in place of
the disjunctive proofs used earlier.

The print-on-demand solves the remaining two problems:

– Chain of Custody: The ballots are generated such that parallel shuffling takes
place and no mix server knows the final order. The ballot generated does not
contain any plaintext and the LHS is encrypted from the point the ballot is
generated and until it reaches the polling station.

– Authority knowledge attack regarding printers: The double ciphered mix-
net can be implemented such that we have multiple printers in the booth.
Assume we have three printers in each booth, then we can replace the key
pair(pkL, skL) with (pkp1, skp1), (pkp2, skp2) and (pkp3, skp3). Each printer
outputs part of the LHS and none of the printers will fully know the ballot.
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4 Conclusion

We propose a new verifiable shuffle referred to as the D–Shuffle. The new shuffle
is efficient, sound, complete, and ofcourse reserves the secrecy of the permutation.
The D–shuffle when used for creating ballots in a Prêt à Voter scheme, it prevents
“Authority Knowledge Attack” and “Chain of Custody Attack”.
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A Secrecy of the D–Shuffle

We recall the definition of IND-CCA2, given a public-key encryption scheme
that consists of the three algorithms (KeyGen,Enc,Dec).

Definition 2. A public-key encryption scheme achieves IND-CCA2 security if
any polynomial time attacker only has negligible advantage in the attack game,
shown in Fig. 5. Note that the advantage is defined to be |Pr[b′ = b]− 1

2 |.

1. Setup. The challenger takes the security parameter λ as input, and runs
KeyGen to generate (pk, sk).

2. Phase 1. The attacker is given pk and can issue a polynomial number
of decryption queries with any input: Given C, the challenger returns
Dec(C, sk). At some point, the attacker chooses M0,M1 of equal length
and sends them to the challenger for a challenge.

3. Challenge. The challenger selects b ∈R {0, 1} and returns Cb =
Enc(Mb, pk) as the challenge.

4. Phase 2. The attacker can issue a polynomial number of decryption oracle
queries with any input except for Cb.

5. Guess: At some point the attacker terminates Phase 2 by outputting a
guess b′ for b.

Fig. 5. IND-CCA2 Game

In Definition 2, if we remove Phase 2 in the attack game then it becomes the
definition for IND-CCA1. Furthermore, if we completely disallow the attacker
to access the decryption oracle then it becomes the standard IND-CPA security.

A.1 Indistinguishable Vectors of Ciphertexts

To facilitate our security analysis of the D–Shuffle, we proposed a different se-
curity model (i.e. IND-V-CCA2 security) for public key encryption schemes. We
show that this new security model is equivalent to the standard IND-CCA2.



114 D. Khader

1. Setup. The challenger takes the security parameter λ as input, and runs
KeyGen to generate (pk, sk).

2. Phase 1. The attacker is given pk and can issue a polynomial number
of decryption queries with any input: Given C, the challenger returns
Dec(C, sk). At some point, the attacker chooses a list M1, . . . ,Mn of equal
length and two permutation P0, P1 and sends them to the challenger for
a challenge.

3. Challenge. The challenger computes ∀k ∈ {1, . . . , n};Ck = Enc(Mk, pk).
The challenger computes them according to P0, P1 such that:
{C̀1, . . . , C̀n} = P0({C1, . . . , Cn})
{C̃1, . . . , C̃n} = P1({C1, . . . , Cn}).
The challenger sets E0 = ({C̀1, . . . , C̀n}, {C̃1, . . . , C̃n}) and E1 =
({C̃1, . . . , C̃n}, {C̀1, . . . , C̀n}). The challenger randomly chooses b ∈ {0, 1},
and sends Eb to adversary.

4. Phase 2. The attacker can issue a polynomial number of decryption oracle
queries with any input except for C �∈ Eb.

5. Guess: At some point the attacker terminates Phase 2 by outputting a
guess b′ for b.

Fig. 6. IND-V-CCA2 Game

1. Setup. The challenger takes the security parameter λ as input, and runs
KeyGen to generate (pk, sk). He gives the public parameters to A who
forwards them to A†

2. Phase 1. Every time A queries the decryption oracle from A†, A† queries
the decryption oracle from the challenger. The response of the challenger
is forwarded to A.

3. Challenge. The A† sends M0, . . . ,Mn together with two permutations
(P0, P1), to A. A computes the ciphertexts C1, . . . , Cn such that Ci =
Enc(Mi, pk). The A forwards M0, M1 to the challenger. The chal-
lenger selects b ∈R {0, 1} and returns Cb = Enc(Mb, pk) as the
challenge. A assigns C0 = Cb and then permutes: {C̀1, . . . , C̀n} =
P0({C1, . . . , Cn}); {C̃1, . . . , C̃n} = P1({C1, . . . , Cn}); A sets: E0 =
({C̀1, . . . , C̀n}, {C̃1, . . . , C̃n}); E1 = ({C̃1, . . . , C̃n}, {C̀1, . . . , C̀n}); Finally
he flips a coin d and sends Ed to A

4. Phase 2. Querying the decryption oracle is constraint to not sending the
ciphertexts of the challenge.

5. Guess: A† returns a guess d̀. If d̀ = d, the adversary A guesses b̀ = 0 else
flip a coin to decide on b̀

Fig. 7. IND-V-CCA2 versus IND-CCA2

Definition 3. A public-key encryption scheme achieves IND-V-CCA2 security
if any polynomial time attacker only has negligible advantage in the attack game,
shown in Fig. 6.

In the model in Figure 6, if we remove Phase 2 in the attack game then it be-
comes the definition for IND-V-CCA1 (equivalent to IND-CCA1). Furthermore,
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if we completely disallow the attacker to access the decryption oracle then it
becomes the standard IND-V-CPA (equivalent to IND-CPA) security.
We proof the following theorem:

Theorem 2. If there exist an Adversary A† that breaks the IND-V-CCA2 then
their exist an Adversary A that can break the IND-CCA2 (See Figure 7)

Note that if b = 1 the simulation is unfaithful, however the probability of guessing
the right b̀ remains. Adding up the probability of winning when b = 0 leads to
ε
4 + 1

4 and probability of winning when b = 1 is 1
4 . Advantage of winning is:

AdvIND−CCA2(k) = |Pr[A winning] − 1
2 | =

ε
4 . This advantage is non-negligible

when ε is non-negligible.

A.2 On the Secrecy of the D–Shuffle Permutation

The two properties of correctness and soundness derive directly from the Zero
Knowledge proofs. In this section we elaborate more on the secrecy of the per-
mutation. Imagine their exist an adversary A that can guess the permutation of
the verifiable D–Shuffle. This adversary can be used as a subroutine for A† for
breaking the IND-V-(CPA,CCA1,CCA2) as follows:

– In the challenge, the adversary A† chooses M1, . . . ,Mn, P0, and P1 sends
them to C.

– He receives back Eb back. Note that Eb has two permuted lists.
– A† chooses the first list and simulates the zero knowledge proofs.
– A† sends the list and the simulated proofs to A.
– A should return either P0 or P1. If P0 is returned then A† answers back his

guess as b̀ = 0 otherwise b̀ = 1

Furthermore, the same adversary A can be used as a sub–routine for A‡ to
break the zero knowledge properties as follows:

– A‡ encrypts a list of M1 . . . ,Mn to obtain c1, . . . , cn,
– It permutes them to c̀1, . . . , c̀n.
– It queries the zero knowledge oracle for the disjunctive proofs of each cipher.
– Computes the Zero knowledge of the sum as done in Figure 2.
– Sends the proofs together with c̀1, . . . , c̀n to A.
– If the proofs are real then A should return back the expected permutation,

otherwiseA gives a guess which is unlikely to be the permutation (probability
is n!) and implies the zero knowledge proofs were a simulation only.

B Non-interactive Zero knowledge proofs

Equality between discrete logs: Proving knowledge of the discrete logarithm
x to bases f, g ∈ Z

∗
p, given h, k where h ≡ fx mod p and k ≡ gx mod p [15, 6].

Sign. Given f, g, x, select a random nonce w ∈R Z
∗
q . Compute Witnesses f ′ =

fw mod p and g′ = gw mod p, Challenge c = H(f ′, g′) mod q and Response
s = w + c · x mod q. Output signature as (f ′, g′, s)
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Verify. Given f, g, h, k and signature (f ′, g′, s, c), check f s ≡ f ′ · hc (mod p)
and gs ≡ g′ · kc (mod p), where c = H(f ′, g′) mod q.

A valid proof asserts logf h = logg k; that is, there exists x, such that h ≡
fx mod p and k ≡ gx mod p.

Re-Encryption proofs for Exponential ElGamal Imagine you have two
Exponential ElGamal ciphertexts for the key-pairs(y = gx, x):

1. c = (u1, v1) = (gr1 , yr1gm),
2. c̀ = (u2, v2) = (gr1+r2 , yr1+r2gm).

In other words c̀ = ReEnc(c, r2). A zero knowledge proof of Re-Encryption is
simply done by the prover providing a zero knowledge proof of the equality
between discrete logs between u2/u1 and v2/v1 to the bases g, y respectively.

Disjunctive Re-encryption Proof for Exponential ElGamal Let h = gy.
Given (ui, vi) = (gxgζ , hx ·hζ ·gm) is a re-encryption of (u, v) = (gx, hx ·gm) for a
random ζ ∈ Z

∗
p. Prove that (ui, vi) belongs to the list {(u1, v1), . . . , (un, vn)} [14].

Sign. Select random values d1, . . . , dn, r1, . . . , rn ∈ Z
∗
p. Compute at = (ut

u )dtgrt

, bt = (vtv )
dthrt where t ∈ {1, . . . , i − 1, i + 1, . . . , n}. Choose randomly

a nounce ω ∈ Z
∗
p. Let ai = gω and bi = hω. Compute challenge c =

H(E||a1|| . . . ||an||b1|| . . . ||bn) where E = (u||v||u1||v1|| . . . ||un||vn). Com-

pute di = c −
n∑

t=1,t�=i

dy. Compute ri = ω − ζdi then Witnesses d1, . . . , dn,

Challenge c and Response r1, . . . , rn. Output signature of knowledge (rt, dt)
where t ∈ [1, n]

Verify. Let E1 = (u1

u )d1gr1 || . . . ||(un

u )dngrn . Let E2 = (v1v )d1gr1 || . . . ||(vnv )dngrn .

Check
n∑

t=1

dt = H(E||E1||E2)

A valid proof asserts that (ui, vi) ∈ {(u1, v1), . . . , (un, vn)}.
Disjunctive Double Re-Encryption Proofs for Exponential ElGamal
Given the following:

– Let h = gy. Let (CT, C̄T ) be a pair of ElGamal Encryption for the same
message m.

– Let CTi = (ui, vi) = (gx1gζ1 , hx1 · hζ1 · gm) be a re-encryption of (u, v) =
(gx1 , hx1 · gm) for a random ζ1 ∈ Z

∗
p.

– Let C̄Ti = (ūi, v̄i) = (gx2gζ2 , hx2 · hζ2 · gm) be a re-encryption of (ū, v̄) =
(gx2 , hx2 · gm) for a random ζ2 ∈ Z

∗
p.

Prove that (CTi, C̄Ti) belongs to the list {(CT1, ¯CT1), . . . , (CTn, ¯CTn)}.

Sign. Select random values d1, . . . , dn, r1, . . . , rn, R1, . . . , Rn ∈ Z
∗
p.

For t ∈ {1, . . . , i− 1, i+ 1, . . . , n}, compute:

αt = (
ut · vt
u · v )dt(g · h)rt and βt = (

ūt · v̄t
ū · v̄ )dt(g · h)Rt and
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δt = (
ut · vt · v
ūt · v̄t · u

)dt(g · h)Rt−rt

Choose randomly the nounces ω1, ω2 ∈ Z
∗
p. Let αi = (g · h)ω1 and βi =

(g · h)ω2 , and δi =
βi

αi
.

Compute challenge c = H(E||α1|| . . . ||αn||β1|| . . . ||βn||δ1|| . . . ||δn) whereE =

(u||v||u1||v1|| . . . ||un||vn). Let di = c −
n∑

t=1,t�=i

dy, ri = ω1 − ζ1di, and Ri =

ω2 − ζ2di. Witnesses is d1, . . . , dn, Challenge is c and Response is r1, . . . , rn,
R1, . . . , Rn.
Output signature of knowledge (rt, dt, Rt) where t ∈ [1, n]

Verify. Let E1 = ((
u1 · v1
u · v )d1(g · h)r1 || . . . ||(un · vn

u · v )dn(g · h)rn). Let E2 =

((
ū1 · v̄1
ū · v̄ )d1(g · h)R1 || . . . ||( ūn · v̄n

ū · v̄ )dn(g · h)Rn). Let E3 = ((
u1 · v1
ū1 · v̄1

v

u
)d1(g ·

h)R1−r1 || . . . ||(un · vn
ūn · v̄n

v

u
)dn(g · h)Rn−rn). Check

n∑
t=1

dt = H(E||E1||E2||E3).

If true accept the signature of knowledge otherwise reject it.

A valid proof asserts that (ui, vi) ∈ {(u1, v1), . . . , (un, vn)}.
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Abstract. Network security management is one of the most topical concerns of 
information security (IS) in modern enterprises. Due to great variety and in-
creasing complexity of network security systems (NSSs) there is a challenge to 
manage them in accordance with IS policies. Incorrect configurations of NSSs 
lead to outages and appearance of vulnerabilities in networks. Moreover, policy 
management is a time and resource consuming process, which takes significant 
amount of manual work. The paper discusses issues of policy management 
process in its application for NSSs and describes a policy model aimed to facili-
tate the process by means of specification of IS policies independently on plat-
forms of NSSs, selection of the most effective NSSs aligned with the policies, 
and implementation of the policies in configurations of the NSSs. 

Keywords: Information Security Policy, Policy Management Process, Network 
Security System, Finite Automaton, Algebra. 

1 Introduction 

Network security in most enterprises relies on such network security systems (NSSs) 
as firewalls and intrusion detection/prevention systems (IDS/IPS) [1]. However, man-
agement of NSSs faces challenges tied with time-consuming manual processes, lack 
of visibility in information security (IS) policies and configuration errors, which lead 
to network outages and appearance of vulnerabilities [2]. For instance, a policy (he-
reafter “policy” means “IS policy”) for Check Point or Cisco firewalls may consist of 
thousands of rules and such complexity of policies is the main cause of configuration 
errors [3,4]. 

Thus, on the one hand, increasing number of NSSs and their increasing functionali-
ty allow to counter more threats and reduce IS risks as a result. On the other hand, 
complexity of NSSs’ management leads to new risks and time-consuming processes, 
which reduce overall efficiency of NSSs utilization. Therefore, policy management 
process for NSSs needs simplification in order to reduce probability of errors and 
efforts on time-consuming tasks. 

A formal approach to policy modeling presented in the paper is aimed to facilitate 
the process by means of specification of policies independently on platforms of NSSs, 
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selection of the most effective NSSs, and translation of the specified policies into 
configurations of the NSSs. The contributions of the paper are (a) a policy model for 
NSSs based on a finite automaton representation of an NSS, (b) an approach to classi-
fication of NSSs and selection of the most effective NSS, and (c) a policy algebra 
based on the model. 

The paper is organized as follows. Section 2 overviews policy management process 
for NSSs and discusses related work on policy modeling. Basic notions of the policy 
model for NSSs and the approach for selection of the most effective NSS are pre-
sented in Section 3. Section 4 introduces the policy algebra for NSSs. Finally, Section 
5 concludes the paper. 

2 Related Work 

Models of policy management process are presented in [5,6,7,8]. All the models con-
sider policy management as iterative process and include similar operations. The most 
detailed description of policy management process is presented in [5] and from the 
standpoint of NSSs management the following operations of the process are impor-
tant. During Policy Assessment step a request for initial policy creation or update of 
the existing one is evaluated in order to identify policy conflicts and effects. The re-
quested change should be made in the framework of existing IS maintenance system 
(ISMS includes IS management system and security tools and measures). Identifica-
tion of IS threats for assets and a list of appropriate options of NSSs that counter the 
threats, payroll and non-payroll cost of the options as well as determination of options 
priority are included in Risk Assessment step. Creation of new policies or update of 
existing ones proceeds during Policy Development step. Requirements for ISMS are 
derived upon Requirements Definition step in order to assure that it is aligned with 
new policies. In the course of Controls Definition step the requirements to ISMS are 
transformed into a selection of the best options of NSSs and requirements to them. 
Upon Controls Implementation step the NSSs are installed and configured in accor-
dance with the policies. Compliance and audit checks carried out during Monitor 
Operations step in order to ensure that ISMS functions in alignment with the policies. 
Review Trends and Manage Events step includes identification of events and trends 
(internal and external in relation to an enterprise) that may indicate a need to make 
changes in the policies. Further, during the step possible changes are evaluated 
against any appropriate criteria in order to make sure that the changes are essential 
and escalated to the beginning of the process [5]. In addition, if during Policy As-
sessment, Risk Assessment or Policy Development steps it is identified that some 
policies are not needed any more, then they must be retired [7]. Note that policy man-
agement process is iterative due to continuous changes in technologies, business envi-
ronment and legal requirements [8]. 

Thus, in the scope of the process there are the following significant groups of 
tasks: (a) development and update of policies, (b) selection of the best options of 
NSSs that are in line with the policies, (c) translation of the policies into configura-
tions of the selected NSSs, and (d) detection and resolution of conflicts in the policies. 
Formal policy models can be applied to the process in order to automate the tasks and 
as a result reduce time-consuming efforts and probability of errors. Policy modeling 
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approaches are extensively discussed in literature, some of them are presented in 
[9,10,11,12,13].  

The modeling method [9] is based on four independent atomic functionalities (end-
flow, channel, transform, and filter functionalities) and a formal language that allows 
specification and validation of policies for the functionalities. However, such functio-
nalities as logging and alerting are not presented in the model. The model also lacks 
means for selection of the best options of functionalities. 

An access-control language based on XML syntax and Organization-Based Access 
Control (OrBAC) model, which is an extension of Role-Based Access Control 
(RBAC), is given in [11] and intended to specify firewall policies. While OrBAC 
supports definition of obligation policies and contexts, the language, however, does 
not include these capabilities and deals only with authorization policies. Another limi-
tation is consideration only of IP addresses, protocols and ports as filtering parameters 
in the policies, which does not allow specification of more sophisticated filtering poli-
cies that inspect other parameters of network packets. 

Another method based on OrBAC is described in [11]. The method supports defi-
nition of different contexts and obligations within relevant contexts. However, when a 
policy cannot be implemented by the existing security architecture, the method does 
not provide means to select appropriate security functionalities for the policy. 

An approach [12, 13] provides specification of OrBAC policies and contexts as 
well as derivation of configurations for security functionalities. It also allows selec-
tion of the best options of functionalities in terms of their cost. For this purpose the 
approach introduces a notion of “closely equivalent” functionalities but lacks any 
formal criterion to identify such functionalities. 

A formal framework presented in [14] provides means for synthesizing secure 
network configurations. The framework utilizes a network topology, security re-
quirements and business constraints such as usability and budget limits as inputs in 
order to derive a cost-effective placement of NSSs in the topology. The framework 
uses policy requirements only as inputs, but does not include capabilities for specifi-
cation of policies and their translation into configurations of NSSs. Functionalities of 
NSSs within the framework are considered as “primitive isolation patterns”, which 
can be composed into “composite isolation patterns”; however, a formal classification 
criterion of the functionalities is not presented. 

Hence, the considered approaches either do not support specification of all types of 
policies for NSSs or do not provide means for selection of the best options of NSSs.  

3 A Policy Model 

A system is called an NSS if it is intended to directly or indirectly secure information 
transferable through an enterprise’s network. Assume that function of an NSS is to 
form any output in accordance with a policy by means of processing of network traf-
fic that comes to its input. In the general case an output of an NSS is network traffic 
or messages such as log entries and alerts that sent to other systems or IS administra-
tor’s console.  

Let  be a set of all possible policies that NSSs can implement. Actually,  con-
sists of sequences of symbols that form commands for different NSSs. If any NSS 
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uses GUI instead of CLI, its policy can be expressed as a text string. For instance, the 
first rule of Check Point firewall policy shown on Fig. 1 can be written as “N=1 
Source=Any Destination=Web-Server Service=Any …” or in any other way that re-
flects semantics of the rule. Also, the set  includes the empty sequence . Let   
be a set of network traffic, where  is a network packet (i.e., a sequence of bits), 
or the empty sequence , which means absence of traffic. Consider an NSS as a finite 
automaton:   , , , , ,  

where  is an input alphabet,  is a finite set of internal states of the NSS,  
is an output alphabet, :  is a state-transformation function and   :  is an output function,  is a set of output messages, which 
also includes  (similar to the case of the set ). An NSS functions in discrete time  
and transforms an input traffic  into an output traffic  in accordance 
with a policy . An NSS changes its internal state  into state  1  while it functions (Fig. 2). The set  can include such parameters as 
time, number and sequence of packets in a session and other parameters essential to 
model stateful analysis of network traffic. Such NSS as a stateless packet filter can be 
considered as an NSS with one state, i.e., | | 1. 

 

Fig. 1. An example of Check Point firewall policy 

 

Fig. 2. A finite automaton model of an NSS 
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Assume that every policy  is represented as a triple of the following finite 
vectors:  

• , , …  is an input vector, describing an input traffic of an NSS, where 
, while  is a set of parameters of any homogenous nature (for instance,  

can be a set of IP addresses, protocols, port numbers or any other attribute of   
network traffic);  

• , , …  is an output vector, describing an output traffic and/or messages 
generated by an NSS, were  while  is a set of parameters of output network 
traffic of any homogenous nature (similar to the case of the input vector) or a set of 
parameters of the messages;  

• , , …  is a state vector, describing an internal state of an NSS. For in-
stance,  can be a system time of an NSS. 

Any policy  is said to be definite if the triple of the policy consists of explicit-
ly defined parameters (concrete protocols, IP addresses, ports, messages, etc.). Any 
policy that consists of parameters expressed in general view without concretization of 
elements of corresponding sets (IP address, protocol or port in general, etc.) it is 
called a generalized policy. Note that all policies from the set  are definite policies, 
since only definite policies are implementable by NSSs. By  denote a set of gene-
ralized policies. For instance, vector 192.168.1.1, , 80  belongs to a definite 
policy, while  , ,  is the vector of corresponding 
generalized policy, where Source IP is the set of source IP addresses, Protocol is the 
set of protocols, Port number is the set of ports. For any generalized policy  

 there is a corresponding subset  of definite policies from the set , this 
subset is denoted by . Let  be the set of subsets of , then  
is the injective map : . 

The input, output, and state vectors of any generalized policy  are denoted by 
, , and , respectively. Let  be the partial order relation on  such 

that  if and only if all parameters of the vectors of the generalized policy  are 
included in the respective vectors of the generalized policy : 

  , , . 
Let  be a set of all existing NSSs. The fact that an NSS  is capable to im-

plement a policy  or a subset of policies , i.e.,  or  is included to defi-
nitional domain of the state-transformation function  and the output function  of , 
is denoted by  and  in the case of a policy and a subset of policies respec-
tively. Any  is defined on the entire set  and in the general case on some sub-
set , where  can be expressed as the finite union:    …  . 

An NSS  is said to be simple if there does not exist an NSS       
 that implements any policy with excluded parameters:  

   : , 
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where  is the set of simple NSSs. In other words, if exclusion of any subset of pa-
rameters from a policy leads to meaningless policy that cannot be implemented by 
any NSS, then the NSS is simple. Let :  be 
the set of generalized policies that corresponding definite policies can be implemented 
by simple NSSs. If an NSS is not simple, it is called composite. Simple NSSs can be 
combined parallel or sequentially with the purpose of constructing a composite NSS.  

For example, when considering Check Point firewall policy (Fig. 1) and network 
address translation (NAT) policy (Fig. 3), the NSSs can be decomposed to simple 
NSSs that implement single rules. Fig. 4 shows an example of the composite NSS that 
implements mentioned firewall and NAT policies. Note that the latter rule of the fire-
wall policy in Fig. 1 is not presented in Fig.4 because each simple NSS  blocks by 
default any traffic that does not match its policy (i.e., it outputs the empty sequence 
). In contrast with firewall policies, NAT policy accepts any traffic by default, there-

fore an additional simple NSS  with the default policy (which accepts all traffic 
that does not match the other NAT rules) is introduced into the model in Fig. 4.  
Note also that state blocks  (shown in Fig. 2) of each simple NSS are not depicted in 
Fig. 4 for the sake of compactness. 

Two simple NSSs ,  are called equivalent if 
and only if they produce equal outputs for equal inputs while implementing policies:     : , , , ,     : , , , ,   

where  and  are initial states of  and  respectively,  is a set of finite se-
quences of network packets,  and  are extensions of  and  to . 

By this equivalence relation the set of simple NSSs partitioned to equivalence 
classes. All simple NSSs inside any equivalence class produce equal outputs while 
implementing respective policies and processing network traffic. However, their poli-
cies from the syntax point of view can be different. 

In order to demonstrate the equivalence of NSSs consider Check Point and Cisco 
firewalls along with the following policy: “Hosts from the network 192.168.1.0/24 
are allowed to establish connections to 80 TCP-port on server 10.1.1.10. Connection 
attempts must be logged”. Note that the policy consists of two parts: authorization 
(allows connections to the server) and obligation (requires logging of connection at-
tempts). Each of two selected NSSs are able to implement the policy. It can be 
represented in Check Point as shown in Fig. 5. In order to implement the policy in 
Cisco it is necessary to add one rule to an access-list (for instance, access-list 101): 

access-list 101 permit tcp 192.168.1.0 255.255.255.0 host 
10.1.1.10 eq 80 log 
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Fig. 3. An example of Check Point NAT policy 

 

Fig. 4. A composition of simple NSSs 

 

Fig. 5. Check Point firewall policy 

The input vectors of generalized policies for Check Point and Cisco are equal: 
(Source Address, Destination Address, Protocol, Destination Port). Note that the field 
“service” in Check Point policy (Fig. 5) implies protocol and destination port. Output 
traffic is the same as an input and it is expressed with keywords accept and permit in 
the case of Check Point and Cisco respectively. In addition, a log message must be 
generated that is expressed with keyword log in both cases. Thus, the output vectors 
are equal for both NSSs: (Accept, Log). State vectors of Check Point and Cisco poli-
cies are (VPN, Time, Comment) and (Access-list Number) respectively. However, the 
parameters of Check Point’s state vector are not initialized and consequently do not 
affect the policy. Access-list number of Cisco is not essential in this case either. Se-
mantics of these two rules are equal and hence the NSSs are equivalent. Undoubtedly, 
Check Point and Cisco firewalls are not equivalent in general, but abstractions of 
them (i.e., simple NSSs) that implement the considered policies are equivalent. 

The approach to classification of NSSs consists of the following high-level steps: 

• decomposition of an NSS to simple NSSs;  
• sorting out the triple of vectors of the generalized policy for each simple NSS; 
• search for an equivalence class for each simple NSS:  
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─ if there exists a class such that a simple NSS is equivalent to, then it must be 
added to the class; 

─ if there is no appropriate equivalence class for a simple NSS, then it forms its 
own class. 

The classification facilitates evaluation of an NSS  by means of assigning 
the following rating :  ∑ , 

where 0 is a weight of a simple NSS  (for instance, the number of IS threats 
that the NSS counters), which can be calculated by an expert evaluation, and  0,1  is an indicator that shows whether an NSS  is included into equivalence 
class .  

The classification of NSSs built in terms of the described equivalence helps to find 
NSSs with required functions. For instance, if it is necessary to use functions , , 
and  in some node of an enterprise’s network in order to implement particular poli-
cy, then an NSS that is simultaneously included in equivalence classes , , and  
can be selected for this purpose. If there are more than one NSS with required func-
tions then the most effective solution among them is the one that has maximum rat-
ing-cost ratio: 

,  

where  is sum of payroll and non-payroll cost of an NSS . In addition, if there 
does not exist an NSS that is included in all required classes, then combinations of 
NSSs that cover the classes can be considered taking into account cumulative rating-
cost ratio for each appropriate combination: 

 

where , , … , , , , … ,  is the set of NSSs in the combination. 

4 A Policy Algebra 

All NSSs inside any equivalence class produce equal outputs while implementing 
policies. However, in the general case their policies from the syntax point of view are 
different. As can be seen from the above examples, Check Point does not use CLI and 
it is not possible to compare its policy with the analogue in Cisco from the syntax 
point of view; however, the policies have equal semantics. Thus, in the general case 
there are multiple policies that describe the same simple NSS inside an equivalence 
class. In order to reduce redundancy of policies for NSSs the set of simple policies  
needs to be substituted for a set of simple unified policies  and | | must be minim-
al. Consequently, only one generalized policy needs to be assigned for every single 
equivalence class. In other words, if the set  consists of  classes then it is required 
to have  generalized policies in order to specify policies for all NSSs.  
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Let , ,  be a many-sorted signature, where , , , , … ,  is a 
set of sorts while  and  are sorts of network traffic and messages respectively, , , … ,  is a set of functional symbols,  , , … , , ,  is 
a sort function that defines sorts of arguments , , , … ,  and sorts of  
values  ,  for every functional symbol . In addition, suppose that  , , , i.e., function “ ” has two arguments of the sort of network traffic 
and a value of the same sort (two examples of the function are shown in Fig. 4). 

Let …  be a set of variables, where  is a set of va-
riables of a certain sort . Suppose that  is the set of -terms that is recursively 
defined as follows:  

• any variable  is a -term  of the sort ; 

• any finite expression , , , … , , ,  such that                          , , , … , , ,  is a -term of the sort , where , , and 
 are any variables of  corresponding sorts , , and  .  

Suppose that any  is a name of a certain parameter of generalized policy, any 
 is a designation of a certain equivalence class of NSSs, then , , , … , , ,  is a representation of the output function of an NSS 

from equivalence class designated by  that includes representation of respective 
simple policy. By construction,  includes representations of all generalized policies 
for simple and composite NSSs. For instance, the NSS shown in Fig. 4 can be 
represented as follows: , , , , , ,, , , , , ,  

where  and  are designations of equivalence classes; , , , and  
are collections of parameters of respective policies and states (parameters of policies 
consist of input, output and state vectors). Note that notations ,  and 

 are equivalent. 
Let ,  be a many-sorted algebra, where  is a carrier set of the algebra and  is 

an interpretation of the signature . For every sort  the interpretation associates 
a subset  and for every functional symbol  it associates the function :  that defines the output function of an NSS of 
the respective equivalence class . Thus, the algebra models all definite policies for 
simple NSSs of each equivalence class as well as definite policies for composite 
NSSs. 

In order to translate the policies into the native policy formats of concrete NSSs’ 
platforms described many-sorted algebra can be represented as a formal language 
with a generative grammar   , , , , where  is a terminal vocabulary that 
reflects carrier set ,  is a non-terminal vocabulary that includes terms,  is a 
starting non-terminal symbol of every policy, and  is a set productions. Representa-
tion of the policies in the form of a formal language allows application of the existing 
parsing algorithms. 
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5 Conclusion 

The approach to policy modeling presented in the paper is based on finite automaton 
model of an NSS. Decomposition of an NSS to simple NSSs and their classification 
facilitates composition of policies and selection of the most effective NSSs aligned 
with them. Policies are considered independently on platforms of NSSs and can be 
specified identically for equivalent NSSs. Application of translation methods for uni-
fied policies allows implementation of policies in concrete NSSs platforms.  

The future challenge for the approach is development of derivation method from 
RBAC policies into described NSSs policies and building of conflict resolution me-
thods. Construction of an algorithm for classification of NSSs is also a future work. 
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Abstract. An Attribute Based Searchable Encryption Scheme (ABSE) is a pub-
lic key encryption with keyword search (PEKS) where each user owns a set of
attributes, and the senders decide on a policy. The policy is a function of these
attributes expressed as a predicate and determines, among the users of the sys-
tem, who is eligible to decrypt and search the ciphertext. Only members who
own sufficient attributes to satisfy that policy can send the server a valid search
query. In our work we introduce the concept of a secure ABSE by defining the
functionalities and the relevant security notions.

Keywords: PEKS, Attribute Based Encryption, Public Key Cryptography.

1 Introduction

Searchable encryption (SE) is an encryption scheme that supports keyword based re-
trieval of documents. The main challenge of SE is to allow third parties to search the ci-
phertexts without giving them decrypting capabilities. This has been an active research
area for more than a decade. Song et al. [5] proposed the first scheme that enables
searchability in symmetric encryption while Boneh et al. [2] introduced a scheme for
public key encryption with keyword search (PEKS).

Searchable encryption schemes assume that the user sending the search query owns
the decryption key and that the sender has to know the identity of the user querying
the data in order to encrypt using the corresponding encryption key. This raises the
question, what if the encrypted data is shared between several receivers and is kept in a
remote shared storage that is not trusted for confidentiality?

Attribute-Based Encryption (ABE) [4] addresses this problem. An ABE is a scheme
in which each user is identified by a set of attributes, and some function of those at-
tributes, the policy, is used to decide on decryption capabilities. The two types of ABE
schemes are: key-policy and ciphertext-policy [3, 1].

This paper defines a new primitive attribute based searchable encryption (ABSE). In
ABSE senders decide on a policy that determines user’s eligibility not only for decrypt-
ing but also for searching the data. Unlike existing proposals in the literature [6], ours is
based on a hybrid system of key and cipher policy which gives more flexibility, a strong
security, and allows for multi-authorities.

2 Formal Definition of ABSE

To define an ABSE we introduce the five entities involved: a central authority T T P
who sets up the system, a server S where all encrypted data is uploaded to. An encryptor

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 131–135, 2014.
c© IFIP International Federation for Information Processing 2014
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E who uploads the data and sets the policy. The querierQ who wants to search the server
and download documents. Many attribute authorities AT each responsible of a set of
attributes and that give out private keys to users owning these attributes.

Definition 1. An Attribute Based Searchable Encryption Scheme consists of the fol-
lowing probabilistic polynomial time algorithms: ABSE :=

(
TSetup, AddUser,

ASetup, AttG, PrdG, PrdV K, PrdQT , ABSE, TrpG, TEST)

TSetup(k) → (PP,UMK) : Run by T T P to set up the system. Takes a security pa-
rameter k and outputs public parameters PP and a user master key UMK which is kept
secret.
AddUser(PP,UMK) → (RKi,SKi) : Run by T T P every time a user registers with
the system. It outputs a registration key RKi that will be used to register with attribute au-
thorities and servers. It outputs SKi that is secret to the user and will be used in creating
trapdoors.
ASetup(PP) → (AMKj,APKj) : Run by AT to set up the attribute authority. It out-
puts an attribute master key AMKj which is secret to AT and is used to create attribute
private keys when users register. It also outputs an attribute public key APKj which is used
in building the policies and is public to all.
AttG(RKi,AMKj) → ASKi,j : Run by AT to register a user i, and outputs an at-
tribute private key ASKi,j that will be used in proving possession of attribute j.
PrdG(Ψ,AP) → (STΨ, ITΨ) : Given a predicate Ψ and a list of attribute public keys
AP = {APKj}m

j=1
, the algorithm generates a searching token STΨ that will be used in

creating trapdoors and an indexing token ITΨ used for creating searchable ciphertext.
PrdVK(Ψ) → VTΨ : Run by S . For each predicate in the system the server creates a
verification token V TΨ that is kept secret to the server.
PrdQT(Ψ,VTΨ,RKi,AP) → QTi,Ψ : Run by the S . Given a predicate verification
token V TΨ and a registration key RKi, the server outputs a query token QTi,Ψ that allows
the user i to search for keywords encrypted under the predicate Ψ .
ABSE(W,Ψ, ITΨ) → EΨ,W : Run by E . For a keyword W and under token ITΨ cre-
ate a searchable ciphertext EΨ,W .
TrpG(W,Ψ,QTi,Ψ,STΨ,SKi,ASi) → TΨ,W : Run by Q. Given a keyword, a
query token, a searching token, a user secret key and a set of user private attribute keys
ASi = {ASKi,j}m

j=1
, output a trapdoor TΨ,W .

TEST(EΨ,W,TΨ,W,VTΨ,RKi) → {0, 1} :Run by the S . Given a searchable cipher-
text, a trapdoor, a verification token and a registration key output 1 if the user satisfies the
predicate and if the keyword is found, otherwise output 0.

On the Security of ABSE The security notions of an ABSE are: correctness, secu-
rity against Attribute Based Chosen Keyword Attack (ACKA) and security against At-
tributes Forgeability Attacks (AFA). We need three game models to define these notions
(See Figures 1(a), 1(b), 1(c)) where the adversary is given access to certain oracles and
a trace of the responses is recorded. Both are explained below.
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CUL Corrupted Users HUL Honest Users CRK Corrupted RKi

CRK Corrupted RKi HA Honest AT CA Corrupted AT
CASK Revealed ASKi,j TrapL Queried trapdoors HASK Non-revealed ASKi,j

PredL List of (STΨ , ITΨ ) RQTL Revealed QTi,Ψ QTL Non-revealed QTi,Ψ

VTL Non-revealed V TΨ RVTL Revealed V TΨ

AddUsr : Adds user i to the system by running AddUser, and adding (RKi, SKi) to
HUL.
UsrCpt : Corrupts user i by revealing (RKi, SKi) and adding them to CUL and CRK .
RKCpt : Partially corrupts user i by revealing registration key RKi and adding it to
CRK .
AddAtt : Adds an honest attribute authority j to the system by running ASetup, comput-
ing (APKj , AMKj) and publishing APKj.
AMKCpt : Corrupts attribute authority j by revealing AMKj and adding to CA.
AddASK : Runs AttG to compute ASKi,j , and adds it to HASK .
ASKCpt : Corrupts an attribute private key by revealing ASKi,j and adding it to CASK .
TrapO : The challenger generates a trapdoor for certain keyword W using a querying to-
ken QTi,Ψ and searchable token STΨ on behalf of user i with set of attributes ASi. The
list TrapL is updated with all the information used as input and as output to the algorithm
TrpG.
AddPred : Generates a searchable token and an indexing token (STΨ , ITΨ ) for predicate
Ψ by running PrdG and then updates the list PredL.
AddVT : Runs PrdV K to obtain a verification token V TΨ and updates VTL.
RevealVT : Corrupting the verification token V TΨ by revealing it and RVTL is updated.
AddQT : Generates a querying token QTi,Ψ by running PrdQT , then QTL is updated.
RevealQT : The querying token QTi,Ψ of user i and predicate Ψ is revealed to the adver-
sary and the list RQTL is updated.
Chb : Challenges the adversary to guess whether a trapdoor Tb (b ∈ {0, 1}) was generated
for keyword W0 or W1. The adversary chooses the predicate, the set of attributes and the
user he would like to be challenged upon.

Correctness of ABSE. This property demands that if a searchable encryption EΨ,W

was produced correctly, i.e. using valid ITΨ and if a trapdoor TΨ,W was introduced
correctly using valid QTi,Ψ , STΨ , SKi, ASi, then the TEST algorithm should return
1 if the predicate is satisfied Ψ(ASi) = 1 and the keywords match W = W ′, otherwise
the TEST algorithm should return 0. Figure 1(a) explains the details. Formally, the
ABSE is said to be correct if for a security parameter k and all polynomial time adver-
saries A the following advantage is negligible: Advcorr

A (k) = |Pr[ExpcorrA (k) = 1]|
Attribute Based Chosen Keyword Attacks. We define security for an ABSE in the
sense of semantic–security. The aim is to ensure that an encryption ABSE does not
reveal any information about keyword W except to a Q who satisfies the policy and
can create trapdoors. We define the security against an active attackers A whose given
access to a set of oracles shown in Figure 1(b). Let the advantage of winning the game be
defined as follows: AdvACKA

A (k) = |Pr[ExpACKA0

A (k) = 1]− Pr[ExpACKA1

A (k) = 1]|
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An ABSE scheme is said to be secure against an ACKA if for a given security parameter
k and all polynomial time adversary A the advantage AdvACKA

A (k) is negligible.

Attribute Forgeability Attack. This security notion captures forgeability of trapdoors
where the adversary can produce a trapdoor without having the sufficient attribute set
that satisfies the predicate Ψ . The adversary is given access to the oracles described in
Figure 1(c). The challenge is to produce a pair of searchable encryptionE∗

Ψ′ and trapdoor
T ∗

Ψ′ under predicateΨ ′ such that the TEST (E∗
Ψ′ , T ∗

Ψ′ , V TΨ ′ , RK ′
i) outputs 1 for a given

RK ′
i. The definition includes coalition of attributes. Formally, an ABSE scheme is said to

be secure against an AFA if for a security parameter kand all polynomial time adversaries
A the following advantage is negligible: AdvAFA

A (k) = |Pr[ExpAFA
A (k) = 1]|

3 Conclusion

We define a new ABSE scheme and the security notions required. A working construc-
tion and security proofs are provided in a full version of this paper.

Experiment Expcorr
A (k):

• (PP,UMK) ← TSetup(k)
• HUL, HA, PredL, HASK , QTL, VTL = φ
• (SKi, RKi,ASi, QTi,Ψ , STΨ , ITΨ ) ← A(

PP : AddUsr(.), AddAtt(.), AddASK(., .),
AddPred(., .), AddQT (., .), AddV T (.)

)

• If [(SKi, RKi) �∈ HUL]∨ [∃j ∈ Ψ s.t. (AMKj , APKj) �∈ HA]∨ [∃j ∈ ASi s.t. (ASKi,j) �∈ HASK ]∨
[V TΨ �∈ VTL]: Return 0

• ABSE(W, ITΨ ) → EΨ,W ; TrpG(W ′, QTi,Ψ , STΨ , SKi,ASi) → TΨ,W
• If

[
[Ψ(ASi) �= 1] ∨ [W �= W ′]

] ∧ [TEST (EΨ,W , TΨ,W , V TΨ , RKi) = 0] : Return 1
• If

[
[Ψ(ASi) = 1] ∧ [W = W ′]

] ∧ [TEST (EΨ,W , TΨ,W , V TΨ , RKi) = 1] : Return 1
• Else Return 0

(a) Correctness Game Model

Experiment ExpACKA
A (k):

• (PP,UMK) ← TSetup(k)
• CUL, HUL, CRK , HA, CA, CASK , HASK , TrapL, PredL, QTL, RQTL, RVTL, VTL = φ
• b̀ ← A(

PP : UsrCpt(.), RKCpt(.), AMKCpt(.), ASKCpt(., .), RevealQT (., .), AddV T (.),
RevealV T (.), TrapO(., ., ., ., .), AddUsr(.), AddAtt(.), AddPred(., .), AddQT (., .), AddASK(., .),
Ch(., ., ., ., .)

)

• Return b̀
(b) Security against ACKA

Experiment ExpAFA
A (k):

• (PP,UMK) ← TSetup(k)
• CUL, HUL, CRK , HA, CA, CASK , HASK , TrapL, PredL, QTL, RQTL, RVTL, VTL = φ
• (T∗

Ψ′ , E∗
Ψ′ , Ψ ′, RK′

i) ← A(
PP : UsrCpt(.), RKCpt(.), AMKCpt(.), ASKCpt(., .),

RevealQT (., .), AddV T (.), RevealV T (.), TrapO(., ., ., ., .), AddUsr(.), AddAtt(.), AddPred(., .),
AddQT (., .), AddASK(., .)

)

• If
[
TEST (E∗

Ψ′ , T∗
Ψ′ , V TΨ′ , RK′

i) = 0
]∨ [

Ψ ′ ⊆ CA
]∨ [

T∗
Ψ′ ∈ TrapL

]∨ [
[V TΨ′ ∈ RVTL] ∧ [∀j ∈

Ψ ′, j ∈ CASK ∪ CA]
]∨ [

[V TΨ′ �∈ RVTL] ∧ [∃i s.t ∀j ∈ ASi, j ∈ CASK i ∪ CA and RK′
i = RKi]

]
:

Return 0.
• Else Return 1

(c) Security against AFA
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Abstract. Physically unclonable functions (PUFs) are an emerging tech-
nology that have been proposed as central building blocks in a variety of
cryptographic application areas. Keys are not stored permanently any-
more, but generated as needed using unique “fingerprints” that are inher-
ent in each device. Since PUFs are “noisy” functions responses generated
by a certain PUF instantiation are error-prone and therefore highly so-
phisticated error correction is required to reliably reconstruct the respec-
tive PUF response. To be aware of potential threats and vulnerabilities
concerning PUF-based security schemes a risk analysis on different use
cases was performed in order to gain requirements for the development
and implementation of effective error correction methods as well as re-
quirements regarding the whole operational life cycle of such tokens.

Keywords: Physically Unclonable Function (PUF), Risk Analysis, Vul-
nerabilities and Threats, Authentication, HW/SW Binding, Key Gener-
ation, Error Correction, Fuzzy Extractor, Cryptographic Applications.

1 Introduction

PUFs are inherently “noisy” which means that responses of a single PUF in-
stantiation to one and the same challenge always slightly differ. Such responses
cannot be directly used in cryptographic applications. Thus error correction pro-
cessing is required in order to generate a reliable and stable PUF response. Also,
the PUF’s behaviour depends on environmental conditions like voltage supply,
ambient temperature and ageing effects. All of these circumstances need to be
taken into account when creating a PUF-based security scheme. Our risk anal-
ysis considers in addition to the error correction methods the whole operational
life cycle of PUF-based security modules. We analysed different use cases and the
related communication protocols. Considering the pre-operational phase (manu-
facturing, delivery, . . . ) as well as the usage of the token in the field we identified
several threats and vulnerabilities due to either active attacks or the noisy, un-
stable behaviour of a PUF instantiation. The outcome of the analysis provided
valuable input for defining requirements on the error correction mechanisms as
well as requirements on the environment to ensure a reliable and secure usage of
PUF-based devices. Furthermore the results formed the basis for the preparation
of a Protection Profile for PUFs according to Common Criteria (CC) [1] that
was presented at the IFIP SEC 2014 in Marrakech, Morocco [9].

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 136–139, 2014.
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2 Physically Unclonable Functions

A Physically Unclonable Function (PUF), i.e. a function embodied in a physical
structure, contains random and unique information which originates from un-
controllable process variations during manufacturing in integrated circuits (IC).
The basic idea is to use this “fingerprint” to serve as security anchor in various
applications. The usage of PUFs enables the design of cryptographic applica-
tions without storing sensitive information such as keys in memory at all. For
practical usability, PUFs should be easy to evaluate whereas they are considered
unclonable because it is extremely difficult to make either a hardware clone, a
mathematical model of the behaviour of the structure, or a software program
that can compute the response to a challenge in a reasonable amount of time
[4]. In [10] Maes and Verbauwhede present an extensive overview of PUFs and
PUF-like proposals. One established technique are SRAM PUFs that make use
of the fact that SRAM cells tend to have the same state after power up very
consistently. Thus, a challenge consists of an address range and the response is
the value of the respective SRAM cells after power up. Owing to time, temper-
ature and voltage variations, some bits tend to flip [6]. Therefore so called fuzzy
extractors are put in place, which take care that existing bit flips are corrected
(e.g. by means of error correction codes). The basic principle of the so-called
Arbiter PUFs [3] is to conduct a race on two paths on a chip. Therefore the
challenges consist of a vector shaping the path of the “race” and an Arbiter
circuit then decides, which path “won” the race, resulting in one bit response
(0 or 1). Beside the noisy characteristic of PUFs, also ageing effects have to be
taken into account, when developing PUF-based solutions. It is known that the
response behaviour of a PUF instantiation is likely to slightly alter in the course
of its lifespan. Therefore the noise levels would increase over time in the absence
of anti-ageing protocols.

3 Risk Analysis

Performing the comprehensive risk analysis first different use cases were defined
that cover a broad field of applications. Based on these use cases we identified
several threats which were assessed in a further step. In doing so threats were
not only considered as a malicious activity of an attacker. Even the PUF itself,
because of its physical properties and noisy behaviour, might act in an undesired
manner and therefore cause damage. The risk of the identified threats was cal-
culated by the parameters “Risk Exposure” and “Impact”. The ranges of these
parameters were adapted to the specific terms of PUFs.

Use Cases. In the risk analysis we evaluated five different use cases. One-
Way Authentication describes a very simple use case. PUF responses are used
to authenticate the PUF-based token, but in this communication protocol no
cryptographic actions are foreseen. Thus, a PUF-based token is accepted when
the generated response is close enough to the reference response. As compared
to Mutual Authentication [7], both entities in a protocol are authenticated using
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cryptographic algorithms to reliably generate and reconstruct unique responses.
Use case Secret Key Generation and Session Key Exchange applies PUF re-
sponses as a key to encrypt the session key used for further communication.
Both use cases Key Zeroization and Hardware/Software Binding are based on
the usage of logically reconfigurable PUFs (LR-PUFs), i.e. the behaviour of a
PUF instantiation can be changed by adding some state information [2,8].

Results of Risk Analysis. The results of the performed risk analysis and the
assessment of threats and vulnerabilities were prioritised with respect to the cal-
culated risk value in order to highlight the most important ones. The analysis
showed that the usage of a weak fuzzy extractor and/or weak error correction as
well as PUF failures cause the highest risks. This means that the fuzzy extractor
as well as the error correction must not reveal any information regarding the
PUF-individual response because helper data, generated by the fuzzy extractor,
are public information. At the same time these methods have to ensure the re-
liable reconstruction of secrets/keys from an error-prone response even in case
of ageing and variation of environmental conditions. Another security relevant
function is the manipulation of state information used for LR-PUFs. State in-
formation is public too and it must not be changed by unauthorized entities.
Some further risks concern the PUF’s environment that cannot be treated by
the PUF itself. Therefore requirements and assumptions on the (pre-)operational
environment have to be defined considering the underlying PUF technology as
well as the intended use case. For example each PUF-based token has to be en-
rolled with different, unpredictable and random challenges in order to prevent
guessing of valid challenges. Further the exchange of the database (comprising
challenge-response pairs) between the enrolment facility and the customer has
to be performed in a secure way in order to ensure confidentiality and integrity.
Also, the analysis showed that model building attacks strongly depend on the
PUF type and thus must be discussed separately. Literature already provides
numerous papers [5,11,12,13] that might be considered.

4 Conclusion and Outlook

The results of the risk analysis formed the basis for the preparation of the security
problem definition (SPD) and the security solution definition (SSD) in our Pro-
tection Profile for PUFs. These parts include potential threats, assumptions that
are made on the TOE’s environment as well as organizational security policies
(OSPs). In order to achieve the security objectives several security functional re-
quirements were derived including some extended components considering PUF
specific needs. In the ongoing project the defined requirements are implemented
in a prototype comprising PUFs and realizing mutual authentication and key
generation. As a next step the prototype will be evaluated against these require-
ments in order to prove that the identified threats are countered and the security
objectives are achieved.
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Abstract. In this paper we show how we can use social networks to
bootstrap a social overlay network. This overlay network is different from
others, in the sense that it enables participants to share services on a per-
sonal basis, unlike other overlay networks that provide a single service
for all peers. Since the overlay network is not supposed to have cen-
tral servers for managing a single service, its bootstrap and the direct
communication among pairs of participants is challenging. However, the
actual social networks, such as Twitter, Facebook and Google+ already
provide an API that enables participants to exchange direct messages,
which will be the basis of our bootstrap mechanism.

Keywords: Privacy, P2P interactions, social networks.

1 Introduction

Privacy is hard to achieve in centralized architectures [1], since one needs to
trust in service providers to mediate all the information that we disclose while
being out of the clients’ control. On the other hand, more private communication
channel in the Internet could be achieved if one could interact directly to the
intended persons or entity, without central services.

The goal of our work is to provide human-to-human (H2H) private services
using the Internet, as stated in [5]. We distinguish H2H from peer-to-peer (P2P)
because, on the latter, peers are just participants (on particular protocols) that
are alike and don’t cooperate strictly on a one-to-one basis, while we want to
provide means for clear, personal interactions, where persons can act differently.

H2H private services allow pairs of clearly identified persons to provide services
to one another without service-oriented mediators. The set of services provided
by each person involved in a H2H interaction can be different, there is no need
to have reciprocity. Such service provisioning takes place over a Virtual Private
Link (VPL, see Fig. 1). We don’t see a VPL as a Virtual Private Network, since
the former will enable only a controlled access to a set of (well-defined) services,
while the latter usually provides an access to a network, where many (ill-defined)
services may exist.

The VPLs used by all persons exploring our system will form an overlay
network (of services). This overlay network is not oriented to a single service,

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 140–143, 2014.
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Fig. 1. Overview of the overlay network, formed by many different human-centric, H2H
interactions on top of VPLs. Private interaction between A and B can start either
because A invited B to join his (view of the) overlay network or vice-versa. A, B and
C can provide services among themselves in a private way, without knowing the full
extent of the entire overlay network (e.g., C may not know that A interacts with B).

such as routing (e.g. TOR [3]) or content sharing (e.g. BitTorrent [2]). There
is no global definition of the services provided in the overlay network by the
participant; they are free to create their own services and provide them privately
to others). Furthermore, there is no global notion of who is involved in the overlay
network. Each participant will have his own view of the overlay network, which
will be formed (to him) by the persons with whom he has a VPL established.
That’s why we say that we have social overlay networks (one for each person).

1.1 Problem

Bootstrapping overlay networks has been a longstanding problem [7] that is usu-
ally solved by one of two ways: using the binding information of a least one node
in the network (e.g. for DHTs); or using a centralized directory service (e.g.
TOR directory servers [3]). In the first case the binding information can change
frequently and needs to be obtained through an out-of-band mode. The second
case requires dedicated network infrastructure to aid the bootstrap. Moreover it
leaks information about the entire network since the directory server contains
information about all the nodes in the network, which besides the privacy impli-
cations that it may bring, it provides a single point of failure that can be open
to attacks or that can be easily blocked.

Yet another problem with current overlay network designs is that users joining
the network have little or no control on the network. Users have no control
regarding the nodes they connect to or which nodes connect to them. And even
if they had the control to choose that, there is not enough information about
the other nodes in the network except for their binding information. In short,
overlay networks are cooperative and service-oriented by nature, but not social.
This is not what we are looking for, since we want persons to build their own
overlay network by explicitly exploring H2H interactions with known persons.
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1.2 Contribution

Since we want to bootstrap in a distributed way an overlay network formed
by an arbitrary number of H2H interactions, its seems natural in our days to
explore social networks for that purpose. This could enable persons to create
and manage their personal view of the H2H overlay network (i.e. create their
own VPLs) by reusing their previous work in the management of their social
graph in Web-based social networks. In other words, we can use social networks
to extract existing relationships with persons with whom one may be interested
in setting up a VPL.

2 Decentralized Bootstrap for Our Social Overlay
Network

Nowadays social networking platforms (Twitter, Facebook, Google+, etc.) have
an API that enables applications to exchange private messages with friends
within the same social network. This facility enables us to use social networks
to bootstrap our overlay network. In particular, we can use social network to
send our personal communication endpoint to friends, this way using the social
network as a rendez-vous point, or a mailbox, for exchanging this information.

Personal communication endpoints are UDP/IP or TCP/IP transport end-
points that can be used to contact a person in our overlay network. Such endpoint
needs to use a public IP address, otherwise it may not be reachable from outside
its own network. However, the current Internet architecture makes this difficult,
since Internet clients are frequently behind NAT (Network Address Translation)
routers that raise many issues regarding the direct addressing of hosts behind
them [6].

Currently we foresee three strategies for enabling client hosts to get their
public transport endpoint: (i) management of the egress NATs to set up a public
endpoint as a forwarding transport port; (i) exploitation of transport addresses
of TURN servers [4]; and (iii) exploitation of a TURN server as a service provided
indiviadually by participants in our own overlay network.

The first possibility is the preferable one, since it allows the most direct com-
munication between participants. However, in many cases it may not be possible
to explore, because existing NAT equipments may not allow hosts behind them
to manage port forwarding policies.

The second possibility may overcome this limitation but requires the exploita-
tion of TURN (Traversal Using Relays around NAT) servers. These servers sim-
ply relay traffic over allocated, public transport endpoints. A host behind a
NAT router can allocate a single TURN public endpoint to receive incoming
traffic from several hosts. The identification of the contacting peers is provided
in TURN messages that are used to encapsulate the traffic between the TURN
server and the TURN endpoint allocator.

The third possibility is in fact a combination of the previous ones. A hosts
capable of having a public transport endpoints can run a TURN server and
provide this service to friends that may use it to set up their public endpoints.
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In any case, for the handshake protocol through a social network direct mes-
saging channel all we need is to send, along with some distinctive keyword, the
transport endpoint that should be used to contact the message sender, regardless
of being a public address of his own or the public address of a TURN server.

This bootstrap protocol is completely decentralized, since each participant
manages the bootstrap of his own VPLs. Furthermore, even for each VPL, which
connects only a pair of participants, each of them may take the initiative to
propose to the other its creation, just by publishing on a social network his
public endpoint.

3 Conclusions and Future Work

In this paper we have presented a strategy for bootstraping an overlay social
network of services. Unlike other overlay networks, this one does not target a
single service, but rather a H2H personal exchange of services. Each participant
in the overlay network has its own view of it, formed by a set of VPLs established
with friends. Thus, for bootstraping such an overlay network we may use social
relationships established through social networks to make a first handshake to-
wards the creation of VPLs. This is currently facilitated by the fact that the
most popular social networks have APIs for sending and receiving arbitrary in-
formation, and through which we can send the public communication endpoint
that a person makes available to a friends for establishing VPLs.

The next step that needs to be tackled is related with the authentication of
the participants in the overlay network. This authentication is fundamental for
preventing a person from being fooled by the social network (with fake messages)
or by someone else that gets to know his public endpoint without being explicitly
contacted. This authentication is also fundamental to perform an authenticated
key distribution protocol for deriving session keys for protecting VPLs’ traffic.
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Abstract. Using quantum networks to distribute symmetric keys has
become a usable and commercial technology available under limitations
that are acceptable in many application scenarios. The fact that the se-
curity is implemented directly at the hardware level, and moreover, relies
on the laws of physics instead of conjectured hardness assumptions, jus-
tifies the use of quantum security in many cases. Limitations include
100 km communication range and installation of quantum channels be-
tween each pair of users of the network. Presently, with the current lack
of trust in commercial security solutions, mostly due to the Snowden cri-
sis, there is the need to improve such solutions. In this paper we discuss
how quantum networks can be used to setup secure multiparty compu-
tation (SMC), allowing for instance for private data mining, electronic
elections among other security functionalities. SMC relies mostly on es-
tablishing an efficient oblivious transfer protocol. We present a bit-string
quantum oblivious transfer protocol based on single-qubit rotations that
can be implemented with current technology based on optics and whose
security relies only on the laws of physics.

1 Introduction

Security is the most important factor for building trust and confidence between
consumers/population and companies/State; this trust has been severely dam-
aged with many recent events such as the “Snowden crisis” and the Open SSL
critical bug, and as such, private companies and state providers are pressured to
improve the security of their products. In this paper we discuss how quantum
security protocols can be integrated in a classical setting to provide multiparty-
secure computation.

Two seminal works have driven most of the research in the area quantum secu-
rity: the quantum polynomial time factorization algorithm proposed by Shor [7];
and the quantum public key agreement protocol BB84, proposed by Bennett
and Brassard [1]. While Shor’s algorithm raises the threat of making widely used
cryptographic systems (via classic communication channels) completely obsolete
by a breakthrough in quantum hardware, the BB84 protocol shows that quan-
tum communication channels allow public perfect security in the context of an
authenticated channel.

Due to Shor’s factoring algorithm, research on (asymmetric) cryptography
shifted significantly. Presently, one of the most important problems in the area
is to find one-way functions robust to quantum attacks. Indeed, Shor’s algorithm

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 147–153, 2014.
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is able to attack all cryptosystems based on factorization and discrete logarithm,
even in the elliptic curve setting, which accounts for essentially everything that
is used in practice and is based on asymmetric keys.

On the other hand, BB84 is already commercially available through peer-to-
peer optical networks. It is worth pointing out that quantum channels sending
an arbitrarily amount of quantum information can already be produced using
cheap technology. Moreover, much research is being done to develop quantum
networks and routers using traditional optical fibers and laser satellite communi-
cations. It is expected that quantum networks will be available much sooner than
quantum computers and thus, it is fundamental to understand which security
and distributed protocols can benefit from quantum technology.

Secure multiparty computation is an abstraction of many security functional-
ities, including private data mining, e-voting, verifiable secret sharing, verifiable
computing, among others. In general terms, the goal of secure multiparty com-
putation among n parties is to compute a function of n secret inputs, one for
each party, such that at the end of the computation the output of the function
is known to all parties, while keeping the inputs secret.

It is well known that to setup secure multiparty computation it is enough
to establish oblivious transfer (OT) protocol between two-parties using Yao’s
garbled circuits [8] (see a more modern discussion in [3]). The first OT protocol
was presented by Rabin [6] and its security relies on the hardness assumption that
factoring large integers is difficult in polynomial time. OT can be seen as a game
played by two parties, Alice and Bob. Alice wants to share a number of secret
messages with Bob such that, on average, Bob receives half of those messages
(the protocol is concealing), while keeping Alice unaware to which messages Bob
got (the protocol is oblivious). A protocol achieving these properties is called an
OT Protocol. An OT protocol is made out of two parts: the transferring phase
and the opening phase. In the former Alice sends the secret message to Bob; in
the latter Alice unveil enough information that allows Bob to recover the secret
with probability 1/2.

The main contribution of this paper is to propose an OT protocol that can be
implemented over quantum optical networks using currently available technol-
ogy. Such OT protocol can then be used to establish a secure multiparty compu-
tation using classical infrastructure. We introduce a quantum oblivious transfer
protocol for bit-strings, based on the recently proposed public key crypto-system
in [5]. Each bit of the string to be transferred is encoded in a qubit (quantum
bit), a particular quantum state, in such a way that states corresponding to
bit-values 0 and 1, respectively, form an orthonormal basis. The key point of the
protocol is that for each qubit, the encoding basis is chosen at random, from
some discrete set of bases.

Next section provides a brief survey of quantum information, including ba-
sic definitions and important results necessary for understanding our proposal.
Section 3 describes our proposal for a bit-string oblivious transfer protocol and
discusses its correctness and security. Finally, we summarize the results and dis-
cuss future directions of research.
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2 Preliminaries

In this section, we provide notation, necessary definitions and results for defining
and reasoning about the security of our proposal.

For a complete study of quantum information we suggest the reading of [4].
Here we present some relevant notions. According to the postulates of quantum
mechanics, the state of a closed quantum system is represented by a unit vector
from a complex Hilbert space H, and its evolution is described by a unitary
transformation on H. In this paper we work only with finite-dimensional Hilbert
spaces reflecting the realistic examples of systems with finite number degrees of
freedom (strings of quantum bits, i.e. qubits).

Contrarily to the classical case where a bit can only have values 0 or 1, in
the quantum case, a qubit can be in a unit superposition of 0 or 1 denoted by
α |0〉 + β |1〉 with complex coefficients α and β such that |α|2 + |β|2 = 1. The
Dirac notation |0〉 and |1〉 denotes vectors forming an orthonormal basis of a
2-dimensional complex vector space. Note that we can define many orthonormal

bases for that space, such as
{

1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)

}
, but it is common to

distinguish the basis {|0〉 , |1〉} from all the others, and call it the computational
basis.

The state of two qubits is from the tensor product of single-qubit spaces, that
is,

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The state |ψ〉 is said to be separable if

|ψ〉 = (α |0〉+ β |1〉)⊗ (α′ |0〉+ β′ |1〉) = αα′ |00〉+αβ′ |01〉+α′β |10〉+ ββ′ |11〉 .

Otherwise, it is called entangled. Although entangled states are particularly im-
portant in quantum information, in this paper we only work with separable
states. Note that a system with k qubits can be described by a unit vector over
a space with dimension 2k.

One of the most important results of quantum information states that the
maximal information that can be stored in a qubit is the same as that contained
in a bit. This means that we cannot extract more than a bit of information from
a qubit, although there is potentially an infinite number of states available to
encode in a qubit. The reason for this is that it is impossible to obtain coefficients
α and β from a single qubit in a state |ψ〉 = α |0〉 + β |1〉. Indeed, what is
possible is to perform a measurement given by an orthogonal decomposition of
the Hilbert space H =

⊕d
i=1 Hi, with Pi being the projectors onto Hi. Then,

upon performing such a measurement on a qubit in state |ψ〉 ∈ H, there are d
possible outcomes {1, . . . , d}, where the probability of observing i ∈ {1, . . . , d} is
given by ‖Pi |ψ〉 ‖, and then the state evolves to Pi |ψ〉 /‖Pi |ψ〉 ‖. For instance,
the outcome of a measurement of a qubit can only take two possible values.

To understand the protocol we need to consider a function that is easy to com-
pute, but, without the help of a secret trapdoor, it is impossible to invert with
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non-negligible probability according to the laws of quantum physics. One can-
didate for such a function was proposed in [5] which uses sinlge-qubit rotations
and is given by

f(s) = R(sθn) |0〉 = cos (sθn/2) |0〉+ sin (sθn/2) |1〉

where, for some fixed n, s ∈ {0, . . . , 2n−1}, θn = π/2n−1 and {|0〉 , |1〉} is a fixed
computational basis (i.e., f is not a function of a quantum state). Moreover, f
can be used to construct a quantum trapdoor function F (s, b), where s is the
trapdoor information for learning an unknown bit b [5]:

F (s, b) = R(bπ)f(s) = R(bπ)R(sθn) |0〉 = R(sθn + bπ) |0〉 .

Note that inverting F (learning both s and b) is at least as hard as inverting f .
In [5] it was shown that every binary measurement that could be used to infer
unknown bit b would outcome a completely random value. Nevertheless, if s is
known, by applying the rotation R(−sθn) to F (s, b) and measuring the result in
the computational basis, one obtains b with certainty.

Using the properties of f and F a secure public key cryptographic protocol
was proposed in [5]: using the private key s, the public key is generated by
computing f(s); the encryption of a secret message corresponds to computing
F (s, b); and the decryption of the message corresponds to inversion of F (s, b),
using the trapdoor information s.

Finally, in order to guarantee that at the end of the OT protocol Bob knows if
he got the message m or not, Alice is required to send both m and h(m), where
h is a universal hash function. A hash function maps strings to other strings of
smaller size . Bellow, we present a definition of universal hash function and a
basic result.

Definition 1. Consider two sets A and B of size a and b, respectively, such
that a > b, and consider a collection � of hash functions h : A → B. If

Pr
h∈�

[h(x) = h(y)] ≤ 1

b

then H is called a universal family of hash functions.

Theorem 1. Let � be a collection of hash functions h : A → B, where A and
B are sets of size a and b, respectively, such that a > b. The size of a set Ax of
strings x ∈ A mapped to the same hash value h(x) is at most N/b.

In our particular case we consider A and B as the sets of strings of length � and
�/2 respectively. Hence, there are 2�/2 different strings for each hash value (for
an overview see [2]).
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3 Oblivious Transfer

Having set the required definitions and results, our protocol works as follows:

Protocol 1 (Oblivious transfer)

Message to transfer m = m1 . . .mk;

Security parameter n, θn=π/2n−1 and a hash function h :{0, 1}k →{0, 1}k/2;
Secret key s = (s1, . . . , s3k/2), where each si ∈ {0, . . . , 2n − 1}.

Transfer Phase

1. Alice chooses uniformly at random a bit a ∈ {0, 1} and prepares the
following state:

|ψ〉 =
k⊗

i=1

R(miπ+(−1)a × siθn) |0〉
k/2⊗
i=1

R(hi(m)π+(−1)a × si+kθn) |0〉

(Note that hi(m) represents the ith bit of the binary string h(m)).

2. Alice sends the state |ψ〉 to Bob.

Opening Phase

3. Alice sends s = (s1, . . . , s3k/2) and n to Bob.

4. Bob checks if s is likely to be a possible output of a random process by
performing a statistical test.

5. Bob chooses uniformly at random a′ ∈ {0, 1} and applies R((−1)a
′
siθn)

to each qubit of |ψ〉.
6. Bob applies the measurement operator M = (0×|0〉 〈0|+1×|1〉 〈1|)⊗3k/2.

7. Let m′ · h′ be the message that Bob recovers. He checks if h′ = h(m′).
If that is the case then Bob is almost sure that m′ = m, otherwise he
knows that m′ is not the correct message.

In the following, we discuss the security of our oblivious transfer protocol,
showing that: if both agents are honest, Bob will obtain the message m with
probability 1/2 (the protocol is sound); if Alice plays fair, Bob is not able to
recoverm before the opening phase (the protocol is concealing); if Bob is honest,
then Alice is unaware if Bob got m or not (the protocol is oblivious).

To state the results we need the notion of negligible function. ε : N → R, a
nonnegative function is called negligible if for every polynomial p and sufficiently
large k we have ε(k) ≤ 1/p(k).

First, we provide the reasoning for the soundness of our protocol.

Theorem 2. If both parties are honest, then with probability 1/2+ε(k) Bob will
get the right message, where ε(k) is negligible function on the size of the message
m = m1 . . .mk.
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Notice that if Alice and Bob are honest then the choice of rotation direction of
both will differ with probability 1/2. Only when they are different, i.e., Bob undo
Alice’s rotation and obtains the states in computational bases, Bob is ensured to
recover the message. When Bob rotates in the same direction of Alice, the results
of Bob’s measurement are random and hence the probability of recovering m in
this case is a negligible function on the size of the message m.

We proceed by discussing the concealing property of the protocol.

Theorem 3. If Alice is honest, the probability of Bob recovering Alice’s message
before the opening phase is negligible. Furthermore, after the opening phase Bob
recovers the message, up to a negligible value, with probability 1/2.

The first part of the theorem follows directly from the security of the public
key encryption schemes presented in in [5]: without knowing the secret key s
and the rotation direction a, Bob’s description of a message m is given by a
completely mixed state. The second part follows from a similar argument to the
previous theorem.

To finish the security discussion we argue that the protocol is unconditionally
oblivious.

Theorem 4. The Protocol 1 is oblivious, i.e., at the end of the protocol Alice
does not know whether Bob received the right message of not.

During the execution of the protocol, there is no information traveling from
Bob to Alice. Therefore, in order to increase the probability of learning if Bob
received the message m or not, Alice has to perform the following cheating
strategy: instead of sending |ψ〉, Alice sends a cheating state |ψch〉 for which Bob
will open the desired message with a probability greater than 1/2 (possibly with
certainty). This is impossible, unless with negligible increase ε(l), bounded above
by 1

2

(
1 + cos2l(π/8)

)
, where l is the number of si’s for which siθn ∈ [π/8; 3π/8].1

4 Conclusions

In this paper we proposed a scheme for oblivious transfer of a bit-string message.
Its security is based on laws of quantum physics. We reasoned about its security
and showed that the protocol is unconditionally oblivious and concealing. Our
protocol can be implemented with today’s technology using optical equipment.
Moreover, the protocol can be integrated with existing classical networks to
achieve secure multiparty computation, and promote an extra level of security
on such functionality.

Using single-qubit rotations have been proved useful in designing quantum
security protocols, such as the presented oblivious transfer and the previously
proposed public key cryptographic scheme [5]. This opens a number of possible
future applications of single-qubit rotations in designing several secure protocols
such as quantum bit-string commitment protocol and undeniable signatures.

1 Since the values of si’s are required to be random, the expected value of l is k/4,
with the standard deviation σ =

√
k/4.
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1 Introduction

Information has evolved to become a crucial commodity, requiring just as much
security as any other tangible asset. People take it, use it, and ‘leak’ it out and
organizations are challenged to protect a growing quantity of valuable digital
information against careless mishandling and malicious use. In addition, a grow-
ing list of legislative requirements adds to the ongoing task of protecting digital
files and information.

For the past decades, vast amounts of money and countless hours have been
invested in breach prevention. The order of the day has been to harden network
and server access through the deployment and redeployment of an evolving series
of firewalls, anti-spam/anti-virus applications and intrusion detection and pre-
vention systems – all of them, in essence, attempts to ‘reinforce the perimeter’
to protect what lies within.

While this remains good and necessary IT practise, it takes no account of two
very important and inescapable truths: a) users are always inside the perimeter,
and b) even those authorised users can cause significant damage. By ignoring
these, CI(S)Os fail to address possibly the most fundamental persistent threat,
that of a breach orchestrated by one or more of their organisation’s own users.

Information leaks are all too often caused by trusted insiders, people with the
right and credentials to be behind the firewall, who leak information whether
knowingly or unknowingly. The sheer numbers and types of external storage me-
dia available make it very easy for information to leak out. Moreover, corpora-
tions are increasingly being held legally liable for the safeguarding of information
they hold on their own employees as well as on their customers.

2 What Is a Malicious Insider?

According to Carnegie Mellon University’s CERT Insider Threat Center, which
offers comprehensive and authoritative research on insider threats, a definition of
a malicious insider is a “current or former employee, contractor, or other business
partner who has or had authorized access to an organization’s network, system,
or data and intentionally exceeded or misused that access in a manner that neg-
atively affected the confidentiality, integrity, or availability of the organization’s
information or information systems.”

Also, according to the CERT Insider Threat Center, the employees that pose
the greatest risk for insider threat/theft include:

B. De Decker and A. Zúquete (Eds.): CMS 2014, LNCS 8735, pp. 154–156, 2014.
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1. Disgruntled employee – This is usually the employee who feels personally
disrespected, possibly due to a missed pay raise that was expected or a neg-
ative encounter with supervisors over benefits, time off, demotions, transfers
or other similar issues. In this instance, revenge is the employee’s motive.

2. Profit-seeking employee – This is a simple motivation for many people. They
work for a wage; however, by stealing information, they can make more
money selling the stolen data to organized criminals or modifying the data
to steal an identity. The information could be easy to access and steal for the
employee, plus the theft can be rationalized because, as a malicious insider
might say to himself, “The Company won’t even miss it”. Motivations in
such circumstances could include large financial or drug-related debt.

3. An employee moving to a competitor or starting a business – For someone
starting a business in the same field, the theft of customer lists, business
plans, and even simple forms or templates can be tempting. Alternatively,
imagine the employee leaving to work for a competitor. Perhaps the com-
petitor has hinted that an exchange of information can be made for a better
position when the employee comes on board.

4. Believe they own the code or product – In this case, employees feel a sense
of ownership over code they wrote or a product they developed. Therefore,
they take the code for their future use or even for their next job.

3 Data-Centric Security

The way to effectively and efficiently address those concerns seems to be Data-
centric Security, whose focus is to classify and encrypt sensitive or confidential
information and ensure that only properly authorized people have the key to
decrypt it. Thus, even if an intended or unintended breach occurs, whether the
information is sent, left on a USB key or stored on a web drive, the data can’t
be seen or used by anyone beyond the authorized audience.

The first step to accomplish Data-centric Security is encrypt confidential and
sensitive data. This can be done automatically, without the user being involved
in the process. Enterprises should develop dynamic global data policies, so that
when information is created (be it an email, document, spreadsheet, presen-
tation, engineering drawing, etc.) it is automatically encrypted using a secure
wrapper. This protection lasts throughout the lifecycle of the information, re-
gardless of how many times it is sent, opened, stored, saved or edited. The infor-
mation will always have this classification and encryption wrapper protecting it,
even if it’s sent, carried or stored beyond the enterprise’s secure IT perimeter.

The next step is to ensure that the keys are centrally stored and managed.
Each time an attempt is made to use that protected information (to open, print,
forward, etc.) the wrapper ‘reaches out’ to the central server managing the keys
(more accurately, a list of who has the rights to what levels of information).
Effectively, the wrapper asks: ‘has this person the right to use me?’. If the answer
is ’yes’, the action is allowed. If the answer is ’no’, then the encryption stands
firm and the object is useless.
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Moreover, in effective Data-centric Security, all interactions with the rights
management server (requests to open information, to print it, to forward it, to
save it, etc.) will be saved for future forensic, auditing, and tracking purposes.
The records of interactions will be useful in cases where the attempted breaches
were not unintentional.

4 Information Security “Rules of Thumb”

As with most approaches to Information Security, layered defenses need to be
implemented to reduce insider threats. As there’s no silver bullet, a recipe for
success starts with following some simple “rules of thumb”:

1. Information should be classified. This can be done in one of two ways: either
manually, by the author; or dynamically, according to content and context
aware policies established by the company. Advanced data-centric security
solutions allow information to be classified as it is created (in the case of
documents, spreadsheets, presentations, etc.) or as it is sent (in the case of
messages and emails);

2. Information should be protected. Quite simply, the best way to protect infor-
mation is to have it encrypted. There are many different types of encryption,
and people employ encryption at different parts of the equation (on the drive,
in transit on the network, etc.). Experts today, however, are agreeing that
instead of trying to encrypt the physical media where the information might
be stored (the drive, the network, etc.) if you simply encrypt the information
itself then it’s protected regardless of where it is. If it’s on a laptop drive,
it’s encrypted. If it’s in transit across the network, it’s encrypted. If it’s in
a cloud based drive, it’s encrypted. If it’s on a USB key hanging around
someone’s neck, it’s encrypted. What that means is that this information is
persistently secure. . . regardless of whether it in inside or outside of network
boundaries;

3. Information should be accessed based the user’s “need-to-know”. Users should
be assigned appropriate security clearances and access to data should be
granted based on the user need-to-know according to his job description and
the classification of the data itself. Hence, enterprises should enforce separa-
tion of duties and privilege, thus not allowing access to sensitive information
that the employee has no reason to view, obtain or download.

In a nutshell, Insider threats can (and probably have) happened to every
enterprise. Those organizations that are knowledgeable of the risks and are
well prepared for such eventualities will thrive reducing and/or preventing
the insider threat.
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