
Massimo Villari
Wolf Zimmermann
Kung-Kiu Lau (Eds.)

 123

LN
CS

 8
74

5

Third European Conference, ESOCC 2014
Manchester, UK, September 2–4, 2014
Proceedings

Service-Oriented
and Cloud Computing

Lecture Notes in Computer Science 8745
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Massimo Villari Wolf Zimmermann
Kung-Kiu Lau (Eds.)

Service-Oriented
and Cloud Computing

Third European Conference, ESOCC 2014
Manchester, UK, September 2-4, 2014
Proceedings

13

Volume Editors

Massimo Villari
Università di Messina
Dip. di Ingegneria Civile, Informatica, Edile, Ambientale
e Matematica Applicata (DICIEAMA)
C.Da Di Dio, No.1, 98166 Messina, Italy
E-mail: mvillari@unime.it

Wolf Zimmermann
Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik
V.-Seckendorff-Platz, 06099 Halle (Saale), Germany
E-mail: zimmer@informatik.uni-halle.de

Kung-Kiu Lau
The University of Manchester
School of Computer Science
Oxford Road, Manchester M13 9PL, UK
E-mail: kung-kiu@cs.man.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44878-6 e-ISBN 978-3-662-44879-3
DOI 10.1007/978-3-662-44879-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014948210

LNCS Sublibrary: SL 2 – Programming and Software Engineering

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

© IFIP International Federation for Information Processing 2014

DOI:

The original version of the book frontmatter was revised:
The copyright line was incorrect. The Erratum
to the book frontmatter is available at

10.1007/978-3-662-44879-3_14

http://dx.doi.org/10.1007/978-3-662-44879-3_14

Preface

Service-oriented computing – together with web services as its most important
implementation platform – has become the most important paradigm for dis-
tributed software development and application for a number of years now. The
former ECOWS (European Conference on Web Services) conference series ad-
dressed key issues of service-oriented computing, in particular web services, in
nine successful conferences until 2011. In the meantime, as services are increas-
ingly used remotely, i.e. in the “cloud”, the focus of the conference series has
shifted slightly. Accordingly, ECOWS was re-launched in 2012 as the “European
Conference on Service-Oriented and Cloud Computing” (ESOCC) in Bertinoro,
Italy, addressing the state of the art and practice of service-oriented computing
and cloud computing. The second European Conference on Service-Oriented and
Cloud Computing, ESOCC 2013, was held in Málaga, Spain, on 11–13 Septem-
ber 2013. This conference was the third conference of the series and was held in
Manchester, UK on September 2–4 2014.

This volume contains the technical papers presented at the conference. The
conference consisted of two tracks: Research Track and Industrial Track. There
were a total of 38 submissions to the Research Track, from which 8 papers were
selected (yielding an acceptance rate of 21%), together with 4 short papers, and
one paper that has been shifted to the industrial track. The review and selection
process was performed rigorously, with each paper being reviewed by at least
three PC members (sometimes with the help of additional reviewers).

There were three excellent invited talks at the conference, given by Scharam
Dustar (Vienna University of Technology, Austria), Simon Moser (IBM Ger-
many), and Rob Cooper (BBC, U.K.).

Four workshops were co-located with the conference: The Cloud for IoT
(CLIoT 2014), the 4th International Workshop on Adaptive Services for the Fu-
ture Internet (WAS4FI 2014), The 2nd International Workshop on Cloud Service
Brokerage (CSB 2014), and SeaClouds - Seamless adaptive multi-cloud manage-
ment of service-based applications. A PhD Symposium was held on the first day
of the main conference.

All in all, ESOCC 2014 was a successful conference, and we owe its success
to many people: all the authors who submitted papers, and those who presented
papers at the conference; all the PC members who took part in the review and
selection process, as well as the additional reviewers they called on for help; all
the invited speakers; the members of the Organizing Committee who chaired the
industrial track, workshops and the PhD Symposium, as well as the people who

VIII Preface

helped organize these events. Last, but not least, we are grateful to the local
Organizing Committee for their efficient organization and warm hospitality. To
all of you: we say a heart-felt ‘Thank you’ !

July 2014 Massimo Villari
Wolf Zimmermann

Kung-Kiu Lau

Organization

ESOCC 2014 was organized by the the School of Computer Science of the
University of Manchester, UK.

Organizing Committee

General Chair

Kung-Kiu Lau University of Manchester, UK

Program Chairs

Massimo Villari University of Messina, Italy
Wolf Zimmermann Martin-Luther-University, Halle-Wittenberg,

Germany

Industrial Track Chair

Kenji Takeda Microsoft Research, UK

Workshop Chairs

Guadalupe Ortiz University of Cadiz, Spain
Cuong Tran University of Manchester, UK

Ph.D. Symposium Chairs

Alexander Pokhar University of Hamburg, Germany
Friederike Klan Friedrich Schiller University, Germany

Program Committee

Marco Aiello University of Groningen, The Netherlands
Farhad Arbab CWI and Leiden University, The Netherlands
Luciano Baresi Politecnico di Milano, Italy
Judith Bishop Microsoft Research, USA
Mario Bravetti University of Bologna, Italy
Antonio Brogi University of Pisa, Italy
Christoph Bussler VoxeoLabs Inc., USA
Javier Cubo University of Málaga, Spain
Flavio de Paoli Università Milano Bicocca, Italy

X Organization

Eric Dubois CRP Henri Tudor, Luxembourg
Jürgen Dunkel Hannover University for Applied Sciences

and Arts, Germany
Schahram Dustdar TU Wien, Austria
Rik Eshuis Eindhoven University of Technology,

The Netherlands
David Eyers University of Otago, New Zealand
George Feuerlicht University of Technology Sydney, Australia
Chris Giblin IBM Research Zürich, Switzerland
Claude Godart LORIA, France
Michael Goedicke University of Duisburg-Essen, Germany
Paul Grefen Eindhoven University of Technology,

The Netherlands
Thomas Gschwind IBM Research Zürich, Switzerland
Martin Henkel Stockholm University, Sweden
Dionisis Kehagias Centre for Research and Technology Hellas,

Greece
Ernoe Kovacs NEC, Germany
Akhil Kumar Penn State University, USA
Birgitta König-Ries Friedrich Schiller University of Jena, Germany
Peep Küngas University of Tartu, Estonia
Patricia Lago VU University Amsterdam, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM Almaden Research Center, USA
Welf Löwe Linnaeus University, Sweden
Ingo Melzer DaimlerChrysler AG, Germany
Roy Oberhauser Aalen University, Germany
Guadalupe Ortiz University of Cádiz, Spain
Claus Pahl Dublin City University, Ireland
George Papadopoulos University of Cyprus, Cyprus
Cesare Pautasso University of Lugano, Switzerland
Willy Picard Poznna University of Economics, Poland
Ernesto Pimentel University of Malaga, Spain
Wolfgang Reisig Humboldt-Universitaet zu Berlin, Germany
Florian Rosenberg IBM T.J. Watson Research Center, USA
Ulf Schreier Furtwangen University, Germany
Rainer Unland University of Duisburg-Essen, Germany
Erik Wilde EMC Corporation, USA
Gianluigi Zavattaro University of Bologna, Italy
Olaf Zimmermann Rapperswil University of Applied Sciences,

Switzerland
Christian Zirpins University of Karlsruhe, Germany

Additional Reviewers

Achilleas Achilleos
Raffael Dzikowski
Michela Fazzolari
Kristof Hamann

Pooyan Jamshidi
Kai Jander
Christos Mettouris
Gabriel Orsini

Jan Sürmeli
Pengwei Wang

Organization XI

Table of Contents

CloudDSF – The Cloud Decision Support Framework for Application
Migration . 1

Vasilios Andrikopoulos, Alexander Darsow,
Dimka Karastoyanova, and Frank Leymann

Windows Azure: Resource Organization Performance Analysis 17
Marjan Gusev, Sasko Ristov, Bojana Koteska, and Goran Velkoski

Cloud Standby: Disaster Recovery of Distributed Systems in the
Cloud . 32

Alexander Lenk and Stefan Tai

Weaving Aspects and Business Processes through Model
Transformation . 47

Heiko Witteborg, Anis Charfi, Daniel Colomer Collell, and
Mira Mezini

Domain Objects for Dynamic and Incremental Service Composition 62
Antonio Bucchiarone, Martina De Sanctis, and Marco Pistore

SOA-Readiness of REST . 81
Peter Leo Gorski, Luigi Lo Iacono, Hoai Viet Nguyen, and
Daniel Behnam Torkian

QUELLE – A Framework for Accelerating the Development of Elastic
Systems . 93

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and
Schahram Dustdar

DevOpSlang – Bridging the Gap between Development and
Operations . 108

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann

A Procurement Market to Allocate Cloud Providers’ Residual
Computing Capacity . 123

Paolo Bonacquisto, Giuseppe Di Modica, Giuseppe Petralia, and
Orazio Tomarchio

Event Pattern Discovery for Cross-Layer Adaptation of Multi-cloud
Applications . 138

Chrysostomos Zeginis, Kyriakos Kritikos, and Dimitris Plexousakis

A GENTL Approach for Cloud Application Topologies 148
Vasilios Andrikopoulos, Anja Reuter, Santiago Gómez Sáez, and
Frank Leymann

Cloud Resources-Events-Agents Model: Towards TOSCA-Based
Applications . 160

Soheil Qanbari, Vahid Sebto, and Schahram Dustdar

TOSCA in a Nutshell: Promises and Perspectives . 171
Antonio Brogi, Jacopo Soldani, and PengWei Wang

Erratum to: Service-Oriented and Cloud Computing E1
Massimo Villari, Wolf Zimmermann, and Kung-Kiu Lau

Author Index . 187

XIV Table of Contents

CloudDSF – The Cloud Decision Support

Framework for Application Migration

Vasilios Andrikopoulos, Alexander Darsow,
Dimka Karastoyanova, and Frank Leymann

IAAS, University of Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract. Migrating existing applications to cloud solutions is a multi-
dimensional problem that spans beyond technical issues and into the
financial, security and organizational domains. The existing works in the
field form a picture of a maturing but still incomplete research area, re-
quiring the introduction of comprehensive solutions for the migration of
enterprise systems and applications to cloud solutions. As part of this
effort, in this work we focus on supporting decision makers in evaluating
the need for migration, and guiding them along the decisions that need
to be made before the actual migration process. For this purpose we
build on existing work to provide an elaborated decision support frame-
work that is available as a Web application. We discuss the evaluation
of the framework by experts, identify its deficiencies and outline our fu-
ture steps. {keywordsApplication migration, decision support, decision
visualization.

1 Introduction

Cloud computing has become increasingly popular over the last few years both
with the industry and the academia. The main driving factors for this popularity
as discussed e.g. in [16], are the ease of infrastructure provisioning, the cost sav-
ings due to the transfer from capital to operational expenses, and the potential
for elastic resource utilization to cope with fluctuating demand. In this context,
it is a key requirement for enterprises to migrate partially or completely their
existing systems and applications to a cloud solution [6]. However, the migration
of existing software to the cloud poses a number of challenges both technical as
well as financial, legal and organizational [1]. In recent years a number of experi-
ence reports have started appearing discussing the migration of existing systems
to cloud solutions, e.g. [7,17,22], illustrating in all cases the multi-dimensionality
of the problem. In a recent publication, Jamshidi et al. [16] provide a systematic
review of the State of the Art on methodologies, techniques, tooling support and
research directions. Their conclusion is that the field is still at a formative stage,
and that cross-cutting concerns like security and effort estimation are not being
addressed sufficiently.

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 1–16, 2014.
c© IFIP International Federation for Information Processing 2014

2 V. Andrikopoulos et al.

Along these lines, the work in [3] discusses the vision of a system that supports
decision makers in deciding whether and how to migrate their applications to
cloud solutions. Multiple decision points creating feedback loops with each other
are identified and associated with tasks like cost analysis that not only depend
on the decisions’ outcome, but also affect these decisions in turn. However, the
discussion in [3] stays on a high level and does not identify concrete decision
outcomes that can be used in practice. This is a deficiency that we are addressing
with this work.

More specifically, the contributions of this work can be summarized as follows:

– a publicly available Cloud Decision Support Framework (CloudDSF) which
aims to assist decision makers during the migration of applications to the
cloud, and

– an empirical evaluation of CloudDSF by a cohort of experts, together with
a discussion on the steps required to realize a decision support system based
on it.

The remaining of this paper is structured as follows: Section 2 summarizes
the conceptual framework for cloud migration decision support discussed in [3].
Section 3 discusses the process of elaborating this framework into CloudDSF, the
identified decisions and outcomes, and the visualization of CloudDSF as a Web
application offering different interaction options to its users. Section 4 discusses
the process of evaluating CloudDSF by means of a survey and summarizes the
findings of the survey. Consequently, Section 5 provides a discussion on the
aspects that need to be addressed in order to realize a decision support system
based on CloudDSF. Finally Sections 6 and 7 close this paper with related work,
and conclusions and future work, respectively.

2 Background

Figure 1 summarizes the vision for a Decision Support System for Cloud Migra-
tion as discussed in [3]. Two types of concepts are presented in the figure: decision
points that identify high-level decisions that need to be made, and tasks that
need to be performed in order to support these decisions. Four major decision
points are identified:

1. How to distribute the application in logical and physical placement terms.
This entails viewing the application as a set of components across different
functional layers, and deciding which components are to be hosted in one or
more cloud providers.

2. Which is the elasticity strategy that the application needs to implement in
order to cope with current and future demand in the face of service level
agreements (SLAs) and performance requirements of its users.

3. What are the requirements of the application with respect to multi-tenancy,
i.e. to what extent the existing application is required to support resource
sharing across different levels ranging from the bare metal to the application
instance, to what degree it is designed for this purpose, and how it should
be (re-)engineered to support multi-tenancy.

CloudDSF – The Cloud Decision Support Framework 3

Distribute
Application

Select Service
Provider/Offering

Define
Multi-tenancy
Requirements

Define
Elasticity
Strategy

Work load
profiling

Performance
prediction

Cost
analysisEffort

estimation

Identification
of security
concerns

Compliance
assurance

Identification
of acceptable

QoS levels

Decision

Task

Affects

Influences

Fig. 1. The Decision Support Framework for Cloud Migration [3]

4. How to select an appropriate (cloud) service provider and offering that fits
the application needs in terms of cost, expected performance, compliance
and security requirements etc.

Relations between these decision points are illustrated with transparent block
arrows in Fig. 1. In addition, the set of tasks that were identified in [3] to be
related to these decisions points are:

a) workload profiling of the application,
b) performance prediction based on the workload profile of the application,
c) effort estimation for any necessary adaptations to the application during the

migration process,
d) cost analysis that builds on the pay-per-use model of the cloud services,

including the cost for the estimated adaptation effort,
e) identification of acceptable QoS levels in order to cope with existing or future

SLAs,
f) compliance assurance with respect to organizational regulation, and national

and international law, and
g) identification of security concerns with emphasis on critical data communi-

cation and storage.

Tasks and decision points therefore form a network of relationships with deci-
sions made on one point, e.g. which elasticity strategy to use, affecting directly

4 V. Andrikopoulos et al.

or indirectly all other decision points. However, and as mentioned in the intro-
ductory section, it can be easily observed that the level of granularity of the
identified decision points in [3] is too coarse in order to be connectible to con-
crete decision outcomes that enable decision making in the field. Toward this
goal, the remaining of this work presents our proposal for a cloud decision sup-
port framework for application migration based on elaborating the one discussed
above.

3 CloudDSF

Following Power’s classification of decision support systems (DSS) [23], the real-
ization of the vision outlined in [3] means the development a knowledge-driven
DSS. Such systems focus on suggesting and recommending actions to the deci-
sion maker referring to the gathered knowledge about the problem domain. As
a first step towards such a system, in the following we present our proposal for
a Cloud Decision Support Framework (CloudDSF) which gathers and visualizes
knowledge from the migration domain.

For this purpose, and by using the work in [3] as the starting point, we con-
ducted a thorough literature review focusing on the areas of decision support
for application migration to the cloud e.g. [5,8,14,18,21], and application migra-
tion and cloud computing [4] in general, with the explicit goal of verifying and
elaborating the already identified decision points. The gathered knowledge was
initially captured in a spreadsheet which recorded potential (concrete) decisions
affiliated with each decision point, their possible outcomes, as well as the relevant
literature sources1. The result of this process serves as the Knowledge Base of
CloudDSF, based on which a Visualization component was developed to enable
interaction with users. Both of these components are presented in the following.

3.1 Knowledge Base

The Knowledge Base of CloudDSF capturing the results of the elaboration pro-
cess is summarized in Table 1. A total of 17 decisions are identified for the exist-
ing 4 decision points (application distribution, elasticity strategy, multi-tenancy
requirements and provider selection). For each decision, a set of outcomes is
provided for a total of more than 50 outcomes, ranging from very specific, e.g.
which pricing model is offered by the service provider (Select Pricing Model),
to more coarse, e.g. whether a single or multiple components are to be hosted
in the cloud (Select Application Components). More specifically, the identified
decisions are:

1 The same process also resulted in the refinement of tasks, as well as the identification
of additional tasks to be considered. However, for reasons of space we omit the
discussion on task elaboration and postpone it for future work.

CloudDSF – The Cloud Decision Support Framework 5

Table 1. The CloudDSF Knowledge Base

Decision Point Decision Outcomes

Select Application Layer
– Presentation/Business/Data Layer

– Multiple Layers

Select Application Tier
– Client/Application/Data Tier

Application – Multiple Tiers

Distribution
Select Application Components

– Single Component

– Multiple Components

Select Migration Type – Type I, II, III or IV

Define Scalability Level
– Instance/Container/VM/Virtual Resource/
Hardware Level

– Multiple Levels

Select Scaling Type
– Vertical/Horizontal Scaling

Elasticity – Hybrid Scaling

Strategy
Select Elasticity Automation Degree

– Manual Scaling

– Semi-automatic Scaling

– Automatic Scaling

Select Scaling Trigger
– Event-driven

– Proactive

Select Kind of Multi-Tenancy
– Multiple Instances Multi-Tenancy

Multi-Tenancy – Native Multi-Tenancy

Requirements Select Multi-Tenancy Architecture – Any of the Possible Combinations

Select Cloud Deployment Model –Private/Community/Public/Hybrid Cloud

Select Cloud Service Model – S/P/IaaS

Provider/
Define Cloud Hosting

– On Premise/Off Premise

Offering – Hybrid Hosting

Selection
Define Roles of Responsibility

– Ownership/Operation/Management Role

– Any Combination of Roles

Select Pricing Model
– Free/ Pay-per-Use/-Unit/Subscription

– Combined Model

Select Cloud Vendor – Evaluated Vendor

Define Resource Location – Evaluated Physical Resource Location

Application Distribution Four decisions are associated with application dis-
tribution. The first two follow Fowler et al.’s distinction between physical tiers
and functional layers in the application architecture [9]. They are concerned with
which application layer(s) and which application tier(s) are to be moved to the
cloud (Select Application Layer and Select Application Tier, respectively). More
than one layers or tiers at a time are of course also possible. The next decision
(Select Application Components) becomes essential if finer granularity than a
layer or tier is required and refers to deciding which specific application com-
ponent(s) are to be migrated. Finally, the last decision (Select Migration Type)
refers to the type of migration to be used for the migration using the classifica-
tion of Andrikopoulos et al. [1]: Type I — component(s) replacement, Type II —
partial migration of functionality, Type III — full application stack migration
(virtual machine-based), or Type IV — cloudification of the application. As such,

6 V. Andrikopoulos et al.

the outcome of this decision may have an effect on the possible outcomes of all
other decisions concerning the distribution of the application.

Elasticity Strategy The first decision concerning elasticity strategy refers to
the scalability level required for the application (Define Scalability Level). For
this purpose we discern between three different system levels: the physical hard-
ware one, the virtualization level built on top of it, and the application level
on top of that. The virtualization level itself can be distinguished into virtual
resources, e.g. the hypervisor used, and virtual machines allocated to these vir-
tual resources. Similarly, the application level discerns between the application
instances and the middleware container hosting these instances (e.g. applica-
tion servers or database management systems). The scalability options for each
level increase as we traverse the levels: while on the physical level there are only
few choices (i.e. bringing in another server or updating the existing one with
more powerful hardware), on application level potentially unlimited application
instances can be added to cope with additional demand. The remaining deci-
sions refer to the type of scaling that can be used i.e. vertical (adding/removing
computational resources), horizontal (adding/removing instances or replicas) or
hybrid combinations [28] (Select Scaling Type), how much automation is achiev-
able by existing solutions [25] (Select Elasticity Automation Degree), and which
type of trigger is used (Select Scaling Trigger): the more common event-driven
type based on monitoring rules, or a proactive one which combines log files with
real-time data to dynamically predict scaling actions [27].

Multi-tenancy Requirements Following Guo et al.’s [13] classification of
multi-tenancy, there are two kinds of multi-tenancy in cloud applications (Select
Kind of Multi-tenancy): multiple instances, where each application tenant (ap-
plication user) is working on a dedicated application instance, or native multi-
tenancy where tenants share a single application instance and its underlying
resources. Furthermore, and looking at the different system levels previously dis-
cussed (hardware, virtualization, application), different possibilities appear on
which resources are to be shared between tenants. An application for example
may rely on a single hardware and virtualization level for all tenants, but pro-
vide multiple instances for each tenant on the level of application or database
management server (middleware). One database schema with separate tenant
data spaces could be used, or different tenants may even share the same tables
in the database. As a result, multiple combinations are available as outcomes of
this decision (Select Multi-Tenancy Architecture).

Provider/Offering Selection Deciding on which cloud provider and which
particular offering to be used depends fundamentally on the type of cloud solu-
tion that is appropriate for the enterprise. Towards identifying this solution we
consider a series of decisions based on the definition of the different cloud solu-
tion types as provided by NIST (as updated and extended in [4]). In particular,

CloudDSF – The Cloud Decision Support Framework 7

it needs to be decided which of the private, public, community or hybrid deploy-
ment models is more suitable (Select Cloud Deployment Model), which of the
*aaS, that is Software, Platform or Infrastructure as a Service delivery models
fits the application migration (Select Cloud Service Model), as well as where the
application is to be hosted: on premise (in-house on e.g. a private cloud solution)
or off premise (Define Cloud Hosting).

Depending on the deployment, delivery and hosting decisions, different re-
sponsibility roles are available to be distributed between application stakehold-
ers and cloud providers (Define Roles of Responsibility). In principle there are
three fundamental roles to be performed [4]: resource owner (i.e. to whom the
infrastructure belongs to), resource operator (i.e. who hosts and makes sure that
the application is running) and resource manager (i.e. who is responsible for
managing the resources, rolls out updates etc.) Any combination of these roles
is possible; for example in an off premise private cloud scenario, the enterprise
may be the resource owner but not the resource operator or manager (roles to
be performed by the cloud provider).

While cloud computing is usually associated with the “pay as you go” pricing
model of utility-style charging for resource consumption [4], in practice many
cloud offerings use alternative pricing models [27]. For this purpose we adapt
the pricing model classification discussed by Suleiman et al. [27] to distinguish
between free, pay-per-use, pay-per-unit (of time), or subscription-based charging,
e.g. for reserved instances offered by the Amazon EC2 service2 (Select Pricing
Model). Finally, the remaining two decisions (Select Cloud Vendor and Define
Resource Location) are concerned with the evaluation of the reputation of the
cloud provider in the manner discussed e.g. in [12], and of the physical location of
the migrated data for regulatory compliance purposes [10] (Select Cloud Vendor
and Define Resource Location, respectively).

3.2 Visualization

Aiming for a modern, user friendly, cross-platform visualization of CloudDSF we
opted for a Web-based solution which we made publicly available at
http://www.clouddsf.com . The resulting Web application uses basic Web tech-
nologies like HTML, CSS and SVG in order to provide an interface to the users
through their browsers. The decision points, decisions and possible outcomes, to-
gether with the identified tasks and their relations, as discussed in the previous
section are stored in a JSON3 file, which is used as input for the visualization
logic. The latter is written in Javascript, based on the D34 and jQuery5 libraries
that offer out of the box a number of features like network graph visualization
and dynamic graph manipulation. The Bootstrap framework6 was used for layout
rendering purposes.

2 Amazon Elastic Cloud Computing (EC2): http://aws.amazon.com/ec2/
3 JavaScript Object Notation (JSON): http://www.json.org/
4 D3.js — Data Driven Documents: http://d3js.org/
5 The jQuery library: http://jquery.com/
6 Bootstrap: http://getbootstrap.com/

http://www.clouddsf.com
http://aws.amazon.com/ec2/
http://www.json.org/
http://d3js.org/
http://jquery.com/
http://getbootstrap.com/

8 V. Andrikopoulos et al.

Fig. 2. CloudDSF Visualization Options: Tree View

As a result, a series of hierarchical and network-based visualization options
are available at http://www.clouddsf.com . Figures 2 and 3 show an example
for each one of these options: a (hierarchical) tree view of the possible outcomes
of the “Select Scaling Type” decision (Fig. 2), and a (network) partition view of
all the decisions (Fig. 3) which reconfigures the ring to zoom to a decision point
or to a decision and its outcomes when selected. Cluster, treemap and partition
layouts are also offered to the user, allowing for different types of interaction
with the application.

4 Evaluation

Given the fact that CloudDSF is meant to be part of a knowledge-driven DSS,
evaluating the framework focuses on the understandability, suitability and com-
pleteness of the decision points, decisions and outcomes in its knowledge base.
In the following we present the evaluation procedure towards these objectives
and report on our findings.

4.1 Procedure

The instrument of a Web-based survey by means of questionnaire was used for
the evaluation of CloudDSF. More specifically, a questionnaire of 86 questions
was designed following the guidelines discussed in [19], combining open (free
text responses) and closed (choice from an ascending rating scale) questions
towards the identified evaluation objectives (understandability, suitability and

http://www.clouddsf.com

CloudDSF – The Cloud Decision Support Framework 9

Fig. 3. CloudDSF Visualization Options: Partition View

completeness). The questionnaire was then realized using the open source survey
application LimeSurvey7 and made available online for a period of two weeks in
February 2014. A group of academic researchers, system developers, operations
managers and IT consultants with expertise in cloud computing were invited
by email to participate and provided with the credentials to access the survey.
A completion rate of 42,9% was achieved among the participants of the survey
for a total of 6 completed surveys (consisting of 4 academic and 2 industrial
participants). The results of the survey including the posed questions — after
discarding incomplete (unfinalized) questionnaires and anonymizing the partici-
pants — are also available online8. Only completed questionnaires are considered
in the following discussions on the findings of the survey.

4.2 Findings

Figures 4, 5 and 6 summarize the results of the conducted survey with respect to
the objectives of understandability and relevance (suitability)9. With respect to
the former, it can be seen from Fig. 4 that the understandability of the decision
points (‘Overall’ in Fig. 4) is perceived as good from the survey participants,
while the (average) understandability of individual decisions per decision point
is actually ranked higher. This is expected since the finer granularity of the

7 LimeSurvey: http://www.limesurvey.org
8 http://www.clouddsf.com/survey/questionnaire_results.zip
9 Note: In all figures the scale is from worse (0) to best (4).

http://www.limesurvey.org
http://www.clouddsf.com/survey/questionnaire_results.zip

10 V. Andrikopoulos et al.

0% 10% 20% 30% 40% 50% 60% 70%

0

1

2

3

4
Ra

tin
g

Overall Application Distribution Elasticity Strategy
MT Requirements Provider Selection

Fig. 4. Understandability of Decisions per Decision Point (Average)

0% 10% 20% 30% 40% 50% 60% 70%

0

1

2

3

4

Ra
tin

g

Application Distribution Elasticity Strategy
MT Requirements Provider Selection

Fig. 5. Relevance of Decisions per Decision Point (Average)

CloudDSF – The Cloud Decision Support Framework 11

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

1

2

3

4

Ra
tin

g

Application Distribution Elasticity Strategy
MT Requirements Provider Selection

Fig. 6. Relevance of Decision Points

decisions in the CloudDSF allows for better understanding of the decisions in-
volved. In terms of suitability, Fig. 5 shows that the vast majority of decisions are
deemed as relevant to the decision point that they are associated with, with only
the application distribution decisions rated lower than the rest. Furthermore, in
Fig. 6 all decision points with the exception of elasticity strategy are viewed as
highly relevant for migration to the cloud, with elasticity strategy perceived as
simply relevant. In terms of completeness, an average of around two additional
decisions was pointed out by the survey participants as relevant for each decision
point. The provided suggestions will be used in the future for further improving
and elaborating CloudDSF.

5 Discussion

The evaluation of CloudDSF as discussed in the previous section showed that
the framework contains a suitable and representative amount of knowledge for
guiding decision makers during the migration of applications to the cloud. One
aspect of the accumulated knowledge that was not discussed sufficiently however
in the previous section is that of the relationships between decisions, and between
decisions and tasks. A number of relationships are already identified in Fig. 1
distinguished between two types: what is the influence of a decision type to
another, and how a task affects the decisions at a decision point (and vice versa).
The elaboration of the decision points of [3] into concrete decisions in CloudDSF
results naturally into a significant increase in the number of these relationships,
as shown by the cluster diagram of Fig. 7 (using one of the available visualization
options in CloudDSF).

12 V. Andrikopoulos et al.

Fig. 7. Cluster View of the Decisions and Tasks in CloudDSF

As shown in Fig. 7, there is a strong interplay between decisions (and decisions
and tasks) forming a dense network of relationships with each other. In turn, this
means that selecting any of the available outcomes for each decision has a di-
rect or indirect impact to the possible outcomes in other decisions. Furthermore,
the result of any of the identified tasks may end up constraining significantly
the available outcomes across many of the related decisions, as well as poten-
tially contradicting already taken decisions. A formal representation of these
relationships that allows this type of reasoning on them is therefore required for
the realization of the knowledge-driven decision support system discussed in [3].
The other major task is the linking between the decisions to be taken and the
representation of the enterprise applications to be migrated to the cloud in order
to translate decision outcomes into concrete actions. This linking is anyway re-
quired for most of the tasks (e.g. cost calculation) associated with the decisions.
These two tasks are part of our future steps.

CloudDSF – The Cloud Decision Support Framework 13

6 Related Works

A series of works on decision support for the migration of applications to the
cloud have appeared in the literature. The Cloudward framework [14], for exam-
ple, was developed in collaboration between academic and industrial partners
with the goal of migrating applications to hybrid cloud solutions. The frame-
work takes into account cost savings, communication costs, transaction delays
and constraints like security. CloudGenius [21] provides an automated decision
making process towards identifying the optimal selection of a combination of IaaS
offerings and VM image types for single-tier web application migration. The fo-
cus of the system is however on technical requirements and does not address
organizational or other enterprise concerns. The Cloud Adoption Toolkit [18]
provides a framework specifically aimed at enterprise stakeholders. For this pur-
pose it provides the means for tasks like technology suitability analysis based
on the profile of the enterprise, cost modeling and energy consumption analysis
for the “to be” model of the migrated systems, as well as responsibility mod-
eling distinguishing between operation, maintenance and management roles for
migrated and non-migrated system components. These tasks are meant to be
performed in a sequential manner, forming a decision making process.

In a similar fashion, the Cloudstep [5] approach provides a decision process
consisting of nine activities including enterprise, legacy application and cloud
provider profiling, constraint identification analysis and alternative migration
scenarios evaluation and ranking. Constraints that are taken into consideration
are categorized in seven areas: financial, organizational, security, communication,
performance, availability and suitability. Finally, Chauhan and Babar present
in [8] a high level seven step process built on best practices and lessons learned
from the migration of legacy application to service-oriented architectures. As
discussed in Section 3, the process of elaborating the decision points identified
in [3] was based on these works.

A related research field to decision support for application migration is cloud
service selection based on multi-criteria decision making (MCDM) techniques.
Approaches like [15,24,26] and [11] provide the means to users to provide a set
of requirements against which existing cloud service offerings are evaluated and
ranked. Similarly, in [20], a resolution engine is presented that matches user-
provided criteria with available offerings from a cloud service marketplace in
order to identify suitable business-level offerings. In [12], the authors discuss a
feature-based model for the description of service offerings that can be used for
decision making towards offering selection. These works can be used as the basis
for the implementation of a decision support system around CloudDSF.

7 Conclusion

While cloud computing has been increasingly successful with adoption by the
industry, the migration of existing systems to cloud solutions has proven to be a
more complicated problem than cloud vendors and proponents would admit. A

14 V. Andrikopoulos et al.

big part of the problem is the multi-dimensionality required to deal with a series
of technical, financial, legal and organizational issues. Towards supporting enter-
prise stakeholders in deciding whether and how to migrate their applications, in
previous work we outlined the vision for a decision support system that incorpo-
rates different aspects of migration. The current work expanded on this vision
to propose CloudDSF, a framework in which knowledge about the problem do-
main (i.e. migration to the cloud) was gathered, organized, visualized and offered
as a publicly available Web application. The empirical evaluation conducted in
collaboration with experts on cloud computing, while limited in scope, showed
that the resulting framework is sound and suitable for migration-oriented deci-
sion making. However, in order to translate it into a full blown decision support
system there are still important issues to be addressed.

In terms of future work the focus is on the tasks already identified in the
previous sections, i.e. the incorporation of the evaluation results, the formaliza-
tion of the relationships between decisions, and decisions and tasks, as well as
the linking from the application model to the decisions that need to be taken.
Part of our plans is also a larger scale evaluation of CloudDSF with a wider
profile of participants, as well as additional evaluation by means of case studies
in industrial migration projects. To this purpose, we need also to work on the
elaboration of the relationships between tasks and decisions, and the connection
between decisions outcomes and inputs and outputs of tasks. Cost calculation
facilities provided e.g. by the Nefolog system [2] will be used as the pilot for this
effort.

Acknowledgment. This work is partially funded by the FP7 EU-FET project
600792 ALLOW Ensembles.

References

1. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to Adapt Applications
for the Cloud Environment. Computing 95(6), 493–535 (2013)

2. Andrikopoulos, V., Reuter, A., Mingzhu, X., Leymann, F.: Design Support for Cost-
efficient Application Distribution in the Cloud. In: Proceedings of the 7th IEEE
International Conference on Cloud Computing (CLOUD 2014). IEEE Computer
Society (to appear, 2014)

3. Andrikopoulos, V., Strauch, S., Leymann, F.: Decision support for application
migration to the cloud: Challenges and vision. In: 3rd International Conference on
Cloud Computing and Service Science (CLOSER 2013), pp. 149–155. SciTePress
(2013)

4. Badger, L., Grance, T., Patt-Corner, R., Voas, J.: Cloud computing synopsis and
recommendations - recommendations of the national institute of standards and
technology. NIST Special Publication 800-146 (2012)

5. Beserra, P.V., Camara, A., Ximenes, R., Albuquerque, A.B., Mendonca, N.C.:
Cloudstep: A step-by-step decision process to support legacy application migration
to the cloud. In: Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems (MESOCA 2012) Workshop, pp. 7–16. IEEE (2012)

CloudDSF – The Cloud Decision Support Framework 15

6. Buyya, R., Broberg, J., Gosćinśki, A.: Cloud computing: principles and paradigms.
Wiley (2011)

7. Chauhan, M.A., Babar, M.A.: Migrating service-oriented system to cloud com-
puting: An experience report. In: International Conference on Cloud Computing
(CLOUD 2011), pp. 404–411. IEEE (2011)

8. Chauhan, M.A., Babar, M.A.: Towards process support for migrating applications
to cloud computing. In: 2012 International Conference on Cloud and Service Com-
puting, pp. 80–87. IEEE Computer Society (2012)

9. Fowler, M., et al.: Patterns of Enterprise Application Architecture. Addison-Wesley
Professional (November 2002)

10. Gagliardi, F., Muscella, S.: Cloud Computing–Data Confidentiality and Interoper-
ability Challenges, pp. 257–270. Springer (2010)

11. Garg, S., Versteeg, S., Buyya, R.: Smicloud: A framework for comparing and rank-
ing cloud services. In: 2011 Fourth IEEE International Conference on Utility and
Cloud Computing (UCC), pp. 210–218. IEEE (2011)

12. Gudenkauf, S., Josefiok, M., Goring, A., Norkus, O.: A reference architecture for
cloud service offers. In: 2013 17th IEEE International Enterprise Distributed Object
Computing Conference (EDOC), pp. 227–236. IEEE (2013)

13. Guo, C., Sun, W., Huang, Y., Wang, Z., Gao, B.: A Framework for Native Multi-
Tenancy Application Development and Management. In: Proceedings of CEC/EEE
2007, pp. 551–558. IEEE (2007)

14. Hajjat, M., Sun, X., Sung, Y., Maltz, D., Rao, S., Sripanidkulchai, K., Tawarmalani,
M.: Cloudward bound: planning for beneficial migration of enterprise applications
to the cloud. In: ACM SIGCOMM Computer Communication Review, vol. 40,
pp. 243–254. ACM (2010)

15. Hussain, O.K., Hussain, F.K., et al.: IaaS cloud selection using MCDM methods.
In: 2012 IEEE Ninth International Conference on e-Business Engineering (ICEBE),
pp. 246–251. IEEE (2012)

16. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud Migration Research: A Systematic Re-
view. IEEE Transactions on Cloud Computing 1(2) (2013)

17. Khajeh-Hosseini, A., Greenwood, D., Sommerville, I.: Cloud migration: A case
study of migrating an enterprise it system to iaas. In: International Conference on
Cloud Computing (CLOUD 2010), pp. 450–457. IEEE (2010)

18. Khajeh-Hosseini, A., Greenwood, D., Smith, J.W., Sommerville, I.: The cloud adop-
tion toolkit: supporting cloud adoption decisions in the enterprise. Software: Prac-
tice and Experience 42(4), 447–465 (2012)

19. Krosnick, J.A., Presser, S.: Question and Questionnaire Design, pp. 263–314. Emer-
ald (2010)

20. Menychtas, A., Gatzioura, A., Varvarigou, T.: A business resolution engine for
cloud marketplaces. In: 2011 IEEE Third International Conference on Cloud Com-
puting Technology and Science (CloudCom), pp. 462–469. IEEE (2011)

21. Menzel, M., Ranjan, R.: Cloudgenius: decision support for web server cloud migra-
tion. In: Proceedings of WWW 2012, pp. 979–988. ACM (2012)

22. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013)

23. Power, D.J.: Decision Support Systems: A Historical Overview, pp. 121–140.
Springer, Heidelberg (2008)

24. ur Rehman, Z., Hussain, F.K., Hussain, O.K., et al.: Towards multi-criteria cloud
service selection. In: 2011 Fifth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), pp. 44–48. IEEE (2011)

16 V. Andrikopoulos et al.

25. Sallam, A., Li, K.: Virtual machine proactive scaling in cloud systems. In: 2012
IEEE International Conference on Cluster Computing Workshops (CLUSTER
WORKSHOPS), pp. 97–105. IEEE (2012)

26. Saripalli, P., Pingali, G.: Madmac: Multiple attribute decision methodology for
adoption of clouds. In: 2011 IEEE International Conference on Cloud Computing
(CLOUD), pp. 316–323. IEEE (2011)

27. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and
elasticity challenges of deploying business applications on public cloud infrastruc-
ture. Journal of Internet Services and Applications 3(2), 173–193 (2012)

28. Vaquero, L., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the
cloud. ACM SIGCOMM Computer Communication Review 41(1), 45–52 (2011)

Windows Azure: Resource Organization

Performance Analysis

Marjan Gusev1, Sasko Ristov1, Bojana Koteska1, and Goran Velkoski2

1 Ss. Cyril and Methodius, Faculty of Computer Science and Engineering,
Rugjer Boskovikj 16, 1000 Skopje, Macedonia

{marjan.gushev,sashko.ristov,bojana.koteska}@finki.ukim.mk
2 Innovation LTD,

Vostanichka 118, 1000 Skopje, Macedonia
goran.velkoski@innovation.com.mk

Abstract. Cloud customers can scale the resources according to their
needs in order to avoid application bottleneck. The scaling can be done
in two ways, either by increasing the existing virtual machine instance
with additional resources, or by adding an additional virtual machine
instance with the same resources. Although it is expected that the costs
rise proportionally to scaling, we are interested in finding out which or-
ganization offers scaling with better performance. The goal of this paper
is to determine the resource organization that produces better perfor-
mance for the same cost, and help the customers decide if it is better to
host a web application on a more ”small” instances or less ”large” in-
stances. The first hypothesis states that better performance is obtained
by using more and smaller instances. The second hypothesis is that the
obtained speedup while scaling the resources is smaller than the scaling
factor. The results from the provided experiments have not proven any
of the hypotheses, meaning that using less, but larger instances results
with better performance and that the user gets more performances than
expected by scaling the resources.

Keywords: Cloud Computing, Microsoft Azure, Performance, SaaS.

1 Introduction

One of the customers’ motivations to migrate their applications onto a cloud
is the cost. Currently cloud service providers (CSPs) use a linear ”pay-by-the-
drink” cost model, where the costs are proportional to the rented resources.

Although the cloud offers a possibility to reduce the costs, we are eager to
find a platform that will offer the best performance for the same price. The
customers can choose among various possibilities, such as using large or small
instances. When the web services are hosted on the cloud, the performance is
usually discrepant due to several reasons, such as the additional virtualization
layer, cloud multi-tenant and shared resources environment. The overall web
service performance depends on the quantity and capacity of rented hardware

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 17–31, 2014.
c© IFIP International Federation for Information Processing 2014

18 M. Gusev et al.

resources, platform environment, the number of active virtual machines (VMs)
on a physical server, the total number of active VMs in the cloud, and so on.

One of the advantages of the cloud compared to the traditional IT hosting
platforms is that cloud is scalable and elastic. In this paper we analyze the
performance trade-off to make conclusions about which resource organization of
the cloud offers the maximum performance for a given cost.

A typical scenario that initiates a huge dilemma for the customer happens with
scaling. Imagine that the customer has migrated the web service onto a cloud
and measures the response time of the applications. Increased popularity of the
web service might initiate a need for more transactions, and soon the rented
resources will not be sufficient to keep the response times low enough to ensure
a good quality of service. A typical CSP answer is that the customer should rent
more resources, usually expressed with more CPU cores. For example, let the
initial configuration be a small single tenant VM with one CPU core and the
customer would like to rent 2 CPU cores instead of one. The dilemma is due
to the fact that the customer faces several options, such as a medium VM with
2 CPU cores, or two small VMs with 1 CPU core each. The dilemma increases
if the customer decides to use 4 CPU cores, or higher number of cores. In this
case, the possibilities are even higher, for example, for 4 CPU cores, the options
are 1x4, 2x2, and 4x1, corresponding to one large VM, or 2 medium VMs, or 4
small VMs. CSP is using a linear cost model, so all the configurations using a
total of 4 CPU cores will approximately cost the same. In this paper we conduct
experiments on Azure, as one of the most commonly used commercial clouds.

The research problem is to find out the Azure resource organization that
performs the best and scores the highest performance trade-off. In addition, we
set a hypothesis that renting more ”smaller” VMs for the same cost is better
than renting less ”greater” instances, hoping that the tasks will be completed
faster if we distribute them to more smaller instances. The second hypothesis is
that the performance is smaller than the scaling factor. For example, it means
that by renting double size resources, we will not obtain double performance.
This is set due to virtualization and Gustafson’s bounded linear speedup [10].

The paper is organized as follows. Related work in the area of cloud perfor-
mance is given in Section 2. Section 3 presents the testing methodology, plan
and infrastructure. The results from the experiments are described in Section
4. Section 5 is dedicated to a discussion of the outcome and performance trade-
off, comparison of the results and analysis which environment provides the best
performance. The conclusion and future work are specified in Section 6.

2 Related Work

The performance of various cloud applications and services is analyzed by many
authors. For example, Brebner and Liu conducted empirical evaluations of dif-
ferent cloud infrastructures using a suite of cloud testing applications [2]. They
also use those experimental evaluations to predict the resource requirements in
terms of application performance, cost and limitations of a realistic application

Windows Azure: Resource Organization Performance Analysis 19

for different deployment scenarios. Gao et al. proposed formal graphic models
and metrics in order to preform SaaS evaluation and analyze system scalability
in clouds [3]. Their case study is Amazon’s EC2 cloud technology.

Several papers analyze the performances on Azure. Hill et al. [11] present the
results of the performance experiments conducted on Azure. They present a de-
tailed performance evaluation and give some recommendations for Azure users.
Scaling as performance measure was analyzed by Mao et al. [14]. They present
a cloud auto-scaling mechanism which scale computing instances automatically
based on workload information and performance desire. They have also imple-
mented their mechanism in Azure platform and made evaluations of simulations
and real scientific cloud application.

The performance trade-off was also analyzed in the literature. A comparison
between the performance and monetary cost-benefits of clouds for desktop grid
application was reported by Kondo et al. [12]. They conducted performance mea-
surements and monetary expenses of real desktop grids and the Amazon elastic
compute cloud. Ostermann et al. evaluated the usefulness of the cloud comput-
ing services for scientific computing [16]. They found that current cloud services
need performance improvement in order to be used in scientific community.

Other performance aspects were also analyzed, such as storage services, data
transfer etc. For example, Agarwal and Prasad describe a benchmark suite for
the storage services of Azure platform called AzureBench [1]. Tudorian et al.
concluded that Azure can support the efficient TCP data transfers and it can
decrease the costs and time for deployment [17]. Several pitfalls in the Azure
cloud are examined during several days of performing the experiments: Instance
physical failure, Storage exception, System update [13]. The authors also discov-
ered several pitfalls resulting in waste of active VM idling.

Recently, Gusev and Ristov [8] have reported that it is better to use many
smaller VM instances for a web service hosted in the cloud. They achieved sim-
ilar result for parallel implementation of cache intensive matrix multiplication
algorithm [7], i.e., maximum speedup is obtained if matrices are scattered and
multiplied on 8 concurrent (XS) VMs using a single thread in a VM, rather than
using OpenMP with 8 threads in a single XL VM. This was the initial motiva-
tion to define the hypothesis in this paper and to check if this holds for a real
web service that includes transactions in a 3-tier architecture, using a database
server, a web server and an application server.

In this paper, we measure the performance of the 3-tier cloud SaaS application
hosted on Azure. It acts as a transaction based application, where a database
transaction is started and then the results are transferred back to the customer.
The application is loaded with different number of requests, while it is being
hosted in different number of instances with different resources.

3 Testing Methodology

This section describes the testing environments of Azure cloud, test cases and
design implementation.

20 M. Gusev et al.

3.1 Test Goal

We are trying to determine which organization of the resources in the Azure
cloud will provide the best performance for the most common 3-tier application
using Web, Application and Database Servers.

The idea is to conduct three experiments. The first is about analyzing large
(L) and small (S) configurations for the same amount of resources. By large
configuration, we define a configuration that uses a small number of large VMs
with greater number of CPUs. Correspondingly, a small configuration will be
the one that uses more small VMs, where each VM consist of 1 or 2 CPUs. The
results would give answer to the first hypothesis.

The next two experiments should provide an answer for the second hypothesis,
whether the scaling of CPUs or the number of VMs will benefit with proportional
performance. These experiments will also confirm which is better, to increase the
number of CPUs or number of VMs when scaling is desired.

Let the number of VMs be v and the number of CPU cores c. Then the total
number of CPU cores n used in a given configuration will be n = v · c.

To answer the research questions and confirm validity of both hypotheses
we conduct three experiments. Experiment 1 provides the tests with different
configurations by keeping the same total number of CPU cores (n), as defined
by (1); Experiment 2 provides the tests with different configurations by keeping
the same number of VMs and scaling the number of CPU cores in each VM, as
defined by (2); and Experiment 3 provides the tests with different configurations
by keeping the same number of CPUs in each VM and scaling the number of
VMs, as defined by (3).

change v, c n = const (1)

scale c (and thus n), v = const (2)

scale v (and thus n), c = const (3)

3.2 Cloud Testing Environment

The testing environment is a client-server environment hosted on Windows
Azure. The server side consists of the SaaS application ”PhluffyFotos” [15], as
a sample cloud application developed for public use under the Microsoft Pub-
lic License (Ms-PL). The application uses the following technologies: ASP.NET
MVC 4, Azure SQL Databases and Azure Storage, including Tables, Blobs, and
Queues. This application is used because it frequently interacts with cloud stor-
age services [18].

The PhluffyFotos is a Picture Gallery Service which can be accessed by web
or mobile device. Users can create new albums, upload photos and share their
photo albums. They must register and login in order to perform these actions.
Unregistered and unlogged users can see all albums and search photos by tag, but

Windows Azure: Resource Organization Performance Analysis 21

they neither can create their own albums nor upload photos. There are database
records for 100 albums, each containing one picture.

This web system is programmed specially for the Azure platform, which means
that it is designed to be scaled by using different number of VMs and CPUs of-
fered by the cloud service. The images and their meta-data are sent over to Win-
dows Azure for processing. The information stored in Azure Storage Queues is
picked up and processed by the the Cloud Service. After that, it is stored in Azure
Table Storage. The content of the image is stored in binary blobs using Azure
Blob Storage. Multiple user profiles can be stored in a Azure SQL Database and
accessed by using the Universal Profile Providers. Everything image-centric is
stored in Azure Storage, once it has been processed via the Cloud Service [4].

We created a storage, web site, cloud service and 1 GB SQL database. Another
storage was created when the project was published. Also, the worker role was
added in the cloud service. Each storage contains three services: Blobs, Queues
and Tables.

The client uses Apache JMeter to test the performance by varying the load
(the number of requests) and using different number of instances with various
number of resources. To minimize the network latency, both the client and the
cloud are placed in the same data center (the West Europe’s center).

In order to perform the load testing we add a Thread Group element to
configure the number of clients that will send HTTP requests. Each user sends
one HTTP request. HTTP requests of all clients are processed in parallel. The
Rump-up period value is set to 0 seconds in order to immediately start all clients’
requests.

The experiments consist of accessing a web page which displays the albums
created by other users. The web page retrieval includes reading information
from the SQL database that is common for all application instances, and can be
assumed as an IO intensive operation, like most of 3-tier web applications.

3.3 Test Cases

Each test case is denoted with v x c, expressing the corresponding number of
VMs and CPU cores per VM in each configuration.

We tested all possible configurations, where the total number of VMs is less or
equal to 10, and the number of CPUs per VM is at most 4, explicitly expressed
with 1 ≤ v ≤ 10 and 1 ≤ c ≤ 4.

In addition we have also tested several configurations that are beyond this
threshold, required to realize necessary comparisons for the scaling experiments.
The list of all test cases covers at least the following configurations: 1x1, 1x2,
1x4, 2x1, 2x2, 2x4, 3x1, 3x2, 3x4, 4x1, 4x2, 4x4, 5x1, 5x2, 5x4, 6x1, 6x2, 6x4,
8x1, 8x2, 8x4, 10x1, 10x2, 10x4.

Each test case is executed at least 5 times with different number of HTTP
requests N = 1, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,
700, 750, 800, 850, 900, 950 and 1000. JMeter deals with the server load until
1000 requests are complete, since it reports an error message for increased load.

22 M. Gusev et al.

For each test case, we measure the average response time when all requests will
be completed.

Our goal is to obtain reliable tests in each cloud environment by changing
the number of application instances and CPU cores. The Azure load balancer
decides how to serve the concurrent HTTP requests.

Each experiment realizes two different cloud configurations denoted as L and
S testing various total numbers of CPU cores. For example, a part of the first
experiment assumes that the application will serve the HTTP requests with such
a capacity that will require a configuration with a total of 16 CPU cores. Fig. 1
(left) depicts the test case defined as large configuration, denoted by L, where
4 instances of the SaaS application are hosted on 4 VMs, each allocated with 4
CPU cores. Fig. 1 (right) presents the test case defined as small configuration,
which is denoted by S. It is a cloud environment where 8 instances of the SaaS
application are hosted on 8 VMs, each allocated with 2 CPU cores.

Text

4XR

4XR

4XR

4XR

Text

Rx2
Rx2

Rx2

Rx2

Rx2

Rx2Rx2

Rx2

Fig. 1. 4x4 (left) and 8x2 (right) environments

Now, the dilemma a customer might have, is to decide what is better, a
configuration in Fig. 1 (left) or in Fig. 1 (right). Our hypothesis assumes that
the configuration with a bigger number of small VMs (Fig. 1 right) performs
better for the same price.

3.4 Test Data

The performance of the SaaS application is calculated by measuring the average
response time T for experiments. Denote by Tvc the measured average response
time in each test case using v instances of the SaaS application hosted on v VMs,
each with c CPU cores.

In the evaluation of results we usually compare two configurations denoted
by indexes L and S. We calculate the Relative Speedup as ratio of average
times measured for S configuration over L by relation R = R(vS , cS , vL, cL) =
TvScS/TvLcL .

Windows Azure: Resource Organization Performance Analysis 23

Value R > 1 will mean that response times of the L configuration are smaller
than those of the S configuration, and we can conclude that the L configuration
is R times better than S.

In Experiment 1 we realize test cases where (1) is satisfied, keeping the to-
tal number of CPUs n in analyzed pair of configurations the same. Our first
hypothesis in this case assumes that we will obtain R < 1.

Let us compare two experiments and find the scaling factor. Denote the num-
ber of required CPUs in the configuration by nL and nS corresponding to the
configurations L and S. In order to analyze the scaling relation between these two
experiments there should be a positive integer number m, such that nL = m ·nS

is valid. In this case, m is the scaling factor.
Scaling speedup S is the ratio of obtained relative speedupR and scaling factor

m when two configurations L and S are compared, that is, S = R/m. It means
that the scaling speedup S will give information how much the L configuration
performs better than S with factor compared to the scaling factor.

Suppose that the L configuration uses m times more resources than the S
configuration. One will expect that the performance will also scale with at most
the same factor. A value of scaling speedup S > 1 will mean that the performance
is at least m times better, meaning that it is worth enough to scale. Hypothesis
2 assumes that S < 1.

4 Analysis of Experimental Results

In this section, we present and analyze the experimental results of the three
conducted SaaS performance experiments. We have measured response times for
each configuration and in the next sections we will elaborate the relative speedup
and scaling speedup, along with explanation of obtained results.

4.1 Experiment 1: Same Total Number of CPUs n

For this experiment we define L configuration to be the large configuration which
uses less number of large VMs, each with large number of CPUs. The S config-
uration will be the small configuration using more small VMs, each with small
number of CPUs. We assume that (1) is valid, keeping the same total number
of CPUs. The formal definition of criterion for this experiment is given in (4).

n = vL · cL = vS · cS , vL < vS , and cL > cS (4)

Table 1 presents the test cases and their identification as large and small
configurations. For example, the first comparison assumes using a total of 4
CPUs, and the L configuration is a single VM environment with 1 application
instance hosted on a VM with 4 CPU cores, while the S configuration is a multi
VM environment with 4 application instances hosted on 4 small VMs, each with
1 CPU.

We have provided analysis on the following relative speedups R4 = R(4, 1, 1, 4);
R6 = R(6, 1, 3, 2); R8 = R(8, 1, 2, 4); R10 = R(10, 1, 5, 2); R12 = R(6, 2, 3, 4);

24 M. Gusev et al.

Table 1. L and S configurations for Experiment 1

CPUs n 4 6 8 10 12 16 20

L configuration vL x cL 1x4 3x2 2x4 5x2 3x4 4x4 5x4

S configuration vS x cS 4x1 6x1 8x1 10x1 6x2 8x2 10x2

R16 = R(8, 2, 4, 4); and R20 = R(10, 2, 5, 4), which correspond to pairs of L and
S configurations in Table 1. The index denotes the total number of used CPU
cores for the analyzed configurations.

The performance of the SaaS, measured for a total of 4 CPU cores is presented
in Fig. 2 (left). The response time is presented on the Y axis, measured in
seconds. The input parameter, which is the number of requests sent to the server
is presented on the X axis. Blue bars present the results for large configurations,
and red for small configurations. For example, in L configuration, the time to
complete 1000 requests is 8.916 seconds, while in the S configuration is 10.401
seconds. We conclude that for all tests, L configuration performs better. The
differences rise when the number of concurrent HTTP requests rises.

Fig. 2. Response time for test cases with a total of 4 (left) and 16 CPU cores (right)

The behavior of the response time is similar for all the cases. For example,
the results for test cases, which use a total of 16 CPU cores, are presented in
Fig. 2 (right). In all tests the L configurations perform better, and in this case
the differences are bigger than in previous example.

Fig. 3 depicts the relative speedup for all experiments. We can clearly observe
that the relative speedup is always greater then 1, for all experiments, meaning
that the large L configurations perform better than the small S configurations.
Therefore, our first hypothesis, does not hold, and renting less more powerful
VMs is better than renting more smaller VMs in Azure.

Windows Azure: Resource Organization Performance Analysis 25

Fig. 3. Relative Speedup between large and small configurations for all experiments

4.2 Experiment 2: Scaling the Number of CPU Cores c

In the previous section we concluded that L configurations perform better than
their corresponding S configurations, expressing the cases with same number of
CPU cores, as defined by (1). In this section we will analyze what happens when
the number of CPUs is increased by a scaling factor m > 1 keeping the number
of VMs the same, as expressed in (2).

Scaling c from 1 to 2. The first part of the experiment consist of analysis of
the case when the number of VMs v is constant and the number of CPU cores
c is doubled from 1 CPU core to 2 CPU cores, or choosing the scaling factor
to be m = 2. We assume that each application instance runs on a separate VM
and the customer decided to use more powerful VMs upgrading the number of
CPUs in each VM.

Table 2 presents the L and S configurations. For example, the first test case
assumes using S configuration with a total of 3 CPU cores, and the L configu-
ration with 6 CPU cores. Both configurations are multi VM environment with
3 application instances hosted on 3 VMs, where the S configuration specifies a
VM with 1 CPU and the L configuration a VM with 2 CPUs.

Table 2. L and S configurations for Experiment 2a: CPU cores doubled from 1 to 2

CPU increase nS → nL 3 → 6 4 → 8 5 → 10 6 → 12 8 → 16 10 → 20

S configuration vS x cS 3x1 4x1 5x1 6x1 8x1 10x1
L configuration vL x cL 3x2 4x2 5x2 6x2 8x2 10x2

Fig. 4 (left) presents the scaling speedup for all test cases defined in Table 2
comparing configurations when the number of CPU cores is doubled from 1 to 2
CPU cores per each VM. The results show that it is worthwhile to upgrade from
1 to 2 CPUs and the performances will mostly scale more than the scaling factor.

26 M. Gusev et al.

There is a slight deviation of general behavior when comparing the 3x1 and 3x2
configurations, which is mostly due to unaligned usage of processing power in the
CPU. Most of the scaling in the CPU is aligned to 2 or 4 cores and when 3 cores
are used, slight performance deviations may appear due to task scheduling in the
Azure’s balancer and current load distribution of the distributed environment.

Fig. 4. Scaling speedup when c is doubled from 1 to 2 (left) and 2 to 4 (right)

The average behavior shows that an upgrade of a VM from 1 to 2 CPUs
makes an impact of approximately 94,5% more than the scaling factor (in this
case the scaling factor is 2, the average speedup 3.89 and the average scaling
speedup 1.945). We can notice that higher speedup is reached by increasing the
workload, and the obtained impact stabilizes for N > 200.

Scaling c from 2 to 4. The second part of this experiment analyzes the case
when the number of CPU cores is doubled from 2 to 4 per VM. Test cases for
L and S configurations are presented in Table 3. For example, the first test
case defines the S configuration 3x2 with a total of 6 CPU cores, and the L
configuration 3x4 with 12 CPU cores, doubling c from 2 to 4.

Table 3. L and S configurations for Experiment 2b: CPU cores doubled from 2 to 4

CPU increase nS → nL 6 → 12 8 → 16 10 → 20 12 → 24 16 → 32 20 → 40

S configuration vS x cS 3x2 4x3 5x2 6x2 8x2 10x2
L configuration vL x cL 3x4 4x4 5x4 6x4 8x4 10x4

The results are presented in Fig. 4 (right). Once again we observe it is worth
to upgrade the VMs from 2 to 4 CPUs. The impact is similar to the previous
case with upgrade from 1 to 2 CPUs. An average of 69,2% better performance
than the scaling factor is obtained.

The results show that the same trend is also observed for these cases. The
workload has impact on the overall performance. Note that the impact factor

Windows Azure: Resource Organization Performance Analysis 27

is smaller for configuration using greater number of CPUs, and it can also be
observed for increased workload. This happens due to the processing power of
measured configurations. For example, the 10x2 configuration is quite powerful
in handling the workload, and the 10x4 configuration achieves a scaling speedup
equal to the scaling factor 2 for almost complete domain of testing when N ≤
800. The analyzed trend starts to rise for heavier workload when N > 800. In
all other cases the achieved speedup is much higher than the scaling factor of 2.

We have not analyzed the cases when the number of CPU cores is upgraded
from 1 to 4, since the value can be easily calculated as a multiple of the two
previous values. The average impact in this case is even higher than 2.5 times
more than the scaling factor (in this case 4).

The conclusion from the experiments 2a and 2b is that the scaling with up-
grade of the CPU cores in a VM will impact more than the scaling factor,
contrary to our hypothesis 2. Next we analyze the scaling speedup by scaling v.

4.3 Experiment 3: Scaling the Number of VMs v

The case when (2) is satisfied for scaling with upgrade of the number of CPUs
per VM was discussed in the previous section. Here we analyze the scaling when
the number of CPUs per VM c is fixed and scaling is obtained by increasing the
number of VMs, as specified in (3). We conduct three parts of the experiments,
each part defined with different number of CPUs.

Scaling v with 1 CPU per VM. The first part of the experiment consists
of analysis of the case when doubling v, with 1 CPU per VM. We assume that
each application instance runs on a separate VM and the customer decided to
use more VMs instead of upgrading the number of CPUs in each VM.

Table 4 presents the L and S configurations for the experiment. For example,
the first test case assumes using S configuration with a total of 3 CPU cores,
and the L configuration with 6 CPU cores. Both configurations are multi VM
environment where a VM is defined with 1 CPU, and the S configuration with
3 application instances hosted on 3 VMs, and the L configuration with 6 VMs.

Table 4. L and S configurations for Experiment 3a: v is doubled, c = 1

CPU increase (nS → nL) S configuration (vS x cS) L configuration (vL x cL)

3 → 6 3x1 6x1
4 → 8 4x1 8x1
5 → 10 5x1 10x1

Fig. 5 (left) presents the scaling factors comparing the configuration when
the number of VMs is doubled and each VM has 1 CPU core. A deviation from
the trend exposed in all analyzed cases is observed for the configuration 3x1.
We have previously discussed that this deviation happens due to alignment of
processing power in real CPUs, since most of the configurations demand 2 or 4

28 M. Gusev et al.

Fig. 5. Scaling speedup with doubled number of VMs v, each with 1 (left), 2 (middle),
and 4 CPU cores (right)

CPUs and it depends on current cloud workload. In all other cases the upgrade
by doubling the number of VMs makes an impact with average value of 32,2%
more than the scaling factor, so it is worth to upgrade. Even in the case where a
deviation is observed we measure the achieved speedup to be equal to the scaling
factor as average behavior.

Scaling v with 2 CPUs per VM. The second part of the experiment analyses
the case with c = 2 CPUs per VM and the upgrade is done by doubling the
number of VMs v. The test cases are presented in Table 5.

Table 5. L and S configurations for Experiment 3b: v is doubled, c = 2

CPU increase (nS → nL) S configuration (vS x cS) L configuration (vL x cL)

6 → 12 3x2 6x2
8 → 16 4x2 8x2
10 → 20 5x2 10x2

The results of the second part of Experiment 3 are shown in Fig. 5 (middle).
Also in this case the upgrade makes a good impact better than the scaling
factor, which is slightly better than in the previous case with the configuration
using VMs with 1 CPU. The rising trend depends on the workload. Higher
number of concurrent messages will show better performance of L configurations,
rather than the S configurations. We can also observe that, for example, the
configuration 5x2 can handle a sufficient number of concurrent messages, and
the 10x2 configuration can achieve speedup more than the scaling factor only
for heavier workload, such as for N > 700.

Scaling v with 4 CPUs per VM. The last part of Experiment 3 analyses
powerful VMs with c = 4 CPUs each and the scaling is done by doubling the
number of VMs v. Table 6 presents the L and S configurations.

Windows Azure: Resource Organization Performance Analysis 29

Table 6. L and S configurations for Experiment 3c: v is doubled, c = 4

CPU increase (nS → nL) S configuration (vS x cS) L configuration (vL x cL)

12 → 16 3x4 6x4
16 → 32 4x4 8x4
20 → 40 5x4 10x4

Fig. 5 (right) presents the scaling speedup comparing the configurations of
Table 6. In this case the impact is lower than in the previous cases, which is
due to the reasons explained previously that the configurations are capable to
handle large number of concurrent messages. The speedup is obvious (more than
0.5 means it is positive but still under the value of scaling factor 2). Desired
speedup greater than the scaling factor happens for heavier workload, when, for
example, the configuration 10x4 can have greater impact over 5x4.

As a conclusion of analysis in Experiment 3, we realize that the second hy-
pothesis is also disproved as in Experiment 2. We obtain better performance
when scaling the number of VMs keeping fixed number of CPU cores.

5 Discussion

Experiment 1 showed that the first hypothesis is not valid and Azure performs
better with large sized VMs with 4 CPUs. Both experiments 2 and 3 covered
all cases to show that the second hypothesis is also disproved, meaning that by
scaling the resources, a customer gets more performance than the scaling factor.

We can also conclude from experiments 2 and 3 that it is better to scale in
such a way to use more powerful VMs instead of using more VMs, a fact that
also is shown by the Experiment 1 for comparing different configurations with
same number of CPUs. So we have concluded that the linear cost model is not
unfair to the customer, once the customer needs more power, the solution by
renting more resources achieves performance higher than the scaling factor.

The results of Experiment 1 oppose the findings [8] where the test cases are
performed for compute intensive and memory demanding web services instead
of a transactional web service. Gusev et al. [9] also achieved opposite results
for transactional web services without using worker role on Azure. The authors
believe that a great role in this behavior is mostly due to the Azure’s balancer and
organization of the system using a predefined database. The results show that
the balancer for transactional web services using databases should be improved
because internal VM web server’s task scheduler handles the load much better.

We have observed two side effects. The first one addresses the alignment to
the number of CPU cores. This is highly dependent on the CSP availability
and the current cloud workload. The alignment of needs is mostly to the 2 or 4
CPU cores per active CPU, meaning that the requests for 3 CPU cores are rare.
In this case depending on the availability, the CSP may schedule 3 CPU cores
in one CPU or several CPUs, which can change the obtained performance. We
have provided a lot of experiments and the average performance (with very small

30 M. Gusev et al.

discrepancy among each repeated test case) is presented in this paper. We have
concluded that with this configuration there is a deviation in trend behavior
which was observed for other test cases.

The second side effect was the capability to handle the number of requests.
More powerful configurations (with higher number of CPUs) were capable to
provide a good throughput and processing speed. Scaling the resources for these
cases will produce speedup equal to the scaling factor. A speedup bigger than
the scaling factor (superlinear) is observed for heavier demands and number of
requests. A superlinear speedup is a well known phenomenon achieved in dis-
tributed environment for cache intensive algorithms [6], where more CPU cache
memory is used in parallel implementations with low inter-CPU communica-
tion, despite the Azure’s virtualization layer [5]. Obviously, the superlinearity in
this distributed environment is totally different. We believe that increasing the
incoming requests over-utilizes smaller VMs faster than a greater VM.

6 Conclusion and Future Work

In this paper we have conducted three experiments to conclude about the per-
formance trade-off for transactional web services on Azure cloud.

We concluded that when a customer wants to scale the existing configura-
tion it is better to choose a configuration which is using less number of larger
instances, i.e. to choose VMs with 4 CPUs if possible. Also we have concluded
that by scaling the resources, a customer usually gets more performance than
the expected scaling factor, i.e. if there is an upgrade which doubles the number
of CPU cores in the configuration, then the achieved performance is more than
double. In this case, a customer should choose configurations that use powerful
instances with 4 CPU cores.

These results will solve the customer’s dilemma to choose the most optimal
configuration that performs the best. For example, if the customer is using a 4x4
configuration with total of 16 CPUs and would like to upgrade to total of 20 CPU
core, should chose 5x4 having advantage over the 10x2 or 20x1 configurations.

Although most offers follow the linear pricing model we have observed that the
number of CPU cores is not the only parameter that a customer should analyze.
A customer can choose among great variety of available RAM and storage, or
throughput etc. Although there are a lot of available online calculators for this
purpose, we plan to make deeper analysis of impact of these factors on the overall
performance.

We will continue to realize the same and similar experiments on different
environments and clouds.

References

1. Agarwal, D., Prasad, S.K.: AzureBench: Benchmarking the storage services of the
Azure cloud platform. In: Proc. of the IEEE 26th Int. Parallel and Distributed
Processing Symp. Workshops & PhD Forum, IPDPSW 2012, pp. 1048–1057 (2012)

Windows Azure: Resource Organization Performance Analysis 31

2. Brebner, P., Liu, A.: Performance and cost assessment of cloud services. In: Max-
imilien, E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC
2010. LNCS, vol. 6568, pp. 39–50. Springer, Heidelberg (2011)

3. Gao, J., Pattabhiraman, P., Bai, X., Tsai, W.: SaaS performance and scalabil-
ity evaluation in clouds. In: 2011 IEEE 6th International Symposium on Service
Oriented System Engineering (SOSE), pp. 61–71 (2011)

4. Gaster, B.: PhluffyFotos on Windows Azure (October 2012),
http://www.bradygaster.com/post/phluffyfotos-on-windows-azure

5. Gusev, M., Ristov, S.: Superlinear speedup in Windows Azure cloud. In: 2012 IEEE
1st International Conference on Cloud Networking (CLOUDNET), Paris, France,
pp. 173–175 (2012)

6. Gusev, M., Ristov, S.: A superlinear speedup region for matrix multiplication.
Concurrency and Computation: Practice and Experience 26(11), 1847–1868 (2013),
http://dx.doi.org/10.1002/cpe.3102

7. Gusev, M., Ristov, S.: Resource scaling performance for cache intensive algorithms
in Windows Azure. In: Zavoral, F., Jung, J.J., Badica, C. (eds.) IDC 2013. SCI,
vol. 511, pp. 77–86. Springer, Heidelberg (2013)

8. Gusev, M., Ristov, S., Velkoski, G., Simjanoska, M.: Optimal resource allocation
to host web services in cloud. In: Proceedings of the 2013 IEEE 6th International
Conference on Cloud Computing, CLOUD 2013, CA, USA, pp. 948–949 (June
2013)

9. Gusev, P., Ristov, S., Gusev, M.: Performance analysis of SaaS ticket management
systems. In: 2014 Federated Conference on Computer Science and Information
Systems (FedCSIS) (SCoDiS-LaSCoG’14 Workshop) (in press, September 2014)

10. Gustafson, J.L.: Reevaluating Amdahl’s law. Communication of ACM 31(5),
532–533 (1988)

11. Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M.: Early observations on
the performance of Windows Azure. In: Proc. of the 19th ACM International Sym-
posium on High Performance Distributed Computing, HPDC 2010, pp. 367–376
(2010)

12. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.: Cost-benefit anal-
ysis of cloud computing versus desktop grids. In: IEEE International Symposium
on Parallel Distributed Processing, IPDPS 2009, pp. 1–12 (2009)

13. Lu, W., Jackson, J., Ekanayake, J., Barga, R.S., Araujo, N.: Performing large
science experiments on Azure: Pitfalls and solutions. In: CloudCom 2010,
pp. 209–217 (2010)

14. Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget con-
straints. In: 2010 11th IEEE/ACM International Conference on Grid Computing
(GRID), pp. 41–48 (2010)

15. Microsoft: Picture gallery service (April 2008),
http://phluffyfotos.codeplex.com/

16. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A
performance analysis of EC2 cloud computing services for scientific computing. In:
Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) Cloud Computing.
LNICST, vol. 34, pp. 115–131. Springer, Heidelberg (2010)

17. Tudoran, R., Costan, A., Antoniu, G., Bougé, L.: A performance evaluation of
Azure and Nimbus clouds for scientific applications. In: Proc. of the 2nd Int. Work-
shop on Cloud Computing Platforms, CloudCP 2012, pp. 4:1–4:6. ACM (2012)

18. Zhang, L., Ma, X., Lu, J., Xie, T., Tillmann, N., de Halleux, P.: Environmental
modeling for automated cloud application testing. IEEE Software 29(2), 30–35
(2012)

http://www.bradygaster.com/post/phluffyfotos-on-windows-azure
http://dx.doi.org/10.1002/cpe.3102
http://phluffyfotos.codeplex.com/

M. Villari et al. (Eds.): ESOCC 2014, LNCS 8745, pp. 32–46, 2014.
© IFIP International Federation for Information Processing 2014

Cloud Standby: Disaster Recovery
of Distributed Systems in the Cloud

Alexander Lenk1 and Stefan Tai2

1 FZI Forschungszentrum Informatik, Berlin, Germany
lenk@fzi.de

2 Technische Universität Berlin, Berlin, Germany
tai@tu-berlin.de

Abstract. Disaster recovery planning and securing business processes against
outtakes have been essential parts of running a company for decades. As IT sys-
tems became more important, and especially since more and more revenue is
generated over the Internet, securing the IT systems that support the business
processes against outages is essential. Using fully operational standby sites with
periodically updated standby systems is a well-known approach to prepare
against disasters. Setting up and maintaining a second datacenter is, however,
expensive. In this work, we present Cloud Standby, a warm standby approach
for setting up and updating a standby system in the Cloud. We describe the ar-
chitecture of Cloud Standby and its methods for deploying and updating the
standby system. We show that by using Cloud Standby the recovery time and
long-term costs of disaster recovery can significantly be reduced.

Keywords: Cloud Standby, IaaS, Warm Standby, Disaster Recovery, Distri-
buted Systems.

1 Introduction

Since the industrial revolution, protecting critical business processes against potential
risks like earthquakes, fire, power outages, theft, illness, floods, and similar events
has been a major concern of companies. Therefore, disaster recovery planning and
preparing contingency plans for disaster preparedness have always been an integral
part of running a company. To be prepared for these worst-case scenarios, disaster
recovery plans are made in order to resume operations as soon as possible. These
measures to keep up critical business processes in case of an emergency are often
referred to as Business Continuity Management (BCM) [5] or, in the context of IT, as
IT Service Continuity Management (ITSCM) [13]. The effectiveness of BCM can be
controlled via the key figures Recovery Time Objective (RTO) and Recovery Point
Objective (RPO) [5]. RPO refers to the maximum acceptable time between two back-
ups whereas RTO defines the maximum reasonable time a business process may be
interrupted (see also Fig. 1).

 Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud 33

Fig. 1. Recovery Point Objective and Recovery Time Objective in the context of IT

To reduce the downtime of a system after an outage, it is common to replicate the
whole system to another standby site [18] or even better, to another provider [14].
This is an established but very expensive approach that comes in different types: hot
standby is a failover mechanism where all relevant data is consistently and conti-
nuously mirrored to a second data center with equivalent infrastructure almost in real-
time. The main disadvantage of this procedure is the high costs. In addition to the
operating costs of both systems, there are also the costs for mirroring. In contrast,
there is Cold standby. Cold standby sites are updated only at times of low load such as
nights or weekends and no standby systems are prepared. Therefore, in a case of a
disaster, the standby system has to be ordered, deployed and equipped with the last
backup. Therefore an RPO of days or weeks and an RTO of days or months are com-
mon. The third replication mechanism, warm standby, is positioned between cold and
hot standby. A warm standby system has, similar to a hot standby system, an identical
copy of the primary systems infrastructure but does not mirror data immediately. In-
stead, warm standby systems replicate the data periodically in short timeframes. Thus
the primary and the secondary systems can have small amounts of different data that
needs to be recreated in case of an outage. In general, warm standby systems have an
RTO and RPO between minutes and hours.

To reduce operating costs of infrequently used IT components like warm standby
systems, it is possible to use Cloud Computing [4, 16]. Cloud Computing provides the
user with scalable, configurable IT resources over the internet with a pay-per-use
pricing model [8, 12]. This means that the user only pays for resources he actually
needs and unused resources can be used by other users. In the case of warm standby
systems this pricing model makes Cloud Computing an ideal platform for hosting
replication sites at reasonable prices with high availability [20]. Using a Cloud Com-
puting datacenter as a standby site is especially interesting for small and medium
companies that have all their servers in a single datacenter and do not have the possi-
bility to run their own colocation center. Many of these small and medium-sized
companies, however, should prepare for disaster with a standby system at another
location or provider: according to recent studies [17], downtime costs in small and
medium companies sum up to $12,500-23,000 per day and even data centers that are
considered as highly available have reported downtimes [11].

34 A. Lenk and S. Tai

In this work we introduce a novel approach for securing a distributed system
against provider outages by using Cloud technology. We present Cloud Standby as a
new method for disaster recovery of distributed systems in the Cloud. This method is
composed based on a disaster recovery process for monitoring the standby site, updat-
ing the standby system, and initiating the emergency operation. Our focus thereby is
on technical aspects of the IT service continuity process rather than on regulatory
aspects or risk management (see Fig. 2).

Fig. 2. IT service continuity process (cf. [13]) – the focus of this paper lies on the parts marked
in black

The subsequent chapters of this paper are structured as followed: In Chapter 2, we
refer to existing works. Chapter 3 introduces the novel Cloud Standby approach. We
present the results of an evaluation with the company “barcoo” in Chapter 4. The final
Chapter 5 concludes the findings and provides an outlook for our future work.

2 Related Work

In the following we describe state of the art warm and hot standby approaches that are
using Cloud Computing as standby sites. We exclude cold standby in this discussion,
because in cold standby no standby system is prepared.

2.1 Warm Standby in the Cloud

Wood et al. [20] analyze the cost reduction by having a Cloud provider as standby
site. In contrast to our work, this paper focuses on the economic part and does not
present a concrete warm standby system. The authors, however, identify that the pay-
as-you-go Cloud computing billing is especially effective in the warm standby. Pok-
harel et al. [14] reach the same conclusion. They also recommend that the primary
system and replication system should be deployed geographically apart. This ensures
that if a whole datacenter goes down, one of the systems will still be available and the
business can continue with only a short interruption. In their approach they describe
an algorithm that allows identifying outages and initiating the emergency operation.

Klems et al. [6] present a concrete warm standby approach that is using Cloud
technology to run the replication system. Also, Klems at al. point out that using Cloud
Computing in the context of warm standby systems can lead to a reduction of costs
and deployment time. In their work they focus on single servers rather than on distri-
buted systems and present a mechanism for backing up the primary virtual machine.
Thus, for every primary virtual machine they provision two virtual machines in the
Cloud, leading to an unnecessary overhead if there are already data backup mechan-
isms in place.

 Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud 35

2.2 Hot Standby in the Cloud

The hot standby approach PipeCloud [21] replicates virtual machines to the cloud by
copying all writing operations to the virtual hard disk. To get access to these writing
operations, this approach needs access to the hypervisor. All the writing operations
are asynchronously sent to the cloud and stored in a queue where they are applied to
the virtual images stored there. This allows this approach to be used if the RPO is
very small; however, it also introduces the problem that the primary system cannot
run on a public cloud since there is no access to the hypervisor and the disk-writing
operations themselves in the public cloud. It also introduces a huge traffic overhead as
every single writing operation has to be packaged and sent to the Cloud over the In-
ternet. Similar approaches are called Remus[3] and SecondSite [15]. Both of them
rely on access to the hypervisor for copying the writing operations and sending them
over the network. Remus, though, is not focusing on the Cloud but rather on replicat-
ing the virtual machine to another hypervisor within the same datacenter, and with the
additional SecondSite it is possible to copy one or more virtual machines to the
hypervisor of another datacenter. None of the presented approaches, however, are
applicable in the public Cloud due to their requirement to have low level access to the
hypervisor.

In conclusion it can be noted that in the related work there are approaches for
warm and hot standby but none of them can be used to easily setup and update a
standby system of a distributed system in the public Cloud.

3 Cloud Standby

In this section we describe Cloud Standby, a novel approach for replicating a distri-
buted system in the Cloud to another Cloud. In the following subsections we describe
the components and possible states of the Cloud Standby system, and the process for
replicating the primary system to the Cloud.

3.1 Components and Methods

The Cloud Standby method consists of several different components and methods. An
overview of the Cloud Standby method can be found in Fig. 3.

• Primary System (PS) – The primary system is the distributed system that needs to
be secured by the warm standby approach. This system, with its given architecture
and features like failure tolerance is secured as a whole, so that the same architec-
ture and features are still present after the disaster. The primary system is backed
up repeatedly using a state of the art data backup method as to meet a desired RPO.

• Standby System (RS) – The standby system is a copy of the primary system,
which takes over the operation in the case of an emergency. The Cloud Standby
approach aims to deploy this system and keep it up to date. In order to enable the
standby system to take over the operation, the requests of the users of the distri-
buted system must also reach the emergency system. There are various methods for

36 A. Lenk and S. Tai

Fig. 3. Overview of the combination of methods

handing over external requests to the standby system, for example the use of virtual
IP addresses or dynamic DNS entries. These methods are not part of this work, but
established methods of the state of the art like the work of Ayari et al. [2] can be
used in this case.

• Cloud (C1 and C2) – The exact location of resources like virtual machines or
storages are often veiled in Cloud Computing. In this paper, “Cloud” describes the
location of a Cloud data center and refers to a logical unit where computing power
and memory is supplied. Within this Cloud, transaction costs like traffic are not
charged. The Cloud is a runtime environment for virtual machines and provides
storage. These Cloud resources can be maintained with the Cloud Management In-
terface. Typical management tasks are creating, reading, updating and deleting
resources.

In the following we describe the methods that are applied to the components. The
tools and implementations supporting these methods can be located anywhere. We,
however, recommend having them hosted in the Standby Cloud for availability and
cost reasons: If the primary cloud becomes unavailable the Standby System can still
be started with the last version of the backup. Also many Cloud providers do not
charge data transfer within a single datacenter, so the data transfer during the update
cycle of the standby system is free of charge.

• Data Backup – The data backup method includes a central database that contains
all backups for the distributed system and is filled by backup software of the re-
spective virtual machines of the primary system. The backup interval has to match
the RPO. The RPO applies to the superordinate business process, hence to every

 Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud 37

system and virtual machine involved in the process. We assume that the current
backup status is adequate for the RPO. Therefore, the backup ensures that the rep-
licated data is consistent. Only after every virtual server has saved its data, is the
backup completed and unlocked for restoration. The backup serves as a consistent
central data source that can be accessed from the primary as well as from the
standby system. By using the backup as a common component, existing solutions
are integrated and it is ensured that the standby system can be updated to a condi-
tion that matches the RPO.

• Deployment – Besides the Disaster Recovery Method, the Deployment Method is
a key part of Cloud Standby. It coordinates and maintains the infrastructure like
virtual servers and network configurations that are involved in the distributed sys-
tem1. The Deployment Method has all information about the distributed system
like IP addresses or access data and serves as the information source for other
components. As a deployment method, a state of the art Cloud provider-
independent deployment method like TOSCA [23] can be used. We, however, rec-
ommend to use our tailored Cloud Standby deployment model [7, 9] that has native
support of Cloud federation and data backup and is thereby ready for the usage
with the disaster recovery method presented in this paper. Our deployment method
is available online2.

• Disaster Recovery – Tasks of the Disaster Recovery Method are updating the
standby system, and initiating and terminating the emergency mode. Therefore, it
uses the deployment method for every task that effects the administration of single
entities. The disaster recovery method consists of the emergency backup process
and the update protocol.

In the following, we further describe the disaster recovery method by detailing valid
state transitions and the disaster recovery process. We design our system as a warm
standby approach. That is, the standby systems gets updated periodically with the data
backup available within the data backup store as part of the data backup method. So,
setting up the data backup correctly is a preliminary requirement for our method. Fig.
4 gives an overview of the backup and update process and illustrates the indepen-
dence of the two. While the backup process depends on the RPO, the update of the
standby system happens afterwards and is defined as .

In order to do the periodic updates necessary in a warm standby approach we start
the system with the deployment method, restore the last backup, and save the updated
images. Therefore, in the next run, only the changed data has to be updated on the
image which reduces the time until the instance is fully available. In the following
section we describe the states of a Cloud Standby system during the disaster recovery
process.

1 Cloud infrastructure specific features like availability zones, firewall configurations, or

external storage are specified with the deployment method and are not in the focus of this
paper.

2 https://github.com/alexlenk/CloudStandby/
tree/master/org/cloudstandby/model

38 A. Lenk and S. Tai

Fig. 4. Exemplary representation to show the independence of the update and backup interval
as a UML sequence diagram

3.2 Disaster Recovery States

Cloud Standby is based on a warm standby approach where a Primary System (PS)
running in the Primary Cloud (C1) is periodically synchronized as a Standby or Rep-
lica System (RS) to Standby Cloud (C2). The states and state transitions of our Cloud
Standby approach are depicted in Fig. 5.

Fig. 5. UML state chart of a Cloud Standby system (c.f. [9, 10])

• PS Deployment – The PS is deployed on C1 at first. The deployment time depends
highly on the structure of the deployment. For each use case, the deployment time
can be determined by experimentation. It depends, however, on the amount of data
that has to be copied to the virtual machine. If the deployment contains a stateful
server, causing a lot of data changes over time, the deployment time can rise quick-
ly (see section 4.2). After the initial deployment a RS update is performed to en-
sure the RS can take over immediately in the case of a disaster.

[

 Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud 39

• PS Runtime + RS Update – Periodically (after) the RS is updated. This
ensures that the deployment time of the RS is reduced when an actual disaster oc-
curs.

• PS Runtime – During PS runtime, the RS is turned off and generates no costs. The
PS data are, however, backed up using standard backup methods. This ensures the
RPO can be met in case of a disaster (see Fig. 4).

• RS Deployment – When C1 fails the RS is started and takes over the service. The
time for the deployment is . The deployment time varies with the amount
of data that needs to be installed or stored during the deployment process. This
means that decreases with a decreasing . The correlation be-
tween and can be determined through experiments or moni-
toring over time.

• RS Runtime – In the case of an outage on C1, the RS takes over and only if during
this time an outage also takes place on C2 is whole system unavailable.

• RS Runtime + PS Deployment – As soon as C1 is up again, the PS can be redep-
loyed and then takes over the service.

In the following section we describe a high level process that implements the states
described in this section.

3.3 Disaster Recovery Process

The main purpose of the process described in this section is to provide all the functio-
nality and parallel tasks that are necessary for the Cloud Standby approach. The
process ensures that the primary Cloud is monitored, the emergency mode is activated
and deactivated, and that the update of the standby system is triggered. The disaster
recovery process is depicted in Fig. 6 as an UML activity diagram.

Fig. 6. Disaster recovery process

There are two parallel activities that are executed while the primary system is run-
ning: monitoring of the primary Cloud, and the update of the standby system. Both of
these activities run continuously and are periodically restarted. Each of them has
its own timer and can be externally controlled, but both depend on the state of the

40 A. Lenk and S. Tai

standby system - for example, updating the standby system is only possible if the
primary system is in the state ‘started’. Once the primary system is stopped, this activ-
ity can’t be executed, but the failure of the monitoring activity also automatically
triggers the emergency operation. Once the primary Cloud is available again, but the
primary system is still stopped, the primary system is started and the operation is
switched back to normal mode so that the update can be executed.

The updating process is depicted in Fig. 7. After the standby system is started, the
update of the system is initiated by restoring the last backup with the standard backup
method. Once the restoring process has finished, the current state is saved and the
deployment is stopped again. When using our model-based deployment method [7]
the update of the standby system can be modelled within the deployment. Therefore,
it can be ensured that the update cycle is always executed and no data is lost. Even if
all presented processes and methods are applied correctly, it is however crucial to test
the disaster recovery process from time to time. We therefor recommend including
live testing during ongoing operation as part of the ITSCM (see section 1).

Fig. 7. Update Standby System Process

So far, we described the Cloud Standby approach comprising a set of methods and
the disaster recovery process. In the following section, we evaluate this new method
with a real world use case.

4 Evaluation

For the evaluation we implemented3 the Cloud Standby system and used a real world
use case in order to do an experimental evaluation. Further, a long term simulation
based on a Markov chain approach has been carried out (for method and further in-
formation on the simulation please see [9, 10]).

4.1 Use Case

For our evaluation, we use the infrastructure of the barcoo4 application. Barcoo is a
German startup with over 10 million app downloads. Barcoo is one of the most fam-
ous apps in the German Apple App store. The barcoo infrastructure consists of
four components: a load balancer, a set of application servers, a MySQL database,
and a NoSQL database (for caching). The components and their dependencies
are shown in Fig. 8.

3 Implementation available at: https://github.com/alexlenk/CloudStandby
4 http://www.barcoo.com

 Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud 41

Fig. 8. Barcoo application components (c.f. [19])

The load balancer is used as an access point for all clients (browser, smartphone
app, etc.). Here, the requests are forwarded to each application server. Each applica-
tion server uses data from the MySQL database or NoSQL-cache in order to make the
appropriate information available to the user. Data in the NoSQL store comes mainly
from external providers (price service provider, warnings about food scandals, etc.)
and are cached only for performance and bandwidth reasons.

Besides non-critical cache data, the production system of barcoo also includes mis-
sion-critical and privacy-related data. For the unlimited use of this data, special pre-
cautions and consents to third parties are required, which cannot be obtained in the
evaluation. For this reason, not all data of barcoo is available for evaluation and will
be replaced by non-critical data for the evaluation of this paper. Thus, it is also possi-
ble to reproduce the findings of this work without access to the internal data of
barcoo.

Data and Application Changing Rate. The business data of barcoo is subject to
permanent changes: new products are constantly added to the database, prices are
updated, new users are included, and so on. The requests that are addressed to the
database are a mixture of insert, update, and delete operations. The examination of the
data in the MySQL database for several years revealed a trend towards a continuous
increase of the amount of data. Therefore, only insert operations are considered in this
evaluation. Due to the historical data available it is assumed that the database is grow-
ing by 400 MB within one week.

The barcoo application is subject to a continuous development. As part of the agile
Scrum development process, there are a number of minor and major releases of new
versions. In the context of this evaluation, it is assumed that, as usual for Scrum, a
new and bigger version is published every two weeks, which makes it also necessary
to update the underlying software packages of the operating system. Fig. 9 once more
illustrates the relationship between the change of the MySQL data and the application
server updates.

Simulation of Critical Business Data. In the context of this evaluation, sensitive
business and customer data are replaced with publicly available data sets and applica-
tions. However, to receive realistic results, the amount and the structure of the data
were adjusted in close relation to the real data. More precisely, the MySQL database
is filled with data of the Ensembl gene database [22]. These data include both large
quantities of numbers that are comparable to the prices stored in the barcoo database
as well as longer texts that correspond to other data stored.

42 A. Lenk and S. Tai

Fig. 9. Sequence of the experiments

The Ensembl database contains the data in the form of databases, where each data-
base comprises the genetic code of a form of life. Initial analyses of the data showed
that parts of the data can be faster imported than others. This can be due to the fact
that some tables only consist of numbers whereas others consist of larger amounts of
text. In order to prevent that these different import times distort the measurements, all
data of an Ensembl database were converted into MySQL import commands and writ-
ten into a large MySQL file. Each line corresponded to an import command in the
data file. Subsequently, the lines of the large, multi-gigabyte file were randomly
mixed. The result was divided into small files, which can be individually imported
into an existing schema and enlarge the final database to 100 MB. For reasons of
better transportation, these 100 MB parts were packed with GZip5.

The data of the NoSQL database are kept in the main memory and are not of cru-
cial importance for the operation, it just reduces the number of requests to external
providers over the time. In an emergency, the NoSQL database is deployed empty and
gradually fills itself.

As the barcoo application is the company’s main core business, its publication
would definitely harm the business. Thus, for this evaluation, every installation step
for setting up a Ruby-on-Rails server that is capable of running the barcoo-application
has been available but the application itself has not. To simulate the application, the
github project “diaspora” was used. We chose diaspora because it is an open-source
Ruby-on-Rails application and there are several versions available, so the develop-
ment of several versions over a certain time can be simulated.

4.2 Results

With the given use case we set up the Cloud Standby system and by applying the
changed data according to the description in the use case, we simulated a 24 week
runtime of the system by repeating it 48 times within a short period of time. To eva-
luate the deployment times, we measured the time when the first startup call was sent
to the cloud provider until the last installation package of the last server was installed.
The results are shown in the following sections.

We first compared the startup time of the distributed system with increasing business
data and new application versions over time with and without Cloud Standby replica-

5 https://www.gnu.org/software/gzip/

 Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud 43

tion. By measuring the starting time without replication we created a reference on how
the startup time develops with increasing data. We used a curve estimation regression
on the measured data point to fit a function that we can use in our simulation later. Since
the Cloud Standby replication comes with a price that has to be paid to the Cloud pro-
vider when updating the standby system, we used the data we gained from the experi-
ments to calculate the overhead in costs for a given RTO. With this information we then
simulated the long term costs of the Cloud Standby system using a Markov chain based
approach that also takes the outages costs into account and can thereby estimate in
which cases our Cloud Standby approach is useful and in which it is not.

Fig. 10. Comparison between the deployment time with and without Cloud Standby

Reduction of the RTO. Considering the deployment time of a system with and with-
out Cloud Standby Fig. 10 shows that the difference between the deployment time of
the respective system rises with the size of the backup.

By doing a fit on the measured data points we determined the following function:

 1234.742 . (1)

Additional Costs. The costs for this approach arise from the starting of the standby
system consisting of 7 virtual machines6 for update reasons. Thereby the standby
costs are linked to the configured update interval (see section 3.3). The update interval
also defines what RTO can be achieved. So, we used interpolation on the startup
times in Fig. 10 and with the resulting function and a cost function for periodic Cloud
updates (see [9, 10]) we calculated the costs of running a standby system. Apart from
breakdown costs, these costs are solely overhead. In our case, the overhead for RTO
is between 2-5 % of the primary system hosting costs (see Fig. 11).

6 Usage cost for the used virtual machines types on Amazon EC2: 0.68€/h [1]

Av-
era
ge
Sta
rtu
p
Ti
me
[s]

Experiment #

w/o Cloud Standby
with Cloud Standby

44 A. Lenk and S. Tai

Fig. 11. Costs for Cloud Standby in relation to the recovery time objective as an absolute value
and percentage additional overhead costs

Fig. 12. Area (grey) in which Cloud Standby is cheaper than risking an outage (c.f. [9, 10])

Long-term Savings. Taking the outage probability of the primary provider, the out-
age costs () of the business processes, and the startup time (see formula 1) into
account, we can calculate for the given use case when Cloud Standby should be used
and when not7. As shown in Fig. 12, Cloud Standby is not useful in the case of very
high or very low outage costs. When these costs are very high a hot standby approach
should be considered and when they are very low it might be better to not use any
standby approach at all. However, as shown in Fig. 12, in many cases our approach is
beneficial (grey area). In our use case this approach should be used when the outage
costs are between 4.88€ and 2989.97€ per hour.

7 For calculating the long term savings we used the calculation method presented in [9, 10]

 Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud 45

5 Conclusion

In this paper we presented a novel approach for warm standby in the cloud. We intro-
duced Cloud Standby and its methods and processes for preparing, monitoring, and
updating the standby system. We evaluated the system using a real-world use case
where we deployed a multi-tier application several times with increasing data in the
cloud. We showed that by using Cloud Standby, the startup time, and thereby the
smallest possible RTO, can be significantly reduced. We also showed that in this use
case, the cost overhead of the approach is between 2-5% and that when taking the
outage costs of the business process into account, our approach should be used when
these costs are between 4.88€ and 2989.97€ per hour.

In our future work we will lay additional focus on the deployment method and de-
scribe how a model-driven approach can be used to complement our disaster recovery
method. We also plan to extent the implementation of our approach.

Acknowledgements. We would like to thank Tobias Bräuer, CTO of barcoo, for his
help and the insights he gave us on the barcoo infrastructure.

References

1. AWS Inc.: Amazon Web Services, Cloud Computing: Compute, Storage, Database,
https://aws.amazon.com/

2. Ayari, N., et al.: Fault tolerance for highly available internet services: concepts, approach-
es, and issues. IEEE Commun. Surv. Tutor. 10(2), 34–46 (2008)

3. Cully, B., et al.: Remus: High Availability Via Asynchronous Virtual Machine Replica-
tion. In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, pp. 161–174 (2008)

4. Henderson, C.: Building scalable web sites. O’reilly (2008)
5. Hiles, A.: The definitive handbook of business continuity management. Wiley (2010)
6. Klems, M., et al.: Automating the delivery of IT Service Continuity Management through

cloud service orchestration. In: 2010 IEEE Network Operations and Management Sympo-
sium (NOMS), pp. 65–72 (2010)

7. Lenk, A.: Cloud Standby Model Implementation,
https://github.com/alexlenk/CloudStandby/tree/
master/org/cloudstandby/model

8. Lenk, A., et al.: What’s inside the Cloud? An architectural map of the Cloud landscape. In:
ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD 2009,
pp. 23–31 (2009)

9. Lenk, A., Pallas, F.: Cloud Standby System and Quality Model. Int. J. Cloud Comput.
IJCC. 1(2), 48–59 (2013)

10. Lenk, A., Pallas, F.: Modeling Quality Attributes of Cloud-Standby-Systems. In: Lau, K.-
K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 49–63. Sprin-
ger, Heidelberg (2013)

46 A. Lenk and S. Tai

11. Li, Z., et al.: The Cloud’s Cloudy Moment: A Systematic Survey of Public Cloud Service
Outage. ArXiv Prepr. ArXiv13126485 (2013)

12. Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Spec. Publ. 800, 145
(2011)

13. Menken, I., et al.: Itil V3 Malc-Managing Across the Lifecycle Full Certification Online
Learning and Study Book Course: The Itil V3 Intermediate Malc Complete Certification
Kit. Emereo Pty Limited (2009)

14. Pokharel, M., et al.: Disaster Recovery for System Architecture Using Cloud Computing.
Presented at the July (2010)

15. Rajagopalan, S., et al.: SecondSite: disaster tolerance as a service. In: Proceedings of the
8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, pp. 97–108
(2012)

16. Schmidt, K.: High availability and disaster recovery. Springer (2006)
17. Symantec: 2011 SMB Disaster Preparedness Survey - Global Results (2011)
18. Whitman, M., et al.: Principles of incident response and disaster recovery. Cengage Learn-

ing (2013)
19. Wittern, E., et al.: Feature-based Configuration of Vendor-independent Deployments on

IaaS. In: 18th IEEE International Enterprise Distributed Object Computing Conference,
EDOC (2014)

20. Wood, T., et al.: Disaster recovery as a cloud service: Economic benefits & deployment
challenges. In: 2nd USENIX Workshop on Hot Topics in Cloud Computing (2010)

21. Wood, T., et al.: PipeCloud: using causality to overcome speed-of-light delays in cloud-
based disaster recovery. In: Proceedings of the 2nd ACM Symposium on Cloud Compu-
ting, p. 17 (2011)

22. Ensembl Genome Browser, http://www.ensembl.org/index.html
23. Topology and Orchestration Specification for Cloud Applications Version 1.0,

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.pdf

Weaving Aspects and Business Processes
through Model Transformation

Heiko Witteborg1, Anis Charfi1, Daniel Colomer Collell2, and Mira Mezini2

1 SAP AG
Bleichstr. 8, Darmstadt, Germany

{firstname.lastname}@sap.com
2 Software Technology Group

TU Darmstadt, Hochschulstr. 10, Darmstadt, Germany
lastname@informatik.tu-darmstadt.de

Abstract. Concerns such as logging, auditing and accounting need to be ad-
dressed already in the business process modeling phase and not only in the pro-
cess implementation phase. Mostly, such concerns are modeled as part of the
normal flow in business process models. However, the crosscutting nature of
such concerns leads to complex, scattered, and tangled models that are hard to
understand and to manage. The lack of appropriate means to modularize cross-
cutting concerns in business process modeling languages seriously affects un-
derstandability, maintainability and reusability. In a previous work we proposed
AO4BPMN 1.0 as an aspect-oriented extension of BPMN that allows the mod-
ularization of crosscutting concerns. However, there were several open issues in
that proposal. First, it lacks a concrete weaving mechanism for composing busi-
ness processes and aspects. Second, it lacks a well-defined pointcut language to
select join points. Third, it does not support BPMN 2.0, which was still under de-
velopment at that time. In this paper we tackle these issues and present a weaver
for AO4BPMN based on model transformation as well as an OCL-based pointcut
language.

Keywords: aspects, business process, modeling, weaving, model transformation.

1 Introduction

With the rise of executable process languages such as the Web Services Business Pro-
cess Execution Language (WS-BPEL) [11] and the Business Process Modeling Nota-
tion (BPMN) [13] the borders between process modeling and process implementation
are blurring. A BPMN process model can be at the same time the process model and
the process implementation as BPMN 2 is not only a modeling language but also an ex-
ecutable language. This requires such languages to allow expressing several concerns
that are important for process implementation such as security, accounting, and audit-
ing. However, these concerns have a crosscutting nature and using the current means
of WS- BPEL and BPMN to specify them leads to complex process models with many
activities that are not directly related to the core process logic. Without appropriate lan-
guage constructs for supporting crosscutting concerns the process complexity increases

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 47–61, 2014.
c© IFIP International Federation for Information Processing 2014

48 H. Witteborg et al.

and the process models become hard to understand, to manage, and to maintain. For
example, consider a business process for order fulfillment that involves the usage of
external services with costs such as a delivery service. We need to extend the business
process to collect accounting data whenever we use an external service with cost. To do
this we need for each activity that calls an external service at least another activity for
accounting. Obviously the process complexity will drastically increase and the activities
belonging to one concern such as accounting will be mixed with activities addressing
other concerns. In addition, the implementation of a given concern such as accounting
will be scattered across several business process models.

In addition to the need for concepts to modularize crosscutting concerns in business
processes, we motivated in [15] the need for concepts to modularize business process
extensions as first-class entities. Consider for example an independent software vendor
(ISV) who extends the standard business processes implemented by an ERP-System
to adapt that software to the particular needs of a company or a domain. The process
extension should be kept separate from the business process for several reasons. First,
the extension is owned by the ISV whereas the core process is owned by the ERP
provider. A separation of both entities avoids problems when the core process is updated
by the ERP provider. Second, several extensions may be applied to the same business
process and if they are not modelled as separate entities it would be very difficult to
understand the new process that results after applying these extensions to the original
core process.

In order to address the limitations of business process languages with respect to
crosscutting concern modularity and process extension modularity, we introduced
aspect-oriented workflow languages in [3] and as an instantiation thereof we proposed
AO4BPEL [4], which is an aspect-oriented extension to WS-BPEL. A new implemen-
tation of that language based on Apache ODE was recently made available [9]. After
AO4BPEL, we proposed AO4BPMN 1.0 [5] as an aspect-oriented extension to BPMN,
which allows a better modularization of crosscutting concerns and process extensions.
However, that work has three open issues. First, it lacks a concrete pointcut language.
Second, no weaving mechanism was provided. Third, the language extension and the
respective editor were based on BPMN 1.2 and not on BPMN 2.0, which was still in
development at that time.

In this paper, we present the following contributions. First, we refine the language
definition of AO4BPMN and make it compliant with BPMN 2.0 using a light-weight
extension of BPMN 2.0. Second, we propose a concrete pointcut language based on
OCL. Third, we present a weaving mechanism for composing aspects and processes,
which is based on model-to-model transformation. Fourth, we present a new Eclipse
based toolset for AO4BPMN 2.0 including a graphical editor, a weaving wizard, and a
weaver. A variation of AO4BPMN was applied in an industrial context to modularize
business process extensions as first class entities as presented in [15]. However in that
work process extensions were extracted from modified business process models and
modularized in aspects implicitly behind the scenes. In the current paper, we advocate
a rather explicit approach for modeling aspects in business processes.

The remainder of this paper is organized as follows. Section 2presents AO4BPMN 2.0
and illustrates its constructs by means of an example. Section 3 introduces the weaving

Weaving Aspects and Business Processes through Model Transformation 49

mechanism and the underlying algorithms. Section 4 is dedicated to implementation and
tooling. Section 5 discusses related work and Section 6 concludes the paper.

2 AO4BPMN 2.0

In this section, we first give a language overview focusing on the AO4BPMN concepts
that were added or refined in version 2.0. Then, we shortly discuss the integration of
these concepts into the metamodel of BPMN 2.0. After that, we present an example
business process that we use throughout the paper for illustration.

2.1 Language Overview

Base Process and Join Points: In AO4BPMN, a Base Process is a business process
model that ideally focusses on the core functional process logic, while the crosscutting
concerns are captured separately in Aspect modules. The base process contains Join
Points, which are distinct and uniquely identifiable points at which crosscutting con-
cerns can be integrated. AO4BPMN per default defines base processes and joint points
in an implicit and standard-conform way: any standard BPMN 2.0 process can serve as
a base process. Any contained BPMN flow node, i.e., any BPMN element used to define
events, activities and gateways, is available as an AO4BPMN join point. Hence, exist-
ing BPMN 2.0 processes are AO4BPMN-enabled by default. A base process modeler
does not have to foresee or annotate possible AO4BPMN join points. However, while
this gives the modeler flexibility and ensures the standard-conformity and reusability
of the process models, there are use cases, in which certain process elements should
be protected from being advised by aspects [15]. For example, this requirement arises
when a core business process should not be adapted by a third-party to protect intellec-
tual property or to ensure compliance with legal obligations. To cover these scenarios,
AO4BPMN also supports the explicit exclusion of base process flow nodes from the
join point set.

Aspects: Aspects are units for modularizing crosscutting concerns in business process
models such as monitoring, accounting, or security. An aspect acts as a container for
both the concern-specific business process logic, represented as Advice, and for the
Pointcuts, which select the join points at which the advice will be integrated. An aspect
can define multiple sets of pointcuts and advices. In addition, an aspect may define
some state, i.e., data that can be accessed and modified by the advices contained in that
aspect.

Advice and Proceed Node: An advice is a construct that holds a connected fragment
of the process logic of a crosscutting concern. In case the concern is scattered over sev-
eral join points in a business process (e.g., a timer that is started at the beginning of a
process and is stopped at its end), the corresponding aspect will hold several advices.
Apart from the concern’s process fragments, an advice may also include the special flow
node Proceed, which is a placeholder for the Join Point element that is selected by the
pointcut. This node defines how the advice must be applied: everything implemented

50 H. Witteborg et al.

sequentially before the Proceed will be integrated before the selected join point; every-
thing implemented sequentially after it will be integrated after the selected join point
(cf. Section 3). If the Proceed flow node is not used the join point element is replaced
by the advice content (or deleted without substitution, if the advice is empty). Com-
pared to other AOP languages, where advice composition strategies are often limited
to either before, after, or instead of the join points selected by the associated pointcut,
AO4BPMN’s Proceed concept allows more advanced advice composition strategies.

Pointcut: A pointcut allows selecting one or more related join points at which a certain
advice will be integrated. Usually, a pointcut targets elements of a base process. Yet,
as multiple aspects can be applied to the same base process, the pointcut belonging to
a certain aspect may also target elements that were introduced by another aspect in a
previous step, resulting in a dependency hierarchy of concerns. Pointcuts can be defined
based on element characteristics both on the meta level (e.g., all activities that are typed
as receive task) or on the model level (e.g., an activity with a certain id). The pointcut
language should also be powerful enough to allow selecting elements based on different
criteria such as their relationship to other model elements (e.g., the resource that will
perform an activity), their containment information, or the existence of certain boundary
events. To support weaving at execution time, the pointcuts may also include instance
attributes, e.g., the state of an activity or the priority of a user task. Based on the alterna-
tives sketched in [5], we opt for an OCL-based pointcut language for AO4BPMN 2.0 as
OCL [12] provides the required expressiveness, flexibility and tool support. We lever-
age OCL’s usability and understandability by providing helper functions that facilitate
the specification of query expressions, e.g., to enable the use of wild-cards.

2.2 Extending the BPMN 2.0 Metamodel with AO4BPMN Concepts

BPMN 2.0 introduces an extensibility mechanism that can be used to extend BPMN’s
metamodel in a standard-compliant manner [13]. The concepts ExtensionDefinition and
ExtensionAttributeDefinition are at the core of this mechanism. We use these concepts to
define AO4BPMN 2.0 as a light-weight extension of BPMN 2.0. Figure 1 shows using
dashed arrows how the AO4BPMN metamodel elements extend to the BPMN meta-
model elements. AO4BPMN BaseProcesses and Aspects are specialized Processes. An
aspect contains possibly multiple States and Advices. An Advice is a specialized SubPro-
cess that contains a Pointcut and optionally a ProceedNode in addition to the elements a
standard SubProcess may contain. A Pointcut may reference multiple JoinPoints, which
are specialized FlowNodes that are part of the BaseProcess.

2.3 Example Scenario: Agile Software Development

We consider the (simplified) scrum-like development process shown in Figure 2 that
will be used as base process. This process covers the creation and presentation of a
sprint backlog by the development manager, the execution of tasks during the sprint
by the development team, and the review of the sprint results. While this development
process looks plain and readable, it can easily become complex and tangled by adding

Weaving Aspects and Business Processes through Model Transformation 51

Fig. 1. Extending BPMN 2.0 with AO4BPMN concepts

activities to cover concerns such as quality assurance, test-driven development, monitor-
ing or documentation. Other examples of crosscutting concers could involve activities
related continuous integration or setup-specific activities e.g., regarding open-source
development; activities related to other development approaches such as extreme pro-
gramming practices; activities that might be of interest for other company-internal stake-
holders like the HR, finance, or legal department. A business process model represent-
ing a realistic development setup would have to cover multiple concerns. Mixing the
core process functionality and the other relevant crosscutting concerns leads to a com-
plex process model that is difficult to understand and to maintain.

AO4BPMN helps addressing the issues discussed above. Figure 3 shows an
AO4BPMN aspect that modularizes the process logic related to test-driven develop-
ment (TDD) in the context of our example process. For demonstration purposes, two
rather simple advices define the additional process fragments required for acceptance

52 H. Witteborg et al.

Fig. 2. Agile development base process

tests. The first advice specifies that the definition of acceptance tests should be done be-
fore the selected join points (sequentially before the Proceed element). The respective
pointcut is the OCL expression context Activity :: name = ’Prioritize
sprint backlog items’. The second advice specifies that running the acceptance
tests should be done after the selected join points (after the Proceed element). The re-
spective pointcut is context BoundaryEvent :: name = ’SprintTimeOut’.

The third advice, Unit Testing, shows a more advanced structure, with the Proceed
element located in the middle. In addition, an end event is used in this advice to indi-
cate that there should be an outgoing sequence flow to the successors of the join point.
In analogy to the instantiation semantics of BPMN 2.0, these start and end event ele-
ments are not required when the node has no incoming (resp. outgoing) sequence flows.
Hence, we do not need to add specialized events in the acceptance test advices. The third
advice is intended to refine the implementation phase of our scrum process, thus, the
corresponding pointcut is context Activity :: name = ’Implement’.

3 Composition of Processes and Aspects

As AO4BPMN aspects are separate modules a weaving mechanism is necessary to com-
pose them with the BPMN base processes. In this section, we present a weaving mech-
anism that is based on model-to-model transformation together with the underlying
algorithms and rules.

3.1 Weaving Mechanism

The weaving mechanism of AO4BPMN takes aspect models and business process
models as inputs and produces BPMN 2.0 compliant business process models as output.

Weaving Aspects and Business Processes through Model Transformation 53

Fig. 3. Test-driven development aspect

Apart from evaluating the pointcut queries and identifying the matching join points, the
weaving mechanism integrates the advice process fragments into the base processes via
model-to-model transformation. Thereby, merging and branching restrictions need to
obeyed and the newly inserted elements need to be re-linked with the base process flow.
A simplified version of the weaving algorithm is shown in Listing 1. We elaborate on
the core tasks of the weaving mechanism in the following.

public List<Process> weave(List<Process> baseProcesses, List<Aspect> aspects){
List<Process> targetProcesses = new ArrayList<Process>();
Process targetProcess;
for (Aspect aspect : aspects) {
for (Process baseProcess : baseProcesses) {

targetProcess = cloneProcess(baseProcess);
for (Advice advice : aspect.getAdvices()){

List<JoinPoint> jps = identifyJoinPoints(baseProcess, advice.getPointcut());
for (JoinPoint jp : jps){

cloneAdvice(targetProcess, advice);
relink(targetProcess, jp);

}
}
targetProcesses.add(targetProcess);

}
}
return targetProcesses;

}

Listing 1. Weaving algorithm

Join point identification phase: The first phase in the weaving process is the evaluation
of the pointcuts contained in the aspect. This phase identifies the join points at which
the advices have to be integrated in the subsequent phases. Depending on the OCL
expressions used in the pointcuts the join point selection can be based on different
characteristics of the flow nodes, such as instance-specific properties (e.g., select a node
based on its id or name), properties on the meta-level (e.g., select all nodes of type user

54 H. Witteborg et al.

task) or context patterns (e.g., select all nodes that have multiple outgoing edges). These
query options can be combined, aggregated, or generalized by using the respective OCL
constructs.

In our agile software development scenario, the TDD aspect defines instance-specific
pointcuts: the acceptance test definition should be done before prioritizing the back-
log items; the unit testing should be done around the implementation task; and the
acceptance test should happen after the sprint has finished. A more sophisticated
advice in this example scenario could be defined to enable role-specific KPI moni-
toring, with a pointcut selecting manual tasks that were defined to be performed by
a certain resourceRole, e.g., Developer. The resulting pointcut expression in OCL
could be: context Task :: resources->select(r : ResourceRole
| r.name = ’Developer’)->notEmpty().

Cloning phase: In this phase, the flow nodes and connection elements defined in the
different advices have to be cloned and merged with the selected join points in the base
processes. This is achieved by transforming the process models. This cloning phase is
responsible for copying the needed information and process elements from the aspect
model to the process model. Given a join point and a Proceed element as input, the
weaver knowledge is limited to whatever is directly attached to these elements. For this
reason, the weaver clones level by level. In this context, a level is defined as the set of
all the elements that are at the same distance from the Proceed element. The distance
between two elements is defined as the number of associations in the shortest path that
links these two elements.

Fig. 4. Abstract structure with the elements and their distance to the central element

For illustration Figure 4 shows an abstract structure with elements and their distance
to the central element (element with distance 0). The weaving algorithm clones first all
the elements at distance 1, then all elements at distance 2, and so on until the last level
is reached. In the unit testing advice of our example, apart from the Proceed element
itself, all elements have distance 1 except the end event, which has distance 2.

Weaving Aspects and Business Processes through Model Transformation 55

Besides flow nodes, other BPMN 2.0 elements can occur in the advice definition and
need to be handled appropriately in the cloning step. Connections are elements of par-
ticular interest for the cloning phase. In fact, in a BPMN process diagram the different
flow objects and other elements such as data objects are related by means of connecting
elements such as sequence flow and association. Moreover, boundary events can be used
to interruptively branch the process flow. Regarding the process transformation, these
connecting elements are taken into account by the weaver as explained in the following.

– Everything that is linked by means of a sequence flow connection belongs seman-
tically to the process itself as part of its sequence of steps. The weaving algorithm
supports this flow level as it is the level that contains the semantic part of the pro-
cess.

– Everything related by means of an association connection is used to express rele-
vant information that is found along the steps of the process; but it does not belong
to the normal flow. Both data associations targeting flow nodes and sequence flows,
as well as the data objects themselves are considered by the weaving algorithm, as
they contain relevant information that contribute to the semantics of the process.

– Boundary events indicate that the activity to which they are attached should be inter-
rupted when the event is triggered. The weaving algorithm reflects this by copying
the aspect boundary events into the composed process.

Re-linking phase: After cloning the content of the advice (i.e., the flow nodes and
connecting elements) in the context of the selected join point, the original connections
of the join point potentially need to be re-routed to or from the newly cloned elements.

As a first step after the cloning is performed, the weaver needs to identify the ele-
ments that are candidates to be targets or sources of the so called re-linking phase. In
analogy to the instantiation semantics of BPMN 2.0 we identify nodes with either only
incoming or only outgoing edges as candidates. Yet, there may be the need for an ex-
plicit candidate specification, as shown in the unit testing advice of our example. Here,
the contained gateway cannot be automatically detected as a final flow node of the ad-
vice process but this can be indicated using an end event. Note that these start and end
events have to be removed at the end of the weaving process.

The re-linking strategy has to cover various composition setups, e.g., the combina-
tion of an advice with multiple tasks without successor and a selected join point with
multiple outgoing sequence flows. An example of such a join point could be the Create
new Sprint backlog task, as depicted in Figure 5. As an example aspect targeting this
join point we consider a monitoring aspect that starts two timers after the backlog is
initialized as shown in Figure 6.

In this situation (multiple outgoing edges and multiple end candidates), the re-linking
strategy needs to merge the cloning structure with the original process and needs to
keep the semantics, without overloading the composed model with edges. A full clone
of the succeeding process fragment for each re-linking candidate of the advice would
not be a practically scalable solution. To tackle this problem we leverage two BPMN 2.0
equivalences. In fact, the BPMN 2.0 specification defines an equivalence relationship
between multiple outgoing sequence flows and a split using a parallel gateway as well
as an equivalence relationship between multiple incoming sequence flows and a merge

56 H. Witteborg et al.

Fig. 5. Join point with multiple outgoing
connections

Fig. 6. Aspect with multiple end candidates

using an exclusive gateway. Taking this into account, the weaver applies the following
generic re-linking strategy: All cloned elements that are candidates for re-linking will
be connected to the originally steaming out elements through the use of an exclusive
gateway connected to a parallel gateway. Figure 7 depicts the result of applying this
strategy to the monitoring aspect shown in Figure 6.

Fig. 7. Composed process in a scenario with multiple branches

The same strategy can be applied to multiple incoming join point edges and multiple
re-linking start candidates. In the case of single edges and candidates we can avoid
the creation of the intermediate gateways and simplify the re-linking using a direct
connection via a sequence flow link.

3.2 Example Scenario Revisited

Figure 8 shows the result of weaving the TDD aspect shown in Figure 3 and the agile
software development process depicted in Figure 2.

The integration of the first acceptance testing advice, the creation task, demonstrates
the re-linking of multiple incoming sequence flows. As we do not have multiple start
candidates in the advice there is no need to insert an additional merging gateway ex-
plicitly. The second acceptance testing advice with the Run acceptance tests task shows
that not only activities but also other flow nodes can be valid join points. In this case
the join point is a boundary timer event. The composition with a more complex process
fragment is illustrated through the integration of the unit testing advice. Here, during
the re-linking phase, the end event was replaced by the outgoing edges of the selected
join point (i.e., the task Implement).

Weaving Aspects and Business Processes through Model Transformation 57

Fig. 8. Test-driven development process

4 Implementation and Tooling

Figure 9 gives a high level overview of the AO4BPMN toolset components. In the mid-
dle of this figure we see a Repository, which allows persisting and accessing aspect and
process models. The Navigator can be used to browse processes and aspects; both types
of models can be edited using a completely re-implemented new editor that extends the
BPMN2 Editor. In addition, a Weaving Wizard is provided to support the selection of
the base processes and aspects that should be composed by the weaver.

4.1 Editor

The editor shown in Figure 3 allows defining aspect models that are separated from
the business process models, giving support to the AO4BPMN language. This editor
is based on the tool BPMN2 modeler1, which is an open source component of the
Eclipse subproject Model Development Tools (MDT). The BPMN2 subproject aims
at providing a metamodel implementation of the BPMN 2.0 specification and a corre-
sponding modeler component. We extended and adapted the BPMN2 modeler to sup-
port AO4BPMN constructs making use of the powerful extension point provided by that
tool. This extension point offers amongst others the following extension possibilities:

– Extending the property tabs of any modeling element defined in the BPMN2
metamodel (the actual eclipse implementation). We used this to add an AO4BPMN

1 http://eclipse.org/bpmn2-modeler/

http://eclipse.org/bpmn2-modeler/

58 H. Witteborg et al.

Fig. 9. Components of the AO4BPMN tooling

properties view tab that is displayed when an AO4BPMN-specific element is se-
lected in the editor.

– Defining own custom tasks. We used this to define the Proceed element as a custom
task.

– Defining own model extensions. That is, to extend the metamodel with new spe-
cialized BPMN elements. We used this extension point parameter to e.g., add the
Pointcut attribute to the properties view of an Advice.

– Providing own feature containers for available modeling elements to override part
of the default behavior. This offers a means to adapt the rendering and containment
restrictions of e.g., Advices.

– Defining own style sheets. We used this to define styles for the adapted tool, e.g.,
the background color of the Proceed element.

The editor allows defining aspects, OCL-based pointcuts, and advice including also
the proceed activity. A pointcut can be specified using the AO4BPMN property tab of
an advice. Moreover, it is possible to extend the tool to add support for other point-
cut languages. A mechanism to switch between multiple pointcut languages is already
implemented.

4.2 Weaver and Weaving Wizard

As part of the toolset a weaver that implements the algorithms presented in Section 3 is
integrated with the editor described above. Hence, the weaving process can be started
directly from the editor. Furthermore, a weaving wizard is provided to support the selec-
tion of the processes and aspects that should be composed by the weaver. As shown in
Figure 10, the weaving wizard allows selecting on the left side the diagrams containing
the aspects to be woven and on the right side the diagrams containing the base processes.
If the aspects are in the same diagram as the base processes the checkbox with the label
Use the same Diagrams should be ticked. Once the button labeled OK is clicked the
wizard calls the weaver.

Weaving Aspects and Business Processes through Model Transformation 59

Fig. 10. Weaving wizard (Selection of base processes and aspects)

For implementing the weaver we used operational QVT2, which is part of the OMG
standard QVT. The reason for choosing QVTo and no other parts of the QVT language
family is the operational nature of QVTo, which helped us in implementing the clone
and merge algorithm in a rather straight-forward manner.

5 Related Work

We discuss in this section related work from two areas. The first area addresses the gen-
eral topic of aspect-oriented modeling mainly in the context of object-oriented design.
The second area addresses specifically the topic of aspect-oriented business process
management.

An extensive survey on aspect-oriented modeling approaches is presented in [2],
which is a deliverable of the AOSD-Europe network of excellence. That survey cov-
ers both works that extend UML diagrams with aspect-oriented constructs and works
that are based on domain-specific languages. Another more recent survey is presented
in [14] and it focuses specifically on approaches that are based on UML. As exam-
ples of works in that context we mention [16] and [6]. In [16], the authors present an
aspect-oriented extension to UML state machines. In [6] an aspect-oriented extension
to UML activity diagrams is proposed. Another similar work in this area is [10], which
proposes a UML 2 profile for aspect-oriented modeling and uses UML 2 actions to de-
fine advice behavior in a platform independent manner. In addition that work defines an

2 http://projects.eclipse.org/projects/modeling.mmt.qvt-oml

http://projects.eclipse.org/projects/modeling.mmt.qvt-oml

60 H. Witteborg et al.

advanced pointcut language and a model weaving mechanism based on model transfor-
mation. The works in this first area do not address business process languages such as
WS-BPEL and BPMN.

One of the first works in the second area is AO4BPEL [4], which is an aspect-
oriented extension of the executable business process language BPEL. In that work,
we proposed an aspect-oriented extension to BPEL 1.1 and developed an aspect-aware
orchestration engine, which supports dynamic weaving. AO4BPEL join point model
includes all BPEL activities and it uses XPath as pointcut language. A new imple-
mentation of that language based on Apache ODE was recently made available [9].
Padus [1] is another aspect-oriented extension to BPEL, which has a similar join point
model and advice language. However, Padus uses a high-level logic-based pointcut lan-
guage to support stateful aspects and express temporal pointcut expressions. Further-
more, Padus performs static weaving using model transformation unlike AO4BPEL,
which supports dynamic weaving using an extended orchestration engine. AO4BPMN
introduces aspect-oriented concepts to graphical business process modeling languages
whereas AO4BPEL and Padus target the process execution language BPEL.

The authors of [7, 8] build upon AO4BPMN 1.0 [5] by proposing a formal definition
of the different language concepts. They also propose a formal specification of the exe-
cution semantics of a weaving mechanism using colored petri nets. These works nicely
complement AO4BPMN by providing a formal foundation. Furthermore, the authors
of [8] also validate the usefulness of AO4BPMN in practice by presenting a banking
case study. Another validation of AO4BPMN in the context of business software can
be found in [15], where we use aspects behind the scenes to modularize and manage
business process extensions as first-class entities in an industrial context. In that work,
aspects are used as means to support extensibility and encapsulate business process
extensions which are developed by software companies (e.g., as add-ons) that extend
standard business applications. Unlike in that work, in the current paper we advocate an
explicit approach to aspect-oriented business process modeling.

6 Conclusion

To improve the modularization of crosscutting concerns and process extensions in busi-
ness process models, we proposed in a previous work an aspect-oriented extension to
BPMN called AO4BPMN. However, that extension had some open issues especially
with respect to the lack of a concrete pointcut language and the lack of a weaving mech-
anism. Furthermore, it was based on an older version of BPMN as BPMN 2.0 was still
under development at that time. In the current paper, we addressed these issues and pre-
sented a concrete OCL-based pointcut language for AO4BPMN as well as a powerful
weaver based on model-to-model transformation. We also refined the language definition
to make it compatible with BPMN 2.0. In addition, we presented a new Eclipse based
tooling for AO4BPMN including a graphical editor and a weaver. An application of an
AO4BPMN variant for modularizing process extensions was presented in [15]. Another
application in the context of a banking case study was presented in [8]. Our future work
will focus on mapping AO4BPMN aspects to AO4BPEL as an alternative to weaving by
model transformation and also on facilitating the definition of pointcuts to users that are
not familiar with OCL for instance by providing a form-based query builder.

Weaving Aspects and Business Processes through Model Transformation 61

Acknowledgments. The work presented in this paper was performed in the context
of the Software-Cluster project SINNODIUMIt was partially funded by the German
Federal Ministry of Education and Research under grant no. 01IC12S01. The authors
assume responsibility for the content.

References

[1] Braem, M., Gheysels, D.: History-Based Aspect Weaving for WS-BPEL Using Padus. In:
Proc. of the 5th European Conference on Web Services (ECOWS), pp. 159–167 (November
2007)

[2] Brichau, J., et al.: Report describing survey of aspect languages and models, AOSD-Europe
Deliverable D12

[3] Charfi, A.: Aspect-Oriented Workflow Management. VDM Verlag Dr. Müller (2008)
[4] Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to BPEL. World Wide

Web Journal: Special Issue: Recent Advances in Web Services 10(3) (March 2007)
[5] Charfi, A., Müller, H., Mezini, M.: Aspect-oriented business process modeling with

AO4BPMN. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS,
vol. 6138, pp. 48–61. Springer, Heidelberg (2010)

[6] Cui, Z., Wang, L., Li, X., Xu, D.: Modeling and Integrating Aspects with UML Ac-
tivity Diagrams. In: Proc. of the ACM Symposium on Applied Computing, SAC 2009,
pp. 430–437. ACM, New York (2009)

[7] Jalali, A., Wohed, P., Ouyang, C.: Aspect oriented business process modelling with prece-
dence. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 23–37.
Springer, Heidelberg (2012)

[8] Jalali, A., Wohed, P., Ouyang, C., Johannesson, P.: Dynamic weaving in aspect oriented
business process management. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellah-
sene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol. 8185,
pp. 2–20. Springer, Heidelberg (2013)

[9] Look, A.: Ao4bpel 2 server (2011), https://github.com/alook/ao4bpel2
[10] Mosconi, M., Charfi, A., Svacina, J., Wloka, J.: Applying and Evaluating AOM for Platform

Independent Behavioral UML Models. In: Proc. of the 12th International Workshop on
Aspect-Oriented Modeling, AOM 2008, pp. 19–24. ACM, New York (2008)

[11] OASIS: Web Services Business Process Execution Language Version 2.0.,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[12] OMG: Object constraint language (ocl) version 2.3 (2012),
http://www.omg.org/spec/OCL/2.3.1/

[13] Object Management Group (OMG): Business Process Model and Notation (BPMN) Version
2.0., http://www.omg.org/spec/BPMN/2.0/

[14] Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W., Kap-
sammer, E.: A Survey on UML-based Aspect-oriented Design Modeling. ACM Comput.
Surv. 43(4), 28:1–28:33 (2011),
http://doi.acm.org/10.1145/1978802.1978807

[15] Witteborg, H., Charfi, A., Aly, M., Holmes, T.: Business Process Extensions as First-
Class Entities — A Model-Driven and Aspect-Oriented Approach. In: Liu, C., Ludwig,
H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 763–770. Springer, Hei-
delberg (2012)

[16] Zhang, G., Hölzl, M., Knapp, A.: Enhancing UML State Machines with Aspects. In: En-
gels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 529–543. Springer, Heidelberg (2007)

http://www.software-cluster.org/
https://github.com/alook/ao4bpel2
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/BPMN/2.0/
http://doi.acm.org/10.1145/1978802.1978807

Domain Objects for Dynamic
and Incremental Service Composition

Antonio Bucchiarone, Martina De Sanctis, and Marco Pistore

Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy
{bucchiarone,msanctis,pistore}@fbk.eu

Abstract. A key feature of service-based applications (SBAs) is the capacity to
dynamically define the composition of services independently available, which is
required to achieve user goals. For this reason, to effectively deal with the obsta-
cles due to continuous context changes, an incremental refinement of provided
services is needed. We propose a new model that allows service functionalities to
be defined partially, through the use of abstract activities. The refinement of these
activities is postponed and performed incrementally at runtime, using the actual
context as a guide. Our approach lets a service provider avoid the hard-coding of
all service functionalities and their possible compositions at design time, delaying
their refinement until the execution phase. Consequently the whole SBA’s design
becomes modular and flexible to better meet the typical dynamism of SBA. We
illustrate the approach through an example scenario from the urban mobility do-
main.

1 Introduction

The high dynamism of the environments in which service-based applications must op-
erate, together with their context continuously changing, make the deployment and
maintenance of complex distributed applications a hard task to accomplish in a really
efficient way. Services may enter or leave the system at any time. Moreover, the situ-
ation in which they are executed may be different each time or it may change during
their execution. Besides the end-users may change their preferences and emergent re-
quirements can arise. In many situation it often occurs that the only way the application
can manage such changes is at run-time, since current situations, available services and
users needs are not known priori. Incremental and dynamic service composition, hence,
becomes the key point to address the problem of continuously changing environment.

The existing approaches of service composition [19], have some crucial limitations.
Most of them are based on the assumption that during the composition requirements
specification, the application designer knows the services to be composed. Consequently,
it often occurs that composition requirements include specific implementation details of
the services with which they are supposed to be used. Thus, requirements are strongly
linked to particular service implementations and they cannot further be used with similar
but different services. However, in dynamic systems, both the composition requirements
and the available services change frequently. For these reasons, a static specification of
composition requirements upon services is not adequate. In this setting, it is necessary
to be able to produce service compositions consistent with the surrounding context and

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 62–80, 2014.
c© IFIP International Federation for Information Processing 2014

Domain Objects for Dynamic and Incremental Service Composition 63

to quickly manage emerging user requirements during the services execution [20]. To
fulfill this purpose, a service model reflecting the contextual environment of services has
to be provided. Moreover, the model has to be flexible enough to cope with the typical
dynamism of service-based applications. This objective can be reached by avoiding the
need of hard-coding every features of the context and/or services at design time [3], but
rather leaving the application to dynamically discover the context around and, thus, to
incrementally make service compositions.

In this paper we propose an approach, the unified service description ”domain ob-
jects”, that allows a partial definition of such services in order to enable their incremen-
tal composition when the context is discovered or when context changes are detected.
In addition, the idea is to allow autonomous, heterogeneous and distributed services to
be presented in a standard, open and uniform way. The incremental composition task
is made by defining abstract activities, which are activities that have not a concrete
implementation but they are defined in terms of a goal to be reached, in the context
space. They represent the opening points in the application design in which the incre-
mental refinement process can take place during the run-time phase. As concern the
management of the dynamism of SBAs, the domain object model allows the designer
to model a hierarchically structured conceptual network of services, which are modeled
in a modular way that guarantees an efficient management of the continuous entrance
and exit of services in the system, avoiding the need of re-designing of the application.
The modularity feature is also given by the concept of fragment that is used to represent
the protocols which have to be performed to execute the services, in a customizable and
portable way. Fragments play a key role also in the process of the incremental composi-
tion of services because they are used to replace the abstract activities, by making them
able to reach their goal using the service available in the context.

The paper is organized as follows: we start with a motivating scenario to understand
the requirements that a service-based application must satisfy, in Section 2. Section
3 describes the general approach, firstly, in Section 3.1, by defining how the services
are modeled using our approach; then, in Section 3.2, by explaining how to design a
service-based application using the domain objects model; and, finally, by clarifying
how the bottom-up approach for the incremental and dynamic refinement process is
realized, in Section 3.3. Section 4 is devoted to the definition of the formal framework,
followed by the implementation discussion of a prototype in Section 5. Related work
are discussed in Section 6. Finally, our conclusions and directions for future work are
presented in Section 7.

2 Motivating Scenario

In last years, the concept of smart-cities is increasingly catching on. In this context, in
which each city is assumed as a system of systems, we focus on the urban mobility do-
main. The urban mobility system is a network of multi-modal transport systems (e.g.,
buses, trains), services (e.g., car sharing, bike sharing, car-pooling) and smart technolo-
gies (e.g., sensors for parking availability, smart traffic lights) strongly interconnected
to better manage mobility by offering smart services. Today, also modern transporta-
tion services are increasingly prevalent, such as the Flexi-bus service that combines the

64 A. Bucchiarone, M. De Sanctis, and M. Pistore

features of the taxi and the regular bus service. A Flexi-bus system defines a network of
pickup points and provides passengers with a way to get around between any of these
points, on demand. In other words, a passenger can request a transit between any two
points at a given time. The basic idea of the service is to organize bus routes in such a
way that all requests are served with minimal number of buses/routes. A urban mobil-
ity application is made of autonomous and heterogeneous services, which are offered
by different service providers, that can be composed in order to achieve specific user
needs. The providers are autonomous from each other in the system, as they can take
decisions in an independent and distributed manner. Each service may enter or leave the
system at any time, as well as it may change its offered functionalities or it may offer
new ones, making the system open and dynamic. The dynamism is also given by the
system’s context, whose change can affect the operation of the system (e.g., traffic jams,
bus delays, on-line payment services unavailable, strikes). During the system execution,
all these aspects may generate new properties when combined together, maybe bringing
to different mobility solutions because of the enabling or disabling of services. How-
ever these informations are only known at runtime, therefore it is no possible to predict
every potential solution that can be offered, in terms of services composition, because
of the incomplete knowledge at design-time. A urban mobility application is essentially
made of entities, which provide services, and relations between them. The model of the
scenario is based on the idea of an extended service model, properly hosted by SCA
[18]. SCA comes with built-in extensibility capabilities. The SCA assembly model is
defined such that extensions can be added for new interface types or for new implemen-
tation types, or new binding types. However, the definition of extensions is left to the
implementor. This is witnessed by different SCA implementations (e.g., Apache Tus-
cany [13]), but many of these specialties are not available at programming level. The
entities can be organized in two main categories: (i) the service consumers, which
comprises the end users that daily make use of mobility services, private or public
companies that might want to create value-added services (VASs) by exploiting the ur-
ban mobility environment’s services; (ii) the value-added service (VAS) providers
that, by exploiting and composing more basic services or VASs available in the envi-
ronment, create new VASs to be forwarded in the system. A VAS provider can play
both roles of consumer, if it does not forward the new created service in the system,
and provider, if it does, as we will see later. As regard services, we already said that
we can have basic services available in the domain (e.g., smart traffic lights, flexi-bus
service, train service, on-line payment service, parking service) or VASs (e.g., route
planner able to provide a list of flexi-buses optimized routes, calculated by exploiting
some basic services in the environment, such as those giving information on the current
situation of traffic, pollution and weather together with the current number of requests
coming from users). The different entities must be able to collaborate in the creation of
services optimizing the resources or the quality of the system (e.g., reduction in traffic
and emissions of CO2). Moreover, there are the mobility solutions eventually provided
to the requesting entities, possibly coming from the composition of different services.
These must be customized on the needs expressed by requesters (e.g., user preferences
and profile must be taken into account when choosing the services to compose). The
need for customization also implies the need of adaptive services, capable of adapting

Domain Objects for Dynamic and Incremental Service Composition 65

their behavior dynamically. All the entities must interact together, each with different
roles and purposes. As we said before, being the context continuously changing, these
interactions must be dynamic and context-aware with respect to the surrounding en-
vironment (e.g., the application must be able to detect new available services or the
unavailability of existing ones). In conclusion, a urban mobility application must meet
specific requirements, as revealed by the scenario, such as: (i) dynamism to manage con-
tinuous changes; (ii) openness to address the problem of the services that can enter or
leave the system at any time; (iii) autonomy of the entities to reflect the independence
of the providers and their services; (iv) context-awareness to consider the availabili-
ty/unavailability of services during the composition phases and the users profiles and
preferences; (v) adaptivity of services to reflect the dynamic behavior of involved ser-
vices; (vi) collectivity to allow entities to collaborate for realizing optimized services;
(vii) customization to offer services which are not general and statically defined but
services customized for each user on the basis of their specific needs. Those require-
ments are fundamental to really fulfill the main features of a modern and dynamic urban
mobility application.

3 General Approach

In this Section, we discuss an approach at a conceptual level, by introducing all the main
concepts through the exploration of the scenario depicted in Figure 2. In Section 3.1,
we explain how the entities in the environment are modeled; in Section 3.2 , we explain
how to design a service based application using domain objects, while, in Section 3.3 we
define how the services are incrementally refined and composed during the execution
phase.

3.1 Entity Representation

Firstly,the approach is designed around the concept of domain object (DO). The DOs
are used to model the entities, both humans and systems (e.g., users, service providers),
with their features and their behavior, in a standard, open, and uniform way. To describe
the model of a DO, we refer to the FlexiBus Manager (FBM) DO, in Figure 1, which
comes from to the Urban Mobility Application (UMA) scenario depicted in Figure 2 and
whose design is illustrated in the next Section. A DO is represented as a model made
of two layers, namely the core layer and the fragments layer (see Figure 1). Briefly,
the business of the FBM mainly consists in the management of the flexi-bus service,
the definition of optimal routes for flexi-buses and the management of requests for on
line ticket payments. The core layer defines the structure, the interface and the internal
behavior of a DO. The structure represents the state of the DO and it is made of:

– a set of variables, which represents its features. For example the state of the FBM is
made of the optimized routes dynamically defined, the information about the flexi-
buses in action in the city, the TicketStatus related to the payment of the ticket by a
user for the booked Flexi-bus, etc..

– a set of relations to model domain objects’ direct connections. For example, the
FBM holds relations with the instances representing the real flexi-buses running
around the city, as shown by the fbInstances relation.

66 A. Bucchiarone, M. De Sanctis, and M. Pistore

F
ig

.1
.F

le
xi

B
us

M
an

ag
er

D
om

ai
n

O
bj

ec
t

Domain Objects for Dynamic and Incremental Service Composition 67

The interface, as depicted in the right side of the core layer, consists in:

– a set of subscriptions definition that associates reaction functions to some events
coming from other DOs. As an example, the Traffic monitor subscription in the
FBM triggers the execution of the ManageTrafficInfo process by reacting to a Traf-
fic Jam Notification forwarded by the Traffic Management Service (TMS). This
subscription is shown by the arrow labeled with (a).

– a set of ports that define custom events that a domain object may generate. They
carry information and represent changes in the domain object’s structure. As an
example, the FBM publishes on the routes update port to notify that new routes are
available. It is then possible that other DOs subscribe to this port to be triggered in
case of the availability of new routes. This subscription is represented by the arrow
labeled with (b), which shows that the UMA has made a subscription to the routes
update port of the FBM.

– a set of service notifications that are used to propagate events and/or updates from
a service, without an explicit request. This is realized by publishing the events on
specific ports, as shown by the dashed arrows in the Figure. Examples of service
notification are the FlexiBus service unavailable notification forwarded by the FBM
and also the Traffic Jam Notification of the TMS.

The behavior of a DO represents all the processes that it implements to execute
its services. A process is represented as a sequence of activities, also complex with
loop and/or conditional steps. The FBM, for example, has three main processes such as
RoutePlanner, PaymentRequestManagement and FlexiBusBooking.

In the fragments layer, the set of services that the DO externally exposes are mod-
eled. Each service is represented as a fragment [8] that represents the interface with an
internal process in a DO. The FBM for example, provides two main fragments, namely
the BookFlexiBus and the TicketPaymentRequest. As regards activities, they can be es-
sentially of four types: input, output, concrete and abstract. While the first three are
well known, the novelty is the use of the abstract activities to make fragments, and
thus services, dynamic. An abstract activity is defined in terms of the goal it needs to
achieve. The goal consists in a configuration of the state of the DO holding the abstract
activity that has to be reached. For example, the TicketPaymentRequest fragment ends
with the abstract activity Pay, which is drawn with a dashed border and which has the
goal ”TicketStatus = paid”. The TicketStatus is a variable in the state of the FBM and its
initial value is notPaid. Each non abstract activity can be executed both autonomously
by the fragment or by interacting with the processes in the core layer, through direct
communication. For example, considering the BookFlexiBus fragment of the FBM, the
activity called Choose Route performs its task with no interaction with the core layer.
To the contrary, its output activity Send Request is aimed to trigger the internal pro-
cess named RoutePlanner, by calling its input activity Receive Travel Request. In the
Figure, this kind of connection between activities is identified by tagging them with
the same label. Abstract activities, instead, stand for tasks whose implementation is not
known a priori and must be produced at run-time through the composition of fragments
(so-called activity refinement) [4]. The execution of these fragments leads the process to

68 A. Bucchiarone, M. De Sanctis, and M. Pistore

reach the goal defining the abstract activity. As regards interactions and cooperations
between DOs, these can be realized in two ways:

1. since the interface of the core layer of a DO is public, a direct connection can be
established by using the mechanism of subscriptions. Example of these connections
are expressed by the arrow labeled with (a) and (b) in Figure 1. These connections
are defined during the design phase of an application. They allow the engineer to
construct a hierarchically structured conceptual network of domain objects, hav-
ing possibly different levels of abstraction. In such a hierarchy, usually the DOs
in a layer can monitor the DOs in the layers below. The connections highlighted
in Figure 1 by the solid arrows define the hierarchy made of the Urban Mobility
Application which monitors the FBM which monitors the TMS;

2. a second way consists in collaborations between DOs realized dynamically at run-
time, through the exchange of fragments during the execution of abstract activities.
In this case, the interacting DOs are not directly connected by explicit relations, but
they interact during the runtime phase. For example, the Pay abstract activity of the
TicketPaymentRequest fragment will be refined by using one ore more fragments
of other DOs, as we will in Section 3.3.

3.2 Service Based Application Design

In this Section we present our approach to design a SBA through the definition of corre-
lations and cooperations between a multitude of DO. Moreover we present how domain
objects are able to refine incrementally their services, while executing them. The sce-
nario depicted in Figure 2 drives us through the design of the application by showing
how all the entities are modeled, how service providers are designed, how a domain
objects hierarchy is build up using relations between DOs and, finally, how mobility so-
lutions are provided to the end-users through the runtime selection and composition of
different fragments coming from the involved domain objects. At the bottom of Figure
2, all the entities that may contribute to the overall application are shown. They frame
the environment in which the application lives. It is composed by a multitude of entities,
both humans and systems, which are autonomous and disconnected from each other. In
the case of systems, the interaction exploits all the IT interfaces these systems expose on
the web. These IT interfaces are however fragmented and heterogeneous, i.e., they con-
sist of software designed independently from each other, and they are made available
through a large variety of different technologies (web pages, web APIs, REST or SOAP
services, feeds, open data, and so on). There is hence a need to encapsulate interactions
with systems, so that they are presented in a standardized way. In our approach, this is
achieved by a specific wrapping layer, which has the goal to cope with the encapsulation
of fragmented and heterogeneous sources, aiming at presenting them as open, uniform
and reliable services. In this scenario, there are people that make use of services by
using applications on their mobile devices (e.g., journey planner app); many mobility
service providers (e.g., flexi-bus, car pooling, parking service); municipalities that can
offer smart services for citizens (e.g., the city-card that is a smart rechargeable card en-
abling discount and facilities to the owner); traffic and security management systems;
pollution detection systems; weather forecast systems; systems for geo-location; banks

Domain Objects for Dynamic and Incremental Service Composition 69

Fig. 2. Urban Mobility Application Scenario

and other public or private companies that can be involved in a urban scenario (e.g.,
banks offering on line payment facilities). For better comprehensibility, in our design,
we show only the domain objects that are involved in the service composition.

Basic Services. The layer just above the environment shows the domain objects mod-
eling the basic service providers. The flexi-bus service, just notify real-time information
on the instances of flexi-buses all around (e.g., their position, their delay if any). While,
the train service also offers a fragment, namely trainBooking, allowing the user to book
a train and possibly to pay the ticket on line. The Traffic Management Service and the
Pollution Detection Service domain objects essentially release information of real time
traffic and pollution situations respectively. Finally, the Bank Service and the City-card
service domain objects expose different fragments, all related to the management of the
on line tickets payment and connected services. In detail, the bank service has one main
fragment, namely the onLinePayment, while the city card service offers two fragments,
the payTransportMeansTicket and the RechargeCityCardOnLine.

Value Added Services. Going up in the design of the scenario, there are the most in-
teresting layers, in theDOs hierarchy containing the DOs modeling the VAS providers.
These are the Transport Means Manager, the Flexi-bus Manager, the Journey Planner
and the Online payment Manager in the middle layer, and the Urban Mobility Appli-
cation in the top layer. These providers are characterized by the ability to offer value
added services, in two possible ways:

70 A. Bucchiarone, M. De Sanctis, and M. Pistore

1. by monitoring two or more basic service providers and then computing new ser-
vices by exploiting them. For example the Transport Means Manager in Figure 2
monitors the DOs modeling the Train Service and the FlexiBus Service. In Figure
2, this kind of relation is shown by the solid arrows, which are marked with the
<monitor >label.

2. by defining abstract activities in their fragments and/or processes that can be dy-
namically refined through the composition of others fragments currently available
in the application.

The FBM introduced in Section 3.1 is an example of a VAS provider. Its business,
depicted in Figure 1, consists in the management of the flexi-bus service by monitoring
all the flexi-bus instances and in the definition of optimal routes for flexi-buses, which
are calculated by considering the current situation of traffic and pollution. The routes
are provided by the RoutePlanner process in the core layer. It is a clear example of
VAS, which is realized by exploiting the services offered by the FlexiBus Service, the
Traffic Management Service and the Pollution Detection Service in the layer below. The
FBM also handles the requests for the on-line payment of the tickets for flexi-buses. It
exposes two fragments:

1. the bookFlexiBus that corresponds to the protocol that must be performed by a user
to book a flexi-bus. It works interacting with the processes in the core layer, as we
said in the previous Section.

2. the ticketPaymentRequest that, by receiving the booking code of the chosen flexi-
bus and the user data, triggers the internal process PaymentRequestManagement
to verify if the user is allowed for the on line ticket payment. If so, the fragment
execution can continue until the abstract activity Pay. The SBA will refine this
abstract activity.

3.3 Incremental Service Composition

In this paper, starting from the domain object model proposed in [5], we extend it by
introducing the concept of fragment, coming from [4], with its flexibility characteris-
tic in modeling modular and dynamic services that can be easily composed. In par-
ticular, in this work we focus on the need for refining an abstract activity within a
fragment/process instance. In our approach we model the incremental refinement pro-
cess of an abstract activity by assuming that the adaptation engine [21] provides to
the application the fragments composition on the basis of the goal of the abstract ac-
tivity. In the majority of the approaches of service composition, top-down techniques
are used. Essentially, a service composition is first defined and then deployed for be-
ing executed. This is not useful in a dynamic environment where services can enter
or leave the system in any moment while end-users are constantly moving around,
discovering new services and changing their needs. Our approach follows a bottom-
up procedure. The fragments selected for the composition replace the abstract activ-
ities and are executed. To explain the approach, we present and example from our
running scenario. Suppose that there are two end-users, namely Marco and Paolo,
that use the urban mobility application. Its main fragment, namely the manageMo-

Domain Objects for Dynamic and Incremental Service Composition 71

bility shown in Figure 3, consists in forwarding travel requests to its internal pro-
cess that, after exploiting the monitored services, will send back the available appli-
cations in the environment that are able to manage multi-modal transport services.

Fig. 3. manageMobility Fragment

The journey planner (JP) is a mobile
application aimed at supporting sustain-
able urban mobility by offering multi-
modal travel solutions. The JP allows
users to send travel requests, by indi-
cating different preferences (e.g., start-
ing and destination’s points, departure
hour, preferred mode of transportation)
and personal profile. After validating the

request, the application is able to provide multi-modal transport solution(s) from which
the user can possibly choose. Marco has both the city-card and the bank account while
Paolo has not the city-card. In addition, Marco expresses the preference of moving
by using a flexi-bus while Paolo prefers to go by train. We show how, following the
bottom-up approach, two different final mobility solutions, customized for two differ-
ent requests and user profiles, are incrementally defined. The urban mobility system
receives the requests from Marco and Paolo. It replies by suggesting the usage of the JP
application. The JP receives the two forwarded requests and it creates two customized
transport solutions. As regards Marco, the incremental refinement process is shown in
Figure 4. The process starts with the need of Marco of moving from a point A to a
point B. This need corresponds to an abstract activity of the user DO. The manage-
Mobility fragment of the UMA is executed. It provides the JP application, as response.
Thus, in the second step, the Plan abstract activity of the planJourney fragment of the

Fig. 4. Incremental Service Composition

72 A. Bucchiarone, M. De Sanctis, and M. Pistore

JP has to be refined. Now, knowing that Marco prefers to go by flexi-bus, the selected
fragments for the third step are the bookFlexiBus and the TicketPaymentRequest of the
FBM, which are composed in sequence, giving the protocol to execute. But the Pay ac-
tivity is abstract so, in the step number four, the fragment onLinePayment of the Online
Payment Manager is provided to start the payment procedure. At this point is not yet
known the real protocol to be performed for paying. In fact the fragment ends with an
abstract activity also called Pay. As Marco has expressed the wish of paying with his
city-card, the last provided fragment is the payTransportMeansTicket of the CityCard
Service, which is necessary, finally, to execute the on-line ticket payment. Through five
steps of refinement, the final protocol for the whole service execution has been pro-
vided in a dynamic and context-aware manner. As concern Paolo, instead, the service
composition is almost equal to the one made for Marco but there are two important
differences, exactly in the third and the fifth steps of the process of refinement. At the
third phase, the provided fragment is the one exposed by the Train Service DO, namely
the trainBooking, as shown in Figure 5(a), since Paolo prefers to go by train. At the
fifth step, instead, the selected fragment for the payment protocol is the onLinePayment
exposed by the Bank Service DO and depicted in Figure 5(b), to meet the wish of Paolo
of paying with his bank account.

Fig. 5. trainBooking and onLinePayment Fragments

4 Formal Framework

In this Section we introduce the formal definitions of the elements of our approach and
we show how the incremental service composition technique is defined and how it can
be automatically resolved by using planning techniques. A system, such as that shown
in Section 2, is modeled through a set of entities, each of which is represented by a
domain object that is formalized as following:

Definition 1. (Domain Object) A Domain Object is a tuple o = 〈CL,F〉, where:

– CL, the core layer, represents the behavior of an entity;
– F is a set of services (i.e., process fragments) that an entity exposes and that can

be used by other entities.

In Figure 1, the FlexiBus Manager is an example of a DO with its two layers, namely the
Core layer and the Fragments layer. The core layer models all the basic ingredients that
make the domain object an independent unit. It essentially represents a set of processes,
which configure the behaviors that the entity can execute. As we said, the processes can
be not defined in a total and static way. The abstract activities are used to let processes
have opening points to the outside.

Domain Objects for Dynamic and Incremental Service Composition 73

Definition 2. (Core Layer) The Core Layer CL of a Domain Object o is a tuple CL =
〈L,L0, EIN , EOUT , T 〉, where:

– L is the state of a domain object. It is defined through a set of couple (V, v) where:
• V is the name of a variable describing a particular aspect of the domain object

(e.g., current location of a user, bus delay, availability of a Flexi Bus);
• v is the current value of the variable V at a specific execution time.
• L0 ⊆ L is the initial state;

– EIN is a set of events (the “input” events to the object);
– EOUT is a set of events (the “output” events from the object), such that EIN ∩

EOUT = ∅;
– T ⊆ L× EIN × L× 2EOUT is a transition relation.

We use the same model for both processes and process fragments (later in this section
we call both ’fragments’). We remark that processes represent the behaviors of entities.
Differently, fragments are pieces of process knowledge provided by entities to adver-
tise their services to other entities around. For example, the FlexiBus Manager domain
object provides a fragment, namely the BookFlexiBus, specifying how to perform the
booking of a Flexibus. Now, any other process can perform the Flexibus booking by
embedding and executing this fragment, following a specific refinement process. For-
mally, fragments are state transition systems, where each transition corresponds to a
particular fragment activity. In particular, we distinguish four kinds of activities: in-
put and output activities model communications between processes; concrete activities
model internal elaborations; and abstract activities correspond to abstract tasks in the
process. Abstract activity is what makes process structure dynamic. A process fragment
is defined as follows:

Definition 3. (Process Fragment) Process fragment is a tuple p = 〈S, S0, A, T,Goal〉,
where:

– S is a set of states and S0 ⊆ S is a set of initial states;
– A = Ain ∪ Aout ∪ Acon ∪ Aabs is a set of activities, where Ain is a set of input

activities, Aout is a set of output activities, Acon is a set of concrete activities, and
Aabs is a set of abstract activities. Ain, Aout, Acon, and Aabs are disjoint sets;

– T ⊆ S ×A× S is a transition relation;
– Goal : Aabs → 2L is the goal labeling function.

On the basis of the previous definitions, a service-based application simply consists
in a directed acyclic graph of DOs connected in a proper way, i.e., where the events
produced by a DO are fully captured by all DOs monitoring it. This graph constructs a
conceptual network of DO organized in a hierarchic way, as shown in Figure 2.

Definition 4. (Service-based Application) A Service-based Application (SBA) is a pair
Δ = 〈O,H〉, where:

– O is a set of domain objects representing the entities of the system;
– H ⊆ O ×O is a hierarchical direct relationship such that:

(a) it must be acyclic, i.e., there must exist no sequence o1, o2, . . . , on of domain
objects in O such that o1 = on and ∀i : 〈oi, oi+1〉 ∈ H , and

(b) ∀〈o1, o2〉 ∈ H : EOUT (o1) ⊆ EIN (o2).

74 A. Bucchiarone, M. De Sanctis, and M. Pistore

In the previous definition we have formalized how domain objects can be organized to
configure a SBA. In the following, we formalize the execution of a single domain object,
the execution of the entire SBA and, the activity refinement process. The execution
of a domain object consists in the execution of its fragments, when they are invoked
and/or in the execution of its internal processes, when they are triggered. In both cases,
executing a fragment/process means to execute the sequence of activities from which
they are composed.

Definition 5. (Domain Object Configuration) We define a domain object configuration
as a non-empty list of tuples Eo = (p1, a1), (p2, a2) . . . (pn, an), where:

– pi are process fragments or internal processes;
– ai ∈ A(pi)are activities in the corresponding process fragments, withai ∈ Aabs(pi)

for i ≥ 2 (i.e., all activities that are refined are abstract);

Examples of tuples are those depicted in the levels of Figure 4. If, during the execution,
an abstract activity is meet, this has to be refined by replacing it with a composition of
other fragments. The refinement will modify the state of the domain object stating that
the goal of the abstract activity has been reached. The advantage of performing the com-
position at run-time is twofold: (i) available fragments are not always known at design
time (e.g., a new parking payment procedure may be activated and the corresponding
fragment added to the system), and the composition strongly depends on the current
state of an entity (e.g., the end-user change his preferences or some features in his pro-
file). Composed fragments may also contain abstract activities which requires further
refinements during the process execution. The execution of the whole service-based ap-
plicationΔ is defined by the current state of each domain objects, by the domain objects
executions in the system, and by the set of available fragments provided by the different
domain objects.

Definition 6. (Service-based Application Configuration) Given a set O of domain ob-
jects, we define a service-based application configuration forOas a tripleS = 〈I, Γ,F〉,
where:

– I ∈ L(o1)× . . .×L(on), oi ∈ O represents the set of current states of the domain
objects;

– Γ ∈ Ep1 × . . .× Epn represents the configurations of the domain objects;
– F is the set of available fragments provided by all domain objects.

For lack of space, we do not give a formal definition of the evolution of a SBA configu-
ration. Intuitively, a SBA evolves in three different ways. First, through the execution of
the behaviors of domain objects: this happens according to the standard rules of busi-
ness process execution. Second, through the entrance (and exit) of new entities into
the system: each new entity cause the introduction of a new domain object in Γ and the
instantiation of the corresponding relations; moreover, since entities can bring new frag-
ments, it also corresponds to the extension of the set F . Third, through the refinement
of abstract activities, which will be discussed in detail in the following.

Definition 7. (Abstract Activity Refinement) An abstract activity refinement is a tuple
ξ = 〈S,G〉, where S is the current SBA configuration and G is a goal over the state of
the domain object o to which the abstract activity belongs.

Domain Objects for Dynamic and Incremental Service Composition 75

An abstract activity refinement ξ is a process R that is obtained as the composition of a
set of fragments in F(S). When executed from the current domain object configuration
Eo, R ensures that the resulting domain object configuration satisfies the goal G(ξ).
This means that the composition is obtained by chaining the new fragment in the con-
figuration of the domain object o: E′

o = (R, a0) ·Eo. For example, looking at the steps
3 and 4 of the Figure 4 we can see the current configuration of the FBM, representing
Eo, at the step 3. The Pay abstract activity is a0, the input for the refinement process.
When executed, the refinement process R leds to place the fragment shown at the step
4 in substitution of the abstract activity, bringing to a new configuration, exactly E′

o.

5 Implementation

In this Section we discuss the implementation of a prototype corresponding to the SBA
described in Section 3 using our approach. The implementation language that we have
used is Java. The aim of the prototype is to show an object-oriented representation
of domain objects and their relations. The incremental service composition, instead,
is dynamically realized by exploiting existing dynamic composition techniques such
as those exposed in [4]. We primarily focused on the main ingredients of the model
presented in this paper. The integration with the adaptation engine and the embedding
of fragment compositions in replacing abstract activities are out of the scope of this
paper and they are considered as future work. In the following paragraph we discuss
the core layer implementation of a DO and an example of a fragment implementation.

Core Layer Implementation. In this Section we take the FBM code (see Figure 1) as
an example of a core layer implementation. We present some chunk of java code im-
plementing the three main parts of the FBM core layer introduced in Section 3, namely
the structure, the interface and the behavior. The structure is made of variables and
relations, such as those shown in Figure 6(a). The FBM maintains in its state infor-
mation about the routes, the flexiBuses data and the ticketStatus for each seat of each
flexi-bus (lines from 14 to 18). The relation fbInstances in lines 21-22, instead, is used
by the FBM to manage the flexi-bus instances representing the real flexi-buses around
in the city. The Figure 1 shows that the FBM has three main processes, namely the
paymentRequestManagement, the routePlanner and the flexiBusBooking. They can be
implemented as class methods, as depicted in Figure 6(b). Finally, in Figure 6(c) and
6(d), the interface implementation of the core layer is exposed. The Figure 6(c) reports
the ports on which the domain object publishes its events or forwards some notifica-
tion. They are identified by the @Port annotation and by the empty implementation.
An example of a publication of an event on a port is reported in Figure 6(d), at line
83, where the flexiBusServiceUnavailable port is called. The Figure 6(d) displays both
a Service Notification example, from line 78 to line 84, and a Subscription Definition
example, from line 86 to line 90. The service notification is represented by the @Servi-
ceNotification annotation and it is triggered by a notification from the service specified
by the annotation parameters. The service subscription, instead, consists in a method
labeled with the @Subscribe annotation whose parameters event and type say which is
the monitored event and to which domain object it belongs (lines 86-87).

76 A. Bucchiarone, M. De Sanctis, and M. Pistore

Fig. 6. Core Layer implementation

Fragments Layer Implementation. The fragments layer models the set of services
that the domain object externally exposes. A fragment can be seen as a

Fig. 7. Fragment implementation

class whose methods implement the ac-
tivities making the fragment. In Figure 7
we shown a basic implementation of the
fragment TicketPaymentRequest of ther
FBM. It is important to notice the fol-
lowing aspects. The fragment holds a ref-
erence to the core layer of the domain
object to which it belongs, namely the
FlexiBusManagerCore reference, at line
6, that is used to interact with the core
layer processes. Lines from 15 to 20 im-
plement the method execute, which is
used in a service composition containing
the current fragment to start its execu-
tion. Lines 30 and 31, instead, show how
the abstract activity pay is defined. An
abstract activity is essentially a method
with no implementation. It is annotated
with a specific annotation, @abstractAc-
tivity (line 30), stating that the method

Domain Objects for Dynamic and Incremental Service Composition 77

maps an abstract activity defined by the goal parameter of the annotation. In line 18, the
abstract activity pay is called inside the ’execute’ method. Being abstract it will not be
executed but the adaptation engine is called and notified that an abstract activity needs
to be refined, on the basis of its goal. At this point the engine will provide the fragments
composition for replacing the abstract activity.

6 Related Work

In last years, different approaches have been proposed to provide relevant techniques
for the modeling of services in a suitable way for making efficient dynamic service
composition. From the scenario discussed above, the need of being able to define ser-
vices in a way that they can dynamically adapt to the context, when this is discovered
or when it changes, is emerged.

An approach is presented by Hull et al. [11] in their work about Business Artifacts.
It consists in the definition of a formal/theoretical framework for defining conceptual
entities, the artifacts, related to the execution of services whose operations influence
the entities evolution, as they move through the business’s operations. However, this
approach deal not with dynamic service composition needs but it focuses only on ser-
vice modeling aspects. Yu et al. propose MoDAR [24], an approach on how to design
dynamically adaptive service-based systems. Essentially they propose a method to sim-
plify business processes by using rules to abstract their complex structure and to capture
their variable behavior. However, in dynamic context, to rethink rules every time is to
expensive to manage continuous and unpredictable changes. In [12], the authors tackled
the problem of the unpredictable execution of service-based applications. In particular,
they focused on how to evolve a running service composition. To deal with this purpose
they propose a way for modeling artifacts corresponding to composite services that can
change at runtime. However, the software engineer intervention is needed to manip-
ulate the runtime model of services. Moreover, the adaptation and application logics
are mixed making the model not so flexible. In [7] the authors present DAMASCo, a
framework managing the discover, composition, adaptation and monitor of services in a
context-aware fashion by taking into account semantic information rather than only the
syntactic one. Since they address the problem of making the reuse of software entities
more agile and easy to model, they focus especially on the adaptation of pre-existing
software entities that are used during the developing of SBA. Also the approach pre-
sented in [16] focuses on the need of explicitly manage the context in the composition
of web services, to address the problem of semantic heterogeneities between services.
The authors present a context-based mediation approach that allows services both to
share a common meaning of exchanged data and to automatically resolve conflicts re-
lated to the semantic of the data, by using context-based annotations which offer an
optimized handling of the data flow. It would be interesting to use the approaches [7]
and [16] in the management of the composition of fragments coming from the different
DOs and the definition of the data flow between them. In [10] the concepts of goals and
plans are introduced in the business processes modeling with the purpose of extending
the standard BPMN to make the BPM more flexible and responsive to change. How-
ever, even if plans are selected and executed at runtime, they are defined at design time

78 A. Bucchiarone, M. De Sanctis, and M. Pistore

together with the relations with the goals they can satisfy. [9] is a framework for, among
other things, the management of the integration of services in the business processes im-
plementation’s process to speed the implementation and deployment phases. Services’
integration is realized in a plug-and-play manner in which activities are selected from a
repository and then dropped into a process. However, as regards the runtime adaptation
of processes, in this approach only ad-hoc modifications are managed.

The approaches related to the automation of service composition processes can
essentially be grouped into two main categories, service orchestration and service chore-
ography. The most important in the first category is BPEL [6], which besides com-
posing services, expresses relationships between multiple invocation and it employs a
distributed concurrent computation model. WS-CDL [17] is targeted at composing in-
teroperable, long-running, peer-to-peer collaborations between service participants with
different roles, as defined by a choreography description. Nonetheless, these approaches
refer essentially only to the syntactic aspects of services modeling, thus they provide
a set of rigid services that cannot adapt to a changing environment without the human
intervention. The vision underlying WSs [15] is to describe the various aspects of ser-
vices by using explicit, machine-understandable semantics, and, as such, to automate all
the stages of the WS lifecycle. OWL-S [14] is an attempt to define an ontology for the
semantic markup of services intended to enable the automation of WS discovery, invo-
cation, composition, interoperation and execution monitoring by providing appropriate
semantic descriptions of WSs. The WS Modeling Ontology (WSMO) [23] is an attempt
to create an ontology of aspects related to semantic WSs aiming to solve the integra-
tion problem. WSCI [2], literally Web Services Choreography Interface, is devoted to
the description of the messages exchanged between the web services in a choreography
and external services. This means that WSCI mainly focuses on the observable behav-
ior of services without deal their internal process. The Business Process Management
Language (BPML) [1] is also a standard within the service choreography category. To
the contrary to WSCI, BPML is a language for the modeling of the internal processes
of services in a way which can be supported and executed by business process manage-
ment systems. It is possible a combined use of WSCI and BPML to design the interface
and the business process of a service, respectively. The Unified Service Description
Language (USDL) [22] has been developed to offer a language for the description of
services independently from their belonging domain. The authors’ purpose is to allow
the definition of all kinds of services from the Internet of Services (IoS) perspective.

Discussion. We conclude this section with a discussion in which we try to point out
the advantages of the proposed approach. As regards the standard approaches of service
composition, such as those of orchestration and choreography, they have have some cru-
cial limitations. A major problem of these approaches is that most of them are based on
the assumption that during the composition requirements specification, the application
designer knows the services to be composed. Besides, some of them, such as [17], [6],
remain focused on the syntax level without consider the semantic aspects of compo-
sition, which are, instead, necessary in context-based applications. Others approaches
like [15], [14], [23], [2] and [1], have introduced the management of semantic knowl-
edge in their models to drive the services’ composition and interoperation but, despite
this, they do not allow processes to be defined at runtime, through dynamic service

Domain Objects for Dynamic and Incremental Service Composition 79

composition. [7], [16] and [10] allow for very efficient management of data and con-
trol flows, with their methodologies for the sharing of the common domain and context
of services which have to be composed, by overcoming implicit discrepancies existing
between heterogeneous services. However, the adaptation’s strategies applied in these
approaches are defined at design-time.

The DO approach, instead, offers a lightweight-model, with respect to the existing
languages for service composition. It can be implemented with every object-oriented
languages and it is more flexible and able to define both orchestrations and choreogra-
phies thanks to its hierarchical organization of DOs. Moreover, the model explicitly
handle the context by managing the dynamicity of services, which can enter or leave the
system in any moment, with a flexible connection strategy between DOs that exploit the
publish-subscribe paradigm. Unlike specifications of traditional systems, where the be-
haviors are static descriptions of the expected run-time operation, our approach allows
the application to define dynamic behaviors. This is made through the use of abstract
activities representing opening points in the definition of processes, which allow the ser-
vices to be refined when the context is known or discovered. The bottom-up approach
for the activities’ refinement allows fragments, once they are selected for the composi-
tion, to climb the DO’s hierarchy to be embedded in the running process. Besides, the
adaptation strategies are defined at runtime, so that exactly the available services are
considered for the composition.

7 Conclusion

In this paper we have introduced an approach to enable a dynamic and incremental ser-
vice composition, in highly dynamic environments. As future work, we plan to extend
the model with the other techniques for the adaptation of SBAs exposed in [4] and to in-
tegrate it with our adaptation engine of [21]. We also plan to implement a process for the
embedding of fragment compositions in replacing abstract activities in a dynamic and
optimized manner. As concern the prototype, our intention is to implement a complete
final version and to perform evaluations to assess the approach applicability. Finally,
we are also reasoning on the possibility of realizing a design tool for the automation of
SBAs design and implementation using DO.

Acknowledgment. This work is partially funded by the 7th Framework EU-FET project
600792 ALLOW Ensembles.

References

[1] Bpml.org. business process modeling language, bpml (2002), http://www.bpmi.org
[2] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., et al.: Web service

choreography interface, wsci (2002), http://www.w3.org/TR/wsci
[3] Bartalos, P., Bieliková, M.: Automatic dynamic web service composition: A survey and

problem formalization. Computing and Informatics 30(4), 793–827 (2011)
[4] Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic adaptation of fragment-based

and context-aware business processes. In: ICWS, pp. 33–41 (2012)

http://www.bpmi.org
http://www.w3.org/TR/wsci

80 A. Bucchiarone, M. De Sanctis, and M. Pistore

[5] Bucchiarone, A., Marconi, A., Pistore, M., Traverso, P., Bertoli, P., Kazhamiakin, R.: Do-
main objects for continuous context-aware adaptation of service-based systems. In: ICWS,
pp. 571–578 (2013)

[6] OASIS WSBPEL Tecnical Committee. Web services business process execution language,
version 2.0. (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0,2007

[7] Cubo, J., Pimentel, E.: DAMASCo: A framework for the automatic composition of
component-based and service-oriented architectures. In: Crnkovic, I., Gruhn, V., Book, M.
(eds.) ECSA 2011. LNCS, vol. 6903, pp. 388–404. Springer, Heidelberg (2011)

[8] Eberle, H., Unger, T., Leymann, F.: Process fragments. In: Meersman, R., Dillon, T., Her-
rero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 398–405. Springer, Heidelberg
(2009)

[9] Göser, K., Jurisch, M., Acker, H., Kreher, U., Lauer, M., Rinderle, S., Reichert, M., Dadam,
P.: Next-generation process management with adept2. In: BPM, Demos (2007)

[10] Greenwood, D.A.P.: Goal-oriented autonomic business process modeling and execution:
Engineering change management demonstration. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 390–393. Springer, Heidelberg (2008)

[11] Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Terry Heath, F., Hobson,
S., Linehan, M.H., Maradugu, S., Nigam, A., Noi Sukaviriya, P., Vaculı́n, R.: Business arti-
facts with guard-stage-milestone lifecycles: managing artifact interactions with conditions
and events. In: DEBS, pp. 51–62 (2011)

[12] Hussein, M., Han, J., Yu, Y., Colman, A.: Enabling runtime evolution of context-aware
adaptive services. In: IEEE International Conference on Services Computing (2013)

[13] Laws, S., Combellack, M., Feng, R., Mahbod, H., Nash, S.: Tuscany SCA in Action. Man-
ning Publications (2011)

[14] McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004),
http://www.w3.org/TR/owl-features/

[15] McIlraith, S.A., Son, T., Zeng, H.: Semantic web services. IEEE Intelligent Systems 16(2),
46–53 (2001)

[16] Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.: A
context-based mediation approach to compose semantic web services. ACM Trans. Internet
Techn. 8(1) (2007)

[17] Burdett, D., Kavantzas, N., Ritzinger, G.: Wscdl v1.0 (2004),
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

[18] OpenSOA. Service component architecture specifications (2007),
http://www.oasis-opencsa.org

[19] Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10), 46–52
(2003)

[20] Pistore, M., Traverso, P., Paolucci, M., Wagner, M.: From software services to a future
internet of services. In: Future Internet Assembly, pp. 183–192 (2009)

[21] Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: Astro-captevo: Dynamic
context-aware adaptation for service-based systems. In: SERVICES, pp. 385–392 (2012)

[22] Srividya, S., Bansal, A., Simon, L., Hite, T.: Usdl: A service-semantics description language
for automatic service discovery and composition (2009)

[23] WSMO. Wsmo working group, http://www.wsmo.org
[24] Yu, J., Sheng, Q.Z., Swee, J.K.Y.: Model-driven development of adaptive service-based

systems with aspects and rules. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010.
LNCS, vol. 6488, pp. 548–563. Springer, Heidelberg (2010)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0,2007
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.oasis-opencsa.org
http://www.wsmo.org

SOA-Readiness of REST

Peter Leo Gorski, Luigi Lo Iacono,
Hoai Viet Nguyen, and Daniel Behnam Torkian

Cologne University of Applied Sciences, Germany
{peter.gorski,luigi.lo_iacono,viet.nguyen,daniel.torkian}@fh-koeln.de

Abstract. SOA is a core concept for designing distributed applications
based on the abstraction of software services. The main strength lies in
the ability to discover services and loosely-couple them with service con-
sumers across platform-boundaries. The evolved service protocol SOAP
and its accompanying standards provide a stable, rich and wide-spread
technology stack for implementing SOA-based systems.

As an alternative approach to design and implement distributed sys-
tems based on services, the architectural style REST gains traction, due
to its more light-weight and data format independent nature. Whether
REST is also suited for acting as a basis for implementing SOA-based
systems is still an open issue, however. This paper focuses on this ques-
tion and provides an analysis on the SOA-readiness of REST. Both, a
theoretical analysis and an empirical study of REST frameworks have
been conducted in order to obtain a comprehensive understanding on
this matter. The results show a lack of core SOA principles mainly re-
lated to the discoverability and the loose coupling of services.

Keywords: SOA, REST, Service Discovery, Service Coupling.

1 Introduction

The SOA (service-oriented architecture) [1] concept has become a prerequisite
when it comes to the design of adaptable distributed software systems. Based
on the notion of loosely-coupled services, functionality encapsulated in software
services can be discovered and consumed by service clients at runtime. SOAP
(simple object access protocol) [2] and its ambient standards have been for a
notable period the only technology stack for implementing SOA-based systems.
In recent years, the architectural style REST (representational state transfer) [3]
has emerged as an alternative concept for designing distributed service-based ap-
plications. The most common technological basis for implementing REST-based
services is the plain HTTP, what makes REST more lightweight and efficient
than SOAP and keeps it data format independent.

Although REST has advantages in simple service invocation scenarios, the
question remains whether it can still compete in settings in which an ad hoc
discovery and coupling of services deployed in heterogeneous environments dur-
ing system runtime is required. This paper investigates on this by examining
the SOA-readiness of REST. First of all, an accurate understanding about the

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 81–92, 2014.
c© IFIP International Federation for Information Processing 2014

82 P.L. Gorski et al.

fundamental conditions which arise when applying REST to SOA is necessary
for a well-founded conclusion on the SOA-readiness of REST. Since besides the
dissertation of Roy Fielding [3] no further specifications are available at this
point which can be used as a foundation, Section 2 lays the ground by recall-
ing essential properties of REST. The main components of a SOA, i.e. service
consumer, service provider and service registry, are the subject of a theoretical
analysis in Section 3. Evolved technologies are available to implement these basic
elements in SOAP-based environments. Along these lines, the availability and
suitability of comparable approaches for REST are investigated and discussed.
In addition to these theoretical considerations, an empirical study of distinct
REST frameworks has been conducted to explore on the current state of imple-
mentation interoperability especially in the light of automatic service coupling.
The methodology of the analysis is introduced in Section 4 and the gathered
results are presented and discussed in Section 5. The paper concludes with a
summary on the findings and gives an outlook on further research, development
and standardisation demands in Section 6.

2 REST

REST has been introduced by Roy Fielding as an architectural style for design-
ing distributed hypermedia systems. REST targets the scalability of application
interaction, uniformity of interfaces and independent evolvement of components
and intermediates with the intention to reduce latency, enable security and pro-
vide long-lived services. The uniform interface serves as the transfer protocol for
identifying, accessing and manipulating resources. Furthermore, resources have
different representations in terms of data formats which can vary according to the
needs of the clients. Thus, services are able to deliver content for human-driven
applications such as web browsers which use the data to render a web page. In
turn, a machine-driven application would rather consume machine-readable rep-
resentations from the same service. Data formats must be hypertext such that
humans as well as autonomous processes are able to traverse hyperlinks in order
to deduce the next state transition and action. Moreover, control data is used
to define the semantic of the response by specifying—amongst others—resource
states, error conditions and cache behaviour.

As being an architectural style, REST does not rely on any particular tech-
nology stack. REST does especially not depend on HTTP and URI as taking for
granted in many publications. Still, HTTP and URI are the most common and
widely used technologies for implementing REST-based architectures. HTTP is
stateless in nature and it supports metadata (headers) to define various con-
trol and status information. It is intended to transfer resource representations
marked up by MIME types. HTTP includes status codes to describe the seman-
tic of a response and uses URIs to identify resources as well as a set of methods
to determine actions, which makes up the unified interface.

Unfortunately, REST suffers from poor standardisation. Consequently, REST
services are largely misunderstood and often assigned to simple web applica-
tions. This is for instance reflected by RMM (Richardson maturity model) [4],

SOA-Readiness of REST 83

which defines four levels to categorise the ”REST-fullness” of web services and
applications. Due to this lacking clarity of the term and its meaning it is also
questionable whether the maturity of REST has reached an acceptable level for
being SOA-ready.

3 SOA-Readiness of REST

As depicted in Figure 1 a SOA consist of three parties. The service provider offers
its services {S1, ..., Sn} to service consumers. To discover offered services a service
registry maintains a database of services’ descriptions. The providers attached to
a particular service registry publish their services by supplying a so-called service
contract, which contains all necessary information on the functionality of that
service, its interface and other constraints demanded from a service consumer in
order to make use of the service.

Service
Consumer

Service
Provider

Service
Registry

(1) Publish service by
posting Service Contract (2) Query registry (3) Retrieve Service

Contract

(4) Invoke service

(5) Obtain response

S1

Sn

...
 Service Protocol

Fig. 1. Components of a SOA

Besides the discoverability of services, the service registry in conjunction with
the service contract plays an important role in enabling the loose-coupling of
service consumers and services. This means that service consumers are able to
discover required services during runtime and to invoke such services without
the need of adapting and recompiling the consumer code manually. This is ac-
complished by automatic code generation capabilities which rely on the rules
and definitions specified in the service contract to generate the required code.
Enriched with a platform-independent service protocol, the whole concept al-
lows for the loose-coupling of even heterogeneous systems running on distinct
platforms.

3.1 SOAP-Implemented SOA

A SOA is described in a technology-independent manner and henceforth can
be implemented with any suitable set of technologies as long as the mentioned

84 P.L. Gorski et al.

properties can be fulfilled. The most commonly used technology set is the service
stack based on SOAP, where SOAP takes the role of the platform-independent
service protocol (see Figure 2). The platform-independence of SOAP is achieved
by it being based on XML. Due to this prerequisite, the stack further consists of
other XML applications including WSDL (web service definition language) [5]
as the standard for specifying a service contract and UDDI (universal descrip-
tion, discovery and integration) [6] as the standard for implementing the service
registry.

Service
Consumer

Service
Provider

Service
Registry

UDDI/WSDL/HTTP UDDI/HTTP

UDDI/WSDL/HTTP

S1

Sn

...
 SOAP/HTTP

Fig. 2. SOAP-based SOA implementation

Thus, an SOA-based system implemented on SOAP and its accompanying
standards contains all the properties defined in the SOA concept. Note, that the
main protocol for transferring the service protocol messages is most commonly
HTTP. This raises the question whether SOAP-based services can already be
considered as REST-ful. In fact, most of the REST principles are also met by
SOAP-based services, including the client-server, stateless, cache and layered
system constraints. Still, the important constraint of a uniform interface cannot
be fulfilled. This lies in the fact that SOAP-based services are operation-oriented
which means that the interface is unique for each operation. REST instead is
resource-oriented and defines the same four verbs for operating on each resource.
The question arises, how a REST-implemented SOA then looks like and whether
REST and its available implementation choices are already mature and compre-
hensive enough to implement SOA-based systems.

3.2 REST-Implemented SOA

To ground a SOA on the REST architecture style, according standards and
technologies are required for implementing the various SOA components. As
further demand, these standards and technologies need to adhere to the specifics
of REST. Figure 3 illustrates a common instantiation of the SOA infrastructure
when implementing REST on HTTP.

SOA-Readiness of REST 85

Service
Consumer

Service
Provider

Service
Registry

?/HTTP ?/HTTP

?/HTTP

R1

Rn

...
 HTTP/Representation

Service
Provider

R1

Rn

...

Fig. 3. REST-based SOA implementation

Instead of making solely use of a centralized service registry to discover ser-
vices with REST this SOA principle can be extended to support decentralized
discovery approaches, since REST services have the ability to refer to other ser-
vices by providing hyperlinks [7]. Hence, a client is able to start at an initial
(registry) service and henceforth discover a decentralized network of service re-
ferrals in order to find the looked for service. Figure 3 makes apparent, that for
some of the SOA parts no standardised technological deployment choice exist
yet. Especially the service registry and the service contract miss relevant stan-
dards and technologies in the REST universe, although a multitude of proposals
exist to describe a REST service in a machine-readable manner [8–11]. Still,
these approaches are yet in their infancy or not in conformance with the REST
constraints, so that further work is required in order to distil the best fitting
approach which may finally lead to a candidate for standardisation.

4 Empirical Analysis of REST Frameworks

In order to understand how the aforementioned shortcomings and especially the
missing standardisation impact on concrete REST service development frame-
works, an empirical analysis has been developed and conducted focusing on
popular frameworks in distinct server-side programming environments, includ-
ing Jersey (Java/JAX-RS), Play Framework (Java), ASP.NET (C#), restify
(Javascript/Node.js), Ruby on Rails (Ruby) and Laravel (PHP). The goal of
the study is to investigate on the processing of correct and intentionally flawed
requests amongst the frameworks.

86 P.L. Gorski et al.

4.1 Test Application

To put all frameworks into a homogeneous test environment, the same appli-
cation has been developed with all of them, which consists of a simple service
that allows maintaining a to-do list. Entries to the to-do list can be created,
read, updated and deleted to manage tasks. In addition, the service also offers
information about the available actions by invoking the OPTIONS method. The
data model is a simple list of tasks with two properties: a string describing the
task and a boolean that denotes whether a task is still open. A client is able
to create a to-do item via the POST method by sending a task name either in
JSON format, in form of an XML or as a query string. The isComplete property
is initially set to false by default, if a new task has been added. Reading to-dos
can be performed by issuing GET or HEAD requests. With the accept header in
a GET and HEAD request, clients can choose the content type of the requested
resource. The PUT and PATCH methods are intended to update to-dos. Also
the entity body in update requests can vary between different resource represen-
tations. For removing a to-do, the service specifies the DELETE method. The
complete REST-API of the test service is as follows, given in URI Template
notation [12]:

OPTIONS /todos

OPTIONS /todos/{id}

POST /todos

HEAD /todos

HEAD /todos/{id}

GET /todos

GET /todos/{id}

PUT /todos/{id}

PATCH /todos/{id}

DELETE /todos/{id}

4.2 Service Invocations

The test scenario assumes that the service provider and service consumer know
each other and that no discovery step is required. The client is furthermore aware
of the resource path and the data schema as introduced in the previous section.
These prerequisites stem mainly from the fact that none of the considered frame-
works include any form of service discovery or service exploration.

The analysis methodology is implemented in a specific client that executes
the following test flow. First, the client adds a new task to the to-do list through
the POST method. Afterwards, it checks the availability of a certain to-do item
via the HEAD method. By usage of OPTIONS, the client gathers further in-
formation about available actions. Based on the gathered knowledge obtained
from the OPTIONS method and HEAD request the client inquires to-dos via
a sequence of GET requests. In order to mark an open task as completed, the
PUT and PATCH methods are used. Once a task is completed the client takes
it off the to-do list by invoking the DELETE action.

SOA-Readiness of REST 87

The whole test scenario consists of multiple test cases which can be grouped
by the HTTP methods and one non-existing method EVIL as defined hereafter.
Each test of a corresponding method owns a set of test cases denoted with a
unique ID that starts with the first two characters of the method and a sequence
number. The ID serves as a reference for the test case. The whole analysis en-
compasses the following test cases:

POST Test Cases
PO.1 Regular creation: This action adds a resource via a supported data for-
mat (here XML and JSON) with semantically and syntactically correct content.
PO.2 Unsupported content type: This test creates a resource represented
by an unsupported media type.
PO.3 Content type and payload mismatch: This test issues a request con-
taining a mismatch between the specified content type and the actual data format
of the payload, such as a request containing, for instance, a content type header
with the value application/json while the body is XML-formatted. In further
test variations the content type is completely absent.
PO.4 Flawed content length: This test case observes the service behaviour
in case the value of the content length header differs from the actual size of the
body. Test variations assign the content length value a alphanumerical string or
remove the header entirely.
PO.5 Flawed resource identifier: This test examines the service response on
wrong URIs including e.g. typing errors and URIs including IDs.
PO.6 Malformed data: Requests generated within this test class contain mal-
formed payload data in their bodies such as a missing quotation mark in an
JSON object or an absent greater-than sign in an XML document.
PO.7 Unprocessible content: The requests issued by this test category con-
tain flawless headers and well formed data in the body, but encloses an unpro-
cessible data schema that is not in conformance with the service’s data model.
PO.8 Unknown protocol version: This test case invokes the service with a
not existing HTTP version specified in the request line.

HEAD and GET Test Cases
HE.1/GE.1 Regular reading: These test runs perform regular GET and
HEAD requests with supported media types (here XML and JSON) specified
within the accept header.
HE.2/GE.2 Unsupported media types: Requests unsupported resource rep-
resentations form the service.
HE.3/GE.3 Flawed resource identifier: This test checks invocations on mis-
spelled URIs and non-existing resources.
HE.4/GE.4 Containing content: This test issues HEAD and GET requests
that contain content type headers and corresponding bodies which is actually
not in conformance with the HTTP standard.
HE.5/GE.5 Missing accept header: This test constructs requests without
an accept header.

88 P.L. Gorski et al.

HE.6/GE.6 Unknown protocol version: This test case invokes the service
with a not existing HTTP version specified in the request line.

OPTIONS Test Cases
OP.1 Ping *: The HTTP specification defines a ping functionality by including
an asterisk (*) to the URI of an OPTIONS request. This test figures out whether
this feature is supported.
OP.2 Regular invocation: The requests in this test case invokes regular OP-
TIONS actions.
OP.3 Supported media types in accept header: The goal of this test is to
execute regular OPTIONS requests including supported media types (here XML
and JSON) in the accept header.
OP.4 Unsupported media types in accept header: This test issues re-
quests with unsupported media types specified in the accept header.
OP.5 Flawed resource identifier: Requests generated by this test class con-
tain mis-spelled or missing resource identifiers.
OP.6 Containing content: The requests issued by this tests contain entity
bodies, although the HTTP specification does not define any usage of payloads
inside OPTIONS requests.
OP.7 Unknown protocol version: This test case invokes the service with a
not existing HTTP version specified in the request line.

PUT and PATCH Test Cases
PU.1/PA.1 Regular update: This test executes regular updates via the
PATCH and PUT methods including supported content types (here XML and
JSON) with semantically and syntactically correct content.
PU.2/PA.2 Unsupported content type: This test sends resource updates
with unsupported resource representations.
PU.3 Partial update / PA.3 Complete update: This test issues partial
updates via the PUT method and entire updates via PATCH with supported
media types which are also semantically and syntactically correct.
PU.4/PA.4 Content-Type and payload mismatch: Requests generated by
this test class contain a mismatch between the specified content type and the
actual payload format.
PU.5/PA.5 Flawed content length: Intentional corruption of the length
header value.
PU.6/PA.6 Flawed resource identifier: These tests perform updates speci-
fying mis-spelled and non-existing URIs.
PU.7/PA.7 Malformed data: This test modifies resource representations so
that they become syntactical and semantical incorrect.
PU.8/PA.8 Unprocessible content: Requests that contain well-formed and
supported data, but it is not in conformance with the service’s data schema.
PU.9/PA.9 Unknown protocol version: This test case invokes the service
with a not existing HTTP version specified in the request line.

SOA-Readiness of REST 89

DELETE Test Cases
DE.1 Regular deletion: This test launches a deletion process of a single re-
source.
DE.2 Non-erasable resource: This test deletes a resource which must not be
deleted according the business logic (here an uncompleted to-do task).
DE.3 All resources: The intention of this test run is to remove all the resources
in one single request.
DE.4 Flawed resource identifier: Requests issued by this test class include
mis-spelled and on non-existing URIs.
DE.5 Containing content: The DELETE request generated by this test case
contains an entity body and a corresponding content type header.
DE.6 Unknown protocol version: This test case invokes the service with a
not existing HTTP version specified in the request line.

EVIL Test Cases
EV.1 Regular accept header: This scenario tests a non-existing EVIL re-
quest with supported media types (here XML and JSON) in the accept header.
EV.2 Unsupported media types: This test generates EVIL requests with
unsupported resource representations specified in in the accept header.
EV.3 Flawed resource identifier: The EVIL requests contain mis-spelled or
non-existing URIs.
EV.4 Containing content: This test generates an EVIL request with a sup-
ported content type and a well-formed entity body.
EV.5 Unknown protocol version: This test case invokes the service with a
not existing HTTP version specified in the request line.

5 Results

The results gathered from the empirical studies with six distinct REST frame-
works based on the methodology introduced in the previous section are manifold.
In general, they underline the need for a more stringent standardization of tech-
nologies suited to enrich REST-based services with service properties known
from the SOA domain. By analysing the REST frameworks it became visible,
that the missing standardisation leads to quite diverse implementations, causing
incompatibilities, especially between system components deployed on hetero-
geneous platforms. This in turn means that such incompatibilities need to be
resolved manually, which requires the involvement of an experience REST de-
veloper. In complex settings this might even not be feasible at all, yielding to
constraints in respect to implementation choices.

The test runs show that when implementing the application scenario intro-
duced in Section 4.1 with the examined frameworks, the main discrepancies
appear in the usage of HTTP headers and the contained meta data therein as
well as the status codes selected to signal the request processing state back to the
service consumer (see Figure 4). As can be observed, the received status codes

90 P.L. Gorski et al.

Consolidated View PHP Play Node Jersey RoR ASP

PO.1 application/x-www-form-urlencoded 201 201 201 201 201 400 No Response
PO.1 application/json 201 201 201 201 201 406 201
PO.1 application/xml 201 201 201 201 201 406 400
PO.2 Unsupported content type 415 415 415 415 415 400 500
PO.3 Content type and payload mismatch 400 500 400 400 400 400 400
PO.3 No content type but with payload 400 415 500 415 500 400 500
PO.4 Wrong content length 400 No Response No Response No Response No Response No Response No Response
PO.4 Content length as String 400 No Response No Response No Response 400 400 400
PO.4 No content length 411 No Response 400 No Response 400 411 411
PO.5 Wrong action on resource 405 404 404 405 405 404 400
PO.5 Wrong resource identifier 404 404 404 404 404 404 404
PO.6 Malformed XML 400 500 400 400 400 400 400
PO.6 Malformed JSON 400 500 400 400 400 400 400
PO.7 Wellformed JSON, unprocessible content 400 500 400 400 400 400 400
PO.7 Wellformed XML, unprocessible content 400 500 400 400 400 400 400
PO.8 Unknown protocol version 505 201 201 201 505 406 201

HE.1 application/json 200 200 200 200 200 200 405
HE.1 application/xml 200 200 200 200 200 200 405
HE.2 Unsupported media type 406 200 406 406 500 406 405
HE.3 Wrong resource identifier 404 404 404 404 404 404 404
HE.3 Not exsiting resource 404 200 400 404 404 404 405
HE.4 Containing content 400 200 200 200 200 400 405
HE.5 No accept header 200 200 200 200 200 200 405
HE.6 Unknown protocol version 505 200 200 200 505 200 405

OP.1 Ping * 200 200 400 404 200 404 400
OP.2 Regular 200 200 200 405 200 404 405
OP.2 Regular with resource id 200 200 200 405 200 404 405
OP.3 application/json 200 200 200 405 200 404 405
OP.3 application/xml 200 200 200 405 200 404 405
OP.4 Unsupported media type in accept header 406 200 200 406 200 404 405
OP.5 Wrong resource identifier 404 404 404 404 404 404 404
OP.5 Not existing resource 404 200 400 405 200 404 405
OP.6 Containing content 400 200 400 405 200 400 405
OP.7 Unknown protocol version 505 200 200 405 505 404 405

GE.1 application/json 200 200 200 200 200 200 200
GE.1 application/xml 200 200 200 200 200 200 200
GE.2 Unsupported media type 406 200 415 406 500 406 200
GE.3 Wrong resource identifier 404 404 404 404 404 404 404
GE.3 Not existing resource 404 200 400 404 404 404 200
GE.4 Containing content 400 200 200 200 200 400 200
GE.5 No accept header 200 200 200 No Response 200 200 200
GE.6 Unknown protocol version 505 200 200 No Response 505 200 200

PU.1 application/x-www-form-urlencoded 204 204 204 204 204 400 500
PU.1 application/json 204 200 204 204 204 204 500
PU.1 application/xml 204 204 204 204 415 204 500
PU.2 Unsupported content type 415 415 415 415 415 400 500
PU.3 Partial update 400 500 204 204 406 204 500
PU.4 Content type and payload mismatch 400 500 400 400 400 400 500
PU.4 No content type but with payload 400 415 500 415 415 400 500
PU.5 Wrong content length 400 No Response No Response No Response No Response No Response No Response
PU.5 Content length as String 400 No Response No Response No Response 400 400 400
PU.5 No content length 411 No Response 400 No Response 400 411 411
PU.6 Wrong action on resource 404 404 404 404 404 404 404
PU.6 Not existing resource 404 500 400 500 415 404 500
PU.7 Malformed XML 400 500 400 400 415 400 500
PU.7 Malformed XML isComplete=EVIL 400 500 400 500 415 404 500
PU.7 Malformed JSON 400 500 400 400 400 400 500
PU.7 Malformed JSON isComplete=EVIL 400 500 400 400 400 400 500
PU.8 Wellformed JSON, unprocessible content 400 500 400 400 400 400 500
PU.8 Wellformed XML, unprocessible content 400 500 400 400 415 400 500
PU.9 Unknown protocol version 505 500 400 500 505 404 500

PA.1 application/x-www-form-urlencoded 204 500 204 204 204 400 204
PA.1 application/json 204 500 204 204 204 204 204
PA.1 application/xml 204 204 204 204 415 400 500
PA.2 Unsupported content type 415 415 415 415 415 400 500
PA.3 Complete update 204 200 204 204 204 204 204
PA.4 Content type mismatch and payload 400 500 400 400 400 400 500
PA.4 No content type but with payload 400 415 500 415 415 400 500
PA.5 Wrong content length 400 No Response No Response No Response No Response No Response No Response
PA.5 Content length as String 400 No Response No Response No Response 400 400 400
PA.5 No content length 411 No Response 400 No Response 400 400 500
PA.6 Wrong action on resource 404 404 404 404 404 404 404
PA.6 Not existing resource 404 500 400 404 415 404 500
PA.7 Malformed XML 400 500 400 400 415 400 500
PA.7 Malformed XML isComplete=Evil 400 500 400 404 415 404 500
PA.7 Malformed JSON 400 500 400 400 400 400 204
PA.7 Malformed JSON isComplete=Evil 400 500 400 404 406 404 204
PA.8 Wellformed JSON, unprocessible content 400 500 400 404 404 404 204
PA.8 Wellformed XML, unprocessible content 400 500 400 404 415 404 500
PA.9 Unknown protocol version 505 500 400 404 505 404 204

DE.1 Regular 204 204 204 204 204 204 204
DE.2 Regular isComplete=false 403 204 403 403 403 204 403
DE.3 all 405 404 404 405 405 404 404
DE.4 Not existing resource 404 500 400 404 404 404 500
DE.5 Containing content 400 204 204 204 204 204 403
DE.6 Unknown protocol version 505 204 204 204 505 204 403

EV.1 application/json 501 501 404 No Response 405 500 404
EV.1 application/xml 501 501 404 No Response 405 500 404
EV.2 Unsupported media type 501 501 404 No Response 405 500 404
EV.3 Wrong resource identifier 501 501 404 No Response 404 500 404
EV.4 Containing content 501 501 404 No Response 405 500 404
EV.5 Unknown protocol version 501 501 404 No Response 505 500 404

DELETE

EVIL

OPTIONS

POST

HEAD

GET

PUT

PATCH

Fig. 4. Status codes received by the frameworks for the test cases

SOA-Readiness of REST 91

differ amongst the frameworks for identical requests. This hinders the implemen-
tation of automatic code generation tools and loose coupling, due to the absence
of an uniform behaviour. Especially a state transition based on the control data
provided with the status codes is not feasible in an automatic manner across
heterogeneous platforms.

An interesting and at the same time important result is the fact that the
frameworks even when returning identical response codes sometime still are very
different in other respect. One example can be noted in ASP.NET when a re-
source is created. The response code 201 created is returned as expected, but
in addition to the URI of the freshly generated resource contained in the loca-
tion header, the response carries the created object as its payload as well. This
does not influence on the focussed SOA-readiness, but might raise other issues
in terms of data volume to be transmitted.

Some of the tests even brought vulnerabilities to light which might get ex-
ploited in DoS (denial of service) attacks. The requests for which no responses
have been received from the service are the potential attack targets. For the ones
listed in Figure 4 the communication channel remains open. Thus, an attacker
can occupy and block networking resource easily, by issuing such requests.

6 Conclusions and Outlook

REST is an established architecture style for designing distributed systems
based on services and offers in conjunction with HTTP a wide-spread and well-
understood implementation ground. It is less comprehensive as the SOA concept,
though. Crucial service properties such as the discoverability and loose coupling
are lacking for REST, including the related components and artefacts such as
a service registry and a service contract. Still, such properties are required in
order to enable the ad hoc usage of services during service consumer runtime.
In this paper the need for such technologies has been motivated and initial con-
tributions on REST-ful embodiments of a service registry and a service contract
have been introduced. Still, there is a bunch of research and development chal-
lenge to solve in order to enrich REST with SOA service properties. According
standardisation efforts need to be initiated and aligned with these developments
as well.

The lack of standardisation in the REST domain got also apparent in another
more elementary context. When conducting the study of REST frameworks one
observation has been that the distinct frameworks construct and process service
requests and responses very differently. This reveals that currently a heteroge-
neous system environment needs to be manually programmed and deployed by
experienced REST developers in order to assimilate the system components. A
stringent specification and mapping of the REST ingredients to HTTP is hence-
forth required, to lay the ground for a higher compatibility of REST imple-
mentations with less manual code interventions which finally forms the required
foundation for automated code generation and the loose-coupling of REST ser-
vices. Also, service security approaches require a REST/HTTP specification as
a stable and reliable ground [13].

92 P.L. Gorski et al.

Acknowledgment. This work has been funded by the European Union within
the European Regional Development Fund program.

References

1. Erl, T.: SOA Principles of Service Design (The Prentice Hall Service-Oriented Com-
puting Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River (2007)

2. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H.F., Karmarkar,
A., Lafon, Y.: SOAP Version 1.2 Part 1: Messaging Framework, 2nd edn. W3C
Recommendation, W3C (2007)

3. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine (2000)

4. Wilde, E., Pautasso, C. (eds.): REST: From Research to Practice. Springer (2011)
5. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services Description

Language (WSDL) Version 2.0 Part 1: Core Language. W3C Recommendation,
W3C (2007)

6. Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2. Orga-
nization for the Advancement of Structured Information Standards, UDDI Spec
Technical Committee Draft (2004)

7. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: A multi-faceted metric
for service design. In: Proceedings of the 18th International Conference on World
Wide Web (WWW). ACM (2009)

8. Amundsen, M.: Hold Your Nose vs. Follow Your Nose, Observations on the state
of service description on the Web. In: 5th International Workshop on Web APIs
and RESTful Design, WS-REST (2014)

9. MuleSoft, Inc., RAML Version 0.8: RESTful API Modeling Language. Tech. rep.
(2013)

10. Bennara, M., Mrissa, M., Amghar, Y.: An Approach for Composing RESTful
Linked Services on the Web. In: 5th International Workshop on Web APIs and
RESTful Design, WS-REST (2014)

11. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Gabarró
Vallés, J.: Description and Interaction of RESTful Services for Automatic Discovery
and Execution. In: Proceedings of the FTRA 2011 International Workshop on
Advanced Future Multimedia Services, AFMS (2011)

12. Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., Orchard, D.: URI Tem-
plate. RFC 6570, IETF (2012)

13. Gorski, P., Lo Iacono, L., Nguyen, H.V., Torkian, D.B.: Service Security Revisited.
In: 11th IEEE International Conference on Services Computing, SCC (2014)

QUELLE – A Framework for Accelerating

the Development of Elastic Systems�

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{d.moldovan,e.copil,truong,dustdar}@dsg.tuwien.ac.at

Abstract. A large number of cloud providers offer diverse types of
cloud services for constructing complex ”cloud-native” software. How-
ever, there is a lack of supporting tools and mechanisms for accelerating
the development of cloud-native software-defined elastic systems (SESs)
based on elasticity capabilities of cloud services. In this paper we in-
troduce QUELLE – a framework for evaluating and recommending SES
deployment configurations. QUELLE presents models for describing the
elasticity capabilities of cloud services and capturing elasticity require-
ments of SESs. Based on that QUELLE introduces novel functions and
algorithms for quantifying the elasticity capabilities of cloud services.
QUELLE’s algorithms can recommend SES deployment configurations
from cloud services that both provide the required elasticity, and fulfill
cost, quality, and resource requirements, and thus can be incorporated
into different phases of the development of SESs. We present several ex-
periments based on real-world cloud services for the development of an
elastic machine-to-machine data-as-a-service system.

Keywords: cloud service, software-defined, elasticity capability, elastic-
ity quantification.

1 Introduction

Rapid development in cloud computing has introduced diverse types of cloud
services offered by a large number of cloud software providers. This lead to in-
creasing effort in investigating and developing native cloud systems by leveraging
such cloud services in a multi-cloud environment [15,1,14]. In our work, we are
interested in the development of cloud-native software-defined elastic systems
(SESs), designed, developed and constructed directly in cloud, from functional-
ity collectively provided by cloud services. Elastic cloud systems scale up/out if
the workload is high, and scale back in/down when possible. In general, elasticity
has three dimensions: resource, cost, and quality [5]. To achieve such elasticity,
software-defined systems have their structure, requirements, and elasticity capa-
bilities described and managed from software. Thus, their elasticity can be con-
trolled via software-defined APIs by intelligent controllers [12]. While individual

� This work was partially supported by the European Commission in terms of the
CELAR FP7 project (FP7-ICT-2011-8 #317790).

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 93–107, 2014.
c© IFIP International Federation for Information Processing 2014

94 D. Moldovan et al.

cloud services might not be software-defined elastic – might not have elastic-
ity capabilities controllable via APIs – when combined, we expect the resulting
SES to be elastic. This triggers a challenging question on how to quantify the
elasticity of these services and the SES to ensure that they meet the user’s elas-
ticity requirements. Although elasticity appears at run-time, through dynamic
system reconfiguration with respect to certain requirements, selecting services
providing the necessary elasticity capabilities when constructing SESs is crucial
for answering the above-mentioned question. For example, we should avoided
selecting a service which must be reserved for 1 year, when service instances are
to be created/destroyed hourly. Although several frameworks allow a developer
to model such systems, they are often limited to the exact specification of the re-
quired cloud services [8,9], without considering their elasticity. Currently, a SES
developer has to manually search through cloud providers, and select services
for the system s/he needs to construct, without support in evaluating if their
elasticity capabilities support the required SES elasticity.

We believe that, to accelerate the development of SESs, we must quantify
elasticity capabilities of cloud services and provide suitable functions for recom-
mending services based on their elasticity, that can be incorporated in different
phases of cloud-native system development. In this paper, we introduce novel
functions and algorithms for recommending SES deployment configurations us-
ing cloud services providing the necessary elasticity capabilities, and which fulfill
resources, quality, and cost requirements. We define an Elasticity Quantification
function for quantifying the elasticity of cloud services. Based on the quantifica-
tion function and algorithms, and multi-level SES requirements over cost, quality,
and resources, we provide a framework for accelerating the construction of SESs
by recommending SES deployment configurations using existing cloud services,
which can be integrated in existing cloud provisioning frameworks [4] or recom-
mender systems [10]. This paper presents the following contributions: (i) models
for capturing elasticity capabilities of cloud services and multi-level elasticity
requirements of SESs, and (ii) a set of customizable quantification functions
and algorithms for evaluating the elasticity of cloud services. The contributions
are provided as a set of models, functions and algorithms under the QUELLE
(QUantifying ELasticity utiLity Engine) framework, which can be used by devel-
opers, automatic cloud composition tools, or elasticity controllers, in determining
suitable SES deployment configurations w.r.t. elasticity requirements.

The rest of this paper is structured as follows. Section 2 presents the motiva-
tion and approach. Section 3 discusses elasticity quantification of cloud services.
Section 4 introduces our algorithms for recommending SES deployment config-
urations. Section 5 presents our prototype and experiments. We discuss related
work in Section 6. Section 7 concludes the paper and outlines the future work.

2 Motivation and Approach

To understand the challenges in constructing cloud-native, software-defined
elastic systems (SES), let us consider the development of a cloud-native

QUELLE 95

Fig. 1. Constructing software-defined elastic systems

Data-as-a-Service (DaaS)1, which provides data storage and exchange services
for Machine-to-Machine (M2M) platforms, such as smart cities. The system
would be built from several cloud services, from basic IaaS VM services, to
PaaS complex event processing for sensor data, data storage, and a message
oriented middleware for events notifications. A core requirement for this elas-
tic DaaS is that it should be able to be reconfigured at run-time to maintain
a performance/cost balance. The development of DaaS is completely based on
existing cloud offered services from IaaS to SaaS, and the elasticity capabilities
they provide.

To develop the DaaS, in current approaches [10,7], the developer has to man-
ually investigate all services offered by various cloud providers, and evaluate if
their elasticity capabilities provide the required elasticity control options. Then,
s/he can use existing design and modeling tools such as Winery [8] or MODA-
Clouds [9] to design and deploy the DaaS on cloud infrastructures. Manually
selecting each service needed for constructing the DaaS is laborious, complex,
and error prone. These problems can be reduced and the development can be
accelerated if we could provide features, shown in (Fig. 1), for:

– capturing and modeling elasticity capabilities of services from different cloud
providers and multi-level SES requirements (indicated by 1©),

– providing service elasticity quantification functions for software development
tools (indicated by 2©),

– recommending SES configurations, which can later on be mapped to software-
interpretable deployment descriptor (indicated by 3©).

Due to the complexity of existent services, their components dependencies,
and heterogeneity of cloud providers, it is very challenging to develop functions
and algorithms for quantifying elasticity of cloud services from multiple service
providers. Such functions and algorithms have currently not been developed,
thus hindering the automation of the software development for SESs. In this
paper, we focus on providing a set of customizable functions and algorithms
for quantifying the elasticity of cloud services, under the form of an elasticity
quantification framework which can be integrated in semi or fully automated
third party SES development and/or provisioning tools.

1 A non cloud-native version of DaaS - (although designed for and running in the
cloud) is available at https://github.com/tuwiendsg/DaaSM2M .

https://github.com/tuwiendsg/DaaSM2M

96 D. Moldovan et al.

3 Quantifying Elasticity of Cloud Services

3.1 Modeling Elasticity Capabilities of Cloud Services

Elasticity capabilities of a service can affect how its cost, quality, and resources
can be configured during its life-cycle (instantiation or run-time), influencing
available control options for particular properties. Moreover, such elasticity
capabilities also characterize associations among services, influencing service run-
time behavior. Therefore, the elasticity capabilities of both individual and asso-
ciations of services are crucial in providing a base for evaluating which services
are suitable for a particular SES’s elasticity. Therefore, we must understand and
model the elasticity capabilities of cloud services and their dependencies, and
quantify the elasticity of cloud services to support the development of SESs.

Following the multi-dimensional principle of elasticity [5], we define elasticity
capabilities of a service as configuration possibilities with respect to cost, qual-
ity, resources, and associations with other services, and the dependencies among
them. Thus, an elasticity capability defines what resource, cost, quality or associ-
ations among services can be created, when (instantiation or run time), and how
often the services can be reconfigured. By studying main cloud providers, such
as Amazon EC22, Rackspace3, HPCloud4, and Windows Azure5, and through
other studies [11], we found that elasticity capabilities of cloud services indicate
which types of configurations are available and in which phases of the service’s
life-cycle. While some providers give hints about the capabilities of their ser-
vices, (e.g., Amazon EC2 spot instances can be replaced faster than reserved
instances), existing tools do not capture and evaluate such capabilities.

SESs are reconfigured dynamically during run-time by elasticity controllers,
according to certain requirements. To evaluate if a cloud service provides the
necessary elasticity capabilities for such run-time elasticity control, we need to
capture when we can use an elasticity capability (elasticity phase), how often
can we change it (volatility), and if it can be used standalone or not (depen-
dency type). As most existing cloud services representation models capture re-
sources and quality properties [6],[13], we focus on capturing elasticity capabili-
ties (Fig. 2). An Elasticity Capability has an elasticityPhase, specifying if
the capability is available during the service’s Instantiation-Time, Run-Time,
or Both. The elasticity dimension associated to the capability is defined by the
elasticityDim property, and is one of Cost, Quality, Resource, or Service

Associations. As one capability might indicate multiple configuration possibili-
ties, the elasticity capability has a set of Elasticity Dependency instances. An
ElasticityDependency specifies to which Cost, Quality, Resource, or Service
a cloud service can be associated using the to property. Volatility is the most
important dependency property, defining its minimum ”usage” time, determin-
ing the frequency at which the dependency can be allocated/deallocated for the

2 http://aws.amazon.com
3 http://www.rackspace.com
4 http://www.hpcloud.com/
5 http://azure.microsoft.com/en-us/

http://aws.amazon.com
http://www.rackspace.com
http://www.hpcloud.com/
http://azure.microsoft.com/en-us/

QUELLE 97

Fig. 2. Representing elasticity capabilities of cloud services

service (e.g., hourly, or monthly), and thus influencing the service’s elasticity.
For example, a service having dependencies which can be allocated/deallocated
hourly is more elastic than one with dependencies which can be reconfigured only
on a monthly basis. We describe if a dependency is Mandatory, or Optional

using the type property. Mandatory dependencies decrease the elasticity of a
service by requiring for the dependency to be always allocated with the service,
reducing its usage flexibility. This model provides a base for evaluating if services’
configuration options are appropriate for particular SES’s elasticity control.

3.2 Representing Elasticity Requirements for SES

Using the previous elasticity capabilities model, towards accelerating the devel-
opment of SESs, we provide customizable functions quantifying the elasticity
of cloud services, to be used in recommending services best suited to the ex-
pected SES run-time elasticity control. For this we must understand and model
requirements, run-time properties, and service selection strategies of SESs.

Different stakeholders might have different perspectives over a SES. Using our
framework, requirements can be specified at different SES levels, according to the
model defined in [2]. An SES is composed of units, logically grouped in topologies
(Fig. 3). Elasticity of a SES appears at run-time, through dynamic reconfiguration
with respect to SES requirements. Thus, describing and analyzing the expected
run-time properties of the SES is crucial in discovering services that support the
expected behavior. Through Runtime Elasticity Properties, we capture the
expected run-time behavior of a SES using Volatility and Dynamism. Volatil-
ity is applied in recommending services with suitable capabilities for the expected
unit usage time. Dynamism describes the number of units expected to be allocat-
ed/deallocated within a time period in a time interval. For example, we can de-
scribe a SES unit which uses its instances on average one hour (volatility), and
allocates/deallocates 10 instances within 5 minutes every hour (dynamism).

A SES might require different elasticity control strategies over its units, topolo-
gies, or whole SES, such as maximize performance for a unit, and quality for
another. Thus, for selecting services which support the required control, we
use Services Selection Strategies. We first define Elasticity-based selec-
tion strategies, which recommend services based on their elasticity capabilities,

98 D. Moldovan et al.

Fig. 3. Representing elasticity requirements for SES

relying on a set of elasticity quantification functions defined in the next section.
These strategies are crucial in considering the elasticity capabilities of cloud
services when building SESs. We define 5 Elasticity-based strategies: Max
{Overall, Cost, Quality, Resource, Service Association} Elasticity.
To also cover property-based user requirements, we support Property-based

strategies: Max {Fulfilled Requirements, Quality, Resources}, and Min

Cost. Multiple different strategies can be specified for each SES unit, topology,
or whole SES, covering all potential SES requirements.

In turn, Requirements specify the cost, quality and resources required by the
SES, and are represented as functions of form felReq(constraint, g(time)), where
the constraint is a function depending on the cost, quality or resource metric on
which the requirement is made, the type of constraint (e.g., greater than) and the
required values (hconstraint(metric, operator, value)). A time parameter enables
the specification of time-varying requirements.

3.3 Functions for Quantifying Elasticity of Cloud Services

Different SESs have different elasticity requirements, depending on SES require-
ments, and designed elasticity control mechanisms. For example, one SES might
require more cost control options, and thus cost elasticity would be more impor-
tant than quality elasticity. Thus, we provide a set of customizable coefficients
for quantifying the elasticity of services, which can be tailored to suit particular
SES requirements. Quantifying elasticity enables a numerical ordering of services
after their elasticity, crucial in recommending services for SES configurations.

One important factor in evaluating elasticity of cloud services is the phase
during the service’s lifetime when elasticity capabilities are active: instantiation-
time, run-time, or both. Let vi, vr, and vir be user-defined values representing the
importance of Instantiation-Time, Run-Time, and Both phases, respectively,
for a particular SES; vi, vr, vir ∈ [0, 1]. Thus, we define an ElPhaseQ coefficient
for quantifying the phase in which a service can exhibit elasticity, as follows:

ElPhaseQ(phase) =

⎧
⎨

⎩

vi if phase = Instantiation-Time

vr if phase = Run-Time

vir if phase = Both

(1)

QUELLE 99

Typically, to obtain SES configurations with maximum elasticity, vr should be
at least twice as vi, and vir their sum (e.g., vi = 0.33, vr = 0.67, and vir = 1).

Dependencies between services increase (optional dependencies) or decrease
(mandatory dependencies) the service’s elasticity. Let vo, vm be user-defined
values representing the ”importance” of Optional and Mandatory dependencies,
respectively, for a particular SES; vo, vm ∈ [−1, 1]. We define an ElDepQ for
quantifying the elasticity dependencies between services as follows:

ElDepQ(dependency) =

{
vo if dependency.type = Optional

vm if dependency.type = Mandatory
(2)

Typically, to obtain SES configurations with maximum elasticity, vo and vm
should have the same value but opposite signs, with vm < 0 as mandatory
dependencies decrease elasticity (e.g., vo = 1, and vm = −1).

The Volatility of a cloud service heavily influences the service’s elasticity,
and might have different importance for different SESs. Thus, we consider a cus-
tom VolatilityQ coefficient for quantifying volatility, supplied as to suit partic-
ular SES requirements. Typically, VolatilityQ would have the form
numberOfAllowedReconfigurations/timeInterval.

Based on the above coefficients, we quantify a single elasticity capability of a
cloud service as ECQ:

ECQ(C) = ElPhaseQ(C.phase)

∗Σdep∈C.dependencies V olatilityQ(dep) ∗ ElDepQ(dep) (3)

where C is an elasticity capability, C.phase its elasticity phase, C.dependencies
its elasticity dependencies, and dep a single elasticity dependency.

For evaluating the overall elasticity of a cloud service S over all elasticity
dimensions (Cost, Quality, Resource, and Services Associations) we define an
Elasticity Quantification (EQ) function as:

EQ(S) = ΣD∈cost,quality,res,servicesAssoc WD ∗ΣC∈D.capabilities ECQ(C) (4)

whereD is an elasticity dimension,WD ∈ [0, 1] is its weight, and C is an elasticity
capability of S on dimension D. Different WD coefficients for each dimension D
can be set to suit particular SES requirements. For example, a SES interested
only in cost elasticity would set Wcost to 1, and the other WD coefficients to 0.

4 Algorithms for Recommending SES Configurations

In this section we introduce algorithms for recommendations SES deployment
configurations based on the elasticity capabilities of existing cloud services. As
one service could be instantiated under different configurations depending on its
elasticity capabilities, Algorithm 1 evaluates an entity (service, quality, cost, or
resource) with respect to a SES unit requirements, obtaining a set of potential
configurations for the entity’s elasticity dependencies (entityCfgs), depending

100 D. Moldovan et al.

Algorithm 1. Evaluating cloud service against SES unit requirements

Input: entity,requirements; Output: entityCfgs

1: function GetEntityCfgs(entity, requirements)
2: fulfilledReqs = EvalRequirements(entity, requirements)
3: for d in entity.elasticityCapabilities.mandatoryDependencies do
4: capabilityCfgs = GetEntityCfgs(d,requirements)
5: entityCfgs.addCapabilityCfgs(d, capabilityCfgs)
6: end for
7: for d in entity.elasticityCapabilities.optionalDependencies do
8: capabilityCfgs = GetEntityCfgs(d,requirements)
9: entityCfgs.addCapabilityCfgs(d, capabilityCfgs)
10: end for
11: return entityCfgs
12: end function

on the requirements they fulfill. One cloud service might have different manda-
tory and optional elasticity dependencies on other entities with different proper-
ties (e.g., different cost). Thus, after the algorithm evaluates the static properties
of the cloud service in Line 2 (EvalRequirements function), it continues by ap-
plying the GetEntityCfgs function recursively over its mandatory dependencies
(must be used). Lines 3-6 determines the unit requirements fulfilled by the de-
pendencies’ configuration options, and adds these options to the entityCfgs.
Next, the potential configurations of the entity’s optional dependencies are eval-
uated against requirements (Lines 7-10), and their configurations added to the
entityCfgs, obtaining the complete set of possible configurations for the entity.

Algorithm 2. Elasticity-driven SES configurations generation

Input: SES, services, cfgsCount
Output: cfgs - set of possible SES configurations

1: function RecommendSESCfgs(SES, services, cfgsCount)
2: unitsRequirements = MapRequirements(SES.requirements)
3: for unit in unitsRequirements do
4: EQ = SES.eqFunction(unit)
5: potentialCfgs = []
6: for s in services do
7: entityCfgs = GetEntityCfgs(s,unit.reqs)
8: if entityCfgs != empty then
9: potentialCfgs.add(entityCfgs, EQ(entityCfgs))
10: end if
11: end for
12: cfgs.add(unit, potentialCfgs.getBest(cfgsCount, SES.strategies(unit)))
13: end for
14: return cfgs
15: end function

QUELLE 101

Fig. 4. QUELLE framework

Algorithm 2 applies elasticity quantification functions to generate a user-
specified number of decreasingly elastic SES deployment configurations. Input
SES description contains requirements, run-time properties, service selection
strategies, and custom EQ functions defined at any SES level, from the whole
SES, to topologies and units, which are mapped to SES units (Line 2). If con-
flicts are detected between levels, the lower level is applied. For each unit, its
elasticity quantification function EQ is retrieved from the supplied SES descrip-
tion (Line 4). Then, for each cloud service, GetEntityCfgs (Algorithm 1) is
called, obtaining a set of potential service configurations entityCfgs (Lines
6-11). The EQ function for the SES unit is used to quantify the elasticity of
the potential service configurations from entityCfgs (Line 9). Finally, supplied
unit strategies SES.strategies(unit) are applied sequentially in recommend-
ing from potentialCfgs the best cfgsCount decreasingly elastic configurations,
according to their elasticity quantification (Line 12).

Quantifying elasticity towards selecting cloud services ensures that during the
SES execution, an elasticity controller has the appropriate control options to be
enforced depending on SES requirements and run-time behavior.

5 Prototype and Experiments

5.1 Prototype

We provide the QUELLE framework6(Figure 4), exposing the functions, algo-
rithms and models described in Sections 3 and 4, using RESTful services. For
managing the Cloud Services Model, we implemented a graph-based Neo4j7

6 Prototype and supplement materials: http://tuwiendsg.github.io/QUELLE/
7 http://www.neo4j.org/

http://tuwiendsg.github.io/QUELLE/
http://www.neo4j.org/

102 D. Moldovan et al.

Fig. 5. Elasticity quantification and evaluation of Amazon EC2 IaaS services

Cloud Services Persistence Adapter. The population of the cloud services’
repository (see Fig. 1) should ideally be an automatic process, with the increase
in cloud providers’ description APIs. However, currently we rely on available
custom description services and HTML parsing to populate our model. For inte-
grating QUELLE in existing software engineering processes, SES requirements
constructed by third party tools are submitted as XML, and configuration rec-
ommendations returned as XML for easy processing. Finally, a TOSCA8-based
output is generated using QUELLE’s output formatter for Winery[8].

5.2 Evaluating Elasticity of Amazon Cloud Services

Most cloud providers still offer only basic cloud services, with reduced config-
uration and combination options, and implicitly, reduced elasticity. This limits
our options of using real cloud services in our experiments. Thus, we focus on a
single real cloud provider, Amazon EC2, providing 29 IaaS VM cloud services,
each with various elasticity capabilities, generating a total of 253 possible service
configurations, sufficient for showcasing our elasticity quantification functions.
Additionally, EBS storage, Monitoring and Messaging services are provided, each
with individual elasticity capabilities, sufficient for building our DaaS (Section 2).

As the desired elasticity might vary depending on the stakeholder, our frame-
work provides a customizable elasticity quantification function relying on user-
defined VolatilityQ,ElDepQ, and ElPhaseQ coefficients. As the user is interested
in building an elastic system, s/he expects services to be allocated/deallocated
often. As Amazon bills its servicesminimum on a hourly basis, the supplied volatil-
ity quantification coefficient is VolatilityQ = 1/minLifetime (Hours), gener-
ating a volatility of 1 for hourly reserved services, and 1 / (365 * 24) for yearly
reserved services. As the user wants to use services which have as few dependencies
on other services, s/he supplies an elasticity dependency quantification coefficient
ElDepQ = {1 if Optional, and -1 if Mandatory}. Finally, the supplied elasticity
phase quantification coefficient is ElPhaseQ = {0.33 if Instantiation-Time,

8 https://www.oasis-open.org/committees/tosca

https://www.oasis-open.org/committees/tosca

QUELLE 103

Fig. 6. Multi-level DaaS elasticity requirements

0.67 if Run-Time, 1 if Both}, and all elasticity dimensions have same weight
coefficient Wd=1.

The result of quantifying the elasticity of Amazon EC29 services over cost,
quality, resources, and services associations is depicted in Fig. 5. As the defined
VolatilityQ function quantifies close to zero all options of reserving a service for
1 or 3 years, the cost elasticity of most services, such as m3.large is quantified
close to 2. Amazon EC2 services which have optional dependencies have addi-
tional cost and quality control options. Thus, Amazon EC2 IaaS services with
can be associated with an EBS service have their service association elasticity
quantified to ≥ 1, and cost elasticity quantified to � 3.

5.3 Recommending SES Configurations

We aim to accelerate the development of SESs by recommending deployment
configurations using cloud services providing the required elasticity capabili-
ties. Thus, we define a four phase recommendation process: (i) processing SES
requirements, (ii) quantifying elasticity of cloud services, (iii) recommending
elasticity-driven SES configurations, and (iv) exporting SES configurations as
cloud deployment descriptor.

As a user might not initially know the complete SES requirements, we apply
an iterative approach, in which recommended configurations are analyzed by a
user, the SES requirements refined accordingly, and resubmitted. First, mixed
SES requirements w.r.t. cost, resource and quality, are described by the user in
a top-down fashion, from the entire SES to individual units. At the SES level, a
requirement for a Management as a Service (MaaS) service with a monitoring
frequency of 5 minutes is specified, which will be applied to all SES’s units. As
the units belonging to the Event Processing Topology level perform sensitive
computation, a MaaS requirement for a service with 1 minute monitoring fre-
quency is specified, overriding the 5 minutes frequency SES level requirement.

9 Services’ description accurate at time of writing.

104 D. Moldovan et al.

Table 1. Iterative services selection for Event Processing unit

Service Selection Recommended Quality Elasticity Cost Elasticity
Strategies IaaS Services Avg. Min. Max. Avg. Min. Max.

Max Requirements 23 0.6 0 1 2.39 1.0004 3.0004

+ Quality Elasticity 14 1 1 1 2.78 2.004 3.0004

+ Cost Elasticity 11 1 1 1 3.0004 3.0004 3.0004

+ Minimum Cost 1 1 1 1 3.0004 3.0004 3.0004

The Event Processing Unit requires an IaaS service with over 2 CPU cores
and 5 GB of RAM, and a Moderate network performance. In turn, the Messaging
Unit requires a PaaS service of type messaging. Similarly, the Data End Unit

requires an IaaS service providing at least 10 GB of RAM, I/O Performance of
at least 1000 IOps together with at least a Moderate network performance.

While in the following we focus on IaaS services as they are most abundant
and exhibit most elasticity in current cloud computing, we can apply the same
approach for PaaS and MaaS requirements, as shown at the end of this section.

First iteration: The user submits to QUELLE SES requirements, without
elasticity-based selection strategies. Focusing on the Event Processing Unit,
the user sees that 23 IaaS services were recommended (Table 1), with vary-
ing quality and cost elasticity. Second iteration: The user adds a Quality

Elasticity strategy, maximizing the quality options available at run-time. In
turn, 14 services are recommended, with quality elasticity equal to 1, as the
only modeled quality elasticity capability is an EBS Optimized storage option.
Third iteration: The user adds a Cost Elasticity strategy, ensuring the
SES can switch between as many pricing schemes as possible during run-time.
Thus, 11 services are recommended, with cost elasticity of � 3, due to supplied
VolatilityQ function evaluating yearly cost schemes � 0, and hourly pricing
schemes (e.g., Spot) to 1.Fourth iteration: The user also wants Minimum Cost,
reducing the recommended services to 1, fulfilling most resource requirements,
having maximum quality and cost elasticity, and minimum cost.

In Table 2 we showcase the importance of quantifying elasticity ca-
pabilities of cloud services in SES construction, by comparing the us-
age of Elasticity-based service selection strategies with only using the
Property-based strategies Minimum Cost and Max Requirements. With the
later strategies, requirements are matched and services with minimum cost se-
lected in a traditional fashion, recommending 3 service with varying quality and
cost elasticity. Applying Elasticity-based strategies, the SES’e elasticity is
increased, recommending a m1.xlarge service with more control options over
its quality and cost elasticity dimensions.

Processing all IaaS, PaaS, and MaaS requirements refined above, our proto-
type generates a TOSCA descriptor containing the recommended SES configu-
ration. For the Event Processing Topology, the recommendation is visualized
in (Fig. 7) using Winery[8], a TOSCA modeling and visualization tool. The
recommendation contains an m1.large IaaS service fulfilling the resource and
network performance quality requirements with associated SpotCost, due the

QUELLE 105

Table 2. Elasticity versus property-based service selection for Event Processing unit

Service Selection Recommended Avg. Quality Avg. Cost
Strategies IaaS Services Elasticity Elasticity

Max Requirements + Minimum Cost m3.large, m1.large 0.33 2.33
m2.xlarge

Max Requirements + Quality Elasticity m1.xlarge 1 3.0004
+ Cost Elasticity + Minimum Cost

Fig. 7. Complete configuration recommendation for Event Processing topology

Minimum Cost strategy. A PaaS Monitoring Service with a High Monitoring

Frequency is recommended for the monitoring frequency requirement, and a
MaaS SimpleQueue service for the message oriented middleware requirements.
In a similar fashion, recommendations are provided for the Data End Topology.

In these experiments we highlighted that, using our framework, a SES devel-
oper does not have to search trough all cloud providers for services providing
necessary elasticity, and thus, accelerates the SES’s time to deployment.

6 Related Work

SES design and cloud provisioning: Tools, such as Winery[8], Slipstream10,
Azure’s Octopus Deploy11 or ModaClouds [9], support construction of cloud ser-
vices. Such tools require from the user a completely specified SES configuration,
and the selected cloud provider. We differ, as we provide recommendations for
SES deployment configurations, considering required elasticity capabilities, aid-
ing in the process of choosing cloud services which provide the required run-time
elasticity control.

10 http://sixsq.com/products/slipstream.html
11 http://octopusdeploy.com

http://sixsq.com/products/slipstream.html
http://octopusdeploy.com

106 D. Moldovan et al.

Cloud provider modeling: Several approaches focus on modeling cloud
providers towards cloud services provisioning.Goncalves et al. [6] define CloudML,
a cloud modeling language, describing the resources and functional capabilities
of cloud services. Villegas et al. [13] analyze provisioning and allocation policies
in IaaS clouds by associating cost of services with their run-time. Wittern et al.
[14] capture properties of cloud services and requirements using variability mod-
eling, and integrate human decision-makers, towards filtering cloud services for
constructing cloud systems. Most related work focuses on services of VM type and
does not evaluate the elasticity of cloud services, while we capture elasticity capa-
bilities of services for all types of services, from IaaS to SaaS.

Cloud service selection: Zhang et al. [15] introduce an ontology-based
mechanism for discovery of cloud services based on their functionality and QoS
parameters, towards deploying systems in cloud. A mathematical formulation of
the cloud service provider selection problem towards maximizing selection ben-
efits withing a given budget is introduced by Chang et al. [1]. Liu et al. [14] use
cloud feature models for representing cloud service properties and their relation-
ships, and filter alternative models based on ranking preferences. Dastjerdi et
al. [3] use negotiation strategies for selecting VMs with maximum availability
and minimum cost. Moving from the VM view, [10] ranks and selects cloud ser-
vices suitable for building cloud systems using a fuzzy quantification approach.
Kamateri et al [7] semantically interconnect heterogeneous PaaS offerings across
different cloud providers for deploying cloud systems. The authors of [4] intro-
duce GEMBus, an automated services composition platform providing federated
network access to distributed applications and resources towards creating ser-
vice oriented architectures. We differ as we do not focus only on initial system
construction and deployment. Instead, we analyze the elasticity capabilities of
selected services, recommending SES configurations which provide the required
elasticity capabilities for controlling the SES’s elasticity during run-time.

7 Conclusions and Future Work

In this paper we have presented a novel approach for accelerating the devel-
opment of software-defined elastic systems (SES) by introducing the QUELLE
framework which supports the quantification of elasticity capabilities and depen-
dencies among cloud services. We demonstrated that QUELLE can be useful for
many situations via the evaluation of elasticity of individual cloud services, and
integration of QUELLE into software development phases of elastic systems.

We believe that the introduced models, functions and algorithms will simplify
and reduce development effort in complex, diverse cloud service providers. Cur-
rently, we are focusing on modeling and evaluating the elasticity dependencies
between service units and topologies, and use these dependencies in new func-
tions for the SES development tools. We are also working on the integration of
QUELLE into an integrated SES development environment.

References
1. Chang, C.W., Liu, P., Wu, J.J.: Probability-based cloud storage providers selection

algorithms with maximum availability. In: 2012 41st International Conference on
Parallel Processing (ICPP), pp. 199–208 (2012)

QUELLE 107

2. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level Elasticity Control
of Cloud Services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)

3. Dastjerdi, A., Buyya, R.: An autonomous reliability-aware negotiation strategy for
cloud computing environments. In: International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 284–291. IEEE/ACM (2012)

4. Demchenko, Y., et al.: Gembus based services composition platform for cloud paas.
In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592,
pp. 32–47. Springer, Heidelberg (2012)

5. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
IEEE Computing (5), 66–71 (2011)

6. Goncalves, G., Endo, P., Santos, M., Sadok, D., Kelner, J., Melander, B., Mangs,
J.E.: Cloudml: An integrated language for resource, service and request description
for d-clouds. In: International Conference on Cloud Computing Technology and
Science (CloudCom), pp. 399–406. IEEE (2011)

7. Kamateri, E., et al.: Cloud4SOA: A semantic-interoperability paaS solution for
multi-cloud platform management and portability. In: Lau, K.-K., Lamersdorf, W.,
Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 64–78. Springer, Heidelberg
(2013)

8. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

9. Nitto, E.D.: Supporting the development and operation of multi-cloud applications:
The modaclouds approach. In: International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC). IEEE (2013)

10. Patiniotakis, I., Rizou, S., Verginadis, Y., Mentzas, G.: Managing imprecise criteria
in cloud service ranking with a fuzzy multi-criteria decision making method. In:
Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 34–48. Springer, Heidelberg (2013)

11. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and
elasticity challenges of deploying business applications on public cloud infrastruc-
ture. Journal of Internet Services and Applications, 173–193 (2011)

12. Truong, H.L., Dustdar, S., Copil, G., Gambi, A., Hummer, W., Le, D.H., Moldovan,
D.: CoMoT - A Platform-as-a-Service for Elasticity in the Cloud. In: International
Workshop on the Future of PaaS. IEEE (2014)

13. Villegas, D., Antoniou, A., Sadjadi, S., Iosup, A.: An analysis of provisioning and
allocation policies for infrastructure-as-a-service clouds. In: International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID), pp. 612–619. IEEE/ACM
(2012)

14. Wittern, E., Kuhlenkamp, J., Menzel, M.: Cloud service selection based on vari-
ability modeling. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 127–141. Springer, Heidelberg (2012)

15. Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A.: A declarative recom-
mender system for cloud infrastructure services selection. In: Vanmechelen, K., Alt-
mann, J., Rana, O.F. (eds.) GECON 2012. LNCS, vol. 7714, pp. 102–113. Springer,
Heidelberg (2012)

DevOpSlang – Bridging the Gap
between Development and Operations

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
{wettinger,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Abstract DevOps is an emerging paradigm to eliminate the split and
barrier between developers and operations personnel that traditionally
exists in many enterprises today. The main promise of DevOps is to en-
able continuous delivery of software in order to enable fast and frequent
releases. This enables quick responses to changing requirements of cus-
tomers and thus may be a critical competitive advantage. In this work
we propose a language called DevOpSlang in conjunction with a method-
ology to implement DevOps as an efficient means for collaboration and
automation purposes. Efficient collaboration and automation are the key
enablers to implement continuous delivery and thus to react to changing
customer requirements quickly.

Keywords: DevOps, DevOps Specification, Devopsfile, Deployment Au-
tomation, Application Evolution, Cloud Computing.

1 Introduction

Today, many enterprises face a common, major challenge in terms of software
delivery: customers and users expect fast responses to their constantly chang-
ing requirements, concerning both functional and non-functional properties of
a software [6]. Frequent releases are vital to satisfy such expectations, which
is indeed a crucial competitive advantage. However, technical and non-technical
challenges have to be addressed in order to implement short release cycles. Cloud
computing [10,2] introduced key enablers such as on-demand provisioning of re-
sources (virtual machines, storage, network, platform-level services, etc.) and
the pay-per-use model to tackle some of the major technical challenges. With
these properties Cloud computing provides a means to support different ser-
vice models such as infrastructure as a service (IaaS) and platform as a service
(PaaS) combined with different deployment models (public, private, or hybrid
Cloud) [10]. Beside these technical enablers, further conditions are required to
enable fast and continuous delivery of software. The DevOps paradigm [6,7,17]
addresses another major challenge, namely the split and barrier between devel-
opers and operations personnel. To overcome such a split that is predominant in
many organizations today, organizational changes, cultural changes, and techni-
cal frameworks are required. In terms of organizational changes teams consisting

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 108–122, 2014.
c© IFIP International Federation for Information Processing 2014

DevOpSlang – Bridging the DevOps Gap 109

of both developers and operations people may be established. Moreover, ’Dev-
Ops’ may be introduced as a new role for people mainly working on coordinating
the collaboration between both. Major companies such as Facebook1, Yahoo2,
and others3 are seriously implementing DevOps.

The DevOps paradigm is not bound to Cloud computing. Although combining
these two makes a lot of sense as outlined before, DevOps could also be imple-
mented in conjunction with other computing paradigms. In this work we mainly
focus on enabling DevOps in combination with Cloud computing to reveal the
full potential of DevOps. Our major contributions in this context are:

– We define a methodology to implement the DevOps paradigm in practice
with a high degree of automation.

– We propose a language to be used to support the aforementioned methodol-
ogy for collaboration and automation purposes.

– Based on the requirements stated in the motivating scenario we implement
and evaluate DevOps-centric artifacts to deploy and operate an application,
following our methodology and using the language we introduce.

The remaining of this paper is structured as follows: Section 2 refines the prob-
lem statement based on the introduction presented here. Moreover, a motivating
scenario is introduced. Derived from this scenario and the problem statement in
general, Sect. 3 defines a DevOps-centric methodology to deploy and operate
applications in an automated manner. Section 4 introduces a language to practi-
cally support our proposed methodology. The evaluation of both the methodol-
ogy and the language is described in Sect. 5. Finally, Sect. 6 and Sect. 7 present
related work, conclusions, and future work.

2 Problem Statement and Motivating Scenario

In the previous Sect. 1 we briefly introduced the DevOps paradigm, aiming to
eliminate the traditional split and barrier between developers and operations
personnel. This split causes long release cycles for applications in many enter-
prises, very often several months. However, most users and customers today
expect much faster responses to their changing and growing requirements. Thus,
it becomes a critical competitive advantage to deliver software continuously [6],
incorporating users’ feedback and requirements as fast as possible. One major
precondition to implement continuous delivery of software is to automate the
whole deployment process in a repeatable way [6], including steps such as:

– Retrieve sources from version control
– Build binaries using build scripts
– Verify correctness of built binaries and run unit tests

1 Facebook uses Chef (DevOps tool): http://www.getchef.com/customers/facebook
2 DevOps at Flickr (Yahoo): http://goo.gl/XBKq
3 Companies moving to DevOps: http://www.getchef.com/solutions/devops

http://www.getchef.com/customers/facebook
http://goo.gl/XBKq
http://www.getchef.com/solutions/devops

110 J. Wettinger, U. Breitenbücher, and F. Leymann

– Provision infrastructure resources using provisioning scripts
– Deploy middleware and application components using deployment scripts

Ideally, the implementation of such an overarching automated process takes
place in parallel to the development of the application itself, always taking into
account changing and growing requirements of the application. The necessary
constant collaboration between developers and operations is enabled by imple-
menting the DevOps paradigm. Optionally, the automation of the deployment
process can also be implemented afterwards, e.g., for legacy applications that
still need to be maintained. In this paper we consider applications that are con-
tinuously delivered based on a fully automated deployment process. We assume
that an application always consists of two major building blocks:

1. Business functionality such as the business logic, user interfaces, APIs, etc.
2. Supporting functionality such as the operations logic, tests, etc.

The operations logic is the fundamental enabler to implement a fully auto-
mated deployment process because it provides the necessary artifacts such as
build scripts to create the application’s binaries and deployment scripts to re-
peatable deploy the application to different environments (development, test,
production, etc.). Most of today’s enterprises and Web applications that aim for
fast and frequent releases fall into this category of applications4. However, there
are other kinds of applications such as legacy applications running in production
that are maintained using highly manual processes without any means to deploy
or re-deploy the application in an automated and repeatable manner. Our re-
search does not focus on such applications without full deployment automation.

We put emphasis on creating and operating applications that have an evolu-
tionary emerging and changing architecture, mostly by following agile software
development practices [1]. This is a common way to create new applications in
these days because a huge variety of IaaS and PaaS [10] offerings such as Ama-
zon Web Services5, Google Cloud Platform6, and Heroku7 with many add-on
services8 are easy to use and fast to integrate with each other. Thus, applica-
tion developers start with some basic offerings such as a simple virtual machine
(VM) or a Ruby runtime for an initial version of their application and add or
remove additional services such as data stores, caching, queues, and monitoring
services as they require it. This results in an evolutionary emerging and chang-
ing application architecture according to the requirements of the application’s
stakeholders.

Figure 1 shows an example for the architecture evolution of a simple chat
application. Initially, the application is simply running in a Node.js runtime en-
vironment. Then, a database based on MongoDB is added to store some chat
4 DevOps at Flickr (Yahoo): http://goo.gl/XBKq
5 Amazon Web Services: http://aws.amazon.com
6 Google Cloud Platform: http://cloud.google.com
7 Heroku: http://www.heroku.com
8 Heroku add-ons: http://addons.heroku.com

http://goo.gl/XBKq
http://aws.amazon.com
http://cloud.google.com
http://www.heroku.com
http://addons.heroku.com

DevOpSlang – Bridging the DevOps Gap 111

Node.js
Runtime

Chat
Application

MongoDB
Server

Chat Logs
Database

Node.js
Runtime

Chat
Application

Node.js
Runtime
[cluster]

Chat
Application

MongoDB
Server

[cluster]

Chat Logs
Database

Node.js
Runtime

Chat
Application

MongoDB
Server

[2 instances]

Chat Logs
Database

Redis
Server

Cache

Node.js
Runtime
[cluster]

Chat App.

MongoDB
Server

[cluster]

Chat Logs
Database

Log Analyzer

…

Fig. 1. Evolution of chat application architecture

logs. As the application needs to get more scalable, two instance of MongoDB
are run. Moreover, a Redis server is used for caching purposes. However, this
architecture does not seem to scale. Thus, the MongoDB server and the Node.js
runtime environment are both run as clusters. The Redis server gets removed.
In the next iteration, a log analyzer gets introduced as another application com-
ponent to extract valuable information from the chat logs. The evolution may
continue in this fashion including further aspects such as changing the underly-
ing infrastructure. Whereas the first iterations may be hosted on local VMs or
VMs provided by an IaaS provider such as Amazon, later versions of the appli-
cations might be hosted on PaaS offerings such as Heroku and MongoHQ9 to
address scalability issues.

In a conventional setup with development and operations split across different
departments it would be hard or even impossible to catch up with such constantly
changing operations requirements of an application. The DevOps paradigm aims
to improve the situation for such scenarios by moving together development and
operations. However, repeatable and fast processes can only be achieved with
comprehensive automation, reducing manual intervention as much as possible.
Manual processes to deploy and operate applications are error-prone, slow, and
costly [14]. To implement such automated processes not only integrated tool
9 MongoHQ: http://www.mongohq.com

http://www.mongohq.com

112 J. Wettinger, U. Breitenbücher, and F. Leymann

support is required. However, in today’s discussions this seems to be the focus
beside the cultural change that is necessary to implement DevOps. Thus, in the
following Sect. 3 we describe a comprehensive DevOps-centric methodology to
support the evolutionary process of creating and operating applications, aiming
for a maximum degree of automation.

3 DevOps-centric Methodology to Operate Applications

This section describes a methodology to implement the DevOps paradigm in
practice with a high degree of automation. Our goal is to support DevOps sce-
narios such as the one outlined in Sect. 2 by automating the processes involved
as much as possible. Figure 2 provides an overview of our proposed methodology,
consisting of two major building blocks: (i) the upper part focuses on developing
the application and preparing its operation in a tightly integrated manner; (ii)
the lower part describes the actual deployment and operation of the application.

Develop App & Prepare Ops

Optional: Generate or update
DevOps Spec by analyzing

App Implementation
(Automated)

Define or update
DevOps Spec

(Manual)

if error

Evaluate DevOps Spec and
propose improvements

(Automated)

Deploy & Operate App

Run ‘deploy’ operation
to build and monitor
deployment pipeline

(Automated)

Create or improve
App Implementation

(Manual)

Run ‘undeploy’
operation

(Automated) finish or cont. improvement

if error

Optional: Run
further operations

(Automated)

manual trigger automatic trigger

Fig. 2. Overview of our DevOps-centric methodology

DevOpSlang – Bridging the DevOps Gap 113

Syntactically, Fig. 2 describes our methodology as a cyclic, directed graph.
Each node represents a step of the methodology; the edges define the order of
the steps. Dashed lines denote optional steps and paths. An edge can be seen
as a trigger of the step to which it points. Depending on the annotation of the
edge, the following step may be triggered automatically or manually. The entry
point of the whole methodology is the creation of the application implementation.
Obviously, we consider this step as a mainly manual process. As implied in Sect. 2
it does not only cover the implementation of the business functionality such as
the business logic and the user interfaces; supporting functionality such as the
operations logic are part of the implementation, too. Then, a central artifact in
our methodology comes into play, namely the DevOps Spec, i.e., the DevOps
specification:

Definition 1 (DevOps Spec). A DevOps Spec specifies all developer- and
operations-related aspects of a particular application to deploy it fully automated.
For this purpose, an executable ’deploy’ operation is defined in the DevOps Spec.
This operation may utilize developer-centric operations such as ’build’, ’test’,
and ’start’ defined in the DevOps Spec, too. Moreover, operations to manage the
application (e.g., ’scale’, ’backup-database’, ’undeploy’, etc.) are specified to be
triggered either automatically or manually after a successful deployment.

Developers and operations people work closely together when maintaining
the DevOps Spec, so the DevOps Spec serves as an important means to enable
efficient collaboration between the two parties. As shown in Fig. 2 the DevOps
Spec for an application may be created manually, either after a first iteration of
the application implementation has been created or in parallel to creating the
implementation. Optionally, an initial version or a skeleton of the DevOps Spec
can be generated by analyzing the application implementation to find out some
initial deployment requirements of the application. Such an analysis may be
based on common conventions for application components such as the existence
and the content of certain descriptor files [18]. For instance, a Node.js application
typically owns a package.json file specifying its dependencies and the command
to start the application.

The next step, triggered automatically or manually, is the automated eval-
uation of the DevOps Spec. The goal of this step is to use a set of rules to
find possible conflicts, errors, missing parts, or weaknesses. Based on these find-
ings, improvements are proposed to refine the DevOps Spec. As an example, a
set of platform-bound commands to deploy a particular middleware component
may be better replaced by a portable, tested, open-source artifact such as a Chef
cookbook10 maintained by the DevOps community. Based on these improvement
suggestions the DevOps Spec may be updated accordingly.

Once the DevOps Spec is declared to be in a condition to be ready for de-
ployment (by addressing the reported issues or by ignoring them), we switch to
the second part of our methodology to deploy and operate the application. The
’deploy’ operation is run to build the deployment pipeline:
10 Chef cookbooks: http://community.opscode.com/cookbooks

http://community.opscode.com/cookbooks

114 J. Wettinger, U. Breitenbücher, and F. Leymann

Definition 2 (Deployment Pipeline). A deployment pipeline is an auto-
mated manifestation of the process for getting software from its sources (e.g.,
from version control) to be deployed to the target environment (e.g., develop-
ment, test, production, etc.) [6]. The ’deploy’ operation defined in the DevOps
Spec prescribes how to build the deployment pipeline.

The deployment pipeline, i.e., the execution of the ’deploy’ operation is moni-
tored. If an error occurs, the ’undeploy’ operation is run automatically. All error
logs are stored for later analysis. Optionally, further operations such as ’scale’
or ’backup-database’ may run to manage the application. These runs may be
triggered manually or automatically. In any case after the ’undeploy’ operation
has been run, it depends on a manual decision to go back to the first part to
continuously improve the application implementation, update the DevOps Spec,
and eventually re-deploy the application. Alternatively, the application is not
targeted for re-deployment, e.g., in case the application is decommissioned com-
pletely. In this case, running the ’undeploy’ operation is the final step. Moreover,
we may also go back to the first part improving the application implementation
and updating the DevOps Spec while the application is already deployed and
operated. We could, for instance, deploy an updated version of the application
in parallel and decommission older versions once the updated version is consid-
ered to run correctly. In the context of this paper we focus on the first part of
our methodology (Develop App & Prepare Ops), especially on the automated
and manual steps to define, generate, update, and evaluate the DevOps Spec.
For this purpose, the next Sect. 4 proposes a language to be used to create and
maintain a DevOps Spec.

4 DevOpSlang – A Language to Bridge the Gap
Based on the need to implement DevOps in practice (Sect. 1 and Sect. 2) we
introduced a DevOps-centric methodology to deploy and operate applications
(Sect. 3). We defined the notion of a DevOps Spec (Definition 1) as a key
artifact to enable the implementation of our methodology. However, in the
methodology’s context we do not define how such a DevOps Spec is structured
technically. This is absolutely necessary to implement the methodology in prac-
tice and to implement automated processes in particular. In this section we pro-
pose DevOpSlang, a new domain-specific language to be used for implementing
DevOps Specs. The most important goal of DevOpSlang in conjunction with our
methodology (Sect. 3) is to enable and support efficient collaboration between
developers and operations, leading to automated processes as much as possible.
Technically, DevOpSlang is a domain-specific language based on JavaScript Ob-
ject Notation (JSON) [4]. We use JSON Schema [8] to define a formal schema
for DevOpSlang that may be used for validation purposes. Devopsfiles are the
technical artifacts rendered using DevOpSlang:

Definition 3 (Devopsfile). A Devopsfile is the technical implementation of
a DevOps Spec using DevOpSlang. A Devopsfile orchestrates arbitrary artifacts
(Unix shell commands, Chef scripts, etc.) to implement operations.

DevOpSlang – Bridging the DevOps Gap 115

globalconfig

runner config

config

host

postoptest

1

* 1

1

* 1 1

1

1 1 1

owns
depends on

*

1
action

operation

Devopsfile

Fig. 3. Structure of a Devopsfile based on DevOpSlang

Figure 3 shows the structure of a Devopsfile based on DevOpSlang. The com-
plete JSON schema definition of DevOpSlang is publicly available on GitHub11.
An arbitrary number of operations can be defined. A single operation is imple-
mented by a collection of actions that may depend on each other. Each action
may implement an individual step of an operation. To make an action executable
a runner is used. For instance, an operation may consist of two actions. The first
one may be a Ruby script, using a Ruby runner to execute the script. The second
one may be a single Unix shell command, using a command runner to execute the
command. This makes the runners to be the actual workers to execute operations
defined in a Devopsfile.

Definition 4 (Runner). A runner is an executable enabler in the context of a
runner framework (Fig. 4). It enables the execution of a certain action defined
in a Devopsfile.

An architecture overview of a runner framework that may be used to run such
operations is shown in Fig. 4. Runners that are stored in the runner repository are
reusable by different actions implementing operations in different Devopsfiles.
However, highly application-specific runners can be implemented and stored in-
side the runner repository, too. An operation is run by the operation executor. Each
action of the operation is executed by the action executor, considering the depen-
dencies among actions. To actually execute an action, the action executor retrieves
11 GitHub project DevOpSlang: http://github.com/jojow/devopslang

http://github.com/jojow/devopslang

116 J. Wettinger, U. Breitenbücher, and F. Leymann

Devopsfile

Operation

Artifact
… …

Runner Repository

Runner
Runner

Runner Ruby
Runner

Ruby
Script

Action refers to runner

(3) Retrieve runner
that is required
to execute action

(1) Read operation definition
and configuration

(2) For each action
of operation: trigger
execution of action

Action Executor

Operation

… Ruby Script Ruby Script

Ruby Runner

Operation Executor Ruby Script

Fig. 4. Architecture overview of runner framework

the corresponding runner from the runner repository. [19] presents a similar archi-
tecture that may serve as a foundation for such a runner framework. Hosts such as
VMs, containers, or platforms may be defined as a means to run different actions
on different hosts. If no host is defined for an action, the invoker of the Devopsfile
or the operation in particular determines where to run the action (e.g., localhost
or a sandbox). In terms of configuration there is a global configuration at the top.
Operationsmay have individual configurations that aremergedwith the the global
configuration and may override parts of the global one. The same is true for con-
figurations on the action level: they are merged with the operation’s configuration
and then with the global configuration, possibly overriding parts of them.

The following Sect. 5 presents the validation and evaluation of DevOpSlang
in conjunction with our methodology (Sect. 3). We stick to the motivating sce-
nario (Sect. 2) to create and refine Devopsfiles in an evolutionary manner as
proposed by our methodology. This is enabled by the evolution of Devopsfiles
and related runners.

5 Validation and Evaluation

The evaluation of our methodology in conjunction with DevOpSlang is twofold:
the first part shows how Devopsfiles can evolve based on the changing ar-
chitecture of an application and based on the collaboration between developers
and operations personnel. The second part outlines the possibility to orchestrate
multiple Devopsfiles recursively, so Devopsfiles remain maintainable even for

DevOpSlang – Bridging the DevOps Gap 117

large applications. Beside the Devopsfile schema all Devopsfiles discussed in
this section are completely and publicly available on GitHub12. We validated all
Devopsfiles against the Devopsfile schema using the JSON Schema Valida-
tor13.

5.1 Devopsfile Evolution

Based on the evolutionary developed chat application described in Sect. 2 the
following listing shows an initial version of a Devopsfile for the application:

1 {
2 "name" : " chat−app " ,
3 " v e r s i on " : " 0 . 1 " ,
4 " author " : " Johannes <wett inge r@iaas . uni−s t u t t g a r t . org>" ,
5 " d e s c r i p t i o n " : "Automated deployment and ope ra t i on s f o r chat app

" ,
6
7 " ope ra t i on s " : {
8 " bu i ld " : {
9 " a c t i on s " : {

10 " i n s t a l l −deps " : {
11 " runner " : "command−runner " ,
12 " comment" : "Node . j s 0.10+ must be i n s t a l l e d " ,
13 " c on f i g " : { "command" : "npm i n s t a l l " }
14 }
15 }
16 } ,
17 " s t a r t " : {
18 " a c t i on s " : {
19 " chatapp " : {
20 " runner " : "command−runner " ,
21 " comment" : "Node . j s 0.10+ must be i n s t a l l e d " ,
22 " c on f i g " : { "command" : " node app . j s " }
23 }
24 }
25 } ,
26 " deploy " : {
27 " a c t i on s " : {
28 " bui ld−app " : {
29 " runner " : " operat ion−runner " ,
30 " c on f i g " : { " operat ion " : " bu i ld " }
31 } ,
32 " s t a r t−app " : {
33 " runner " : " operat ion−runner " ,
34 " c on f i g " : { " operat ion " : " s t a r t " }
35 }
36 } ,
37 " dependenc i es " : [
38 [" s t a r t−app " , " bui ld−app "]
39]
40 }
41 }
42 }

Beside some meta data such as ’version’ and ’author’ this Devopsfile defines
a ’start’ operation consisting of a single action entitled ’chatapp’. This is a min-
imalist definition specifying the command to run the Node.js-based application.
Similarly, a ’build’ operation is defined to install the dependencies required to
12 Devopsfile schema and sample Devopsfiles:

http://github.com/jojow/devopslang
13 JSON Schema Validator: http://github.com/fge/json-schema-validator

http://github.com/jojow/devopslang
http://github.com/fge/json-schema-validator

118 J. Wettinger, U. Breitenbücher, and F. Leymann

run the application. The ’deploy’ operation in its initial version points to the
operations ’build’ and ’start’. Such initial definitions may be automatically de-
rived from existing application descriptor files such as the package.json14 file
for Node.js-based applications. For the next iteration of the chat application
the Node.js runtime solely is not enough. A database is used to store chat logs.
Thus, we need to start MongoDB as an additional component before running
the application (’chatapp’ action depends on ’mongodb’ action):

1 " s t a r t " : {
2 " a c t i on s " : {
3 " chatapp " : { . . . } ,
4 "mongodb" : {
5 " runner " : "command−runner " ,
6 " comment" : "MongoDB 2.6+ must be i n s t a l l e d " ,
7 " c on f i g " : { "command" : "mongod" }
8 }
9 } ,

10 " dependenc i es " : [
11 [" chatapp " , "mongodb"]
12]
13 }

Up to now, we assume the middleware components such as the Node.js run-
time and the MongoDB server are available already when running the ’deploy’
operation. This might be true for some developer machines. However, on a freshly
provisioned VM, for instance, these components need to be installed, too. Thus,
the operation definition may be extended as follows to retrieve and install all
components that are involved:

1 " deploy " : {
2 " a c t i on s " : {
3 " deploy−node j s " : {
4 " runner " : "command−runner " ,
5 " c on f i g " : {
6 "command" : " . . . && sudo apt−get i n s t a l l node j s "
7 }
8 } ,
9 " deploy−mongodb" : {

10 " runner " : "command−runner " ,
11 " c on f i g " : {
12 "command" : " . . . && sudo apt−get i n s t a l l mongodb−org "
13 }
14 } ,
15 " bui ld−app " : { . . . } ,
16 " s t a r t−app " : { . . . }
17 } ,
18 . . .
19 }

Defining actions on the level of commands might be a good starting point be-
cause this is what developers typically use for creating the first prototypes and
iterations of an application. However, the DevOps community publicly shares
and maintains reusable artifacts such as Chef cookbooks to deploy middleware
and application components. To increase the portability and reliability of opera-
tions it may make sense to reuse these artifacts instead of putting together a few
platform-specific commands. The following listing shows how this can be done
using a different runner for the ’mongodb’ action:
14 Package.json description: http://www.npmjs.org/doc/json.html

http://www.npmjs.org/doc/json.html

DevOpSlang – Bridging the DevOps Gap 119

1 " deploy " : {
2 " a c t i on s " : {
3 . . .
4 " deploy−mongodb" : {
5 " runner " : " chef−so lo−runner " ,
6 " c on f i g " : {
7 " f i l e s " : { "mongodb . tgz " : " http : / / . . . / mongodb . tgz " } ,
8 " r u n l i s t " : [" r e c i p e [mongodb : : d e f a u l t] "]
9 }

10 }
11 } ,
12 . . .
13 " po s top t e s t " : {
14 " runner " : "command−runner " ,
15 " c on f i g " : {
16 "command" : " export RESCODE=$(c u r l −sL −w \"%{http_code }\\

n\" \" http : // l o c a l h o s t :3000\" −o /dev/ nu l l) && [[\"
$RESCODE\" == \"200\"]] && true | | f a l s e "

17 }
18 }
19 }

Moreover, a ’postoptest’ is defined. It implements a test case that is executed
directly after the operation execution finished. This is to check whether the
operation was executed successfully. In this example we simply send an HTTP
request to our application and check if the response code is 200 (OK).

All Devopsfile iterations discussed so far assume that the whole application
is deployed to a single host such as a VM. To address scalability and performance
issues the application needs to be deployed in a distributed manner. As a first
step, the Node.js runtime and the MongoDB server are running on two distinct
VMs. Moreover, additional actions need to be included in the operation definition
to cover the provisioning of these VMs. This further improves the completeness
of the Devopsfile. The following listing provides a small extract of a more
advanced iteration of the Devopsfile15 to provision a new VM:

1 " deploy " : {
2 " a c t i on s " : {
3 " prov i s ion−app−vm" : {
4 " runner " : " j s−sandbox−runner " ,
5 " c on f i g " : {
6 " hostname" : " app−vm" ,
7 " f i l e s " : { " ec2−prov i s i on . j s " : " http : // ops−a r t i f a c t −

s t o r e /aws−management/ec2−prov i s i on . j s " } ,
8 " i n c l ude " : [" ec2−prov i s i on . j s "]
9 }

10 } ,
11 . . .
12 " deploy−node j s " : {
13 " host " : " app−vm" ,
14 . . .
15 } ,
16 . . .
17 } ,
18 . . .
19 }

In this iteration of the Devopsfile we assume that the application is always
deployed to VMs at Amazon’s EC2 platform. However, this could be changed

15 Devopsfile v8: http://goo.gl/mda8c4

http://goo.gl/mda8c4

120 J. Wettinger, U. Breitenbücher, and F. Leymann

easily by using provider abstraction libraries such as fog16 to implement more
generic provisioning scripts or corresponding runners. In any case, actions of an
operation need to be annotated with a host for a distributed deployment, so
it is clear where the action should run. Further iterations of the Devopsfile17
may define additional management operations such as an ’expose’ operation to
explicitly make the application available to the outside world. Technically, this
could be a script to configure a security group of an Amazon EC2 VM, opening
port 80 for inbound traffic to retrieve HTTP requests.

We have seen that DevOpSlang provides an efficient means to change the level
of abstraction implementing operations seamlessly. Moreover, different abstrac-
tion levels may be combined consistently such as a ’deploy’ operation consisting
of actions on the level of Unix shell commands and actions using portable Chef
cookbooks.

5.2 Recursive Orchestration of Devopsfiles

As an application grows, the Devopsfile may get huge and thus more difficult
to maintain. To avoid such issues the application may be split into different
components that own their individual Devopsfiles.The ’operation-runner’ may
be utilized to transparently invoke operations defined in other Devopsfiles as
shown in the following listing. This approach enables the recursive orchestration
of Devopsfiles to keep them maintainable in size and thus enabling separation
of concerns.

1 " deploy " : {
2 " a c t i on s " : {
3 . . .
4 " deploy−app−core " : {
5 " runner " : " operat ion−runner " ,
6 " c on f i g " : {
7 " Devop s f i l e " : " . / core /Devops f i l e " ,
8 " operat ion " : " deploy "
9 }

10 } ,
11 . . .
12 } ,
13 . . .
14 }

6 Related Work

Our work is related to similar approaches in the field of Cloud computing that in-
troduce a domain-specific language to deploy and operate applications in an auto-
mated manner. On the IaaS level approaches such as Amazon CloudFormation18
or OpenStack Heat19 are used to orchestrate infrastructure resources (VMs, stor-
age, network, etc.). Moreover, middleware and application components can be
16 fog library: http://fog.io
17 Devopsfile v9: http://goo.gl/b6Fu0f
18 Amazon CloudFormation: http://aws.amazon.com/cloudformation
19 OpenStack Heat: http://wiki.openstack.org/wiki/Heat

http://fog.io
http://goo.gl/b6Fu0f
http://aws.amazon.com/cloudformation
http://wiki.openstack.org/wiki/Heat

DevOpSlang – Bridging the DevOps Gap 121

stacked and orchestrated using application topologies based on Ubuntu Juju20,
Amazon OpsWorks [16], Blueprints [15], or enterprise topology graphs [3]. The
Topology and Orchestration Specification for Cloud Applications (TOSCA) [12]
is an emerging standard to define portable application topologies. However, some
of these approaches are bound to specific providers or tools (CloudFormation,
OpsWorks, Juju, etc.); some are focused on defining the higher-level structure of
an application (TOSCA, Blueprints, etc.), so implementing automation requires
additional imperative logic such as build plans, or conventions for declarative
processing have to be defined. Others focus on prescribing fine-grained techni-
cal mechanisms how to implement automation, mainly considering operations-
related aspects. Thus, they can hardly be used as a means of collaboration to
fill the DevOps gap. Furthermore, there are modeling languages such as UML
deployment diagrams [13] that may be a nice fit for collaboration purposes, but
corresponding models are not executable.

DevOpSlang aims to fill this gap as a language to improve DevOps collabora-
tion and to enable comprehensive automation based on the fact that operations
defined in Devopsfiles are executable. However, to implement a framework to
process Devopsfiles, the aforementioned and other existing approaches [19,5]
may be used and combined to enable the automated run of operations. Fur-
thermore, the DevOps community proposes several domain-specific languages
centered around tools such as Puppet [9], CFEngine [20], and Chef [11]. How-
ever, these languages focus on the configuration of lower-level resources such as
middleware and application components installed on VMs. Moreover, they are
bound to a specific tool such as Chef or Puppet. Consequently, they are less ap-
propriate as a holistic means of collaboration and can hardly be used to automate
deployment and operations of applications based on an arbitrary combination
of tools and artifacts. However, they may perfectly complement DevOpSlang to
implement actions using these lower-level domain-specific languages.

7 Conclusions

In this paper we introduced a new domain-specific language called DevOpSlang
in conjunction with a methodology to enable the implementation of DevOps.
The language serves as an efficient means of collaboration and provides the
foundation to automate deployment and operations of an application. We evalu-
ated both DevOpSlang and the methodology based on an evolutionary emerging
application described in our motivating scenario. In terms of future work we
plan to implement a runner framework to process Devopsfiles based on De-
vOpSlang. We further plan to implement mechanisms to generate Devopsfile
skeletons based on existing descriptor files, evaluate Devopsfiles automati-
cally, and make suggestions how to improve a given Devopsfile. Moreover,
our goal is to provide alternative renderings of Devopsfiles based on XML
and YAML.

20 Ubuntu Juju: http://juju.ubuntu.com

http://juju.ubuntu.com

122 J. Wettinger, U. Breitenbücher, and F. Leymann

Acknowledgments. This work was partially funded by the BMWi project
CloudCycle (01MD11023).

References

1. Manifesto for Agile Software Development (2001), http://agilemanifesto.org
2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing.
Communications of the ACM 53(4), 50–58 (2010)

3. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the Cloud
through Enterprise Topology Graphs. In: Proceedings of 2012 IEEE International
Conference on Cloud Computing. IEEE Computer Society Conference Publishing
Services (2012)

4. Ecma International: The JSON Data Interchange Format (2013), http://json.org
5. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: A Deployment Management

System. SIGPLAN Not. 47(6), 263–274 (2012)
6. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation. Addison-Wesley Professional (2010)
7. Humble, J., Molesky, J.: Why Enterprises Must Adopt Devops to Enable Continu-

ous Delivery. Cutter IT Journal 24 (2011)
8. Internet Engineering Task Force: JSON Schema, http://json-schema.org
9. Loope, J.: Managing Infrastructure with Puppet. O’Reilly Media, Inc. (2011)

10. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute
of Standards and Technology (2011)

11. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly Media, Inc. (2013)
12. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)

Version 1.0, Committee Specification 01 (2013),
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

13. OMG: Unified Modeling Language (UML), Version 2.4.1 (2011)
14. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,

and what can be done about it? In: USENIX Symposium on Internet Technologies
and Systems, Seattle, WA, vol. 67 (2003)

15. Papazoglou, M., van den Heuvel, W.: Blueprinting the Cloud. IEEE Internet Com-
puting 15(6), 74–79 (2011)

16. Rosner, T.: Learning AWS OpsWorks. Packt Publishing Ltd. (2013)
17. Shamow, E.: Devops at Advance Internet: How We Got in the Door. IT Journal,

14 (2011)
18. Wettinger, J., Andrikopoulos, V., Strauch, S., Leymann, F.: Characterizing and

Evaluating Different Deployment Approaches for Cloud Applications. In: Proceed-
ings of the IEEE International Conference on Cloud Engineering (IEEE IC2E 2014),
Boston, Massachusetts, USA, March 10-14. IEEE Computer Society (2014)

19. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Zimmermann,
M.: Unified Invocation of Scripts and Services for Provisioning, Deployment, and
Management of Cloud Applications Based on TOSCA. In: Proceedings of the 4th
International Conference on Cloud Computing and Services Science. SciTePress
(2014)

20. Zamboni, D.: Learning CFEngine 3: Automated System Administration for Sites
of Any Size. O’Reilly Media, Inc. (2012)

http://agilemanifesto.org
http://json.org
http://json-schema.org
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

A Procurement Market to Allocate Cloud

Providers’ Residual Computing Capacity

Paolo Bonacquisto, Giuseppe Di Modica,
Giuseppe Petralia, and Orazio Tomarchio

Department of Electrical, Electronic and Computer Engineering,
University of Catania,

Catania, Italy
firstname.lastname@dieei.unict.it

Abstract. Commercial cloud providers are used to allocate computing
resources to requesting customers according to the well known direct-
sell, fixed-price mechanism. This mechanism is proved to be economically
inefficient, as it does not account for the market’s supply-demand rate.
Nevertheless, providers will unlikely abandon a pricing mechanism which
is very easy and cheap to implement in favour of alternative schemes.
On the other end, none of the commercial providers adopting the fixed-
price mechanism is able to allocate their overall computing capacity. Not
selling a single virtual machine within a predefined time slot means a
profit loss to the provider. Alternative mechanisms are therefore needed
to sell what we call the “residual” computing capacity, i.e., the capacity
which the provider is not able to allocate through direct-sell. We argue
that auction-based sells may meet this need. In this paper the design
of a procurement market for computing resources is proposed. Also, an
adaptive bidding strategy has been devised to help providers to maximize
the revenue in the context of procurement auctions. Simulations have
been run to test the responsiveness of the strategy to the provider’s
business objective.

1 Introduction

Cloud computing has emerged as a key technology for the realization of scalable
on-demand computing infrastructures, where resources are provided to remote
customers on the basis of Service Level Agreements (SLAs). Several features,
such as virtualization of hardware, scalability, elasticity enable Clouds to adapt
resource provisioning to the dynamic demands of Internet users. Resources are
thus provided to customers as other public utilities like water or electricity,
following a commodity market model [3].

In such a market commercial providers compete to offer their services, while
customers compete to acquire resources on the basis of their Quality of Ser-
vice (QoS) and pricing requirements [8]. Given the high dynamism of resources’
availability and workloads, meeting the QoS constraints and maintaining an ac-
ceptable level of system performance and utilization are some of the primary

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 123–137, 2014.
c© IFIP International Federation for Information Processing 2014

124 P. Bonacquisto et al.

problems to tackle. Effective resource allocation strategies must be devised that,
besides the technical features, also take into account the business features. We
claim that benefits for both the customers and the providers may be obtained
from adopting resource allocation strategies based on market principles.

One factor that strongly influences a market-based resource allocation scheme
is the pricing model. The pricing strategy mostly adopted by main commercial
IaaS providers to allocate virtual machines to requesting customers is known as
“On-Demand”. According to this strategy, customers are charged for the time
frame during which the resource is actually utilized1. Providers ask customers
to pay a fixed price for accessing computing capacity by the hour. Though the
“fixed-price” scheme is considered to be economically inefficient, it is easily appli-
cable to the cloud paradigm. There is apparently no evident reason for providers
to abandon the direct-sell, fixed-price scheme in favor of alternative schemes.
Especially for long-term requests, direct-sell is profitable to providers.

It is a matter of fact, however, that providers are not able to allocate their
full computing capacity. Taking a look at the one-hour time window, there is
a variable portion of computing resources (which we are going to name spare
resources) which remain unsold and therefore do not produce income. We ar-
gue that if direct-sell fails to allocate 100% of providers’ nominal computing
capacity, alternative (possibly supply-demand based) pricing schemes should be
adopted to allocate the spare capacity. Provided that costs for running the spare
machines are covered, providers may be willing to sell that capacity at lower
prices. So, on the one end providers may be interested in allocating the spare
capacity to short-term customers’ requests at a supply-demand regulated price
(for longer commitments the regular direct-sell is more convenient). On the other
end customers needing computing capacity for very short periods might want to
obtain it at (lower) market prices.

In this paper, we propose to employ a procurement auction mechanism to
allocate spare computing resources. We analyze the factors that mainly impact
the strategic choices of providers in the acquisition of the goods allocated through
auctions. The purpose of this work is to define a bidding strategy which guides
the providers in the choice of the right actions to take in the context of a pro-
curement process in order to maximize their business objective. In the addressed
market scenario, our attention is devoted to the optimization of the utilization
rate of providers’ data centers. The remainder of the paper is structured as fol-
lows. Section 2 proposes a review of the literature and discusses the rationale of
the work. Section 3 introduces the proposed idea and delves into technical de-
tails about the procurement auctions. Section 4 describes the proposed adaptive
strategy to be used by the provider when participating in procurement auctions.
In Section 5 simulation results are presented and discussed. Finally, the work is
concluded in Section 6.

1 http://aws.amazon.com/ec2/,
http://www.microsoft.com/windowsazure/ ,
http://www.rackspace.com/

http://aws.amazon.com/ec2/
http://www.microsoft.com/windowsazure/
http://www.rackspace.com/

A Procurement Market to Allocate Cloud Computing Capacity 125

2 Motivation and Literature Review

Many IT researchers are very much concerned with the application of auction
mechanisms to the problem of optimal allocation of computing resources [13,5].
For the majority of researchers, combinatorial auctions are the most appropriate
sale mechanism for allocating virtual machines in the cloud. In combinatorial
auctions the participants bid for bundles of items rather than individual items [6].
This mechanism seems to perfectly fit the Cloud context, as customers usually
need to acquire not just one resource but a bunch of resources. In [17] authors
address the scenario of multiple resource procurement in the realm of cloud
computing. In the observed context, they pre-process the user requests, analyze
the auction and declare a set of vendors bidding for the auction as winners
based on the Combinatorial Auction Branch on Bids (CABOB) model. In [14]
a combinatorial, double-auction, resource allocation model is instead proposed.
The efficiency of the proposed economic model is proved in the paper, but to our
advice that idea is not technically viable since a bundle allocated to a customer
is composed of computing resources offered by different providers, thus forcing
the customer to deploy their application on a geographically distributed cluster
of machines.

The auction mechanisms proposed so far in the literature put the provider in
a privileged position in the market: computing resources are seen as scarce and
precious goods, whose allocation is carried out through competitions run among
customers. We argue this viewpoint must be overturned. Spare resources are
resources which providers do not manage to allocate through direct-sell. From
the provider’s perspective they must be regarded as perishable goods that need
to be sold within a certain time frame otherwise they get wasted. Not selling
a virtual machine in a given time slot means a profit loss to the provider, who
is spending money anyway to keep the physical machines up and running. We
then look at the trade of computing resources from a new perspective, in which
providers, in the aim of maximizing their data center’s utilization, may be willing
to attract customers by lowering the offer price. On their turn, customers may
get what they need, at the time they need it, at a price which is lower than the
standard price at which they usually buy.

In the last few years, Amazon has been trying to allocate its spare resources
through the Spot Instance model2. This model enables the customer to bid for
what they call unused computing capacity. Though this model represents the
very first attempt to build up a virtual market of computing resources regulated
by market prices, it is still unclear and is not proved to be resistant to potential
malicious behaviors of customers (dishonest customers can abuse the system and
obtain short-term advantages by bidding large maximum price bid while being
charged only at the lower spot price [18]). Furthermore in [1] authors prove that
the Amazon’s Spot Price is not market driven, rather is typically generated as
a random value near to the hidden reserve price within a tight price interval.

2 https://aws.amazon.com/ec2/purchasing-options/spot-instances/

https://aws.amazon.com/ec2/purchasing-options/spot-instances/

126 P. Bonacquisto et al.

We advocate that the market model best fitting the just described perspective
is the one which provides for the sale of computing resources through procure-
ment auctions. Procurement auctions [10] (also called reverse auctions) reverse
the roles of sellers and buyers, in the sense that the bidders are those who have
interest in selling a good (the providers), and therefore the competition for ac-
quiring the right-to-sell the good is run among providers.

Smeltzer et al. [15] outlines potential advantages and drawbacks of adopting
reverse auctions for goods allocation. Further, they point out the appropriate
conditions which must apply for the reverse auction to be effective and con-
venient to both goods’ suppliers and buyers. The most important are a clear
specification of the commodity to be allocated and the fragmentation of the
market. As for the first point, in the cloud community there is a common un-
derstanding of computing capacity’s technical specification: information such as
core numbers, CPU speed, RAM size, etc. are the only data needed to clearly
and unequivocally state the product specification. With respect to the second
point, we are proposing an open market of computing capacity where customers
may look for spare resources to buy at lower prices, and that will naturally at-
tract many providers interested in allocating spare resources and increasing their
market share. Clear advantages for providers are that they may find customers
in one single big market with no extra effort and that the market gives them the
chance to maximize the occupancy rate of their data centers; on the other side,
customers do not have to search for providers’ offers and will get the requested
computing capacity at a lower, supply-demand regulated price.

3 The Procurement Process

In this section we discuss the design of an open market of computing capac-
ity to which any provider and any customer is admitted, and where computing
resources can be sold through auction-based allocation schemes. The perspec-
tive is that of procurement auctions, where an initial price is called out on a
good/service, and bidders iteratively have to call lower prices in order to gain
the right-to-serve. The market mechanism is the following. Customers communi-
cate their computing demand to the market. A broker will take care of demands.
For each specific demand, the broker (auctioneer) will run a public auction in
which any provider (bidder) can participate and compete for acquiring the right
to serve the demand. The winning provider (who offered the lowest price) will
eventually have to serve the customer’s demand. Being the auctions open to the
participation of multiple providers, the competition is granted. Providers will
have to fight to gain the right-to-serve the demand. For a given demand, the de-
termination of the final price is driven only by the evaluation that each provider
has on the demand to be served. Advantages for customers are clear: they will
get their demand served at the lowest price. Further, they will no longer have the
burden to search for providers, as providers gather autonomously in the market.

Focus in this paper is on two different types of procurement auctions. The
common part of the two auction mechanisms is the preparation phase: it provides

A Procurement Market to Allocate Cloud Computing Capacity 127

Customer

Broker Provider 1 Provider N...

-Estremità1*

-Estremità2*

1. Submit Request

2.N CFP (...)

2.1 CFP (capacityRequired, auctionStartTime, startingBid,...)

3. Register to Auction

4. Register to Auction

Provider 2

2.2 CFP (...)

Broadcast the CFP to Providers

...

Fig. 1. Auction process: distribution of the CFP

that upon the arrival of a demand, the broker issues a public “call for proposal”
(CFP) to invite providers. The CFP shall specify a minimum set of auction
parameters including the start-provision time, the stop-provision time, the initial
price (from which discount bids are expected), the bidding rules (who can bid
and when, restrictions on bids) and the clearing policy (when to “terminate”
the auction, who gets what, which price has to be paid). Figure 1 depicts the
involved actors and the messages exchanged to carry out the auction preparation
phase.

After collecting the willingness of providers to participate in the auction,
the preparation phase ends up and the competition starts according to what is
specified in the CFP. Basically, the broker will launch a number of competition
rounds which depends on the type of auction advertised in the CFP. When the
exit condition specified in the clearing policy holds true, the winner is appointed
and is communicated to all participants along with the final price. Figure 2
depicts the just described steps.

What makes one auction mechanism different from another is the information
specified in the bidding rules and the clearing policy respectively. For our pur-
pose, in this paper the following auction types will be addressed: English Reverse
(ER) and Second Price Sealed Bid (SPSB) [12]. The ER is a multi-round auc-
tion. The CFP specifies the initial price from which discounting bids (offers) are
expected. The participating bidders may post their offers. Discounting offers are
called out, so that every bidder is always aware of the reference price for which
further discounts are to be proposed. If no offer arrives within a time-frame
(publicly set in the CFP), the good will be assigned to the last best (i.e., the
lowest priced) offer. This type of auction allows bidders to gather information
of each other’s evaluation of the good. The SPSB is a single round auction. All
bidders have the chance to bid just once before the auction is cleared. When
bidders receive the CFP, they check the initial price and decide to either bid
or not to bid. After all participants have posted their bid, the broker clears the
auction and allocates the “demand” to the second best bidder. The peculiar-
ity of this auction is that bidders are not aware of each other’s offer (only the

128 P. Bonacquisto et al.

Broker Provider 1 Provider 2 Provider N

1 StartRound (currentWinner,roundBid)

2.1 CalculateBid

2.2 CalculateBid

2.N CalculateBidPostBid

ReturnBid

PostBid

3. [RoundTimeOut] SelectWinner

Loop until Max Nr Rounds reached or No Response

4. NotifyWinner (finalPrice)

5. CommunicateAuctionResult (Winner, finalPrice)

Fig. 2. Auction process: winner determination

winning bid will be broadcast at the end of the auction) and that the winner
will be acknowledged a price which is higher than their own bid, thus increasing
their overall utility.

As a basic market rule, a provider is admitted to participate in any CFP they
like, with the obligation that if they win the auction, they are committed to serve
the customer’s demand, otherwise they will incur a penalty. The commitment
rule mandates the provider to reserve resources for the CFPs they take part in.
Those resources will remain “locked” until the auction is cleared, i.e., the re-
sources may not be considered available to accommodate any new demand or to
participate in a new auction. In a few words, the participation of a provider to
an auction is subjected to the provider’s availability of the amount of resources
for which the auction has been called. If we consider that, on a statistical base, a
provider will unlikely win the 100% of the auctions they take part to, there will
always be an amount of resources which will remain not utilized because they are
locked (i.e., awaiting for the respective auction to be cleared). In some previous
works [7,2] we touched on the phenomenon of underutilization of data centers
in procurement-based markets. In this work we will address that problem and
propose to overcome it by applying the mechanism of resource overbooking
[16] to the cloud market. In particular, our objective is to investigate the impact
of such a mechanism on the utilization level of data centers. Section 5 provides
interesting feedbacks on that study. The overbooking lets providers compete for
more customers’ demands than they are able to eventually serve. Providers may
participate in a given auction even though, at the time of joining the auction,
they have no resource available to serve the demand which is object of that
auction. But, what happens if a provider is out of resources at the time they
are appointed the auction’s winner? If we want this mechanism to be fair and
transparent to customers, some market rules must be enforced that grant the

A Procurement Market to Allocate Cloud Computing Capacity 129

customer’s right to receive the service on the one hand, and penalize providers
that overuse the overbooking on the other one. One of the objectives of this work
is to define the “reassignment” policy, i.e., the actions to be taken to grant the
delivery of the service to the customer in the case that the provider(s) appointed
as winner(s) can not provide it. This policy must state a) who among the remain-
ing participants is assigned the right-to-serve, b) who is in charge of paying the
penalty and c) how much is due. In this respect some proposals can be found in
the literature. In [5] authors discuss some penalty functions which may be used
in what they call “computational economies”. Those functions may be classified
into constant and dynamic ones. The former provide for an application of a con-
stant penalty for those who win the auction but are not able to serve the demand
(defaulting providers), the latter apply different penalties according to the im-
pact of violation made by each party. We designed a reassignment scheme which
tries to re-assign the right-to-serve among those who participate in the auction
and applies dynamic penalties. The general rule is that if a winning provider is
defaulting, the right-to-serve is passed to the next best-offering provider. This
process may iterate until a provider is found which is able to serve the demand.
In the case that all participants are defaulting, the CFP is re-issued (every de-
faulting participant is given a constant penalty). The general penalty rule is that
every defaulting provider in the chain will have to pay a fee that is proportional
to the difference between the final price (that called by the provider who will
eventually serve the demand) and the price they had called out. The propor-
tionality is implemented through the concept of price “distance” from the final
price. Let xfinal be that price, and xwinner the price called out by the provider
who won the auction. Also, let xi be the price called by the generic provider
Pi in the chain of defaulting providers. Of course, xwinner <= xi < xfinal. We
define the price distance of a given price xi as di = xfinal−xi. According to this
definition, dwinner is the highest among price distances, and will represent the
overall penalty to be proportionally shared among defaulting providers. Also, let
us define the penalty coefficient as:

ci =
di
n∑

i=1

di

(1)

The reader may notice that the summation of coefficients is equal to 1. Finally,
the portion of penalty each defaulting provider will have to pay is calculated as:

pi = ci × dwinner (2)

In the end, the provider who will serve the demand is also awarded the amount
deriving from the overall penalty (dwinner), but the price for serving the de-
mand (which is due by the customer) will be that called by the bidder who was
appointed the auction’s winner (xwinner).

Let us make an explanatory example. Suppose provider P1 wins the auction
calling a price x1 = 2, but is defaulting. Then, the next best bidder P2 will be

130 P. Bonacquisto et al.

selected, who called out the price x2 = 5. Again, since P2 is not able to honor,
P3 who called price x3 = 7 is selected. The overall due penalty is dwinner =
xfinal − xwinner = 5, to be shared among defaulting providers P1 and P2 in the
following way:

p1 = c1 × dwinner =
d1

d1 + d2
× d1 = 3.125

p2 = c2 × dwinner =
d2

d1 + d2
× d1 = 1.875

while the final price to which the request will be served is x1 = 2. In conclu-
sion, the described mechanism penalizes more the bidders that behaved more
aggressively during the auction, preserves the customer by granting them the
auction’s official winning price and awards the bidder who eventually will serve
the customer’s demand.

4 An Adaptive Strategy for Cloud Providers

In this section we focus on the definition of an adaptive strategy that the provider
may use when participating to procurement auctions. By strategy we mean a
set of rules producing the decisions a provider must take to maximize its own
business objective. According to the literature, the behavior of an auction’s par-
ticipant is mainly driven by the information the participant has on the value of
the good being sold [10]. If we better analyze the context of cloud auctions, a
computing resource can be seen as a good whose actual value (price) is common
to all providers, but the estimate Epi of the i-th provider for a given good may
differ from the the estimate Epj of the j-th provider according to the diverse
needs each provider may have in pursuing their own business objective. The
objective of a strategy is to suggest the provider the price to call for the next
bid. In calling a price, a strategy may be more or less “aggressive”, i.e., may
propose higher or lower discounts. The strategy is adaptive, in the sense that
is able to adapt the aggressiveness according to a list of factors. Providers may
then tune their aggressiveness by adequately weighting factors according to their
own business needs. Recalling a formula presented in [11], the adaptive strategy
will suggest the next bid as:

bid =
n− 1

n− (1− α)
× lastWinningBid (3)

wheren is the number of bidders participating in the auction and lastWinningBid
is the price offered by the bid that won the last round. In case of single-round auc-
tions, lastWinningBid will be the auction’s starting price. The parameter α is
calculated as follows:

α = w1 × Pa

Pf
+ w2 × Tvm

Tmax
+ w3 × L

Lmax
+ w4 ×H(t) (4)

A Procurement Market to Allocate Cloud Computing Capacity 131

Each parameter is weighted by a factor (w1,w2,w3,w4), whose summation gives 1.
The formula in 4 was presented in our previous work [7]. Here we briefly recall the
meaning of the parameters. Pa

Pf
is the ratio between the resource’s starting price

in the auction and the corresponding price in the standard fixed-price market.
L

Lmax
represents the ratio between the time period for which the computing

resource is requested and the maximum time period for which a resource can
be requested. Tvm

Tmax
is the ratio between the computing power demanded by the

request and the computing power of the most powerful resource. Finally the
H(t) is the current utilization of the host on which the customer task to serve
will be scheduled. Different combinations of weights lead to different strategies.
When participating in an auction, providers will be guided by the strategy to:

– check the availability of resources required to serve the demand;

– check if the price called by the auctioneer is higher than than the lower
bound price 3;

– calculate the bid;

– send the bid to the auctioneer.

In the case of multi rounds auctions, this mechanism is iteratively repeated. If
no offer arrives within a round, the good will be assigned to the last round’s best
offer.

As stressed earlier in Section 3, this mechanism prevents the providers from
committing their overall capacity. To face this issue, providers may decide to
overbook resources, trying to acquire more requests than they are able to serve.
The strategy and the formula to evaluate the bids have been rearranged in order
to account for the overbooking. The formula for calculating the α parameters
becomes:

α = w1 × Pa

Pf
+ w2 × Tvm

Tmax
+ w3 × L

Lmax
+ w4 ×O(t) (5)

where O(t) is the ratio between the auctions lost by the provider while per-
forming the overbooking, and the total number of the auctions in which they
participated. According to this parameter, the provider is more aggressive when
the won auctions decrease, while they will be more conservative when the won
auctions increase. Further, to estimate the convenience of participating in an
auction, the provider performing the overbooking will not have to check if re-
sources are available, but will consider the amount of resources which remained
unused in the past, and accordingly compute the number of concurrent auctions
in which they may compete. As mentioned earlier, penalties must be carefully
monitored. A provider may decide to inhibit the overbooking mechanism when
the ratio between penalties and gains exceeds a customized threshold.

3 The lower bound price is specific to the provider. It indicates the minimum price at
which the provider is willing to sell the resource

132 P. Bonacquisto et al.

5 Implementation and Testing

To assess the viability of the proposed approach a simulator of the designed
market has been implemented. The objective was to define a tool capable of
simulating a) the procurement auction processes, b) the behavior of the partic-
ipating providers and c) the arrival of customers’ demands of VMs. Tests con-
ducted on simulator were aimed at monitoring the utilization level of providers’
datacenters and the responsiveness of the providers’ strategies to the declared
business objective.

Architectural details of the simulator. The Cloudsim tool [4] has been used to
implement the simulation environment where procurement auctions are run. In
addition to the existing Cloudsim components, a new component called Auc-
tioneer has been introduced. It cooperates with the Cloudsim Broker to man-
age auctions for cloud applications. The Cloudsim Datacenter component has
been extended to add functions for a)reserving the resources needed to serve
a request, b) estimating bids and b)implementing the overbooking mechanism.
Also, the AdaptiveStrategy class has been implemented which models the strat-
egy providers may adopt. Finally, the Cloudsim Cloudlet component, which rep-
resents the task submitted by a customer to Cloudsim, has been extended to
include features such as the duration of the requested service, the submission
time of the demand, the type of the requested VM, and all the necessary infor-
mation needed to analyze the data extracted from the simulator for statistical
purposes.

Characterization of the customers’ demand. To characterize the customers’ de-
mand for computing capacity, the same pattern of requests reported in Google’s
cluster data trace [9] has been reproduced. The trace file stores usage infor-
mation collected during a 29-day period in the month of May 2011 in one of
Googles production cluster cell composed of about 12K machines. In particular,
we have reproduced the same workload of Google’s trace (in terms of jobs and
tasks) and used it to simulate the customer’s demand in the procurement market.
The reason behind this choice is that the Google cluster’s workload is charac-
terized by machine requests which range from a few minutes to one-day usage.
We believe such workload characterization may be a good candidate to model
the customers’ demand for short-term VMs, which providers may be willing to
serve with their residual capacity (spare pool of VMs). Actually, the customers’
demand to submit to the procurement market was obtained by filtering out all
the Google workload’s micro requests falling behind the hour usage.

The types of requests appearing in the trace have been mapped onto their
equivalent Amazon’s virtual machine types. In the following list the characteris-
tics of those machines are reported along with the workload percentage of each
VM type with respect to the overall daily workload:

– General purpose
• m1.small - 32/64-bit architecture, 1 vCPU, 1 CU, 1.7GB RAM, 160GB
Storage, Low Bandwidth (workload % = 0.6)

A Procurement Market to Allocate Cloud Computing Capacity 133

• m1.medium - 32/64-bit architecture, 1 vCPU, 2 CU, 3.75GB RAM,
410GB Storage, Moderate Bandwidth (workload % = 0.3)

• m1.large - 64-bit architecture, 2 vCPU, 4 CU, 7.5GB RAM, 820GB Stor-
age, Moderate Bandwidth (workload % = 56)

• m1.xlarge - 64-bit architecture, 4 vCPU, 8 CU, 15GB RAM, 1.6TB Stor-
age, High Bandwidth (workload % = 7)

• m3.xlarge - 64-bit architecture, 4 vCPU, 13 CU, 15GB RAM, 0 Storage,
Moderate Bandwidth (workload % = 0.1)

– Compute optimized

• c1.medium - 32/64-bit architecture, 2 vCPU, 5 CU, 1.7GB RAM, 350GB
Storage, Moderate Bandwidth (workload % = 28.9)

– Memory optimized

• m2.xlarge - 64-bit architecture, 2 vCPU, 6.5 CU, 17.1GB RAM, 420GB
Storage, Moderate Bandwidth (workload % = 7.1)

Features of the datacenters. To test the adaptive strategy, we created a set of
24 Datacenters, of which 22 adopt the proposed adaptive strategy and 2 adopt
a Random strategy. The latters make bids like the formers, with the difference
that for them the α parameter is assigned random values in the [0,1] range (they
have no specific business objective to pursue). Each Datacenter is provided with
60 physical machines (hosts) equipped with 64 cores, 60 hosts equipped with 128
cores, 60 hosts equipped with 256 cores and 60 hosts equipped with 512 cores,
for an overall computing power of 56K cores. Features of Datacenters have been
chosen in such a way that all the Datacenters participating in the procurement
market will be to sustain the earlier discussed workload.

Table 1. Weight Setting for the Datacenters’ strategies

Provider ID Strategy w1 w2 w3 w4 Overbooking Provider ID Strategy w1 w2 w3 w4 Overbooking

PR1 Adaptive 0.7 0.1 0.1 0.1 No PR13 Adaptive 0.4 0.1 0.1 0.4 No
PR2 Adaptive 0.7 0.1 0.1 0.1 Yes PR14 Adaptive 0.4 0.1 0.1 0.4 Yes
PR3 Adaptive 0.1 0.7 0.1 0.1 No PR15 Adaptive 0.1 0.4 0.4 0.1 No
PR4 Adaptive 0.1 0.7 0.1 0.1 Yes PR16 Adaptive 0.1 0.4 0.4 0.1 Yes
PR5 Adaptive 0.1 0.1 0.7 0.1 No PR17 Adaptive 0.1 0.4 0.1 0.4 No
PR6 Adaptive 0.1 0.1 0.7 0.1 Yes PR18 Adaptive 0.1 0.4 0.1 0.4 Yes
PR7 Adaptive 0.1 0.1 0.1 0.7 No PR19 Adaptive 0.1 0.1 0.4 0.4 No
PR8 Adaptive 0.1 0.1 0.1 0.7 Yes PR20 Adaptive 0.1 0.1 0.4 0.4 Yes
PR9 Adaptive 0.4 0.4 0.1 0.1 No PR21 Adaptive 0.25 0.25 0.25 0.25 No
PR10 Adaptive 0.4 0.4 0.1 0.1 Yes PR22 Adaptive 0.25 0.25 0.25 0.25 Yes
PR11 Adaptive 0.4 0.1 0.4 0.1 No PR23 Random No
PR12 Adaptive 0.4 0.1 0.4 0.1 Yes PR24 Random Yes

The 22 Datacenters have been split into two sets, of which only one makes
use of overbooking. The weights characterizing the α parameter are shown in
Table 1. As the reader may notice, strategies were expressly split in unbalanced,
for which Datacenters point on just one or two factors, and balanced, for which
all the weights are assigned the same value. The objective of the simulation is

134 P. Bonacquisto et al.

to show that strategies actually guide Datacenters in the choice of the tasks to
compete for.

In the tests, the spare resources which providers use to compete in auctions are
20% of their overall resources; the remaining 80% is sold in the traditional fixed-
price market. In the context of the simulations we are going to interchangeably
use the terms Providers and Datacenters.

(a) ER auction

DC
7
 DC

9
 DC

23
 (5)

DC
5
 (42)

DC
11

 (10)

DC
15

 (8)

DC
19

 (18)

(b) SPSB auction

Fig. 3. Number of 23h-long VMs obtained by Datacenters

Experiments. We ran two different simulations where the workload defined above
is submitted to the procurement market. In the first simulation the broker de-
cided to use the ER mechanism to allocate the providers’ computing capacity,
while in the second the SPSB was used. In the following, results from the two
simulations are shown.

The simulations demonstrate that each provider, by properly sizing the weights
of their strategy, is able to achieve the chosen objective. In Figures 3(a) and 3(b)
we report the number of VM instances having a duration of 23 hours obtained
by each Datacenter, respectively in the simulation of the ER and SPSB auction.

Datacenters #5, #11, #15, #19 succeed in pursuing the objective of acquiring
a high number of VMs; the reader may notice in Table 1 that those Datacenters
have a strategy which points to win auctions where long-lasting VMs are sold.
In Figures 4(a) and 4(b) we report the number of VM instances of the VM type
m2.xlarge (which is the largest among VM types) obtained by Datacenters in
the two simulations. It may be noticed in Table 1 that Datacenters #3, #9, #15
and #17 adopt a strategy pointing on large-sized VM, and in fact won a large
number of m2.xlarge VMs.

One of the most interesting performance indexes is the host utilization. All
providers aim to achieve the maximum utilization of their data centers. Providers
will be willing to call lower bids in order to gain the right to sell the VMs needed
to increase the occupancy of their data centers, since the marginal gain from
these resources will be certainly high and so it is worth being more aggressive.

A Procurement Market to Allocate Cloud Computing Capacity 135

(a) ER auction (b) SPSB auction

Fig. 4. Number of m2.large VMs obtained by Datacenters

One may argue that a higher monetary gain may be obtained by selling a few
resources at a higher price than selling lots of resources at a very discounted
price. But again, the capability of maximizing the gain is out of the scope of this
work. Again, what we have proposed is a tool to define, customize and enforce
a strategy.

0 1 2 3 4 5 6 7 8 9 10
x 104

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Datacenters Utilization: English Auction

seconds

%
 U

til
iz

at
io

n

No Overbooking
Overbookig

(a) ER auction

0 1 2 3 4 5 6 7 8 9
x 104

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Datacenters Utilization: SPSB Auction

seconds

%
 U

til
iz

at
io

n

No Overbooking
Overbookig

(b) SPSB auction

Fig. 5. Datacenters utilization

As mentioned above, depending on the roughness of competition, the goal
of maximizing the data center’s occupancy is roughly pursuable for providers.
The overbooking strategy is then necessary to raise the utilization level. Figures
5(a) and 5(b) show the utilization of Datacenters in the ER and the SPSB
simulations. The figure depicts the result of a simulation where only the first

136 P. Bonacquisto et al.

six hours of workload were simulated, while the utilization is observed for the
24 hours. Those who used overbooking have been depicted in green, while those
who did not perform overbooking have been depicted in red. It may be noticed
that in the ER simulation the performance of those who used overbooking is
much better. This is due by the fact that in multi-round auctions (like the ERs)
Datacenters are engaged in long lasting auctions; as a consequence resources are
reserved for longer periods, so the overbooking if of much help. In a single-round
auction like the SPSB the overbooking mechanism does not bring any evident
benefit on the utilization.

Fig. 6. Gains and penalties of Datacenters in ER auction

Datacenters calling on overbooking must also consider the exposition to penal-
ties in the case they are out of resources when the auction is cleared. With respect
to the ER case, the simulations showed that, on average, datacenters making use
of overbooking have an advantage also in terms of gains, despite the payment of
the penalty, as depicted in Figure 6. In the graph, the red piece of the bar is the
amount of incurred penalties, while the blue is the net gain. If we make a two-
by-two comparison of Datacenters adopting the same strategy (#1 vs #2, #3
vs #4, and so on) the overbookers on average outperform the non-overbookers.

6 Conclusion

Commercial cloud providers are making huge profits from leasing their com-
puting capacity to requesting customers. Cloud resources are mainly allocated
through the direct-sell pricing model which has been proved to be economically
inefficient. Further, this pricing strategy prevents providers from allocating their
full computing capacity, thus causing a residual capacity to remain unsold. Al-
ternative pricing schemes should then be sought that might help Cloud providers
to increment their profit. In this paper, we proposed the design of an open mar-
ket of cloud resources, where the residual computing capacity of providers is
allocated through procurement auctions. An adaptive strategy was also devised
that, suitably tailored to the provider’s business objective, helps them to maxi-
mize the revenue in the context of procurement auctions. Tests conducted on a
simulator showed the viability of the proposal.

A Procurement Market to Allocate Cloud Computing Capacity 137

References

1. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing
amazon ec2 spot instance pricing. In: 2011 IEEE Third International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 304–311 (2011)

2. Bonacquisto, P., Di Modica, G., Petralia, G., Tomarchio, O.: Procurement auc-
tions to maximize players’ utility in cloud markets. In: Proceedings of the 4th In-
ternational Conference on Cloud Computing and Services Science, CLOSER 2014,
Barcelona, Spain (April 2014)

3. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities. In: 10th IEEE
International Conference on High Performance Computing and Communications
(HPCC 2008), pp. 5–13 (September 2008)

4. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. In: Software: Practice and Experience
(2011)

5. Chard, K., Bubendorfer, K.: High Performance Resource Allocation Strategies for
Computational Economies. IEEE Trans. Parallel Distrib. Syst. 24(1), 72–84 (2013)

6. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial auctions. The MIT Press
(2005)

7. Di Modica, G., Petralia, G., Tomarchio, O.: Procurement auctions to trade com-
puting capacity in the Cloud. In: 8th Int. Conf. on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC 2013), Compiegne, France (October 2013)

8. Di Modica, G., Tomarchio, O.: Matching the business perspectives of providers and
customers in future cloud markets. Cluster Computing, 1–19 (2014)

9. Google: Traces of google workloads (2011),
http://code.google.com/p/googleclusterdata/

10. Klemperer, P.: Auction Theory: A Guide to the Literature. Journal of Economic
Surveys 13(3) (1999)

11. McAfee, R.P., McMillan, J.: Auctions and bidding. Journal of Economic Litera-
ture 15, 699–738 (1987)

12. Parsons, S., Rodriguez-Aguilar, J.A., Klein, M.: Auctions and bidding: A guide for
computer scientists. ACM Computing Surveys 43(2) (February 2011)

13. Risch, M., Altmann, J., Guo, L., Fleming, A., Courcoubetis, C.: The GridEcon
Platform: A Business Scenario Testbed for Commercial Cloud Services. In: Alt-
mann, J., Buyya, R., Rana, O.F. (eds.) GECON 2009. LNCS, vol. 5745, pp. 46–59.
Springer, Heidelberg (2009)

14. Samimi, P., Teimouri, Y., Mukhtar, M.: A combinatorial double auction resource
allocation model in cloud computing. Information Sciences (in press, 2014)

15. Smeltzer, L.R., Carr, A.: Reverse auctions in industrial marketing and buying.
Business Horizons 45(2), 47–52 (2002)

16. Sulistio, A., Kim, K.H., Buyya, R.: Managing Cancellations and No-Shows of
Reservations with Overbooking to Increase Resource Revenue. In: 8th IEEE In-
ternational Symposium on Cluster Computing and the Grid (CCGRID 2008),
pp. 267–276 (May 2008)

17. Vinu Prasad, G., Rao, S., Prasad, A.: A Combinatorial Auction mechanism for
multiple resource procurement in cloud computing. In: 2012 12th International
Conference on Intelligent Systems Design and Applications, ISDA (2012)

18. Wang, Q., Ren, K., Meng, X.: When cloud meets ebay: Towards effective pricing
for cloud computing. In: 2012 Proceedings IEEE INFOCOM, pp. 936–944 (2012)

http://code.google.com/p/googleclusterdata/

Event Pattern Discovery for Cross-Layer

Adaptation of Multi-cloud Applications

Chrysostomos Zeginis, Kyriakos Kritikos, and Dimitris Plexousakis

ICS-FORTH
Heraklion GR-70013, Greece

{zegchris,kritikos,dp}@ics.forth.gr

Abstract. As Cloud computing becomes a widely accepted service de-
livery platform, developers usually resort in multi-cloud setups to opti-
mize their application deployment. In such heterogeneous environments,
during application execution, various events are produced by several lay-
ers (Cloud and SOA specific), leading to or indicating Service Level Ob-
jective (SLO) violations. To this end, this paper proposes a meta-model
to describe the components of multi-cloud Service-based Applications
(SBAs) and an event pattern discovery algorithm to discover valid event
patterns causing specific SLO violations. The proposed approach is em-
pirically evaluated based on a real-world application.

Keywords: Cloud computing, SOA, adaptation, modeling, pattern
discovery.

1 Introduction

Cloud computing is a rapidly emerging paradigm offering virtualized resources
for developing applications. Its adoption in the Service Oriented Architecture
(SOA) world is increasing; enterprises acknowledge its flexibility and elasticity
by choosing among various offerings at all Cloud layers (IaaS, PaaS and SaaS).
In addition, as developers try to optimize their application deployment cost and
performance, they may also deploy application parts on multiple VMs [1].

In this paper we focus on SBAs deployed on Clouds, which feature three main
functional layers: the Business Process Management (BPM) layer, the Service
Composition and Coordination (SCC) layer and the Service Infrastructure (SI)
layer. In a Cloud environment, the SI layer maps to the PaaS and IaaS lay-
ers, while the SaaS layer includes the BPM and SCC layers. It is imperative
that such distributed hosting environments, exhibit efficient cross-layer moni-
toring and adaptation mechanisms combining multi-layer monitored events and
mapping them to suitable adaptation strategies. In [2] we have investigated the
need for cross-layer adaptation, as current techniques are mainly fragmented
by considering a single SBA layer, while the few cross-layer ones [3, 4] do not
consider multi-cloud aspects. Concerning monitoring, in [5] we have presented a
multi-cloud SBA framework. This paper goes a step further supporting multi-
cloud SBA adaptation by focusing on an efficient method for processing the

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 138–147, 2014.
c© IFIP International Federation for Information Processing 2014

Pattern Discovery for Cross-Layer Adaptation 139

huge amount of monitored events and discovering frequent patterns leading to
SLO violations. As such, a pattern discovery algorithm is introduced, exploiting
a component meta-model whose instances describe SBA component dependen-
cies. The discovered event patterns interrelate events leading to SLO violations
and can be further exploited to enrich the scalability rules defined by experts.

The rest of the paper is structured as follows. Section 2 provides a motivating
example, while Section 3 analyzes the multi-cloud monitoring and adaptation
framework. In Section 4 we describe the component meta-model, exploited by
the proposed pattern discovery algorithm (Section 5). Section 6 evaluates the
algorithm’s accuracy and performance. Finally, Section 7 reviews the related
work, before Section 8 concludes and provides future work directions.

2 Motivating Example

A traffic management SBA deployed in a multi-cloud setup motivates our ap-
proach. In a normal traffic scanario, four tasks occur: environmental variable
monitoring (TM), public event and high traffic hours checking (TC), current
condition assessment (TA) and device configuration (TD). Task TA requires high
computation and storage capabilities, while the other three tasks require mod-
erate storage capacity and low computational power and must be deployed geo-
graphically close to the municipal infrastructure. Thus, these tasks can operate
on a private/municipal Cloud with their data periodically sent for processing to
a central Cloud, hosting TA. As illustrated in Fig. 1, various events are detected
by the monitoring mechanisms in this multi-cloud setting, from lower level in-
frastructure events (e.g. low memory ((w)e1), high CPU load ((c)e2), network
uptime ((c)e4), to higher level events (e.g. service execution time ((w)e3, (w)e6
or throughput ((w)e5) violations. The main non-functional application goal is
to capture warning (identified by we) or critical events (identified by ce) and
interrelate them to discover event patterns leading to SLO violations.

Task TM

Task TC

Task TA Task TD

Municipal Cloud Central Cloud

TM Service

TC Service

TA Service TD Service

Service orchestration

SaaS
layer

PaaS
layer

IaaS
layer

BPM
layer

SCC
layer

VM

Application Server
Special software

VM

Monitoring sensors
Compute
Storage
Network

Monitoring sensors
Compute
Storage
Network

Application Server
Database
Special software

we1
ce2 ce4

we5
we3

we6

Fig. 1. Traffic management example

140 C. Zeginis, K. Kritikos, and D. Plexousakis

Monitoring tools
(Astro, Cloudwatch, Cloudify, ...)

TSDB
KairosDB

Metric Aggregator
Esper

queries

roll-ups
assessed raw events

Pattern Discoverer
Esper, Drools

assessed raw events
aggregated metrics classification
detected patterns

e

discovered
patterns

assessed raw eve
aggregated metr
detected pattern

Monitor Manager

Adaptation Engine
Rule Engine

Drools
Adaptation
Enactment

adaptation
actions

synchronized
raw events

Assessed raw events

ries

Esper client

Monitoring tools
(Astro, Cloudwatch, Cloudify, ...)

Esper client

Cloud 1

Monitoring tools
(Astro, Cloudwatch, Cloudify, ...)

Esper client

Monitoring tools
(Astro, Cloudwatch, Cloudify, ...)

Esper client

Cloud 2

Model Repository
Event model

Component model
Adaptation model

SLA model

1

NTP server

Monitoring Engine

SBA provider

ynchronizedsy
raw events

d

Multi-Cloud
deployment

sification

Model
Even

Compo
Adapta

SLA

simple
adaptation/scalability
rulesents

vered
terns detected

patterns

Fig. 2. Framework’s architecture

3 Framework’s Architecture

The architecture presented in our previous work [5] for cross-layer multi-cloud
SBA monitoring is realized and enhanced with specific techniques and algorithms
to support proactive adaptation. In this multi-cloud framework (Fig. 2 – the
shadowed components indicate where this paper focuses), each of these Clouds
exhibits monitoring components, which directly interact with the Monitor Man-
ager, through a complex event processing (CEP) server-client mechanism. The
Metric Aggregator component assesses and stores the monitored events to the
time-series database (TSDB). The Pattern Discoverer component periodically
queries the TSDB to get the assessed raw events for a specific time interval and
identifies raw event patterns leading to SLO violations (mapping to specific ag-
gregate metrics). The TSDB provides the aggregated metric values, necessary for
pattern discovery. The discovered patterns are sent directly to the Metric Aggre-
gator to detect them at runtime. Upon pattern detection, the Metric Aggregator
urges the Rule Engine of the Adaptation Engine to fire the respective scalability
rule (i.e. proactive adaptation) dictating the application of an adaptation strat-
egy, realized by the Adaptation Enactment component (some adaptation actions
are already realized, especially those mapping to scaling mechanisms provided by
Cloud providers). Critical events are also passed to the Rule Engine to perform
reactive adaptation.

4 Component Meta-model

A particular component meta-model (Fig. 3) was developed via UML to describe
the source components for each event type which constitute the SBA system, as
well as their dependencies. Its main benefits are that it is extensive to capture

Pattern Discovery for Cross-Layer Adaptation 141

the most common multi-cloud SBA components, related to functional and non-
functional violations, and extensible to meet any SBA provider’s needs, which
may incorporate other layer-specific components utilized by its applications. Any
adaptation manager can also exploit it to carefully design scalability rules based
on the components’ properties to stimulate the mapping from events to spe-
cific adaptation actions. Through capturing the component dependencies in a
multi-cloud system, a root cause analysis for system faults can be performed.
The Pattern Discovery Algorithm also exploits such dependencies to detect valid
event patterns leading to critical events, where validity lies on causality by select-
ing events in the stream that drive the occurrence of other events in the pattern.
Model-driven technologies of the Eclipse Modeling Framework (EMF) are ex-
ploited to create models complying to this meta-model. The core meta-model is
graphically produced in ecore and then used to generate the base domain code.
Next, the Connected Data Objects (CDO) technology is used, offering a model
repository and a run-time persistence framework, accessible via querying mech-
anisms (SQL, HQL). For instance, the following SQL query returns the total
number of active components included in the VM hosting the Monitor and De-
viceConfig services (componentID=7001) and having ID 7026 or 7027 (i.e., the
components producing e1 and e2 events), in order to identify if both components
reside in the same VM and thus affect each other when a violation occurs.

SELECT COUNT(*)

FROM (SELECT VM_COMPUTE_LIST

FROM VM WHERE ComponentID=7001) as computeList

WHERE componentID IN (7026,7027) AND (state = active);

5 Pattern Discovery

This section presents an offline algorithm for discovering event patterns lead-
ing to specific SLO violations, based on propositional logic [6]. The algorithm
exploits component dependencies and contingency tables (Fig. 4) to identify as-
sociation rules between events. These tables display frequency distributions of
candidate patterns and their negations as antecedents and the specified metric
event, as well as its negation as consequences. It mainly focuses on discovering
patterns by considering SOA and Cloud layers, but it can also be applied on a
single layer, discovering layer-specific patterns.

The algorithm starts by filtering the event stream (line 3) from events com-
ing from different Cloud providers than those used by the SBA. Then, the event
stream is split based on the aggregate metric’s time interval (line 4). Intervals
are characterized as critical, if there is an aggregate metric violation, or non-
critical, otherwise (line 5). For critical intervals, the temporal ordered sets of
the raw events subset’s powerset are calculated, from the first interval event to
that before the last critical raw measurement. All the sets of the interval pow-
ersets are filtered to discard the ones not interrelated with each other, based
on the component model (lines 6–11), but the single events that might map to

142 C. Zeginis, K. Kritikos, and D. Plexousakis

F
ig
.
3
.
T
h
e
C
lo
u
d
co
m
p
o
n
en

t
m
et
a
-m

o
d
el

Pattern Discovery for Cross-Layer Adaptation 143

Algorithm 1. Event pattern discovery algorithm

1: Input: event stream, application, metric, interval size, component model
2: Output: discovered patterns, patterns ranking, association rules, ambiguous rules
3: filter raw events (ignore success /other applications’/other Cloud provider events)
4: divide event stream in event time intervals
5: define critical and non-critical intervals
6: while not end of event stream do
7: A = events before the last critical raw event in this interval
8: P(A) → powerset of set A
9: filter sets of P(A) according to the component model
10: update the powerset tree
11: end while
12: for i ← 1, treelevels do
13: for j ← 1, treebranches do
14: Bi,j = current branch
15: while not end of event stream do
16: A = events before the last critical raw event in this interval
17: C = critical aggregate event for the specified metric
18: compute S(Bi,j , C), S(Bi,j , ¬C), S(¬Bi,j , C), S(¬Bi,j , ¬C) in A
19: update contingency table
20: end while
21: if (S(Bi,j , C) + S(¬Bi,j ,¬C)) > (S(¬Bi,j , C) + S(Bi,j ,¬C)) then
22: create association rule (Bi,j → C)
23: store Bi,j in pattern repository
24: else
25: discard Bi,j

26: end if
27: end for
28: end for

the critical violation are considered. Then, a level- and a branch-based traver-
sal of the tree-based structure storing the candidate patterns are performed
to calculate and store (lines 15–20) the frequencies for each considered set’s
contingency table. The powerset tree (Fig. 4) stores only unique sets and each
node maps to a candidate pattern comprising all the events from the root to
the current node. Bi,j is the concerned sub-branch (i indicates the tree level
and j the branch counter), C represents the aggregate metric violation, while
the pair S(Bi,j , C) is the frequency of Bi,j set in critical intervals. A candi-
date set’s negation means that either of the included events does not appear.
For instance, for the pattern {e1, e2, e4}, the following negation definition ex-
ists: ¬{e1, e2, e4} ≡ ¬e1 ∨ ¬e2 ∨ ¬e4. A negated event means that another or
no event appears in the specific pattern’s position. Frequencies S(Bi,j , C) and
S(¬Bi,j ,¬C) are used to determine an association rule. The latter invigorates
the association rule under consideration, as the concurrent absence of a pattern
and the considered violation event also interrelates the root and cause of the
association rule. Consequently, to determine such a rule, the sum of frequencies

144 C. Zeginis, K. Kritikos, and D. Plexousakis

E3

e1

e2

e4 e6

e6 e5

e4

Level 1

Level 2

Level 3

Branch 1

Frequencies E3 ¬E3

B(3,1)={e1,e2,e4} 2 1

¬B(3,1)=¬{e1,e2,e4} 1 1

Branch 2 Branch 3

Association rule
{e1, e2 , e4} → E3

…

…

…

… … … …

Level g

Branch b

ex ey ez

ex

ey

ez

Contingency table

…

… ex

1

1

2

1

Fig. 4. Powerset tree

e1 e4 e6 e3 e2 e4 e3 e2 e3 e1 e2 e4 e3 e1 e6 e2 e3 e1 e6 e4 e3 e2 e4 e6 e1 e3 e4 e3 e6 e4 e1 e6 e3 e6 e5e1 e4 e6 e3 e2 e4 e3 e1 e6 e5e2 e3 e1 e2 e4 e3 e6 e2 e3 e1 e6 e4 e3 e2 e4 e6 e1 e3 e4 e3 e6 e4 e1 e6 e3

Last critical
event

Last critical
event

Last critical
event

7-size interval

c c cncnc
E3 (critical) E3 (critical) E3 (critical)E3 (non-critical) E3 (non-critical)

Fig. 5. Event stream split for pattern discovery algorithm

invigorating the association rule should be greater than the sum of frequencies
weakening it (lines 21–23). The algorithm’s time complexity depends on the
event stream size n, the average tree level size g and the tree branches b. Thus,
as the algorithm requires g*b (i.e., approximately the cardinality of the power-
sets) iterations on the event stream, its complexity is O(n ∗ b ∗ g). This means
that the powerset tree is extensively traversed to discover the association rules.

Fig. 5 clarifies the way intervals are processed to identify patterns for the
average DeviceConfig average execution time violations (i.e., violation of E3

event). The event stream comprises 35 events (after event filtering) of Section 2’s
6 metrics. Each interval’s powerset sets (figure’s connected events) are processed
to determine association rules. Thus, the event stream is split into 5 intervals:
3 critical (c mark on interval’s upper right corner) and 2 non-critical (nc mark
on interval’s upper right corner). For critical intervals, the subset before the
last raw critical DeviceConfig SaaS execution time event is considered, while for
non-critical ones the whole interval. The algorithm discovers two patterns and
extracts the association rules: (i) {e1, e2, e4 → E3} and (ii) {e4, e6 → E3}.

6 Evaluation

This section experimentally evaluates the algorithm’s performance and accuracy,
in order to optimize the definition of the aggregate metric (i.e., its optimal

Pattern Discovery for Cross-Layer Adaptation 145

(a) Precision (b) Recall

Fig. 6. Algorithm’s accuracy

(a) Execution time / dataset size (b) Execution time / interval size

Fig. 7. Algorithm’s performance

interval). An event dataset comprising 100k events from the traffic management
app is used. During a pre-processing of the event stream, five periodic patterns
are identified (two 2-size patterns, one 3-size pattern and two 4-size patterns).
The main task is to discover patterns causing DeviceConfig SaaS execution time
violations (i.e., violations of E3). The experiments were performed on a machine
with quad-core CPU 2.6GhZ, 8GB RAM and Mac OS X operating system.

The first experiment evaluates the algorithm’s raw relevant and absolute ac-
curacy. The former considers only the five known patterns, while the latter addi-
tionally considers their sub-patterns, as they can also drive proactive adaptation.
The algorithm’s precision and recall is measured while fluctuating the interval
size from 4 to 20 events. Fig. 6a shows that relevant precision is 1 for small
intervals and falls while increasing the interval size, while absolute precision
fluctuates similarly at lower levels (as more irrelevant sub-patterns are discov-
ered). The precision starts to fall over 8-size intervals, i.e., above the double of
the maximum pattern (4 events). Fig. 6b shows that the algorithm’s absolute
recall is 1 for all considered interval sizes, except for 4-size and 6-size intervals,
where it fails to discover two and one 4-size patterns respectively, due to interval

146 C. Zeginis, K. Kritikos, and D. Plexousakis

overlapping. Moreover, relevant recall is always 1, as the discovered sub-patterns
compensate the “lost” relevant patterns (for 4- and 6-size intervals), as they also
map to adaptation strategies addressing the whole pattern. Considering these
accuracy results, the optimal definition of metric E3 is to measure it in intervals
containing in average 8 events. Thus, every aggregate metric’s definition can be
adjusted, enhancing the proactive adaptation of any SBA.

The second experiment evaluates the algorithm’s execution time, based on
the dataset and interval size. The results in Fig. 7 show that the algorithm’s
execution time linearly increases with an increasing dataset size, as expected.
Larger intervals seem to hurt more the algorithm’s performance, due to higher
b*g products. However, such execution time is acceptable, as this is an offline
algorithm not affecting the overall framework’s performance. Furthermore, the
results in Fig. 7b reveal a changing relation between execution time and interval
size; for larger intervals, it increases with a burst over 20-size intervals, due to
rapid increase of b*g (740 (b=148, g=5) for 30-size interval compared to 92
(b=23, g=4) for the 25-size and 48 (b=12, g=4) for the 20-size intervals), posed
by the high increase of the considered unique sets.

7 Related Work

The mining of significant patterns within event stream areas have recently at-
tracted many researchers. Most of these approaches are predominantly based
on the apriori algorithm [7], producing an association rules set between items
of large databases, based on a minimum support (minsup). Other approaches
propose variations of these algorithms, focusing on performance [8] and accu-
racy [9] optimization. All such approaches suffer from many issues stemming
from the difficulty in determining the optimal minsup. Contrarily, logic-based
approaches exploit inferencing to discover patterns defining respective associ-
ation rules. In [6] a pattern discovery approach is proposed mapping logical
equivalences based on propositional logic. In particular, a rule mining frame-
work is introduced, generating coherent rules for a given dataset that do not
require setting an arbitrary minsup. [10] proposes an event calculus (EC) dialect
for efficient run-time recognition that is scalable to large data streams.

Concerning IaaS modeling, some well-established approaches, such as the
OASIS Cloud Application Management for Platforms (CAMP) specification
(www.oasis-open.org), focus on modeling the most generic infrastructure com-
ponents. At the PaaS layer, the mOSAIC EU Project’s (www.mosaic-cloud.eu)
entity ontology stands out as a solution for improving interoperability among ex-
isting Cloud solutions, platforms and services. Finally, SaaS layer modeling has
been widely influenced by the service computing, such as the models introduced
within the S-Cube EU project (www.s-cube-network.eu).

Compared to the related work, the main benefits of our approach are the fol-
lowing. First, we propose a component meta-model able to describe the
components of multi-cloud SBA along with their interrelationships. The mod-
els complying to this meta-model assist in identifying correct event patterns by
considering only events originating from interrelated components. Second, we

www.oasis-open.org
www.mosaic-cloud.eu
www.s-cube-network.eu

Pattern Discovery for Cross-Layer Adaptation 147

propose a logic-based algorithm for discovering event patterns leading to critical
events within a monitoring event stream, enabling injecting proactiveness in an
SBA system via mapping event patterns to respective adaptation strategies.

8 Conclusions and Future Work

This paper has presented an approach towards efficiently discovering detrimen-
tal event patterns causing critical violations during multi-cloud SBA execution.
In particular, a component model is presented, describing SBA components and
their interrelationships, that is exploited by a logic-based algorithm discovering
event patterns leading to specific metric violations and can be further exploited
by any adaptation engine to trigger suitable proactive adaptation actions when
detected. For future work, we plan to optimize the pattern discovery algorithm’s
accuracy and performance and develop a scalability rule mechanism that could
semi-automatically map discovered event patterns to suitable adaptation strate-
gies. Finally, we are going to employ new techniques to infer new component
dependencies from the current irrelevant discovered patterns.

Acknowledgements. We thankfully acknowledge the support of the PaaSage
(FP7-317715) EU project.

References

1. Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D., Zeginis, C.: Lifecycle Management of Service-based Applications on
Multi-Clouds: A Research Roadmap. In: MultiCloud (2013)

2. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: Towards proactive cross-
layer service adaptation. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 704–711. Springer, Heidelberg (2012)

3. Zengin, A., Marconi, A., Pistore, M.: CLAM: Cross-layer Adaptation Manager for
Service-Based Applications. In: QASBA 2011, pp. 21–27. ACM (2011)

4. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven
Adaptation of Multi-Layer Applications using Templates. In: SASO (2010)

5. Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K., Plexousakis,
D.: Towards cross-layer monitoring of multi-cloud service-based applications. In:
Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 188–195. Springer, Heidelberg (2013)

6. Sim, A.T.H., Indrawan, M., Zutshi, S., Srinivasan, B.: Logic-based pattern discov-
ery. IEEE Trans. Knowl. Data Eng. 22(6), 798–811 (2010)

7. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

8. Bettini, C., Wang, X.S., Jajodia, S., Lin, J.L.: Discovering frequent event patterns
with multiple granularities in time sequences. IEEE Trans. Knowl. Data Eng. 10(2),
222–237 (1998)

9. Hellerstein, J.L., Ma, S., Perng, C.S.: Discovering actionable patterns in event data.
IBM Systems Journal 41(3), 475–493 (2002)

10. Artikis, A., Sergot, M.J., Paliouras, G.: Run-time composite event recognition. In:
DEBS, pp. 69–80. ACM (2012)

A GENTL Approach for Cloud Application

Topologies

Vasilios Andrikopoulos, Anja Reuter,
Santiago Gómez Sáez, and Frank Leymann

IAAS, University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany

{andrikopoulos,gomez-saez,leymann}@iaas.uni-stuttgart.de,
anja@reutertv.de

Abstract. The availability of an increasing number of cloud offerings
allows for innovative solutions in designing applications for the cloud and
in adapting existing ones for this environment. An important ingredient
in identifying the optimal distribution of an application in the cloud,
potentially across offerings and providers, is a robust topology model
that can be used for the automated deployment and management of the
application. In order to support this process, in this work we present
an application topology language aimed for cloud applications that is
generic enough to allow the mapping from other existing languages and
comes with a powerful annotation mechanism already built-in. We dis-
cuss its supporting environment that we developed and show how it can
be used in practice to assist application designers.

Keywords: application topology language, annotation schemes, appli-
cation distribution, cloud migration.

1 Introduction

Cloud computing offers a platform for innovative systems that are partially
or fully implemented and/or hosted using cloud offerings. Novel services like
Database as a Service (DBaaS) offerings, for example, can be used for designing
a new generation of applications, or for adapting existing ones in order to reap
the well documented benefits of virtually infinite cloud capacity [5] — of course
at a cost. Being able to distribute the application components across cloud offer-
ings, potentially across cloud providers too, opens up the design space for cloud
applications significantly [1]. However, the plethora of existing offerings, and the
multitude of performance characteristics and pricing models attached to them
creates a multi-dimensional problem in identifying the optimal distribution of
an application in the cloud.

Toward this goal, in previous work [2], we introduced a design support process
and reference architecture that builds on two systems: a knowledge base which
aggregates information from cloud providers and allows for the identification of
appropriate cloud offerings, as well as cost calculation for a given usage profile,

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 148–159, 2014.
c© IFIP International Federation for Information Processing 2014

A GENTL Approach for Cloud Application Topologies 149

and an application topology language and its supporting environment which is
used for identifying the optimal distribution of the application components across
cloud offerings. In [2] we provide a brief introduction to both systems; in this
work we focus on the latter, i.e. the topology language and its environment. More
specifically, in the following we present the main concepts of the Generalized
Topology Language (GENTL), its relationship to existing topology modeling
languages, and the implementation of a supporting environment for the language.
While the language can be used for different purposes, its main focus for this
work is on providing design support capabilities, following the discussion in [2].

The contributions of this work can therefore be summarized by the following:

1. An investigation into existing application topology modeling languages and
an identification of their common concepts.

2. The presentation of a generic topology language that allows for the mapping
from these languages into a common model, and which supports different
types of annotations for additional information to the topology model.

3. An in-depth discussion on the supporting environment for the proposed lan-
guage.

The rest of this paper is structured as follows: Section 2 discusses some ap-
plication topology language approaches for background purposes. Based on the
identified commonalities between them, Section 3 introduces our proposal for
a generalized application topology language. Section 4 enhances the language
with a mechanism for annotations that are used for providing additional infor-
mation to application designers. Section 5 discusses the tooling support for the
language. Finally, Section 6 discusses related work, and Section 7 concludes with
some future work.

2 Background

Cloud management tools like AWS CloudFormation1, OpenStack2, OpenNeb-
ula3, and the Flexiant Cloud Orchestrator (FCO)4 use representations of appli-
cation topologies aiming at easy deployment and management of cloud resources.
The application topology models used are expressed using various means like
domain-specific languages (DSLs), visual templates, or graphical models. These
models however are specific for each tool and are not portable across providers.

Addressing this deficiency, the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [6] is an OASIS standardized language for the
portable description of service components, their relationships and management
processes. TOSCA documents, or more precisely, Service Templates, contain
node types defining the properties and interfaces of components, node templates

1 AWS CloudFormation: https://aws.amazon.com/cloudformation/
2 OpenStack: https://www.openstack.org/
3 OpenNebula: http://opennebula.org/
4 FCO: http://www.flexiant.com/flexiant-cloud-orchestrator/

https://aws.amazon.com/cloudformation/
https://www.openstack.org/
http://opennebula.org/
http://www.flexiant.com/flexiant-cloud-orchestrator/

150 V. Andrikopoulos et al.

representing specific components as a reference to a defined node type, rela-
tionship types between node types and relationship templates instantiating the
relationship types, topology templates that bring together node and relationship
templates, and management plans that define how to manage (deploy, provision,
update etc.) the application. Policies can be attached to node or relationship
templates by means of an external language like WS-Policy5. TOSCA also al-
lows for the annotation of node types with requirement and capability definitions,
as well as the composition of different service templates by e.g. substituting a
node template with a service template having the same properties, management
interfaces, requirements and capabilities.

A similar approach is Cloud Blueprinting [15] which defines the concepts of
blueprints as abstract descriptions of cloud service offerings. Blueprints are meant
to facilitate cloud service selection, customization and composition into service-
based applications. Blueprint templates allow application developers to define
their requirements in terms of functional capabilities, QoS characteristics, as
well as deployment and provisioning resources as target blueprints. A Blueprint
document consists of six parts: general properties describing the topology, the of-
fering(s) described by the document, the artifacts necessary to implement these
offerings, the resources required to deploy these artifacts, the virtual architec-
ture formed by the relations between offerings, implementation artifacts and
resources, and the policies that govern the elements of the document.

CloudML [8] is an approach built on model-driven engineering (MDE) princi-
ples with the intention of facilitating the provisioning, deployment, monitoring
and adaptation of multi-cloud applications. It provides a DSL for topology mod-
eling, and a runtime environment for the enactment, provisioning, modeling and
adaptation of these models. Topology models define the nodes of the cloud in-
frastructure, as well as the software artifacts that are deployed on these nodes.
Both nodes and artifacts are typed, which allows for reasoning on the topology
models. Similarly, the Composite Application Framework (Cafe) [12] provides
the means to describe composite service-oriented applications and deploy them
automatically across different providers. A Cafe application template consists
of an application model, a variability model containg variability points for the
parametrization of the application, and code artifacts and references. Application
models consist of typed components and implementation elements that allow for
nested definition of topologies.

As it can be seen for the discussion above, the topology languages discussed
rely on a set of common fundamental concepts with different representations in
each language. They all fundamentally use a graph-based view of application
topologies which consists of typed components (nodes) and connectors (edges),
with the possibility of assembling components into groups, essentially forming
subgraphs. Furthermore, components and connectors may have attributes that
define them. The degree of granularity in these concepts across the languages
however differs. This underlying similarity between these approaches is used for
our definition of the GENTL language.

5 Web Services Policy 1.5 - Framework: http://www.w3.org/TR/ws-policy/

http://www.w3.org/TR/ws-policy/

A GENTL Approach for Cloud Application Topologies 151

3 The Generalized Topology Language

The key concepts to be addressed in developing a generic application topology
language are reusability of existing models, extensibility to accommodate future
developments, and composability of topology models of various granularity levels
into larger, more complicated ones. Furthermore, and in order to facilitate the
mapping from and to other languages, the topology language should also allow
all model elements to capture information that is external to the language itself.
In the following section we present our proposal for a language that satisfies
these requirements.

Topology

- Name
- ID

Topology Attribute

Component

- ID
- Name

Group

- ID
- Name

Attribute

Connector

- ID
- Name

Simple Attribute

- Name
- Value

Composite Attribute

- Name
Connector Class

- Type

*

1..*

sequence

1..1
source

0..1

target
1..*

represents topology

1..*

1..1

1..*

1..*

Fig. 1. The Metamodel of GENTL

3.1 The GENTL Language

The GEneralized Topology Language (GENTL) relies on a generic, but typed
system. The metamodel of the language is illustrated in Fig. 1 using UML Class
diagram notation. More specifically, GENTL models are built around a Topol-
ogy element with a (unique) ID and a name which acts as a composer of the
other elements in the model. Topology elements may have Topology Attributes
that capture information about the topology model as a whole that cannot be
reflected by the other elements. Topology Attributes are Attributes, either Simple
Attributes (with a name and a value of string, integer, etc. type) or Composite
Attributes that organize other Attributes in sequences and allow for nested at-
tribute composition. Components have, in addition to a (unique) ID and a name,
links to other GENTL Topology elements via the representsTopology association

152 V. Andrikopoulos et al.

Table 1. Mapping between GENTL, and Blueprints and TOSCA

GENTL Blueprints TOSCA

Topology Offering Topology Template

Component
Resource Requirement

Node Template
Implementation Artefact

Vertical Link

Connector Horizontal Link Relationship Template

Resource Link

Group
(resourceRequirements)

Node Type
(implementationArtefacts)

Node Property

Component Resource Requirement Property Node Interface

Attribute Implementation Artefact Property Capability Definition

Requirement Definition

Group Attribute Node Type Property

Topology Basic Property

Attribute Offering Property

Connector Class Link Type Relationship Type

allowing for decomposing large topology models and reusing existing ones. Com-
ponents have one or more Attributes attached to them. A Connector captures
a relationship between (exactly) two Components, a source and a target. Con-
nectors also have attributes associated with them, and they belong to one of the
available Connector Classes that define the type of the Connector, e.g. ‘deployed
on’. Finally, Groups allow for the organization of components into sub-graphs
of the topology model with non-exclusive memberships, enabling the creation
of views on the topological model. Groups have attributes to provide further
information about the components they aggregate.

3.2 Mappings from Other Languages

A key feature of GENTL is its generic nature which allows for easy mapping
from other topology definition languages. As an example of this capability, Ta-
ble 1 contains the mapping between GENTL and Blueprints and TOSCA. More
specifically, with respect to the former, a Blueprint offering is similar in purpose
to the Topology element in GENTL. Blueprint offerings are distinguished be-
tween resource requirements and implementation artefacts. Both these element
types can be mapped to Components in GENTL, with elements of each type
forming a Group in GENTL, and their properties captured as Component or
Topology Attributes. Blueprints also support three types of links between ele-
ments: Vertical (denoting deployment dependency), Horizontal (denoting func-
tional dependency), and Resource, for connections to external resources like IaaS

A GENTL Approach for Cloud Application Topologies 153

offerings. All these links are mapped as Connectors in GENTL, with the three
link types modeled as Connector Class elements.

With respect to TOSCA, the mapping between the two languages is rather
straightforward. Topology Templates map to Topology elements, Node Tem-
plates can be modeled as Components, and Relationship Templates as Con-
nectors. The properties, interfaces, capabilities and requirements definitions of
a Node Template are captured as Attributes on the Component, while relation-
ship properties and interfaces are reflected as Connector Attributes. Node and
Relationship Types are mapped to Groups and Connector Classes, respectively.

The mapping presented is, of course, unidirectional (from Blueprints/TOSCA
to GENTL); bidirectional mapping between topology languages requires ensur-
ing that sufficient information is available on the level of GENTL models. An-
notations, as discussed in the following section can be used for this purpose.

4 GENTL Annotations

Annotation schemes are used to provide information that is attached, but not
directly related to the application topology itself, and which can be used for
several purposes like metering, billing, matching, and management. Different
languages provide different mechanisms for this purpose, and existing topology
annotation schemes can be classified to one or more of the following categories
depending on their intended use:

1. Discovery: These annotations describe the capabilities or requirements of
topologies and/or their elements, ranging from functional interface descrip-
tions to QoS characteristics and semantics annotations, and used for match-
ing purposes.

2. Provision and Management: These are used to automate the deployment of
applications, and support tasks ranging from simple installation of compo-
nents to complex system adaptations at runtime.

3. Design Support: This type is used to provide decision making support dur-
ing the design or migration of an application to the cloud. For example,
applicable design patterns can be identified and captured through these an-
notations.

Blueprints, for example, allow for the definition of QoS information in both offer-
ings and resource requirements elements, which are used for discovery of match-
ing offerings. This information is expressed as policies that are attached to the
blueprint elements. TOSCA supports both discovery, and provision and manage-
ment type plans by means of policy types and templates for non-functional char-
acteristics, and management plans expressed in languages like BPEL or BPMN.
In [2] we discuss how design support annotations can be used to identify the most
cost efficient deployment of the application in the cloud through interaction with
the application designer. In addition, and depending on the level of automation
in processing the information captured in them, annotations can be automatic
(intended for processing entirely by machines), human-oriented (e.g. in natural

154 V. Andrikopoulos et al.

language), or hybrid as a combination of them. Furthermore, annotations may
be static or dynamic, requiring e.g. input from the user. Discovery annotations,
for example, are usually static and automatic annotations, while provision and
management annotations combine static and dynamic with automatic or hybrid
characteristics.

External Reference

- URI
Simple Annotation

Service Invocation

- URLAnnotations Annotation

Attribute*

Parameter

- Name
- DataType

Parent

Topology* Component* Connector* Group*

1..*

1..**

1..1

Annotation
Attribute

1..*

Fig. 2. The Annotations Metamodel of GENTL (Class* refers to Fig. 1)

As discussed in the introduction, the main focus of GENTL is on provid-
ing design support, which constitutes the main requirement on the language
with respect to its annotation scheme. However, and in order to preserve the
generic nature of the language, GENTL Annotations as summarized by Fig. 2
are designed to support all types of annotations discussed above. Following the
example of the WS-Policy Framework, GENTL Annotations are defined on a sep-
arate document that contains references to the topology definition(s) elements.
This allows multiple annotation documents to be created for the same topol-
ogy, as well as reuse of existing annotations by reorganizing the references to
elements. More specifically, an Annotation element has one or more Annotation
Attributes that are of type Attribute (as defined in Fig. 1), and is attached to
one Parent that can be a Topology element, or any Component, Connector or
Group inside a topology model. In addition, an Annotation is one of the follow-
ing types: a Simple Annotation (collection of Attributes), an External Reference
(a URI referring to a resource actually containing the annotation, e.g. a TOSCA
management plan), or a Service Invocation (containing a request endpoint, and
request Parameters for invoking the endpoint). The first two types are static,
while the last one is dynamic. The Annotations element groups together multiple
Annotation elements into one document.

A GENTL Approach for Cloud Application Topologies 155

5 Tooling Support

Providing the right tooling support is essential for the usability of any topol-
ogy language. There are some fundamental requirements towards providing an
environment for GENTL users, namely: platform independence, capability to
import existing topology models and their annotations from other languages
into GENTL, and an easy to use graphical environment incorporating automatic
graph layout and dynamic interaction functionalities. In the following we discuss
how the GENTL Environment that we developed satisfies these requirements.

5.1 The GENTL Environment

The GENTL Environment was developed as a Web application, providing
platform-independent access by means of most popular Web browsers. For this
purpose, a project in the Django framework6 was created. Django is based on
Python and offers an object-relational mapper that enables the definition of data
models in Python. The data models are persisted in a built-in database and are
accessed either through API calls or SQL statements directly to the database.
The resulting Django project consists of the following set of Python applications:

Topology App: handles the topology data and is responsible for the graph
visualization (using Graphviz7 and the pydot8 interface between Python and
Graphviz for this purpose). Topology elements are implemented as Python
objects and stored in Django’s database in tables containing the data model
instances.

Annotation Apps: implement the annotation model through two different ap-
plications — a Static Annotation App for Simple Annotations and External
References, and a Dynamic Annotation App for Service Invocation Annota-
tions.

Transformation App: bundles the importing functionalities — currently for
Blueprint and TOSCA topology models based on the mappings discussed in
Section 3.2.

Beyond importing existing topologies, the GENTL Environment allows also for
the modeling of application topologies from scratch. Furthermore, it supports
exporting GENTL application topology models into a serialized XML format,
with exporting to other languages being ongoing work. The source and binary
files for the GENTL Environment are available online9 under Apache License
2.0.

5.2 User Interface

The main Graphical User Interface (GUI) of the GENTL Environment is shown
in Fig. 3. The top menu allows for the addition of new elements in the topology

6 Django: https://www.djangoproject.com/
7 Graphviz: http://www.graphviz.org/
8 pydot: http://code.google.com/p/pydot/
9 The GENTL Environment: http://www.iaas.uni-stuttgart.de/GENTL

https://www.djangoproject.com/
http://www.graphviz.org/
http://code.google.com/p/pydot/
http://www.iaas.uni-stuttgart.de/GENTL

156 V. Andrikopoulos et al.

Fig. 3. The SugarCRM Application in the GUI of the GENTL Environment

model, exporting the model in a serialized GENTL document, and exporting the
annotations (in a separate document). Following the ‘GENTL Topologies’ link
leads to an initial screen that lists all models currently in the database, as well
as importing an existing GENTL, TOSCA or Blueprint model (not shown in the
figure). The topology model itself is visualized in the left pane of the screen as
a graph with Group elements arranged at the top of the pane and connected to
individual Components and Connectors with dashed lines to show membership in
this group. Selecting a group (‘EC2 Database’ in Fig. 3) highlights the members
of the group. The right pane of the GUI is used to show the element attributes,
as well as provide access to the annotations (both static and dynamic) of each
element. In the case shown in Fig. 3, the ‘EC2 Database’ group is annotated with
the information that it is (also) deployable on a Medium On-Demand Instance
DB (Standard Deployment) of the Amazon RDS10 service instead of an EC211

instance. This dynamic annotation actually builds on the integration with the
Nefolog system [2] for identifying and retrieving the details of this offering and
can dynamically change to another cloud service offering if the requirements
for this group change. Using the cost calculation capabilities of Nefolog, this
information can be used to provide a projection of the operational expenses of
using alternative deployment groups, as shown in Fig. 4.

6 Related Work

Related works in the literature build on application topology models to opti-
mize the distribution of an application across cloud offerings. The optimization
involves different dimensions, usually however in combination with operational
expenses. For example, the work in [14] presents DADL, a language to describe
the architecture, behavior and needs of a distributed application to be deployed

10 Amazon Relational Database Service (Amazon RDS): http://aws.amazon.com/rds/
11 Amazon Web Services Elastic Compute Cloud: http://aws.amazon.com/ec2/

http://aws.amazon.com/rds/
http://aws.amazon.com/ec2/

A GENTL Approach for Cloud Application Topologies 157

(a) EC2 Reserved Instance (b) RDS Standard Deployment

Fig. 4. Cost Calculation in the GENTL Environment for two AWS Offerings

on the cloud, as well as describing available cloud offerings for matching purposes.
Similarly, in [3], the authors propose an approach that matches and dynamically
adapts the allocation of infrastructure resources to an application topology in
order to ensure SLAs. CloudMig [9] builds on an initial topology of the appli-
cation that is adapted through model transformation in order to optimize the
distribution of the application across cloud offerings. A similar approach is pro-
posed by the MODAClouds work [4] which uses CloudML (see Section 2) for the
definition of the application topology model.

The approach in [13] uses a Palladio-based application topology model in order
to distribute an application across different cloud providers aiming at optimizing
for availability and operational expenses. The MOCCA framework [11] deals with
the same problem by introducing variability points in the application topology in
order to cope with possible alternative deployment topologies. CMotion [7] uses
an approach based on topology modeling, generation of alternative topologies,
and consequent evaluation and selection of one of those alternatives based on
multiple criteria. The work in [1] uses the notion of typed graphs for similar
purposes and proposes a formal framework to support this effort. In a similar
approach,MADCAT [10] incorporates to the topology model scalability elements,
and refines the topology model from a high-level application topology to a ready
for deployment one. While GENTL allows for mapping from different application
topology language however, the above works rely on a single topology language.
In this respect our proposal offers the means for a more generic approach that
decouples from the specifics of each language used.

158 V. Andrikopoulos et al.

7 Conclusion

The existence of initiatives like TOSCA allow for the automated deployment
and management of applications in a distributed manner across cloud offerings
and providers. This empowers application designers to pursue “smarter”, more
efficient application topologies that span multiple offerings. An important com-
ponent in this effort is a robust application topology modeling language that
acts as the foundation for any optimization of the distributed deployment of the
application. Toward this goal, in this work we present the Generalized Topology
Language (GENTL) which builds on the common characteristics of existing ap-
proaches. More specifically, in the previous we presented the main concepts of
the language, as well as the mappings that allow transforming topology mod-
els from other languages to GENTL. Following on, we discussed the annotation
mechanism developed for the language, enabling the addition of both static and
dynamic additional information to the topology models in the language. Finally,
we also presented the environment that we developed for the language as a Web
application.

With respect to the latter, and beyond adding additional mappings from, e.g.
CloudML to GENTL, the main task for the immediate future is enabling the
automated deployment and management of GENTL application models in a
cross-solution manner. For this purpose, we plan to define a language-specific
annotation type that will allow application designers to provide the necessary
information for the mapping to a deployable language. In addition, in future
work we intend to use GENTL as the underlying language for the definition
of α- and γ-topologies (application-independent and -specific topology models,
respectively) as discussed in [1]. By these means we will be able to provide a
comprehensive design support solution to application designers in identifying the
most efficient distributed deployment of their application.

Acknowledgment. This work is partially funded by the FP7 EU-FET project
600792 ALLOW Ensembles.

References

1. Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal Distri-
bution of Applications in the Cloud. In: Jarke, M., Mylopoulos, J., Quix, C., Rol-
land, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS,
vol. 8484, pp. 75–90. Springer, Heidelberg (2014)

2. Andrikopoulos, V., Reuter, A., Mingzhu, X., Leymann, F.: Design Support for
Cost-efficient Application Distribution in the Cloud. In: Proceedings of CLOUD
2014. IEEE Computer Society (to appear, 2014)

3. Antonescu, A.F., Robinson, P., Braun, T.: Dynamic topology orchestration for
distributed cloud-based applications. In: Second Symposium on Network Cloud
Computing and Applications (NCCA), pp. 116–123 (2012)

A GENTL Approach for Cloud Application Topologies 159

4. Ardagna, D., Di Nitto, E., Mohagheghi, P., et al.: MODAclouds: A model-driven
approach for the design and execution of applications on multiple clouds. In: 2012
ICSE Workshop on Modeling in Software Engineering (MISE), pp. 50–56. IEEE
(2012)

5. Armbrust, M., et al.: Above the Clouds: A Berkeley View of Cloud Comput-
ing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley (2009)

6. Binz, T., Breiter, G., Leyman, F., Spatzier, T.: Portable cloud services using tosca.
IEEE Internet Computing 16(3) (2012)

7. Binz, T., Leymann, F., Schumm, D.: CMotion: A Framework for Migration of
Applications into and between Clouds. In: Proceedings of SOCA 2011, pp. 1–4.
IEEE Computer Society (2011)

8. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
Proceedings of CLOUD 2013, pp. 887–894. IEEE Computer Society (2013)

9. Frey, S., Hasselbring, W.: The cloudmig approach: Model-based migration of soft-
ware systems to cloud-optimized applications. International Journal on Advances
in Software 4(3&4), 342–353 (2011)

10. Inzinger, C., Nastic, S., Sehic, S., Vögler, M., Li, F., Dustdar, S.: Madcat a method-
ology for architecture and deployment of cloud application topologies. In: Proceed-
ings of SOSE 2014. IEEE (to appear, 2014)

11. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving applica-
tions to the cloud: An approach based on application model enrichment. Interna-
tional Journal of Cooperative Information Systems 20(03), 307–356 (2011)

12. Mietzner, R., Unger, T., Leymann, F.: Cafe: A generic configurable customizable
composite cloud application framework. In: Meersman, R., Dillon, T., Herrero, P.
(eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 357–364. Springer, Heidelberg (2009)

13. Miglierina, M., Gibilisco, G., Ardagna, D., Di Nitto, E.: Model based control for
multi-cloud applications. In: 5th International Workshop on Modeling in Software
Engineering (MiSE), pp. 37–43 (2013)

14. Mirkovic, J., Faber, T., Hsieh, P., Malaiyandisamy, G., Malaviya, R.: DADL:
Distributed Application Description Language. Tech. Rep. ISI-TR-664, USC/ISI
(2010), ftp://www.isi.edu/isi-pubs/tr-664.pdf

15. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the cloud. Internet Comput-
ing 15(6), 74–79 (2011)

ftp://www.isi.edu/isi-pubs/tr-664.pdf

Cloud Resources-Events-Agents Model:

Towards TOSCA-Based Applications

Soheil Qanbari1, Vahid Sebto2, and Schahram Dustdar1

1 Technical University of Vienna
{qanbari,dustdar}@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at
2 Baha'i Institute for Higher Education (BIHE)

{vahid.sebto}@bihe.org

http://www.bihe.org

Abstract. The dilemma for domain experts and developers during de-
sign time of a cloud application is ensuring the sufficient programming
abstractions between them in mapping the business requirements to
cloud specifications. Thus, a modeling language is needed to capture
and express the business requirements. Resources-Events-Agents (REA)
is a well-known business requirement modeling language that decomposes
the information system into three constituents with the set of compliant
binary collaborations called, Duality. This study is a preliminary attempt
to employ REA for developing cloud applications. In this study, we de-
fine a conceptual mapping between REA model and OASIS Topology
and Orchestration Specification for cloud Applications (TOSCA) poli-
cies, plans and templates. Based on that, we proceed with the process
of building business-driven cloud applications. In support of our model,
we implement a cloud REA Modeling tool referred to as CREAM, where
business requirements are specified in REA, then corresponding cloud
application is composed and built. We describe the underlying mapping
strategy as well as the details of our tool in support of the proposed
approach.

Keywords: Cloud application, Resources-Events-Agents (REA),
TOSCA, Business requirements.

1 Introduction

The cloud abstraction model delivers a shared pool of configurable computing
resources (processors, storage, applications, etc.) that can be dynamically and
automatically provisioned and released [1]. This elastic delivery of cloud re-
sources improves business agility by enabling the providers to respond faster to
the demanding needs of the markets. Firms benefit from this as an enabler in de-
veloping adaptive business models built upon cloud applications that meet both
business and customer needs. Thus, they can orchestrate processes, (de)allocate
resources, (de)provision services and seamlessly adapt to the constantly changing

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 160–170, 2014.
© IFIP International Federation for Information Processing 2014

http://dsg.tuwien.ac.at
http://www.bihe.org

CREAM: Cloud Resources-Events-Agents Model 161

requirements of their clients. Cloud adaptive business modeling, poses challenges
of performing an ongoing assessments to ensure compliance and alignment be-
tween business requirements and system specifications.

In architecting cloud applications, the cloud market-leader, Amazon web ser-
vices (AWS), offers a CloudFormation1 service where we can create a stack to
seamlessly provision the collection of resources required by applications. We can
deploy CloudFormation’s templates2 or create our own templates to describe the
AWS resources with associated dependencies or runtime parameters, required to
run our applications. The cloud management platform, OpenStack provides a
service called Heat3 to orchestrate multiple composite cloud applications using
the AWS CloudFormation template format, through both an OpenStack-native
REST API and a CloudFormation-compatible Query API. The Heat engine’s
main responsibility is to orchestrate the launching of templates and provide
events back to the API consumer. On a similar service, the Ubuntu open-source
community, provides Ubuntu JuJu4, a service orchestration management tool
where we can define the technical requirements and specifications of our cloud
application and proceed with its deployment. Similarly, the openTOSCA5 pro-
vides a container where we can define and run our TOSCA-based cloud applica-
tion implementation artifacts composed into the cloud Service Archive (CSAR)
file which includes the service topology and its implementation plans.

Suffice to say that these initiatives are more focused on capturing technical re-
quirements rather than business models. Such solutions are appropriate for cloud
application developers and pose limitations for business developers who know the
domain knowledge best but with limited programming skills. There are several
well-established business modeling frameworks,including e3-value [3], Resource-
Event-Agent (REA) [4] and the Business Modeling Ontology (BMO) [5]. These
models allow shorter development cycles and faster time to products and value.
However, at the moment, to the best of our knowledge, there is no engagement
between the current business modeling frameworks and cloud computing busi-
ness models. In this paper, we provide this mapping and ultimately, show how
effective our tooling is. In summary, our contribution is twofold as follows:

– Analyzing the contemporary business modeling frameworks on which firms
base their service identification, specification, and realization strategies.

– The mapping rules between the REA model and the TOSCA model. We
implement a tool in support of these compliance rules.

The paper continues with a background in the cloud REA model in section 2
in support of proper positioning of the CREAM tool. Section 3 introduces the
REA business modeling framework as an input model. In section 4 TOSCA spec-
ifications as an output model are detailed. Section 5 presents the actual contribu-
tion of the paper, the conceptual mapping rules together with their supporting

1 http://aws.amazon.com/cloudformation/
2 http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
3 https://wiki.openstack.org/wiki/Heat
4 https://juju.ubuntu.com
5 http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php

http://aws.amazon.com/cloudformation/
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://wiki.openstack.org/wiki/Heat
https://juju.ubuntu.com
http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php

162 S. Qanbari, V. Sebto, and S. Dustdar

facts. Next, the CREAM tool architecture is presented in section 6 and a sample
use-case scenario is given to support the efficiency and utilization of our tool.
Subsequently, section 7 surveys some scientific related work. Finally, section 8
concludes the paper and presents an outlook on future research directions.

2 Related Work

In relation to our approach, there are some prominent approaches for defining the
cloud value chain reference model[7], like an i∗6, a goal-oriented social modeling
framework for linking business models to their supporting services and process
models by Jaap et al[8] and Ramel et al[9]. In their approach, first, the business
requirements are modeled with the i∗ notation and then business services are
derived. In the second phase, the identified services are refined according to these
requirements using UML activity and class diagrams. On a similar approach,
Gailly et al[10] defined a set of business rules to transform the REA meta-model
into a UML class diagram with accompanying OCL constraints. Schuster et
al[11] leverages model driven development and provide a mapping from REA to
UMM. In support of this mapping, Sonnenberg et al[12], developed a domain
specific modeling language called REA-DSL. Another more conceptual approach
exploiting service science perspective on REA business modeling is introduced by
Roelens et al[13]. The authors specify six design criteria to evaluate the ability of
REA business model to create service interaction model. Poels et al[14] propose
the Resource-Service-System model adapted from REA as a conceptual model
for service science that emphasizes the service systems interaction through the
exchange of resource for more utilization. To the best of our knowledge, the
existing approaches do not address the cloud computing business models as we
aim to do by a mapping from REA modeling language to cloud TOSCA model.
Next, we explore each of them as an input and an output models of our mapping
process.

3 REA – The Input Model

The REA (Resources-Events-Agents) model focuses on the value of business ob-
jects exchanged among parties and abstracts away the implementation details of
the system to business developers. Figure 1, illustrates the core concepts of REA.
Now we delve into the core concepts, their meanings and interdependencies:

♦ Economic Resource is a thing that has utility for Agents. In fact, users
need to deploy, monitor, and utilize the resources. For instance, economic re-
sources can be products, tools, services and humans as well.

♦ Economic Agent is a stakeholder or organization capable of having con-
trol over economic resources, with an interest in it. Agents deal on resources
upon their established service level agreements. Examples of economic agents
are consumers, vendors, employees, and third-party enterprises.

6 http://www.cs.toronto.edu/km/istar

http://www.cs.toronto.edu/km/istar

CREAM: Cloud Resources-Events-Agents Model 163

Fig. 1. Excerpt of the REA meta-model and core concepts

♦ Economic Event represents either an increment or a decrement in the
value of economic resources. Some economic events are demand, supply of re-
sources. Events can be classified into two poles of Take and Give. At least one
take event and one give event exist for each resource. When the event occurs,
the provider loses rights to the resource, and the consumer receives the rights.

♦ Economic Commitment is a promise or obligation of an economic Agent
to perform an economic Event in the future. For example, line items on a sales
order represent commitments to sell goods. Lack of resources leads to unmet de-
mands and, while reflecting the SLA violations, leads to financial consequences
and penalties.

♦ Economic Contract is a collection of increment and decrement commit-
ments and terms. Thus, the contract can specify what should happen if the
commitments are not fulfilled.

In REA, business processes are the orchestration of events that can be trig-
gered by agents affecting the resources. Resources are exchanged through these
processes. The notion of stockflow is used to specify in what way an economic
event affects a resource. REA identifies five stockflows: Produce, Use, Consume,
Give and Take. For instance, the Deployment process of the Vendor specifies an
outflow of Resources and inflow of Cash to the Vendor. The model of the Usage
process from the perspective of the client agent is a mirror image of the ven-
dor’s Deployment process. The Usage pattern of the client specifies the inflow
of Resource and outflow of Cash from the client.

4 TOSCA – The Output Model

The Topology Orchestration Specification for cloud Applications (TOSCA) lan-
guage introduces a grammar for describing service templates by means of Topol-
ogy Templates and Plans. The root of a TOSCA service is the Service Template.
The Service Template contains a directed graph that represents the structure of

164 S. Qanbari, V. Sebto, and S. Dustdar

the service called a Service Topology. Every service template has at least one
service topology. The topology graph is composed of nodes and edges. Edges in
a directed graph are links with a direction from node to node. The edges in a
Service Topology graph are binary relationships between nodes. The nodes rep-
resent the logical components of the service. These nodes and relationships are
templates that are patterns for the real nodes and relationships instantiated in
a deployed service. Plans orchestrate various aspects of a service life cycle. The
TOSCA specification defines Build plans and Termination plans. Build Plans
orchestrate the deployment and installation of a service. Termination Plans or-
chestrate decommissioning of a service. Designers of TOSCA-based applications
can add plan types as needed. The designers can benefit by work-flow notations
such as BPMN or BPEL. In our CREAM model, TOSCA embodies the cloud
composite application design and its elasticity specifications directly derived
from the business requirements model using REA.

5 Mapping REA to TOSCA

In this section we describe the mapping from a REA model to TOSCA artifacts.
Before we delve into the details of modeling and implementation, it is reasonable
to focus on the underlying approaches as we have taken on the mapping process
to provide a holistic view about the source model (REA) and target (TOSCA)
artifacts. Our approach is twofold: first, we proceed with the conceptual mapping
from a meta-level perspective. Second, we define the mapping rules of the two
models supported by their implementation scripts in the tool.

5.1 Conceptual Mapping

A mapping from the REA business modeling language to the TOSCA artifacts
is a first step in the progress of developing business-oriented cloud applications.
This section formulates such a mapping. To define a mapping, we first discover
the most suitable matches for REA concepts in TOSCA, then we formulate this
connection in rules which will be formalized further in the tooling. We start with
the eight concepts derived from the REA as core concepts. As listed in Table 1,
we identified the following eight rules.

5.2 Mapping Rules (M.R.)

♦M.R.1:Resource, indicate things that are affected or exchanged in processes.
For cloud applications, software services or infrastructure resources express the
same semantics. It can be specified by nodeTemplate and nodeType elements in
TOSCA. For instance, a nodeType of ApacheWebServer can be instantiated by
a nodeTemplate of MoodleAppServer.

♦ M.R.2: Event, is nested within an economic Exchange. These events are ini-
tiated by Agents affecting a Resource. In TOSCA, the nodeTypes has element

CREAM: Cloud Resources-Events-Agents Model 165

Table 1. Mapping Rules from REA model to TOSCA artifacts

No Rules REA Concepts TOSCA Concepts

1 Resource Economic Resource Node Tempalate

2 Event Economic Event Interface Operation

3 Exchange Economic Exchange Relations / Plans

4 Entity Economic Agent Roles

5 Contract Contract / Commitment Policy Types

6 Duality Exchange Duality Relation Types

7 Links Stockflow, Inflow, Outflow Relations Types

8 Pack Typification, Grouping Service Templates

of Interfaces in which each interface includes some Operations. For instance, re-
leasing or allocating storage resource unit from/to a VM.

♦ M.R.3: Exchange, is a value or resource Exchange with pair of economic
Events linked by Duality relationship. It is mapped to TOSCA relationType and
plans which defines the process models that are used to manage the application
life-cycle. In TOSCA, a plan is a set of operations exposed in a sequence flow by
the service template. Both concepts contain the business transactions, resource
exchange, events, and agents that are necessary to fulfill the business goal. The
typical TOSCA plans are buildPlans, terminationPlans and can be extended to
modificationPlans.

♦ M.R.4: Entity, is basically an economic unit or an Agent representing an
actor and therefore mapped to Role in TOSCA plans. The mapping is logical
since both concepts share the same semantics. TOSCA roles are oriented on
three actors of cloud service Developer, Provider and Consumer. An economic
agent in REA and a role in TOSCA are both actors with an interest in a col-
laboration. TOSCA typeArtifact, artifactDeveloper and applicationArchitect are
the specialization of the service developer role. Cloud service provider hosts and
operates the application to be used by the service consumer.

♦ M.R.5: Contract, details an agreement reflected in an economic Event. The
resource delivery is governed by an associated Contract, composed of set of
Commitments. An economic contract comprises agreements, rights and terms
made among agents. Commitment fulfills the exchange-reciprocity application.
In TOSCA, the commitments can be declared by the use of Policy Types and
AppliesTo element. A policy type can express the resource intended behavior or
the Quality of Service (QoS) that a nodeType is about to expose. A TOSCA Pol-
icy can also express diverse things like monitoring behavior, payment conditions,
scalability, or availability, for instance. Policies can inherit and apply properties
by derivedFrom and appliesTo elements. Thus a relevant policy type can show
the specified behavior of a resource in a Contract.

166 S. Qanbari, V. Sebto, and S. Dustdar

♦ M.R.6: Duality, also nested within an economic Exchange and the Event
holding this association triggers the resource exchange. Duality can be used to
model many-to-many relationships between any two resources. This allows Give
& Take operations to increase or decrease the amount of resource allocation.
Duality implements the elasticity behavior of the cloud application. Thus, the
messaging among the resources should be paired via a duality relationship to
bind events together with the resource exchange. For instance, Request & Re-
sponse, Demand & Allocate, Service Acquisition & Service Provision and Pay -
per resource usage can be considered as cloud use-cases of Duality concepts.
In this sense, Duality is mapped to TOSCA relationType that identifies the
corresponding relation of a service provisioning event to a specific request and
payment subsequently.

♦ M.R.7: Link, denotes the semantics behind the links among service encom-
passed components. The Stockflow association denotes the flow of resource ex-
change triggered by an economic events like increment or decrement resource
allocation. The relationship between an increment event and a resource is called
inflow and the relationship between a decrement and a resource is called outflow.
For instance, in vendor’s sales process, the exchange will represent an outflow of
resource and an inflow of cash in return. In TOSCA, the relationship specifies
the semantics between nodes of sourceElement and targetElement in a topology
template. The REA relations can be mapped to the TOSCA relationTypes like
dependsOn, hostedOn and deployedOn concerning the context.

♦ M.R.8: Pack, is a course or principle of composition action, adopted by
Grouping and Typification abstractions in the REA application model. Typi-
fication implements a-kind-of element, grouping realizes a-member-of applica-
tions. This forms a composite application which will be deployed under certain
policies. Hybrid association of Types and Groupings defines the Policy Layer
on top of the Operation Layer in the model. In TOSCA, a policy type defines
the constraints of a property, i.e. data types, allowed values, obligations and
authorization requirements in a corresponding template.

6 Implementation: CREAM Tool Support

The aim of this toolkit is to provide a framework to facilitate the modeling and
deployment of cloud based applications. Our toolkit provides a web interface
which hides and abstracts away the cloud implementation details to business
developers. CREAM captures the system requirements and their relationships,
then builds the cloud application topology in TOSCA. The CREAM is a Java-
based web application which is developed in WSO2 Developer Studio7. We used
Maven to resolve its dependencies and deployed CREAM on WSO2 Application
Server. Cloud resources are stored in WSO2 Governance Registry in compliance
with TOSCA standard. All resources and artifacts are located in ”/cream” path

7 http://wso2.com/products/developer-studio

http://wso2.com/products/developer-studio

CREAM: Cloud Resources-Events-Agents Model 167

in the registry and categorized in two collections: (i) TOSCA Templates: this
collection contains cloud and REA resources. For instance, Instructor is mapped
to a TOSCA NodeType which is located in human resources category (HuaaS).
For each resource and collection in ”/cream/ToscaTemplates”, a title is set in
registry that will be displayed in CREAM Tool canvas, otherwise the name of the
resource will be used. (ii) CSAR: the cloud topologies designed by business and
application developers will be stored in this collection. Each designed topology
is a TOSCA XML file named with a UUID and contains a ServiceTemplate. This
contains all required information about services and resources requested by the
user.

6.1 CREAM Architecture

Now, we detail the architecture. We developed the CREAM Toolkit based on
a Model-View-Controller (MVC) design pattern. MVC framework is designed
around a DispatcherServlet that dispatches requests to handlers. In CREAM,
Dispatcher servlet is responsible to handle requests and responses. It delegates re-
quests to controller (i.e., class CloudApplicationDesignerController). Controller
class is identified by @Controller annotation and has methods to handle incoming
requests. Each URL is mapped to a method annotated with @RequestMapping.
This method executes the user requests, generates a model object and returns it
to dispatcher. Dispatcher send models to view template which is responsible to
render response. Finally dispatcher returns rendered response to user. For the
sake of brevity, we only describe the packages and classes to clarify the CREAM
architecture as illustrated in Fig 2.

Fig. 2. Cloud REA Model (CREAM) architecture

168 S. Qanbari, V. Sebto, and S. Dustdar

6.2 Package Description

In this section, we describe the packages, their bundled classes, and implemented
interfaces to support the CREAM architecture.

♦ Package org.cream.commons
This package includes exception classes, simple classes for Jakson ObjectMap-
per and other helper classes which are common in whole application. Its core
classes are ApplicationConfiguration, ServletContextHelper, ResourceObjectMap,
and DesignedApplicationObjectMapItem. The ApplicationConfiguration is re-
sponsible to read configuration file and make its entries accessible by other
components of the application. The ApplicationConfiguration uses the Servlet-
ContextHelper class to find the real path of the configuration file. Both classes
are designed using Singleton pattern.
♦ Package org.cream.tosca.model
This package contains JAXB generated classes from TOSCA XML schema
(XSD). It also contains a sub-package org.cream.tosca.model.properties

which includes JAXB generated classes for our defined properties schema.
There are several sub-packages such as org.cream.tosca.model.properties.
amazonec2 whereas each package contains JAXB generated classes from a spe-
cific properties XML schema file. We use Properties element in TOSCA Node-
Template to store specifications of each resource. We have defined these prop-
erties elements for each resource with XML schema. For each XML schema, we
have generated corresponding classes using Java API JAXB. All packages in
org.cream.tosca.model.properties corresponds to one schema.

♦ Package org.cream.wso2.greg
This package contains helper classes to connect to WSO2 Governance Registry
and to retrieve resources and collections. Class GovernanceRegistryConnector
is responsible to make connection to WSO2 Governance Registry. Method ge-
tRemoteRegistry returns an instance of class RemoteRegistry since the registry
data retrieval APIs are defined here. Class GovernanceRegistryReader is respon-
sible to read and write resources.

♦ Package org.cream.tosca.loader
Classes of this package works with JAXB generated classes. They extract
TOSCA elements from TOSCA files and generate TOSCA Definitions and CSAR
files. Class JAXBMetaDataExtractor uses Java Reflection API to extract prop-
erties’ element names from JAXB property classes. Class ToscaFileReader mar-
shals TOSCA Definitions from the given InputStream. It also provides a few
helper classes for entire application to retrieve needed information about a
TOSCA XML file. Class ToscaBuilder is responsible to generate final TOSCA
definition object from user-defined topology. Finally this class converts the gen-
erated TOSCA Definitions to its XML string and stores it in WSO2 Governance
Registry.

CREAM: Cloud Resources-Events-Agents Model 169

7 Conclusion and Outlook

So far, we have used the REA model to specify the business requirements, con-
straints and rules for building cloud applications. In support of our approach,
we developed the CREAM tool in which, initially does the conceptual mapping
and build the TOSCA-based cloud application. As an outlook, our future work
includes further extension to the CREAM tool that can also support the REA’s
structural and behavioral business patterns[15] at policy, operational and aspect
layers to provide a more holistic coverage of the various perspectives relevant to
application development process. Summarizing, we envision cloud REA Model
as a potential cloud value modeling framework for building business-driven cloud
applications.

References

1. Papazoglou, M.P.: Cloud blueprints for integrating and managing cloud federations.
In: Heisel, M. (ed.) Software Service and Application Engineering. LNCS, vol. 7365,
pp. 102–119. Springer, Heidelberg (2012)

2. Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying business models: Origins,
present, and future of the concept. Communications of the Association for Infor-
mation Systems 16, article 1 (2005)

3. Gordijn, J., Akkermans, H.: e3-value: Designing and evaluating ebusiness models.
IEEE Intelligent Systems 16(4), 11–17 (2001)

4. Mccarthy, W.E.: The rea accounting model: A generalized framework for account-
ing systems in a shared data environment. The Accounting Review 57(3), 554–578
(1982)

5. Iso: Information technology - business operational view - part 4: Business transac-
tion scenarios, iso/iec 2007, iso 15944-4 (2007)

6. Oasis, un/cefact: ebxml - technical architecture specification, version 1.4 (February
2001)

7. Mohammed, A.B., Altmann, J., Hwang, J.: Cloud computing value chains: Un-
derstanding businesses and value creation in the cloud. In: Economic Models and
Algorithms for Distributed Systems, Autonomic Systems, pp. 187–208. Birkhäuser,
Basel (2010)

8. Gordijn, J., Yu, E., van der Raadt, B.: E-service design using i* and e3value mod-
eling. IEEE Software 23(3), 26–33 (2006)

9. Ramel, S., Grandry, E., Dubois, E.: Towards a design method supporting the
alignment between business and software services. In: 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference, COMPSAC 2009, vol. 1,
pp. 349–354 (2009)

10. Gailly, F., Geerts, G.: Frederik Gailly and Guido Geerts. Formal definition of busi-
ness rules using rea business modeling language. In: Proceedings of the 7th Inter-
national Workshop on Value Modeling and Business Ontology, p. 7 (2013)

11. Schuster, R., Motal, T., Huemer, C., Werthner, H.: From economic drivers to B2B
process models: A mapping from REA to UMM. In: Abramowicz, W., Tolksdorf,
R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 119–131. Springer, Heidelberg (2010)

12. Sonnenberg, C., Huemer, C., Hofreiter, B., Mayrhofer, D., Braccini, A.: The REA-
DSL: A domain specific modeling language for business models. In: Mouratidis, H.,
Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 252–266. Springer, Heidelberg
(2011)

170 S. Qanbari, V. Sebto, and S. Dustdar

13. Roelens, B., Lemey, E., Poels, G.: A service science perspective on business mod-
eling. In: Proceedings of the 6th International Workshop on Value Modeling and
Business Ontology, p. 8 (2012)

14. Poels, G.: The resource-service-system model for service science. In: Trujillo, J., et
al. (eds.) ER 2010. LNCS, vol. 6413, pp. 117–126. Springer, Heidelberg (2010)

15. Hruby, P.: Model-Driven Design Using Business Patterns. Springer-Verlag New
York, Inc., Secaucus (2006)

TOSCA in a Nutshell:

Promises and Perspectives�

Antonio Brogi, Jacopo Soldani, and PengWei Wang

Department of Computer Science, University of Pisa, Italy

Abstract. How to deploy and flexibly manage complex multi-service
applications in the cloud is one of the emerging problems in the cloud
era. The OASIS Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) [1] aims at contributing to solve this problem by pro-
viding a language to describe and manage complex cloud applications in
a portable, vendor-agnostic way. The objective of this paper is twofold:
To provide a compact and easy-to-access introduction to TOSCA, and
to discuss possible research directions for TOSCA.

1 Introduction

Cloud computing is revolutionizing IT by enabling a convenient, on-demand and
scalable network access to shared pools of configurable computing resources.
However, current cloud technologies suffer from a lack of standardization, with
different providers offering similar resources in a different manner [2]. As a re-
sult, cloud developers tend to remain locked in a specific platform environment
because it is practically unfeasible for them, due to high complexity and cost,
to migrate their applications to a different platform. According to [3], in order
to enable the creation of portable cloud applications, the application’s compo-
nents, their relations and management should be modeled in a standardized,
machine-readable format. This will also allow the automation of the deployment
and management of the modeled application [4].

In this perspective, OASIS recently released version 1.0 of TOSCA, the Topol-
ogy and Orchestration Specification for Cloud Applications [1]. TOSCA
proposes an XML-based modeling language which permits to specify an ap-
plication’s structure as a typed topology graph, and the management tasks as
plans. More precisely, TOSCA aims at addressing the following three issues in
cloud application management [3]: (O1) automated application deployment and
management, (O2) portability of application descriptions and their management,
and (O3) interoperability and reusability of components.

Interested readers can browse various documents to get acquainted with
TOSCA. The official specification [1] and the primer [5] provide a comprehen-
sive presentation of TOSCA, while several research papers (like [3], [6], and [7])
provide a short recap of the main features of TOSCA. Moreover, recent research

� Work partly supported by project EU-FP7-ICT-610531 SeaClouds (www.seaclouds-
project.eu).

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, pp. 171–186, 2014.
c© IFIP International Federation for Information Processing 2014

172 A. Brogi, J. Soldani, and P. Wang

papers (e.g., [8], [9], [10], [11], [12], [13], and [14]) are proposing various exten-
sions of TOSCA. One of the motivations of this paper is that we believe that the
availability of an updated, compact, and easy-to-access description of TOSCA
may contribute to the dissemination of this OASIS specification.

In this paper:

(i) We try to provide a compact, easy-to-access description of TOSCA. We re-
organize the available information about TOSCA in a compressed overview
which outlines the goals of the specification, illustrates the TOSCA model-
ing language, positions TOSCA with respect to other cloud interoperability
standard proposals and describes how TOSCA specifications are processed.

(ii) We analyze TOSCA with the aim of discussing some research perspectives
which are leveraged by TOSCA itself. Namely, we discuss (D1) reuse of
available specifications, (D2) enhanced and full-fledged implementations
of so-called TOSCA containers, (D3) implementation of TOSCA tools,
(D4) integration of TOSCA with existing standard proposals, and (D5)
comparative assessment of TOSCA.

The rest of the paper is organized as follows. Sect. 2 presents an easy-to-access
description of TOSCA. Sect. 3 analyzes TOSCA with the aim of highlighting its
possible extensions and improvements, while Sect. 4 discusses some research per-
spectives. Finally, Sects. 5 and 6 discuss related work and draw some concluding
remarks, respectively.

2 Overview of TOSCA

As previously mentioned, TOSCA [1] is an emerging standard whose main goal
is to enable the creation of portable cloud applications and the automation of
their deployment and management. In order to achieve this goal, TOSCA focuses
on the following three sub-goals [3].

(O1) Automated Application Deployment and Management. TOSCA
aims at providing a language to express how to automatically deploy and manage
complex cloud applications.

This objective is achieved by requiring developers to define an abstract topol-
ogy of a complex application and to create plans describing its deployment and
management [4], [3] (see Sect. 2.1).

(O2) Portability of Application Descriptions and Their Management.
TOSCA aims at addressing the portability of application descriptions and their
management (but not the actual portability of the applications themselves) [3].

To this end, TOSCA provides a standardized way to describe the topology
of multi-component applications (see Sect. 2.1). It also addresses management
portability by relying on the portability of workflow languages used to describe
deployment and management plans [6].

(O3) Interoperability and Reusability of Components. TOSCA aims at
describing the components of complex cloud applications in an interoperable and
reusable way.

TOSCA in a Nutshell: Promises and Perspectives 173

Interoperability is the capability for multiple components “to interact using
well-defined messages and protocols” [1] so that they can be combined indepen-
dently of the vendor(s) supplying them. TOSCA abstracts from messages and
protocols details, and it permits to describe the dependencies between applica-
tion components (see Sect. 2.1).

Furthermore, TOSCA enables defining, assembling, and packaging the building
blocks of an application in a completely self-containedmanner (see Sect. 2.2), thus
providing a standardized way to reuse them in different applications [3].

Fig. 1 tries to position TOSCA with respect to some other cloud interoper-
ability1 standards and specifications, namely CAMP [16], CIMI [17], EMML [18],
OCCI [19], Open-CSA [20], OVF [21], SOA-ML [22], and USDL [23].

Fig. 1. Positioning TOSCA

The three numbered sections
of the pie represent the afore-
mentioned three main goals
of TOSCA, and the position
of each label is intended to
summarize “how much” the
goals of an initiative over-
lap with TOSCA goals2. More
precisely, to indicate that a
standard is targeting one of
the goals, its label covers the
corresponding section of the
pie. For instance, CAMP aims
at addressing both O2 and O3. Furthermore, if a label is not completely con-
tained in the pie, this means that the corresponding standard only partially
addresses the covered goals. Consider for instance OCCI. It provides an stan-
dardized IaaS interface which can be employed to automatize application de-
ployment and management. Nevertheless, automation is not its real goal and
thus OCCI is represented as partially covering the section O1 and partially out
of the pie.

2.1 TOSCA Modeling Language

To achieve the aforementioned goals, TOSCA provides an XML-based modeling
language, whose purpose is to allow formalizing the structure of each cloud
application as a typed topology graph, and the management tasks as plans [3].

An application is represented as a ServiceTemplate (Fig. 2), which is in
turn composed by a TopologyTemplate and (optionally) by some management
Plans [1].

1 A more thorough discussion on the relations between TOSCA and other cloud in-
teroperability initiatives can be found in [15].

2 Note that all mentioned initiatives target cloud interoperability, while only some of
them also target the interoperability of application components (viz., O3).

174 A. Brogi, J. Soldani, and P. Wang

Fig. 2. TOSCA ServiceTemplate

Generic type and type implementation definitions (which will be discussed
later) are also contained in the XML document defining the ServiceTemplate

as they are referred to by the templates appearing in the topology [5].

In the following we illustrate the TOSCA modeling language with reference to
the SugarCRM application example (whose complete description can be found in
the TOSCA primer [5]), which exemplifies a complex cloud application designed
for enabling businesses to manage the relationships with their customer.

Topology of an Application. The topology of a multi-component application
is represented by means of TopologyTemplates. A TopologyTemplate is essen-
tially a typed graph whose nodes are the application components, and whose
edges are the relations between these application components [1]. Syntactically
speaking, the application components and their relations are represented by

Fig. 3. Example of TopologyTemplate

TOSCA in a Nutshell: Promises and Perspectives 175

means of typed NodeTemplates and RelationshipTemplates, respectively. A
concrete example of an application topology is shown in Fig. 3, which illustrates
the NodeTemplates and RelationshipTemplates composing the topology of the
SugarCRM application. Fig. 3 also indicates the corresponding NodeTypes and
RelationshipTypes between parentheses.

Application Components. As shown in Figs. 2 and 3, each application com-
ponent appears in the topology as a NodeTemplate, and each NodeTemplate is
in turn typed. This is because the purpose of NodeTemplates is to define the
application-specific features of components (e.g., actual property values, QoS,
etc.), while the purpose of the corresponding types is to describe the structure
of the features to be specified.

The structure of the features exposed by an application component is de-
fined by means of NodeTypes [10]. More precisely, a NodeType specifies the
structure of the observable properties of an application component, the man-
agement operations it offers, the possible states of its instances, the require-
ments needed to properly operate it, and the capabilities it offers to satisfy other
components requirements. Syntactically speaking, properties are described with
PropertiesDefinitions, operations with Interface and Operation elements,
requirements with RequirementDefinitions (of certain RequirementTypes),
and capabilities with CapabilityDefinitions (of certain CapabilityTypes).

Fig. 4. Example of NodeType

An example of a Node-

Type is shown in Fig.
4, which illustrates the
structure of the prop-
erties, requirements and
interfaces exposed by
the SugarCRMApp com-
ponent.

Note that NodeTypes do not specify which are the artifacts required to instan-
tiate and operate application components, since that is the purpose of Node-
TypeImplementations. Each NodeTypeImplementation refers to the NodeType

whose implementation is under definition and specifies its DeploymentArtifacts
and ImplementationArtifacts [1]. The former are the contents (viz., Artifact-
Types and ArtifactTemplates) needed to materialize instances of application
components, while the latter are those which implement management operations
offered by application components [6].

Relations between Application Components. Complex multi-service ap-
plications require not only to model their components, but also the relations
between them [5]. As for components, relations can be modeled by means of
RelationshipTypes, RelationshipTypeImplementations, and Relationship-

Templates [1].
A RelationshipType defines the structure of a generic relationship between a

ValidSource (i.e., a NodeType or a node’s RequirementType) and a ValidTarget
(i.e., a NodeType or a node’s CapabilityType). It also allows to describe the
operations which can be performed on the source and on the target of the

176 A. Brogi, J. Soldani, and P. Wang

Fig. 5. Example of RelationshipType

relationship (via SourceInterfaces and
TargetInterfaces, respectively), its ob-
servable properties, and the possible
states of its instances. For instance, Fig. 5
illustrates the DependsOn Relationship-

Type, whose ValidSource is a Feature-

Requirement exposed by an application
component, and whose ValidTarget is a FeatureCapability offered by another
application component. Such a RelationshipType is only one of those modeling
the relations between the component of the SugarCRM application example.

Each RelationshipType requires to be connected with the artifacts imple-
menting the operations it offers. This is the purpose of RelationshipType-

Implementations [1], each of which refers to a RelationshipType and specifies
its ImplementationArtifacts. More precisely, a RelationshipTypeImplemen-

tation links each operation offered by a NodeType with the ArtifactTypes and
ArtifactTemplates implementing it.

As for nodes, types and type implementations only describe relations in a
generic way [5]. Once placed in the topological description of a certain applica-
tion, they become application-specific and thus require to be described by means
of RelationshipTemplates (to describe application-specific features).

Artifacts. An artifact represents the content needed to realize a deployment
and/or management operation of an application component [5]. TOSCA allows
artifacts to represent contents of any type (e.g., script, executable program,
installable image, configuration file, library, etc.). This requires to describe arti-
facts along with the metadata needed to properly access them. The structure of
such metadata is described by means of ArtifactTypes, while links to concrete
artifacts (and values of invariant metadata) that can be specified by employing
ArtifactTemplates [1].

Management Plans. Plans enable the description of application deployment
and/or management aspects [14]. Each Plan is a workflow combining the op-
erations offered by the nodes in the topology [1]. TOSCA prescribes to use
workflows to describe Plans (so as to leverage of their suitability to handle er-
rors, exceptions and human interactions [6]), but it does not mandate the use of
specific workflow language [3]. Furthermore, Plans are distinguished on the basis
of their planType. There are only two predefined types of plans: the BuildPlan

type models plans which initially create a new instance of a service template,
while the TerminationPlan type is for plans used to terminate the existence of
a service instance [1].

Fig. 6. Example of Plan

TOSCA in a Nutshell: Promises and Perspectives 177

A concrete example of a TOSCA Plan is shown in Fig. 6, which illustrates a
possible (BPMN) BuildPlan for the SugarCRM application example.

Application “Boundaries”. A ServiceTemplate can also describe the func-
tional and non-functional features it exposes externally. More precisely, the (op-
tional) BoundaryDefinitions element allows to specify the properties, capabil-
ities, requirements and operations of internal components which are externally
visible. It also allows to expose management plans as operations and to describe
the non-functional properties of the complex application.

Non-functional Features of an Application (Component). TOSCA em-
ploys policies to describe non-functional behavior and/or quality-of-service (QoS)
that an application and its components can declare to expose [3]. Similar to the
other entities in the TOSCA standard, a policy has an abstract PolicyType defi-
nition and is instantiated by defining a PolicyTemplate. While the PolicyType
describes the structure and required parameters of a policy, the PolicyTemplate
is used to define a specific policy instance [1].

ServiceTemplates (via BoundaryDefinitions), NodeTemplates, and Rela-

tionshipTemplates can then declare their non-functional features by referring
the PolicyType and/or PolicyTemplate describing them [13].

2.2 Packaging and Processing of Application Specifications

TOSCA also prescribes the format to archive application specifications along
with the installable and executable files needed to properly instantiate the spec-
ified applications. This is because the modeling language illustrated in the pre-
vious section only allows developers to specify the application topology and its
management and to give it in a Definition.tosca document. Such document
must be packaged together with the artifacts implementing its components so
as to make all such artifacts available to the execution environment.

Packaging of Application Specifications. The TOSCA specification defines
an archive format called CSAR (Cloud Serivce ARchive) to package application
specification together with concrete implementation and deployment artifacts
[1]. A CSAR is a (compressed) zip file containing at least the Definitions and
TOSCA-Metadata directories.

The Definitions directory contains one or more Definitions.tosca docu-
ments. These documents contain the TOSCA definitions describing the cloud ap-
plication. More precisely, exactly one of them must contain the ServiceTemplate
defining the structure and behavior of the whole cloud application, while the oth-
ers can be devoted to supporting definitions (so as to modularize the application
specification). Additionally, CSARs can also be devoted to contain TOSCA def-
initions to be reused in other contexts. For instance, a CSAR might be used to
provide a set of NodeTypes (with their corresponding implementations) to be
employed as building blocks while specifying new cloud applications.

A TOSCA-Metadata directory contains the TOSCA.meta file. Its purpose is to
describe metadata about the other files in the CSAR by means of blocks, which

178 A. Brogi, J. Soldani, and P. Wang

in turn consist of a set of name-value pairs. More precisely, the first block of
the TOSCA.meta file provides metadata about the CSAR itself (e.g., version,
creator, etc.), while each other block points to a file in the CSAR and describes
its metadata.

Processing of Application Packages. An application specification is pack-
aged (along with the concrete artifacts implementing its components) in a CSAR
archive with the purpose of deploying it on TOSCA-compliant cloud platforms.
A cloud platform is TOSCA-compliant if it offers a TOSCA container (e.g.,
OpenTOSCA [8]) which is an engine able to process CSAR archives, and thus
to deploy and operate the applications they contain.

TOSCA containers can deploy applications by processing the CSAR archives
in two different ways [5]. On one hand, imperative processing takes the CSAR
and deploys the application according to the workflow defined as a BuildPlan in
the corresponding ServiceTemplate (e.g., the BuildPlan shown in Fig. 6). On
the other hand, declarative processing deploys the application by trying to auto-
matically excerpt a deployment plan from the application’s TopologyTemplate.
In the latter case, the CSAR engine (a) first deploys the nodes without require-
ments on other nodes, and then (b) until all nodes have been deployed, it searches
the nodes whose requirements are satisfied (by the capabilities of the already de-
ployed nodes) and deploys them. For instance, if we consider the topology in Fig.
3, the declarative processing works as follows. First, it deploys the node templates
ApacheVM and MySqlVM since they have no dependencies on other nodes. Second,
it deploys ApacheOS and MySqlOS since the node templates they depend on have
been deployed. Then, it proceeds in repeating steps analogous to the second one
until all the node templates in the topology have been deployed.

TOSCA containers not only have to support application at deployment time,
but also at run time. They are indeed in charge of ensuring that the implementa-
tion artifacts (corresponding to management operations) are available [14]. They
should also be able to properly operate such artifacts as well as the management
plans provided by the application specification [3].

3 Analysis of the TOSCA Approach

In the previous section, we illustrated how TOSCA permits to describe the
topology and management behaviour of multi-component cloud applications. It
allows application developers to describe their solutions by clearly separating
topology and management concerns. In this section we analyze the TOSCA
approach for describing an application’s topology and management, with respect
to its declared main goals.

3.1 Topology Aspects

One of the main advantages of TOSCA is its suitability to (easily) represent
the structure of (even complex) cloud applications. Each multi-component ap-
plication is indeed modeled as a graph, in which typed nodes correspond to the

TOSCA in a Nutshell: Promises and Perspectives 179

application’s components, and typed relationships represent the dependencies
between these components.

The availability of an abstract topology description is necessary to achieve the
goal of automating the deployment of applications [4]. The topology description
(along with the artifacts connected to each component) indeed allows TOSCA
containers to automatically excerpt the declarative plans needed to deploy the
specified application [5]. The automated management also benefits from the
topology description. Imperative management plans can indeed be implemented
by orchestrating the operations offered by the nodes in the topology.

Furthermore, the topology description is portable [6]. Despite application de-
velopers have all the freedom in choosing the types of the elements composing a
topology, this is understandable to every container (provided that also the type
definitions are available to the same container). This is because TOSCA, with
the aim of giving flexibility to application developers in deciding the types to be
used, only prescribes how to structure the definition [1].

Finally, TOSCA enhances reuse. Each TOSCA definition may indeed be re-
ferred by more than one specification (in order to be reused) [5]. Consider,
for instance, the definition of a server component. By defining ServerType,
we can specify (abstractly) its observable properties, capabilities, requirements,
and management operations. The ServerType can then be referred by Server-

Template1, ..., ServerTemplateN, which are different templates whose
structure has been defined only once. The same holds for ServerType imple-
mentations. Different providers can offer different ServerTypeImplementations,
each of which implements this ServerType according to the provider’s running
environment. Furthermore, type definitions can be refined through derivation
[3]: If one needs an Apache server component, then she can reuse the definitions
in ServerType by extending them into an ApacheServerType.

The above mentioned features come at the price of defining a bunch of (XML)
TOSCA elements. For instance, to define the above mentioned server component,
an application developer must specify a ServerType, a ServerTemplate, and a
ServerTypeImplementation. The latter in turns needs the definition of a set
of ArtifactTypes and ArtifactTemplates corresponding to the set of artifacts
implementing the ServerType. Since all the previously mentioned definitions are
required for a single component of an application, it is not difficult to imagine
how many definitions are required for a complex, multi-component application.
The heaviness of the specification can be however mitigated mainly by leveraging
reuse of TOSCA definitions, and by employing graphical tools (like Winery [12])
while defining new application components.

3.2 Management Aspects

TOSCA enables the automated application deployment and management by
capturing the knowledge of the application developers via the modeling of their
management proven best practices [3]. More precisely, application developers
can model their application management at two different levels of abstraction.
DeploymentArtifacts and ImplementationArtifacts are used to implement

180 A. Brogi, J. Soldani, and P. Wang

deployment and management operations of a single application component, while
Plans allow to express higher level management tasks [14]. For instance, an
artifact may implement the pausing of an application module, while a plan may
pause the multi-component application (by employing such artifact).

Artifacts can be implemented in whatever programming language the appli-
cation developers like. Analogously, application developers have all the freedom
in choosing the workflow languages to model (both declarative and imperative)
plans. Ideally, the employed workflow languages should satisfy the following re-
quirements, as BPMN4TOSCA does [14]: (i) they should provide ways to access
and modify properties of nodes and relationships, (ii) they should enable man-
agement plans to access TOSCA topology model, (iii) they should ease the selec-
tion of management operations offered by nodes, and (iv) they should support
an easy and comfortable way to execute scripts on nodes.

The freedom given to application developers makes TOSCA really flexible. On
the other hand, to ensure “portability of applications and their management”,
TOSCA containers must be able to process the set of artifacts and plans needed
to execute the management operations and to instantiate component instances
[1]. In other words, TOSCA containers must pay the cost of supporting a bunch
of languages and of being able to bind management of analogously defined op-
erations to different kinds of artifacts.

3.3 Other Aspects

Besides topology and management aspects, TOSCA also allows application de-
velopers to specify the non-functional properties of their applications. Non-
functional properties are expressed in TOSCA by means of policies, which in
turn can be written with whatever policy language an application developer
likes. This empowers the flexibility of TOSCA, but at the price of requiring
TOSCA containers to support a bunch of policy languages.

Furthermore, the purpose of policies is to declare which non-functional prop-
erties an application offers. Thus, to specify what an application requires, appli-
cation developers are asked to employ policies in a somewhat counter-intuitive
way (by mixing what the application offers and what it requires). We argue that
to split policies in non-functional capabilities and non-functional requirements,
similar to functional requirements and capabilities could be a better alternative.

The flexibility of TOSCA is even more visible in the possibility of deploy-
ing CSAR archives both imperatively and declaratively. This gives freedom to
application developers, by allowing them to either explicitly specify how to de-
ploy their applications, or to ask containers to excerpt deployment plans from
the application topology. This freedom comes at the price of requiring TOSCA
containers to support both ways of processing.

In summary, TOSCA achieves its goals — automated application deployment
and management, portability of application descriptions and their management,
and interoperability and reusability of components — by also trying to be as
much flexible as possible. On one hand, such a flexibility gives application de-
velopers freedom in choosing languages and types to be used while specifying

TOSCA in a Nutshell: Promises and Perspectives 181

their applications. On the other hand, it obviously requires TOSCA containers
to support a bunch of languages, and this complicates the development (and
potentially also the operation) of TOSCA containers.

4 Research Directions

In the previous section we discussed the TOSCA approach for describing topol-
ogy and behaviour of cloud applications. In this section we exploit such an
analysis to try to identify a set of possible interesting research directions.

(D1) Fostering the Reuse of TOSCA Specifications. Cloud applications
can share some management infrastructure. For instance, web applications (inde-
pendently of their purposes) share an underlying topology whose top component
is the web server needed to run them. If the underlying topology (and the related
management) is already somehow available, it can be included in the specifica-
tion and then suitably configured. In this way, the time and complexity required
for application specification could be considerably decreased. It is thus inter-
esting to identify reusable (fragments of) specifications so as to speed-up the
development of new ones.

(D2) Enhanced and Full-fledged Implementations of TOSCA Con-
tainers. TOSCA aims to achieve its objectives by remaining as much flexible as
possible. This also means to not prescribe (i) how to select whether to process a
CSAR archive either declaratively or imperatively —if both are possible—, (ii)
how to decide which build plan is to be invoked to imperatively processed when
more than one are available, and (iii) how to select the proper type implementa-
tion when multiple are present. While issue (i) can easily be fixed by extending
the TOSCA specification issues (ii) and (iii) may not be satisfactorily solved by
simply extending the TOSCA specification, since they involve the development
of proper selection criteria, and the implementation of mechanisms and tools
which operate these criteria. Thus, it may be worth investigating issues (ii) and
(iii) so as to gain smart and effective solutions.

(D3) Implementation of TOSCA Tools. Another interesting research di-
rection is obviously the development of tools capable of working with TOSCA
specifications (e.g., visual editors, analyzers, etc.) which can contribute to a
widespread adoption of TOSCA.

(D4) Integration of TOSCA with Existing Standard Proposals. An-
other interesting direction is to investigate how TOSCA can be integrated with
other initiatives. For instance, it is interesting to understand whether and how
TOSCA can be integrated with CAMP, another emerging standard targeting
the management of cloud applications. It is also interesting to understand which
of the existing workflow modeling languages (e.g., BPMN, WS-BPEL, etc.) may
be more suited for writing TOSCA plans.

(D5) Comparative Assessment of TOSCA. Since TOSCA is emerging, it
still has to be accepted as the de-facto standard for the management orchestra-

182 A. Brogi, J. Soldani, and P. Wang

tion of cloud applications. It is thus really interesting to devote further inves-
tigation to comparatively assess TOSCA with respect to other proposals that
permit to specify cloud applications (e.g., CAMP). Such an assessment may
be performed in terms of the expressive power of the language, the heaviness
of the specifications, and the exploitability of the specification for analysis and
verification.

We shall now expand the discussion regarding the above mentioned research
directions. Due to space limitations, we will mainly focus on (D1), which is the
scope of our immediate future work.

The reuse of TOSCA specifications can be fostered from two different per-
spectives: (i) (flexible) matching of available topology fragments with required
node types, and (ii) identification of common management patterns. In this way,
application developers become able to model their application without taking
care of the underlying infrastructure. Once the application is modeled, they can
indeed look for TOSCA nodes corresponding to PaaS offerings, select the most
suited one (possibly on the basis of desired QoS), and then just include it as a
single node in their application specification.

Informally speaking, (i) consists of determining a fragment of an available
application specification that can become a standalone TOSCA service to be
included in place of a desired node type while specifying new cloud applications.
This may be done only from a functional perspective, or also by including non-
functional features of desired nodes and available applications.

In case of (ii), starting from a bunch of cloud application specifications, it
may be interesting to identify recurring substructures (modeling the same node
types) and to export them as management patterns. The identified management
patterns could then be merged with other patterns and definitions so as to build-
up whole applications. This requires to solve two main issues, namely: how to
merge the topologies, and how to merge the deployment and management plans.
The former issue has already been studied [9], but the provided solution is no
longer applicable (since it thoroughly employs GroupTemplates, which are no
longer supported by TOSCA). So, there is a need for new solutions that can
either be based on the available approach [9] or not. The merging of plans has
not yet been studied in the TOSCA context, but it is strongly related to the
research work on web service composition. Some available solutions can then be
employed in order to solve this new, TOSCA-related issue.

The above discussion about the reuse of available definitions implicitly
assumes the ability to detect the TOSCA definitions corresponding to needed
components. However, it is worth noting that TOSCA models application com-
ponents from a management perspective, while application developers search
them from an operational viewpoint. For instance, an application developer
needing a web server searches a middleware component able to run web ap-
plications, rather than a component which offers the server-related management
features. Thus, a mechanism to map an application developer’s operational needs
to TOSCA management definitions is an interesting research perspective.

TOSCA in a Nutshell: Promises and Perspectives 183

Such a mechanism would allow to build-up a repository which lets applica-
tion developers satisfy their (operational) needs with available TOSCA (man-
agement) definitions. TOSCA will benefit from such a repository, since the avail-
ability of easy-to-find, reusable definitions will strongly simplify the specification
of applications in TOSCA, and thus exponentially decrease the time needed to
do it. Furthermore, a repository of official definitions also empowers the porta-
bility of application specifications because TOSCA containers should support all
of them.

Portability and reusability of application specifications are even more effective
if the repository addresses the issue of having application components offering
the same management features with similar (but different) names. A solution
may be to provide a super-type standardizing the name of common features to
be implemented by all derived definitions (maybe according to emerging API
standardization like CAMP [16]), so that containers can uniformly understand
them. Another solution may be to make the repository able to match available
specification with respect to needed ones, and to suitably adapt them [10].

5 Related Work

At the time of writing, TOSCA [1] is a hot research topic. This is witnessed
by the amount of research work which has already been produced, despite the
young age of TOSCA.

On the one hand, some research efforts are targeted at illustrating what
TOSCA is and how to use it. The primer [5] illustrates how TOSCA should
be employed to specify complex applications and their management. More pre-
cisely, it identifies the three possible usage roles (viz., application architect, type
architect, and artifact developer) and shows how they should employ TOSCA.
The primer also discusses how CSAR archives are declaratively and imperatively
processed. Binz et al. [3] outline the main goals of TOSCA and then discuss
how it achieves them. The discussion starts with a very high-level overview of
TOSCA, and then proceeds by illustrating how TOSCA achieves its goals. Lip-
ton [7] and Binz et al. [6] overview TOSCA a bit more in detail, with the aim at
highlighting the portability of TOSCA specifications, thus showing how TOSCA
avoids the cloud vendor lock-in problem. Each of the aforementioned efforts dis-
cusses general aspects of TOSCA, either focusing on the modeling language or on
other aspects like the processing of specifications or its goals (and sub-goals). In
this paper, we tried to reorganize the aforementioned available information in a
compact, easy-to-access description which comprises both the TOSCA modeling
language and the other aspects.

On the other hand, several researches are related to TOSCA, but do not tar-
get at illustrating TOSCA itself. These researches can be considered in line with
the research directions individuated in this paper. Brogi et al. [10] aim at in-
stantiating desired node types by reusing existing service templates, and thus
define four types of matching between service templates and node types (and
show how to adapt service templates, if needed). Since [10] illustrates how to

184 A. Brogi, J. Soldani, and P. Wang

match and adapt available TOSCA definitions, this can be considered in line
with (D1). Binz et al. [9] are also strongly related with (D1), since they show
how to improve resource sharing by merging the topologies of available cloud ap-
plications. OpenTOSCA [8] and Winery [12] are a container and a visual editor
for TOSCA, respectively. Thus, OpenTOSCA is related to (D2), while Winery
is in line with (D3). Kopp et al. [14] and Cardoso et al. [11] work in the direc-
tion (D4), by trying to integrate TOSCA with BPMN and USDL, respectively.
Finally, Waizenegger et al. [13] illustrate two possible mechanisms for automat-
ically processing policies expressed according to TOSCA, which are in line with
(D3), since they can be easily implemented as a TOSCA tool.

6 Conclusions

As mentioned in the Introduction, interested readers can browse various docu-
ments to get acquainted with TOSCA. In this paper, we reorganized the available
information so as to provide a compact, easy-to-access description of TOSCA
which may speed-up the learning process of this promising OASIS specification,
thus leveraging its widespread acceptance.

We have also discussed how TOSCA achieves its goals — automated appli-
cation deployment and management, portability of application descriptions and
their management, and interoperability and reusability of components — by
also trying to be as flexible as it can. We also discussed how a reduction of such
a flexibility (e.g, by reducing the number of supported plan/artifact languages)
may empower the portability of application descriptions across different TOSCA
containers.

In this paper, we also individuated some research perspectives, namely: (D1)
reuse of available specifications, (D2) enhanced and full-fledged implementa-
tions of so-called TOSCA containers, (D3) implementation of TOSCA-about
tools, (D4) integration of TOSCA with existing standard proposals, and (D5)
comparative assessment of TOSCA. (D1) and (D5) are scope of our future work.

As a final remark, it is worth highlighting that TOSCA is not the de-facto
standard for the interoperable specification of cloud applications. Its widespread
adoption depends not only on its potential, but also on commercial and eco-
nomical decisions. In this perspective, TOSCA may leverage of the set of big
companies (e.g., Alcatel-Lucent, CA Technologies, Fujitsu, Huawei, IBM, SAP)
which are active members of the OASIS TOSCA WG3.

References

1. OASIS: TOSCA 1.0 (Topology and Orchestration Specification for Cloud Applica-
tions), Version 1.0 (2013),
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

3 The full list of OASIS TOSCA WG members can be found at
https://www.oasis-open.org/committees/membership.php?wg_abbrev=tosca.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
https://www.oasis-open.org/committees/membership.php?wg_abbrev=tosca.

TOSCA in a Nutshell: Promises and Perspectives 185

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50–58 (2010)

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014)

4. Wettinger, J., Andrikopoulos, V., Strauch, S., Leymann, F.: Enabling dynamic de-
ployment of cloud applications using a modular and extensible PaaS environment.
In: 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD),
pp. 478–485 (2013)

5. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0 (2013),
http://docs.oasis-open.org/tosca/

tosca-primer/v1.0/tosca-primer-v1.0.pdf

6. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using
TOSCA. IEEE Internet Computing 16, 80–85 (2012)

7. Lipton, P.: Escaping Vendor Lock-in with TOSCA, an emerging Cloud Standard
for Portability. CA Technology Exchange 4, 49–55 (2013)

8. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 692–695. Springer, Heidelberg (2013)

9. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Weiss, A.: Improve Resource-
Sharing through Functionality-Preserving Merge of Cloud Application Topologies.
In: Desprez, F., Ferguson, D., Hadar, E., Leymann, F., Jarke, M., Helfert, M. (eds.)
Proceedings of the 3rd International Conference on Cloud Computing and Service
Science, CLOSER 2013, Aachen, Germany, May 8-10, 8 pages. SciTePress (2013)

10. Canal, C., Villari, M. (eds.): ESOCC 2013. CCIS, vol. 393, pp. 218–232. Springer,
Heidelberg (2013)

11. Cardoso, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Cloud computing
automation: Integrating USDL and TOSCA. In: Salinesi, C., Norrie, M.C., Pastor,
Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 1–16. Springer, Heidelberg (2013)

12. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool
for TOSCA-Based Cloud Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

13. Waizenegger, T., et al.: Policy4TOSCA: A policy-aware cloud service provisioning
approach to enable secure cloud computing. In: Meersman, R., Panetto, H., Dillon,
T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) ODBASE
2013. LNCS, vol. 8185, pp. 360–376. Springer, Heidelberg (2013)

14. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52.
Springer, Heidelberg (2012)

15. Pahl, C., Zhang, L., Fowley, F.: Interoperability standards for cloud architecture.
In: Desprez, F., Ferguson, D., Hadar, E., Leymann, F., Jarke, M., Helfert, M. (eds.)
CLOSER. SciTePress (2013)

16. OASIS: Cloud Application Management for Platforms (CAMP) Version 1.1 (2014),
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf

186 A. Brogi, J. Soldani, and P. Wang

17. DMTF: Cloud Infrastructure Management Interface, CIMI (2013),
http://www.dmtf.org/sites/default/files/

standards/documents/DSP0264 1.0.0.pdf

18. Open Mashup Alliance: Enterprise Mashup Markup Language, EMML (2011),
https://en.wikipedia.org/wiki/EMML

19. Open Grid Forum: Open Cloud Computing Interface, OCCI (2013),
http://occi-wg.org/about/specification/

20. OASIS: Open Component Service Architectures, Open-CSA (2007),
http://www.oasis-opencsa.org/specifications

21. DMTF: Open Virtualization Format, OVF (2014),
http://www.dmtf.org/sites/default/files/

standards/documents/DSP0243 2.1.0.pdf

22. OMG: Service Oriented Architecture Modeling Language, SOA-ML (2012),
http://www.omg.org/spec/SoaML/1.0.1/

23. W3C: Unified Service Description Language, USDL (2011),
http://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/

http://www.dmtf.org/sites/default/files/standards/documents/DSP0264_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0264_1.0.0.pdf
https://en.wikipedia.org/wiki/EMML
http://occi-wg.org/about/specification/
http://www.oasis-opencsa.org/specifications
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf
http://www.omg.org/spec/SoaML/1.0.1/
http://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/

Erratum to: Service-Oriented and Cloud
Computing

Massimo Villari1, Wolf Zimmermann2, and Kung-Kiu Lau3

1 Università di Messina, Dip. di Ingegneria Civile, Informatica, Edile, Ambientale,
e Matematica Applicata (DICIEAMA), C.Da Di Dio, No.1, 98166 Messina, Italy

mvillari@unime.it
2 Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,

V.-Seckendorff-Platz, 06099 Halle (Saale), Germany
zimmer@informatik.uni-halle.de

3 The University of Manchester, School of Computer Science,
Oxford Road, Manchester, M13 9PL, UK

kung-kiu@cs.man.ac.uk

Erratum to:

M. Villari et al. (Eds.)

Service-Oriented and Cloud Computing

DOI: 10.1007/978-3-662-44879-3

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© IFIP International
Federation for Information Processing. The book has been updated with the
changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-662-44879-3

M. Villari et al. (Eds.) : ESOCC 2014, LNCS 8745, p. E1, 2014.
c© IFIP International Federation for Information Processing 2017

http://dx.doi.org/10.1007/978-3-662-44879-3
http://dx.doi.org/10.1007/978-3-662-44879-3

Author Index

Andrikopoulos, Vasilios 1, 148

Bonacquisto, Paolo 123
Breitenbücher, Uwe 108
Brogi, Antonio 171
Bucchiarone, Antonio 62

Charfi, Anis 47
Colomer Collell, Daniel 47
Copil, Georgiana 93

Darsow, Alexander 1
De Sanctis, Martina 62
Di Modica, Giuseppe 123
Dustdar, Schahram 93, 160

Gómez Sáez, Santiago 148
Gorski, Peter Leo 81
Gusev, Marjan 17

Karastoyanova, Dimka 1
Koteska, Bojana 17
Kritikos, Kyriakos 138

Lenk, Alexander 32
Leymann, Frank 1, 108, 148
Lo Iacono, Luigi 81

Mezini, Mira 47
Moldovan, Daniel 93

Nguyen, Hoai Viet 81

Petralia, Giuseppe 123
Pistore, Marco 62
Plexousakis, Dimitris 138

Qanbari, Soheil 160

Reuter, Anja 148
Ristov, Sasko 17

Sebto, Vahid 160
Soldani, Jacopo 171

Tai, Stefan 32
Tomarchio, Orazio 123
Torkian, Daniel Behnam 81
Truong, Hong-Linh 93

Velkoski, Goran 17

Wang, PengWei 171
Wettinger, Johannes 108
Witteborg, Heiko 47

Zeginis, Chrysostomos 138

	Preface
	Organization
	Table of Contents
	CloudDSF – The Cloud Decision Support Framework for Application Migration
	1 Introduction
	2 Background
	3 CloudDSF
	3.1 Knowledge Base
	3.2 Visualization

	4 Evaluation
	4.1 Procedure
	4.2 Findings

	5 Discussion
	6 Related Works
	7 Conclusion
	References

	Windows Azure: Resource Organization Performance Analysis
	1 Introduction
	2 Related Work
	3 Testing Methodology
	3.1 Test Goal
	3.2 Cloud Testing Environment
	3.3 Test Cases
	3.4 Test Data

	4 Analysis of Experimental Results
	4.1 Experiment 1: Same Total Number of CPUs n
	4.2 Experiment 2: Scaling the Number of CPU Cores c
	4.3 Experiment 3: Scaling the Number of VMs v

	5 Discussion
	6 Conclusion and Future Work
	References

	Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud
	1 Introduction
	2 Related Work
	2.1 Warm Standby in the Cloud
	2.2 Hot Standby in the Cloud

	3 Cloud Standby
	3.1 Components and Methods
	3.2 Disaster Recovery States
	3.3 Disaster Recovery Process

	4 Evaluation
	4.1 Use Case
	4.2 Results

	5 Conclusion
	References

	Weaving Aspects and Business Processes through Model Transformation
	1 Introduction
	2 AO4BPMN2.0
	2.1 Language Overview
	2.2 Extending the BPMN 2.0 Metamodel with AO4BPMN Concepts
	2.3 Example Scenario: Agile Software Development

	3 Composition of Processes and Aspects
	3.1 Weaving Mechanism
	3.2 Example Scenario Revisited

	4 Implementation and Tooling
	4.1 Editor
	4.2 Weaver and Weaving Wizard

	5 Related Work
	6 Conclusion
	References

	Domain Objects for Dynamicand Incremental Service Composition
	1 Introduction
	2 Motivating Scenario
	3 General Approach
	3.1 Entity Representation
	3.2 Service Based Application Design
	3.3 Incremental Service Composition

	4 Formal Framework
	5 Implementation
	6 Related Work
	7 Conclusion
	References

	SOA-Readiness of REST
	1 Introduction
	2 REST
	3 SOA-Readiness of REST
	3.1 SOAP-Implemented SOA
	3.2 REST-Implemented SOA

	4 Empirical Analysis of REST Frameworks
	4.1 Test Application
	4.2 Service Invocations

	5 Results
	6 Conclusions and Outlook
	References

	QUELLE – A Framework for Accelerating the Development of Elastic Systems
	1 Introduction
	2 Motivation and Approach
	3 Quantifying Elasticity of Cloud Services
	3.1 Modeling Elasticity Capabilities of Cloud Services
	3.2 Representing Elasticity Requirements for SES
	3.3 Functions for Quantifying Elasticity of Cloud Services

	4 Algorithms for Recommending SES Configurations
	5 Prototype and Experiments
	5.1 Prototype
	5.2 Evaluating Elasticity of Amazon Cloud Services
	5.3 Recommending SES Configurations

	6 Related Work
	7 Conclusions and Future Work
	References

	DevOpSlang – Bridging the Gap between Development and Operations
	1 Introduction
	2 Problem Statement and Motivating Scenario
	3 DevOps-centric Methodology to Operate Applications
	4 DevOpSlang – A Language to Bridge the Gap
	5 Validation and Evaluation
	5.1 Devopsfile Evolution
	5.2 Recursive Orchestration of Devopsfiles

	6 Related Work
	7 Conclusions
	References

	A Procurement Market to Allocate Cloud Providers’ Residual Computing Capacity
	1 Introduction
	2 Motivation and Literature Review
	3 The Procurement Process
	4 An Adaptive Strategy for Cloud Providers
	5 Implementation and Testing
	6 Conclusion
	References

	Event Pattern Discovery for Cross-Layer Adaptation of Multi-cloud Applications
	1 Introduction
	2 Motivating Example
	3 Framework’s Architecture
	4 Component Meta-model
	5 Pattern Discovery
	6 Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References

	A GENTL Approach for Cloud Application Topologies
	1 Introduction
	2 Background
	3 The Generalized Topology Language
	3.1 The GENTL Language
	3.2 Mappings from Other Languages

	4 GENTL Annotations
	5 Tooling Support
	5.1 The GENTL Environment
	5.2 User Interface

	6 Related Work
	7 Conclusion
	References

	Cloud Resources-Events-Agents Model:Towards TOSCA-Based Applications
	1 Introduction
	2 Related Work
	3 REA – The Input Model
	4 TOSCA – The Output Model
	5 Mapping REA to TOSCA
	5.1 Conceptual Mapping
	5.2 Mapping Rules (M.R.)

	6 Implementation: CREAM Tool Support
	6.1 CREAM Architecture
	6.2 Package Description

	7 Conclusion and Outlook
	References

	TOSCA in a Nutshell:Promises and Perspectives
	1 Introduction
	2 Overview of TOSCA
	2.1 TOSCA Modeling Language
	2.2 Packaging and Processing of Application Specifications

	3 Analysis of the TOSCA Approach
	3.1 Topology Aspects
	3.2 Management Aspects
	3.3 Other Aspects

	4 Research Directions
	5 Related Work
	6 Conclusions
	References

	Erratum to: Service-Oriented and CloudComputing
	Author Index

