
8

Parameter Control

The issue of setting the values of evolutionary algorithm parameters before
running an EA was treated in the previous chapter. In this chapter we dis-
cuss how to do this during a run of an EA, in other words, we elaborate on
controlling EA parameters on-the-fly. This has the potential of adjusting the
algorithm to the problem while solving the problem. We provide a classifi-
cation of different approaches based on a number of complementary features
and present examples of control mechanisms for every major EA component.
Thus we hope to both clarify the points we wish to raise and also to give
the reader a feel for some of the many possibilities available for controlling
different parameters.

8.1 Introduction

In the previous chapter we argued that parameter tuning can greatly increase
the performance of EAs. However, the tuning approach has an inherent draw-
back: parameter values are specified before the run of the EA and these values
remain fixed during the run. But a run of an EA is an intrinsically dynamic,
adaptive process. The use of rigid parameters that do not change their values
is thus in contrast to this spirit. Additionally, it is intuitively obvious, and
has been empirically and theoretically demonstrated on many occasions, that
different values of parameters might be optimal at different stages of the evo-
lutionary process. For instance, large mutation steps can be good in the early
generations, helping the exploration of the search space, and small mutation
steps might be needed in the late generations for fine-tuning candidate solu-
tions. This implies that the use of static parameters itself can lead to inferior
algorithm performance.
A straightforward way to overcome the limitations of static parameters is by

replacing a parameter p by a function p(t), where t is the generation counter
(or any other measure of elapsed time). However, as discussed in Chap. 7,
the problem of finding optimal static parameters for a particular problem

© Springer-Verlag Berlin Heidelberg 2015
 ,A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing

131

 DOI 10.1007/978-3- -662 44874-8_Natural Computing Series, 8

132 8 Parameter Control

is already hard. Designing optimal dynamic parameters (that is, functions
for p(t)) may be even more difficult. Another drawback to this approach is
that the parameter value p(t) changes are caused by a ‘blind’ deterministic
rule triggered by the progress of time t, unaware of the current state of the
search. A well-known instance of this problem occurs in simulated anneal-
ing (Sect. 8.4.5) where a so-called cooling schedule has to be set before the
execution of the algorithm.
Mechanisms for modifying parameters during a run in an ‘informed’ way

were realised quite early in EC history. For instance, evolution strategies
changed mutation parameters on-the-fly by Rechenberg’s 1/5 success rule
[352] using information about the ratio of successful mutations. Davis ex-
perimented with changing the crossover rate in GAs based on the progress
realised by particular crossover operators [97]. The common feature of such
methods is the presence of a human-designed feedback mechanism that utilises
actual information about the search to determine new parameter values.
A third approach is based on the observation that finding good parameter

values for an EA is a poorly structured, ill-defined, complex problem. This is
exactly the kind of problem on which EAs are often considered to perform
better than other methods. It is thus a natural idea to use an EA for tuning an
EA to a particular problem. This could be done using a meta-EA or by using
only one EA that tunes itself to a given problem while solving that problem.
Self-adaptation, as introduced in evolution strategies for varying the mutation
parameters, falls within this category. In the next section we discuss various
options for changing parameters, illustrated by an example.

8.2 Examples of Changing Parameters

Consider a numerical optimisation problem of minimising

f(x) = f(x1, . . . , xn),

subject to some inequality and equality constraints

gi(x) ≤ 0, i = 1, . . . , q,

and
hj(x) = 0, j = q + 1, . . . ,m,

where the domains of the variables are given by lower and upper bounds
li ≤ xi ≤ ui for 1 ≤ i ≤ n. For such a problem we might design an EA based
on a floating-point representation, where each individual x in the population
is represented as a vector of floating-point numbers x = 〈x1, . . . , xn〉.

8.2 Examples of Changing Parameters 133

8.2.1 Changing the Mutation Step Size

Let us assume that offspring are produced by arithmetic crossover followed
by Gaussian mutation that replaces components of the vector x by

x′
i = xi +N(0, σ).

To adjust σ over time we use a function σ(t) defined by some heuristic rule
and a given measure of time t. For example, the mutation step size may be
defined by the current generation number t as:

σ(t) = 1− 0.9 · t

T
,

where t varies from 0 to T , the maximum generation number. Here, the mu-
tation step size σ(t), which is used for all for vectors in the population and for
all variables of each vector, decreases slowly from 1 at the beginning of the run
(t = 0) to 0.1 as the number of generations t approaches T . Such decreases may
assist the fine-tuning capabilities of the algorithm. In this approach, the value
of the given parameter changes according to a fully deterministic scheme. The
user thus has full control of the parameter, and its value at a given time t is
completely determined and predictable.
Second, it is possible to incorporate feedback from the search process, still

using the same σ for all vectors in the population and for all variables of each
vector. For example, Rechenberg’s 1/5 success rule [352] states that the ratio
of successful mutations to all mutations should be 1/5. Hence if the ratio is
greater than 1/5 the step size should be increased, and if the ratio is less
than 1/5 it should be decreased. The rule is executed at periodic intervals, for
instance, after k iterations each σ is reset by

σ′ =

⎧⎨
⎩

σ/c if ps > 1/5,
σ · c if ps < 1/5,
σ if ps = 1/5,

where ps is the relative frequency of successful mutations, measured over a
number of trials, and the parameter c should be 0.817 ≤ c ≤ 1 [372]. Using
this mechanism, changes in the parameter values are now based on feedback
from the search. The influence of the user is much less direct here than in
the deterministic scheme above. Of course, the mechanism that embodies the
link between the search process and parameter values is still a heuristic rule
indicating how the changes should be made, but the values of σ(t) are not
deterministic.
Third, we can assign an individual mutation step size to each solution

and make these co-evolve with the values encoding the candidate solutions.
To this end we extend the representation of individuals to length n + 1 as
〈x1, . . . , xn, σ〉 and apply some variation operators (e.g., Gaussian mutation
and arithmetic crossover) to the values of xi as well as to the σ value of an

134 8 Parameter Control

individual. In this way, not only the solution vector values (xi) but also the
mutation step size of an individual undergo evolution. A solution introduced
in Sect. 4.4.2 is:

σ′ = σ · eτ ·N(0,1), (8.1)

x′
i = xi + σ′ ·Ni(0, 1). (8.2)

Observe that within this self-adaptive scheme the heuristic character of the
mechanism resetting the parameter values is eliminated, and a certain value
of σ acts on all values of a single individual.
Finally, we can use a separate σi for each xi, extend the representation to

〈x1, . . . , xn, σ1, . . . , σn〉,

and use the mutation mechanism described in Eq. (4.4). The resulting system
is the same as the previous one, except the granularity, here we are co-evolving
n parameters of the EA instead of 1.

8.2.2 Changing the Penalty Coefficients

In this section we illustrate that the evaluation function (and consequently
the fitness function) can also be parameterised and varied over time. While
this is a less common option than tuning variation operators, it can provide
a useful mechanism for increasing the performance of an EA.
When dealing with constrained optimisation problems, penalty functions

are often used (see Chap. 13 for more details). A common technique is the
method of static penalties [302], which requires penalty parameters within the
evaluation function as follows:

eval(x) = f(x) +W · penalty(x),

where f is the objective function, penalty(x) is zero if no violation occurs
and is positive1 otherwise, and W is a user-defined weight prescribing how
severely constraint violations are weighted. For instance, a set of functions
fj (1 ≤ j ≤ m) can be used to construct the penalty, where the function fj
measures the violation of the jth constraint:

fj(x) =

{
max{0, gj(x)} if 1 ≤ j ≤ q,
|hj(x)| if q + 1 ≤ j ≤ m.

(8.3)

To adjust the evaluation function over time, we can replace the static pa-
rameter W by a function W (t). For example, the method in [237] uses

W (t) = (C · t)α,
1 For minimisation problems.

8.2 Examples of Changing Parameters 135

where C and α are constants. Note that the penalty pressure grows with the
evolution time provided 1 ≤ C and 1 ≤ α.
A second option is to utilise feedback from the search process. In one exam-

ple, the method decreases the penalty component W (t+1) for the generation
t+1 if all best individuals in the last k generations were feasible, and increases
penalties if all best individuals in the last k generations were infeasible. If there
are some feasible and infeasible individuals as best individuals in the last k
generations, W (t + 1) remains without change, cf. [45]. Technically, W (t) is
updated in every generation t in the following way:

W (t+ 1) =

⎧⎪⎨
⎪⎩

(1/β1) ·W (t) if b
i ∈ F for all t− k + 1 ≤ i ≤ t,

β2 ·W (t) if b
i ∈ S−F for all t− k + 1 ≤ i ≤ t,

W (t) otherwise.

In this formula, S is the set of all search points (solutions), F ⊆ S is a set of

all feasible solutions, b
i
denotes the best individual in terms of the function

eval in generation i, β1, β2 > 1, and β1 �= β2 (to avoid cycling).
Third, we could allow self-adaptation of the weight parameter, similarly to

the mutation step sizes in the previous section. For example, it is possible
to extend the representation of individuals into 〈x1, . . . , xn,W 〉, where W
is the weight that undergoes the same mutation and recombination as any
other variable xi. Furthermore, we can introduce a separate penalty for each
constraint as per Eq. (8.3). Hereby we obtain a vector of weights and can
extend the representation to 〈x1, . . . , xn, w1, . . . , wm〉. Then define

eval(x) = f(x) +

m∑
j=1

wjfj(x),

as the function to be minimised. Variation operators can then be applied to
both the x and the w part of these chromosomes, realising a self-adaptation
of the penalties, and thereby the fitness function.
It is important to note the crucial difference between self-adapting mutation

step sizes and constraint weights. Even if the mutation step sizes are encoded
in the chromosomes, the evaluation of a chromosome is independent from the
actual σ values. That is,

eval(〈x, σ〉) = f(x),

for any chromosome 〈x, σ〉. In contrast, if constraint weights are encoded in
the chromosomes, then we have

eval(〈x,w〉) = fw(x),

for any chromosome 〈x,w〉. This could enable the evolution to ‘cheat’ in the
sense of making improvements by minimising the weights instead of optimising
f and satisfying the constraints. Eiben et al. investigated this issue in [134]
and found that using a specific tournament selection mechanism neatly solves
this problem and enables the EA to solve constraints.

136 8 Parameter Control

8.3 Classification of Control Techniques

In classifying parameter control techniques of an evolutionary algorithm, many
aspects can be taken into account. For example:

1. what is changed (e.g., representation, evaluation function, operators, se-
lection process, mutation rate, population size, and so on)

2. how the change is made (i.e., deterministic heuristic, feedback-based
heuristic, or self-adaptive)

3. the evidence upon which the change is carried out (e.g., monitoring per-
formance of operators, diversity of the population, and so on)

4. the scope/level of change (e.g., population-level, individual-level, and so
forth)

In the following we discuss these items in more detail.

8.3.1 What Is Changed?

To classify parameter control techniques from the perspective of what com-
ponent or parameter is changed, it is necessary to agree on a list of all major
components of an evolutionary algorithm, which is a difficult task in itself.
For that purpose, let us assume the following components of an EA:

• representation of individuals
• evaluation function
• variation operators and their probabilities
• selection operator (parent selection or mating selection)
• replacement operator (survival selection or environmental selection)
• population (size, topology, etc.)

Note that each component can be parameterised, and that the number of
parameters is not clearly defined. Despite the somewhat arbitrary character
of this list of components and of the list of parameters of each component,
we will maintain the ‘what-aspect’ as one of the main classification features,
since this allows us to locate where a specific mechanism has its effect.

8.3.2 How Are Changes Made?

As illustrated in Sect. 8.2, methods for changing the value of a parameter (i.e.,
the ’how-aspect’) can be classified into one of three categories.

• Deterministic parameter control
Here the value of a parameter is altered by some deterministic in rule
predetermined (i.e., user-specified) manner without using any feedback
from the search. Usually, a time-varying schedule is used, i.e., the rule is
activated at specified intervals.

8.3 Classification of Control Techniques 137

• Adaptive parameter control
Here some form of feedback from the search serves as input to a mechanism
that determines the change. Updating the parameter values may involve
credit assignment, based on the quality of solutions discovered by different
operators/parameters, so that the updating mechanism can distinguish
between the merits of competing strategies. The important point to note
here is that the updating mechanism used to control parameter values is
externally supplied, rather than being part of the usual evolutionary cycle.

• Self-adaptive parameter control
Here the evolution of evolution is used to implement the self-adaptation
of parameters [257]. The parameters to be adapted are encoded into the
chromosomes and undergo mutation and recombination. The better values
of these lead to better individuals, which in turn are more likely to survive,
produce offspring and hence propagate these better parameter values. This
is an important distinction between adaptive and self-adaptive schemes: in
the latter the mechanisms for the credit assignment and updating of dif-
ferent strategy parameters are entirely implicit, i.e., they are the selection
and variation operators of the evolutionary cycle itself.

This terminology leads to the taxonomy illustrated in Fig. 8.1.

before the run during the run

Parameter setting

Parameter tuning Parameter control

Deterministic Adaptive Self−adaptive

Fig. 8.1. Global taxonomy of parameter setting in EAs

Some authors have introduced a different terminology, cf. [8] or [410], but
after the publication of [133] the one in Fig. 8.1 became the most widely
accepted one. However, we acknowledge that the terminology proposed here
is not perfect. For instance, the term “deterministic” control might not be
the most appropriate, as it is not determinism that matters, but the fact
that the parameter-altering mechanism is “uninformed”, i.e., takes no input
related to the progress of the search process. For example, one might randomly
change the mutation probability after every 100 generations, which is not a
deterministic process. Also, the terms “adaptive” and “self-adaptive” could
be replaced by the equally meaningful “explicitly adaptive” and “implicitly
adaptive”, respectively. We have chosen to use “adaptive” and “self-adaptive”
because of the widely accepted usage of the latter term.

138 8 Parameter Control

8.3.3 What Evidence Informs the Change?

The third criterion for classification concerns the evidence used for determin-
ing the change of parameter value [382, 397]. Most commonly, the progress of
the search is monitored by looking at the performance of operators, the di-
versity of the population, and so on, and the information gathered is used as
feedback for adjusting the parameters. From this perspective, we can further
distinguish between the following two cases:

• Absolute evidence
We speak of absolute evidence when the rule to change the value of a
parameter is applied when a predefined event occurs. For instance, one
could increase the mutation rate when the population diversity drops under
a given value, or resize the population based on estimates of schemata
fitness and variance. As opposed to deterministic parameter control, where
a rule fires by a deterministic trigger (e.g., time elapsed), here feedback
from the search is used. Such mechanisms require that the user has a clear
intuition about how to steer the given parameter into a certain direction in
cases that can be specified in advance (e.g., they determine the threshold
values for triggering rule activation). This intuition relies on the implicit
assumption that changes that were appropriate in another run on another
problem are applicable to this run on this problem.

• Relative evidence
In the case of using relative evidence, parameter values within the same
run are compared according to the positive/negative effects they produce,
and the better values get rewarded. The direction and/or magnitude of
the change of the parameter is not specified deterministically, but relative
to the performance of other values, i.e., it is necessary to have more than
one value present at any given time. As an example, consider an EA using
several crossovers with crossover rates adding up to 1.0 and being reset
based on the crossover’s performance measured by the quality of offspring
they create.

8.3.4 What Is the Scope of the Change?

As discussed earlier, any change within any component of an EA may affect
a gene (parameter), whole chromosomes (individuals), the entire population,
another component (e.g., selection), or even the evaluation function. This is
the aspect of the scope or level of adaptation [8, 214, 397]. Note, however,
that the scope or level is not an independent dimension, as it usually depends
on the component of the EA where the change takes place. For example, a
change of the mutation step size may affect a gene, a chromosome, or the entire
population, depending on the particular implementation (i.e., scheme used),
but a change in the penalty coefficients typically affects the whole population.
In this respect the scope feature is a secondary one, usually depending on the
given component and its actual implementation.

8.4 Examples of Varying EA Parameters 139

8.3.5 Summary

In conclusion, the main criteria for classifying methods that change the values
of the strategy parameters of an algorithm during its execution are:

1. What component/parameter is changed?
2. How is the change made?
3. What evidence is used to make the change?

Our classification is thus three-dimensional. The component dimension con-
sists of six categories: representation, evaluation function, variation opera-
tors (mutation and recombination), selection, replacement, and population.
The other dimensions have respectively three (deterministic, adaptive, self-
adaptive) and two categories (absolute, relative). Their possible combinations
are given in Table 8.1. As the table indicates, deterministic parameter con-
trol with relative evidence is impossible by definition, and so is self-adaptive
parameter control with absolute evidence. Within the adaptive scheme both
options are possible and are indeed used in practice.

Deterministic Adaptive Self-adaptive

Absolute + + –

Relative – + +

Table 8.1. Refined taxonomy of parameter setting in EAs: types of parameter
control along the type and evidence dimensions. The ‘–’ entries represent meaningless
(nonexistent) combinations

8.4 Examples of Varying EA Parameters

Here we discuss some illustrative examples concerning all major EA compo-
nents. For a more comprehensive overview the reader is referred to the classic
survey from 1999 [133] and its recent successor [241].

8.4.1 Representation

We illustrate variable representations with the delta coding algorithm of
Mathias and Whitley [461], which effectively modifies the encoding of the
function parameters. The motivation behind this algorithm is to maintain a
good balance between fast search and sustaining diversity. In our taxonomy
it can be categorised as an adaptive adjustment of the representation based
on absolute evidence. The GA is used with multiple restarts; the first run is
used to find an interim solution, and subsequent runs decode the genes as
distances (delta values) from the last interim solution. This way each restart

140 8 Parameter Control

forms a new hypercube with the interim solution at its origin. The resolution
of the delta values can also be altered at the restarts to expand or contract the
search space. The restarts are triggered when population diversity (measured
by the Hamming distance between the best and worst strings of the current
population) is not greater than 1. The sketch of the algorithm showing the
main idea is given in Fig. 8.2. Note that the number of bits for δ can be
increased if the same solution INTERIM is found.

BEGIN

/* given a starting population and genotype-phenotype encoding */
WHILE (HD > 1) DO

RUN GA with k bits per object variable;

OD

REPEAT UNTIL (global termination is satisfied) DO

save best solution as INTERIM;

reinitialise population with new coding;

/* k-1 bits as the distance δ to the object value in */
/* INTERIM and one sign bit */
WHILE (HD > 1) DO

RUN GA with this encoding;

OD

OD

END

Fig. 8.2. Outline of the delta coding algorithm

8.4.2 Evaluation Function

Evaluation functions are typically not varied in an EA because they are often
considered as part of the problem to be solved and not as part of the problem-
solving algorithm. In fact, an evaluation function forms the bridge between
the two, so both views are at least partially true. In many EAs the evaluation
function is derived from the (optimisation) problem at hand with a simple
transformation of the objective function. In the class of constraint satisfaction
problems, however, there is no objective function in the problem definition, cf.
Chap. 13. One possible approach here is based on penalties. Let us assume that
we have m constraints ci (i ∈ {1, . . . ,m}) and n variables vj (j ∈ {1, . . . , n})
with the same domain S. Then the penalties can be defined as follows:

f(s̄) =

m∑
i=1

wi × χ(s̄, ci),

8.4 Examples of Varying EA Parameters 141

where wi is the weight associated with violating ci, and

χ(s̄, ci) =

{
1 if s̄ violates ci,
0 otherwise.

Obviously, the setting of these weights has a large impact on the EA per-
formance, and ideally wi should reflect how hard ci is to satisfy. The problem
is that finding the appropriate weights requires much insight into the given
problem instance, and therefore it might not be practicable.
The stepwise adaptation of weights (SAW) mechanism, introduced by Eiben

and van der Hauw [149], provides a simple and effective way to set these
weights. The basic idea behind the SAW mechanism is that constraints that
are not satisfied after a certain number of steps (fitness evaluations) must be
difficult, and thus must be given a high weight (penalty). SAW-ing changes
the evaluation function adaptively in an EA by periodically checking the best
individual in the population and raising the weights of those constraints this
individual violates. Then the run continues with the new evaluation function.
A nice feature of SAW-ing is that it liberates the user from seeking good
weight settings, thereby eliminating a possible source of error. Furthermore,
the used weights reflect the difficulty of constraints for the given algorithm on
the given problem instance in the given stage of the search [151]. This property
is also valuable since, in principle, different weights could be appropriate for
different algorithms.

8.4.3 Mutation

A large majority of work on adapting or self-adapting EA parameters concerns
variation operators: mutation and recombination (crossover). The 1/5 rule of
Rechenberg we discussed earlier constitutes a classic example for adaptive mu-
tation step size control in ES. Furthermore, self-adaptive control of mutation
step sizes is traditional in ES [257].

8.4.4 Crossover

The classic example for adapting crossover rates in GAs is Davis’s adaptive
operator fitness. The method adapts the rates of crossover operators by re-
warding those that are successful in creating better offspring. This reward is
diminishingly propagated back to operators of a few generations back, who
helped set it all up; the reward is an increase in probability at the cost of other
operators [98]. The GA using this method applies several crossover operators
simultaneously within the same generation, each having its own crossover rate
pc(opi). Additionally, each operator has its local delta value di that represents
the strength of the operator measured by the advantage of a child created by
using that operator with respect to the best individual in the population. The

142 8 Parameter Control

local deltas are updated after every use of operator i. The adaptation mech-
anism recalculates the crossover rates periodically redistributing 15% of the
probabilities biased by the accumulated operator strengths, that is, the local
deltas. To this end, these di values are normalised so that their sum equals
15, yielding dnormi for each i. Then the new value for each pc(opi) is 85% of
its old value and its normalised strength:

pc(opi) = 0.85 · pc(opi) + dnormi .

Clearly, this method is adaptive based on relative evidence.

8.4.5 Selection

Most existing mechanisms for varying the selection pressure are based on
the so-called Boltzmann selection mechanism, which changes the selection
pressure during evolution according to a predefined cooling schedule [279].
The name originates from the Boltzmann trial from condensed matter physics,
where a minimal energy level is sought by state transitions. Being in a state
i the chance of accepting state j is

P [accept j] =

{
1 if Ei ≥ Ej ,

exp
(

Ei−Ej

Kb·T
)

if Ei < Ej ,

where Ei, Ej are the energy levels, Kb is a parameter called the Boltz-
mann constant, and T is the temperature. This acceptance rule is called the
Metropolis criterion.
We illustrate variable selection pressure in the survivor selection (replace-

ment) step by simulated annealing (SA). SA is a generate-and-test search
technique based on a physical, rather than a biological, analogy [2, 250]. For-
mally, however, SA can be envisioned as an evolutionary process with popu-
lation size of 1, undefined (problem-dependent) representation and mutation,
and a specific survivor selection mechanism. The selective pressure changes
during the course of the algorithm in the Boltzmann style. The main cycle in
SA is given in Fig. 8.3.
In this mechanism the parameter ck, the temperature, decreases accord-

ing to a predefined scheme as a function of time, making the probability of
accepting inferior solutions smaller and smaller (for minimisation problems).
From an evolutionary point of view, we have here a (1+1) EA with increasing
selection pressure.

8.4.6 Population

An innovative way to control the population size is offered by Arabas et
al. [11, 295] in their GA with variable population size (GAVaPS). In fact,
the population size parameter is removed entirely from GAVaPS, rather than

8.4 Examples of Varying EA Parameters 143

BEGIN

/* given a current solution i ∈ S */
/* given a function to generate the set of neighbours Ni of i */
generate j ∈ Ni;

IF (f(i) < f(j)) THEN

set i = j;
ELSE

IF (exp
(

f(i)−f(j)
ck

)
> random[0, 1)) THEN

set i = j;
FI

ESLE

FI

END

Fig. 8.3. Outline of the simulated annealing algorithm

adjusted on-the-fly. Certainly, in an evolutionary algorithm the population
always has a size, but in GAVaPS this size is a derived measure, not a con-
trollable parameter. The main idea is to assign a lifetime to each individual
when it is created, and then to reduce its remaining lifetime by one in each
consecutive generation. When the remaining lifetime becomes zero, the indi-
vidual is removed from the population. Two things must be noted here. First,
the lifetime allocated to a newborn individual is biased by its fitness: fitter in-
dividuals are allowed to live longer. Second, the expected number of offspring
of an individual is proportional to the number of generations it survives. Con-
sequently, the resulting system favours the propagation of good genes.
Fitting this algorithm into our general classification scheme is not straight-

forward because it has no explicit mechanism that sets the value of the popu-
lation size parameter. However, the procedure that implicitly determines how
many individuals are alive works in an adaptive fashion using information
about the status of the search. In particular, the fitness of a newborn indi-
vidual is related to the fitness of the present generation, and its lifetime is
allocated accordingly. This amounts to using relative evidence.

8.4.7 Varying Several Parameters Simultaneously

Mutation, crossover, and population size are all controlled on-the-fly in the
GA “without parameters” of Bäck et al. in [25]. Here, the self-adaptive mu-
tation from [17] (Sect. 8.4.3) is adopted without changes, a new self-adaptive
technique is invented for regulating the crossover rates of the individuals,
and the GAVaPS lifetime idea (Sect. 8.4.6) is adjusted for a steady-state GA
model. The crossover rates are included in the chromosomes, much like the
mutation rates. If a pair of individuals is selected for reproduction, then their

144 8 Parameter Control

individual crossover rates are compared with a random number r ∈ [0, 1], and
an individual is seen as ready to mate if its pc > r. Then there are three
possibilities:

1. If both individuals are ready to mate then uniform crossover is applied,
and the resulting offspring is mutated.

2. If neither is ready to mate then both create a child by mutation only.
3. If exactly one of them is ready to mate, then the one not ready creates a

child by mutation only (which is inserted into the population immediately
through the steady-state replacement), the other is put on hold, and the
next parent selection round picks only one other parent.

This study differs from those discussed before in that it explicitly com-
pares GA variants using only one of the (self-)adaptive mechanisms and the
GA applying them all. The experiments show remarkable outcomes: the com-
pletely (self-)adaptive GA wins, closely followed by the one using only the
adaptive population size control, and the GAs with self-adaptive mutation
and crossover are significantly worse.

8.5 Discussion

Summarising this chapter, a number of things can be noted. First, parameter
control in an EA can have two purposes. It can be done to find good parameter
values for the EA at hand. Thus, it offers the same benefits as parameter
tuning, but in an on-line fashion. From this perspective tuning and control are
two different approaches to solving the same problem. Whether or not one is
preferable over the other is an open question with very little empirical evidence
to support an answer. Systematic investigations are particularly difficult here
because of methodological problems. The essence of these problems is that a
fair comparison of the extra computational costs (learning overhead) and the
performance gains is hard to define in general.
The other motivation for controlling parameters on-the-fly is the assumption

that the given parameter can have a different ‘optimal’ value in different stages
of the search. If this holds, then there is simply no optimal static parameter
value; for good EA performance one must vary this parameter. From this
perspective tuning and control are not the same, control offers a benefit that
tuning cannot.
The second thing to remark is that making a parameter (self-)adaptive does

not necessarily mean that we obtain an EA with fewer parameters. For in-
stance, in GAVaPS the population size parameter is eliminated at the cost
of introducing two new ones: the minimum and maximum lifetime of new-
born individuals. If the EA performance is sensitive to these new parameters
then such a parameter replacement can make things worse. This problem
also occurs on another level. One could say that the procedure that allocates
lifetimes in GAVaPS, the probability redistribution mechanism for adaptive

8.5 Discussion 145

crossover rates (Sect. 8.4.4), or the function specifying how the σ values are
mutated in ES (Eq. (4.4)) are also (meta)parameters. It is in fact an assump-
tion that these are intelligently designed and their effect is positive. In many
cases there are more possibilities, that is, possibly well-working procedures
one can design. Comparing these possibilities implies experimental (or the-
oretical) studies very much like comparing different parameter values in a
classical setting. Here again, it can be the case that algorithm performance is
not so sensitive to details of this (meta)parameter, which fully justifies this
approach.
Third, it is important to note that the examples in the foregoing sections,

while serving as good illustrations of various aspects of parameter control, do
not represent the state of the art in 2014. There has been much research into
parameter control during the last decade. It has been successfully applied
in various domains of metaheuristics, including Evolution Strategies [257],
Genetic Algorithms [162, 291], Differential Evolution [349, 280], and Par-
ticle Swarm Optimization [473]. Furthermore, there are several noteworthy
contributions to the techniques behind parameter control. These range from
inventive ideas that need further elaboration, like applying self-organised crit-
icality [266], self-adaptation of population level parameters (e.g., population
size) [144] or tuning the controllers to a problem instance [242], to gener-
ally applicable mechanisms including adaptive pursuit strategies for operator
allocation [429], the Compass method [286] or ACROMUSE [291].
These and other valuable contributions to the field provide more and more

evidence about the possible benefits and accumulate the knowhow of suc-
cessful parameter control. Although the field is still in development, we can
identify some trends and challenges. The research community seems to con-
verge on the idea that successful parameter control must take into account two
types of information regarding the evolutionary search: data about fitness and
population diversity. However, there is a wide variety of approaches to how
exactly we should define these types of information; for instance, there are
many different ways to define diversity. A very promising approach was put
forward recently by McGinley et al. based on the idea of considering the di-
versity of the fittest part of the population (the ‘healthy’ individuals) instead
of the whole population’s diversity [291]. Another agreement on a conceptual
level is that a control mechanism is only successful if it appropriately balances
exploration and exploitation. But here again, there is no generally accepted
definition of these notions, indicating the need for more research [142, 91].
Perhaps one of the biggest obstacles that hinders widespread adoption of ex-
isting parameter control techniques is the ‘patchwork problem’. The problem
here is the lack of generally applicable methods for controlling EA parameters.
There are numerous techniques to control mutation, quite a lot for control-
ling recombination, several ways to adjust population size and a handful for
changing selection pressure on-the fly. To build an EA with all parameters
controlled, one needs to pick some method for each parameter thus creating a

146 8 Parameter Control

potpourri or patchwork with no solid evidence indicating how it all will work
together.
Finally, let us place the issue in a larger perspective of parameter setting

in EAs [273]. Over recent decades the EC community shifted from believing
that EA performance is to a large extent independent from the given prob-
lem instance to realising that it is. In other words, it is now acknowledged
that EAs need more or less fine-tuning to specific problems and problem in-
stances. Ideally, this should be automated and advanced (search) algorithms
should determine the best EA setting, instead of conventions and the users’
intuitions. For the case of doing this in advance, before the EA run there
are several powerful algorithms developed over the last ten years, see Section
7.6 and [145]. To put it optimistically, the tuning problem is now solved, and
the community of EA researchers and practitioners can adopt tuning as part
of the regular workflow. However, the picture is completely different for pa-
rameter control. As outlined above, this field is still in its infancy, requiring
fundamental research into the most essential concepts (diversity, exploration,
etc.) as well as algorithmic development towards good control strategies and
some unification (solution of the patchwork problem). To this end, we can rec-
ommend the recent overview of Karafotias et al. [241] that identifies current
research trends and provides suggestions for important research directions.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org

	8 Parameter Control
	8.1 Introduction
	8.2 Examples of Changing Parameters
	8.2.1 Changing the Mutation Step Size
	8.2.2 Changing the Penalty Coefficients

	8.3 Classification of Control Techniques
	8.3.1 What Is Changed?
	8.3.2 How Are Changes Made?
	8.3.3 What Evidence Informs the Change?
	8.3.4 What Is the Scope of the Change?
	8.3.5 Summary

	8.4 Examples of Varying EA Parameters
	8.4.1 Representation
	8.4.2 Evaluation Function
	8.4.3 Mutation
	8.4.4 Crossover
	8.4.5 Selection
	8.4.6 Population
	8.4.7 Varying Several Parameters Simultaneously

	8.5 Discussion

