
4

Representation, Mutation, and Recombination

As explained in Chapt. 3, there are two fundamental forces that form the basis
of evolutionary systems: variation and selection. In this chapter we discuss the
EA components behind the first one. Since variation operators work at the
equivalent of the genetic level, that is to say they work on the representation of
solutions, rather than on solutions themselves, this chapter is subdivided into
sections that deal with different ways in which solutions can be represented
and varied within the overall search algorithm.

4.1 Representation and the Roles of Variation Operators

The first stage of building any evolutionary algorithm is to decide on a genetic
representation of a candidate solution to the problem. This involves defining
the genotype and the mapping from genotype to phenotype. When choosing
a representation, it is important to choose the right representation for the
problem being solved. In many cases there will be a range of options, and get-
ting the representation right is one of the most difficult parts of designing a
good evolutionary algorithm. Often this only comes with practice and a good
knowledge of the application domain. In the following sections, we look more
closely at some commonly used representations, and the genetic operators
that might be applied to them. It is important to stress, however, that while
the representations described here are commonly used, they might not be the
best representations for your application. Equally, although we present the
representations and their associate operators separately, it frequently turns
out in practice that using mixed representations is a more natural and suit-
able way of describing and manipulating a solution than trying to shoehorn
different aspects of a problem into a common form.
Mutation is the generic name given to those variation operators that use

only one parent and create one child by applying some kind of randomised
change to the representation (genotype). The form taken depends on the
choice of encoding used, as does the meaning of the associated parameter,

© Springer-Verlag Berlin Heidelberg 2015
 ,A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing

49

 DOI 10.1007/978-3- -662 44874-8_Natural Computing Series, 4

50 4 Representation, Mutation, and Recombination

which is often introduced to regulate the intensity or magnitude of mutation.
Depending on the given implementation, this can be mutation probability, mu-
tation rate, mutation step size, etc. In the descriptions below we concentrate
on the choice of operators rather than of parameters. However, the latter can
make a significant difference in the behaviour of the evolutionary algorithm,
and this is discussed in more depth in Chap. 7.
Recombination, the process whereby a new individual solution is created

from the information contained within two (or more) parent solutions, is con-
sidered by many to be one of the most important features in evolutionary
algorithms. A lot of research activity has focused on it as the primary mecha-
nism for creating diversity, with mutation considered as a background search
operator. However, different strands of EC historically emphasised different
variation operators, and as these came together under the umbrella of evolu-
tionary algorithms, this emphasis prompted a great deal of debate. Regardless
of the merits of different viewpoints, the ability to combine partial solutions
via recombination is certainly one of the features that most distinguishes EAs
from other global optimisation algorithms.
Although the term recombination has come to be used for the more general

case, early authors used the term crossover, motivated by the biological
analogy to meiosis (see Sect. 2.3.2). Therefore we will occasionally use the
terms interchangeably, although crossover tends to refer to the most common
two-parent case. Recombination operators are usually applied probabilistically
according to a crossover rate pc. Usually two parents are selected and two
offspring are created via recombination of the two parents with probability
pc; or by simply copying the parents, with probability 1− pc.
Distinguishing variation operators by their arity a makes it a straightfor-

ward idea to go beyond the usual a = 1 (mutation) and a = 2 (crossover).
The resulting multiparent recombination operators for a = 3, 4, . . . are
simple to define and implement. This provides the opportunity to experiment
with evolutionary processes using reproduction schemes that do not exist in
biology. From the technical point of view this offers a tool for amplifying the
effects of recombination. Although such operators are not widely used in EC,
there are many examples that have been proposed during the development of
the field, even as early as 1966 [67], see [126, 128] for an overview, and Sect. 6.6
for a description of how this idea is applied in differential evolution. These
operators can be categorised by the basic mechanism used for combining the
information of the parent individuals. This mechanism can be:

• based on allele frequencies, e.g., p-sexual voting [311] generalising uniform
crossover;

• based on segmentation and recombination of the parents, e.g., the diagonal
crossover in [139]; generalising n-point crossover

• based on numerical operations on real-valued alleles, e.g., the centre of
mass crossover [434], generalising arithmetic recombination operators.

4.2 Binary Representation 51

In general, it cannot be claimed that increasing the arity of recombination
has a positive effect on the performance of an EA – this depends very much
on the type of recombination and the problem at hand. However, systematic
studies on landscapes with tuneable ruggedness [143] and a large number of
experimental investigations on various problems clearly show that using more
than two parents can accelerate evolutionary search and be advantageous in
many cases.

4.2 Binary Representation

The first representation we look at is one of the simplest – the binary one used
in Sect. 3.3. This is one of the earliest representations, and historically many
genetic algorithms (GAs) have (mistakenly) used this representation almost
independently of the problem they were trying to solve. Here the genotype
consists simply of a string of binary digits – a bit-string.
For a particular application we have to decide how long the string should

be, and how we will interpret it to produce a phenotype. In choosing the
genotype–phenotype mapping for a specific problem, one has to make sure that
the encoding allows that all possible bit strings denote a valid solution to the
given problem1 and that, vice versa, all possible solutions can be represented.
For some problems, particularly those concerning Boolean decision vari-

ables, the genotype–phenotype mapping is natural. One example is the knap-
sack problem described in Sect. 3.4.2, where for each possible item a Boolean
decision was evolved, denoting whether it was included in the final solution.
Frequently bit-strings are used to encode other nonbinary information. For
example, we might interpret a bit-string of length 80 as 10 integers, each en-
coded as 8-bit integers (allowing for 256 possible values), or five 16-bit real
numbers. Using bit-strings to encode nonbinary information is usually a mis-
take, and better results can be obtained by using the integer or real-valued
representations directly.
One of the problems of coding numbers in binary is that different bits

have different significance, and so the effect of a single bit mutation is very
variable. Using standard binary code has the disadvantage that the Hamming
distance between two consecutive integers is often not equal to one. If the
goal is to evolve an integer number, you would like to have equal probabilities
of changing a 7 into an 8 or a 6. However, changing 0111 to 1000 requires
four bit-flips while changing it to 0110 takes just one. Thus with a mutation
operator that randomly, and independently, changes each allele value with
probability pm < 0.5, the probability of changing 7 to 8 is much less than
changing 7 to 6. This can be helped by using Gray coding, a variation on
the way that integers are mapped on bit strings where consecutive integers
always have Hamming distance one.

1 In practice this restriction to validity in not always possible; see Chap. 13 for a
more complete discussion of this issue.

52 4 Representation, Mutation, and Recombination

4.2.1 Mutation for Binary Representation

Although a few other schemes have been occasionally used, the most common
mutation operator for binary encodings considers each gene separately and
allows each bit to flip (i.e., from 1 to 0 or 0 to 1) with a small probability
pm. The actual number of values changed is thus not fixed, but depends on
the sequence of random numbers drawn, so for an encoding of length L, on
average L ·pm values will be changed. In Fig. 4.1 this is illustrated for the case
where the third, fourth, and eighth random values generated are less than the
bitwise mutation rate pm.

Fig. 4.1. Bitwise mutation for binary encodings

A number of studies and recommendations have been made for the choice
of suitable values for the bitwise mutation rate pm. Most binary coded GAs
use mutation rates in a range such that on average between one gene per
generation and one gene per offspring is mutated. However, it is worth noting
at the outset that the most suitable choice to use depends on the desired
outcome. For example, does the application require a population in which
all members have high fitness, or simply that one highly fit individual is
found? The former suggests a lower mutation rate, less likely to disrupt good
solutions. In the latter case one might choose a higher mutation rate if the
potential benefits of ensuring good coverage of the search space outweighed
the cost of disrupting copies of good solutions2.

4.2.2 Recombination for Binary Representation

Three standard forms of recombination are generally used for binary repre-
sentations. They all start from two parents and create two children, although
all of these have been extended to the more general case where a number of
parents may be used [152], and there are also situations in which only one of
the offspring might be considered (Sect. 5.1).

One-Point Crossover One-point crossover was the original recombination
operator proposed in [220] and examined in [102]. It works by choosing a

2 In fact this example illustrates that the algorithm’s parameters cannot be chosen
independently: in the second case we might couple higher mutation rates with a
more aggressive selection policy to ensure the best solutions were not lost.

4.2 Binary Representation 53

random number r in the range [1, l − 1] (with l the length of the encoding),
and then splitting both parents at this point and creating the two children
by exchanging the tails (Fig. 4.2, top). Note that by using the range [1, l− 1]
the crossover point is prevented from falling before the first position (r = 0)
or after the last position (r = l).

Fig. 4.2. One-point crossover (top) and n-point crossover with n = 2 (bottom)

n-Point Crossover One-point crossover can easily be generalised to
n-point crossover, where the chromosome is broken into more than two
segments of contiguous genes, and the offspring are created by taking alter-
native segments from the parents. In practice this means choosing n random
crossover points in [1, l−1], which is illustrated in Fig. 4.2 (bottom) for n = 2.

Uniform Crossover The previous two operators worked by dividing the
parents into a number of sections of contiguous genes and reassembling them
to produce offspring. In contrast to this, uniform crossover [422] works by
treating each gene independently and making a random choice as to which
parent it should be inherited from. This is implemented by generating a string
of l random variables from a uniform distribution over [0,1]. In each position,
if the value is below a parameter p (usually 0.5), the gene is inherited from
the first parent; otherwise from the second. The second offspring is created
using the inverse mapping. This is illustrated in Fig. 4.3.

In our discussion so far, we have suggested that in the absence of prior
information, recombination worked by randomly mixing parts of the parents.
However, as Fig. 4.2 illustrates, n-point crossover has an inherent bias in
that it tends to keep together genes that are located close to each other in

54 4 Representation, Mutation, and Recombination

Fig. 4.3. Uniform crossover. The array [0.3, 0.6, 0.1, 0.4, 0.8, 0.7, 0.3, 0.5, 0.3] of
random numbers and p = 0.5 were used to decide inheritance for this example.

the representation. Furthermore, when n is odd (e.g., one-point crossover),
there is a strong bias against keeping together combinations of genes that are
located at opposite ends of the representation. These effects are known as
positional bias and have been extensively studied from both a theoretical
and experimental perspective [157, 412] (see Sect. 16.1 for more details). In
contrast, uniform crossover does not exhibit any positional bias. However, un-
like n-point crossover, uniform crossover does have a strong tendency towards
transmitting 50% of the genes from each parent and against transmitting an
offspring a large number of coadapted genes from one parent. This is known
as distributional bias.
The general nature of these algorithms (and the No Free Lunch theorem

[467], Sect. 16.10) make it impossible to state that one or the other of these
operators performs best on any given problem. Nevertheless, an understand-
ing of the types of bias exhibited by different recombination operators can be
invaluable when designing an algorithm for a particular problem, particularly
if there are known patterns or dependencies in the chosen representation that
can be exploited. To use the knapsack problem as an example, it might make
sense to use an operator that is likely to keep together the decisions for the
first few heaviest items. If the items are ordered by weight (cost) in our rep-
resentation, then we could make this more likely by using n-point crossover
with its positional bias. However, if we used a random ordering this might
actually make it less likely that co-adapted values for certain decisions were
transmitted together, so we might prefer uniform crossover.

4.3 Integer Representation

As we hinted in the previous section, binary representations are not always
the most suitable if our problem more naturally maps onto a representation
where different genes can take one of a set of values. One obvious example of
when this might occur is the problem of finding the optimal values for a set of
variables that all take integer values. These values might be unrestricted (i.e.,
any integer value is permissible), or might be restricted to a finite set: for ex-
ample, if we are trying to evolve a path on a square grid, we might restrict the

4.3 Integer Representation 55

values to the set {0,1,2,3} representing {North, East, South, West}. In either
case an integer encoding is probably more suitable than a binary encoding.
When designing the encoding and variation operators, it is worth considering
whether there are any natural relations between the possible values that an
attribute can take. This might be obvious for ordinal attributes such as
integers (2 is more like 3 than it is 389), but for cardinal attributes such
as the compass points above, there may not be a natural ordering.3

To give a well-known example of where there is no natural ordering, let
us consider the graph k-colouring problem. Here we are given a set of points
(vertices) and a list of connections between them (edges). The task is to assign
one of k colours to each vertex, so that no two vertices which are connected by
an edge share the same colour. For this problem there is no natural ordering:
‘red’ is no more like ‘yellow’ than ‘blue’, as long as they are different. In fact,
we could assign the colours to the k integers representing them in any order,
and still get valid equivalent solutions.

4.3.1 Mutation for Integer Representations

For integer encodings there are two principal forms of mutation used, both of
which mutate each gene independently with user-defined probability pm.

Random Resetting Here the bit-flipping mutation of binary encodings
is extended to random resetting: in each position independently, with
probability pm, a new value is chosen at random from the set of permissible
values. This is the most suitable operator to use when the genes encode for
cardinal attributes, since all other gene values are equally likely to be chosen.

Creep Mutation This scheme was designed for ordinal attributes and works
by adding a small (positive or negative) value to each gene with probability p.
Usually these values are sampled randomly for each position, from a distribu-
tion that is symmetric about zero, and is more likely to generate small changes
than large ones. It should be noted that creep mutation requires a number of
parameters controlling the distribution from which the random numbers are
drawn, and hence the size of the steps that mutation takes in the search space.
Finding appropriate settings for these parameters may not be easy, and it is
sometimes common to use more than one mutation operator in tandem from
integer-based problems. For example, in [98] both a “big creep” and a “little
creep” operator are used. Alternatively, random resetting might be used with
low probability, in conjunction with a creep operator that tended to make
small changes relative to the range of permissible values.

3 There are various naming conventions used to distinguish these two types of
attributes. These are discussed further in Chap. 7 and displayed in Table 7.1.

56 4 Representation, Mutation, and Recombination

4.3.2 Recombination for Integer Representation

For representations where each gene has a finite number of possible allele
values (such as integers) it is normal to use the same set of operators as
for binary representations. On the one hand, these operators are valid: the
offspring would not fall outside the given genotype space. On the other hand,
these operators are also sufficient: it usually does not make sense to consider
‘blending’ allele values of this sort. For example, even if genes represent integer
values, averaging an even and an odd integer yields a non-integral result.

4.4 Real-Valued or Floating-Point Representation

Often the most sensible way to represent a candidate solution to a problem is
to have a string of real values. This occurs when the values that we want to
represent as genes come from a continuous rather than a discrete distribution
— for example, if they represent physical quantities such as the length, width,
height, or weight of some component of a design that can be specified within a
tolerance smaller than integer values. A good example would be the satellite
dish holder boom described in Sect. 2.4, where the design is encoded as a
series of angles and spar lengths. Another example might be if we wished to
use an EA to evolve the weights on the connections beween the nodes in an
artificial neural network. Of course, on a computer the precision of these real
values is actually limited by the implementation, so we will refer to them as
floating-point numbers. The genotype for a solution with k genes is now a
vector 〈x1, . . . , xk〉 with xi ∈ IR.

4.4.1 Mutation for Real-Valued Representation

For floating-point representations, it is normal to ignore the discretisation
imposed by hardware and consider the allele values as coming from a contin-
uous rather than a discrete distribution, so the forms of mutation described
above are no longer applicable. Instead it is common to change the allele value
of each gene randomly within its domain given by a lower Li and upper Ui

bound,4 resulting in the following transformation:

〈x1, . . . , xn〉 → 〈x′
1, . . . , x

′
n〉, where xi, x

′
i ∈ [Li, Ui].

As with integer representations, two types can be distinguished according
to the probability distribution from which the new gene values are drawn:
uniform and nonuniform mutation.

4 We assume here that the domain of each variable is a single interval [Li, Ui] ⊆ IR.
The generalisation to a union of disjoint intervals is straightforward.

4.4 Real-Valued or Floating-Point Representation 57

Uniform Mutation For this operator the values of x′
i are drawn uniformly

randomly from [Li, Ui]. This is the most straightforward option, analogous
to bit-flipping for binary encodings and the random resetting for integer
encodings. It is normally used with a positionwise mutation probability.

Nonuniform Mutation Perhaps the most common form of nonuniform
mutation used with floating-point representations takes a form analogous to
the creep mutation for integers. It is designed so that usually, but not always,
the amount of change introduced is small. This is achieved by adding to the
current gene value an amount drawn randomly from a Gaussian distribution
with mean zero and user-specified standard deviation, and then curtailing the
resulting value to the range [Li, Ui] if necessary. This distribution, shown in
Eq. 4.1, has the feature that the probability of drawing a random number
with any given magnitude is a rapidly decreasing function of the standard
deviation σ. Approximately two thirds of the samples drawn will lie within
plus or minus one standard deviation, which means that most of the changes
made will be small, but there is nonzero probability of generating very large
changes since the tail of the distribution never reaches zero. Thus the σ value
is a parameter of the algorithm that determines the extent to which given
values xi are perturbed by the mutation operator. For this reason σ is often
called the mutation step size. It is normal practice to apply this operator
with probability one per gene, and instead the mutation parameter is used
to control the standard deviation of the Gaussian and hence the probability
distribution of the step sizes taken.

p(Δxi) =
1

σ
√
2π

· e− (Δxi−ξ)2

2σ2 . (4.1)

An alternative to the Gaussian distribution is the use of a Cauchy dis-
tribution, which has a ‘fatter’ tail. That is, the probabilities of generating
larger values are slightly higher than for a Gaussian with the same standard
deviation [469].

4.4.2 Self-adaptive Mutation for Real-Valued Representation

As described above, non-uniform mutation applied to continuous variables is
usually done by adding some random variables from a Gaussian distribution,
with zero mean and a standard deviation which controls the mutation step
size. The concept of self-adaptation represents a solution to the problem
of how to adapt the step-sizes, which has been successfully demonstrated in
many domains, not only for real-valued, but also for binary and integer search
spaces [24]. The essential feature is that the step sizes are also included in the
chromosomes and they themselves undergo variation and selection.
Details on how to mutate the value of σ are given below. The key concept

is that the mutation step sizes are not set by the user; rather the σ coevolves
with the solutions (the x̄ part). In order to achieve this behaviour it is essential

58 4 Representation, Mutation, and Recombination

to modify the value of σ first, and then mutate the xi values with the new σ
value. The rationale behind this is that a new individual 〈x̄′, σ′〉 is effectively
evaluated twice. Primarily, it is evaluated directly for its viability during sur-
vivor selection based on f(x̄′). Second, it is evaluated for its ability to create
good offspring. This happens indirectly: a given step size evaluates favourably
if the offspring generated by using it prove viable (in the first sense). Thus,
an individual 〈x̄′, σ′〉 represents both a good x̄′ that survived selection and a
good σ′ that proved successful in generating this good x̄′ from x̄.
The alert reader may have noticed that there is an important underlying

assumption behind the idea of using varying mutation step sizes. Namely,
we assume that under different circumstances different step sizes will behave
differently: some will be better than others. These circumstances can be
given various interpretations. For instance, we might consider time and
distinguish different stages within the evolutionary search process and expect
that different mutation strategies would be appropriate in different stages.
Self-adaptation can then be a mechanism adjusting the mutation strategy as
the search is proceeding. Alternatively, we can consider space and observe
that the local vicinity of an individual, i.e., the shape of the fitness landscape
in its neighbourhood, determines what good mutations are: those that jump
into the direction of fitness increase. Assigning a separate mutation strategy
to each individual, which coevolves with it, opens the possibility to learn and
use a mutation operator suited for the local topology. Issues related to these
considerations are treated extensively in the chapter on parameter control,
Chap. 8. In the following we describe three special cases of self-adaptive
mutation in more detail.

Uncorrelated Mutation with One Step Size In the case of uncorrelated
mutation with one step size, the same distribution is used to mutate each xi,
therefore we only have one strategy parameter σ in each individual. This σ
is mutated each time step by multiplying it by a term eΓ , with Γ a random
variable drawn each time from a normal distribution with mean 0 and standard
deviation τ . Since N(0, τ) = τ · N(0, 1), the mutation mechanism is thus
specified by the following formulas:

σ′ = σ · eτ ·N(0,1), (4.2)

x′
i = xi + σ′ ·Ni(0, 1). (4.3)

Furthermore, since standard deviations very close to zero are unwanted
(they will have on average a negligible effect), the following boundary rule is
used to force step sizes to be no smaller than a threshold:

σ′ < ε0 ⇒ σ′ = ε0.

In these formulas N(0, 1) denotes a draw from the standard normal distri-
bution, while Ni(0, 1) denotes a separate draw from the standard normal

4.4 Real-Valued or Floating-Point Representation 59

distribution for each variable i. The proportionality constant τ is an external
parameter to be set by the user. It is usually inversely proportional to the
square root of the problem size:

τ ∝ 1/
√
n.

The parameter τ can be interpreted as a kind of learning rate, as in neural
networks. Bäck [22] explains the reasons for mutating σ by multiplying with
a variable with a lognormal distribution as follows:

• Smaller modifications should occur more often than large ones.
• Standard deviations have to be greater than 0.
• The median (0.5-quantile) should be 1, since we want to multiply the σ.
• Mutation should be neutral on average. This requires equal likelihood of

drawing a certain value and its reciprocal value, for all values.

The lognormal distribution satisfies all these requirements.

Fig. 4.4. Mutation with n = 2, nσ = 1, nα = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form a circle. The probability of
moving along the y-axis (little effect on fitness) is the same as that of moving along
the x-axis (large effect on fitness)

Figure 4.4 shows the effects of mutation in two dimensions. That is, we
have an objective function IR2 → IR, and individuals are of the form 〈x, y, σ〉.
Since there is only one σ, the mutation step size is the same in each direction
and the points in the search space where the offspring can be placed with a
given probability form a circle around the individual to be mutated.

60 4 Representation, Mutation, and Recombination

Uncorrelated Mutation with n Step Sizes The motivation behind using
n step sizes is the wish to treat dimensions differently. In particular, we want
to be able to use different step sizes for different dimensions i ∈ {1, . . . , n}.
The reason for this is the trivial observation that the fitness landscape can
have a different slope in one direction (along axis i) than in another direc-
tion (along axis j). The solution is straightforward: each basic chromosome
〈x1, . . . , xn〉 is extended with n step sizes, one for each dimension, resulting in
〈x1, . . . , xn, σ1, . . . , σn〉. The mutation mechanism is now specified as follows:

σ′
i = σi · eτ ′·N(0,1)+τ ·Ni(0,1), (4.4)

x′
i = xi + σ′

i ·Ni(0, 1), (4.5)

where τ ′ ∝ 1/
√
2n , and τ ∝ 1/

√
2
√
n. Once again a boundary rule is applied

to prevent standard deviations very close to zero.

σ′
i < ε0 ⇒ σ′

i = ε0.

Notice that the mutation formula for σ is different from that in Eq. (4.2).
The present mutation mechanism is based on a finer granularity. Instead of
the individual level (each individual x̄ having its own σ) it works on the
coordinate level (one σi for each xi in x̄). The corresponding straightforward
modification of Eq. (4.2) is

σ′
i = σi · eτ ·Ni(0,1),

but ES use Eq. (4.4). Technically, this is correct since the sum of two nor-
mally distributed variables is also normally distributed, hence the resulting
distribution is still lognormal. The conceptual motivation is that the com-
mon base mutation eτ

′·N(0,1) allows for an overall change of the mutability,
guaranteeing the preservation of all degrees of freedom, while the coordinate-
specific eτ ·Ni(0,1) provides the flexibility to use different mutation strategies
in different directions.
In Fig. 4.5 the effects of mutation are shown in two dimensions. Again, we

have an objective function IR2 → IR, but the individuals now have the form
〈x, y, σx, σy〉. Since the mutation step sizes can differ in each direction (x and
y), the points in the search space where the offspring can be placed with a
given probability form an ellipse around the individual to be mutated. The
axes of such an ellipse are parallel to the coordinate axes, with the length
along axis i proportional to the value of σi.

Correlated Mutations The second version of mutation discussed above in-
troduced different standard deviations for each axis, but this only allows el-
lipses orthogonal to the axes. The rationale behind correlated mutations is to
allow the ellipses to have any orientation by rotating them with a rotation
(covariance) matrix C.

4.4 Real-Valued or Floating-Point Representation 61

Fig. 4.5. Mutation with n = 2, nσ = 2, nα = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form an ellipse. The probability of
moving along the x-axis (large effect on fitness) is larger than that of moving along
the y-axis (little effect on fitness)

The probability density function for Δx replacing Eq. (4.1) now becomes

p(Δx) =
e−

1
2Δx

T ·C−1·Δx

(detC · (2π)n)1/2 ,

with C the covariance matrix with entries

cii = σ2
i , (4.6)

cij,i�=j =

⎧⎨
⎩

0 no correlations,
1
2 (σ

2
i − σ2

j) tan(2αij) correlations. (4.7)

The relation between covariance and rotation angle is as follows:

tan(2αij) =
2cij

σ2
i − σ2

j

,

which explains Eq. (4.7). This formula is derived from the trigonometric prop-
erties of rotations. A rotation in two dimensions is a multiplication with the
matrix (

cos(αij) − sin(αij)
sin(αij) cos(αij)

)
.

62 4 Representation, Mutation, and Recombination

A rotation in more dimensions can be performed by a successive series of 2D
rotations, i.e., matrix multiplications.
The complete mutation mechanism is described by the following equations:

σ′
i = σi · eτ ′·N(0,1)+τ ·Ni(0,1),

α′
j = αj + β ·Nj(0, 1),

x′ = x+N(0, C ′),

where nα = n·(n−1)
2 , j ∈ 1, . . . , nα. The other constants are usually taken as:

τ ∝ 1/
√
2
√
n, τ ′ ∝ 1/

√
2n, and β ≈ 5o.

The object variables x are now mutated by adding Δx drawn from an n-
dimensional normal distribution with covariance matrix C ′. The C ′ in the
formula is the old C after mutation of the α values (and recalculation of
covariances). The σi are mutated in the same way as before: with a multipli-
cation by a log-normal variable, which consists of a global and an individual
part. The αj are mutated with an additive, normally distributed variation,
similar to mutation of object variables.
We also have a boundary rule for the αj values. The rotation angles should

lie in the range [−π, π], so the new value is simply mapped circularly into the
feasible range:

|α′
j | > π ⇒ α′

j = α′
j − 2π sign(α′

j).

Fig. 4.6 shows the effects of correlated mutations in two dimensions. The
individuals now have the form 〈x, y, σx, σy, αx,y〉, and the points in the search
space where the offspring can be placed with a given probability form a rotated
ellipse around the individual to be mutated, where again the axis lengths are
proportional to the σ values.
Table 4.1 summarises three possible common settings for self-adaptive mu-

tation regarding the length and structure of the individuals. Simply consider-
ing the size of the representation of the individuals in each scheme, i.e., the
number of values that need to be learned by the algorithm as it evolves (let
alone their complex interrelationships) brings home an important point: we
can get nothing for free! In other words, what we must consider is that as
the ability of the algorithm to adapt the nature of its search according to the
local topology increases, so too does the scale of the learning task. To sim-
plify matters a little, as we increase the precision with which we can specify
the shape of the lines of equiprobable mutations, so we increase the number
of different options which should be tried. Since the merits of these different
possibilities are evaluated indirectly, i.e., by applying them and gauging the
relative fitness of the individuals created, it is reasonable to conclude that an
increased number of function evaluations will be needed to learn good search
strategies as the complexity of the mutation operator increases.
While this may sound a little pessimistic, it is also worth noting that it is

easy to imagine a situation where the extra complexity is required, for exam-
ple, if the landscape contains a ‘ridge’ of increasing fitness, perhaps running at

4.4 Real-Valued or Floating-Point Representation 63

Fig. 4.6. Correlated mutation: n = 2, nσ = 2, nα = 1. Part of a fitness landscape
with a conical shape is shown. The black dot indicates an individual. Points where
the offspring can be placed with a given probability form a rotated ellipse. The
probability of generating a move in the direction of the steepest ascent (largest
effect on fitness) is now larger than that for other directions

an angle to the co-ordinate axis. In short, there are no fixed recommendations
about which scheme to use, but a common approach is to start with uncor-
related mutation with n σ values and then try moving to a simpler model
if good results are obtained but too slowly (or if the σi all evolve to similar
values), or to the more complex model if the results are not of good enough
quality.

nσ nα Structure of individuals Remark

1 0 〈x1, . . . , xn, σ〉 Standard mutation
n 0 〈x1, . . . , xn, σ1, . . . , σn〉 Standard mutations
n n · (n− 1)/2 〈x1, . . . , xn, σ1, . . . , σn, α1, . . . , αn·(n−1)/2〉 Correlated mutations

Table 4.1. Some possible settings of nσ and nα for different mutation operators

Self-adaptive mutation mechanisms have been used and studied for decades
in EC. Besides experimental evidence, showing that an EA with self-
adaptation outperforms the same algorithm without self-adaptation, there
are also theoretical results showing that self-adaptation works [52]. Theoret-
ical and experimental results can neatly complement each other in this area
if experimentally obtained mutation step sizes show a good match with the
theoretically derived optimal values. Unfortunately, for a complex problem

64 4 Representation, Mutation, and Recombination

and/or algorithm a theoretical analysis is infeasible. However, for simple ob-
jective functions theoretically optimal mutation step sizes can be calculated
(in light of some performance criterion, e.g., progress rate during a run) and
compared to step sizes obtained during a run of the EA in question.
Theoretical and experimental results agree on the fact that for a successful

run the σ values must decrease over time. The intuitive explanation for this
is that in the beginning of a search process a large part of the search space
has to be sampled in an explorative fashion to locate promising regions (with
good fitness values). Therefore, large mutations are appropriate in this phase.
As the search proceeds and optimal values are approached, only fine tuning
of the given individuals is needed; thus smaller mutations are required.
Another kind of convincing evidence for the power of self-adaptation is

provided in the context of changing fitness landscapes. In this case, where the
objective function is changing, the evolutionary process is aiming at a moving
target. When the objective function changes, the given individuals may have
a low fitness, since they have been adapted to the old objective function.
Thus, the present population needs to be reevaluated, and the search space
re-explored. Often the mutation step sizes will prove ill-adapted: they are too
low for the new exploration phase required. The experiment presented in [217]
illustrates how self-adaptation is able to reset the step sizes after each change
in the objective function (Fig. 4.7).

Fig. 4.7. Moving optimum ES experiment on the sphere function with n = 30,
nσ = 1. The location of the optimum is changed after every 200 generations (x-
axes) with a clear effect on the average best objective function values (y-axis, left)
in the given population. Self-adaptation is adjusting the step sizes (y-axis, right) with
a small delay to larger values appropriate for exploring the new fitness landscape,
whereafter the values of σ start decreasing again as the population approaches the
new optimum

4.4 Real-Valued or Floating-Point Representation 65

Over recent decades much experience has been gained over self-adaptation
in Evolutionary Algorithms, in particular in Evolution Strategies. The accu-
mulated knowledge has identified necessary conditions for self-adaptation:

1. μ > 1 so that different strategies are present
2. generation of an offspring surplus: λ > μ
3. a not too strong selective pressure (heuristic: λ/μ = 7, e.g., (15,100))
4. (μ, λ)-selection (to guarantee extinction of misadapted individuals)
5. recombination, usually intermediate, of strategy parameters

4.4.3 Recombination Operators for Real-Valued Representation

In general, we have three options for recombining two floating-point strings.
First, using an analogous operator to those used for bit-strings, but now split
between floats. In other words, an allele is one floating-point value instead
of one bit. This has the disadvantage (shared with all of the recombination
operators described above) that only mutation can insert new values into the
population, since recombination only gives us new combinations of existing
values. Recombination operators of this type for floating-point representations
are known as discrete recombination and have the property that if we are
creating an offspring z from parents x and y, then the allele value for gene i
is given by zi = xi or yi with equal likelihood.

Second, using an operator that, in each gene position, creates a new allele
value in the offspring that lies between those of the parents. Using the ter-
minology above, we have zi = αxi + (1 − α)yi for some α in [0,1]. In this
way, recombination is now able to create new gene material, but it has the
disadvantage that as a result of the averaging process the range of the allele
values in the population for each gene is reduced. Operators of this type are
known as intermediate or arithmetic recombination.
Third, using an operator that in each position creates a new allele value in

the offspring which is close to that of one of the parents, but may lie outside
them (i.e., bigger than the larger of the two values, or smaller than the lesser).
Operators of this type can create new material without restricting the range.
Operators of this type are known as blend recombination.
Three types of arithmetic recombination are described in [295]. In all of

these, the choice of the parameter α is sometimes made at random over [0,1],
but in practice it is common to use a constant value, often 0.5 (in which case
we have uniform arithmetic recombination).

Simple Arithmetic Recombination First pick a recombination point k.
Then, for child 1, take the first k floats of parent 1 and put them into the
child. The rest is the arithmetic average of parent 1 and 2:

Child 1: 〈x1, . . . , xk, α · yk+1 + (1− α) · xk+1, . . . , α · yn + (1− α) · xn〉.
Child 2 is analogous, with x and y reversed (Fig. 4.8, top).

66 4 Representation, Mutation, and Recombination

Fig. 4.8. Simple arithmetic recombination with k = 6, α = 1/2 (top), single arith-
metic recombination with k = 8, α = 1/2 (middle), whole arithmetic recombination
with α = 1/2 (bottom).

Single Arithmetic Recombination Pick a random allele k. At that posi-
tion, take the arithmetic average of the two parents. The other points are the
points from the parents, i.e.:

Child 1: 〈x1, . . . , xk−1, α · yk + (1− α) · xk, xk+1, . . . , xn〉.
The second child is created in the same way with x and y reversed (Fig. 4.8,
middle).

Whole Arithmetic Recombination This is the most commonly used op-
erator and works by taking the weighted sum of the two parental alleles for
each gene, i.e.:

Child 1 =α · x̄+ (1− α) · ȳ, Child 2 =α · ȳ + (1− α) · x̄.
This is illustrated in Fig. 4.8, bottom. As the example shows, if α = 1/2

the two offspring will be identical for this operator.
Blend Crossover Blend Crossover (BLX −α) was introduced in [160] as a
way of creating offspring in a region that is bigger than the (n-dimensional)
rectangle spanned by the parents. The extra space is proportional to the

4.5 Permutation Representation 67

�

�

X

Y

.s1

.s2
.s3 .s4.w

Fig. 4.9. Possible offspring from different recombination operators for two real-
valued parents X and Y . {s1, . . . , s4} are the four possible offspring from single
arithmetic recombination with α = 0.5. w is the offspring from whole arithmetic
recombination with α = 0.5 and the inner box represents all the possible offspring
positions as α is varied. The outer dashed box shows all possible offspring positions
for blend crossover with α = 0.5 (BLX − 0.5), each position being equally likely.

distance between the parents and it varies per coordinate. If we have two
parents x and y and assume that in position i the value xi < yi then the
difference di = yi−xi and the range for the ith value in the child z is [xi−α ·
di, xi +α · di]. To create a child we can sample a random number u uniformly
from [0, 1], calculate γ = (1− 2α)u− α, and set:

zi = (1− γ)xi + γyi

Interestingly, the original authors reported best results with α = 0.5, where
the chosen values are equally likely to lie inside the two parent values as
outside, so balancing exploration and exploitation.
Figure 4.9 illustrates the difference between single arithmetic recombina-

tion, whole arithmetic combination and Blend Crossover, with in each case
the value of α set to 0.5. More recent methods such as Simulated Binary
Crossover [111, 113] have built on Blend Crossover, so that rather than se-
lecting offspring values uniformly from a range around each parent values, they
are selected from a distribution which is more likely to create small changes,
and the distribution is controlled by the distance between the parents.

4.5 Permutation Representation

Many problems naturally take the form of deciding on the order in which a
sequence of events should occur. While other forms do occur (for example,
decoder functions based on unrestricted integer representations [28, 201] or
“floating keys” based on real-valued representations [27, 44]), the most natu-
ral representation of such problems is as a permutation of a fixed set of values

68 4 Representation, Mutation, and Recombination

that can be represented as integers. One immediate consequence is that while
a binary, or simple integer, representation allows numbers to occur more than
once, such sequences of integers will not represent valid permutations. It is
clear therefore that when choosing or designing variation operators to work
with solutions that are represented as permutations, we require them to pre-
serve the permutation property that each possible allele value occurs exactly
once in the solution. We previously described one example, when we designed
an EA for solving the N -queens problem efficiently, by representing each so-
lution as a list of the rows on which each queen was positioned (with each on
a different column), and insisted that these be a permutation so that no two
queens shared the same row.
When choosing variation operators it is worth bearing in mind that there

are actually two classes of problems that are represented by permutations. In
the first of these, the order in which events occur is important. This might
happen when the events use limited resources or time, and a typical example of
this sort of problem is the production scheduling problem. This is the common
problem of deciding in which order a series of times should be manufactured
on a set of machines, where there may be dependencies between products, for
example, there might be different set-up times between products, or one might
be a component of another. As an example, it might be better for widget 1
to be produced before widgets 2 and 3, which in turn might be preferably
produced before widget 4, no matter how far in advance this is done. In this
case it might well be that the sequences [1,2,3,4] and [1,3,2,4] have similar
fitness, and are much better than, for example, [4,3,2,1].
Another type of problem depends on adjacency, and is typified by the trav-

elling salesperson problem (TSP). The problem is to find a complete tour of n
given cities of minimal length. The search space for this problem is huge: there
are (n-1)! different routes possible for n given cities (for the asymmetric case
counting back and forth as two routes).5 For n = 30 there are approximately
1032 different tours. Labelling the cities 1, 2, . . . , n, a complete tour is a permu-
tation, so that for n = 4, the routes [1,2,3,4] and [3,4,2,1] are both valid. The
vital point here is that it is the links between cities that are important. The
difference from order-based problems can clearly be seen if we consider that
the starting point of the tour is also not important, thus [1,2,3,4], [2,3,4,1],
[3,4,1,2], and [4,1,2,3] are all equivalent. Many examples of this class are also
symmetric, so that [4,3,2,1] and so on are also equivalent.
Finally, we should mention that there are two possible ways to encode a

permutation. In the first (most commonly used) of these the ith element of the
representation denotes the event that happens in that place in the sequence
(or the ith destination visited). In the second, the value of the ith element
denotes the position in the sequence in which the ith event happens. Thus
for the four cities [A,B,C,D], and the permutation [3,1,2,4], the first encoding
denotes the tour [C,A,B,D] and the second [B,C,A,D].

5 These comments about problem size apply to all permutation problems.

4.5 Permutation Representation 69

4.5.1 Mutation for Permutation Representation

For permutation representations, it is no longer possible to consider each
gene independently, rather finding legal mutations is a matter of moving
alleles around in the genome. This has the immediate consequence that the
mutation parameter is interpreted as the probability that the chromosome
undergoes mutation, rather than that a single gene in the chromosome is
altered. The three most common forms of mutation used for order-based
problems were first described in [423]. Whereas the first three operators
below (in particular insertion) work by making small changes to the order in
which allele values occur, for adjacency-based problems these can cause huge
numbers of links to be broken, and so inversion is more commonly used.

Swap Mutation Two positions (genes) in the chromosome are selected at
random and their allele values swapped. This is illustrated in Fig. 4.10 (top),
where the values in positions two and five have been swapped.
Insert Mutation Two alleles are selected at random and the second moved
next to the first, shuffling along the others to make room. This is illustrated
in Fig. 4.10 (middle), where the values two and five have been chosen.
Scramble Mutation Here the entire chromosome, or some randomly chosen
subset of values within it, have their positions scrambled. This is illustrated
in Fig. 4.10 (bottom), where the values from two to five have been chosen.

Fig. 4.10. Swap (top), insert (middle), and scramble mutation (bottom).

Inversion Mutation Inversion mutation works by randomly selecting two
positions in the chromosome and reversing the order in which the values ap-
pear between those positions. It effectively breaks the chromosome into three
parts, with all links inside a part being preserved, and only the two links be-
tween the parts being broken. The inversion of a randomly chosen substring
is the thus smallest change that can be made to an adjacency-based problem,
and all other changes can be easily constructed as a series of inversions. The

70 4 Representation, Mutation, and Recombination

ordering of the search space induced by this operator thus forms a natural ba-
sis for considering this class of problems, equivalent to the Hamming space for
binary problem representations. It is the basic move behind the 2-opt search
heuristic for TSP [271], and by extension k-opt. This operator is illustrated
in Fig. 4.11, where the substring between positions two and five was inverted.

Fig. 4.11. Inversion mutation

4.5.2 Recombination for Permutation Representation

At first sight, permutation-based representations present particular difficul-
ties for the design of recombination operators, since it is not generally possible
simply to exchange substrings between parents and still maintain the permu-
tation property. However, this situation is alleviated when we consider what it
is that the solutions actually represent, i.e., either an order in which elements
occur, or a set of moves linking pairs of elements. A number of specialised
recombination operators have been designed for permutations, which aim at
transmitting as much as possible of the information contained in the parents,
especially that held in common. We shall concentrate here on describing two
of the best known and most commonly used operators for each subclass of
permutation problems.
Partially Mapped Crossover (PMX) was first proposed by Goldberg and
Lingle as a recombination operator for the TSP in [192], and has become
one of the most widely used operators for adjacency-type problems. Over the
years many slight variations of PMX appeared in the literature; here we use
Whitley’s definition from [452], which works as follows (Figs. 4.12–4.14).

1. Choose two crossover points at random, and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the first crossover point look for elements in that segment
of the second parent (P2) that have not been copied.

3. For each of these (say i), look in the offspring to see what element (say j)
has been copied in its place from P1.

4. Place i into the position occupied by j in P2, since we know that we will
not be putting j there (as we already have it in our string).

5. If the place occupied by j in P2 has already been filled in the offspring by
an element k, put i in the position occupied by k in P2.

4.5 Permutation Representation 71

6. Having dealt with the elements from the crossover segment, the remaining
positions in this offspring can be filled from P2, and the second child is
created analogously with the parental roles reversed.

Fig. 4.12. PMX, step 1: copy randomly selected segment from first parent into
offspring

Fig. 4.13. PMX, step 2: consider in turn the placement of the elements that occur
in the middle segment of parent 2 but not parent 1. The position that 8 takes in P2
is occupied by 4 in the offspring, so we can put the 8 into the position vacated by
the 4 in P2. The position of the 2 in P2 is occupied by the 5 in the offspring, so we
look first to the place occupied by the 5 in P2, which is position 7. This is already
occupied by the value 7, so we look to where this occurs in P2 and finally find a
slot in the offspring that is vacant – the third. Finally, note that the values 6 and 5
occur in the middle segments of both parents.

Fig. 4.14. PMX, step 3: copy remaining elements from second parent into same
positions in offspring

Inspection of the offspring created shows that in this case six of the nine
links present in the offspring are present in one or more of the parents. How-
ever, of the two edges {5–6} and {7–8} common to both parents, only the first
is present in the offspring. Radcliffe [350] suggests that a desirable property

72 4 Representation, Mutation, and Recombination

of any recombination operator is that of respect, i.e., that any information
carried in both parents should also be present in the offspring. A moment’s
reflection tells us that this is clearly true for all of the recombination opera-
tors described above for binary and integer representations, and for discrete
recombination for floating-point representations, but as the example above
shows, is not necessarily true of PMX. With this issue in mind, several other
operators have been designed for adjacency-based permutation problems, of
which the best known is described next.
Edge crossover is based on the idea that offspring should be created as
far as possible using only edges that are present in (one of) the parents. It
has undergone a number of revisions over the years. Here we describe the
most commonly used version: edge-3 crossover after Whitley [452], which is
designed to ensure that common edges are preserved.
In order to achieve this, an edge table (also known as an adjacency list) is

constructed, which for each element lists the other elements that are linked
to it in the two parents. A ‘+’ in the table indicates that the edge is present
in both parents. The operator works as follows:

1. Construct the edge table
2. Pick an initial element at random and put it in the offspring
3. Set the variable current element = entry
4. Remove all references to current element from the table
5. Examine list for current element

• If there is a common edge, pick that to be the next element
• Otherwise pick the entry in the list which itself has the shortest list
• Ties are split at random

6. In the case of reaching an empty list, the other end of the offspring is
examined for extension; otherwise a new element is chosen at random

Clearly only in the last case will so-called foreign edges be introduced.
Edge-3 recombination is illustrated by the following example where the

parents are the same two permutations used in the PMX example [1 2 3 4
5 6 7 8 9] and [9 3 7 8 2 6 5 1 4], giving the edge table seen in Table 4.2
and the construction illustrated in Table 4.3. Note that only one child per
recombination is created by this operator.

Element Edges Element Edges

1 2,5,4,9 6 2,5+,7
2 1,3,6,8 7 3,6,8+
3 2,4,7,9 8 2,7+, 9
4 1,3,5,9 9 1,3,4,8
5 1,4,6+

Table 4.2. Edge crossover: example edge table

4.5 Permutation Representation 73

Choices Element Reason Partial
selected result

All 1 Random [1]
2,5,4,9 5 Shortest list [1 5]
4,6 6 Common edge [1 5 6]
2,7 2 Random choice (both have two items in list) [1 5 6 2]
3,8 8 Shortest list [1 5 6 2 8]
7,9 7 Common edge [1 5 6 2 8 7]
3 3 Only item in list [1 5 6 2 8 7 3]
4,9 9 Random choice [1 5 6 2 8 7 3 9]
4 4 Last element [1 5 6 2 8 7 3 9 4]

Table 4.3. Edge crossover: example of permutation construction

Order crossover This operator was designed by Davis for order-based per-
mutation problems [98]. It begins in a similar fashion to PMX, by copying a
randomly chosen segment of the first parent into the offspring. However, it
proceeds differently because the intention is to transmit information about
relative order from the second parent.

1. Choose two crossover points at random, and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the second crossover point in the second parent, copy the
remaining unused numbers into the first child in the order that they appear
in the second parent, wrapping around at the end of the list.

3. Create the second offspring in an analogous manner, with the parent roles
reversed.

This is illustrated in Figs. 4.15 and 4.16.

Fig. 4.15. Order crossover, step 1: copy randomly selected segment from first parent
into offspring

Cycle Crossover The final operator that we will consider in this section is
cycle crossover [325], which is concerned with preserving as much information
as possible about the absolute position in which elements occur. The operator

74 4 Representation, Mutation, and Recombination

Fig. 4.16. Order crossover, step 2: copy rest of alleles in order they appear in second
parent, treating string as toroidal

works by dividing the elements into cycles. A cycle is a subset of elements
that has the property that each element always occurs paired with another
element of the same cycle when the two parents are aligned. Having divided
the permutation into cycles, the offspring are created by selecting alternate
cycles from each parent. The procedure for constructing cycles is as follows:

1. Start with the first unused position and allele of P1
2. Look at the allele in the same position in P2
3. Go to the position with the same allele in P1
4. Add this allele to the cycle
5. Repeat steps 2 through 4 until you arrive at the first allele of P1

The complete operation of the operator is illustrated in Fig. 4.17.

Fig. 4.17. Cycle crossover. Top: step 1- identification of cycles. Bottom: step 2-
construction of offspring

4.6 Tree Representation 75

4.6 Tree Representation

Trees are among the most general structures for representing objects in com-
puting, and form the basis for the branch of evolutionary algorithms known
as genetic programming (GP). In general, (parse) trees capture expressions
in a given formal syntax. Depending on the problem at hand, and the users’
perceptions on what the solutions must look like, this can be the syntax of
arithmetic expressions, formulas in first-order predicate logic, or code written
in a programming language. To illustrate the matter, let us consider one of
each of these types of expressions.

• an arithmetic formula:

2 · π + ((x+ 3)− y

5 + 1
), (4.8)

• a logical formula:

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y))), (4.9)

• the following program:

i = 1;

while (i < 20)

{
i = i+1;

}

Figures. 4.18 and 4.19 show the parse trees belonging to these expressions.
These examples illustrate generally how parse trees can be used and inter-
preted.
Technically speaking, the specification of how to represent individuals boils

down to defining the syntax of the trees, or equivalently the syntax of the
symbolic expressions (s-expressions) they represent. This is commonly done
by defining a function set and a terminal set. Elements of the terminal set
are allowed as leaves, while symbols from the function set are internal nodes.
For example, a suitable function and terminal set that allow the expression in
Eq. (4.8) as syntactically correct is given in Table 4.4.

Function set {+,−, ·, /}
Terminal set IR ∪ {x, y}

Table 4.4. Function and terminal set that allow the expression in Eq. (4.8) as
syntactically correct

76 4 Representation, Mutation, and Recombination

Fig. 4.18. Parse trees belonging to Eqs. (4.8) (left) and (4.9) (right)

Fig. 4.19. Parse tree belonging to the above program

Strictly speaking, we should specify the arity (the number of attributes it
takes) for each function symbol in the function set, but for standard arithmetic
or logical functions this is often omitted. Similarly, a definition of correct
expressions (trees) based on the function and terminal set should be given.
However, as this follows the general way of defining terms in formal languages
it is also often omitted. For the sake of completeness we provide it below:

• All elements of the terminal set T are correct expressions.
• If f ∈ F is a function symbol with arity n and e1, . . . , en are correct

expressions, then so is f(e1, . . . , en).
• There are no other forms of correct expressions.

Note that in this definition we do not distinguish different types of expressions;
each function symbol can take any expression as argument. This feature is
known as the closure property.
In practice, function symbols and terminal symbols are often typed and

impose extra syntactic requirements. For instance, one might need both arith-
metic and logical function symbols, e.g., to allow (N = 2) ∧ (S > 80.000)) as
a correct expression. In this case it is necessary to enforce that an arithmetic
(logical) function symbol only has arithmetic (logical) arguments, e.g., to ex-
clude N ∧ 80.000 as a correct expression. This issue is addressed in strongly
typed genetic programming [304].

4.6 Tree Representation 77

4.6.1 Mutation for Tree Representation

The most common implementation of tree-based mutation works by se-
lecting a node at random from the tree, and replacing the subtree starting
there with a randomly generated tree. This newly created subtree is usually
generated the same way as in the initial population, (Sect. 6.4), and so is
subject to conditions on maximum depth and width. Figure 4.20 illustrates
how the parse tree belonging to Eq. (4.8) (left) is mutated into one standing
for 2 · π + ((x + 3) − y). Note that since a node is selected at random to be
the replacement point, and that as one goes down through a tree there are
potentially more nodes at any given depth, the size (tree depth) of the child
can exceed that of the parent tree.

parent child

Fig. 4.20. Tree-based mutation illustrated: the node designated by a circle in the
tree on the left is selected for mutation. The subtree staring at that node is replaced
by a randomly generated tree, which is a leaf here

Tree-based mutation has two parameters:

• the probability of choosing mutation at the junction with recombination
• the probability of choosing an internal point within the parent as the root

of the subtree to be replaced

It is remarkable that Koza’s classic book on GP from 1992 [252] advises
users to set the mutation rate at 0, i.e., it suggests that GP works without
mutation. More recently Banzhaf et al. recommended 5% [37]. In giving mu-
tation such a limited role, GP differs from other EA streams. The reason for
this is the generally shared view that crossover has a large shuffling effect, act-
ing in some sense as a macromutation operator [9]. The current GP practice
uses low, but positive, mutation frequencies, even though some studies indi-
cate that the common wisdom favouring an (almost) pure crossover approach
might be misleading [275].

78 4 Representation, Mutation, and Recombination

4.6.2 Recombination for Tree Representation

Tree-based recombination creates offspring by swapping genetic material
among the selected parents. In technical terms, it is a binary operator creating
two child trees from two parent trees. The most common implementation
is subtree crossover, which works by interchanging the subtrees starting
at two randomly selected nodes in the given parents. This is illustrated in
Fig. 4.21. Note that the size (tree depth) of the children can exceed that of
the parent trees. In this, recombination within GP differs from recombination
in other EC dialects. Tree-based recombination has two parameters:

• the probability of choosing recombination at the junction with mutation
• the probability of choosing internal nodes as crossover points

parent 1 parent 2

child 1 child 2

Fig. 4.21. Tree-based crossover illustrated: the nodes designated by a circle in the
parent trees are selected to serve as crossover points. The subtrees staring at those
nodes are swapped, resulting in two new trees, which are the children

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org

	4 Representation, Mutation, and Recombination
	4.1 Representation and the Roles of Variation Operators
	4.2 Binary Representation
	4.2.1 Mutation for Binary Representation
	4.2.2 Recombination for Binary Representation

	4.3 Integer Representation
	4.3.1 Mutation for Integer Representations
	4.3.2 Recombination for Integer Representation

	4.4 Real-Valued or Floating-Point Representation
	4.4.1 Mutation for Real-Valued Representation
	4.4.2 Self-adaptive Mutation for Real-Valued Representation
	4.4.3 Recombination Operators for Real-Valued Representation

	4.5 Permutation Representation
	4.5.1 Mutation for Permutation Representation
	4.5.2 Recombination for Permutation Representation

	4.6 Tree Representation
	4.6.1 Mutation for Tree Representation
	4.6.2 Recombination for Tree Representation Tree-based recombination creates offspring by swapping genetic material

