
11

Nonstationary and Noisy Function
Optimisation

Unlike most of the examples we have used so far, real-world environments
typically contain sources of uncertainty. This means that if we measure the
fitness of a solution more than once, we will not always get the same result. Of
course, biological evolution happens in just such a dynamic environment, but
there are also many EA applications in environments featuring change or noise
when solutions are evaluated. In these nonstationary situations the search
algorithm has to be designed so that it can compensate for the unpredictable
environment by monitoring its performance and altering some aspects of its
behaviour. An objective of the resulting adaptation is not to find a single
optimum, but rather to select a sequence of values over time that maximise
or minimise some measure of the evaluations, such as the average or worst.
This chapter discusses the various sources of unpredictability, and describes
the principal adaptations to the basic EA in response to them.

11.1 Characterisation of Nonstationary Problems

At this stage we must consider some basic facts about the process of going
from a representation of a solution (genotype) x, to measuring the quality of
a candidate solution for the task at hand, f(x). For illustration we will use
a simple household example — designing a mop for cleaning spills of various
different liquids from a floor. We will assume that the candidate solution in
fact describes the structure of the sponge — that is to say the size of pores,
elasticity, shape of contact area, etc.1 The quality recorded for a given solution
may be unpredictable for one or more of the following reasons.

1 In general, δq stands for a small random change in the value of some property q.
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The Genotype to Phenotype Mapping Is Not Exact and
One-to-One

If the fitness is to be measured via simulations, the genotype may use double-
precision floating point numbers to code for the design parameters, but in the
simulation there might be differences in the resolution of the models. If the
fitness is to be measured via physical effects, the manufactured phenotype may
not perfectly reflect the encoded design parameters. Thus, for our example,
we might be measuring the cleaning ability of a slightly different sponge to
the one we thought. In terms of a search landscape, the fitness observed may
be that of a point in the region of x: fobserved(x) = f(x+ δx).

The Act of Measurement Itself Is Prone to Error or Uncertainty

This might arise from, for example, human error, small random fluctuations
in shape of physical objects as their molecules vibrate, randomness in the
movement of electrons through a sensor or wire, or the collected randomness
of more complex organisms such as people, markets, packets on computer
network or physical traffic. In terms of our mop, we might mismeasure the
quantities of fluid absorbed by the sponge. This means a rethink of our land-
scape metaphor: the unique surface in the altitude dimension representing the
fitness of points in the search space is replaced by a ‘cloud’ — a probability
distribution from which we sample when we measure fitness, whose ‘thickness’
may vary across the space. Many different models may be used to characterise
the noise. The most straightforward is to break down a quality function into
two components: fobserved(x) = fmean(x)+fnoise(x). Here the first component
represents the average that we would find if we measured fitness many times,
and the second noise component is typically modelled as a random drawing
from a normal distribution N(0, σ).

The Environment Changes Over Time

This may be because the external environment is inherently volatile, or it
may be that the very act of evaluating solutions affects subsequent fitness.
For example, in an interactive EA, each interaction potentially increases user
fatigue and changes the expectations (Sect. 14.1). If our mop is being tested
in an environment with significant seasonal fluctuations in temperature, then
this may affect either the absorbency of the sponge material, or the viscosity
of fluids tested. This could mean that if we measured the same design every
day for a year we would observe seasonal cyclic changes in the fitness. In the
context of a search landscape, this means that the locations of the optima are
now time-dependent, i.e., fobserved(x) = f(x, t).
In many real-world problems, one or more of these effects occur in combi-

nation. It remains for the algorithm designer to decide which will be present,
take account of the context in which the tool created will be used, and select
appropriate modifications from those listed in subsequent sections.
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11.2 The Effect of Different Sources of Uncertainty

A number of researchers have proposed mechanisms for dealing with uncer-
tainty, and examined their performance on test cases and real-world problems.
Algorithms are typically compared by running them for a fixed period and
calculating two time-averaged metrics, which correspond to different types of
real-world applications.
The first of these is the online measure [102] and is simply the average

of all calls to the evaluation function during the run of the algorithm. This
measure relates to applications where it is desirable to maintain consistently
good solutions, e.g., online process control [164, 444] or financial trading. The
second metric considered is the offline performance and is the time-averaged
value of the best-performing member of the current population. Unlike the
online metric, offline performance is unaffected by the occasional generation
of individuals with very low fitness, and so is more suitable for problems where
the testing of such individuals is not penalised, e.g., parameter optimisation
using a changing design model.
If we use the time-dependent notation for the fitness function as f(x, t) and

denote the best individual in a population P (t) at time t by best(P (t)), then
we can formalise the two metrics over a period T as follows:

online =
1

T
×

T∑
t=1

1

|P (t)|
∑

x∈P (t)

f(x, t)),

offline =
1

T
×

T∑
t=1

f((best(P (t)), t)).

Finally, let us note that in some cases it may be appropriate to consider
both metrics in a multiobjective approach, since optimising the mean fitness
may be the principle desiderata, but evaluating low-fitness solutions might be
catastrophic. In this case one approach might be to use a surrogate model to
screen out such potential fatal errors.
The three different sources of uncertainty identified in the previous section

affect the performance of the EA in different ways. Considering errors in
the genotype–phenotype mapping, we can note that using the average of n
repeated fitness evaluations 1

n ×∑
n f(x+ δx) to determine the fitness of any

given x means using a sample of n points from the neighbourhood around
x. However, the sampled neighbourhoods of adjacent solutions can overlap,
that is, x + δx can coincide with y + δy. Hence, fine-grained features of the
fitness landscape will be smoothened out possibly removing local optima in the
process. In practice this is often a good thing. From the search perspective
it creates gradients around steps and plateaus in the landscape, and from
a problem-solving perspective it reduces the attractiveness of high-quality
solutions that are surrounded by much lower quality neighbours, which might
be considered very ‘brittle’.
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Considering noise in the act of measurement itself, the average of n repeated
measurements is f(x)+ 1

n ×∑
n N(0, σ) and the second term will approximate

zero as n is increased. In other words, when repeatedly sampling from random
noise, the deviations cancel out and you get an estimate of the mean. Unlike
the case above, there is no smoothing of landscape features. This is illustrated
in Figure 11.1, which shows a fitness function f(x) = 1/(0.1 + x2) and the
values estimated after five samples with two different sorts of uncertainty
present. Both types of noise were drawn uniformly from a distribution between
+/− 0.4. Already becoming apparent is that the errors in the genotype–
phenotype mapping reduce the height of the estimated local optimum and
make it wider. In contrast, the effect of noise in the measurement alone is
already being reduced to near-zero after five samples.
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Fig. 11.1. Effect of different types of uncertainty on estimated fitness. Curves show
mean values estimated after five samples for each value of x

Regarding the third situation of nonstationary fitness functions, Cobb [84]
defines two ways of classifying these:

• Switching versus continuous, which is based on time-scale of change with
respect to the rate of evaluation — the former providing sudden and the
latter more gradual changes. Continuous changes might be cyclical (e.g.,
related to seasonal effects) or reflect a more uniform movement of land-
scape features (for example, when arising from gradual wear-and-tear of
physical parts).

• Markovian versus state dependent. In the first of these, the environment
at the next time step is purely derived from the current one, whereas in
the latter far more complex dynamics may play out.

To illustrate these differences, consider a simple example many of us en-
counter daily – modelling and predicting traffic levels on a commute. These
will change gradually during each day, building up to, and then tailing off
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from, peak values at rush hours. When planning a journey we would expect
that the likely travel time of a direct route involving a busy road will vary
during the day. However, there will also be more switching behaviour as the
flows are affected by one-off events such as public holidays, and between differ-
ent periods — for example the amount of variation and overall levels of traffic
are often less during school holidays. On these days we might happily decide
take the most direct route. Considering ten-minute intervals over a single day
in a city, we might view traffic levels as driven by some Markovian process
— the value at the next period depends on traffic levels now, but not prior
to that, since the cause is the aggregated behaviour of lots of independent
people, mostly travelling to, from, and in the course of work. However, if we
turn our attention to modelling air traffic, the situation is still clearly time-
varying, but is highly state-dependent as disruption to an airline’s schedule
in one place can have enormous knock-on effects due to planes being in the
wrong place, etc.

11.3 Algorithmic Approaches

11.3.1 Approaches That Increase Robustness or Reduce Noise

The only viable approach for reducing the effect of noise, whether in the
fitness function evaluation, or in the genotype-to-phenotype mapping, is to
repeatedly re-evaluate solutions and take an average. This might be done
either explicitly, or (as described further below) implicitly via the population
management processes of parent and survivor selection.
The principle question that arises in explicit approaches is, how many times

should the fitness be sampled? Bearing in mind that EAs naturally contain
some randomness in their processes anyway, the key issue from the perspec-
tive of evolution is being able to reliably distinguish between good and bad
members of the population. Thus, a common approach is to monitor the de-
gree of variation present, and resample when this is greater than the range of
estimated fitnesses in the population. This reasoning suggests that the rate of
resampling would increase as the population converges towards high-quality
solutions.
When calculating how large a sample to take, there is also the law of di-

minishing returns: in general, the standard deviation observed decreases only
as fast as the square root of the number of measurements taken.
Finally, it is worth mentioning that it is often worth the extra book-keeping

of making resampling decisions independently for each solution, since the
amount of noise will often not be uniform across the search space.

11.3.2 Pure Evolutionary Approaches to Dynamic Environments

The distributed nature of the genetic search provides a natural source of
power for exploring in changing environments. As long as sufficient diversity
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remains in the population, the EA can respond to a changing search landscape
by reallocating future trials. However, the tendency of EAs, especially of GAs,
to converge rapidly results in the population becoming homogeneous, which
reduces the ability of the EA to identify regions of the search space that
might become more attractive as the environment changes. In such cases it is
necessary to complement the standard EA with a mechanism for maintaining
a healthy exploration of the search space. (Recall the self-adaptation example
from Sect. 4.4.2.)
In [84] the behaviour of a standard GA on a parabolic function with the

optima moving sinusoidally in space was observed. This was done for a range
of bitwise mutation rates. It was found that the offline performance decreased
as the rate of change increased, for all mutation probabilities. As the rate
of change increased, the mutation rate that gave optimal offline performance
increased. Finally, it was noted that as problem difficulty increased, the rate
of change that GA could track decreased.
In the light of these findings, various approaches have been proposed that

are aimed at responding to different types of environmental change.

11.3.3 Memory-Based Approaches for Switching or Cyclic
Environments

The first strategy expands the memory of the EA in order to build up a
repertoire of ready responses for various environmental conditions. The main
examples of this approach are the GA with diploid representation [194] and
the structured GA [94]. Goldberg and Smith examined the use of diploid
representation and dominance operators to improve performance of an EA in
an oscillating environment [402], while Dasgupta and McGregor presented a
modified “structured GA” with a multilayered structure of the chromosome
which constitutes a “long-term distributed memory”.

11.3.4 Explicitly Increasing Diversity in Dynamic Environments

The second modification strategy effectively increases diversity in the popula-
tion directly (i.e., without extending the EA memory) in order to compensate
for changes encountered in the environment. Examples of this strategy involve
the GA with a hypermutation operator [84, 85], the random immigrants GA
[199], the GA with a variable local search (VLS) operator [443, 444], and the
thermodynamic GA [306].
The hypermutation operator temporarily increases the mutation rate to

a high value, called the hypermutation rate, during periods when the time-
averaged best performance of the EA worsens. In his 1992 study, Grefenstette
noted that under certain conditions hypermutation might never get triggered
[199].
The random immigrants mechanism replaces a fraction of a standard GA’s

population by randomly generated individuals in each generation in order to
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maintain a continuous level of exploration of the search space. It was reported
that 30% replacement gave the best off-line tracking: if the value is too high
the algorithm is unable to converge between changes; however, off-line perfor-
mance decreases with proportion replaced.
In an extensive study, Cobb and Grefenstette compared hypermutation with

random immigrants and simple GA (with high mutation rate) [85]. They noted
that there was a qualitative difference in the nature of the mutation operator
in the three algorithms:

• Simple Genetic Algorithm (SGA) – uniform in population and time
• Hypermutation – uniform in population, not in time
• Random immigrants – uniform in time, not in population

They used two landscapes, and three types of change: a linear motion in the
first problem (moving 1 step along an axis every 2 or 5 generations), randomly
shifting the optima in the first problem every 20 generations, and swapping
between the two problems every 2 or 20 generations. Their findings were:

• SGA: A high mutation probability of 0.1 was reasonably good at the trans-
lation tasks, but gave very poor online performance. It was unable to track
the steadily moving optimum or oscillation. In general, the mutation prob-
ability needs to be matched to the degree of change.

• Hypermutation: High variances in performance were noted, and the higher
mutation rate needed careful tuning to the problem instance. It was much
better at tracking sudden changes than SGA and gave better online per-
formance than SGA or random immigrants when the rate of change was
slow enough to allow a lower rate of mutation.

• Random Immigrants: This strategy was not very good at tracking linear
movement, but was the best at the oscillating task. They hypothesised
that this was because it allowed the preservation of niches. The strategy
displayed poor performance on stationary and slowly changing problems.

The VLS operator uses a similar triggering mechanism to hypermutation,
and it enables local search around the location of the population members be-
fore the environmental change. The range of the search is gradually extended
using a heuristic that attempts to match the degree of change.
The thermodynamic GA can maintain a given level of diversity in popula-

tion by evaluating the entropy and free energy of the GA’s population. The
free energy function is effectively used to control selection pressure during the
process of creating a new population.

11.3.5 Preserving Diversity and Resampling: Modifying Selection
and Replacement Policies

In [441, 442] the suitability of generational GAs (GGAs) and steady-state
GAs (SSGAs) was studied for use in dynamic environments. Results showed
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that the SSGA with a “delete-oldest” replacement strategy can adapt to envi-
ronmental changes with reduced degradation of offline and particularly online
performance. The improved performance of the SSGA can be explained by the
fact that an offspring is immediately used as a part of the mating pool, mak-
ing a shift towards the optimal solution possible in a relatively early phase of
search. The authors concluded that the steady-state model was better suited
tor use in nonstationary environments, particularly for on-line applications.
Selection is a vital force in any evolutionary algorithm, and an understand-

ing of the nature of its effects is necessary if effective algorithms are to be
developed. For GGAs selection has been well studied, and methods have been
developed that reduce much of the noise inherent in the stochastic algorithm,
e.g., SUS [32]. Unfortunately, the very nature of SSGAs precludes the use of
such methods and those available are inherently more noisy.
In [400] a Markov chain analysis of the takeover probability versus time

was used to investigate sources of noise in several replacement strategies.
Some variations in performance arise from losing the only copy of the current
best in the population, which happened approximately 50% of the time for
delete random, and 10% of the time for delete-oldest. Performance compar-
isons on static landscapes demonstrated that the extent to which this affects
the quality of the solutions obtained depends on the ability of the reproductive
operators to rediscover the lost points. In [78] other strategies, e.g., deletion
by exponential ranking, were also shown to lose the optimum.
A common way of avoiding this problem is to incorporate elitism, often

in the form of a delete-worst strategy. Chakraborty [78, 79] showed that this
exhibits increased selection pressure, which can lead to premature convergence
and poor performance on higher dimensional problems.
In [399] a number of replacement strategies were compared in combina-

tion with two different ways of achieving elitism. The first was the common
method described in Section 5.3.2, and the elite member can either be pre-
served with its original fitness value, or be reevaluated and the new fitness
value saved. The second, “conservative selection” is an implicit mechanism
introduced in [444]. Here each parent was selected by a binary tournament
between a randomly selected member of the population and the member about
to be replaced. If the latter is the current best, then it will win both tour-
naments, so recombination will have no effect, and (apart from the effects of
mutation) elitism is attained. In [400] this was shown to guarantee takeover
by the optimal class, but at a much slower rate than delete-worst or elitist
delete-oldest. In total, ten selection strategies were evaluated for their online
and offline performance on two different test problems. Deletion of the oldest,
worst, and random members was done in conjunction with both standard and
conservative tournaments. Additionally, a delete-oldest policy was tested with
four variants of elitism. These were:

1. Oldest is kept if it is one of the current best, but is re-evaluated.
2. Oldest is kept if it is the sole copy of the current best and is re-evaluated.



11.3 Algorithmic Approaches 193

3. As 1, but without re-evaluation (original fitness value kept).
4. As 2, but without re-evaluation (original fitness value kept).

This was done for algorithms with and without hypermutation on two differ-
ent classes of problems. The results obtained clearly confirmed that for some
algorithms an extra method for creating diversity (in this case, hypermuta-
tion) can improve tracking performance, although not all of the strategies
tested were able to take advantage of this. However, two factors are immedi-
ately apparent from these results which hold with or without hypermutation.
Exploitation: Strategies such as delete-oldest or delete-random, which can

lose the sole copy of the current population best, performed poorly. This
matched the theoretical analysis and results on static landscapes noted above.
Therefore some form of elitism is desirable.
Reevaluation: In potentially dynamic environments it is essential that the

fitness of points on the landscape is continuously and systematically reeval-
uated. Failure to do so leads to two effects. First, the population can get
‘dragged back’ to the original peak position, as solutions near there are se-
lected to be parents on the basis of out-of-date information. Second, it can
also lead to a failure to trigger the hypermutation mechanism. Although this
was obvious for the third and fourth variants of elitism tested, it also applies
to the much more common delete-worst policy. In this case if the population
had converged close to the optimum prior to the change, the worst members
that get deleted may be the only ones with a true fitness value attached. The
importance of systematic reevaluation was clear from the difference between
conservative delete-oldest and conservative delete-random. The former always
produced better performance than the latter, and very significantly so when
hypermutation was present.
Of all the policies tested, the conservative delete-oldest was the best suited

to the points noted above and produced the best performance. The improve-
ment over the elitist policy with reevaluation is believed to result not merely
from the reduced selection pressure, but from the fact that the exploitation of
good individuals is not limited to preserving the very best, but will also apply
(with decreasing probability) to the second-best member, and so on. Since the
implicit elitism still allows changes via mutation, there is a higher probability
of local search around individuals of high fitness, while worse members are less
likely to win tournaments, and so they are replaced with offspring created by
recombination. The result is that even without hypermutation the algorithm
was able to track environmental changes of modest size.

11.3.6 Example Application: Time-Varying Knapsack Problem

This problem is a variant of that described in [306]. As discussed in Sect. 3.4.2,
we have a number of items each having a value (vti) and a weight or cost (cti)
associated with them, and the problem is to select a subset that maximises
the sum of the elements’ values while meeting a (time-varying) total capacity
constraint C(t).
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In [399], Smith and Vavak outline a series of experiments on this problem
aimed at investigating the effect of different survivor selection policies. In the
particular case investigated, the values vi and costs ci attached to the items
remained constant, but the capacity constraint C(t) alternated between 50%,
30%, and 80% of Csum, changing once every 20,000 evaluations.

The algorithm used was a binary-coded SSGA with 100 members. Parent
selection was by binary tournaments, with the fitter member always selected.
In some cases the conservative tournament selection operator was used. Uni-
form crossover was used (with probability 1.0) to generate offspring, as this
shows no positional bias (Sect. 16.1). The rest of the parameter settings were
decided after some initial experimentation to establish robust values.
The hypermutation operator was implemented as it is currently the most

commonly used method for tracking. It was triggered if the running average
of the best performing members of the population over an equivalent of three
generations of the generational GA (in this case, 300 evaluations) drops by an
amount that exceeds a predefined threshold. In this case a value of threshold
TH=3 was used. The best performing member of the population was re-
evaluated for 100 evaluations. Once it had been triggered, the hypermutation
rate (0.2) was switched back to the baseline mutation rate (0.001) as soon
as the best performing member of the population reached 80% of its value
before the environmental change occurred. The setting of the parameters (80%
and hypermutation rate 0.2) was found to provide good results for the given
problem. A prolonged period of high mutation for values higher than 80% has a
negative effect on on-line performance because diversity is introduced into the
population despite the correct region of the search space having already been
identified. Similarly to the choice of the threshold level described previously,
the values of both parameters were selected empirically.
As hinted above, the best results came from the combination of conservative

tournaments for parent selection policy, with a delete-oldest policy. Here each
member has a fixed lifespan, but when its turn comes to be deleted it enters the
tournament to be a parent of the offspring that will replace it. The algorithm
using this policy, along with hypermutation, was able to successfully track
the global optimum in both a switching environment, as here, and also in a
problem with a continuously moving optimum.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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