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Abstract. This paper presents a concrete software architecture dedi-
cated to ambient intelligence (AmI) features and requirements. The pro-
posed behavioral model, called Higher-order Agent (HoA) captures the
evolution of the mental representation of the agent and the one of its plan
simultaneously. Plan expressions are written and composed using a for-
mal algebraic language, namely AgLOTOS, so that plans are built auto-
matically and on the fly, as a system of concurrent processes. Based on a
specific semantics, a guidance service is also proposed to assist the agent
in its execution. Moreover due to the specific structure of AgLOTOS
expressions, the update of sub-plans is realized automatically accord-
ingly to the revising of intentions, hence maintaining the consistency of
the agent.

Keywords: Ambient intelligence · BDI agent · Formal planning
language and semantics · Dynamical plan revising · Planning
consistency and guidance

1 Introduction

Ambient Intelligence (AmI) is the vision of ubiquitous electronic environment
that is non-intrusive and proactive, when assisting people during various activ-
ities [1,2]. For the design of such complex systems, Multi-agent System (MAS)
approaches offer interesting frameworks, since their agents are considered as
intelligent, proactive and autonomous [3]. Thanks to their mental attitudes, the
Belief-Desire-Intention (BDI) agents of [4] are able to use their Beliefs, Desires,
and Intentions rationally, in order to select and execute a plan of actions.

The major problem for AmI agent consists in recognizing its environmental
contexts, including its location and the discovery of other agents. Neverthe-
less, the HoA model proposed recently in [5], outlined how autonomous BDI
agents can evolve and move within an ambient environment, based on a context-
awareness. The major features and functionalities of AmI are taken into account,
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in particular dynamic requirements such that: AmI systems can be open, thus
agents can dynamically enter or leave the system.

The presented paper is inspired by the HoA model however an efficient plan-
ning management process is introduced in the architecture of the agent. We take
profit from the fact that the plan of the agent can be derived from the current
set of intentions of the agent. Our approach is based on a formal description lan-
guage, namely AgLOTOS, allowing us to introduce modularity and concurrency
aspects to compose sub-plans, viewed as processes. Unlike the formal description
of [6], the AgLOTOS semantics overpasses the sequential execution of sub-plans.
Rather, the concurrency of sub-plans is fully implemented and is only restrained
with the purpose of solving possible inconsistency between intentions.

In this context, the planning process must be able to select and try one or
more plans from some intention, and even deal with several intentions at the
same time. Moreover, plans must be revised on the fly, in the sense that agents
are dynamic entities which are changing the set of intentions and then plan,
throughout their evolutions. As underlyied by several authors, this is considered
an important notion in BDI agent conceptual frameworks [7–9].

The planning process we propose also aims at offering to each AmI agent,
powerful predictive services, that can run on the fly. Like in other recent
approaches which are dedicated to the planning and the validation of BDI MAS
systems, e.g. [6,10], we focus on one agent rather than on the whole MAS, since
this eases us to embed agent in whatever environment and to deal with the
openness of AmI systems.

The original contributions of this paper are the following (1) a well-structure
extension of the AgLOTOS language and its semantics, which allows automatic
revisions of plans, (2) a concrete software architecture allowing the management
of the possible actions failures and (3) automatic guidance service based on the
representation of plans. The paper is organized as follows: Sect. 2 details the
considered AmI features. This allows us to introduce our Agent model in Sect. 3,
namely Higher-order agent model (HoA), which captures the evolution of the
agent in both its mental and planning states. In Sect. 4, the (structured) AgLO-
TOS language is defined to build plans automatically from the set of intentions,
based on a library of elementary plans. then, an efficient plan revising is pro-
vided in Sect. 4, which works accordingly to the revision of intentions. In Sect. 5,
the semantics of AgLOTOS is enriched to automatically produce a Contextual
Planning System (CPS ), in order to guide the execution of plans contextually.
In Sect. 6, the description of our experiment project illustrates a concrete use of
our approach. Section 7 presents the related works concerning the modeling and
the specification of AmI agents and systems. The last section is our conclusion.

2 AmI Requirements

The AmI systems we consider are open space and dynamic systems. Their agents
can reason and are assumed to be BDI agents thus have complex features as
described in Fig. 1. An agent is assumed to be autonomous and pervasive,
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thus operate without the direct intervention of humans or other agents. It is
anticipative and can process rational decisions, based on its own knowledge
and beliefs.

Fig. 1. Agent features for AmI systems

As a corollary of autonomy, an AmI agent is context-aware. We see the
context of an agent as every environmental information perceived by the agent,
in particular vicinity notions in a domain that considers space, time and social
relationships. Thus, determining if a piece of information is relevant for an agent
should be done based on its local context information.

To improve behavior and knowledge, an AmI agent can communicate and
cooperate with its neighbors. Also, AmI agent can be mobile moving from one
location to another one in a given space.

The BDI architecture is one of the major approaches to design pro-active
agents in MAS [11]. Inspired from [4,12], the following functions describe the
reasoning mechanism in the BDI agent, in order to produce a plan of actions. It
is triggered by the perceived events (Evt) and often helped by a library of plans
(LibP).

– revs : 2B × Evt → 2B is the belief revision function applied when the agent
receives a new event.

– des : 2B × 2D × 2I → 2D is the Desire update function that maintains consis-
tency with the selected desires,

– filter : 2B × 2D × 2I × LibP → 2I is the Intention function which yields
the intentions the agent decides to pursue, among the possible options, taking
into account new opportunities.

– options : I × LibP → P is the function which associates a plan with each
intention of the agent by using the LibP library.

– plan : 2I → P is a Plan function that processes an executable plan from some
(filtered) Intention, knowing that any intention can be viewed as a partial
plan.

3 The Higher-Order Agent Model

We are interested in modeling the evolution of the agent. Figure 2 highlights
the agent architecture we consider in this paper, called Higher-order Agent
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architecture (HoA). In contrast to the traditional BDI architecture, our app-
roach enhances a clear separation in three processes:

– The Context Process is in charge of the context information of the agent. It is
triggered by new perceptions of the environment and also by internal events
informing about the executions of actions. At a low level, it is in charge of
observing the realization of the executions of actions and plans of actions, in
order to state whether they are successfully achieved or if a failure occurs.

– The Mental Process corresponds to the reasoning part of the agent. It is
notified by the context process so that it can be aware of the important context
changes and can provoke possible revisions of the beliefs (B), desires (D), and
intentions (I) data.

– The Planning Process is called by the mental process. Helped by the LibP
library, it mainly produces a plan of actions from the set of intentions, but
also offers some services related to the management of plans.

Fig. 2. Higher-order agent architecture

The behavioral model of the agent only relates on two main aspects of the
agent: (1) the mental reasoning of the agent and (2) the evolution of the selected
plan. Hence, we consider that the state of the agent, namely its HoA configura-
tion, is a pair composed of a BDI state and a Planning state. As illustrated by
Fig. 3, the occurrences of events may cause some changes of one of these parts
or both.

The evolution of configurations is formally represented by the following
Higher-order Agent (HoA) behavioral model. It is defined over an alphabet of
events triggered by the actions being executed and by perception events, namely
Evt = EvtAct∪EvtPerc. Among the actions, message sendings are available, and
message receivings are viewed as specific environmental perceptions. Moreover,
mobility is handled as a specific action (move).
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Fig. 3. The agent behavioral changes

Definition 1. (The HoA model and HoA configuration)
Consider any agent of the AmI system, then let BDI be the set of all the pos-

sible states that can be defined over the BDI structure. Moreover, let P be the
set of all the possible corresponding plans, PS be the set of all the possible plan-
ning states evolving in some plan and let LibP be a subset of P representing the
library of plans. The HoA model of the agent is a transition system, represented
by a tuple 〈Q, q0,→, FM , FP , FPS〉, where:

– Q is the set of HoA configurations such that any configuration q is a tuple
q = (bdi, ps) where bdi and ps respectively represent the BDI and the planning
states of the agent in q,

– q0 ⊆ Q is the initial HoA configuration, e.g. q0 = (bdi0, ps0),
– → ⊆ Q × Evt × Q is the set of transitions between configurations,
– FM : Q −→ BDI associates a BDI state with each HoA configuration,
– FP : BDI × LibP −→ P associates with each BDI state, an agent plan built

from the LibP library,
– FPS : Q −→ PS associates a planning state with each HoA configuration.

In this paper, a BDI state is composed of three sets of propositions, represent-
ing the Beliefs, Desires and Intentions of the agent. The intentions are assumed
to be partially ordered by associating a weight to each intention. This allows
the mental process to organize its selected intentions, in order to solve possible
conflicts. The Plan is directly derived from the intentions and is written as an
AgLOTOS plan expression. Actually, the possible planning states are derived by
using the semantics of AgLOTOS from the plan expression (see Sect. 4 to get
more details).

A Simple AmI Example

Let Alice and Bob be two agents of an AmI Universitary system. Such a system
is clearly open since agents can enter and leave. The fact that Bob is entering
the system can be perceived by Alice in case she is already in. Since Alice is
context-aware, she can take advantage of this information, together with other
information like the fact she is able to communicate with Bob through the
system.

Let Θ = {�1, �2} be two locations of the system where the agents behave.
The proposed problem of Alice is that she cannot make the two following tasks
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in the same period of time: (1) to meet Bob in �1, and (2) to get her exam copies
from �2. Clearly, the Alice’s desires are inconsistent since Alice cannot be in two
distinct locations simultaneously.

In the following sections, the AgLOTOS specification language will be used
for formalizing this scenario.

4 Planning Formal Syntax and Semantics

Fig. 4. Agent planning structure

Table 1. Synthetic presentation of the used notations

Notation Description

q HoA configuration

bdi BDI state

ps Planning state

E AgLOTOS expression

P Elementary plan

̂P Intention plan

P Agent plan

(E,P ) Elementary plan configuration

(E, ̂P ) Intention plan configuration

[P ] Agent plan configuration

In our approach, the planning language is well-structured as described in
Fig. 4 and the associated notation in Table 1. Any plan of the agent, namely the
Agent plan accords with the two following levels: (1) the agent plan is made of
sub-plans called Intentions plans. Intentions plans correspond to the agent inten-
tions and each one is dedicated to achieve the corresponding intention; (2) each
intention plan can be an alternate of several sub-plans, called Elementary plans,
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each one being extracted from the LibP library. This allows one to consider dif-
ferent ways to achieve the corresponding intention (see Sect. 4.1). Further, we
assume that the LibP library is indexed by the set of all the possible intentions
that the agent can engage.

4.1 The Syntax of AgLOTOS Plans

Syntax of Elementary Plans. Elementary plans are written using the alge-
braic language AgLOTOS [13]. This language inherits from the LOTOS lan-
guage [14] so offers different ways to express the concurrency of actions in plans.
The building of an AgLOTOS expression refers to a finite set of observable
actions. Further, let O be this set whose elements range over a, b, ... and let L
be any subset of O. Let H ⊂ O be the set of the so-called AmI primitives which
represent the mobility and communication:

– In AgLOTOS, actions are refined to make the AmI primitives observable:
(1) an agent can perceive the enter and leave of another agent in the AmI
system, (2) it can move between the AmI system locations, and (3) it can
communicate with another agent in the system.

– An AgLOTOS expression refers to contextual information with respect to the
(current) BDI state of the agent: (1) Θ is a finite set of space locations, (2) Λ
is a set of agents with which it is possible to communicate, and (3) M is the
set of possible messages to be sent and received.

– The agent mobility is expressed by the primitive move(�) which is used to
handle the agent move to some location � (� ∈ Θ). The syntax of the com-
munication primitives is inspired from the semantics of π-calculus primitives,
however with the consideration of a totally dynamic communication support,
hence without specification of predefined channels: the expression x!(ν) speci-
fies the emission to the agent x (x ∈ Λ) of some message ν (ν ∈ M), whereas,
the expression x?(ν) means that ν is received from some agent x.

Let Act = O ∪ {τ, δ}, be now the considered set of actions, where τ /∈ O is
the internal action and δ /∈ O is a particular observable action which features
the successful termination of a plan.

The AgLOTOS language specifies a pair for each elementary plan composed
of a name to identify it and an AgLOTOS expression to feature its behavior.
Consider that elementary plan’s names P are ranged over P,Q, ... and that
the set of all possible behavior expressions is denoted E , ranged over E,F, ....
The AgLOTOS expressions are written by composing actions through LOTOS
operators. The syntax of an AgLOTOS elementary plan P is defined inductively
as follows:

P ::= E Elementary plan
E ::= exit | stop

| a;E | E 	 E (a ∈ O)
| hide L in E

H ::= | move(�) (H ⊂ O, � ∈ Θ)
| x!(ν) | x?(ν) (x ∈ Λ, ν ∈ M)

	 = { [ ], |[L]|, |||, ||,
, [> }
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The elementary expression stop specifies a plan behavior without possible
evolution and exit represents the successful termination of some plan. In the
syntax, the set 	 represents the standard LOTOS operators: E [ ]E specifies a
non-deterministic choice, hide L in E a hiding of the actions of L that appear in
E, E 
 E a sequential composition and E [> E the interruption of the left hand
side part by the right one. The LOTOS parallel composition, denoted E |[L]|E,
can model both synchronous composition, E ||E if L = O, and asynchronous
composition, E |||E if L = ∅. In fact, the AgLOTOS language exhibits a rich
expressivity such that the sequential executions of plans appears to be only a
particular case.

Building of the Agent Plans from Intentions and Elementary Plans.
The building of an agent plan requires the specific AgLOTOS operators:

– at the agent plan level, the parallel ||| and the sequential 
 composition
operators are used to build the agent plan, in respect to the intentions of the
agent and the associated weights.

– the alternate composition operator, denoted ♦, allows to specify an alternate
of elementary plans. In particular, an intention is satisfied iff at least one of
the associated elementary plans is successfully terminated.

Let ̂P be the set of names used to identify the possible intention plans: ̂P ∈ ̂P
and let P be the set of names qualifying the possible agent plans: P ∈ P.

̂P ::= P | ̂P ♦ ̂P Intention plan

P ::= ̂P | P ||| P | P 
 P Agent plan

With respect to the set I of intentions of the agent, the agent plan is formed in
two steps: (1) by an extraction mechanism of elementary plans from the library,
then (2) by using the composition functions called options and plan:

– options : I → ̂P, yields for any i ∈ I, an intention plan of the form: ̂Pi =
♦P∈libp(i) P .

– plan : 2I → P, creates the final agent plan P from the set of intentions I.
Depending on how I is ordered, the intention plans yielded by the different
mappings ̂Pi = options(i) for each i ∈ I, are composed by using the AgLOTOS
composition operators ||| and 
.

In our approach, the mental process can label the different elements of the set
I of intentions by using a weight function weight : I −→ N. This allows
the planning process to schedule the corresponding intention plans yielded by the
mapping options. The ones having the same weight are composed by using the
concurrent parallel operator |||. In contrast, the intention plans corresponding to
distinct weights are ordered by using the sequential operator 
. For instance, let
I = {i10, i

2
1, i

1
2, i

0
3} be the considered set of intentions, such that the superscript

information denotes a weight value, and let ̂P0, ̂P1, ̂P2, ̂P3 be their corresponding
intention plans, the constructed agent plan could be viewed (at a plan name
level) as: plan(I) = ̂P1 
 (̂P0|||̂P2) 
 ̂P3.
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4.2 Semantics of AgLOTOS Plans

The AgLOTOS operational semantics is basically derived from the one of Basic
LOTOS, which is able to capture the evolution of concurrent processes. A con-
figuration (E,P ) represents a process identified by P , such that its behavior
expression is E. Table 2 recalls the Basic LOTOS semantics which formalizes
how a process can evolve under the execution of actions. Here, it represents the
operational semantics of elementary plans, viewed as processes. In particular, the
last rule specifies how any (E,P ) configuration is changed to (E′, P ) under any
action a. Actually, P := E denotes that the behavior expression E is assigned
to P and P

a−→ E′ represents the evolution of P from E to E′. Observe that for
sake of simplicity, the notification that an action is launched is not represented
in the semantics.

Table 2. Semantic rules of elementary plans

(Termination)
exit

δ−→ stop

(Action prefix)
a∈O

a;E a−→ E

(Choice)
E

a−→ E

F [ ] E
a−→ E E [ ] F

a−→ E

(Concurrency)
E

a−→ E a/∈L∪{δ}
E |[L]| F

a−→ E |[L]| F

E
a−→ E a/∈L∪{δ}

F |[L]| E
a−→ F |[L]| E

E
a−→ E F

a−→ F a∈L∪{δ}
E |[L]| F

a−→ E |[L]| F

(Hiding)
E

a−→ E a/∈L

hide L in E
a−→ hide L in E

E
a−→ E a∈L

hide L in E
τ−→ hide L in E

(Sequence)
E

a−→ E a=δ

E F
a−→ E F

E
δ−→ E

E F
τ−→ F

(Interruption)
E

a−→ E a=δ

E [> F
a−→ E [> F

E
δ−→ E

E [> F
δ−→ E

F
a−→ F

E [> F
a−→ F

(Relabeling)
E

a−→ E a/∈{a1,...,an}
E[b1/a1,...,bn/an]

a−→E [b1/a1,...,bn/an]
E

a−→ E a=ak (1≤k≤n)

E[b1/a1,...,bn/an]
bk−→E [b1/a1,...,bn/an]

(Plan definition)
P :=E E

a−→ E

P
a−→ E

Definition 2 specifies how the expression of an agent plan is formed compo-
sitionally. Further, the behavior expression of the agent plan P is denoted [P ]
and is called the agent plan configuration. It is formed compositionally from the
intention plan configurations of the agent, like (E, ̂P ) (see rule 2 ), themselves
built from an alternate of elementary plans configurations, like (Ek, Pk) (see
rule 1 ).
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Definition 2. Any agent plan configuration [P ] has a generic representation
defined by the following two rules:

1. P ::= ̂P ̂P ::=♦k=1..n Pk Pk::=Ek

[P ]::=(♦k=1..n Ek, ̂P )

2. P ::=P1 � P2 �∈{|||,�}
[P ]::=[P1] � [P2]

Table 3 shows the operational semantic rules defining the possible planning
state changes for the agent. The rules apply from any HoA configuration q =
(bdi, ps), where the planning state ps is directly specified as an agent plan con-
figuration, like [P ]. In each row of the table, there are three kinds of deriva-
tions: (1) the first rule shows the nominal case considering the execution of any
action a (a ∈ O ∪ {τ}), (2) and (3) the other two rules focus on the termina-
tion action of some intention plan, ̂P . In the second one, the considered intention
plan is successfully terminated whereas in the third one, the failure termination
case is treated. With respect to any intention plan ̂P , ̂P and ¬ ̂P respectively
represent the successful and failure termination cases of ̂P . Hence, if PS is the
set of all the possible planning states for the agent, then the transition relation
between the planning states is a subset of PS ×Act× ( ̂P ∪¬ ̂P)×PS. The tran-
sitions (ps1, a, ̂P , ps2) and (ps1, a,¬ ̂P , ps2) such that ̂P ∈ ̂P, provoke an internal
event informing the mental process of the termination of the intention plan ̂P .
For sake of clarity, the transition (ps1, a, nil, ps2) is simply denoted ps1

a−−→ ps2,
representing the execution of a non termination action a.

– The two first rows concern the derivations of the behavior expression of an
intention plan ̂P , under the execution of some action. The Action rules exhibit
the simple case where E is an elementary expression of ̂P , whereas the Alter-
nate rules focus on the execution of an alternate of elementary expressions,
like ♦k=1..nEk. The second rule captures the successful termination of ̂P ,
under the execution of the action δ, while the third one captures the failure,
in case the behavior expression of ̂P is equivalent to fail. In this paper, fail
represents the fact that the execution of some behavior expression E fails due
to the dynamical context of the agent. In the first Alternate rule, the behav-
ior expression E = ♦k=1..n Ek of an intention plan ̂P , is refined by using the
mapping select, the role of which is to select one of the elementary expression
among the ones of E, e.g. Ej = select( ̂P ). The alternate operation is semanti-
cally defined by introducing a new semantic operator �, in order to take this
selection into account: Ej � (♦Ek=1..n

k �=j Ek). Observe that E � F , yields E if
E is a success and F if E fails.

– In the two last rows, the sequential and parallel LOTOS operators are used
to express the compositions of intention plan configurations, in a sequential
or parallel way. Here again, the rules are refined to take possible failure cases
into account.

Application to the Scenario. Let us take the scenario of Sect. 3 again. Table 4
separately represents a possible evolution of the HoA configurations for the agent
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Table 3. Semantic rules of agent plan configurations

(Action)
E

a−−→E

(E,P )
a−−→(E ,P )

E
δ−→stop

(E,P )
τ−−→
P

(stop,P )

E≡fail

(E,P )
τ−−−→

¬P
(stop,P )

(Alternate)
Ej

a−−→Ej Ej=select(P )

(♦k=1..n Ek,P )
a−−→ (Ej (♦k=1..n

k=j Ek),P )

E
δ−→stop

(E F,P )
τ−−→
P

(stop,P )

E≡fail F
a−−→F

(E F,P )
a−−→ (F ,P )

(Sequence)
ps1

a−−→ps1

ps1 ps2
a−−→ps1 ps2

ps1
τ−−→
P

ps1

ps1 ps2
τ−−→
P

ps1 ps2

ps1
τ−−−→

¬P
ps1

ps1 ps2
τ−−−→

¬P
ps1 ps2

(Parallel)
ps1

a−−→ps1

ps1|||ps2
a−−→ps1|||ps2 ps2|||ps1

a−−→ps2|||ps1
ps1

τ−−→
P

ps1

ps1|||ps2
τ−−→
P

ps1|||ps2 ps2|||ps1
τ−−→
P

ps2|||ps1

ps1
τ−−−→

¬P
ps1

ps1|||ps2
τ−−→

¬P
ps1|||ps2 ps2|||ps1

τ−−→
¬P

ps2|||ps1

Alice and Bob, to solve the Alice’s problem. In order to express the agent plan
configurations, BDI propositions and plan of actions are simply expressed by
using instantiated predicates, e.g. get copies(�2). Intention plans are composed
from elementary plans which are viewed as concurrent processes, terminated
by exit.

The initial configurations of Alice and Bob are respectively qA
0 and qB

0 , such
that Alice is in �1 and has the mentioned two inconsistent desires, whereas Bob
is in �2 and has expressed the desire to work with Alice. The current intention
of Alice is only to meet with Bob. Here, BDI information is simply expressed by
using intuitive predicate assertions.

The mental process can order the set of intentions to be considered. For
instance, the intentions of Bob in qB

1 : I1 = {meeting(Alice, �1), getting copies
(�2)} are ordered such that weight(meeting(Alice, �1)) < weight(getting copies
(�2)). In the intention set I1 of Bob, the corresponding agent plan configu-
ration is: [P1] = ((Eg, ̂Pg) 
 (Em, ̂Pm)), where (Eg, ̂Pg) and (Em, ̂Pm) are
the two intention plan configurations of Bob. The first one corresponds to the
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Table 4. A state evolution for Alice and Bob

Alice’s scenario

B0 = {in(me, 1), in( 2)}
qA
0 D0 = {meeting(B 1), getting copies( 2)}

I0 = {meeting(B 1)}
[P0] = (meet(Bob); exit, Pm)

B1 = {in(me, 1), in( 2), in( 2)}
qA
1 D1 = {meeting(B 1), asking(Bob, get copies( 2))}

I1 = {meeting(B 1), asking(Bob, get copies( 2))}
[P1] = (meet(Bob); exit, Pm) ||| (Bob!(get copies( 2)); exit, Pa)

Bob’s scenario

B0 = {in(me, 2)}
qB
0 D0 = {waiting(ν), meeting( 1)}

I0 = {waiting(ν), meeting( 1)}
[P0] = (Alice?(ν); exit, Pw) ||| (move( 1); meet(Alice); exit, Pm)

B1 = {in(me, 2), in( 2)}
qB
1 D1 = {meeting(Al 1), getting copies( 2)}

I1 = {meeting(Al 1), getting copies( 2)}
[P1] = (get copies( 2); exit, Pg) (move( 1); meet(Alice); exit, Pm)

intention getting copies(�2) and the second to meeting(Alice, �1), such that
Eg = get copies(�2); exit and Em = move(�1);meet(Alice); exit.

An example of execution derived from the initial planning state of Bob in
qB
1 is the following, expressing that Bob fails to get the copies but this does not

prevent him to move and perform the meeting with Alice:

((Eg, ̂Pg) 
 (Em, ̂Pm)) τ−−−−→
¬̂Pg

(Em, ̂Pm)
move(�1)−−−−−−→ (E′

m, ̂Pm) meet−−−−→ (E′′
m, ̂Pm)

τ−−−→̂
Pm

(stop, ̂Pm).

The reader may notice that the Alice and Bob agent plan configurations in
qA
1 and qB

1 can change according to their revised intentions. Section 4.3 enriches
the semantics with the plan revising service. This scenario will be taken again
as an illustration.

4.3 Dynamical Plan Revising

In our model, the mental process drives the planning process such that adding
or removing intentions possibly provoke the change of the agent plan. Of course,
the mental process cannot ask for such a change on some plan is in progress,
since this could imply that the agent could fall down in an incoherent state.
In fact, the mental process must be informed by the planning process about
the terminations of sub-plans, in particular intention plans, in order to act with
consistency. At this point, we assume that the only dependencies within the
intention set are due to the organization of the weighted intentions, required by
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the mental process. A rough approach would consist in waiting the whole plan
termination, meaning that the planning process reaches the final planning state
of the current agent plan, before taking the change of intentions into account.
In this paper, we propose an improved method which consists in updating the
agent plan as the revisings of intentions are required by the mental process. Such
updates consist in adding new intention plans and removing some of the remain-
ing intention plans in progress. We take profit from the compositional nature of
AgLOTOS, that allows the planning process to manage the different intention
plans distinctly. Recall that any planning state specifies different intention plan
configurations corresponding to intentions to be achieved.

In some HoA configuration q = (bdi, ps), I(bdi) represents the intention set
in this configuration. Let us consider some planning state ps = [P ], such that
[P ] = 	i∈1..n (Ei, ̂Pi) represents the remaining intention plan configurations to
execute, where each ̂Pi corresponds to the plan of the intention i, Ei is its
associated AgLOTOS expression and 	 ∈ {|||,
}.

The updatings of the intention set and of the corresponding agent plan rely
on the following principles:

– according to the semantics, every termination of intention plan produces an
internal event which changes the BDI state, in particular the updating of the
intention set.

– it is easy to build some mappings which relates every intention i ∈ I to the
corresponding pair (E, ̂P ) and vice versa: (1) remain : P × I → E × ̂P maps
each intention i ∈ I to the corresponding pair (E, ̂P ) of [P ]; (2) index : ̂P → I

maps each ̂P to the corresponding intention i ∈ I. It is worth noting that from
weight(index( ̂Pi)) such that i ∈ I, one yields the weight of the intention i.

The add and remove of updating operations are formalized by the following
two mappings: add, remove : 2E× ̂P × I → [P], be the mapping which builds an
agent plan configuration [P ] from a set of intention plan configurations.

The Adding of a new intention k, assuming its intention plan configuration
is (Ek, ̂Pk), means:

– adding k in I and updating the weight mapping to take k into account, then
– building a new agent plan configuration, from the set of remaining intention

plan configurations ∪i∈I remain(P , i) and their respective weights weight(i).

Formally, let ps be the current planning state of the agent and k be the
intention to be added, the resulting planning state after the revising is defined
by: (add(∪i∈I remain(ps, i), k)).

The explicit Removing of a (non-terminated) intention k from I, means that
the corresponding (Ek, ̂Pk) = remain(P , k) must be removed from P . As for the
adding function the resulting planning state after removing the intention k is:
(remove(∪i∈I remain(ps, i), k)).

Application to the Scenario. Consider the example of Table 4 again, the
changes of configurations for Alice and Bob (taken separately) are due to the
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respective perceptions of Alice and Bob and the fact they are anticipative. Actu-
ally, after having perceived that Bob is in �2 (e1 = perc(in(Bob, �2))), meaning
in the same location as the exam copies, Alice enriches her beliefs, desires and
intentions, aiming communicating with Bob and asking for his help to bring her
the copies. Consequently, she evolves to the new configuration qA

1 , where the
generated plan suggests that Alice sends the message Bob!(get copies(�2)).

Notice that Bob is able to receive any message from Alice, which is denoted
Alice?(ν) in qB

0 . The reception of the message sent by Bob triggers an event
at the Bob’s mental process level. Since here Bob is accepting bringing the
copies to Alice, he expands his beliefs (in(copies, �2)) and also considers a new
intention getting copies(�2) to take into account, in fact consistent with the
previous ones. Consequently, the HoA configuration of Bob is changing to qB

1

i.e. I1 = I0 ∪ {getting copies(�2)}, and the plan [P0] of Bob is updated by using
the add mapping: [P1] = add(∪i∈I0 remain(P0, i), getting copies(�2)), in order
to satisfy all of his desires, getting first the copies then going to meet Alice.

Fig. 5. HoA evolution of the agent Bob

The sequence diagram of Fig. 5 focuses on the behavior of Bob, in order to
highlight the mutual updates required by the mental process and the planning
process, to synchronize the content of the intention set and the specification of
the agent plan. For sake of simplicity, notice that:

• w and m respectively represent the two initial intentions of Bob in I0, that
are waiting(ν) and meeting(Alice, �1),

• g represents the intention getting copies(�2)

Moreover, the signs + and − respectively mean adding the intention and remov-
ing it.

The bold horizontal arrows show the updates of this part of the scenario.
First, the agent plan is built from the fact that w and m are added to the
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intentions set (with the same weight). This results in two concurrent intention
plans, [PB

0 ] = (Ew, ̂Pw)|||(Em, ̂Pm). Due to the reception of the Alice’s message,
this yields to the execution of the reception action, followed by the exit action
(τ) mentioning the termination of the intention plan ̂Pw. This yields the agent
plan [P ′′B

0 ] = (Em, ̂Pm). Since the mental process is informed of both actions (by
internal events), it finally decides to update its set of intentions, with −w,+g (m
has a lower weight than g). As a consequence, the planning process is triggered
to revise its agent plan in accordance, so [PB

1 ] = (Eg, ̂Pg) 
 (Em, ̂Pm).

5 Contextual Planning Services

We now augment the planning process by two new services, exploiting the con-
textual information of the agent. Our aim is to provide a guidance service for
the mental process and a model checking approach to analyze some temporal
properties over the agent plan. Both services are based on the building of a
specific transition system called Contextual Planning Systems (CPS ), that can
represent the different execution traces the agent could perform, from a given
HoA configuration, in the best case, assuming the information context of the
HoA configuration hold.

5.1 Building of a Contextual Planning System

Let consider any HoA configuration, the CPS state of the agent is now defined
contextually to this configuration, taking into account the agent location and a
termination information about the different intention plans.

Let q be any HoA configuration of the agent, and I(q) its intention set in
q, the rules used to build the CPS, take into account contextual information of
three kinds which are: (1) the reached location in a CPS state, (2) the set of
intention plans that are terminated when reaching a CPS state, and (3) more
globally, the set Λ(q) of neighbors currently known by the agent.

Definition 3. A CPS state is a tuple (ps, �, T ), where ps is the current planning
state of the agent which represents its agent plan configuration [P ], � corresponds
to the location within which the agent is placed, and T is the subset of intention
plans which are terminated.

Table 5 brings out the operational semantic rules, defining so the possible
ways of CPS state changes. These rules are applied from an initial CPS state
and ([P ], �, ∅) means that the agent is initially considered at location �, and its
plan configuration is [P ].

The Action rules are used to derive the execution of an action with respect
to an intention plan. The left hand side rule exhibits the case of a regular action,
whereas the right hand side one shows the termination case of an intention plan,
wherein the terminated intention plan is added to T . Also, the Mobility rules
capture the change of location from � to �′ and in the Communication rules,
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Table 5. Semantic rules of CPS state changes

(Action)
ps

a−−→ps a∈O∪{τ}
( )

a−−→(ps )

ps
τ−−→
P

ps

( )
τ−−→(ps ∪{P})

(Mobility)
ps

move( )−−−−−→ps =

( )
move( )−−−−−→(ps ,T )

ps
move( )−−−−→ps

( )
τ−−→(ps )

(Communication)
ps

x!(ν)−−−−→ps x∈Λ

( )
x!(ν)−−−−→( )

ps
x?(ν)−−−−→ps x∈Λ

( )
x?(ν)−−−−→(ps )

the action send x!(ν) (resp. receive x?(ν)) is constrained by the visibility of the
agent x in its neighborhood.

Observe that due to the fact we consider a predictive approach in this section,
only successful executions are taken into account, thus abstracting that a plan
may fail. Moreover, the semantics of the alternate operator is reduced to a simple
non-deterministic choice of LOTOS: ♦k=1..nEk ≡ [ ]k=1..nEk in order to possibly
try every elementary plan to achieve the corresponding intention.

Definition 4. Let q = (bdi, ps) be any HoA configuration of the agent, the
Contextual Planning System of q, denoted CPS(q), is a labeled kripke structure
〈S, s0, T r,L, T 〉 where:

– S is the set of CPS states,
– s0 = (ps, �, ∅) ∈ S is the initial CPS state, such that ps = [P ] represents the

current planning state of the agent in q and � its current location,
– Tr ⊆ S ×Act×S is the set of transitions. The transitions are denoted s

a−→ s′

such that s, s′ ∈ S and a ∈ O ∪ {τ},
– L : S → Θ is the location labeling function,
– T : S → 2 ̂P is the termination labeling function which captures the terminated

intention plans in some CPS state.

Moreover, in a CPS, the transitions from a CPS state only represent actions
that are realizable. In this paper, actions are modeled by instantiated predicates
and their execution in CPS state is submitted to pre-conditions to be satisfied
with respect to the contextual information known in that state, e.g. pre(x!(ν)) =
pre(x?(ν)) = x ∈ Λ.

Remark 1. (Realizable actions) Let pre(a) be the pre-condition of the action a.
A transition (s a−→ s′) ∈ Tr is realizable in the state s of CPS(q) iff pre(a) ⊆
L(s) ∪ Λ(q).

Consider Table 4 where [P1] is the agent plan configuration considered for
Bob in the HoA configuration qB

1 . The initial CPS state s0 in qB
1 is written:

s0 = ([P1], �2, ∅) where [P1] = ((Eg, ̂Pg) 
 (Em, ̂Pm)). An example of trace
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of CPS(qB
1 ) derived from s0 is: ((Eg,̂Pg) � (Em, ̂Pm), �2, ∅)

getc−−−→ ((E′
g,̂Pg) �

(Em, ̂Pm), �2, ∅) τ−−−−→ ((Em, ̂Pm), �2, {̂Pg})
move(�1)−−−−−−→ ((E′

m, ̂Pm), �1, {̂Pg}) meet−−−−→
((E′′

m, ̂Pm), �1, {̂Pg}) τ−−−→ (stop, �1, {̂Pg, ̂Pm}).

5.2 Planning Guidance

In a CPS, the mapping T (s) captures the termination of intention plans in the
CPS state s, hence the satisfaction of the corresponding intentions. In order to
guide the agent, the planning process can select an execution trace through the
plan, which maximizes the number of intention terminations.

Definition 5. (Maximum trace) Let end : Σ −→ 2 ̂P specify the set end(σ)
of termination actions that occur in a trace σ, then, the trace σ is said to be
maximum iff there is no trace σ′ in CPS(q) such that |end(σ′)| > |end(σ)|.

As a corollary, a similar technique can be used to check the consistency of
the agent intentions. With respect to any HoA configuration q, the compari-
son between one maximum trace σ in CPS(q) and |end(σ)| allows one to exhibit
two extreme cases:

– if |end(σ)| = |I(q)|, we conclude that all the intentions of I(q) are consistent,
– if |end(σ)| = 0, there is no satisfied intention, so the agent plan P of q is

unappropriated with respect to the set of agent intentions.

We reconsider the scenario of Table 4 to achieve the intentions of Bob in a
parallel way: [P1] = ((Eg, ̂Pg)|||(Em, ̂Pm)) is the agent plan configuration con-
sidered for Bob. The Contextual Planning System CPS(qB

1 ) is highlighted in

Fig. 6. CPS(qB1 ) corresponding to the plan P1 of Bob
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Fig. 6. It is built from the initial CPS state ([P1], �2, ∅) in qB
1 . In the figure, the

dashed edges represent the unrealized transitions from the states s ∈ {s2, s5, s8},
because pre(getC) = {�2} � L(s) ∪ Λ(q).

Model Checking of a Plan Properties

The fact that CPS(q) is a kripke structure, allows one to process temporal
logic verification, such as LTL or CTL. Due to the contextual labeling of states
in CPS(q), the properties to be checked concern the mobility, the communi-
cation and the terminations of intention plans. For instance, with respect to
the CPS(qB

1 ) of Fig. 6, the CTL-formula AF(�1) is checked true. This property
means that the agent eventually reaches or crosses the location �1 on all the pos-
sible traces featured in the CPS. The use of model checking techniques is rather
large since the possible properties cover both safety and liveness considerations.
In fact, we view the CPS-based model checking service as a way to reinforce the
planning guidance.

6 Experimentation: The Smart-Campus Project

We experiment our agent-based approach in a distributed system project called
Smart-Campus. The aim is to assist the users of a complex Universitary campus
in their activities. Concretely, we equip a float of (Android) smart-devices by
the smart-campus application. In this application, the software architecture is
composed of an HoA agent and a specific graphical user interface (GUI) to inter-
act with the user to be assisted. Basic services are currently implemented over
the HoA architecture, based on physical localization and (a)synchronous com-
munication mechanisms. They are supported by the smart-device API facilities,
in particular the Wireless Local Area Network (WiFi) API. As an example, the
navigation service takes profit from the underlyied localization service to deter-
mine on the fly, the position and the move of the assisted user. Moreover, the
contextual guidance service allows the agent to assist the user in realizing his
desires in proposing different alternatives.

At the level of the Smart-Device (SD), the campus is concretized by the
starting service which automatically connects the SD to the "CAMPUS" network,
through one of the possible WiFi Access Points (AP). As illustrated in Fig. 7,
the SD can automatically access to the server “SC Directory”, dedicated to
the smart-campus. This server is viewed as a middleware which maintains the
persistence of contextual information like the discovery and the locations of other
SD and objects concerning the campus. The starting service is also dedicated
to declare the public information of the user to the server, in particular its
location. One of the specificity of this project is that the agent embedded in
the SD remains autonomous when the SC directory cannot be reached or when
the user is exiting the campus. It can continue assisting the user, due to the
context information and persistent data previously stored in the SD, that can
be pervasively updated with the help of other neighbor agents.
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Fig. 7. Smart-campus architecture

Observe that the localization service must work over the campus ground as
well as the different stairs of the buildings. The best localization indoor technique
is currently a research in progress e.g. [15]. Currently, we use different WiFi
access points within the campus to compute the geographical locations, since this
works in both indoor and outdoor locations. Anyway, the localization process
requires a tune calibration phase to store specific information in the SC directory,
concerning a set of physical reference points that must be selected over the
campus, as mentioned in the finger printing approach, e.g. in [16].

In our case, information includes the physical location of the reference point
(GPS), its symbolic name (place/room/corridor) and above all the perceived
signal attenuation (RSSI1) from that location, in respect to the different WiFi
access points. The localization service on the SD can then compare its proper
perceptions of the WiFi attenuation in respect to the same references stored in
the server, so that to deduce an approximation of its position through statistical
computations and trilateration concepts.

GUI is also an important issue in our application since the user is definitively
a mental process and also have physical capabilities expressed by all its senses.
In particular, the move action finally results in some notification/proposal to
the user which can walk in the good direction. Actually, all the actions that
the HoA agent cannot perform can be delegated either to other agents or to
some connected user, accordingly to the required capacities. As a specific GUI,
graphical maps are modern and useful interfaces for the users. Our application
is able to manage the maps of the campus, over which additional layers are used
to render maps interactive and to show different locations and paths.

7 Related Work

Since the last decade, several MAS projects were proposed embedding AmI sys-
tems. In conjunction with them, an important issue was to understand how AmI
1 RSSI: Received Signal Strength Indication.



A Higher-Order Agent Model with Contextual Planning Management 165

agents can interact and reason within a dynamic environment. One important
topic was thus to model context-awareness within agent. Among the different
existing works, different management of contexts were proposed: In [17], a hier-
archical space system is considered which allows to directly specify location and
some context elements for each agent moving in the space. Moreover, a list of
interesting AmI system projects is brought out in the paper. In [17], the system
view is abstracted but the agent context is modeled as a dynamic structure over
which coordination activities are recognized by a pattern matching technique.

Among the different existing works, different management of contexts were
proposed, and were dedicated to the description of AmI applications and scenar-
ios, e.g. in [1–3]. These works concentrate on engineering issues of AmI systems
while taking into account sophisticated contexts. In our formal approach, the
context we deal with only refers to location and neighboring information, how-
ever, it could be extended with additional managements and techniques.

The fact to consider MAS as distributed systems composed of different com-
municating entities is not new, however the first proposals either do not include
any built-in capacity for “lookahead” type of planning or they do it only at the
implementation level without any precise defined semantics. Since 2006, BDI
agent-centric approaches emerge to cope with the dynamicity of the agent envi-
ronment. In [6], a hierarchical model (HTN) is proposed to better control the
scheduling of plans in BDI agents, following an alternating goal-plan oriented
strategy. Later on the same bases, Sardina et al. [18] showed how to specify and
test learning approaches in some particular cases. In [8], they proposed a formal
procedure to manage and update the intention sets according to the agent BDI
attitudes and the occurrences of new events.

Our proposed model is also agent-centric and accords with the principle of
tightly controlling plan from the BDI mental attitudes. In contrast to the for-
mer works, the realizations of different intentions can be simultaneously consid-
ered and concurrently executed, in a higher level planning model. Conflicts are
assumed to be solved by the mental process of the agent, however with the help
of intention priorities. It is worth noticing that the conflicts which are caused
by the contextual information are taken into account when building a CPS from
the intention set. Dealing with action dependencies to restrain the agent activity
have already largely been studied in the literature. In particular a GraphPlan
planner can efficiently produce a global plan as a flow of actions, that corre-
sponds to the subset of the desires that could be executed concurrently [10].
However, GraphPlan only deals with some of the possible schedulings between
actions, since it follows a global time step approach. In contrast, our approach
takes all the possible cases into account.

The on the fly revision of plans throughout the evolution of the agent is in fact
a recent research topic in MAS approaches, e.g. [19]. In [8], the authors propose to
revise the agent plans from the modifications of the agent’s goals, in particular
from the fact that some plans corresponding to intentions can be conflictual.
However, the proposed solution comes from the fact that actions are processed
atomically, so without concurrency, and in a tight alternate of goals and basic
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actions, expressed in a hierarchical structure. The well-structured semantics of
AgLOTOS, especially with the intermediary notions of intention plans allows us
to smoothly develop the planning update service from some changes in the set
of intentions. It is not related to the concurrency of intention plans and has the
capacity of continuing the execution of intention plans which are not related to
the change of some intention.

In the literature there are a number of (BDI) agent programming languages
[20], highlighting different aspects or modules developed in agent softwares like
goal, planning, organization, reinforcement learning, ..., e.g. S-CLAIM [21], Jason
[22], 2APL [23] and JIAC [24]. Most of them lack from formal description, but,
the work of [6] has extended some existing formal algebraic specification models
dedicated to distributed systems, in order to specify the concurrency of actions
in plans. The proposed language integrates BDI ingredients within plans in a
unified and interactive way. Nevertheless, our formal algebraic language based
on LOTOS, appears to be more expressive in its capacity to express plans as
concurrent processes as well as concurrent actions. It is also operational by the
way to handle action and plan failures in the AgLOTOS language and the HoA
architecture. Lastly, pay attention that in our approach, a clear separation exists
between the mental and planning levels. Actually, our planning process behaves
like a service that could be embedded in existing BDI architectures.

The verification task standardly applied to MAS is mainly driven by a global
vision of the system, e.g. in [25]. In [26], the reuse of some program checking
techniques are proposed, based on a BDI representation of the system state
space. Moreover, in order to cope with the well-known combinatorial explo-
sion of states, abstraction/reduction techniques are applied over the BDI states.
One could think to introduce similar techniques within AmI agents, however, the
high-level dynamics that usually features an AmI environment could introduce
too much states to consider, even after reduction. Moreover, it remains open
to apply these techniques according to the changes of contexts. In our paper,
the proposed techniques, guidance and plan model checking, capture the AmI
context but remains agent-centric. This avoids considering the system combi-
natorial explosion problem while allowing to take into account the AmI system
dynamicity.

Petri net-based models were proposed to represent some MAS paradigms.
Basically, such models can easily capture resource notions and concurrency exe-
cution of actions and dynamic processes, e.g. [27,28]. With some typing mech-
anisms (coloration), MAS distributed entities can be designed and their way to
communicate between them, e.g. [29]. Thus, agent interactions can be handled
at different operational levels, like agent plans [30]. As interesting works, the
Petri Net modeling were useful to study the global coherencies of plans or agent
interactions to recognize some FIPA protocols [31]. Nevertheless, many problems
remain open in order to capture a whole AmI system requirements such as the
system openness or the dynamics inherent to the change of agent contexts. In
fact, Petri Nets remain low level representations with respect to the concepts
used to build the mental attitudes of the agent. In contrast, AgLOTOS brings
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out abstraction capacity and high level composition means whereas the proposed
HoA model allows to correlate both mental and planning levels.

8 Conclusion

The Higher-order agent model (HoA) formally represents a BDI-AmI open sys-
tem where agents can reason, communicate and move. Agent dynamicity and
context-awareness are handled due to the fact that a BDI agent can change its
BDI state adequately to the perceptions of new events. The proposed AgLOTOS
process-based algebra appears to be a powerful and intuitive way to express an
agent plan as a set of concurrent processes. The presented scenario shows how
the AgLOTOS language is rich due to modularity concepts and concurrency
operators.

We demonstrate that the proposed model is operational. Actually, plans are
automatically built from the set of intentions of the agent and a library of
elementary plans already expressed in AgLOTOS. In contrast to existing works,
the planning process can execute the different intention sub-plans concurrently.
Moreover, the planning structure appearing in the AgLOTOS expressions allows
to automatize the plan revisions on the fly, accordingly to the updates of inten-
tions. Hence, an AmI agent can be viewed as having only one plan, updated all
along the evolution of the agent behavior.

On another point, the CPS structure appears to be an interesting state-
transition structure to select optimal execution from the contextual situation
of the agent. In this paper, the proposed guidance service based on the CPS
is used to optimize the satisfaction of the agent intentions. Moreover, intention
consistency can be checked over the CPS structure. One of our next perspec-
tives will consist to reinforce the proposed guidance service and temporal model
checking techniques could be used in that sense.
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plan revising for ambient systems. Procedia Comput. Sci. 32, 37–44 (2014)

14. Brinksma, E. (ed.): ISO 8807, LOTOS - A Formal Description Technique Based
on the Temporal Ordering of Observational Behaviour (1988)

15. Galván-Tejada, C.E., Garca-Vázquez, J.P., Garc-Ceja, E., Carrasco-Jiménez, J.C.,
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