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Abstract. The behaviour of self adaptive systems can be emergent,
which means that the system’s behaviour may be seen as unexpected by
its customers and its developers. Therefore, a self-adaptive system needs
to garner confidence in its customers and it also needs to resolve any sur-
prise on the part of the developer during testing and maintenance. We
believe that these two functions can only be achieved if a self-adaptive
system is also capable of self-explanation. We argue a self-adaptive sys-
tem’s behaviour needs to be explained in terms of satisfaction of its
requirements. Since self-adaptive system requirements may themselves
be emergent, we propose the use of goal-based requirements models at
runtime to offer self-explanation of how a system is meeting its require-
ments. We demonstrate the analysis of run-time requirements models
to yield a self-explanation codified in a domain specific language, and
discuss possible future work.
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1 Introduction

Self-adaptive systems are able to adjust their behaviour according to changes
in their operating environment. Uncertainty in the operating environment may
cause the behaviour of self-adaptive systems to be emergent. A system whose
behaviour cannot be accurately predicted poses serious problems in terms of
assurance and acceptance. A lack of intelligibility may cause users to stop using
a self-adaptive system [1–3]. Because its behaviour is emergent, a self-adaptive
system needs to garner confidence in its stakeholders, and allow developers to

This paper is an extended version of the paper “Towards Requirements Aware
Systems: Run-time Resolution of Design-time Assumptions” by Bencomo, Welsh,
Sawyer and Whittle, 17th IEEE International Conference International Conference
on Engineering of Complex Computer Systems ICECCS 2012, Paris, France, July
2012.

c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 122–145, 2014.
DOI: 10.1007/978-3-662-44871-7 5



Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 123

understand observed behaviour [3]. We believe that these two functions can only
be achieved if a self-adaptive system is also capable of self-explanation.

We argue that a self-adaptive system’s behaviour is best explained in terms
of the satisfaction of its requirements. Observing the degree to which a system
satisfies its requirements is well-discussed in requirements monitoring literature
[4], and addresses questions of what the system is doing. The ability of a self-
adaptive system to select alternative configurations based on environmental trig-
gers raises questions on how the system is doing it, with more useful explanations
offering clues to why the system is behaving as observed. Readily-understandable
explanations are challenging to produce, with several key challenges preventing
developers from creating such functionality. These challenges are discussed in
the following paragraphs.

Firstly, an ability to explain behaviour relies upon an ability to monitor,
introspect and reason about the system’s current and past behaviour. There has
been significant research interest in providing support for requirements monitor-
ing [4,5], and in the specific area of self-adaptive systems, advances have also
been made towards better support for introspection by adaptive middleware [6,7]
and other frameworks [8,9]. However, work seeking to combine these two capa-
bilities with reasoning still needs more research effort. The new and broader
research area of requirements-aware systems covers similar interests [3,10,11].

Secondly, explanations need to be created at a sufficiently high level as to
be understandable by a variety of interested stakeholders (e.g. end-users, but
also by maintainers and support personnel). Ideally, users should interact with
the system at a level of abstraction that is meaningful to them. This requires
that the system is able to trace backwards and forwards between abstractions
at the user’s level and abstractions used by the systems at lower levels (e.g.
components, component configurations, etc.). Furthermore, a trace of relevant
events in the history of the adaptations the system has gone through should be
kept by the system.

Thirdly, for self-explanations to be trustable, a self-adaptive system should be
able to trace down from goals towards code to keep a synchronized link between
requirements and architecture during execution. This trace needs to consider the
dynamic changes that will affect requirements and the architecture of the system
at runtime and keep a causal connection between the two.

Finally, a self-adaptive system should be able to reproduce a trace history
of the adaptations it has performed in a way that is meaningful to support
self-explanation.

In [12], we described our view of requirements-aware systems. In our work,
representations of assumptions are made explicit using the concept of claims in
goal models at design time. Using what we call claim refinement models (CRMs),
we have defined the semantics for claims in terms of their impact on alternative
strategies that can be used to pursue the goals of the system. The impact is
calculated in terms of satisfaction and trade-off of the system’s non-functional
requirements (modeled as softgoals). Crucially, at runtime, when the executing
system monitors that a given claim does not hold anymore, the system may adapt
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to an alternative goal realization strategy that may be more suitable for the
new contextual conditions. Importantly, our approach tackles uncertainty, i.e. the
new goal realization strategy may imply a new configuration of components that
was not necessarily foreseen at design time. With the potential for unforeseen
behavior, self-explanation capabilities are crucial. In this paper we build on the
approach described in [12] to address the challenges posed by self-explanation
described above.

The rest of the paper is organized as follows: In Sect. 2 we present the moti-
vation of the paper using a simple but yet useful discussion. In Sect. 3, we dis-
cuss our initial progress towards a mechanism by which self-explanation can be
achieved. In Sect. 4, we apply this means of providing self-explanation to a short
case study. In Sect. 5, we propose a simple domain-specific language in which
to convey self-explanations generated using our technique. Section 6 describes
relevant related work. Section 7 concludes the paper and discusses future work.

2 Motivating Example

Consider the example of a robotic vacuum cleaner for domestic apartments,
which uses self-adaptation to balance two conflicting non-functional require-
ments: to avoid causing a danger to people within the apartment (avoid tripping
hazard) and to be economical to run (minimise energy costs). The cleaner sup-
ports two modes of operation: clean at night and clean when empty. Cleaning at
night will likely yield lower energy costs, but could cause the occupants to trip
should they awake and move about the apartment. Cleaning when the apartment
is empty eliminates this hazard, but if the apartment is only empty during day-
time this will come at a cost of increased energy costs. A standard goal model,
showing the different ways in which the robot can clean the apartment, and
each method’s impact on the two competing NFRs (which can be modelled as
softgoals) would be deadlocked, with no clear favourable goal operationalisation
strategy. We have previously discussed [13] the use of claims, which were first
proposed in the Non-functional Requirements (NFR) Framework [14], to model
an assumption made to break the deadlock in a goal model. In this case, we
can make an assumption that the tripping hazard is unlikely to cause an acci-
dent. We illustrate this using an i* [15] Strategic Rationale (SR) model, which
models how an agent achieves its goals, and allows alternative goal satisfaction
strategies to be compared in terms of their impact on softgoals. The model in
Fig. 1 shows a claim “No Tripping Hazard” breaking the deadlock that would
otherwise occur.

In Fig. 1, the vacuum cleaner’s “Clean Apartment” goal may be satisfied
either by the “Clean at night” task, or the “Clean when empty” task. Cleaning
at night helps satisfy the “Minimise energy costs” softgoal, but hurts the “Avoid
tripping hazard” softgoal, as represented by the contribution links attached to
the task. The “Clean when empty” task makes the inverse contributions to each
of the softgoals.

The “No tripping hazard” claim breaks the negative contribution made to
the “Avoid tripping hazard” softgoal by the “Clean at night” task, which means
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Fig. 1. Goal model of a robot vacuum cleaner from [16]

that this contribution should be lent less credence, or disregarded completely
when deciding between the competing goal operationalisation strategies. With
this assumption made, the decision to clean at night follows naturally.

Although assuming that the tripping hazard doesn’t pose any real risk makes
for a convenient way to break the deadlock in the goal model, the assumption
is mere conjecture and would prove difficult to verify at design time. Thus, the
robot vacuum cleaner is provided with a means of verifying the assumption
at runtime, using monitoring. The broad nature of the “No tripping hazard”
claim makes it more difficult to identify a suitable monitoring mechanism, so
we use a claim refinement model (CRM) to decompose the claim hierarchically
into its underlying assumptions, until some more precise, and crucially moni-
torable, assumptions are identified. We consider a claim refinement model to be
sufficiently complete when all leaf claims are either: monitorable, axiomatic or
considered an unmitigatable risk. In the latter case, the claim marks the edge of
the contextual envelope in which the system is capable of tailoring itself to suit.

In this example, our “No tripping hazard” claim can be decomposed into
the CRM shown in Fig. 2. There are four sub-claims organized in two ANDed
branches (claims may also be OR-ed). Together, the branches illustrate the ratio-
nale for why the root claim should hold. In this case, “No tripping hazard” holds
because there is no-one in the room in which the vacuum cleaner is working AND
no external impact has been detected by the vacuum cleaner. The leaf claims of
the CRM, “Light level [remains] constant” and “No shock detected” are directly
monitorable via events or statistical data collected by the system. We refer to
claims that are possible to directly monitor and verify at runtime as monitorables.
If a monitorable turns out to be false, for example, if the vacuum’s inertial sensor
detects an external shock, then claim falsification propagates upwards towards
the root. Thus, in this case, the impact event would falsify the “No tripping haz-
ard” claim by propagation. Similarly, a sudden increase in the light level would
indicate that a light has been switched on by a woken occupant, and the “No
Tripping Hazard” claim would again be falsified by propagation.

With a means of run time verification for the deadlock-breaking “No trip-
ping hazard” assumption having being found, the robot vacuum cleaner can be
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Fig. 2. Claim refinement model for robot vacuum cleaner

specified as using a clean at night strategy unless a shock is detected or a light
is switched on, in which case the robot should self-adapt to use the “Clean when
empty” strategy.

However, after it has been in operation for some time, the owners of the
robot vacuum cleaner find that it is costing more to run than expected. A self-
explanation capability would mean that the vacuum cleaner could explain that
it is required to avoid causing a tripping hazard, and that it has been unable to
clean at night because the occupants frequently wake up and turn the lights on.
In this scenario, the explanation would help the users to understand the system’s
behaviour, and help to pinpoint the reason the system is not behaving in the
manner they would have imagined. The customer understands the reasoning, but
is still dissatisfied because the operating costs are unacceptable. They submit a
change request to the developer for the vacuum cleaner to be modified so that
it only adopts the clean when empty strategy if two consecutive nights’ cleaning
have been interrupted.

In isolation, this change request may seem unimportant to the developers,
especially if the change request is scant on background information justifying it.
To contextualize the request, they interrogate the vacuum cleaner to determine
its history of operation, with special attention to its history of self-adaptation and
the events sensed in its environment that triggered adaptations. They discover
the light detection event is being triggered more frequently than expected, and
understand by consultation of the requirements model that this is interpreted
as invalidation of the assumption that underpins prioritization of energy cost
minimization.

The developers realize that running costs are high but note also that the
customer does move around the apartment at night. They modify the vacuum
cleaner’s software to adopt a new strategy; they relax [17] the clean apartment
goal by accepting that the clean apartment goal may be satisfied at a later time.
The user change request is accepted; when interrupted, the robot tries to clean
the following night before resorting to the clean when empty strategy.

In this simple example, the information contained within the explanation
offered by the system could be obtained by analysis of standard debugging output
or logs, and by deduction. However, these sources of information are low-level
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artefacts of particular code execution paths, and such analysis is performed
by the system’s developers, who will need time to perform the analysis. The
potential for a self-adaptive system to adopt an unexpected configuration, or
adopt an expected configuration in unexpected circumstances, means that there
is a need for users to be able to understand what the system is doing, and why.

Our interest lies in reconciling a higher-level trace of the system’s behaviour
with its requirements, to establish whether the system’s behaviour is appropri-
ate, or better optimal, and whether the requirements themselves are correct.
Although an explanation in terms of requirements may still prove too complex
for some users to be able to understand a system’s operation in some circum-
stances, the higher-level explanation may allow non-developer support personel
to resolve queries without requiring developer input.

3 Self-Explanation Through Run-Time Requirements
Models

Andersson et al. propose a means of characterising the change a self-adaptive
system is designed to tolerate. Changes can be foreseen, foreseeable or unforeseen,
as explained in [18]. We ignore here systems dealing with unforeseen change,
which are more properly a topic for artificial intelligence research and pose a
different order of challenge both for self-adaptation and self-explanation.

Much of our previous work has concerned requirements modeling for sys-
tems dealing with foreseen change [13,16,19]. Where change is foreseen, the set
of contexts that the system may encounter are known at design time. Here, a
self-adaptive system can be defined as a set of pre-determined system configura-
tions that define the system’s behaviour in response to changes of environmental
context. Thus, there is little or no uncertainty about the nature of the system’s
environment and, if it is developed to high quality standards, satisfaction of the
systems requirements should be deterministic.

More recently [12], we have started to address systems dealing with change
that is, in [18]’s terms, merely foreseeable. Here, the key challenge is uncertainty,
where at design time some features of the problem domain are unknown, perhaps
even unknowable. Crucially, and in contrast to unforeseeable change, the fact of
this uncertainty can be recognized, offering the possibility of mitigating it by
resolving the uncertainty at runtime. The uncertainty associated with foreseeable
change typically forces the developers to make assumptions in order to define
the means to achieve the system’s requirements. Thus, for example, a particular
environmental context may be assumed to have particular characteristics and
the system’s behaviour defined accordingly. If the context turns out to have
different characteristics, the system may behave in a way that is inappropriate.
This has led us to exploit the concept of markers of uncertainty. Markers of
uncertainty serve as an explicit marker of an unknown that forces the developer
to make an assumption. We implement markers of uncertainty using claims as
described in the previous section. A benefit of using claims to represent design-
time assumptions is that the uncertainty is bounded and thus the risk of the
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system behaving in an inappropriate may be mitigated by monitoring, claim
and goal evaluation, and adaptation.

Our solution uses i* goal and claim refinement models, as depicted in Figs. 1
and 2. As described in the previous section, claim monitoring may permit assump-
tions to be verified during operation. Where a claim turns out to be false, the
corresponding portion of the goal model can be re-evaluated at run-time with
the claim removed, or its effect on the model weakened. If, as a consequence
of this, the original goal operationalisation strategy no longer evaluates as the
optimal solution, an alternative goal operationalisation strategy can be substi-
tuted dynamically, using the system’s adaptation mechanism. We have applied
our work to the domain of wireless sensor networks where our run-time models
are supported by advanced adaptive middleware and domain-specific compo-
nent models [6]. The overview of the approach is shown in Fig. 3. The overview
is explained in terms of the development process (the box @design time) and the
run-time components (the box @runtime). The module Self-Explanation is part
of the module Runtime Reasoner, which is responsible for the transformation of
the run-time goal models, as will be explained further in the next section.

In the context this paper, the key feature of foreseeable change is that it
may result in behaviour that is emergent. Emergent behaviour may surprise
stakeholders who may require the behaviour to be explained in order to build
and maintain their confidence in the system. Our thesis is that the same run-
time requirements models that we employ to handle unforeseen change can also
be employed as the basis of a self-explanation capability. Partially based on [20],
a useful self-explanation of an adaptation needs to include:

1. Details of any change in priority, or the proposed degree of satisfaction of a
system (soft)goal.

2. Details of the adaptation performed by the system.
3. The history of the adaptation, and the related events that triggered it.

In the next section, we illustrate how a self-explanation of a system’s behav-
iour that contains this information may be provided using our run-time require-
ments models solution for the GridStix wireless sensor network.

4 Case Study

To demonstrate self-explanation in the context of a system which adapts to con-
texts not fully foreseen, we present the GridStix flood prediction system [21].
We have previously discussed this system in the context of requirements mod-
elling [13], and have recently been exploring run-time uses of these requirements
models. In [12], we discuss systems using run-time goal-based models to guide
adaptation to circumstances where assumptions on which the originally pre-
scribed configuration(s) rely no longer hold. In this paper, we show how claims
and run-time requirements models that have been implemented for GridStix
support self-explanation.
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Fig. 3. Overview of the approach

The GridStix system is a wireless sensor network (WSN) for detecting and
predicting flooding, versions of which were deployed on the river Ribble in North-
West England and on the River Dee in North Wales. GridStix comprises a
number of nodes (14 on the Ribble installation), each of which are equipped
with sensors for detecting water depth and flow rate. The captured sensor data
is processed by a stochastic model of the river to predict future river state.
A feature of this algorithm is that it is distributed and lightweight enough to
be executable by the GridStix nodes. Incremental results are cascaded from the
most up-stream node down to the gateway node and from there via a GSM
link to Lancaster University. Its accuracy is a function of the number of nodes
contributing data.

GridStix is deployed in relatively remote, inaccessible locations with no mains
power available, requiring that GridStix nodes rely on batteries and solar panels
for power. As a result, energy conservation is a key non-functional requirement.
GridStix uses an ad-hoc overlay network in which nodes can communicate using
Bluetooth or WiFi, configured as either a shortest-path or fewest-hop spanning
tree.

To help test feasibility and derive requirements for GridStix, empirical data
was collected from experiments with a laboratory-based prototype. Data was
collected to measure (among other metrics) resilience and power consumption [6],
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as illustrated by the graphs in Fig. 4. Here, resilience is a measure of network
fragmentation; the more nodes become isolated from the gateway (uplink) node,
the less resilient is the network. If too many nodes become isolated from the
gateway node, it becomes impossible for the system to offer an accurate flood
prediction. Power consumption measures per-hop power consumed during the
transmission of 1 KB of data from each node to the gateway. The graph Physical
Network Resilience in Fig. 4 shows that the greater range of WiFi meant that
data from each node could be routed to the gateway by a larger number of
paths with WiFi than using Bluetooth, while the graph Physical Network Power
Consumption in Fig. 4 shows that the additional resilience comes at the cost of
higher power consumption.

Similarly, the graph Spanning Tree Resilience shows that, for a small number
of nodes (nodes B, H and I), the number of routes to the gateway affected by node
failure is much higher when using a shortest-path (SP) spanning tree algorithm
than when using a fewest-hop (FH) spanning tree. This means that fewer nodes
are likely to become isolated from the gateway node when GridStix is configured
to use its FH spanning tree. The graph Spanning Tree Power Consumption shows
that for the nodes furthest from the gateway node (nodes L, M, N and O) the

Fig. 4. Laboratory performance data (reproduced from [6])
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power consumed in transmitting the data is significantly higher for a FH than
SP spanning tree.

In other words, GridStix was predicted to be relatively resilient to node
failure when configured to use WiFi and a fewest hop spanning tree, but at the
cost of high power consumption.

Resilience and power consumption were two of GridStix’s important non
functional requirements. However, as shown in the experiments it is hard to
optimize for both, meaning that one would have to be prioritized over the other.
However, a feature of self-adaptive systems is that the extent to which any NFR
must be satisficed (sufficiently satisfied) tends to be context-dependent, and
this was the case with GridStix. Goal-based models, and specifically softgoals,
support reasoning about tradeoff decisions that are aimed at achieving optimal
goal satisfaction.

For the purposes of GridStix, expert environmental scientists had partitioned
river behaviour into three distinct operating conditions (domains); quiescent,
high flow and flood. Quiescence was predicted to be the most common domain
over time and so, with the need for the nodes to retain enough power to react
when the river state changed, energy efficiency was the priority. When in the
flood and high flow domains, by contrast, resilience was prioritized to better
tolerate any node loss that could impair the accuracy of GridStix’s flood predic-
tions. Thus, a particular GridStix configuration was specified for each domain,
with (what was predicted to be) adaptation from one configuration to another
specified to happen when the river was observed to change from one domain to
another. These domain changes were based on sound knowledge and were there-
fore foreseen, meaning that we knew that the river’s state would change and
could specify the behaviour required of GridStix for each domain. Figure 5 shows
the goal model for the flooding domain (which we call S3). The figure shows
the claims “Bluetooth too risky for S3”, “SP too risky for S3” and “Single node
image processing not accurate enough for S3”. Each claim records an assumption
about a design-time choice of goal operationalization, made because of uncer-
tainty about the relative performance of alternative operationalizations in the
field. The tasks (goal operationalisation strategies) chosen are in white (i.e. WiFi,
and FH). Note that for simplicity reasons the single-node and multi-node image
processing shown in the figure is not part of the explanation. However, similar
conclusions can be made if we take into account these operationalizations and
their effect on the NFRs, therefore the calculate flow rate goal should be ignored
in the figure.

The configurations that were specified at design-time for each domain were
based on the performance of the alternative communication technologies and
spanning tree configurations observed in the laboratory experiments described
above. However, we were aware that the lab results might prove imperfect pre-
dictors of how GridStix performed in the field. The initial River Ribble deploy-
ment confirmed that the effects of radio signal absorption by the river banks,
rain, trees, etc., had a significant affect on performance [21]. To make Grid-
Stix more tolerant of these effects, it was augmented with claims to monitor
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Fig. 5. Gridstix goal models for the flooding state of the river

the design-time assumptions, and to adapt to an alternative configuration if
monitoring suggested that the alternative configuration could perform better.
This was an important change because it meant that, in addition to the changes
foreseen by knowledge of the different river domains, change as a consequence
of operational experience was also foreseeable. When using claim monitoring,
GridStix can decide by itself to adapt to a new configuration under some circum-
stances that were not predefined at design time. Thus, whereas GridStix’s adap-
tive behaviour had been deterministic (even if its adequacy as a WSN had not
been), its adaptive behaviour was now non-deterministic. Such non-deterministic
behavior could cause “surprise” to an operator of the system, and therefore a
self-explanation capability is appropriate.

A portion of the claim refinement models used by the GridStix flood and
high flow domains is presented in Fig. 5. There is one top-level claim shown (in
bold). This represents assumptions derived from the laboratory experiments that
Bluetooth communication technology is too risky. In other words, the assumption
is that if GridStix was configured to use Bluetooth, network resilience would
likely be poor; implicitly poorer than if WiFi was used instead. The associated
claim refinement model represents derivation of the means to sustain the claim
and results in (using the labels in Fig. 6 as shorthand for the subclaims):

BT Too Risky ⇔ (A0 ⇔ (A1 ∨ A2)) ∧ (B0 ⇔ (B1 ⇔ (B2 ∨ ¬B3)))
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Fig. 6. GridStix claim refinement model justifying choice of WiFi for Inter-Node Com-
munication

Thus, our root assumption, that using Bluetooth will lead to greater frag-
mentation than using WiFi (the BT Too Risky claim), will be disproved if any
of the leaf (monitorable) subclaims is negated. In other words, Bluetooth is not
likely to fragment the network if the river depth is below the safe threshold level
or, at the current rate of change it will not exceed the safe level anytime soon.
Similarly, Bluetooth is unlikely to lead to excessive fragmentation of the network
if the rate of fragmentation when using Bluetooth is no higher than when using
WiFi or, if there is data that contradicts this, there is too little data to make
the contradiction statistically sound.

Because the River Ribble deployment of GridStix has been decommissioned,
we used a simulator to observe the system’s behaviour when experimenting with
claim monitoring. The simulator has been developed using the collected data of
the several months GridStix was deployed with the advantage that we can run
experiments when needed. The simulator handles factors such as: power usage
by batteries of nodes and according to whether the nodes were configured to
use WiFi or Bluetooth, fewest hops or shortest path; whether the nodes were
idling or performing computationally intensive tasks; and power replenishment
from solar panels depending on time of day, amount of sunlight received or how
cloudy the weather is, among others. Using a simulator constructed for GridStix,
we ran an experiment to compare the longevity of the claim-augmented version
of GridStix with the original. Longevity in this context means the length of time
during which a sufficient number of nodes were connected to allow a meaningful
result to be returned by the gateway. The simulator includes randomization
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to simulate jitter and packet loss. We complemented this with random node
failures to simulate those actually observed. We ran the simulator with a profile
of river behaviour over a fixed period comprising a sequence of flow rate and
depth values that simulated the river in every mood from quiescent to flood.
We varied a single variable; the amount of sunlight received by the nodes’ solar
panels, using percentage of cloud cover during daylight hours as a proxy. The
experiment was run three times and the results averaged to account for the
randomization elements.

The experiments suggest no significant benefit from claim augmentation
when cloud cover is above approximately 40 %. Once cloud cover drops below
40 %, however, the augmented version has significantly greater longevity. For
example, at 30 % cloud cover, instead of failing after approximately 180 h of
operation, GridStix survives for approximately 250 h.

The increase in GridStix’s longevity under some conditions appears to cor-
relate with a particular self-adaptation being performed in these simulations.
In those simulations where the claim-augmented version of the system outper-
formed the original version, GridStix substituted the use of WiFi for communica-
tion whilst the river was flooding, as originally specified, for the use of Bluetooth.
The history of the monitoring data shows that over the defined minimum period
of accumulating data, network fragmentation was no less during that period
when using Bluetooth than when using WiFi. The effect of this on the claim
refinement model (Fig. 6) in which the falsified monitorable claims B2 ∨ ¬B3 ...
became ... ¬B2 ∧ B3 and propagated up the hierarchy to falsify the top-level
BT Too Risky claim that justified the original (design-time) choice of WiFi over
Bluetooth. This in turn triggered the run-time re-evaluation of the goal model,
revealing that the operationalization of the Transmit Data goal now favoured
the use of Bluetooth rather than WIFi because Bluetooth’s net impact on power
consumption and resilience had become more +ve (positive) than that of WiFi.
The goal model was thus changed to select Bluetooth as Transmit Data’s oper-
ationalization which in turn triggered the GridStix middleware to adopt a new
component configuration, dynamically binding the Bluetooth component in place
of the WiFi component (Fig. 7).

Discussion

Revisiting the challenges presented in the introduction of this paper we conclude
that our approach:

1. Offers suitable monitoring capabilities for self-explanation through the use of
claim monitoring. As for reasoning capability, our claim refinement models
allow a change of configuration to be traced back to the monitored, and
falsified, assumption that caused it.

2. Can offer self-explanation and discourse at the level of requirements. Self-
adaptation (that maybe misunderstood by operators) can be explained in
terms of goals, operationalisations and assumptions. This level of abstraction
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Fig. 7. Falsified claim propagation

is closer to natural language than architectural or code-level descriptions,
offering more understandable explanations.

3. Provides the required link between the requirements and the architecture.
The currently active configuration, at an architecture level, is linked to goal
operationalisations, to the goals they achieve and their expected impact on
system NFRs. (e.g. a proper link between the architectural use of BlueTooth
and the “Communicate Data” goal it achieves, and the effect on system NFRs
such as power consumption).

4. Finally, allows the system to be able to reproduce a trace history (i.e. a
sequence of steps) of monitored events, assumption falsifications and resultant
reconfigurations to explain the reasons behind a self-adaptation being carried
out.

5 A Domain-Specific Language for Self-Explanation

An obvious goal for self-explanation research would be to offer natural lan-
guage explanations, understandable by a system’s users and other stakeholders.
However, at present we feel that offering explanations in a simply-structured
domain-specific language (DSL) is a more feasible goal. We propose a self-
explanation DSL designed to convey explanations of self-adaptations in terms of
requirements met, softgoals satisficed and claims invalidated, and supporting the
identification of the run-time monitoring data that triggered a self-adaptation.
Although explanations expressed in our DSL can be trivially transformed into
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text approaching natural language, knowledge and understanding of the system’s
requirements models is required to fully understand the explanation. Thus, our
self-explanation DSL is targetted at support personel rather than end users. To
extend our approach to come closer to the goal of offering user-understandable
natural language self-explanations, some means of explaining the requirements
models themselves would have to be devised.

As discussed in the previous section, self-adaptation in systems using our
run-time requirements models can be either planned or unplanned. Planned
self-adaptation fits the definition of foreseen adaptive behaviour in [18]. For
unplanned self-adaptation, the acts of identifying an assumption, codifying it in
a claim and devising a monitor for it imply a degree of foresight on the part of
the developers that the system may need to tolerate conditions under which the
assumption doesn’t hold. However, the exact nature of the circumstances under
which a claim (or some combination of claims) would be invalidated remain
ambiguous, meaning that unplanned adaptation is most analagous to [18]’s fore-
seeable adaptive behaviour.

Planned self-adaptation takes place between a pair of pre-specified config-
urations, in response to a trigger conditions identified during the RE process.
Planned self-adaptation requires the least detailed self-explanation, with the
system needing to explain that the trigger conditions for a specific planned
adaptation were met, and that the system has reconfigured itself to a specific,
pre-specified configuration. This simpler self-explanation offers little more than
standard logging output, and as such our DSL is designed to convey explanations
of unplanned self-adaptation.

Unplanned self-adaptation takes place when a claim is invalidated, and the
system’s run-time requirements models are re-evaluated. Prior to an unplanned
self-adaptation, the system may have adopted one of its pre-specified configura-
tions, or another unplanned adaptation may have occurred, leaving the system
in a configuration not foreseen at design time. A suitable self-explanation of an
unplanned self adaptation needs to identify:

1. The configuration change that has been made.
2. The goal model change that resulted in the configuration change.
3. The softgoal(s) expected to be better satisfied in the new configuration.
4. The monitoring data that triggered the goal model change.

Explaining the details of the configuration change is a relatively simple mat-
ter, that could be achieved with more traditional logging or monitoring tech-
niques. In terms of our run-time requirements models, the information required
for the explanation is the task in the goal model whose selection to satisfy a par-
ent goal is no longer supported by analysis of its contribution links and claims
influencing them, and the task selected to replace it. Likewise, the monitoring
data that triggered the goal model change is captured during the model transfor-
mation process, and could equally be captured through logging or monitoring.

The source of variability in our run-time requirements goal models is the
invalidation of claims. Thus, the goal model change that resulted in an unplanned
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self-adaptation will be the invalidation of a specific claim, or combination of
claims. In cases where claims are invalidated by propagation, the explanation
should allow an indirectly invalidated claim’s invalidation to be traced back to
the original claim, whose invalidation triggered the propagation.

By default, the transformation to the run-time requirements models applied
as a result of claim invalidation is an inversion of the claim’s contribution link, by
which it is connected to the model. Other transformations, such as the removal
of claims or removing a malfunctioning goal operationalisation strategy, are sup-
ported. However, these other transformations either require further claims to be
added to the model, or risk deadlock in the requirements model after claim inval-
idation, and we also prefer to invert claim contribution links where possible. For
simplicity, we prefer to use a single root claim in the goal model to represent a
specific area of uncertainty surrounding a variation point.

The softgoal(s) that are expected to be better satisfied as a result of the con-
figuration change can be identified through model analysis. If the default (contri-
bution inversion) transformation is used, and our model construction guideline of
using a single claim per variation point has been followed, the promoted softgoal
or softgoals are readily identifiable. Table 1 shows details, for each combination
of the value of the contribution link connected to a claim (the “claim contribu-
tion”) and the polarity of the contribution link to which the claim’s contribution
is attached (the “attached contribution”); which softgoal(s) can be expected to
be better satisfied as a result of the self-adaptation.

In Table 1, the “Complementary” softgoals are defined as the softgoals con-
nected to the task the attached contribution link belongs (and thus connects) to
with the same polarity. Conversely, “Competing” softgoals are defined as those
connected to the task the attached contribution link belongs with the opposing
polarity.

An unplanned self-adaptation may also be triggered in response indicating
that a claim that was previously invalidated does, in fact, appear to be valid
once more. This would typically occur as a result of developers having missed
some operating context encountered by the system only temporarily. We refer
to this as claim revalidation. For this class of unplanned self-adaptation, the
softgoal(s) expected to be better satisfied as a result of the configuration change
are different to those in Table 1. Table 2 details the softgoals affected by claim
revalidation, using the same columns and terminology as Table 1.

Table 1. Softgoals promoted by claim invalidation, for different model structures

Claim contribution Attached contribution polarity Softgoals affected

Make Positive Competing

Break Positive Complementary

Make Negative Complementary

Break Negative Competing
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Table 2. Softgoals promoted by claim revalidation, for different model Structures

Claim contribution Attached contribution polarity Softgoals affected

Make Positive Complementary

Break Positive Competing

Make Negative Competing

Break Negative Complementary

Even if the explanation of an unplanned adaptation contains all of the infor-
mation discussed so far, it may still prove difficult to understand the circum-
stances surrounding, and the reason for, an unplanned adaptation in cases where
the system has previously performed another unplanned adaptation. In such cir-
cumstances, the configuration of the system prior to the adaptation under query
may not be one of the configurations specified for the system at design time.
Therefore, explanations of an unplanned self-adaptation must include the infor-
mation of any previous unplanned self-adaptations performed by the system.

To summarise, our DSL is designed to convey self-explanations in terms of
the satisficement of softgoals, reconfigurations, model transformations, claims
invalidated, and monitoring events. Monitoring events are fired by monitors upon
the collection and analysis of data indicating that a claim does not hold. Claims
are invalidated as a result of monitoring data, and should the root claim in
a claim refinement model (i.e. a claim upon which a decision rests) become
invalidated then a model transformation is performed. A model transformation
is a change to the run-time requirements model which may, if analysis of the
modified run-time model indicates it is necessary, lead to a reconfiguration being
performed by the system to better satisfice a softgoal. These concepts are all at
the level of abstraction used in our requirements models, and thus this is the
level of abstraction used by our explanations.

In Sect. 3, we proposed that a meaningful self explanation of a self-adaptive
system’s current behaviour needs to include:

1. Details of any change in priority, or the proposed degree of satisfaction of a
system (soft)goal.

2. Details of the adaptation performed by the system.
3. The history of the adaptation, and the related events that triggered it.

In these terms, an explanation of a planned self-adaptation consists of details
of the change in context identified by the system, the self-adaptation performed,
and details of previous self-adaptations that have been performed. For unplanned
self-adaptations, an explanation consists of details of the softgoals that are to be
better satisfied by the adaptation, details of the configuration change performed,
and details of the goal model changes that were made (claims invalidated) trig-
gering the self-adaptation, along with the monitoring data that caused the goal
model changes. Further history is also provided by including details of previous
unplanned self-adaptations.
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Our self-explanation DSL targets the more complex unplanned self-adap-
tations performed by a system, and presents the information discussed in tuples
of:

{Softgoals Satisficed, Change Performed, Claim Invalidated, Cause}

A tuple is required for every change to the run-time requirements models
performed by the running system. As a result, not all values in the tuple may
be populated for every model transformation (e.g. the invalidation of an inter-
mediate claim in a run-time Claim Refinement Model) as some information (e.g.
the softgoals better satisficed by a self-adaptation) will not yet be available.
The contents of the first three values in each tuple are as discussed so far in
this section. Acceptable values for the “Cause” value in the tuple, however, vary
depending on the type of change being made to the run-time requirements model.
For a claim being invalidated directly by its own monitoring data, the cause is
the monitoring data indicating the claim’s invalidity. For claims invalidated by
propagation, the cause identifies the claim invalidation propagated from, along
with an indication of the Claim Refinement Model semantics dictating the claim
be invalidated by propagation.

Analysis performed on a collection of tuples for an unplanned adaptation can
yield a textual explanation, in terms of requirements, softgoals and claims, that
approaches natural language. For the robot vacumm cleaner example discussed
in Sect. 2, an explanation of the unplanned adaptation to clean the apartment
when empty as opposed to cleaning at night would be explained as:

Adapted to “Clean When Empty” instead of “Clean at Night” to better satisfice
“Avoid Tripping Hazard”, due to the (invalidated) “No Tripping Hazard” claim.
The “No Tripping Hazard” claim was invalidated because its supporting “No
Foot Impact” claim was invalidated. The “No Foot Impact” claim was inval-
idated because monitoring data indicating its invalidity (FootShockEvent) was
received.

Of course, our self-explanation DSL is tightly-coupled to our run-time require-
ments modelling approach, and to the use of claim invalidation as a source of
run-time requirements model variability. However, our ability to generate self-
explanations using our DSL from a running system, and to interpret them into
a usable textual explanation serves to demonstrate the approach’s feasibility.
We also note that, at present, our method for generating output in the self-
explanation DSL from a running system equipped with run-time requirements
models using our run-time requirements models and reasoning tools depends
on the (previously considered optional) one-claim-per-variation point modelling
guideline being followed, and supports only one of three model transformations
supported by the our run-time reasoner. We consider the use of more complex
claim hierarchies, and particularly the “remove claim on invalidation” run-time
model transformation with our self-explanation generator and DSL as interesting
areas for future exploration.
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6 Related Work

Although, to our knowledge, we are the first to discuss self-explanation in the
context of self-adaptive systems; the desire for systems to produce output at
a higher level to improve understanding is long-standing. For example, there
has been significant research into Natural Language Generation by the Artificial
Intelligence and Computational Linguistics communities.

In [22], Duggan and Bent present an algorithm, designed to infer the type of
variables during compilation of programs written in implicitly typed languages
such as ML or Haskell, where explicit variable type declarations are not used.
The algorithm infers variable type by analysis of variable usage, annotating the
program’s syntax tree as it progresses. Inference is performed using a set of
rules; for example a variable to which the addition operator is applied, with
a right hand operand of 1, is an integer. A variable whose type is determined
to be integer through this example rule would have the following explanation
annotated to the program’s syntax tree: +(x,1) gives x: int. Explanations can
become considerably more complex when a variable’s type is dependent on that
of one or more other variables, however the base format remains the same. In
this work, the explanation is used by the algorithm itself to allow explanation
fragments previously generated to guide later type inferences, but the authors
consider the approach potentially useful in providing debugging support.

Similarly, in [23], Van Baalen et. al. retrofit a domain specific code generator
with explanatory capability for use at NASA. In this work, the explanation
covers the relationship between a specification, domain theory and synthesised
code. The explanation is relatively low-level, designed to allow developers to
prove correctness, given NASA’s obvious need for high-assurance software.

In [24], Huang and Fiedler discuss the PROVERB text planner, which ver-
balises mathematical (natural deduction) proofs. The planner uses a three-stage
approach, with the first stage responsible for hierarchically decomposing com-
plex proofs into a series of subproofs, the second stage identifies possible oppor-
tunities to “paraphrase” (or rather combine proof elements into larger, useful
sentences) with the third stage actually generating the textual output. A more
general overview of the state of the art in automated theorem provers, including
discussion of the usefulness of their output, is offered in [25].

Although this work shows a research interest in providing high-level output
to ease human understanding, our focus is not on programs providing natural
language output, but in providing explanations of observed behaviour. Further-
more, the explanations offered by [22,23] are aimed at developers and mathe-
maticians, respectively. The self-explanations we advocate are at a higher-level
of abstraction, aimed at users and support personnel.

Debugging mechanisms, even those considered high-level [26,27], are focussed
on data structures and code rather than on requirements, goals and operational-
isation strategies. More closely-related work can be found in the field of require-
ments monitoring [4,5], from which we derive our claim monitoring. [28] proposes
“awareness requirements”, which are requirements that refer to the success or
failure of other requirements. The authors state that awareness requirements
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may refer to goals, tasks, quality constraints and domain assumptions. Claim
monitoring in our work is similar to domain assumption awareness requirements
in [28], but their focus is on the mapping from requirements models to feedback
loops, with no run-time representation of the awareness requirements.

The claim reasoning we use to demonstrate the utility of run-time require-
ments models in offering self-explanation is based on a combination of two pre-
vious streams of our work. In [13], we discuss the use of claims to highlight
assumptions made during self-adaptive system specification, with a view to them
being revisited in light of later requirement changes. In [10], we make the case
for the run-time use of requirements models, with the ability to rectify deficien-
cies in requirements satisfaction using self-adaptation being a key motivator.
Although we use reasoning of run-time claim refinement models to offer a lim-
ited form of self-explanation, the type of self-adaptive system claim reasoning
proves most useful for are those with a limited number of potential goal operi-
sational strategies, or where self-adaptation is being used to balance a set of
conflicting non-functional requirements.

Approaches such as RELAX [17] and FLAGS [29] adopt fuzziness in require-
ments to allow self-adaptation to prioritise and optimise their satisfaction. In
these approaches, a run-time requirements model could be used to record the
(re)prioritisations that take place, and to allow explanations of adaptations
in the context of which requirements were compromised and which favoured.
Approaches such as [30], which use KAOS [31] goal models, could benefit from
run-time analysis of obstacle models to offer self-explanation in terms of which
obstacles have been detected in the operating environment, and which goal oper-
ationalisation strategies have been adopted to overcome them.

When tackling uncertainty, the ideas discussed in [32] are also related. As we
do, the authors of [32] argue that uncertainty plays an important role in any
software based system that needs adapt continuously to meet the goals. They
argue that the focus of managing uncertain information should be on the ratio-
nale used to come to a decision. We emphasize the importance of being able
to explain this rationale. In their case, the decision may be taken either during
design or requirements (i.e. before execution). In our case, we go further because
the self-adaptive system is able to make decisions at runtime as well. Finally,
we believe our work is relevant to the implementation of dynamic traceability
needed when dealing with self-adaptive systems where little work has yet been
done. The authors of [33] discuss traceability in the presence of uncertainty. Sim-
ilar to our work on claims, the authors of [33] propose to attach supplementary
information to traceability links. This additional information describes the con-
fidence and the rationale for its creation. The authors take into account the fact
that the rationale that supports design decisions is often based on assumptions
and beliefs. However, in contrast to our work, their work focuses on the case of
software product lines and their evolution during software life cycle rather than
on runtime adaptation
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7 Conclusions and Future Work

This paper has argued that self-adaptive systems with the potential to behave in
a manner not prescribed at design-time require self-explanation to allow emergent
behaviour to be diagnosed, understood and explained. Self-explanation is impor-
tant because it provides a means to increase confidence in, and resolve queries
about, the behaviour of a self-adaptive system by its users. Self-explanation can
also aid developers in understanding the behaviour of a self-adaptive system by
tracing observed run-time behaviour (the what) to design-time assumptions,
instrospect the strategy chosen (the how) and the extent to which they proved
to be valid in operation (the why).

As already described in [12,16] we have developed an approach to creating
self-adaptive systems capable of tailoring their behaviour to an operating envi-
ronment not fully foreseen at design-time, using run-time requirements mod-
els. These systems are capable, indeed likely, to exhibit emergent behaviour.
In this paper we show how self-explanation of such behaviour might be gener-
ated from the systems’ adaptive reasoning machinery. The particular run-time
requirements models used by our approach are in-memory representations of i*
Strategic Rationale and NFR framework Claim Refinement Models, which are
notably high-level in their nature. Our hypothesis is that these dynamic models,
interpreted through the history of observed behaviour and adaptation events
can provide a plausible means of explaining why the observed behaviour came
about. This contrasts with the use of low-level reconfigurations and executed
code paths used in standard debugging tools which are difficult to interpret in
terms of systems’ requirements, even for expert developers working on systems
that don’t have the added complexity of a self-adaptive capability.

We have demonstrated how a system equipped with our run-time require-
ments models for self-adaptation may also analyse these models to support
self-explanation. We have introduced a simple self-explanation domain-specific
language, and have shown that analysis by a running system of an explanation
conveyed in our self-explanation DSL can yield a near natural language expla-
nation in terms of requirements, claims and monitors.

There are several ways in which our approach can be improved. Currently,
the claim reasoning and model transformation based adaptation mechanism dis-
cussed in this paper applies where goals are achieved by selecting from a finite
number of goal operationalisation strategies defined a-priori but selected dynam-
ically. Our approach is able to improve the flexibility of an executing system
facing unforeseen situations, but the potential operationlization strategies, and
the goals they achieve are defined and analysed at design time. Where new goal
operationalisation strategies may themselves be emergent (e.g. through dynamic
service discovery), further research is needed. This is one of the topics we are
investigating in the FP7 CONNECT project1. Specifically, we are studying ways
in which a new goal operationalisation strategy can be conceived at runtime.
1 http://connect-forever.eu//

http://connect-forever.eu//
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One of the challenges explored is that of updating goal models during execution
to keep the required causal link between architecture and requirements.

Looking to more distant research prospects, two clear goals of self-explanation
research are to provide natural language explanations that are within the capa-
bilities of users to understand, and to allow users themselves to instruct the
system to perform a self-adaptation by interacting with the system at this same
level. The ability for a running system to use run-time requirements models to
trace between high-level concepts such as goals and claims and lower-level sys-
tem configurations, as demonstrated in this paper, indicates that this may be
possible with future work.
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