
 123

Transactions on
Computational
Collective Intelligence XVILN

CS
 8

78
0

Ngoc Thanh Nguyen Ryszard Kowalczyk
Editor-in-Chief Co-editor-in-Chief

Jo
ur

na
l S

ub
lin

e

Lecture Notes in Computer Science 8780

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/8851

http://www.springer.com/series/8851

Ryszard Kowalczyk • Ngoc Thanh Nguyen (Eds.)

Transactions on
Computational
Collective Intelligence XVI

123

Editor-in-Chief Co-editor-in-Chief

Ngoc Thanh Nguyen
Institute of Informatics
Wroclaw University of Technology
Wroclaw
Poland

Ryszard Kowalczyk
Swinburne University of Technology
Hawthorn Vic
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-662-44870-0 ISBN 978-3-662-44871-7 (eBook)
DOI 10.1007/978-3-662-44871-7

Library of Congress Control Number: 2014949397

Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the 16th volume of Transactions on Computational Collective Intelligence
(TCCI). This volume of TCCI includes seven interesting and original papers selected
via a peer-review process. The first paper, entitled “Non-intrusive Repair of Safety and
Liveness Violations in Reactive Programs” by Harel et al., shows how, under certain
conditions, programs written in the behavioral programming approach can be modified
using automatically generated code modules. At the core of the presented approach is
the ability of a thread of behavior to prevent the triggering of events from other threads.
The proposed repair algorithms apply model checking of safety and liveness properties
to the program and transform the counterexamples produced by the model-checker into
corrective modules. In the second paper “Designing Adaptive Systems Using Teleo-
Reactive Agents,” the authors Smith et al. provide a formal definition of adaptivity
which is independent of any particular adaptivity mechanism and general enough to use
with any specification notation. Then based on this definition, a framework for spec-
ifying the behavioral requirements of adaptive agents and MAS in a systematic way is
presented. The third paper, “Towards Formal Modelling and Verification of Pervasive
Computing Systems” by Liu et al., proposes the use of formal methods to analyse
pervasive computing systems. It includes a formal modeling framework to cover the
main characteristics of such systems, and identification and specification of the safety
requirements as safety and liveness properties. Furthermore, based on the modeling
framework, the authors propose an approach of verifying reasoning rules that are used
in the middleware for perceiving the environment and making adaptation decisions.
Experimental results show the usefulness of the presented approach in exploring sys-
tem behaviors and revealing system design flaws such as information inconsistency and
conflicting reminder services. In the fourth paper “Revisiting Agent-Based Models of
Algorithmic Trading Strategies” the authors, Natalia Ponomareva and Anisoara Ca-
linescu, present a method for identifying the most suitable market simulation type
based on the specific market model to be investigated. Then the authors propose an
extended model of the Bayesian execution strategy for Algorithmic Trading that aims
at executing large orders discretely, in order to minimize the orders’ impact, while also
hiding the traders’ intentions. The authors of the fifth paper “Self-explanation in
Adaptive Systems based on Runtime Goal-Based Models” by Welsh et al., argue that a
self-adaptive system’s behavior needs to be explained in terms of satisfaction of its
requirements. Since self-adaptive system requirements may themselves be emergent,
the authors propose the use of goal-based requirements models at runtime to offer self-
explanation of how a system is meeting its requirements. In the sixth paper “A Higher-
Order Agent Model with Contextual Planning Management for Ambient Systems” by
Chaouche et al., the authors present a concrete software architecture dedicated to
ambient intelligence features and requirements. The proposed behavioral model, called
higher-order agent captures the evolution of the mental representation of the agent and
that of its plan simultaneously. Plan expressions are written and composed using a

formal algebraic language, so that plans are built automatically and on the fly, and the
updates of sub-plans are realized automatically according to the revising of intentions,
hence maintaining the consistency of the agent. The last paper, entitled “An Onto-
logical Consensus Augmented Framework for Collaborative Business Process For-
mulation” by Hoang et al., presents an ontological approach for forming collaboration
of business processes agilely within a BizKB framework that allows to take into
account the challenge of dynamically forming collaborative business processes.
Moreover, the authors use the consensus theory in distributed knowledge processing in
the presented method for service discovery.

TCCI is a peer-reviewed and authoritative journal dealing with the working potential
of computational collective intelligence (CCI) methodologies and applications, as well
as emerging issues of interest to academics and practitioners. The research area of CCI
has been growing significantly in recent years and we are very thankful to everyone
within the CCI research community who has supported the Transactions on Compu-
tational Collective Intelligence and its affiliated events including the International
Conferences on Computational Collective Intelligence (ICCCI).

We would like to thank all the authors, Editorial Board members, and the reviewers
for their contributions to TCCI. We express our sincere gratitude to all of them. Finally,
we would also like to express our thanks to the LNCS editorial staff of Springer with
Alfred Hofmann, who support the TCCI journal.

July 2014 Ryszard Kowalczyk
Ngoc Thanh Nguyen

VI Preface

Transactions on Computational Collective Intelligence

This Springer journal focuses on research on the applications of computer based
methods of computational collective intelligence (CCI) and their applications in a
wide range of fields such as the Semantic Web, social networks, and multi-agent
systems. It aims to provide a forum for the presentation of scientific research and
technological achievements accomplished by the international community.

The topics addressed by this journal include all solutions to real-life problems, for
which it is necessary to use CCI technologies to achieve effective results. The
emphasis of the papers is on novel and original research and technological
advancements. Special features on specific topics are welcome.

Editor-in-Chief

Ngoc Thanh Nguyen Wroclaw University of Technology, Poland

Co-editor-in-Chief

Ryszard Kowalczyk Swinburne University of Technology, Australia

Editorial Board

John Breslin National University of Ireland, Galway, Ireland
Shi-Kuo Chang University of Pittsburgh, USA
Longbing Cao University of Technology Sydney, Australia
Oscar Cordon European Centre for Soft Computing, Spain
Tzung-Pei Hong National University of Kaohsiung, Taiwan
Gordan Jezic University of Zagreb, Croatia
Piotr Jędrzejowicz Gdynia Maritime University, Poland
Kang-Huyn Jo University of Ulsan, Korea
Jozef Korbicz University of Zielona Gora, Poland
Hoai An Le Thi Lorraine University, France
Pierre Lévy University of Ottawa, Canada
Tokuro Matsuo Yamagata University, Japan
Kazumi Nakamatsu University of Hyogo, Japan
Toyoaki Nishida Kyoto University, Japan
Manuel Núnez Universidad Complutense de Madrid, Spain
Julian Padget University of Bath, UK
Witold Pedrycz University of Alberta, Canada
Debbie Richards Macquarie University, Australia
Roman Słowiński Poznan University of Technology, Poland

Edward Szczerbicki University of Newcastle, Australia
Tadeusz Szuba AGH University of Science and Technology,

Poland
Kristinn R. Thorisson Reykjavik University, Iceland
Gloria Phillips-Wren Loyola University Maryland, USA
Sławomir Zadrożny Institute of Research Systems, PAS, Poland
Bernadetta Maleszka Assistant Editor, Wroclaw University

of Technology, Poland

VIII Transactions on Computational Collective Intelligence

Contents

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs . . . 1
David Harel, Guy Katz, Assaf Marron, and Gera Weiss

Designing Adaptive Systems Using Teleo-Reactive Agents 34
Graeme Smith, J.W. Sanders, and Kirsten Winter

Towards Formal Modelling and Verification of Pervasive Computing Systems . . . 62
Yan Liu, Xian Zhang, Yang Liu, Jin Song Dong, Jun Sun, Jit Biswas,
and Mounir Mokhtari

Revisiting Agent-Based Models of Algorithmic Trading Strategies 92
Natalia Ponomareva and Anisoara Calinescu

Self-Explanation in Adaptive Systems Based on Runtime
Goal-Based Models . 122

Kris Welsh, Nelly Bencomo, Pete Sawyer, and Jon Whittle

A Higher-Order Agent Model with Contextual Planning Management
for Ambient Systems . 146

Ahmed-Chawki Chaouche, Amal El Fallah Seghrouchni,
Jean-Michel Ilié, and Djamel Eddine Saïdouni

An Ontological Consensus Augmented Framework for Collaborative
Business Process Formulation . 170

Hanh H. Hoang, Trung V. Nguyen, and Vu Minh Hoang

Author Index . 191

http://dx.doi.org/10.1007/978-3-662-44871-7_1
http://dx.doi.org/10.1007/978-3-662-44871-7_2
http://dx.doi.org/10.1007/978-3-662-44871-7_3
http://dx.doi.org/10.1007/978-3-662-44871-7_4
http://dx.doi.org/10.1007/978-3-662-44871-7_5
http://dx.doi.org/10.1007/978-3-662-44871-7_5
http://dx.doi.org/10.1007/978-3-662-44871-7_6
http://dx.doi.org/10.1007/978-3-662-44871-7_6
http://dx.doi.org/10.1007/978-3-662-44871-7_7
http://dx.doi.org/10.1007/978-3-662-44871-7_7

Non-intrusive Repair of Safety and Liveness
Violations in Reactive Programs

David Harel1, Guy Katz1(B), Assaf Marron1, and Gera Weiss2

1 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

{david.harel,assaf.marron,guy.katz}@weizmann.ac.il
2 Department of Computer Science,

Ben-Gurion University of the Negev, Beer-Sheva, Israel
geraw@cs.bgu.ac.il

Abstract. We show how, under certain conditions, programs written in
the behavioral programming approach can be modified (e.g., as a result
of new requirements or discovered bugs) using automatically-generated
code modules. Given a trace of undesired behavior, one can generate a
relatively small piece of code, whose execution is interwoven at run time
with the rest of the system, and which brings about the desired changes
without modifying existing code and without introducing new bugs. At
the core of our approach is the ability of a thread of behavior to prevent
the triggering of events from other threads. Our repair algorithms apply
model checking of safety and liveness properties to the program and
transform the counterexamples produced by the model-checker into cor-
rective modules. The work is supported by a proof-of-concept tool, which
creates understandable modules that can be further manually managed
as part of a process of ongoing incremental system development.

Keywords: Program repair · Verification · Behavioral programming ·
Model checking · Patching

1 Introduction

Software maintenance is a difficult and error prone task. As errors (bugs) are
discovered and requirements are added or changed, developers work hard to
modify existing code without introducing new errors. They are often constrained
by limited knowledge of possible side-effects, since undocumented interdepen-
dencies might have been forgotten or might be known only to different people
(usually, the original developers) who are unavailable. Research on automated
program repair and, more generally, program synthesis from specifications, aims
to address these and related challenges. Such automation may prove particularly
valuable for handling failure/bug reports from users who simply press the “Send
to Software Vendor” button. In such cases, the software engineer cannot discuss
with the user the context of the problem, or possible generalizations thereof.
c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 1–33, 2014.
DOI: 10.1007/978-3-662-44871-7 1

2 D. Harel et al.

In this paper we focus on programs written in the behavioral programming
approach, and our work is centered on the idea of repairing by carefully for-
bidding existing faulty execution paths. This technique is highly suitable for
(a) non-intrusive incremental repair; i.e., large parts of the system are already
developed and are not modified by the repair process; (b) methodological inte-
gration of the repair process with standard, ongoing development during and
after the repair activity; and (c) practical techniques for dealing with the com-
plexity of the use of model-checking when creating local patches in the repair
process.

2 Background

Our work is carried out within the behavioral programming approach [11,12] —
an extension and generalization of scenario-based programming, which was
introduced with the language of live sequence charts (LSC s) [6,10], and is now
implemented also in Java [11] and Erlang [13,25].

A behavioral program consists of independent threads of behavior that are
interwoven at run time. Each behavior thread (abbr. b-thread) specifies events
and event sequences which, from its own point of view must, may, or must not
occur. As shown in Fig. 1, the infrastructure synchronizes and interweaves all
behaviors, selecting events that constitute integrated system behavior without
requiring direct communication between b-threads. Specifically, all b-threads
declare events that should be considered for triggering (called requested events)
and events whose triggering they forbid (block), and then synchronize. An event
selection mechanism then triggers one event that is requested and not blocked,
and resumes all b-threads that requested the event. B-threads can also declare
events that they simply “listen-out for”, and they too are resumed when these
waited-for events occur.

b-thread

b-thread

b-thread

b-thread

Requested Events

Blocking

Selected Event

Fig. 1. Behavioral programming execution cycle: all b-threads synchronize, declaring
requested and blocked events; a requested event that is not blocked is selected and
b-threads waiting for it are resumed.

This facilitates incremental non-intrusive development as outlined in the
example of Fig. 2.

More detailed examples showing the power of incremental modularity in
behavioral programming appear in [11,13]. Briefly, in a program we wrote for
playing Tic-Tac-Toe [11], each game-rule is implemented in a dedicated b-thread;

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 3

wait for
WaterLevelLow

request AddHot

request AddHot

request AddHot

WhenLowAddHot

wait for
WaterLevelLow

request AddCold

request AddCold

request AddCold

WhenLowAddCold

wait for AddHot

while blocking
AddCold

wait for
AddCold while

blocking AddHot

Stability

· · ·
WaterLevelLow

AddHot

AddCold

AddHot

AddCold

AddHot

AddCold

· · ·

Event Log

Fig. 2. Incremental development of a system for controlling water level in a tank
with hot and cold water sources. The b-thread WhenLowAddHot repeatedly waits for
WaterLevelLow events and requests three times the event AddHot. WhenLowAddCold

performs a similar action with the event AddCold, reflecting a separate requirement,
which was introduced when adding three water quantities for every sensor reading
proved to be insufficient. When WhenLowAddHot and WhenLowAddCold run simultane-
ously, with the first at a higher priority, the runs will include three consecutive AddHot

events followed by three AddCold events. A new requirement is then introduced, to the
effect that water temperature should be kept stable. We add the b-thread Stability,
to interleave AddHot and AddCold events. For details about how sensor and actuator
b-threads interact with the physical environment (sensors, valves) without suspending
the entire system see [13].

e.g. “block X moves when it is O’s turn’ ’ or “block marking of already-marked
squares”. Similarly, player-strategy modules are oblivious of other strategies; e.g.,
“wait for two X marks in the same line, and then request marking O in that
line”. A similar technique can be used to control a robot performing simulta-
neous missions, such as vehicle operation and route management. In stabilizing
a quadrotor — an unmanned flying vehicle with four rotors — each of four
b-threads in our program controls a particular orientation angle, or the quadro-
tor’s altitude, solely by changing rotor speeds; see [13].

Each b-thread repeatedly requests and blocks events representing possible
increases or decreases of rotor RPM, which could contribute to its own goal. The
triggering of an event that is requested by one or more b-threads and blocked
by none allows at least one b-thread to progress. Affected b-threads can then
recalculate their declarations of requested and blocked events, and the process
repeats.

In [8] and [15], model-checking and planning algorithms (respectively) are
applied to play-out, the method for executing LSCs. These smart play-out tech-
niques control the choice of the event to be triggered, such that, within the
next superstep (i.e., prior to the next event driven by the environment), the
specification is not violated by the program (if this is possible). In [9], a proof-
of-concept model checker verifies behavioral Java programs “in vivo” - without
first translating them into a model-checker-specific language. It is further shown
in [9] how, when a problem is detected, the programmer can develop and add a
b-thread that repairs the program by refining the behavior without modifying
existing code.

4 D. Harel et al.

3 Outline of the Repair Approach

In the present paper we utilize the model checker of [9] to automate elements of
manual program-repair processes, using a principle that can be summarized as
“taking the road not taken”. For illustration, assume that a system was tested, or
even model-checked, to satisfy its specification, and a new requirement was then
introduced, or a bug reported, highlighting a required property not previously
articulated, and thus neither tested nor model-checked. Our method calls for first
adding the new property to the specification. We then model-check the program
to find distinct violating runs. In the case of violated safety properties (“bad
things never happen”), for each such run we add a special b-thread that waits
for the sequence of all events in the run, up to the last one requested by the
program (rather than by the environment). The repair b-thread then blocks this
event. Some other pending requests might then be triggered. Violated liveness
properties (“good things eventually happen”) are handled similarly: when the
system is traversing a loop in which “good things do not happen”, the repair
b-thread applies blocking to steer the run in another direction. In the liveness
case blocking is only performed with some small probability, thus injecting bias
towards certain desirable execution paths without forbidding other paths which
are also permitted.

For example, consider a faulty game-strategy b-thread, whose event request
leads to a loss. When this event is blocked, another b-thread, perhaps one
that requests a set of default moves, comes into play (so to speak), offering
an alternative. The elimination process continues until “the right” default move
is the choice at that state. The new corrective wait-and-block behavior is non-
intrusive, in that its implementation does not require changing the existing pro-
gram code.

We refer to such a repair b-thread as a patch, and to the process as patching,
or simply, repairing. We hope that combined with the behavioral-programming
principles, our approach will help make the concept of patching seem less a
“necessary evil” and more a useful, mainstream software maintenance practice.

As the full repair algorithm may not scale up to large programs due to the
state explosion problem, we also discuss the case where patching can be limited
to a bounded “neighborhood” of a specific operation scenario; for example, when
we are provided with a bug report sent from a user.

We formally prove correctness and analyze the method, characterize the
programs on which it can be used, and exemplify its usage with our proof-
of-concept tool.

The rest of this paper is organized as follows. Basic definitions of behavioral
programs and their model-checking are given in Sects. 4 and 5, respectively. The
repair of safety violations of loopless programs is discussed in Sect. 6, followed by
a repair algorithm for safety violations in general programs in Sect. 7. Next, in
Sect. 8 we extend the algorithm to also handle liveness violations. A method for
handling large programs, called limited-depth patching, is described in Sect. 9.
Related work is discussed in Sect. 10, and we conclude with Sect. 11.

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 5

4 Definitions

While behavioral programming is geared towards natural and intuitive develop-
ment using almost any programming language, its underlying infrastructure can
be conveniently described and analyzed in terms of transition systems.

4.1 The Behavioral Programming Computational Model

The definitions below follow [9,13] and were modified to include the notion of
a b-thread tagging states of the system as having certain properties, commonly
termed atomic propositions (AP) [3]. Recall that a deterministic labeled transi-
tion system is a 6-tuple 〈S,E,→, init, AP,L〉, where S is a set of states, E is
a set of events, → is a (possibly partial) function from S × E to S, init ∈ S
is the initial state, AP is a set of atomic propositions, and L : S → 2AP is a
labeling function. The runs of a transition system are sequences of the form
s0

e1−→ s1
e2−→ · · · ei−→ si · · · , where s0 = init, and for all i = 1, 2, · · · , si ∈ S,

ei ∈ E, and the function → maps the pair 〈si−1, ei〉 to si, written si−1
ei−→ si.

We say that 〈S,E,→, init〉 is total if the function → is total.
Behavior threads are modeled as transition systems, with S, E, and AP

finite, and the states being associated with event sets:

Definition 1. A behavior thread (abbr. b-thread) is a tuple 〈S,E,→, init, AP,
L,R,B〉, where 〈S,E,→, init, AP,L〉 forms a deterministic total labeled transi-
tion system, R : S → 2E associates a state with the set of events requested by
the b-thread when in it, and B : S → 2E associates a state with the set of events
blocked by the b-thread when in it.

Definition 2. The runs of a set of b-threads {〈Si, Ei, →i, initi, APi, Li, Ri, Bi〉}n
i=1

are the runs of the labeled transition system 〈S,E,→, init, AP,L〉, where S = S1 ×
· · · × Sn, E =

⋃n
i=1 Ei, init = 〈init1, . . . , initn〉, and → includes a transition

〈s1, . . . , sn〉 e−→ 〈s′
1, . . . , s

′
n〉 if and only if

e ∈
n⋃

i=1

Ri(si)

︸ ︷︷ ︸
eis requested

∧
e /∈

n⋃

i=1

Bi(si)

︸ ︷︷ ︸
eis not blocked

and
n∧

i=1

(
(e ∈ Ei =⇒ si

e−→i s′
i)︸ ︷︷ ︸

affected b-threads
move

∧ (e /∈ Ei =⇒ si = s′
i)︸ ︷︷ ︸

unaffected b-threads
don’t move

)
.

We set AP =
⋃n

i=1 APi and, for (s1, . . . , sn) ∈ S1 × . . . × Sn, we define:

L(s1, . . . , sn) = L1(s1) ∪ . . . ∪ Ln(sn).

6 D. Harel et al.

Note that when implemented in a standard programming language, we assume
that b-threads do not share data, and rely solely on events for input and output.
This results in the abstraction that a behavior thread is “in a state” only when
synchronized with others, and that the state transition caused by executing pro-
gram instructions between synchronization points is atomic.

Observe that while each b-thread is deterministic in its reaction to events,
Definition 2 does not specify how events are selected, and thus there may be
more than one run for a given set of b-threads. There could be multiple ways
to select events and runs, including ones that are random, planned, or priority-
based. The default behavioral execution infrastructure of LSC (in the Play-
Engine and PlayGo tools), the Java package (BPJ) and the Erlang module (bp)
executes a set of b-threads based on priorities. That is, in each state of the
composite system, the first event that is requested and is not blocked is selected
for triggering.

Definition 3. For the transition system T , defined in Definition 2, a (deter-
ministic) event selection mechanism is a function f : S → E, such that for each

s ∈ S there exists a transition s
f(s)−−→ s′ of T .

Behavioral programming is designed particularly for the development of reac-
tive systems [14], and in this context it is critical to distinguish between envi-
ronment behavior and program behavior.

Definition 4. A reactive behavioral program is a set of b-threads, an event selec-
tion mechanism, and a partition of the events of the b-threads into external events
representing uncontrollable occurrences coming from the environment, and inter-
nal events completely controlled by the program.

We denote the set of external events by Eenv, and the set of internal events
by Eprog. By convention, the patches we present in this work may block only
the triggering of events in Eprog and may not block events in Eenv.

4.2 Specifications

We now introduce definitions that assist in the discussion of desired and unde-
sired runs of behavioral programs.

Definition 5. For a set of b-threads P and a run ρ = (e1, e2, . . . ,), such that the
execution corresponding to ρ is sinit

e1−→ s1
e2−→ s2 . . ., we define APtrace(ρ) =

L(sinit)L(s1)L(s2) . . . and define the set of all traces of P to be APtraces(P) =
{APtrace(ρ) | ρ ∈ runs(P)}.
Definition 6. A specification for a behavioral program P is a linear time (LT)
property Φ (i.e. a subset of

(
2AP

)ω). We say that P satisfies Φ, denoted P � Φ,
iff APtraces(P) ⊆ Φ.

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 7

Since this definition assumes infinite runs, when dealing with systems of finite
runs we pad any finite run with the trace ∅ω.

It is important to note, that the same set of b-threads can satisfy Φ with one
event selection mechanism, and not with another. We adopt a wider perspective
here, and ensure that the patched set of b-threads satisfies Φ with all event
selection mechanisms. Such patching immediately detects and fixes any bugs
that could have remained hidden with a certain mechanism, but which may
emerge later. An approach that takes a specific event selection mechanism into
account may also be useful for some applications.

In this work we focus on two major types of LT properties: safety properties
and liveness properties. We define safety properties first, and give also the related
definitions of invariants and deadlocks.

Definition 7. An LT property Φ over AP is called a safety property if for all
σ ∈ (2AP)ω − Φ there exists a finite prefix σ̄ of σ such that

Φ ∩
{

σ′ ∈ (
2AP

)ω | σ̄ is a finite prefix of σ′
}

= φ.

Intuitively, a safety property states that no “bad” sequences of events may
happen. Any run that causes such a sequence has a bad prefix ; after it the run
does not satisfy the property no matter how it continues.

The notion of invariants plays a key role in the model-checking of safety
properties:

Definition 8. An LT Φ property over AP is an invariant if there is a proposi-
tional logic formula ϕ over AP such that Φ =

{
A0A1A2 . . . ∈ (

2AP
)ω | ∀j ≥ 0,

Aj � ϕ}.
Intuitively, invariants are properties of the current state of the system, and

do not reflect the history of events leading to it.
Through invariant checking one can handle regular safety properties: those

safety properties for which the associated bad prefixes are recognizable by some
finite automaton [3], or, in our case, there is a b-thread that marks its state as
bad when the bad prefix is recognized. By applying the invariant model-checker
to a program with these threads added, we can effectively handle general regular
safety properties.

Definition 9. We say that a (finite) run ρ = (e1, e2, . . . , en) causes a deadlock
if it leads to a state s that has no enabled events (all requested events are also
blocked).

Much like invariants, deadlocks too are properties of states in the system,
and not of runs.

When patching against safety violations, we will receive as input a program
P and an invariant Φ. We will implicitly check that the system has no deadlocks;
if it does, the patching algorithm will try to remove them. In particular, we will
make sure that no new deadlocks are created while patching; otherwise we could
“patch” a system by simply blocking all enabled events at its initial state.

8 D. Harel et al.

The other type of properties we consider is liveness properties. The following
is adopted from [3]:

Definition 10. An LT property Φ over AP is called a liveness property if any
finite word can be extended such that the resulting infinite trace satisfies Φ.
Formally, let pref(σ) = {σ̄ ∈ (2AP)∗ | σ̄ is a finite prefix of σ} and pref(Φ) =⋃

σ∈Φ pref(σ). Then Φ is a liveness property if and only if pref(Φ) = (2AP)∗.

In the case of regular safety properties, invariant checking plays a key role.
When it comes to liveness properties, a similar role is played by persistence
checking:

Definition 11. An LT property Φ over AP is called a persistence property if it
states that a certain condition holds forever, from some point in Φ. Formally, Φ
is a persistence property if there exists a propositional logic formula ϕ such that
Φ = {A0A1A2 . . . ∈ (2AP)ω | ∃i such that ∀j≥i, Aj � ϕ}. Formula ϕ is called
the persistence (or state) condition of Φ.

As discussed in, e.g., [3], the model-checking of regular liveness properties
is reducible to persistence checking. The latter is performed by portioning the
states of the system into two sets: states in which ϕ holds, termed “cold” states,
and states in which it does not hold, termed “hot” states. Then, the property
holds if and only if there are no reachable cycles consisting strictly of hot states
(which we refer to as reachable “hot cycles”). This can be checked, for instance,
using a nested DFS algorithm.

When patching against liveness violations, we will receive as input a program
P and a persistence property Φ. In practice, this property is given by an indicator
thread that marks the system’s states as either hot or cold.

5 Extending the Model-Checking of Invariants and
Deadlocks

In order to prepare the ground for the correction of various safety and liveness
violations, we begin by describing how to check that a behavioral program satis-
fies an invariant and is deadlock-free. We follow the algorithm in [3], Sect. 3.3.1,
and the implementation in [9].

Any state that violates the invariant or is deadlocked is marked as “bad”.
We construct the state graph of the program, traverse it using DFS (trimming
when arriving at a previously visited state), and check that all states reachable
from the initial state are not bad. From each state we explore all enabled events
(which reflects our decision to cater for all possible event selection mechanisms).

The runtime complexity of this algorithm, implemented as in [9], is as follows.
Let G = (VG, EG) denote the state graph constructed, and let n be the number
of threads and e = |E| the number of events in the original program. |VG|+ |EG|
operations have to be performed to traverse the graph. Further, for each state ∈

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 9

VG we have to perform n · e operations in order to find all its enabled events.
This yields:

Tmc = O (|EG| + |VG| · (n · e)) .

This complexity is the minimum price one has to pay for running a model-
checker on a behavioral program. Since our technique is based onmodel-checking, it
will necessarily be forever linked in complexity to that ofmodel checking [3,22], and
the progress made there, for better or for worse. Tmc thus serves a base point with
which to compare the complexity of our patching algorithms, and we are interested
in how much additional overhead they incur above it.

We actually use a slightly different algorithm. For our purposes, the usual
model-checking that returns a single violating run does not suffice: we want to
explore all runs that violate the invariant or cause a deadlock.

This is achieved as follows: we traverse the state graph using the same DFS,
but whenever we reach a bad state we store that information in its predecessor
states. Each state already visited in the graph will thus contain information on
all its bad successors. If the state is reached again, through another route from
the root, we need not traverse its subtree again: we simply update the relevant
states using the data already stored (see Fig. 3).

abc

bc

c

X

abc bbc

bc

c

X

a

b

c

b a

b

c

b

Fig. 3. When a “bad” state is reached, all its predecessors store the relative path from
that point to the violation. When a node in this path is reached through a different
path, the data is propagated. The DFS continues until the root stores all violating
paths.

The added complexity of this algorithm is measured using the number of
violating runs, Υ (OOPSilon: pun intended), and the depth of the state graph
D. For each violating run we propagate at most D events to the predecessors,
causing an overhead of 1 + 2 + . . . + D per violating run. The total runtime
complexity is thus:

T = Tmc + Υ · (1 + 2 + . . . + D) = Tmc + O(Υ · D2).

Finally, if all direct successors of a state are bad, then the state itself can
be considered bad; this is because the patching technique we discuss will cut off

10 D. Harel et al.

the violating children, rendering the state a deadlock. We thus add the following
modification: if, during the DFS, all of a state’s successors are violating or dead-
locked, the state itself is marked as violating; thus its successors can be ignored.
The runtime worst-case complexity remains unchanged.

6 Safety Patches for Loopless Programs

6.1 Generating Linear Safety Patches

Before discussing the safety violation patching of general programs, we begin
with the simpler case of finite programs that are loopless: their state graph
contains no cycles. In a loopless program, every run is finite.

Definition 12. A linear safety wait-block patch for event sequence (e1, e2, . . . ,
en, elast), such that elast ∈ Eprog, is a b-thread with the following properties:

– The patch waits for events e1, . . . , en, blocks elast once and then terminates.
– If the run deviates from the sequence e1, . . . , en, the patch terminates.
– The patch never requests events and does not label states (R(s) = L(s) = ∅

for all s).

Intuitively, the patch is designed to prevent one bad run from occurring.
Events e1, . . . , en will be chosen according to violating runs found by the model-
checker. The patch will intervene before the last event, causing another event to
be triggered, thus preventing the violation.

The patch only interferes with runs starting with events e1, . . . , en; other
runs remain unchanged. Formally:

Lemma 1 (The Locality Lemma). Let P be a collection of b-threads, let p
be a linear safety wait-block patch for event sequence (e1, . . . , en), and let P ′ =
P ∪ {p} denote the patched program. Then for any run ρ of P that does not
start with events e1, . . . , en, the events of ρ constitute a valid run ρ′ of P ′, and
APtrace(ρ) = APtrace(ρ′).

Proof. To prove that ρ′ is a valid run of P ′, we need to show that at each
synchronization point during ρ′, the triggered event is also enabled; namely, it
is requested and not blocked. By definition, if a run does not start with events
(e1, . . . , en), then the patch never requests or blocks events. Further, the original
b-threads will reach the same states during ρ′ as they did during ρ, consequently
requesting and blocking the same events. It follows that the program P ′ has the
same requested and blocked events as P in each state during the run. Thus, the
events triggered by ρ′ are enabled, and the run is indeed valid.

Finally, since the original b-threads reach the same states during ρ′ as during
ρ, they will have the same atomic propositions associated with them. Since
the patch has no atomic propositions associated with its states, we get that
APtrace(ρ) = APtrace(ρ′). ��

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 11

The Locality Lemma is our motivation for patching: it states (in this case,
for linear patches) that when we add a patch to negate a single bad run, other
runs remain unharmed, meaning that the patch is local. This is an advantage of
our method as compared to traditional, manual, patching: our patches do not
create new errors in unexpected parts of the code.

The distinct bad runs representing the bug or emanating from the new safety
requirement are found by model-checking:

Linear Safety Patching(P, Φ):

1: Run the model checker on (P, Φ)
2: if P � Φ then
3: return P
4: P ′ ← P
5: for each violating run (e1, . . . , en) do
6: if ∀i, ei ∈ Eenv then
7: return Failure
8: else
9: Find the largest k such that ek ∈ Eprog

10: Create a linear safety wait-block patch p for (e1, . . . , ek)
11: P ′ ← P ′ ∪ {p}
12: return P ′

The idea is straightforward: the model-checker finds all runs violating Φ and
we add a patch per run to prevent them. Because Φ is a safety property and P is
loopless, there are only finitely many violating runs. The algorithm guarantees
that the blocking performed by the patches creates no deadlocks, by first recur-
sively marking as “bad” any state that has only “bad” children. Furthermore,
because the model-checker works with respect to all possible event selection
mechanisms, any bugs that emerged after the patching are fixed. The Locality
Lemma guarantees that no good runs “far away” from the patch are harmed.
If the algorithm returns a patched program, we thus know that it satisfies the
specification Φ and causes no deadlocks.

There is also the case where the algorithm returns a failure notice, as a result
of the model checker returning a violating run in which there were no program-
requested events. This, of course, means that the program cannot be repaired
through wait-block patching. Formally:

Lemma 2 (The Patchability Lemma). Let P be a loopless program with
state graph G = (VG, EG) and let Φ be a safety property. Then the following
three statements are equivalent:

1. The algorithm succeeds in returning a patched program P ′.
2. There exist linear safety wait-block patches p1, . . . , pk, such that P ∪{pi} � Φ.
3. There exists a graph G′ = (VG, EG′) with EG′ ⊆ EG and EG −EG′ ⊆ Eprog,

such that no states violating Φ or causing deadlocks are reachable from the
initial state in G′.

Proof. (1) ⇒ (2) is trivial.

12 D. Harel et al.

For (2) ⇒ (3): Take the original state graph G, and for each pi remove the
edge corresponding to the event it blocks. Since the patched program satisfies
Φ and does not deadlock, all reachable states in the graph obtained in this way
satisfy Φ and do not cause deadlocks. Furthermore, by the definition of a wait-
block patch, all edges removed are in Eprog, as needed.

For (3) ⇒ (1): Without loss of generality, assume that P starts with an
initialization event einit ∈ Eprog. If this does not hold we can change to a new
initial state s′

init and add a thread that forces event einit to be chosen before
proceeding to the original program.

Suppose that G′ exists but that the algorithm returned a failure notice.
We conclude that it deadlocked on the very first state, s′

init. This, in turn,
means that state sinit was marked as bad, so that all paths starting in sinit lead
to bad states. This contradicts the existence of G′, thus proving the claim. ��

Condition (3) means that the original program was “not too far” from sat-
isfying Φ: it contained some good runs and some bad runs, and through some
blocking the bad runs could be averted. Observe that the equivalence of (1) and
(2) is really the validity of the algorithm.

The worst case runtime complexity of the algorithm is just that of the modi-
fied model-checker, namely T = Tmc + O(Υ · D2). This shows the dependence of
our algorithm on the number of violating runs in the original program. If their
number and lengths are small enough our automatic patching is not much worse
than regular model-checking. This also demonstrates why using this algorithm
for synthesis could be costly. If the program is “far away” from satisfying Φ, as
could be the case when trying to synthesize a program from scratch (say, from
a general program that constantly requests all possible events), then Υ could be
polynomial in the size of the state graph, greatly slowing the process.

6.2 Patching for a Specific Event Selection Mechanism

The above algorithm patches the program so that it satisfies Φ, regardless of
the event selection mechanism used. However, it may be useful to patch the
program for the specific mechanism M to be used, as it could speed up the
patching process, reduce the number of generated patches, and most importantly,
block less events, leaving open more options for further behavior refinements and
repair, as explained in Fig. 4.

In this case, the model-checking algorithm is modified to return as output all
violating runs of the original program, as well as all (and only) violating runs
that would be created by blocking previously discovered bad transitions. Bad
runs that will not be possible in the patched program, under the specific ESM,
are ignored. This technique is readily applicable also to patches for programs
with cycles and for liveness patches, discussed in the sequel.

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 13

s

XX X

s

XX X

a

b c d e

a

d e

Fig. 4. In state s, a patch that considers all event selection mechanisms will block b, c,
and e. A patch that considers only, say, an ESM that chooses events alphabetically,
needs to block b and c, but can leave e unblocked, relying on the selection of d.

6.3 Example: Patching Tic-Tac-Toe

We demonstrate the use of the linear safety patching algorithm on the loopless
Tic-Tac-Toe behavioral program from [9]. It is loopless since the fact that each
step adds a new move to the board means that its state graph has no cycles.

Suppose that the original program is developed without a model-checker.
At the time of development, the programmer is convinced that the program
always achieves its goal, i.e., never loses (observe that this is a safety prop-
erty — bad things do not happen). Various testers support this statement.
The program is then deployed. Some months later, a customer defeats it and
sends in the game’s trace. However, the original software engineer has long quit
the firm, and it would take a long time for a new engineer to repair the code.
A suitable solution would be to apply an automatic patching algorithm to the
malfunctioning software.

To simulate this, we took the complete program from [9], and omitted the
more complex threads — those that handle situations where our opponent cre-
ates, simultaneously, two ways to win. If the human player does not try the com-
plex strategy that create such double attacks, the program does indeed seem to
work, but a skilled player can defeat it.

The automatic proof-of-concept tool is easy to use, requiring little modifi-
cations to the original program. The input is the behavioral program and the
safety property Φ, given as b-threads marking bad states (e.g., victory of the
opponent). The output is code files for new thread instances which are easy to
read and to integrate into the original program (see Fig. 5).

Each such patch inherits from a parent class which implements its “main”
function; see Fig. 6.

In our example, the patched Tic-Tac-Toe program contains 26 different
patches, one of which is demonstrated in the figure. Subsequent verification by
the model checker confirms that now the specification is indeed satisfied.

14 D. Harel et al.

public patch1 () {
events.add(new X(2 ,2));
events.add(new O(1 ,1));
events.add(new X(0 ,0));
events.add(new O(2 ,0));

}

Fig. 5. Example of a wait-block patch generated by the proof-of-concept tool. The
patch’s code contains a sequence of events that should be waited-for — events X(2,2),
O(1,1) and X(0,0). The last event in the list, O(2,0), is the one that should be blocked
by the patch. The automatically generated code is legible and comprehensible, as the
more complicated details are hidden away in a parent class.

public void runBThread () {
for (int i=0; i<events.size ()-1; i++) {

bp.bSync(none, all, none);
if (! lastEventWas(events.get(i)))

disablePatch ();
}
bSync(none, all, events.getLast());
disablePatch ();

}

Fig. 6. The patch thread’s main function, runBThread() is part of the patching library,
and is not added to the actual patched program. It waits for events defined by a
particular patch instance (as in Fig. 5), blocking the last event and then terminating.
If the events chosen deviate from those defined in the patch instance, it terminates.

7 Safety Patches for Programs with Cycles

7.1 Generating Safety Patches for Cycles

The correctness of the algorithms for linear safety patching relies on the pro-
gram’s state graph’s having no cycles. As most reactive systems run indefinitely,
periodically returning to some “idle” state, such systems cannot be patched by
linear wait-block patches. For example, fixing a behavioral program that enters
a bad state after a sequence of events of the form (a)∗b, will call for infinitely
many linear patches.

Our solution is to extend the linear safety patch associated with a single
sequence of events, into one that can keep track of an entire hierarchy of paths
and cycles in the graph, blocking the violating event as needed.

Definition 13. Given a state graph G′ = (VG′ , EG′), two special vertices marked
vinit and vend and an event e ∈ Eprog, a cyclic safety wait-block patch for G′ is
a b-thread with the following properties:

– It waits for all events chosen by the event selection mechanism and traverses
the graph G′ according to those events.

– Whenever state vend is reached, it blocks event e once.
– If an event occurs such that there is no edge marked with that event, it

terminates.
– It never requests events and does not label states.

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 15

Intuitively, the patch is designed to prevent a family of bad runs that are
similar to one another, in that they reach their bad state by transitioning from
vend via the event e. The graph G′ will be chosen such that it contains all paths
from vinit to vend, thus rendering a single patch able to block that entire family
of bad runs.

The Locality Lemma holds for the cyclic case as well: all runs of the original
system, apart from those starting in vinit and ending in reaching the violating
state through vend and e, are valid runs of the patched system. The proof is
based on the fact that in any such run, the generated patch does not request or
block any events, and thus does not affect the events requested by the program.

Linear safety patches are a particular case of the cyclic ones, in which the
graph G′ is a path, meaning there is precisely one way to reach the violating
state.

The cyclic safety patching algorithm is as follows (G denotes the full state
graph traversed by the model-checker):

Cyclic Safety Patching(P, Φ):

1: Run the model checker on (P, Φ)
2: if P � Φ then
3: return P
4: for each violating run (e1, . . . , en) do
5: if ∀i, ei ∈ Eenv then
6: return Failure
7: else
8: Find the largest k such that ek ∈ Eprog

9: Let send denote the state reached after events e1, . . . , ek−1

10: Construct the minimal subgraph G′ containing all paths in G from sinit to
send

11: Create a cyclic wait-block patch p for G′ with states vinit = sinit, vend = send,
and event ek.

12: P ′ ← P ′ ∪ {p}
13: return P ′

Constructing the minimal subgraph G′ is done using a modified BFS algo-
rithm, in the following manner. Given the full graph and the two vertices sinit

and send, we run a modified BFS search from sinit. Unlike a regular BFS search,
where each vertex stores a single predecessor (the first vertex from which it is
found), here each vertex stores all the vertices from which it is found. When the
search is over, we begin in send and backtrack through all possible predecessors
of each vertex, until reaching sinit. The set of edges and vertices traversed this
way forms the subgraph G′ that we need.

To show that every path from sinit to send is in G′, let p = (sinit, s1, . . . , sn,
send) be a path. If p is simple, i.e., no state repeats itself, then clearly after n+1
iterations of the BFS search each vertex in p has its preceding state marked as
a predecessor. Therefore, the entire path will be traversed during the backtrack
phase, meaning that p is in G′.

16 D. Harel et al.

Now, suppose that p is a complex path with one cycle (the proof for the
general case is an easy extension). Then p can be expressed as follows:

p = (sinit, s1, . . . , sk, s′
1, s

′
2, . . . , s

′
j , sk

︸ ︷︷ ︸
the cycle

, sk+1, . . . , sn, send)

The states before and after the cycle are found as before. The cycle’s states,
s′
1, . . . , s

′
j , are found at the latest during the j’th iteration after the first arrival

at sk. When the cycle ends, s′
j is marked as a predecessor of sk. Therefore,

during the backtrack phase that passes through sk, the entire cycle will be found.
Consequently, the returned subgraph contains p.

To see why G′ is minimal, observe that if a state is added to the subgraph it
is part of at least one path from sinit to send, and therefore cannot be omitted
from the graph.

Lemma 3. If the algorithm returns a patched program P ′, then P ′ � Φ.

Proof. Suppose that there exists a run ρ of P ′ violating Φ. Denote its states
s1, . . . , sn, and extract from them a violating run with no cycles. If si = sj for
some j > i, delete states si+1, . . . , sj . Denote the remaining states as st1 , . . . , stk .
The run corresponding to this state sequence was found by the model checker,
and a patch for some subgraph G′ which contains this run was created. Since G′

contains all paths from s1 to sn, it also contains ρ. Therefore, the patch would
have blocked the last program-requested event of ρ, causing a contradiction. ��

As with the linear case, it is possible for the algorithm to return a failure
notice. The Patchability Lemma, which characterized programs that could be
fixed in the linear case, holds for the cyclic case as well; its proof is analogous.

The complexity of the algorithm is as follows: The exploration of violating
runs costs, as before, O(Tmc + Υ · D2). Constructing the relevant subgraph for
each violating run costs another |VG| + |EG| times Υ runs, yielding:

T = O
(
Tmc + Υ · D2 + Υ (|VG| + |EG|)) .

Again, this shows our dependence on the number of violating runs, Υ . The
smaller that number, the closer our complexity is to that of the model-checker;
the higher it is, the closer we are to the notorious, worst-case complexity of the
synthesis problem.

7.2 Subgraph Representation

The generated code for a linear safety patch contains only the list of events
to be waited for, followed by the event to be blocked. This list can be readily
understood and possibly manipulated by a human, say, for documentation or
analysis. Further, the developer may simplify or generalize the patch; e.g., skip
waiting for certain guaranteed events or consolidate patches into fewer “sym-
bolic” one, using BPJ’s event filters. However, when a patch traverses a complex

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 17

subgraph, gaining such insights is harder. Thus, we propose to represent the
subgraph as a collection of easily readable linear event scenarios, amenable to
human manipulation. The operation of the cyclic safety patch will be as before.

Specifically, We use the term line for a finite sequence of events that occur
along some contiguous path in the state graph, and along which no state is
visited twice. We use the term tail for a line whose last event would lead to a
bad state in the state graph. The program’s state graph, or parts thereof, are
stored as a collection of lines, each containing its sequence of events, and links
to other lines that are reachable by a single event from the last event in the line.
See Fig. 7.

A B C F G X

H IDE

e4

e11

e1 e2 e7 e8 e9

e2

e10

e3

e4

e5

e6

Fig. 7. A state graph of a buggy program. The model-checker returns the violating
run with events e1, e2, e7, e8, e9. The subgraph of all paths from state A to state G
(see solid states and edges) is decomposed into: line1 = e1, e2 (successors tail, line2);
line2 = e3 (successors line3, line4); The self-loop line3 = e6 (successors line3, line4);
line4 = e4, e5 (successors line2, tail); tail = e7, e8 (with event to be blocked, e9).
In addition to the run found by the model checker, the patch prevents other runs,
e.g., e1, e2, e3, e6, e6, e4, e5, e3, e4, e5, e7, e8, e9, where the underlined events correspond
to cycles.

Thus, each patch,

– begins by activating lines containing the initial state;
– waits for all events and traverses active lines;
– deactivates active lines when they are deviated from;
– deactivates a line and activates its successors when the line’s last event occurs;
– in a tail, prior to the event leading to the bad state, blocks that event, waits

for one more event, and deactivates the tail.

The line representation can be implemented in a data structure or in sepa-
rate patch b-threads, each beginning with waiting for a unique activation event.
This results in a number of small patches and is readily implementable in all
implementations of behavioral programming.

7.3 Example: Patching a Coffee Machine

We demonstrate cyclic safety patching with a simple coffee vending machine
example, which is expected to repeatedly wait for a coin, wait for a coffee request,
and prepare the coffee. The main requirement is that coffee is never prepared
unless a coin is first inserted. However, if immediately after power-up the user

18 D. Harel et al.

s2 s1

Init
Idle

coffee
req.

coffee
req. power

up

coin
inserted

coin
inserted

coffee
ready

coin
inserted

coin
accepted

coffee
req.

coffee
ready

coffee
req.

coin
inserted

Fig. 8. The buggy coffee machine’s state graph. After the PowerUp event, if a
CoffeeRequested event occurs (before a coin is inserted), free coffee can be obtained
infinitely many times, until a coin is inserted. The loop on the right-hand side of the
graph represents the desired operation. The problematic state (marked s1) has two
enabled events: CoffeeReady, which is immediately requested (and selected), and the
environment event CoffeeRequested. We expect the patch to block the CoffeeReady

event.

requests coffee, the machine incorrectly allows coffee to be requested and pre-
pared infinitely many times without a coin. When the first coin is inserted, the
machine enters normal operation. The machine’s state graph is depicted in Fig. 8.

Observe that the bug is a safety bug — coffee is served without first inserting
a coin. When it is discovered and automatic patching is attempted, the first step
is to have a new b-thread identify and mark bad states (namely, s2).

The automatic patching algorithm generates a single patch, corresponding
to the subgraph depicted in Fig. 9.

s1 Init
coffee

requested

coffee
requested

power
up

Fig. 9. The subgraph of the program’s state graph for which a patch is created. It
shows all paths from the graph’s initial state to state s1, in which event CoffeeReady

must be blocked to prevent violations.

Finally, the graph of the patched program is depicted in Fig. 10, and the code
generated by the proof-of-concept tool is shown in Fig. 11.

8 Dealing with Liveness

Up to this point, we dealt with safety properties — those that assert that “noth-
ing bad happens”. Another important class of properties is those involving live-
ness, asserting that “good things eventually happen”. In this section we show
how wait-block patches can be applied in order to fix liveness violations too.

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 19

s1

Init Idle

coffee
requested

coffee
requested power

up

coin
inserted

coin
inserted

coffee
ready

coin
inserted

coin
accepted

coffee
requested

Fig. 10. The patched program’s state graph (states of the patches themselves are
omitted for clarity). The violating CoffeeReady event has been blocked, and the bad
state no longer exists in the state graph.

public cyclicPatch1 () {
line1Events.add(new PowerUp ());
line1Events.add(new CoffeeRequested ());
line1 = new LineComponent(line1Events);

line2Events.add(new CoffeeRequested ());
line2 = new LineComponent(line2Events);

tailEvents.add(new CoffeeReady ());
tail = new TailComponent(tailEvents);

line1.addSuccessor(tail);
line1.addSuccessor(line2);
line2.addSuccessor(line2);
line2.addSuccessor(tail);

this.addActiveComponent(line1);
}

Fig. 11. The automatically-generated Java code for representation of the subgraph
in Fig. 9. The first line contains events PowerUp and CoffeeRequested, and the sec-
ond line contains CoffeeRequested. The tail contains only the event to be blocked,
CoffeeReady. The code is readily understandable.

In the case of safety properties, ensuring that a property holds is reducible to
rendering all “bad” states unreachable, and so it was straightforward to use
blocking in order to correct malfunctioning programs. Recall that in Sect. 4 we
mentioned that liveness violations correspond to reachable cycles of “hot” states
(i.e., “hot cycles”) in the program’s state graph, and so it is less clear how to
apply blocking. One natural approach might be to identify when the system is
traversing a hot cycle, and then block one of the cycle’s transitions (when an
alternative exists), forcing the run to leave the cycle. This has several drawbacks:

1. Unlike in the safety case, where a bad state was never to be visited, in the
liveness case it is legal to traverse the hot cycle any finite number of times.
Consequently, safety-like patching would destroy good runs, which is highly
undesirable.

20 D. Harel et al.

2. Näıvely forcing the run to leave a hot cycle does not guarantee that it reaches
a cold state; it could enter another hot cycle.

3. We would need to keep track of the hot cycles in the graph — the number of
which could be very large.

To overcome these difficulties, we adopt a different perspective. Instead of
considering runs and the hot cycles they traverse, we consider the hot states
themselves. We show how, using wait-block patches, one can enforce a state-
based policy that forces every run to visit cold states infinitely often, thus ensur-
ing that the liveness property in question holds.

Our technique works by distinguishing between two types of hot states: hot-
trap states and hot-escapable ones. Hot-trap states have the property that once
they are visited, a liveness violation cannot be prevented; i.e., the system can
never force the run into a cold state again. Consequently, hot-trap states are
considered as “bad” states, and we use safety wait-block patches to render them
unreachable. The hot-escapable states are those from which the system could
force the run to visit a cold state, via some transitions; however, we cannot
assume that these transitions may ever be traversed. In particular, it is possi-
ble for the system to continuously choose transitions that keep the run in hot
states, although transitions to cold states are always enabled. We handle the
hot-escapable states by enforcing fairness: we make sure that if a transition is
enabled infinitely often, it will eventually be traversed. This type of fairness
can be enforced using probabilistic wait-block patches, which we also call live-
ness patches. Through their use we can ensure that any liveness violations are
effectively eliminated.

In the remainder of the section we discuss the liveness patching process more
thoroughly.

8.1 Classifying Hot States

The first step in our repair algorithm is partitioning the hot states in the state
graph into the two types mentioned. These two sets are formally defined by
the algorithm below, which takes as an input the state graph of the program
G = (VG, EG), and returns the sets of hot-escapable and hot-trap states. For
each hot-escapable state the algorithm also outputs its escape-distance, denoted
δ: this is the length of a path from the hot-escapable state that reaches a cold
state, and which the system can enforce regardless of the environment’s behavior.
See Fig. 12 for an illustration.

Classify Hot States(VG, EG):

1: A ← ColdStates(VG), B ← HotStates(VG), iteration ← 1
2: continue ← true
3: while continue do
4: continue ← false, New ← φ
5: for each state s ∈ B do
6: if at least one outgoing edge (internal or external) from s leads to a state in

A, and no outgoing external edge from s leads to a state in B then

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 21

7: continue ← true
8: New ← New ∪ {s}
9: δ(s) ← iteration

10: iteration + +
11: B ← B − New, A ← A ∪ New
12: HotEscapable ← A ∩ HotStates(VG)
13: HotTrap ← B
14: return (HotEscapable, HotTrap)

The algorithm performs a fixpoint computation of the set A of states that
are either cold or from which the system can force the execution to reach a cold
state. When the algorithm terminates, this set contains the hot-escapable states.

The key point in the algorithm is line 6, which contains the condition based
on which a new hot state enters A. For a state to become hot-escapable, all
its external edges must lead into A, which expresses the fact that these events
are beyond our control, and are controlled by the environment. Since we cannot
prevent (block) them, we require that they cause no problem in the first place —
namely, that they lead to states that have already been classified as hot-escapable
by their being in the set A. Another condition, which handles the case where a
state only has internal events enabled, is that there be at least one edge going
into a state of A. The key fact is that if either condition holds, the blocking
idiom can be applied to block all edges that do not lead to A.

The escape-distance value, δ, of a hot-escapable state indicates the number
of the iteration in which it joined A. It measures the shortest guaranteeable
distance to a cold state — that is, the length of the shortest such path that can
be enforced by blocking.

Observe that while this algorithm serves to define hot-escapable and hot-trap
states, it is not efficient — primarily because of the loop in line 5. By considering,
at every iteration, only nodes that have successors that were determined hot-
escapable in the previous iteration, the run time complexity can be reduced to
O(|VG| + |EG|).

8.2 Handling Hot-Trap States

As discussed previously, once the run enters a hot-trap state the system can-
not guarantee that it ever reaches a cold state. Consequently, we are forced to
block that entrance in the first place. This is done by applying safety wait-block
patches, using the technique discussed in Sect. 7, which renders all hot-trap states
unreachable.

Observe that this may remove potentially good runs too — namely, runs
that go through a hot trap state yet still visit a cold state eventually. This can
happen, for example, when an external event leading to another hot trap state
is not triggered and, instead, an internal event that leads to a cold state is
triggered. However, since we cannot depend on external events being triggered
or not, our only way to ensure that no violations occur is to make hot-trap states
unreachable.

22 D. Harel et al.

1 T

21 T

T

Fig. 12. Hot-trap and hot-escapable states. Hot states are marked red and contain
either a number or the letter T; cold states are marked blue and are empty. Solid
edges correspond to internal events, and dotted edges correspond to external events.
A number inside a hot state designates the state as hot-escapable and indicates the
escape-distance. The letter T designates the state as hot-trap (Color figure online).

8.3 Hot-Escapable States and Transition Fairness

The criterion used in determining the set of hot-escapable states ensures that
careful use of the blocking idiom can force the run from a hot-escapable state
into a cold state. The actual technique we propose is aimed at harming as few
good runs as possible, and is based on fairness.

The notion of fairness assumptions [18] is used widely in formal verification,
typically in order to rule out violating runs of the system because they are not
realistic. Here, we discuss a special kind of fairness, called transition fairness [1]:
if a transition is enabled infinitely often (i.e., its state of origin is visited infinitely
often), then it is traversed infinitely often. We also allow a set of transitions
originating from the same state to form a single constraint: if the state is visited
infinitely often, then at least one of the transitions in the set is traversed infinitely
often. Note that, unlike in the traditional setting where fairness is assumed for
verification purposes, here we aim to enforce it within a malfunctioning system.

Intuitively, hot-escapable states have the property that if the event selection
mechanism were to choose the triggered events uniformly at random, a run that
visits them would eventually lead to cold states. It turns out that one can also
settle for assumptions that are weaker than truly random event selection. We
express these required assumptions as transition fairness constraints, and then
discuss how to enforce them. Formally:

Definition 14. Let P be a behavioral program with state graph G. A transition
fairness constraint c on G is a set of one or more transitions (edges) in the graph,
{e1, . . . , en}, all originating from the same node v. We say that P satisfies c,
denoted P � c, if it has the following property: if a run ρ of P visits v infinitely
often, transitions from c are traversed infinitely often.

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 23

Let C = {c1, c2, . . . , ck} be a set of transition fairness constraints. We say
that P satisfies C, denoted P � C, if ∀1≤i≤kP � ci.

We now define a set of specific transition constraints for each of the hot-
escapable states in the graph, and then show that they suffice for guaranteeing
the liveness property in question.

Definition 15. Let P be a behavioral program with state graph G = (VG, EG),
and let Vhot-escapable ⊆ VG be its set of hot-escapable states with respect to some
liveness property Φ. For each v ∈ Vhot-escapable, the transition fairness constraint
of v, τ(v), is defined as follows:

– if v has transitions corresponding to external events, τ(v) is the set of these
transitions.

– otherwise, v has a neighbor, u, such that u is a cold state or δ(u) < δ(v). In
this case, we define τ(v) to be the edge leading from v to u.

Observe that for every hot-escapable state v, τ(v) can be found during the hot
state classification algorithm at no additional cost. We define the set of transition
fairness constraints of the entire program to be the set of transitions fairness
constraints on all its hot-escapable states, namely τ(P) =

⋃
v∈Vhot-escapable

τ(v).
The following proposition justifies our choice of constraints:

Lemma 4. Let P be a behavioral program and let Φ be a liveness property. If P
has no hot-trap states with respect to Φ and P � τ(P), then P � Φ.

Proof. Suppose, towards contradiction, that P � Φ. Then there exists a run ρ of
P and a hot state v0 ∈ Vhot, such that v0 appears infinitely often in ρ. Since P
has no hot-trap states, v0 is hot-escapable.

By our assumption that the constraints of τ(P) hold, there exists a neighbor
of v0, denoted v1, that also appears infinitely often in ρ, and this v1 is either a
cold state or a hot-escapable state with δ(v1) < δ(v0). If the former holds, then
ρ � Φ and we are done. If the latter holds, we reapply the same logic iteratively.
Clearly, this produces a chain of hot-escapable states v0, v1, . . . , vn, all appearing
infinitely often in ρ, with δ(v0) > δ(v1) > . . . > δ(vn). Since δ(v0) is finite, this
process ends in visiting a cold state infinitely often, again implying that ρ � Φ.��

Note that the lemma assumes that P has no hot-trap states. However, this
is not a real limitation, since, as previously explained, we can first apply safety
patching to make such states unreachable.

8.4 Liveness Patches

We have characterized fairness constraints that are sufficient for correcting the
liveness violation. Unfortunately, behavioral programs are not guaranteed to be
fair. This is an intrinsic property of the event selection mechanisms commonly
used in behavioral programming. For example, in arbitrary or priority-based
selection certain transitions might be enabled infinitely often but never triggered.
Consequently, we introduce a new type of patch, termed a liveness wait-block
patch, aimed at enforcing a transition fairness constraint on the program.

24 D. Harel et al.

Definition 16. Given a state graph G = (VG, EG), a probability η, a hot-
escapable state v ∈ V and its transition fairness constraint τ(v), a liveness
wait-block patch for v is a b-thread with the following properties:

– It waits for all events chosen by the event selection mechanism and traverses
the graph G according to them.

– It keeps track of the present state and notes when the execution reaches v.
– Whenever in v, with probability 1− η the patch does nothing. With probability

η, it blocks all transitions except those in τ(v).
– It does not request events and does not label states.

Intuitively, liveness wait-block patches are a way of incrementally injecting
fairness into specific states of an already existing program, without modifying
existing code. When the patch is applied to a hot-escapable state, it enforces the
fairness constraint of that state; in runs in which the state is visited infinitely
often, at least one of the transitions specified by the constraint will be triggered
infinitely often. Indeed, the probability that edges in τ(v) are not traversed after
m visits to v approaches 0 as m tends to infinity, and this is true even for
very small values of η. Note that, despite their probabilistic nature, these are
essentially wait-block patches: they wait for a sequence of events, and then apply
blocking to steer the run in the right direction.

Observe that it is indeed always possible to block all the transitions except
those in τ(v). The only events that cannot be blocked are the external ones;
and if there are external transitions in v, they are all in τ(v) by definition.
Further, observe that by their definition liveness patches cannot cause deadlocks
in states that were deadlock-free before the patching — as the patch always
leaves unblocked at least one event that was already enabled.

Our motivation for using probability-based blocking is the desire to leave
good runs unaffected. Choosing η to be small still guarantees that the fairness
constraint holds, but makes it likely that runs that scarcely visit the state remain
unaffected.

As in the case of cyclic safety patches (Sect. 7.2), liveness patches can be
represented as a collection of lines and tails to make them more comprehensible.

We point out that so far we have dealt strictly with deterministic behavioral
programs. Our probabilistic liveness patches, however, introduce nondetermin-
ism into the system. This nondeterminism is not “against the grain” of behav-
ioral programming, and indeed, extending behavioral programming definitions
to support nondeterminism is straightforward, and is omitted.

8.5 The Liveness Patching Algorithm

Based on the discussion in the previous sections, we now present the patching
algorithm itself:

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 25

Liveness Patching(P, Φ):

1: P ′ ← P
2: Run the model checker on (P, Φ)
3: if P � Φ then
4: return P
5: Run algorithm Classify Hot States on the state graph
6: for each hot state vh ∈ V do
7: if vh is a hot-trap then
8: if creating a safety patch to prevent runs from reaching vh is impossible then
9: return Failure

10: Create a safety patch ps
vh

that prevents runs from reaching vh

11: P ′ ← P ′ ∪ {ps
vh

}
12: else
13: Create a liveness patch p�

vh
for vh

14: P ′ ← P ′ ∪ {p�
vh

}
15: return P ′

Observe that, as in the safety patching algorithm of Sect. 7, it may be impos-
sible to create safety patches for hot-trap states in certain cases. One extreme
example is when the entire state graph consists of hot-trap states only, so that
attempting to render these states unreachable produces a trivial program that
deadlocks in its initial state. In such cases, the algorithm returns a failure notice.

The correctness of the algorithm is established by the following lemma:

Lemma 5. Let P ′ be a patched program returned by the algorithm, and let ρ be
a run of P ′. Then with probability 1, ρ � Φ.

Proof. By the previously proved correctness of safety patching (Lemma 3), the
algorithm ensures that there are no reachable hot-trap states in P ′. By Lemma 4,
it suffices to show that P ′ satisfies the constraints in τ(P) with probability 1.
This claim is immediately derived from the definition of a liveness wait-block
patch (Definition 16) and the discussion following it. ��

Part of our motivation for using wait-block patches in repairing violated
safety properties was the Locality Lemma, which stated that any good runs
remain unchanged. Unfortunately, that lemma cannot be proved for the liveness
case; in fact, any liveness wait-block patch, by definition, might affect good runs
as well as bad ones. We settle for the following:

Lemma 6 (The Weak Locality Lemma (Liveness)). Let P be a collection
of b-threads, let p be a liveness wait-block patch for hot-escapable state sh, and
let P ′ denote the patched program P ∪ {p}. Any run ρ of P that does not reach
sh constitutes a valid run ρ′ of P ′, and APtrace(ρ) = APtrace(ρ′).

The proof is similar to that of the safety case and is omitted. The result is
weaker, in the sense that if sh is hot-escapable then good runs that pass through
it might, with some probability, become invalid in the patched program. That
probability increases the more times they pass through sh. However, the effect
on good runs can be reduced by decreasing the patches’ blocking probability η.

26 D. Harel et al.

The complexity of the liveness patching algorithm is as follows. The model
checking phase costs O(Tmc). Classifying the hot states is linear in the size
of the state graph. Each hot-trap state is then handled as a safety violation,
adding O(|Vhot-trap| · (D2 + |VG| + |EG)). Finally, for every hot-escapable state,
we must construct the sub-graph needed to check when it is visited, yielding
another O(|Vhot-escapable| · (|VG| + |EG)). Combining these, the total worst-case
complexity becomes:

T = O
(
Tmc + (|Vhot| + 1) · (|VG| + |EG|) + |Vhot-trap| · D2

)
.

The runtime complexity shows the algorithm’s dependence on the number of hot
states: the smaller it is, the closer our complexity is to that of regular model-
checking. In the next section we discuss a heuristic-based approach for reducing
this in practice.

8.6 Minimal Fairness Enforcement

In the algorithm just discussed, we first rendered all the hot-trap states in
the state graph unreachable and then enforced a set of transition fairness con-
straints in the hot-escapable states. By Lemma 5, we are guaranteed that this
repairs any liveness violations in the program. However, the number of enforced
fairness constraints is rather large — it is approximately the number of hot-
escapable states in the program. Despite this, in some cases one can settle for
fairness constraints that are far less extensive. For instance, consider the graph
in Fig. 13.

Decreasing the number of fairness constraints being enforced is highly desir-
able, for two reasons. First, as we mentioned earlier, we wish to perform as
few modifications to the original program as possible, and enforcing fewer con-
straints clearly serves this goal. Second, the size of the automatically generated

Fig. 13. An instance where the liveness repair algorithm would enforce more fairness
than is required. The graph above has three hot-escapable states, and the algorithm
would enforce transition fairness on the three edges leading from them into the cold
state. Clearly, it suffices to settle for just one of these three constraints in order to
guarantee that the cold state is eventually reached. Similar, larger constructions show
that our algorithm might enforce any number of fairness constraints where just one
would suffice.

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 27

code module is in correlation with the number of constraints that it enforces.
Hence, fewer constraints means shorter modules, which are easier to maintain.

A natural question thus arises: can one identify a minimal-size set of fairness
constraints that need be enforced on a given behavioral program in order to
ensure that a given liveness property holds? Formally, we define the minimal
fairness problem MFopt, as follows: Given a behavioral program P with state
graph G = (VG, EG) and a liveness property Φ, such that G has no hot-trap states
with respect to Φ, find a minimal-size set C of transition fairness constraints such
that P � C ⇒ P � Φ.

Unfortunately, it turns out that this problem is NP-complete. In [5], the
authors study the problem of synthesis in the face of incomplete knowledge
about the system’s environment. In particular, they show that the problem of
finding a minimal fairness assumption on the environment in order to make a
given specification realizable is NP-complete. It is straightforward to show that
this problem is reducible to MFopt and that MFopt is in NP, rendering it NP-
complete.

Given this fact, we propose a greedy algorithm for approximating MFopt

in practice. The algorithm starts with an empty constraint set, and adds new
constraints iteratively, in a manner similar to the way algorithm Classify Hot
States finds the set of hot-escapable states.

Throughout its iterations, the algorithm maintains a growing set of already
“handled” hot-escapable states. This is the set of states for which enforcing the
current set of fairness constraints guarantees that they partake in no liveness
violations. In other words, a run that visits any of these states infinitely often
will reach a cold state infinitely often too.

The set of handled states is increased in each iteration. There are two ways
for a state v to become handled:

1. By direct fairness enforcement: this happens when the algorithm chooses to
enforce a fairness constraint leading from v into the set of already handled
states.

2. By indirect domination: if, due to previous fairness constraints, all of v’s
successors are already handled, then v itself can be immediately marked as
handled.

At each iteration, the algorithm imposes one fairness constraint, meaning that
precisely one vertex becomes handled through method 1. Our criteria in choosing
this particular vertex is trying to maximize the number of states that will become
handled through method 2. The actual choice is performed by looking at all the
candidates, namely nodes that can become handled through the enforcement
of a single constraint. Each candidate is then assigned a value, which is its
number of hot-escapable predecessors that are not yet handled (observe that
these predecessors are precisely the vertices with potential to become dominated
by choosing this vertex). Finally, the highest valued candidate is selected, and
the corresponding fairness constraint is enforced. Here is pseudo-code outline of
the algorithm:

28 D. Harel et al.

Approximate MFopt(V, E):

1: A ← HotStates(V), handled ← φ, constraints ← φ
2: while A
= φ do
3: candidates ← FindAllCandidates()
4: max ← MaxV aluedCandidate()
5: Add a constraint that handles max to constraints
6: Move max to from A to handled
7: while there are nodes in A dominated by handled do
8: Move dominated nodes from A to handled
9: return constraints

The two subroutines, FindAllCandidates and MaxV aluedCandidate, are
omitted. As with algorithm Classify Hot States, an efficient implementation of
the algorithm and its subroutines runs in time that is linear in the size of the
program’s state graph.

8.7 Example: Liveness Patching for the Dining Philosophers

We implemented our liveness patching algorithm (including the greedy approxi-
mation algorithm) within our proof-of-concept tool. For evaluation, we used the
dining philosophers problem [7]. A behavioral implementation thereof includes
the events of a philosopher picking up and putting down a given fork, a b-thread
for the behavior of each philosopher and a b-thread for each fork. Each philoso-
pher’s b-thread is subject to a strict event sequence: pick up one fork, pick up
the other, put down one fork, put down the other. Each fork’s b-thread waits for
events that change its state, and blocks illegal events (e.g., a second picking up,
or, a putting down by the “wrong” philosopher). In [9] we model-checked this
problem and variations thereof for safety and liveness properties.

For our experiment, we used a variant where the first n − 1 philosophers are
left-handed and the last one is right handed, which prevents deadlocks. All events
in the program are internal, and so no hot-trap states exist. Finally, the liveness
property used was this: “Philosopher #1 eats infinitely often”. The results are
shown in Table 1.

Each fairness constraint is translated into the actual code that enforces it,
using the same mechanism as for safety patches. Although there may be many
patches (as the example demonstrates), each of them is fairly comprehensible.
The possibly high number of patches was part of our motivation for using the
greedy algorithm; coming up with better algorithms to further reduce this num-
ber remains a topic for future work.

9 Limited-Depth Repair

9.1 Automatic Repair from Field Error Reports

Many facilities exist for end-users to send reports of software failures to the soft-
ware vendor (see, e.g., Fig. 14). Typically, these reports correspond to violated
safety properties (e.g., “the system never crashes”).

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 29

Table 1. Comparing the results of the näıve repair algorithm and the greedy approx-
imation repair algorithm for the dining philosophers problem, with 9–12 philosophers.
The States column shows the total number of states in the program. The Patches
(Näıve) and Patches (Greedy) columns show the number of patches generated by the
näıve and greedy algorithms, respectively. Observe that since the näıve algorithm gener-
ates one fairness constraint per hot-escapable state, the Patches (Näıve) column reflects
the number of hot-escapable states as well. Finally, the Reduction column shows the
percentage of patches saved by using the greedy version.

#Philosophers #States #Patches (Näıve) #Patches (Greedy) Reduction

9 Philosophers 19682 17495 9913 43%

10 Philosophers 59048 52487 30760 41%

11 Philosophers 177146 157463 93989 40%

12 Philosophers 531440 472391 287283 39%

Fig. 14. Event logs from bug reports are used in patch construction.

For behavioral programs, we propose a methodology for using such failure
reports in order to cope with the state-explosion problem inherent to model-
checking, and to patch programs with many violating runs:

– The failure report contains an event log.
– Using the fact that the effect of a patch is local, we constrain the model check-

ing depth to a neighborhood of the path of the failure (the bad run), followed
by a limited fan-out of possible continuations, past the blocked transition.

– This is enforced by a dedicated b-thread, which monitors all events, and when
an event occurs that is not along the reported bad path, it starts counting
the distance from the bug report. When the distance is greater than a given
parameter, the b-thread calls a model-checker API to prune the search.

– Finally, the safety patch is generated as above.

Such patching prevents the failure reported by the end-user, along with any
other failures “not far” from it, and can help when full model-checking and
patching consumes too much resources. The search-depth parameter is key, and
needs to be adjusted per repaired program; higher depth means repairing more
violations, but poorer performances. It is up to the user to use knowledge of the
program’s state graph, or run tests, in order to come up with the best choice.

30 D. Harel et al.

9.2 Example: Limited-Depth Repair of the Dining Philosophers

Again consider the dining philosophers problem [7], this time where all philoso-
phers are left handed. The reported bug fixed is the classical deadlock where all
philosophers pick up the fork on their left. Table 2 shows the results of patching
for the single bad run that we gave the patcher.

Table 2. Patching the dining philosophers problem using bounded depth patching.
Receiving a bug report (e.g., each philosopher picked up a single fork), the algorithm
searches for event sequences that deviate from, or continue, the event trace in the bug
report by no more events than the search depth parameter. The patches handle cycles
discovered within the search depth (e.g., one of the philosophers completing a full cycle
of picking up and putting down her two forks, while the others do not proceed). The
tests were carried out on a PC with a Intel Quad Core Q6600 CPU @ 2.40 GHz.

Search depth 3 Philosophers 6 Philosophers 9 Philosophers

3 3 patches 1 patch 1 patch

3 loops 2 loops 2 loops

0.5 s 4.2 s 30 s

4 15 patches 2 patches 3 patches

30 loops 4 loops 6 loops

1.2 s 22 s 4.5 min

5 20 patches 12 patches 12 patches

380 loops 1200 loops 2580 loops

3.2 s 2min 45min

10 Related Work

The research in [17,20,21] presents fault localization and automatic repair of pro-
grams, where a set of software components that are suspected to cause a fault is
replaced by a set of synthesized components, such that the resulting system is
guaranteed to meet the full specification. Automatic repair of concurrency bugs
(e.g., accessed to shared memory), is presented in [16]. The detection mecha-
nism uses bad runs associated with bug reports, and the analysis involves actual
execution. The repair is manifested in modification to existing code. Genetic-
programming-based repair of legacy C programs is demonstrated in [24]. The
repair relies on changes to existing code in order to correct problems that were
assumed to be local in nature. In [2], genetic-programming is combined with
co-evolution of the test cases against which the program is evaluated. Naturally,
any work on automatic-repair would be considered a particular case of program
synthesis [4,19].

As mentioned in Sect. 8.6, our work on repairing liveness violations relates to
that of [5], where the authors show how to synthesize fairness assumptions the

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 31

environment must uphold in order for a specification to be realizable. Our work
tackles similar difficulties, but in a different setting: the environment is fixed,
and fairness constraints on the system are synthesized. Our repair algorithm
then imposes those constraints on the previously designed system.

As for other approaches for coordinating simultaneous behaviors, such as
Esterel, BIP or Linda (see related work in [11,12] for a comparison of behav-
ioral programming with these approaches), we believe that comparable local-
ized repair mechanisms would be possible. The key would be implementing the
equivalent of blocking which, combined with ability to subscribe to all events,
is central to our solution. This, of course, is possible, as it was in Java and
Erlang, and could also benefit other aspects of incremental development in these
environments.

11 Conclusion and Next Steps

The contribution of the present paper is in the proposed automated approach,
in which faulty components are neither identified nor modified. Instead, the sys-
tem is non-intrusively augmented with additional components, to yield desired
overall system behaviors. The entire approach is made possible by the incremen-
tality and modularity of behavioral programs. The new components are readily
understandable by humans, and can be documented, enhanced, or generalized
as part of standard development. The generated patches can then be distributed
to users without re-distributing the original software. Finally, contributing to
the on-going and up-hill battle with state explosion, we propose a methodol-
ogy and a practical technique for constructing local patches using limited-depth
model-checking.

This research is a step in the direction of developing methodologies and tools
for the repair of behavioral programs. An important next step is to enrich the tool
with interactive capabilities, allowing the developer to examine the state graph
and enhance the proposed repairs: consolidating similar patches, generalizing or
constraining patch functionality, or perhaps changing existing code after all.

Future research problems include repairing the program with regard to time-
related properties, as well as integration with other formal methods tools and
techniques, including other synthesis algorithms, symbolic model-checking, and
compositional verification. Our tool could be combined with Java Pathfinder [23]
or other tools to explore support of richer inter-process communication beyond
solely behavioral events, and possibly solving concurrency problems among
b-threads, as in [16].

We hope that with further developments in incremental, non-intrusive devel-
opment, supported by powerful repair automation, the task of software main-
tenance may eventually shed its present (often lackluster) image, becoming a
rewarding undertaking, allowing software engineers to quickly address customer
needs in a productive, satisfying manner.

32 D. Harel et al.

Acknowledgments. We thank A. Kantor, S. Maoz, Y. Sa’ar, S. Szekely and G. Wiener
for their valuable suggestions on the manuscript. The research of D. Harel, G. Katz and
A. Marron was supported by The John von Neumann Minerva Center for the Develop-
ment of Reactive Systems at the Weizmann Institute of Science, by an Advanced Research
Grant from the European Research Council (ERC) under the European Community’s
7th Framework Programme (FP7/2007–2013), and by the Israel Science Foundation. The
research of G. Weiss was supported by the Lynn and William Frankel Center for CS at
Ben-Gurion University, by a reintegration (IRG) grant under the European Community’s
FP7 Programme, and by the Israel Science Foundation.

References

1. Aminof, B., Ball, T., Kupferman, O.: Reasoning about systems with transition
fairness. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452,
pp. 194–208. Springer, Heidelberg (2005)

2. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: Proceedings of the 10th IEEE Congress on Evolutionary Computation
(CEC), pp. 162–168 (2008)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78, 911–938 (2012)

5. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 147–161. Springer, Heidelberg (2008)

6. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. J. Form.
Methods Syst. Des. 19(1), 45–80 (2001)

7. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1, 115–138
(1971)

8. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-out of behavioral require-
ments. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517,
pp. 378–398. Springer, Heidelberg (2002)

9. Harel, D., Lampert, R., Marron, A., Weiss, G.: Model-checking behavioral pro-
grams. In: Proceedings of the 11th International Conference on Embedded Software
(EMSOFT), pp. 279–288 (2011)

10. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Berlin (2003)

11. Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250–274. Springer, Heidel-
berg (2010)

12. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

13. Harel, D., Marron, A., Weiss, G., Wiener, G.: Behavioral programming, decentral-
ized control, and multiple time scales. In: Proceedings of the SPLASH Workshop
on Programming Systems, Languages, and Applications Based on Agents, Actors,
and Decentralized Control (AGERE!), pp. 171–182 (2011)

14. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems. NATO ASI Series, vol. F-13. Springer,
New York (1985)

Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs 33

15. Harel, D., Segall, I.: Planned and traversable play-out: a flexible method for exe-
cuting scenario-based programs. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 485–499. Springer, Heidelberg (2007)

16. Jin, G., Song, L., Zhang, W., Lu, S., Liblit, B.: Automated atomicity-violation fix-
ing. In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (2011)

17. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Specification.
Springer, New York (1992)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
the 16th ACM Symposium on Principles of Programming Languages (POPL), pp.
179–190 (1989)

20. Staber, S., Jobstmann, B., Bloem, R.: Diagnosis is repair. In: Proceedings of the
16th International Workshop on Principles of Diagnosis, pp. 169–174 (2005)

21. Staber, S., Jobstmann, B., Bloem, R.: Finding and fixing faults. In: Borrione, D.,
Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 35–49. Springer, Heidelberg
(2005)

22. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri Nets I: Basic Models: Advances in Petri Nets. LNCS, vol. 1491,
pp. 429–528. Springer, Heidelberg (1998)

23. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10, 203–232 (2003)

24. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with
evolutionary computation. Commun. ACM 53, 109–116 (2010)

25. Wiener, G., Weiss, G., Marron, A.: Coordinating and visualizing independent
behaviors in Erlang. In: Proceedings of the 9th ACM SIGPLAN Erlang Work-
shop (2010)

Designing Adaptive Systems
Using Teleo-Reactive Agents

Graeme Smith1(B), J.W. Sanders2,3, and Kirsten Winter1

1 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

smith@itee.uq.edu.au
2 African Institute for Mathematical Sciences (AIMS), Cape Town, South Africa

3 Department of Mathematical Sciences, Stellenbosch University,
Stellenbosch, South Africa

Abstract. Although adaptivity is a central feature of agents and multi-
agent systems (MAS), there is no precise definition of it in the literature.
What does it mean for an agent or for a MAS to be adaptive? How can
we reason about and measure the ability of agents and MAS to adapt?
How can we systematically design adaptive systems? In this paper, we
provide a formal definition of adaptivity, and a framework for designing
adaptive systems aimed at addressing these issues.

The definition of adaptivity, based on Dijkstra’s notion of self stabili-
sation, is independent of any particular mechanism for ensuring adaptiv-
ity, and any particular specification notation. The framework for designing
adaptive systems is similarly independent of both implementation mech-
anisms and specification notation. It is based on the paradigm of teleo-
reactive agents proposed by Nilsson: a paradigm in which agents move
towards their goal in the presence of a continually changing environment.

1 Introduction

Adaptivity is central to the functionality of many multi-agents systems (MAS)
[36]. Agents adapt gradually to their environment using, for example, machine
learning techniques [20], and the distributed nature of MAS is exploited to make
them robust against both external disturbances and agent failures. The inherent
complexity of such systems has led to much interest in systematic approaches
to their development in the area of agent-oriented software engineering (AOSE)
[37], and growing interest in the use of formal methods to complement assurance
approaches based primarily on simulation [6,17].

These development and assurance approaches rely on precise behavioural
specifications of the agents or MAS being engineered. Such specifications can
be developed in an ad-hoc, system-by-system fashion, but a more systematic
approach is hindered by the lack of a precise definition of adaptivity and a
general framework for specifying adaptive behaviour. As Mohyeldin et al. [21]
state

c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 34–61, 2014.
DOI: 10.1007/978-3-662-44871-7 2

Designing Adaptive Systems Using Teleo-Reactive Agents 35

“Still open is a semantically well defined process to design adaptive sys-
tems, while concentrating on the adaptive behaviour rather than dis-
cussing implementation details.”

In this paper, we address this issue by

1. providing a formal definition of adaptivity which is independent of any partic-
ular adaptivity mechanism and general enough to use with any specification
notation, and

2. based on this definition, a framework for specifying the behavioural require-
ments of adaptive agents and MAS in a systematic way.

We begin in Sect. 2 by motivating our definition of adaptivity (which is based
on our previous work [26,29]) with respect to representative informal notions of
adaptivity arising in the literature. We then provide a formal model of MAS in
Sect. 3 as a basis for formalising our adaptivity definition in Sect. 4. In Sect. 5,
we introduce a specification framework for modelling adaptive systems based on
Nilsson’s teleo-reactive agents paradigm [23,24]. The approach is applied to a
case study in Sect. 6 before we conclude in Sect. 7.

2 What is Adaptivity?

Various informal notions of adaptivity can be found in the literature. Below are
some representative examples.

– Adaptivity should allow change in system functionality [13]. The view is that,
by adapting to environmental change, a system or agent may offer new oper-
ations on new states.

– Adaptivity should include self-organisation [12,16]. Systems should be able to
reconfigure to adjust for changes in the environment or agent capabilities.

– Adaptivity should include self-optimisation [3]. In response to a change in
externally-set parameters (i.e., global variables) the agents are able sponta-
neously and autonomously to perform calculations (viewed as optimising cer-
tain local variables) which result in the system returning to a desired state.

– Adaptivity should include (machine) learning [20,33]. It should, for example,
enable improved response to change so that when confronted with the same
situation in the future, the system or agent adapts more quickly and efficiently.

Our goal is to find a general definition which covers each of the notions above.
The most fundamental feature of an adaptive system is its ability to change

behaviour (i.e., functionality) in response to environmental change. The prospect
of changing behaviour at first conjures up visions of systems which are somehow
more advanced than standard computer programs. However, changing behav-
iour is illusory since a system, when viewed at a certain level of abstraction as
a simple state machine, does not actually change what it is capable of doing.
As shown in [13], it simply moves to a new state in which different actions and

36 G. Smith et al.

environmental interactions are possible. This is true even of approaches to evo-
lutionary computing [10] and machine learning [20]: underlying such systems is
just a computer program. Given this observation, what distinguishes an adaptive
system from a merely reactive one? Indeed, a number of approaches for adap-
tive systems seem to support designs which respond to environmental change
without further consideration for what makes those designs adaptive [4,5].

To answer this question, we appeal to the notion of legitimate states of a
system introduced by Dijkstra [8]. In this work, ‘legitimacy’ is defined by a
state invariant capturing those states in which the system behaves as intended.
A typical reactive system would operate only in such legitimate states chang-
ing its behaviour to reflect environmental interactions and, importantly, always
operating as intended.

Dijkstra’s paper is concerned however with self-stabilisation of distributed
systems. His examples consist of token ring networks in which a legitimate state
is one in which there is exactly one token present. He presents several algorithms
which, given an arbitrary number of tokens initially, end up in a legitimate state.

An important feature of Dijkstra’s self-stabilising networks is that even if
they start in states which are not legitimate states, they are guaranteed to reach
legitimate states after a finite number of system actions. A typical reactive sys-
tem may not operate at all when not in a legitimate state. Also, it is not designed
to perform actions which allow it to reach a legitimate state. An adaptive sys-
tem, on the other hand, is required to be a reactive system which, like Dijkstra’s
self-stabilising token rings, can reach legitimate states from illegitimate ones.

In other words, an adaptive system is one which, when placed in a particular
environment, has a defined set of legitimate states and when in an illegitimate
state reaches a legitimate state again. Indeed, the period before the system
reaches the legitimate state is the time when the system is adapting.

Following Dijkstra’s definition, we do not allow a system in a legitimate state
to enter an illegitimate state of its own accord. That is, defined transitions of
the system from legitimate states enter only other legitimate states. A system
is placed in an illegitimate state by an external action, i.e., an action that is
not regarded as part of the system’s specification. This action may represent
a change in the environment due to an unforeseen disturbance, or the passing
of a threshold point in an environment that is gradually changing over time.
Alternatively, an external action may represent a change to the system itself. In
the case where the system is an agent, this may be caused, for example, by the
action of a software virus changing internal data. In the case where the system
is a MAS, it may be caused by the failure of a component agent.

In each case we can reason about adaptivity as the ability to ‘recover’ from
the external event, i.e., the ability of the system to reach a legitimate state.
Since systems will, in general, be adaptive to only a subset of all possible exter-
nal actions, we qualify our definition of adaptivity with respect to a specific
external action. Furthermore, we quantify adaptivity with respect to the num-
ber of actions required for the system to adapt. At a given level of abstraction,
this provides us with a metric for comparing different adaptivity mechanisms.

Designing Adaptive Systems Using Teleo-Reactive Agents 37

Dijkstra’s systems are closed in the sense that they do not interact with an
external environment. The notion of legitimate states must for our purposes be
extended to open systems by considering the state to include both that of the
system and its environment. Then our definition of adaptivity covers each of the
informal definitions above.

– Adaptivity should allow change in system functionality. Since the environment
state is part of each legitimate state, a change in the environment will result
in a change in the system states which constitute a legitimate state. Mov-
ing to such a system state will result in a different behaviour (and hence
functionality).

– Adaptivity should include self-organisation. Self-organisation of a system can
be seen as moving towards a legitimate state. Indeed, the approaches of
both Güdemann et al. [16] and Georgiadis et al. [12] are based on satisfy-
ing certain system constraints, or invariants. Using the terminology of complex
systems, self-organisation may be viewed as autonomous convergence to
attracting states [25]. Under our definition the attracting states are the legit-
imate states.

– Adaptivity should include self-optimisation. With respect to self-optimisation,
our definition would identify optimal states with legitimate states. While this
shows the applicability of our definition in theory, it may not always be pos-
sible to specify the optimal states in practice.

– Adaptivity should include (machine) learning. In supervised machine learning
(positive and negative) examples of a concept Q are provided to enable sub-
sequent approximate classification of specimens into those satisfying Q and
those not satisfying Q . The set of legitimate states expresses approximate
classification of Q (for example as formalised by Valiant in probably approxi-
mately correct (PAC) learnability [35]). Initialisation of the learning protocol
is regarded as an external action, and the agent ‘learns Q ’ if, and only if, it
reaches a legitimate state after such initialisation.
Our quantification of adaptivity with respect to the number of actions required
for the system to adapt enables us to specify improved response to external
actions.

3 A Formal Model of Multi-Agent Systems

In order to formalise our definition of adaptivity, we begin by providing formal
representations of agents and MAS. Since we consider agents as being artifacts
that are realised by software, they can – on a low level of abstraction – be rep-
resented as labelled transition systems (LTS). An LTS comprises a (possibly
infinite) set of states, a (possibly infinite) set of initial states, and a collection of
actions which cause (possibly nondeterministic) state transitions. Similar con-
cepts have been used in the agent literature before. For example, formalisms with
an underlying transition systems semantics such as Z and Object-Z have been
suggested for modelling agents and MAS [9,14]. Also, Hunter and Delgrande
[18] use transition systems which they extend with a metric function to capture

38 G. Smith et al.

“plausibility” amongst belief states. Without loss of generality, we assume such
a metric can be encoded in the transition system.

Definition 1. An LTS is a 4-tuple S = (Q , I , Σ, δ) where

– Q is the (possibly infinite) set of states.
– I ⊆ Q is the non-empty set of initial states.
– Σ is the set of actions (or labels).
– δ ⊆ Q × Σ × Q is the set of labelled transitions.

A behaviour of an LTS, S , is a possibly infinite sequence alternating between
states and actions q0 a1 q1 a2 q2 . . . where for all i > 0, ai ∈ Σ such that
(qi−1, ai , qi) ∈ δ.

Let B(S) denote the behaviours of S starting from an initial state of S , i.e.,
where q0 ∈ I , and B(S ,Q ′) denote behaviour of S starting in a state q0 ∈ Q ′

where Q ′ ⊆ Q . Let st(b, i) denote the ith state of a behaviour b, and let act(b, i)
denote the ith action.

To facilitate reasoning about environmental interaction, we use a simple
extension of LTS in which actions are partitioned into three sets: internal actions,
input actions (externally observable actions controlled by the environment), and
output actions (externally observable actions controlled by the component).

Such a partitioning of actions has been proposed for modelling reactive sys-
tems. It is central to the I/O automata approach of Lynch and Tuttle [19], and
interface automata of de Alfaro and Henzinger [7]. In each of these approaches,
combined automata interact by synchronising on common-named input and out-
put actions. All automata with a given action are involved in each synchronisa-
tion on that action.

The main difference between I/O automata and interface automata is that
the former are input-enabled meaning that input actions can never be refused.
This is not the case with interface automata where the restrictions on the type
of input actions and when they can occur is used to model assumptions on the
system’s environment.

An approach similar to interface automata has also been proposed for mod-
elling groupware systems by Ellis [11]. This approach, inspired by Smith’s work
on collective intelligence in computer-based collaboration [31], has been for-
malised and further developed by ter Beek et al. [34]. The automata are referred
to as component automata, and component automata which are formed as the
composition of other component automata as team automata. The major differ-
ence with the aforementioned approaches to reactive systems is that in a team
automaton not all of the composed automata with a given action need to syn-
chronise on that action. This flexibility has been shown to be well suited to
formalising notions of coordination, cooperation and collaboration in a distrib-
uted setting [34]. In the remainder of this section, we show how agents and MAS
can be modelled using component and team automata.

Designing Adaptive Systems Using Teleo-Reactive Agents 39

request.1

reply.1

request.2

reply.2

cs.2 cs.1

id=1
waiting

id=1
idle

id=2
idle

id=2
waiting

Fig. 1. Component automaton of the client agent

3.1 Agents as Component Automata

Agents are modelled as component automata [34].

Definition 2. An agent is an LTS, A = (Q , I , Σ = Σint ∪Σinp ∪Σout , δ), where
Σint , Σinp and Σout are pairwise disjoint, and

– Σint is the set of internal actions. Such actions are controlled by the agent
and are not externally observable.

– Σinp is the set of input actions. Such actions are externally observable and
are controlled by the agent’s environment.

– Σout is the set of output actions. Such actions are externally observable and
are controlled by the agent.

Example 1. Consider an agent Client which is aware of a number of servers in
its environment with which it can interact. The state of the client includes the
set of server identifiers and the identifier of the server with which it is currently
interacting. It has a set of internal actions cs.id which allows it to change the
server with which it is interacting to that with identifier id (initially the client is
interacting with any server of which the agent is aware), a set of output actions
request .id representing a request to the server with identifier id , and a set of
input actions reply .id representing a reply from the server with identifier id .

Assume there are two available servers with identifiers 1 and 2. An LTS
that models the client can be depicted as in Fig. 1, where incoming arrows mark
initial states. In this model, the client changes server only when it is not awaiting
a reply.

To represent this system as a component automaton, we simply partition its
actions as follows.

Σint = {cs.i | i ∈ 1 . . 2}
Σinp = {reply .i | i ∈ 1 . . 2}
Σout = {request .i | i ∈ 1 . . 2}

�

40 G. Smith et al.

Given this partitioning, the fact that the input action reply .id occurs only after
request .id , for id ∈ 1 . .2, is an assumption that has been made about the client’s
environment. It is not something the client could itself enforce.

3.2 Multi-Agent Systems as Team Automata

When component automata are composed, they potentially synchronise on
common-named actions. Hence to prevent unwanted synchronisations, a pre-
condition for composing a group of agents is that no internal action of one agent
is present as an action (internal or external) of another agent.

Let Ai denote the agent (Qi , Ii , Σi = Σi,int ∪Σi,inp ∪Σi,out , δi), for i ∈ 0 . .n.
A composition of the agents A0, . . . ,An is possible if

∀ i ∈ 0 . . n • (Σi,int ∩ ⋃

j :0..n\{i}
Σj) = ∅. (1)

Given such a composable set of agents, a multi-agent system (MAS) is mod-
elled as a special kind of component automaton called a team automaton [34].
A state q of the team automaton is a tuple of the possible states of the agents,
q ∈ ∏

i:0..n
Qi . We let qj , for j ∈ 0 . . n, denote the j th element of the tuple q .

Definition 3. A MAS comprising agents A0, . . . ,An is an LTS, M = (Q , I , Σ =
Σint ∪ Σinp ∪ Σout , δ), where Σint , Σinp and Σout are pairwise disjoint, and

– Q =
∏

i:0..n
Qi .

– I =
∏

i:0..n
Ii .

– Σint =
⋃

i:0..n
Σi,int .

– Σout =
⋃

i:0..n
Σi,out .

– Σinp = (
⋃

i:0..n
Σi,inp) \ Σout .

– δ ⊆ Q × Σ × Q such that
• for all (q , a, q ′) ∈ δ, there exists a j ∈ 0 . . n such that (qj , a, q ′

j) ∈ δj and
for all i ∈ 0 . . n with i �= j , (qi , a, q ′

i) ∈ δi or qi = q ′
i

• for all q , q ′ ∈ Q and a ∈ Σint , if there exists a j ∈ 0 . . n such that
(qj , a, q ′

j) ∈ δj , then (q , a, q ′) ∈ δ.

The internal and output actions of M are those of the agents. The input
actions are those of the agents which are not also output actions. In the case
where an input action of one agent is the same as an output action of another
agent, the input is assumed to be caused by the output action and hence is not
an input action for the MAS. The fact that the output action is not also removed
from the system allows team automata to be further composed with other com-
ponent or team automata, e.g., to act as the environment of a component in a
further composition.

Designing Adaptive Systems Using Teleo-Reactive Agents 41

The transitions of M are such that the following hold.

(i) Each transition involves a non-empty subset of agents engaging in the action
a. The state of each agent not involved in the action remains unchanged.

(ii) There is a MAS transition for each agent transition corresponding to an
internal action.

Not all agents with action a need to be involved in a system transition cor-
responding to a. This allows different interaction strategies to be captured [34].
However for consistency, we require that any output action of the system involves
at least one agent output action, i.e., there should not be a system action a
involving only an agent which has a as an input action when there are other
agents which have a as an output action. More formally

∀(q , a, q ′) ∈ δ • a ∈ Σout ⇒ ∃ j ∈ 0 . . n • a ∈ Σj ,out ∧ (qj , a, q ′
j) ∈ δj . (2)

Furthermore, given a transition (q , a, q ′) of a MAS such that qj = q ′
j for some

j ∈ 0. .n, if the j th agent has a transition (qj , a, qj) then the agent undergoes this
action, otherwise (i.e., if (qj , a, qj) �∈ δj) it undergoes no action. This maximal
interpretation suggested by ter Beek et al. [34] removes any ambiguity concerning
which agents participate in a particular MAS transition.

Example 2. To continue Example 1 above we assume that each server is defined
as Serveri = (Qi , Ii , Σi,int∪Σi,inp∪Σi,out , δi) with Σi,int = ∅, Σi,out = {reply .i |
i ∈ 1 . . 2} and Σi,inp = {request .i | i ∈ 1 . . 2}. The behaviour of the two servers
is modelled abstractly in Fig. 2. (For simplicity, we assume that a server deals
with only one client at a time).

request.1

reply.1

request.2

reply.2

Fig. 2. Component automata of the server agents

The agents Client , Server1 and Server2 can be composed since (1) holds.
Given Client = (QClient , IClient , ΣClient , δClient), one team automaton that

can be composed from Client and the servers Server1 and Server2 is M =
(Q , I , Σint ∪ Σinp ∪ Σout , δ) with

– Q = QClient × ∏

i:1..2
Qi .

– I = IClient × ∏

i:1..2
Ii .

– Σint = {cs.i | i ∈ 1 . . 2}.
– Σinp = ∅.
– Σout = {reply .i , request .i | i ∈ 1 . . 2}.
– δ = {(q , a, q ′) ∈ Q × Σ × Q | (q0, a, q ′

0) ∈ δClient ∧
a �∈ Σint ⇒ (∃ i ∈ 1 . . 2 • (qi , a, q ′

i) ∈ δi ∧ (∀ j �= i • qj = q ′
j)) ∧

a ∈ Σint ⇒ (∀ i ∈ 1 . . 2 • qi = q ′
i)) }.

42 G. Smith et al.

Since all common-named actions synchronise, and all actions which are
enabled in a component can occur, the definition satisfies (2).

It is possible, by restricting δ in such compositions, to limit when operations
are enabled, or to limit the agents which synchronise on an action. For example, if
we had included two client agents, then we would expect only one to be involved
in each request, reply and change-server action. �

4 Adaptivity Defined

In this section we provide formal definitions of adaptivity for agents and MAS
based on their team automata representations as defined in Sect. 3. We base
our definitions on Dijkstra’s notion of legitimate states [8] which we extend to
include both the state of the system under consideration (agent or MAS) and
its environment. The definitions qualify adaptivity with respect to the external
action to which the system adapts, and quantify it with respect to the number
of actions required to adapt.

Since agents and MAS are represented by automata, the definition of adap-
tivity for each of them is identical. We begin by defining adaptivity in the special
case of closed systems, i.e., where the system does not interact with its environ-
ment, in Sect. 4.1. This definition is applicable to MAS which do not rely on
environmental interaction for their operation. We then extend the definition to
open systems, i.e., where interaction with the environment is central to the sys-
tem’s operation, in Sect. 4.2. This definition is applicable to agents as well as
MAS that interact with their environment.

4.1 Adaptivity of Closed Systems

A closed MAS M can be modelled by a team automaton with no input actions.
The team automaton of Example 2 is an example of such a closed system. Let
Q(M) denote the set of legitimate states of M . By definition, all transitions from
legitimate states lead to legitimate states. That is, given M = (Q , I , Σ, δ)

(q , a, q ′) ∈ δ ∧ q ∈ Q(M) ⇒ q ′ ∈ Q(M). (3)

A MAS is well-formed if the initial states of M are legitimate states, or if M
is guaranteed to reach a legitimate state in a finite number of actions. That is,

I ⊆ Q(M) ∨ (∀ b ∈ B(M) • ∃ i ≥ 0 • st(b, i) ∈ Q(M)). (4)

In the case where a finite number of actions are required to reach a legitimate
state, the MAS undergoes an initial self-configuration process.1

Let Q be the set of states of M and Z be an external action defining the
set of transitions ζ ⊆ Q × Z × Q on M . Such an external action can move the
MAS from a legitimate state to an illegitimate one. M can adapt to the external
action, if it can return to a legitimate state.
1 Self-configuration can itself be viewed as a type of adaptivity in which the external

action is the system initialisation.

Designing Adaptive Systems Using Teleo-Reactive Agents 43

Definition 4. A closed MAS M is Z -adaptive if, after an occurrence of Z which
places the MAS in an illegitimate state, the MAS is guaranteed to reach a legiti-
mate state in a finite number of transitions under the assumption of no further
occurrences of Z .

That is, for all b ∈ B(M) such that there exists an i ≥ 0 such that st(b, i) = q
and for all illegitimate states q ′ such that (q ,Z , q ′) ∈ ζ the following holds.

∀ b′ ∈ B(M , {q ′}) • ∃ j > 0 • st(b′, j) ∈ Q(M) (5)

Note that we are concerned only with cases where Z places the MAS in an
illegitimate state. If Z places the MAS in a legitimate state, the MAS is robust
against Z , but we do not regard this as adapting (since there is no deflection
from its normal behaviour).

A closed MAS M is n-Z -adaptive for some n > 0, if it can adapt within at
most n transitions. That is, for all b ∈ B(M) such that there exists an i ≥ 0
with st(b, i) = q and for all illegitimate states q ′ such that (q ,Z , q ′) ∈ ζ the
following holds.

∀ b′ ∈ B(M , {q ′}) • ∃ j ∈ 1 . . n • st(b′, j) ∈ Q(M) (6)

The following theorems follow directly from these definitions.

Theorem 1. If M is n-Z -adaptive, it is also m-Z -adaptive for any m ≥ n.

Theorem 2. If M is n-Z -adaptive for some n > 0, then it is also Z -adaptive.

Note that the inverse of Theorem 2 does not hold. It is possible, due to nondeter-
minism in a MAS, that there is no minimum number of transitions required to
reach a legitimate state. For example, consider a MAS that after Z is repeatedly
able to choose between two actions a and b, and reaches a legitimate state after
choosing b. If we assume fairness (so that b must eventually be chosen) the MAS
is Z -adaptive. However, there is no n for which it is n-Z -adaptive.

4.2 Adaptivity of Open Systems

An agent provides an example of an open system since its behaviour typically
depends on its environment. The environment controls the agent’s input actions,
and may restrict the occurrence of its output actions when synchronisation is
required. Similarly, a MAS can be an open system. In this section we will dis-
cuss adaptivity of agents, although the results are also directly applicable to
open MAS.

To reason about an agent, we need to model the interactions with its envi-
ronment. In interface automata, this is taken care of by the restrictions placed
on the types of observable (input and output) actions and when they can occur
[7]. The same is true for component and team automata.

With open systems, there are two kinds of external actions. The first change
the state of the agent. They are identical to the external actions of closed systems
and adaptivity to these actions can be reasoned about in the same way.

44 G. Smith et al.

The second kind of external actions change the state of the system’s environ-
ment, and possibly also the system’s state. In the setting of component automata,
this would manifest itself as (possibly) different restrictions on the observable
actions.2

To facilitate modelling such an external action, we need to extend the agent’s
state with one or more auxiliary variables which the external action changes.
These auxiliary variables, representing some facet of the environment, can be
used to restrict when particular actions can occur. They are also used in defining
the legitimate states.

Example 3. Consider the client agent of Sect. 3. A possible external action that
could occur in its environment is a server going down. Let Z1 be the external
action that causes a server with which the client is interacting to go down when
the client is in the state where it has not performed a request. Let Z2 be an
external action similar to Z1 which occurs when the client has performed a
request and is waiting for a reply.

To reason about the adaptivity of the client, we extend it with an auxiliary
variable down which is the set of servers which are currently down. This set is
initially empty. The transitions are restricted such that if the extended client is
in a state where server i is down, transitions corresponding to cs.i , request .i and
reply .i cannot occur. If it is in a state where server i is not down, the transitions
can occur. The transitions do not change whether a given server is up or down.

Figure 3 shows part of the restricted client automaton. We show the states
in which both servers are up, and also the states in which server 1 is down. We
choose the legitimate states to be those where the client can perform request or
reply actions, i.e., id �∈ down. These states are shaded in the figure. The external
actions are shown using dotted arrows between states.

After a single occurrence of Z1, the client is able to perform the change-server
action restoring it to a legitimate state. Hence, the client is Z1-adaptive. In fact,
since it requires only one action to reach a legitimate state, it is 1-Z1-adaptive.
In a more detailed specification where, for example, the client was required to log
in to the new server, the client would be n-Z1-adaptive for some n > 1. Hence,
the quantification of adaptivity with respect to number of actions is dependent
on the level of abstraction. It should, therefore, be used only for comparing
adaptive responses at the same level of abstraction.

In the case of Z2, there is no possibility of performing the change-server
action. The client is therefore not Z2-adaptive. This may correspond to a design
flaw which our reasoning allows us to detect and rectify if desired, e.g., by intro-
ducing a timeout when waiting for a response. �

As can be seen from Example 3, the specifier must, based on an understanding
of the system and its environment, determine the available transitions from states
corresponding to different values of the auxiliary variables. It is possible that
2 We assume all input actions possible in the environment are included in the agent

automaton, as are all of the agent’s possible output actions. Hence, no observable
actions will be introduced or removed by such an external action.

Designing Adaptive Systems Using Teleo-Reactive Agents 45

request.1

reply.1

request.2

reply.2

cs.2 cs.1

request.2

reply.2

cs.2

id=1 id=1

id=2 id=2

Z1 Z2

Z1 Z1Z2 Z2

 both servers up server 1 down

idle waiting

idle waiting
id=2
idle

id=2
waiting

id=1
idle

id=1
waiting

Fig. 3. Team automaton of the restricted client

these transitions change the values of the auxiliary variables. Although the agent
cannot change these variables directly, it can interact with its environment to
instigate their change. For example, if the agent of the above example was able
to call a maintenance agent to fix the server, then as a consequence of this call
it would return to a state where the server was no longer down. Whether the
agent can do this and how the environment responds is up to the specifier.

To be adaptive to an external action Z , an agent must (i) be guaranteed to
reach a legitimate state in a finite number of transitions, and (ii) have at least
one behaviour which reaches a legitimate state without the auxiliary variables
being changed. The second condition precludes agents which rely on the auxiliary
variables changing to reach a legitimate state. For example, an agent may call a
maintenance agent but have no other strategy for dealing with a server that is
down. We would not regard such an agent as adaptive.

The approach is formalised as follows. We enhance the agent A = (Q , I , Σ =
Σint ∪ Σinp ∪ Σout , δ) with a set of auxiliary variables describing a set of states
E . The cross product Q × E captures the state space of A extended with these
auxiliary variables. Thus, the enhanced version of the agent is defined as A′ =
(Q ×E , I × IE , Σ, δ′) where IE ⊆ E and δ′ ⊆ (Q ×E)×Σ × (Q ×E). We require
that the behaviours of A′ when restricted to Q correspond to behaviours of the
original agent A. That is,

∀ b ∈ B(A′) • b |Q∈ B(A) (7)

where b |Q denotes the behaviour b restricted to the state Q of the original agent
A. Hence, A′ behaves identically to A in the absence of external actions. This is
true in Example 3 since initially no servers are down.

Let Z be an external action defining the set of transitions ζ ⊆ (Q ×E)×Z ×
(Q × E) on A′.

46 G. Smith et al.

Definition 5. An agent (or open MAS) A is Z -adaptive, if its enhancement A′

on which Z is defined is, after an occurrence of Z which places it in an illegiti-
mate state, able to reach a legitimate state in a finite number of transitions, and
at least one behaviour reaches a legitimate state without changing the extension
to the state of A.

That is, for all b ∈ B(A′) such that there exists an i ≥ 0 such that st(b, i) = q
and (q ,Z , q ′) ∈ ζ the following holds.

∀ b′ ∈ B(A′, {q ′}) • ∃ j > 0 • st(b′, j) ∈ Q(A′) (8)

and

∃ b′ ∈ B(A′, {q ′}) •
∃ j > 0 • st(b′, j) ∈ Q(A′) ∧ (∀ k ≤ j • st(b′, k) |E= q ′ |E) (9)

where s |E restricts a state s of A′ to the variables of E.

An agent (or open MAS) A which is Z -adaptive is n-Z -adaptive for some
n > 0, if it can adapt within at most n transitions. That is, for all b ∈ B(A′)
such that there exists an i ≥ 0 such that st(b, i) = q and (q ,Z , q ′) ∈ ζ, the
following holds along with condition (9) above.

∀ b′ ∈ B(A′, {q ′}) • ∃ j ∈ 1 . . n • st(b, j) ∈ Q(A′) (10)

Theorems 1 and 2 of Sect. 4.1 remain true and follow directly from these
definitions.

5 A Teleo-Reactive Development Framework

The notions of component and team automata introduced in Sect. 3 have pro-
vided a convenient setting for the definition of adaptivity in Sect. 4. We now
turn to the question of designing adaptive systems: specifically, to the gener-
ation of high-level (behavioural) specifications of such systems which can be
developed to suitable implementations using any of the range of techniques dis-
cussed in Sect. 2.

Our approach is to make the adaptive behaviour of the system explicit in
the specification, and thereby simplify its validation. This is achieved using a
specification framework based on the teleo-reactive agent paradigm of Nilsson
[23,24]. This paradigm, which was developed to facilitate

“robustly [directing] an agent toward a goal in a manner that continu-
ously takes into account the agent’s changing perceptions of a dynamic
environment” [24],

is well suited to our task.

Designing Adaptive Systems Using Teleo-Reactive Agents 47

A teleo-reactive agent is represented by an ordered list of production rules
of the form

C −→ P

where C is a condition evaluated with respect to the agent’s world model (com-
prising its perception of its own state and that of the environment), and P is
a non-terminating program (referred to as a durative action). The behaviour of
such an agent is to continuously evaluate the conditions in the list and, at any
time, perform the durative action associated with the first production rule in
the list whose condition is true. If no conditions are true, the behaviour of the
teleo-reactive agent is undefined.

Definition 6. A teleo-reactive agent is a 6-tuple T = (Q , I , Σ, δ,C , ρ) where

– (Q , I , Σ, δ) is a component automaton.
– C ⊆ 2Q is the set of conditions whose elements form a total order ≤ capturing

the priority amongst production rules.
– ρ ⊆ C × 2δ is the agent’s set of production rules and satisfies the following

constraint. For all conditions c in C , for all q ∈ c such that q �∈ c′ for
any c′ ≤ c, there exists a transition (q , a, q ′) ∈ ρ(c). This constraint ensures
the set of actions associated with a condition represents a non-terminating
program, or durative action.

Assuming transitions in δ are atomic and that conditions are evaluated before
each transition, the behaviour of a teleo-reactive agent, T , is a possibly infinite
sequence alternating between states and actions q0 a1 q1 a2 q2 . . . where for all
i ≥ 0, if there exists a condition c ∈ C such that qi ∈ c and, for all c′ ≤ c, qi �∈ c′

then (qi , ai , qi+1) ∈ ρ(c). If there does not exist a condition c ∈ C such that
qi ∈ c then the action and post state of the next transition are undefined; they
can be any action and state including those not in the sets Q and Σ respectively.
This would be used to leave implementation flexibility in an abstract design.

Teleo-reactive agents are usually designed to have a regression property
whereby executing a durative action Pi when condition c holds, will eventu-
ally result in a condition c′ occurring earlier in the list, i.e., c′ ≤ c. This enables
an agent to eventually reach its goal corresponding to the first production rule
in the list. In our context, we use the regression property to ensure an adaptive
agent reaches a legitimate state.

5.1 Designing Adaptivity

In keeping with the generality of our results, our teleo-reactive framework is
independent of the specification notation used to capture the behaviour of the
agent’s state and actions. We illustrate its use on a case study with a particular
specification language, Object-Z [28], in Sect. 6.

To motivate our approach, we return to the client-server example of Sects. 3
and 4. In Fig. 3 we extended the original component automaton for a client
agent to include a modified behaviour when server 1 is down (corresponding

48 G. Smith et al.

to a particular value of the auxiliary variable down). Although not shown in
Fig. 3, similar modified behaviours would exist for when server 2 is down and
for when both servers are down. The client can therefore be thought of as being
in one of four modes; the particular mode being determined by the state of the
environment, i.e., which servers are currently down.

As our definition of adaptivity precludes the agent changing its environment,
reasoning about adaptivity following an external action Z is reduced to rea-
soning within the mode to which Z takes the agent. For example, when server
1 goes down we need consider only the behaviour within the four (out of 16)
states corresponding to this server being down. We therefore define a teleo-
reactive specification corresponding to each mode. This considerably simplifies
the process of reasoning about adaptivity.

For the normal operational behaviour of the agent, i.e., when no servers are
down, the specification is as in Fig. 1. A teleo-reactive version of this specification
is presented below.

Client =̂ true −→ {request , respond , cs}
where {request , respond , cs} denotes a program which repeatedly chooses to per-
form one of the agent actions request , respond or cs. The choice when more than
one action is enabled is nondeterministic. For this program to represent a dura-
tive action, it is necessary that at least one of the agent actions is always enabled
(which is the case in the example). In general, we need to prove

∀ c ∈ C • ∀ q ∈ c • (∀ c′ �= c • c′ ≤ c ⇒ q �∈ c′) ⇒
∃ q ′ ∈ Q , a ∈ Σ • (q , a, q ′) ∈ ρ(c). (11)

In the teleo-reactive specification of Client , there are no illegitimate states
and hence the teleo-reactive specification has only one production rule. In gen-
eral, an agent may start in an illegitimate state and need to self-configure before
normal operation begins. In that case, there would be one production rule whose
condition describes the legitimate states followed by one or more production
rules whose conditions describe illegitimate states. Self-configuration would be
proved by showing that the specification has the previously mentioned regression
property. Similarly, adaptivity to external duress can be shown in this way.

Consider the mode of the client when server 1 is down. The teleo-reactive
specification is

Server1Down =̂ id = s2 −→ {request , respond}
id = s1 ∧ state = idle −→ {cs}
id = s1 ∧ state = waiting −→ {skip}

where the special action skip corresponds to the agent doing nothing.
The legitimate states are those satisfying id = s2. We divide the illegitimate

states into those that result from Z1 (satisfying id = s1 ∧ state = idle) and
those that result from Z2 (satisfying id = s1 ∧ state = waiting). To prove

Designing Adaptive Systems Using Teleo-Reactive Agents 49

adaptivity to Z1, we need to simply prove that cs changes id from s1 to s2
(since this will make the earlier condition id = 2 true moving the agent to a
legitimate state). It is also obvious from the specification that the agent cannot
adapt to Z2 (since skip does not change the agent’s state). If this were not
desirable, we could change the specification at this point to add, for example,
the timeout action suggested in Sect. 4.

A similar teleo-reactive specification Server2Down is given for the mode in
which server 2 is down. For the mode where both servers are down the teleo-
reactive specification is

BothServersDown =̂ true −→ {skip}
indicating there is no means for the agent to adapt; external (maintenance)
actions are required for continued operation in this case.

By considering each mode in isolation as a teleo-reactive system, we can
readily reason about the adaptivity of our design and modify the design when
necessary. The final step of our approach combines the mode specifications as
follows.

TR Client =̂ down = ∅ −→ Client
down = {s1} −→ Server1Down
down = {s2} −→ Server2Down
down = {s1, s2} −→ BothServersDown

where the occurrence of a teleo-reactive specification on the right-hand side of
a production rule is a syntactic convention which expands as follows: A rule
C −→ TR, where TR is a teleo-reactive specification, is replaced by a sequence
of rules C ∧ Ci −→ Pi corresponding to the sequence of rules Ci −→ Pi in TR.
For example, down = {s1} −→ Server1Down is replaced by

down = {s1} ∧ id = s2 −→ {request , respond}
down = {s1} ∧ id = s1 ∧ state = idle −→ {cs}
down = {s1} ∧ id = s1 ∧ state = waiting −→ {skip}.

Formally, a composed teleo-reactive system is defined as follows.

Definition 7. Let a system have n modes on the state space defined by states Q
and initial states I . Let (Q , I , Σi , δi ,Ci , ρi) where i ∈ 1 . . n be the teleo-reactive
specification of the ith mode. Let E denote the set of states described by the
auxiliary variables, and Ei ⊆ E be those states corresponding to the ith mode.
Given the first mode corresponds to normal behaviour (in the absence of external
duress), the teleo-reactive specification of the entire system is (Q ′, I ′, Σ, δ,C , ρ)
where

– Q ′ = Q × E.
– I ′ = I × E1.
– Σ =

⋃

i:1..n
Σi .

50 G. Smith et al.

– δ = {(q , a, q ′) ∈ Q × Σ × Q | ∃ i ∈ 1 . . n • q |E∈ Ei ∧ (q |Q , a, q ′ |Q) ∈ δi}.
– C = C1 × E1 ∪ . . . ∪ Cn × En such that

• for all i ∈ 1 . . n and c, c′ : Ci where c′ ≤ c, c′ × Ei ≤ c × Ei

• for all i , j ∈ 1 . . n where i ≤ j and c′ : Ci and c : Cj , c′ × Ei ≤ c × Ej .
– ρ ⊆ C × 2δ such that for all c ∈ Ci × Ei , (q , a, q ′) ∈ ρ(c) iff (q |Q , a, q ′ |Q) ∈

ρi(c |Q).

The composed teleo-reactive system begins in the first mode and transitions to
other modes depending on the values of the auxiliary variables. The behaviour
in a given mode is identical to that of the mode considered in isolation. Since the
first mode corresponds to the behaviour in the absence of external actions, (7)
is guaranteed to hold.

It should be noted that the assumption that modes operate on the same
state space is not overly restrictive. If it is necessary to specify modes of a system
which operate on different states, i.e., different sets of variables, to combine these
modes we first extend the states of each mode with the variables of the others
to provide a unified state.

5.2 From Teleo-Reactive Specification to Component Automaton

While teleo-reactive implementation approaches exist [15], in general we may
not wish to implement our system in a teleo-reactive style. We therefore provide
a mapping from a teleo-reactive specification to the more general form of a
component automaton.

Definition 8. Let (Q , I , Σ, δ,C , ρ)be a teleo-reactive system. The equivalent
component automaton is (Q , I , Σ, δ′) where

δ′ =
⋃

c:C
{(q , a, q ′) ∈ ρ(c) | q ∈ c ∧ ∀ c′ ≤ c • c′ �= c ⇒ q �∈ c′}.

A transition from the teleo-reactive system is enabled only when a condition
under which it may occur is true, and all conditions of earlier production rules
are false.

5.3 Adapting to Internal Disturbances

The approach proposed above assumes a set of auxiliary variables which capture
the effect of an external action. In the client example these variables represent
a state of the environment. The auxiliary variables can, however, also be used
to represent a condition of the internal state of the system. The main difference
is that it may be possible in this case for a system to move from one mode to
another during adaptation. Hence, for showing that a system adapts when in a
given mode may require showing that, rather than reaching a legitimate state in
that mode, the system transitions to another mode from which it can adapt.

As a result the approach can be used in the development of systems (including
closed systems) which adapt to changes to internal state. This is illustrated by
the case study in Sect. 6.

Designing Adaptive Systems Using Teleo-Reactive Agents 51

6 Case Study: The Self-Adaptive Production Cell

In this section we illustrate our approach and its use with a specific formal
notation, Object-Z [28]. Object-Z is an object-oriented extension of the well
known Z specification language [32]. Its notions of classes and objects are ideal
for specifying MAS [30]. Both Z and Object-Z have been advocated for the
description of agents by other researchers in the field [9,14].

Our case study is a self-adaptive, multi-robot production cell based on that
described by Nafz et al. [22]. The production cell comprises a number of robots
which are capable of taking on various roles in the production of an item. These
roles may involve the use of tools such as drills and screwdrivers. Since chang-
ing tools, and hence changing roles, is very time-consuming, the robots in the
production cell take on different roles from each other and collaborate on the
production of items; passing the items between them in the required order. For
example, a typical scenario is a production cell with three robots: the first robot
uses a drill to drill a hole in the item, the second inserts a screw, and the third
tightens the screw with a screwdriver [22].

In the design of the system below, we consider both the self-configuration of
the system from an initial state where no robot has a role, as well as the ability
of the system to adapt to a robot losing a capability, e.g., if a robot in the above
scenario breaks its drill or screwdriver, or runs out of screws.

6.1 Normal Behaviour and Self-Configuration

We begin by specifying the normal behaviour of the system, in which all robots
possess all capabilities. A robot is specified using an Object-Z class which, like a
class in an object-oriented programming language, encapsulates state variables,
their initial values and all operations which can change their values.

The robot has two state variables: available denoting the roles which are
available for the robot to take on (corresponding to an internal model of its
environment), and roles the robot’s current roles (we will limit the number of
roles to one in the specification, but, in general, cases where a robot could take
on more than one role could be considered). Each variable is assigned a value
which is a subset of a given type Role comprising all possible roles (P S denotes
the power set of S). Initially, all roles are available and the robot has no role.

Robot

available : P Role
roles : P Role

roles ∩ available = ∅

#roles ≤ 1

52 G. Smith et al.

INIT

available = Role
roles = ∅

. . . operations detailed below

The operations of a class are named boxes with

– a Δ-list (read “delta list”) listing the state variables which the operation may
change; all other variables remain unchanged. An operation without a Δ-list
cannot change any state variables.

– a number of declarations of local variables (such as inputs and outputs).
– a predicate restricting the values of the state variables both before and after

the operation, and the values of the local variables. State variables after an
operation are denoted by the variable name decorated with a prime, e.g.,
available ′.

The operations of class Robot are as follows.
A robot without a role may choose one from the available roles. The robot’s

new role is communicated to the environment via the output variable r !. At the
level of abstraction of our specification we are assuming that two robots will
not choose an available role simultaneously. At a lower level of abstraction such
an occurrence would need to be resolved using a suitable contention mechanism
such as the robot with the minimum (or maximum) identifier backing off, or
both robots backing off for random amounts of time.

ChooseRole
Δ(available, roles)
r ! : Role

role = ∅

r ! ∈ available
available ′ = available \ {r !}
roles ′ = {r !}

A robot receiving an input r? corresponding to another robot taking on an
available role, updates its environmental model accordingly.

RemoveAvailable
Δ(available)
r? : Role

r? ∈ available
available ′ = available \ {r?}

Designing Adaptive Systems Using Teleo-Reactive Agents 53

A robot with a role may operate according to that role. We abstract from
what the robot actually does including the passing of the item between robots:
these aspects of the production cell have no effect on the system’s adaptivity.

Operate
roles �= ∅

The system is specified by another class System whose state comprises a set
of robots; one for each role. Initially, each robot is in its initial state, i.e., has no
role and believes all roles are available.

System

robots : P Robot

#robots = #Role

INIT

∀ r : robots • r .INIT

ChooseRole =̂ [] r0 : robots • r0.ChooseAvailable ‖
(∧r : robots \ {r0} • r .RemoveAvailable)

Operate =̂ ∧r : robots • r .Operate

The operations use the familiar dot notation from object-oriented program-
ming to denote robots undergoing operations. In ChooseRole the choice operator
[] is used to select one robot r0 to undergo operation ChooseAvailable, and the
conjunction operator ∧ to specify all other robots undergoing UpdateAvailable.
The parallel composition operator || equates the inputs r? of the latter robots’
operations with the output r ! of r0’s operation. A precise semantics of these
operators is given by Smith [28]. In Operate, the conjunction operator is used to
specify all robots undergoing their Operate operation.

Following the approach in the previous section and assuming that legitimate
states are those in which all robots have a role, the teleo-reactive specification
of the system is as follows.

NormalOperation =̂ ∀ r : robots • r .role �= ∅ −→ {Operate}
true −→ {ChooseRole}

Note that the second production rule’s condition is implicitly ∃ r : robots •
r .role = ∅ since this production rule is only considered when the condition of
the first production rule is false.

Showing that (11) holds is straightforward. ChooseRole will be enabled when-
ever there is a robot that can undergo ChooseAvailable, i.e., whenever there is
a robot without a role (which is the implicit condition of the second produc-
tion rule). Similarly, Operate will be enabled whenever all robots can undergo

54 G. Smith et al.

Operate, i.e., whenever all robots have a role (which is the condition of the first
production rule).

To prove the system self-configures, we need to show that the teleo-reactive
specification has the regression property, i.e., that the condition of the first
production rule will become true. Choosing the number of robots without a
role as a variant, we can show that this variant will decrease by one with each
occurrence of ChooseRole. Hence, with a finite number of robots the variant will
decrease to zero and the condition of the first production rule will be true.

6.2 Adapting to Loss of Capabilities

We now consider two external actions that cause a single robot to lose a capa-
bility. The first action Z1 causes it to lose the capability to perform its current
role. The second Z2 causes it to lose the capability to perform a role other than
its current role, if any. We assume that legitimate states are those in which all
robots are assigned a role that they can perform.

To model the effects of these external actions, we introduce an auxiliary
variable capabilities : Robot �→ P Role which maps robots in the system to
those roles they are capable of performing. Given this variable, we will con-
sider two modes of operation: the mode where all robots can perform all roles
∀ r : robots • capabilities(r) = Role, and the mode where a robot r0 : robots has
lost a capability c : Role, capabilities(r0) = Role \ {c} ∧ (∀ r : robots \ {r0} •
capabilities(r) = Role).

The behaviour of the former mode is captured by the teleo-reactive specifi-
cation NormalOperation above. The behaviour of the latter is captured by the
following teleo-reactive specification.

Loss(r0, c) =̂ r0.role �= {c} −→ NormalOperation
true −→ {ChooseRole, skip}

That is, when r0’s role is not c the system behaves as in mode NormalOperation,
and when r0’s role is c the system may perform ChooseRole (when robots other
than r0 need to choose a role) and otherwise does nothing, i.e., skip. Again it is
straightforward to show (11) holds.

It is immediately obvious from the final production rule that the system is
not Z1-adaptive. To be able to adapt, it would need a way for the robot r0 to
release its current role in order to choose a new role; something we have not
included in our specification. Further analysis shows that the system is also not
Z2-adaptive: when r0 has no role, it may choose c causing the condition of the
final production rule to be the only one enabled.

Modifying the Design. In the interests of making the production cell adap-
tive, we modify the original specification as follows. Firstly, we add a variable
capable of : P Role to the class Robot to make robots self-aware of their own
capabilities. Initially, this variable would be assigned the value Role and no
operation would change this value (it would only be changed by external actions

Designing Adaptive Systems Using Teleo-Reactive Agents 55

such as Z1 and Z2). The operation ChooseRole would be modified so that a
robot would only choose a role it was capable of performing, i.e., we would add
the predicate r ! ∈ capable of .

We would also add a new operation ReleaseRole which allows a robot to
release a role it is not capable of performing.

ReleaseRole
Δ(available, role)
r ! : Role

role = {r !}
r ! �∈ capable of
available ′ = available ∪ {r !}
role ′ = ∅

Other robots would need to update their beliefs about the available roles using
the following operations.

AddAvailable
Δ(available)
r? : Role

r? �∈ available
available ′ = available ∪ {r?}

The corresponding operation added to class System would be

ReleaseRole =̂ [] r0 : robots • r0.ReleaseRole ‖
(∧r : robots \ {r0} • r .AddAvailable)

Before reanalysing the mode Loss(r0, c) with this new specification, we first
re-examine NormalOperation to make sure that the changes have not affected the
system’s ability to self-configure. NormalOperation is in fact unchanged since, in
the absence of external actions, capable of = Role for all robots, and ReleaseRole
is never enabled.

A naive reinterpretation of mode Loss(r0, c) is

Loss(r0, c) =̂ r0.role �= {c} −→ NormalOperation
true −→ {ChooseRole,ReleaseRole}

However, it is easy to show that (11) no longer holds. When r0 is the only robot
without a role, and c is the only available role then ChooseRole is not enabled.
Hence, Loss(r0, c) needs to be modified to

Loss(r0, c) =̂ ∀ r : robots • r .role �= ∅ −→ {Operate}
r0.role �= {c} −→ {ChooseRole, skip}
true −→ {ChooseRole,ReleaseRole}

from which it is easy to see that adaptivity is not assured: since skip is the
only action enabled when r0 is the only robot without a role, and c is the only
available role.

56 G. Smith et al.

Modifying the Design Further. To remedy the above situation, we need
robots to be able to release their current role for another robot to take on. This
should only occur when the latter robot has lost the capability of a role and no
other roles are available.

We add a boolean variable reconfig to class Robot to denote when a robot
without a role is unable to choose any available role. This variable acts as a
shared flag indicating that (partial) reconfiguration is required. This variable
would initially be false. An operation InitiateReconfig sets it to true when a
robot without a role cannot choose an available role.

InitiateReconfig
Δ(reconfig)

role = ∅

available ∩ capable of = ∅

reconfig ′

Other robots would need to update their reconfig variable using the following
operation.

SetReconfig
Δ(reconfig)

reconfig ′

The corresponding operation added to class System would be

InitiateReconfig =̂ [] r0 : robots • r0.InitiateReconfig∧
(∧r : robots \ {r0} • r .SetReconfig)

Note that conjunction is used in place of parallel composition here as there are
no input and output variables in the combined operations.

A further operation ChangeRole is added to Robot . This operation is enabled
when reconfig is true and the robot is capable of performing a role that is avail-
able. The robot releases its current role and takes on an available role. It also
sets its reconfig value to false.

ChangeRole
Δ(available, role, reconfig)
r old ! : Role
r new ! : Role

reconfig
r new ! ∈ available ∩ capable of
role = {r old !}
available ′ = (available ∪ {r old !}) \ {r new !}
role ′ = {r new !}
¬ reconfig ′

Designing Adaptive Systems Using Teleo-Reactive Agents 57

Other robots would need to update their beliefs about the available roles and
reconfig using the following operation.

ChangeAvailable
Δ(available, reconfig)
r old? : Role
r new? : Role

reconfig
r old? �∈ available
r new? ∈ available
available ′ = (available ∪ {r old !}) \ {r new !}
¬ reconfig ′

The corresponding operation added to class System would be

ChangeRole =̂ [] r0 : robots • r0.ChangeRole ‖
(∧r : robots \ {r0} • r .ChangeAvailable)

Again we need to re-examine the mode NormalOperation in light of the
changes. As the new operations become enabled only when a robot loses a
capability, there is no change to behaviour. Next we need to reinterpret mode
Loss(r0, c) as a teleo-reactive system. One possible specification is

Loss(r0, c) =̂ r0.role �= {c} ∧ r0.role �= ∅ −→ NormalOperation
r0.role = ∅ −→ Reconfigure(r0)
r0.role = {c} −→ {ChooseRole,ReleaseRole}

Reconfigure(r0) =̂ r0.available ∩ r0.capable of �= ∅ −→ {ChooseRole}
r0.reconfig −→ {ChooseRole,ChangeRole}
true −→ {ChooseRole, InitiateReconfig}

It is now possible to show that (11) holds: each of the conditions ensures that
the associated atomic actions form a durative action. It is also possible to show
that the system is both Z1-adaptive and Z2-adaptive. We may further quantify
the adaptivity.

Z1 causes a robot r0 to lose the capability to perform its current role. Hence,
it will need to perform ReleaseRole. The worst case, in terms of number of
actions until it is in a legitimate state, occurs when all other robots have no role,
and then choose all roles apart from the one r0 has just released. This would
force r0 to perform InitiateReconfig after which another robot would perform
ChangeRole before r0 could finally choose a role. In this scenario each robot
in the system performs ChooseRole, r0 additionally performs ReleaseRole and
InitiateReconfig , and another robot performs ChangeRole. Hence, for n robots
the system is (n + 3)-Z1-adaptive.

Z2 causes a robot r0 to lose a capability other than its current role, if any.
The worst case occurs when all robots, including r0, have no roles and then all

58 G. Smith et al.

robots other than r0 choose a role other than the one r0 has just released. Again
r0 would be forced to perform InitiateReconfig and another robot would have
to perform ChangeRole before r0 could choose a role. Hence, for n robots the
system is (n + 2)-Z2-adaptive.

Examining worst case scenarios in order to quantify adaptivity can highlight
inefficiencies in the design. Above it can be seen that if the robots were aware of
which role had been released, they could choose that role with priority thereby
avoiding a later reconfiguration. At this stage the designer may make a decision
to change the design to reflect this.

Further external actions and associated modes can then be considered in a
similar fashion. For example, we might like to consider where a robot r0 loses
more than one capability. In this case, the boolean variable reconfig is not enough:
robots changing their role cannot be certain that the role they are giving up is one
which r0 is capable of performing. Hence, reconfig would need to be replaced by a
set of roles that r0 cannot perform, for example. We could also consider multiple
robots losing capabilities, or a single robot losing all capabilities. In the latter
case, for the system to adapt robots would need to be able to take on more than
one role simultaneously. This would allow the system to keep functioning but, due
to the time needed to swap tools, in a degraded fashion. If multiple robots could
fail completely then to reduce this degradation in performance, the functioning
robots would need to share the load as evenly as possible. Our approach helps us
to realise these requirements and prove that suitable collaborative mechanisms
satisfy them.

6.3 Combining the Modes

With just the two modes we have considered, the teleo-reactive specification of
the production cell would be

ProductionCell =̂
∀ r : robots • capabilities(r) = Role −→ NormalOperation
∃ r0 : robots; c : Role • capabilities(r0) = Role \ {c} ∧

(∀ r : robots\{r0} • capabilities(r) = Role) −→ Loss(r0, c)

It is straightforward to show that the equivalent component automaton has
the same behaviour as the modified Object-Z specification. In this case study,
the effect of the auxiliary variable capabilities to restrict actions in a given mode
is captured by the introduced variable capable of of the individual robots, and
so does not need to appear in the final specification.

7 Conclusion

In this paper we have presented a formal definition of adaptivity in terms of
Dijskstra’s notion of self stabilisation [8], and based on this definition, a frame-
work for designing adaptive systems. The latter is based on Nilsson’s notion of

Designing Adaptive Systems Using Teleo-Reactive Agents 59

teleo-reactive agents [23,24]. Both our definition and framework are independent
of any specific implementation mechanism for adaptivity, and any specific spec-
ification notation. We illustrated our approach using the Object-Z specification
notation [28] on a case study involving a multi-robot production cell [22].

Formalisms by which adaptivity can be specified and verified are scant.
Anceaume et al. [1] concentrate on self-organisation in dynamic networks. They
argue that a definition of self-organisation cast in terms of convergence to pre-
defined legitimate states is inadequate for two reasons: (a) the identification
of legitimacy may be impractical (it may be emergent; the status of batter-
ies in sensor networks is quoted as an example); and (b) due to the dynamic
nature of the network, convergence to a legitimate state may not be possible. As
a result they consider instead structural properties reflecting high interactivity
between nodes, node mobility and heterogeneity, and view local self-organisation
as reducing system entropy. Criticisms (a) and (b) may well be valid if only ‘sta-
tic’ system descriptions are considered but are overcome if the dynamic features
of the system are specified. Generally that requires non-local specifications; but a
specification is not constrained to be local like the implementation. A simple but
typical example is the glider in Conway’s Game of Life where global time may
be introduced as a ‘specification device’ to capture a property which emerges in
the implementation from local interactions [27].

By pursuing that approach we have here offered a formalism complementary
to that of [1], able to consider directly the system functionality of entirely general
systems rather than secondary structural properties of dynamic networks.

An alternative to our approach should be mentioned, in which the speci-
fication of an adaptive MAS is not static but thought to change with time,
reflecting adaptivity. That is the approach considered by Artikis [2] who defines
a dynamic specification language C+, a kind of action language for express-
ing changing properties, and a ‘causal calculator’ for their execution. Our view
is that a specification which by its definition changes with time offers none of
the advantages expected of a specification. Much of the detail incurred by the
present work solves the problem of how to capture, in a static specification,
dynamic changes which are environmentally triggered.

Acknowledgments. This work was supported by Australian Research Council (ARC)
Discovery Grant DP110101211 and the Macao Science and Technology Development
Fund under the EAE project, grant number 072/2009/A3.

References

1. Anceaume, E., Défago, X., Potop-Butucaru, M., Roy, M.: A framework for proving
the self-organization of dynamic systems. CoRR, abs/1011.2312 (2010)

2. Artikis, A.: A formal specification of dynamic protocols for open agent systems.
CoRR, abs/1005.4815 (2010)

3. Böcker, J., Schulz, B., Knoke, T., Fröhleke, N.: Self-optimization as a framework
for advanced control systems. In: Industrial Electronics Conference (IECON 2006),
pp. 4671–4675. IEEE (2006)

60 G. Smith et al.

4. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012.
LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012)

5. Bucchiarone, A., Lafuente, A.L., Marconi, A., Pistore, M.: A formalisation of
adaptable pervasive flows. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol.
6194, pp. 61–75. Springer, Heidelberg (2010)

6. Dastani, M., Hindriks, K.V., Meyer, J.-J.C. (eds.): Specification and Verification
of Multi-agent Systems. Springer, Heidelberg (2010)

7. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Symposium on Foundations
of Software Engineering, pp. 109–120. ACM Press (2001)

8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17, 643–644 (1974)

9. d’Inverno, M., Luck, M.: Development and application of a formal agent framework.
In: International Conference on Formal Engineering Methods (ICFEM’97), pp.
222–231. IEEE Press (1997)

10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series. Springer, Heidelberg (2003)

11. Ellis, C.A.: Team automata for groupware systems. In: Hayne, S., Prinz, W. (eds.)
International ACM SIGGROUP Conference on Supporting Group Work: The Inte-
gration Challenge, pp. 415–424. ACM Press (1997)

12. Georgiadis, I., Magee, J., Kramer. J.: Self-organising software architectures for
distributed systems. In: Workshop on Self-healing Systems (WOSS ’02), pp. 33–38
(2002)

13. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Trans. Softw. Eng. 17(9),
911–921 (1991)

14. Gruer, P., Hilaire, V., Koukam, A., Cetnarowicz, K.: A formal framework for multi-
agent systems analysis and design. Expert Syst. Appl. 23(4), 349–355 (2002)

15. Gubisch, G., Steinbauer, G., Weiglhofer, M., Wotawa, F.: A teleo-reactive archi-
tecture for fast, reactive and robust control of mobile robots. In: Nguyen, N.T.,
Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027,
pp. 541–550. Springer, Heidelberg (2008)

16. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification
and construction paradigm for organic computing systems. In: IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008), pp. 233–
242. IEEE Computer Society Press (2008)

17. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

18. Hunter, A., Delgrande, J.P.: Iterated belief change: a transition system approach.
In: International Joint Conference on Artificial Intelligence (IJCAI05), pp. 460–465
(2005)

19. Lynch, N., Tuttle, M.: An introduction to Input/Output automata. CWI Q. 2(3),
219–246 (1989)

20. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
21. Mohyeldin, E., Fahrmair, M., Sitou, W., Spanfelner, B.: A generic framework

for context aware and adaptation behaviour of reconfigurable systems. In: IEEE
International Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC05). IEEE Press (2005)

Designing Adaptive Systems Using Teleo-Reactive Agents 61

22. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.-P., Reif, W.: A universal self-
organization mechanism for role-based organic computing systems. In: González
Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp.
17–31. Springer, Heidelberg (2009)

23. Nilsson, N.: Teleo-reactive programs for agent control. J. Artif. Intell. Res. 1, 139–
158 (1994)

24. Nilsson, N.: Teleo-reactive programs and the triple-tower architecture. Electron.
Trans. Artif. Intell. 5, 99–110 (2001)

25. Polani, D.: Foundations and formalizations of self-organization. In: Prokopenko,
M. (ed.) Advances in Applied Self-organizing Systems. Advanced Information and
Knowledge Processing, pp. 19–37. Springer, Heidelberg (2008)

26. Sanders, J.W., Smith, G.: Assuring adaptive behaviour in self-organising systems.
In: Self-Organising and Self-Adaptive Systems Workshop (SASOW 2010), pp. 172–
177. IEEE Computer Society Press (2010)

27. Sanders, J.W., Smith, G.: Emergence and refinement. Formal Aspects Comput.
24(1), 45–65 (2012)

28. Smith, G.: The Object-Z Specification Language. Kluwer, Norwell (2000)
29. Smith, G., Sanders, J.W., Winter, K.: Reasoning about adaptivity of agents and

multi-agent systems. In: International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2012). IEEE Computer Society Press (2012)

30. Smith, G., Winter, K.: Incremental development of multi-agent systems in Object-
Z. In: Software Engineering Workshop (SEW-35). IEEE Computer Society Press
(2012)

31. Smith, J.B.: Collective Intelligence in Computer-Based Collaboration. Lawrence
Erlbaum Associates, Hillsdale (1994)

32. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall Inter-
national, Englewood Cliffs (1992)

33. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

34. ter Beek, M., Ellis, C., Kleijn, J., Rozenberg, G.: Synchronizations in team
automata for groupware systems. Comput. Support. Coop. Work: J. Collab. Com-
put. 12(1), 21–69 (2003)

35. Valiant, L.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)
36. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2002)
37. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented

software engineering. Auton. Agent. Multi-Agent Syst. 9(3), 253–283 (2004)

Towards Formal Modelling and Verification
of Pervasive Computing Systems

Yan Liu1(B), Xian Zhang1, Yang Liu2, Jin Song Dong1, Jun Sun3,
Jit Biswas4, and Mounir Mokhtari5

1 School of Computing, National University of Singapore, Singapore, Singapore
{yanliu,zhangxi5,dongjs}@comp.nus.edu.sg

2 School of Computer Engineering,
Nanyang Technological University, Singapore, Singapore

yangliu@ntu.edu.sg
3 Singapore University of Technology and Design, Singapore, Singapore

sunjun@sutd.edu.sg
4 Networking Protocols Department,

Institute for Infocomm Research, Singapore, Singapore
biswas@i2r.a-star.edu.sg

5 CNRS-IPAL, Institut TELECOM, Paris, France
Mounir.Mokhtari@it-sudparis.eu

Abstract. Smart systems equipped with emerging pervasive computing
technologies enable people with limitations to live in their homes inde-
pendently. However, lack of guarantees for correctness prevent such sys-
tem to be widely used. Analysing the system with regard to correctness
requirements is a challenging task due to the complexity of the system and
its various unpredictable faults. In this work, we propose to use formal
methods to analyse pervasive computing (PvC) systems. Firstly, a for-
mal modelling framework is proposed to cover the main characteristics of
such systems (e.g., context-awareness, concurrent communications, lay-
ered architectures). Secondly, we identify the safety requirements (e.g.,
free of deadlocks and conflicts) and specify them as safety and liveness
properties. Furthermore, based on the modelling framework, we propose
an approach of verifying reasoning rules which are used in the middle-
ware for perceiving the environment and making adaptation decisions.
Finally, we demonstrate our ideas using a case study of a smart health-
care system. Experimental results show the usefulness of our approach in
exploring system behaviours and revealing system design flaws such as
information inconsistency and conflicting reminder services.

1 Introduction

Pervasive computing(PvC) aims to provide people with a more natural way to
interact with information and services by embedding computation into the envi-
ronment as unobtrusively as possible [1,2]. With the rapid increase of ageing
population in all industrialised societies which raised serious problems, smart

c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 62–91, 2014.
DOI: 10.1007/978-3-662-44871-7 3

Towards Formal Modelling and Verification of Pervasive Computing Systems 63

healthcare systems equipped with PvC technology are greatly needed to assist
the independent living of elderly people. Such systems make it possible for
elderly people to stay in their homes longer and manage everyday tasks without
significant burden for their caregivers [3]. PvC systems are context-aware and
adaptable to the evolving environment [4]. The changes in the environment are
monitored and recorded in the system as contexts. If a particular event happens,
the system is able to adapt itself to the changes. As shown in Fig. 1, a typical
PvC system usually involves sensors to monitor environment changes, a residen-
tial getaway to translate the raw sensor data to low-level contexts, an inference
engine to aggregate these contexts and perform user activities recognition and a
reminder service to render a proper reminder for a proper user. Consequently, the
heterogeneity of technology and massive ad hoc interactions among layers make
PvC systems highly complicated [5]. Additionally, various environment inputs
and unpredictable user behaviours cause the system behaviours beyond control,
especially when multiple users are interacting with the system simultaneously.

Fig. 1. A typical PvC system

Therefore, it is a challenging task to guarantee the correctness of such sys-
tems. Traditional validation methods such as simulation and testing have their
limitations in performing this task. By nature, these methods only cover partial
system behaviours based on the selected scenarios. Nevertheless, it is costly and
time consuming to perform testing on practical systems which may require all

64 Y. Liu et al.

sensors to be deployed and normal persons to act like real users. Furthermore, it
is impossible to generate all kinds of environment inputs and simulate the user
behaviours, especially when more than one users are interacting with the system.
Last but not least, if an error is found, it is very hard to pinpoint the source since
faults could appear in multiple layers such as the hardware fails to response, a
reasoning rule is falsely defined or a bug is in the software system.

In order to overcome these limitations, we propose to use formal methods in
the early design stage to analyse PvC systems. By a proper abstraction of the
system, we are able to formally describe the system behaviours and user actions
using current modelling constructs. Based on the modelling, the correctness and
safety requirements can be formally specified as properties that are verifiable
against the model. Existing verification techniques are reused to validate the
properties by an exhaustive search of the complete system states. Counterexam-
ples are generated to give clues for debugging. The contributions of our work are
four-folds as explained below.

Firstly, we propose a framework to formally model the system design and the
environment inputs. Important characteristics of PvC systems such as context-
awareness, layered architecture and concurrent communications are discussed.
Modelling patterns for these features are provided and illustrated with exam-
ples. In this work, we adopt CSP# [6] as the exemplar modelling language for
its rich set of syntax and many extensions. Dong et al. [7] and Coronato et al. [8]
proposed to model such systems using TCOZ [9] and Ambient Calculus [10]
respectively. Although these languages are good at modelling the communica-
tions and mobility features respectively, the support for modelling hierarchical
structures is limited. Most importantly, there is very little tool support for these
languages, which limits the usage and applicability of their approaches.

Secondly, we propose critical properties and their specification with regards
to the correctness requirements from stakeholders (system designers and end
users). In the state of art, Arapinis et al. in [11] proposed some critical require-
ments of a homecare system. For instance, “Sensors are never offline when a
patient is in danger” or “If a patient is in danger, assistance should arrive within
a given time”. In our work, we classify the critical requirements into safety prop-
erties (nothing bad happens) and liveness properties (something good eventually
happens). Furthermore, formal specification patterns of these properties are pro-
posed. As a result, we can verify the critical properties against the system design
model by using automatic verification techniques like model checking [12]. Hence,
design flaws can be detected at the early design stage.

Thirdly, based on the modelling framework, we propose an approach of auto-
matic rules verification. Rules in PvC systems play a critical role. They are used
to aggregate and reason the context data and decide on the adaptation deci-
sions. As shown in Fig. 1, based on the contexts that person in the shower room,
using shower tap and tap on for 30 min, the abnormal behaviour, “showering
too long” is recognised. The rule defined for this behaviour is triggered and the
adaptation decision is to prompt a reminder asking the person to stop showering.
Generally speaking, these rules decide the responsive behaviours of the system

Towards Formal Modelling and Verification of Pervasive Computing Systems 65

to the users. Thus, it is essential to assure the correctness of these rules. In the
literature, there is very limited work, e.g., [13,14] on rules verification in PvC
domain. Most of these existing works are not directly applicable to our system.
It is because they are limited to syntactic checking of relations between rules.
The contribution of our work lies in redefining rule anomalies based on their exe-
cution behaviours and detecting these anomalies with the changing knowledge
base.

Stakeholders:
Nurses,
Engineers

Collecting
Descriptions

Modelling
Framework:
EnvModel ,
SystemModel

Collecting
Requirements

Property
Specification:
Safety ,
Liveness

Model
Checkers

Good
behaviours

Bad
behaviours

counterexamples

Fig. 2. Formal analysis workflow

Finally, we demonstrate the usefulness of our approach using a case study
of a smart healthcare system for mild dementia patients, AMUPADH [15]. A
typical workflow of this formal analysis process is shown in Fig. 2. We start
the project with collecting requirements through multiple visits to the nursing
home and interviews of nurses/doctors. From discussions with system design-
ers, we learn that AMUPADH is a typical PvC system which incorporates sen-
sors and a reasoning engine to understand the patients’ intentions and provides
reminder services to help them. Additionally, AMUPADH has a multi-person
sharing environment which exhibits additional complexity in terms of concur-
rent interactions. Then, we model the user behaviours and system design based
on our modelling framework using CSP# language. Critical properties such as
deadlock freeness, guaranteed reminder service and conflicting reminders tests
are verified using PAT model checker [16] Multiple unexpected bugs such as
information inconsistency are exposed.

Rest of the paper are organised as Sect. 2 introduces the motivating example
AMUPADH system; Sects. 3 and 4 demonstrates our modelling framework of
PvC systems and specifications of critical requirements for verification; Sect. 5
presents the rules verification using our modelling framework. Case study on
AMUPADH comes in Sect. 6. Section 7 discusses the related work while Sect. 8
concludes the paper with future directions.

66 Y. Liu et al.

2 A Motivating Example: AMUPADH - An Ambient
Assisted Living System for Dementia Healthcare

Dementia is a progressive, disabling, chronic disease common in elderly people.
Elders with dementia often have declining short-term memory and have difficul-
ties in remembering necessary activities of daily living (ADLs). However, they
are able to live independently or in assisted living facilities with little super-
vision. Ambient Assisted Living (AAL) systems equip the environment with a
spectrum of computation and communication devices that seamlessly augment
human thoughts and activities. AMUPADH is an AAL system deployed in a
Singapore Based nursing home, Peaceheaven Nursing Home1. It is able to mon-
itor the patients’ behaviours using activity recognition techniques (sensors and
reasoning rules) and offer help to the patients (prompt reminders through actu-
ators such as speakers etc.).

Fig. 3. An overview of the smart bedroom system

2.1 System Overview

The architecture of the system is shown in Fig. 3. The system is deployed in a
room with two beds and a shower room. Different kinds of sensors are deployed to
capture environment changes. For instance, the pressure sensor under a mattress
is used to detect whether the bed is empty or occupied. Sensors communicate
with the middleware via wireless network. The controller in the middleware
translates sensor signals into low-level contexts from which high-level contexts
are inferred by the reasoning engine. This reasoning task is performed based on
a set of predefined rules written in Drools2 which is a rule language based on
First Order Logic. Evaluation of these rules is triggered by a sensor message or
periodically by a timer. In the case that a rule is satisfied, the system will adapt
to a new state by updating internal variables or invoking reminder services. For
example, if the activity of patient sleeping on a wrong bed is recognised, the
system will prompt a reminder requesting him to use his own bed.
1 Located at 9 Upper Changi Road North, Singapore, 507706. Tel: +65-65465678.
2 Drools Expert: http://www.jboss.org/drools/drools-expert.html

http://www.jboss.org/drools/drools-expert.html

Towards Formal Modelling and Verification of Pervasive Computing Systems 67

Bedroom

Bathroom & Toilet

I

I

I I
Bed 1 Bed 2

P P

M
V

Legend: RFID Reader Pressure Sensor

Motion Sensor Vibration Sensor
(Shake)

I P

M V

V

Fig. 4. Sensor layout in the bedroom

2.2 Sensors

In AMUPADH, four types of sensors are deployed in the bedroom and shower
room to monitor the activity of dementia patients as shown in Fig. 4.

– RFID Reader is for identification and tracking. There are two readers placed
beside the doors to detect who has entered the rooms respectively and two
attached to each bed to identify who is using the bed. Each patient is wearing
an RFID tag placed in a wrist band.

– Pressure Sensor is placed under the mattress of each bed to detect activities
in bed, e.g., sitting or lying.

– Shake Sensor can detect vibration. They are attached to water pipe and
soap dispenser for sensing the usage of water tap and soap respectively.

– Motion Sensor (A.K.A. passive infrared sensor (PIR)) can measure infrared
light radiating from objects in its range. It is used to detect the presence of
the patient in the shower room.

2.3 Controller

In the Controller, contexts are managed and inferenced. It has two components
i.e., the Main Interface interprets the sensor signals and triggers the evaluation
of all rules when a sensor message arrives; the Context Checker evaluates all rules
every 5 min. The value is carefully tuned by system engineers in consideration
of energy saving and slow user movements in AMUPADH system. The context
checker is an additional step to make sure the consistency of contexts. The
rules are written in Drools and evaluated by the business rule engine, Drools
Expert. They are specified with a name, a condition formed of predicates and
the adaptation actions. For example, the rule for detecting sitting bed for too
long is specified as follows.

68 Y. Liu et al.

rule "personA sat on Bed A for too long (30mins)"

when

Sensor(id == "pressureBedA", pressureState ==

Sensor.pressure_state.SITTING, duration > 30)

$x : XMPPInterface()

then

$x.SendData("ACTIVITY.error."+"SitBedTooLong"+"." +"personA");

end

The condition of this rule consists of three context variables: the sensor’s id ,
status and timer. This rule can be interpreted as: the message ACTIVITY .error .
SitBedTooLong .personA will be delivered to the reminding system if the SITTING
status of pressure sensor on bed A has lasted for more than 30 min. The messages
are sent out via a shared bus. The full set of 23 rules used in the system is listed
in [17].

2.4 Reminding System

The reminding system in the application layer activates/deactivates reminders
based on the incoming messages from Controller . For example, if the message
is ACTIVITY .error .SitBedTooLong .personA, the reminding system decodes it
and knows patient A (named Jim) has sleeping problems. Thus it invokes a
speaker and prompts ‘Jim, you have been sitting on bed for a long time, please
go to sleep’. This reminder will be continuously repeated until proper actions
have been taken. If the prompts reach the maximum number, an alert will be
sent to nurses.

3 A Modelling Framework for PvC Systems

The general picture of a PvC system is shown in Fig. 5. The system adopts a
layered design and seamless interacts with the environment. Modelling of a PvC
systems involves not only the modelling of important features of each important
component but also the modelling of the environment inputs which play an
important role in PvC systems but is often ignored in most system models.

3.1 Modelling Environments

PvC systems seamlessly interact with the environments and acquire context
inputs from the users and objects like TVs and Beds. PvC systems are often
driven by the environment context change (we call it scenario here). For exam-
ple, a person entering an empty room will trigger the lights to be switched on;
or when the system detects the time is 9:00pm, a take-medicine-reminder will be
sent to the patient. Thus, it is important to model the scenarios with the system
design. Meanwhile, the scenario model is also important for generating mean-
ingful counterexamples so as to alleviate the burden of analysing verification
results.

Towards Formal Modelling and Verification of Pervasive Computing Systems 69

Fig. 5. Architectures of PvC systems

Modelling Activities and Environment Objects. User behaviours are various and
usually unpredictable. For most PvC systems, we can observe that: (1) the sys-
tem usually targets a certain group of activities and ignores other irrelevant
ones; (2) relevant user activities are determined but the order of them is unpre-
dictable. For instance, after entering a room, a person may directly go to sleep or
he could possibly enter the shower room for other activities. In practice, targeted
activities can be provided by system designers. We use a shower room scenario
to demonstrate the modelling patterns.

In the shower room, a user performs many activities such as wandering or
turning on the shower tap. These activities can be modelled as events which
are abstractions of the observations. For example, an activity represented as
event exitShowerRoom is an observation of the user’s behaviour of leaving the
shower room. However, it requires more advanced language constructs such as
non-deterministic choices to model all possible orders of activities. We explain
the idea using a CSP# model of the shower room scenario. All the possible
activities the patient can do in the room are modelled as different choices and
they are enclosed into a process named PatientShowerRoom.

PatientShowerRoom() = exitShowerRoom → PatientOutside()

� turnOnTap → PatientShowerRoom()

� turnOffTap → PatientShowerRoom()

� wandering → PatientShowerRoom()

� useSoap → PatientShowerRoom();

Here, the operator � represents the non-deterministic choice. It operates this
way that the process PatientShowerRoom randomly chooses an activity such as
turnOnTap to execute. Then it may transfer control to itself again and choose

70 Y. Liu et al.

useSoap to execute. It is guaranteed that all possible orders of activities are
generated using state space exploration techniques like model checking.

However, there might exist some unrealistic orders of events. For example,
there is a sequence which contains two consecutive events of turnOnTap. Obvi-
ously, the patient cannot perform turning tap on activity again if the tap is
turned on already. In order to eliminate such cases, we need to model these con-
straints such that the patient’s behaviour is synchronised with the status of the
object being used. In fact, it is essentially the problem of modelling synchro-
nous behaviours. We propose to use event synchronisation in CSP# and give an
example of shower tap model in the following. Other ways of modelling such as
using a global variable or synchronous channels are also possible.

ShowerTap() = turnOnTap → turnOffTap → ShowerTap();

Env() = PatientShowerRoom() ‖ ShowerTap();

The constraint of using tap behaviours is modelled as if turnOnTap event hap-
pens, it will be disabled until the turnOffTap activity is performed. The two
processes PatientShowerRoom and ShowerTap are composed to be a complete
model of the environment, Env . Here, the operator ‖ denotes parallel composi-
tion. Its operational semantic says that the executions of the composed processes
must be synchronised on common events appearing in all of them. Interested
readers can refer to [6] for more details. Here, the turnOnTap event becomes a
common event between the two processes.

Modelling Location Transitions. While modelling the patients behaviours, we
divide the activities according to the locations where they can be performed.
In the PatientShowerRoom model, if the event exitShowerRoom is engaged, the
process will pass control to the PatientOutside process. Thus, only activities
outside can be selected to run while activities in the shower room are disabled.
This modelling approach is to reflect the location transitions in the model and
to generate realistic sequences of activities.

Modelling Multiple Users. In multiple-user sharing environment, the activities
that different users can perform in a certain location are usually the same. How-
ever, in some cases, these activities need to be differentiated. For example, in
AMUPADH, the system tracks different patients using RFID tags. Thus, the sit-
ting on bed behaviour performed by patient1 and patient2 are different from the
system’s point of view. We model this requirement using the process parameters
and events with indexes. In the following, we provide the behaviour model of the
patient using bed where identify information is important.

PatientBed(i) = sitOnBed.i → PatientBed(i)

� lieOnBed.i → PatientBed(i)

� leaveBed.i → PatientBed(i);

Parameter i in process PatientBed(i) represents the identity of the patients.
This identity variable is also attached to events so as to differentiate the activities
performed by different patients.

Towards Formal Modelling and Verification of Pervasive Computing Systems 71

3.2 Modelling System Design

PvC systems share the features such as layered architecture and concurrent
communications. In the following, we discuss these common features and their
modelling layer by layer.

Modelling Sensor Layer. There are a lot of interesting problems in this layer.
First of all, there are different communication patterns like synchronous com-
munication or asynchronous message passing. These communications form the
basic functionality of sensors. Additionally, different sensors have different fre-
quencies of sending messages. For example, RFID reader sends a signal to system
every 1 s while pressure sensor sends every 10 s. This issue may cause the sys-
tem to make wrong adaptations since the information of the environment may
not be completely refreshed at some time point. Finally, sensors have limited
power supply and may fail from time to time. These two problems regarding the
different sending rates and unstable working conditions of sensors create many
uncertainties in PvC systems.

Nonetheless, problems might also exist in the wireless network such as mes-
sage loss. We skip this part since research of model checking wireless networks
has been done extensively in the literature [18]. The details about signal encod-
ing/decoding and message transmission via wireless networks are abstracted
away for simplicity in our work.

Modelling Concurrent Interactions. Sensors interact with the environment by
detecting events and report sensed contexts by transmitting signals to middle-
ware. The behaviours of detecting and transmitting can be abstracted to two
modelling patterns which are synchronous events and message passings respec-
tively. Event synchronisation has been introduced in Sect. 3.1. As for message
passing, there are different modelling patterns in different languages. Some lan-
guages support synchronous channels through which the sending and receiving
events are synchronised. In other languages, broadcast channels or asynchronous
channels with buffers are supported. In the following, we model the shake sensor
using a synchronous channel.

channel port 0;

Shake_Sensor() = (turnOnTap → port!Shake.UnStationary → Skip

� turnOffTap → port!Shake.Stationary → Skip

); Shake_Sensor();

Here, port is the synchronous channel defined for the shake sensor to commu-
nicate with middleware. Shake, UnStationary and Stationary are integer con-
stants representing the sensor’s ID and possible statuses. In the model, the shake
sensor sends out the signal UnStationary when the tap is turned on. Note that
CSP# supports multi-process synchronisation that the event turnOnTap can be
synchronised in all three processes.

Modelling Frequency. Sensors are tuned to have different sending rates due to
their functionalities and the purpose of saving energy. However, if the rates

72 Y. Liu et al.

are not carefully calculated, the system may work incorrectly. To analyse these
behaviours, we propose to use timed modelling languages such as Stateful Timed
CSP (STCSP) [19]. Timed Automata (TA) [20] is not suitable in this case
because the hierarchal modeling is not supported in TA. The modelling pat-
tern of sending rates using STCSP would be as follows.

FSR_Sensor() = (sitOnBed � port!FSR.Sitting � Skip

� lieOnBed � port!FSR.Lying � Skip

� leaveBed � port!FSR.Empty � Skip

� nothing � port!FSR.Empty � Skip

); Wait[10]; FSR_Sensor();

Here, operator � denotes the urgent event in its left hand side which cannot
be interleaved by other timed events. Wait [t] is the syntax to model the process
idling for t time units. The above process models the periodic sensing behaviours
of the pressure sensor which senses the pressure on the bed for every 10 time
units. Its status is transmitted immediately after the sensing.

Modelling Sensor Failures. Sensors have limited accuracy that they may fail to
detect certain events. They could also run out of battery and fail to send the
signals. Intuitively, we model this with probabilistic modelling constructs, e.g.,
Probabilistic CSP# (PCSP#) [21], Probabilistic Timed Automata (PTA) [22].

RFID_Reader() = enterBedroom.1 → port!RFID.PersonA → Skip

� enterBedroom.2 → port!RFID.PersonB → Skip;

MalSensor() = pcase{ 9: RFID_Reader()

1: fail → Skip }; MalSensor();

Here, pcase is a syntax for modelling probabilities. 9 and 1 are probability
weights here. This process models that the RFID reader works correctly with
probability of 90 %.

In summary, different issues in the sensor layer can be modelled using differ-
ent language constructs. Notice that the two modelling languages (i.e., STCSP,
PCSP) we adopted are both extensions of CSP# language. As demonstrated in
above examples, our intention is that it is easy to start with a simple model and
extend it with richer features with minimum efforts.

Modelling Middleware Layer. As shown in Fig. 5, middleware performs
the tasks of managing and reasoning contexts as well as making adaptation
decisions. Messages received from sensors will trigger an update of the system
knowledge/contexts. The status of a sensor is one kind of contexts. Context vari-
ables are modelled using shared variables in supporting modelling languages.

Furthermore, the reasoning engine performs reasoning by evaluating prede-
fined rules whose conditions are propositions of context variables. A common
practice for specifying rules is to use guarded processes or if-else statements.
The following example models the rule in Sect. 2.3 in CSP#:

Towards Formal Modelling and Verification of Pervasive Computing Systems 73

Rule() = if(sensors[Pressure_Sensor] == SITTING &&

Duration[Pressure_Sensor] > 30){
res!Act.SitTooLong.PersonA → Skip};

Finally, an adaptation decision will be made based on the reasoning results
and sent to the application layer to execute. This again can be modelled by
message passing patterns. For the above example, if the rule which interprets
that someone is sitting on bed for more than 30 time units, a message will be
sent to the application layer through the channel res.

Modelling Application Layer. Application layers vary according to different
implementations. However, we may only care about the responsive actions which
will affect the end users. Thus we focus on modelling of how the adaptation
decisions are executed. For instance, in the AMUPADH system, the reminding
system is modelled as follows:

Reminder() = res?status.rid.pid → (

[status == Act]ActivateReminder(rid,pid)

�[status == Deact]DeactReminder(rid,pid)); Reminder();

ActivateReminder(rid,pid) = update{reminder[rid][pid] = true} → Skip;

By decoding the message received from the middleware, the workflow of
reminder system diverts according to the status command. If it is an Act com-
mand, the system activates reminder rid to patient pid by calling Activate-
Reminder(rid , pid) process. Similar logic applies for deactivating a reminder.

3.3 Compose a Complete Model

In PvC systems, different components in different layers cooperate to fulfil the
system goals. However, how to model this cooperate relations are left to be dis-
cussed till now. From a careful study, we discover that in PvC systems, there
are three common types of relationships between system components which
are sequential, independent and concurrent relations. Sequential relation means
the execution of the components is strictly sequential according to the workflows
of the system. Components that are completely unrelated to each other execute
independently. As for concurrently related components, they have synchronised
behaviours. These relations can be well supported in hierarchical languages such
as CSP#. Respectively, these three relations can be modelled as sequential,
interleave and parallel compositions using operators ; , ||| and ‖ respectively.
Examples here may reuse some process names in above models. Note that paral-
lel composition has been introduced in modelling activities in the environment.

Sensors() = Shake_Sensor() ||| FSR_Sensor();

Middleware() = ContextManager(); ReasoningEngine(); AdaptationManager();

Here, since each sensor in the environment works independently, the sensor
layer model Sensors() is composed by the interleave operator. On the other

74 Y. Liu et al.

hand, in the middleware layer, the three components are executed sequentially
as determined in the workflow. Therefore, the middleware model Middleware()
is composed using sequential operator.

Choosing a Modelling Language. The above mentioned modelling patterns are
supported in most modelling languages of CSP family. It is also possible to be
translated to other formalisms e.g., Timed Automata. When it comes to unify
concurrent modelling with probabilistic or real time modelling or both, there
exists some approaches. For example, in PAT framework, CSP# supports for
modelling concurrent system behaviours; PCSP# extends CSP# with proba-
bilistic behaviour modelling, it is suitable to model failures in PvC systems;
RTCSP# extends CSP# with real time constructs which can be used to model
the periodic sensing behaviour; and finally PRTS which integrates both proba-
bilistic and real time modelling constructs under one roof. However, it is impor-
tant to choose a proper modelling language according to different targets. For
example, CSP# is most suitable for reasoning concurrent behaviours of PvC
systems while PRTS will be an over cure. We may also argue that it requires
minimal effort to extend a CSP# model to an PCSP# model and likewise.

4 Scenario Verification

After system engineers finished the design of a PvC system, they are often asked
to provide guarantees for correctness and safety requirements. They may be
asked to answer general questions like “Is the system free of conflict adapta-
tions?” or “Will the services deliver when they are supposed to?”. These high
level requirements cannot be validated against the system thoroughly using tra-
ditional techniques like testing. However, they can be specified and verified using
formal methods. For example, using model checking technique, the first question
can be verified in the following steps. First, define the conflict adaption scenario
as a state; secondly, using reachability verification algorithms to exhaustively
search the system state space to see if such a state is reachable. In this section,
we discuss the critical properties and propose their specification patterns.

4.1 Desirable Properties

Properties regarding the good behaviours of the systems are desirable.

Deadlock Freeness. Deadlock freeness is one of the important safety require-
ments and should be assured before checking any liveness properties. Deadlock
is a situation that the system reaches a state where no more actions can be per-
formed. It can lead to serious consequences such as falling of the patient is not
being alerted to a nurse. Deadlock checking is supported in most model checkers.

Towards Formal Modelling and Verification of Pervasive Computing Systems 75

Guaranteed Services. Well designed application services determine funda-
mental responsive behaviours of pervasive healthcare systems. For example, in
a smart meeting room, upon detection of some one entered the room, a service
will be scheduled to run that it will invoke an actuator to automatically turn
on the lights. Effectiveness of these services is an important measurement of the
system for the sake of users. To specify this requirement, we propose patterns of
liveness properties using Linear Temporal Logic (LTL). For example,

�(PatientWandering → � LeaveRoomReminder)

Here, � and � are operators in LTL which read “always” and “eventually”.
This formula specifies the property meaning “Always when PatinetWandering
situation happens, the service LeaveRoomReminder will be eventually delivered”.

The services are usually required to be delivered in bounded time. Obviously,
it is certainly undesirable if the reminder is sent too late that even the patient
has left the room. To specify the bounded liveness properties, one can use Timed
Computational Tree Logic (TCTL) which extends CTL with clock constraints.
The other possible solution is to bound the target system model with deadline
semantics in some real time modelling languages such as STCSP.

Security. Since PvC systems carry lots of environment information including
the user’s confidential profiles, it is critical to protect privacy. Leakage of infor-
mation can compromise the safety of the user and his or her belongings. For
instance, food delivery person should not have access to the patients medical
profile. Properties to describe security problem can be specified in many kinds
of logics such as LTL. For example,

�(FoodDeliveryPerson → not (� AccessPatientProfile))

Model checking techniques for security problems are proposed in papers such
as [23].

4.2 Testing Purposes

To test the system after being deployed is cumbersome considering the reengi-
neering workload. Fortunately, those unwanted scenarios can be specified in prop-
erties and checked using reachability verification algorithms.

System Inconsistency. Failures of sensors and wireless networks may cause
contexts of the environment in the system to be out of date. Thus system knowl-
edge can be inconsistent with actual environments. By defining such conflicting
states, you can test again the system model to see if such a state is reachable.

76 Y. Liu et al.

Conflicting/False Services. To guarantee the services being eventually deliv-
ered is not enough. It is also important to check if these services are sent prop-
erly. Some problems have been reported by domain experts such as conflicts of
reminders [24]. These problems are especially common in multi-user systems.
For example, in AMUPADH, two conflicting reminders are prompted at the
same time that one asks the patient to leave shower room while the other asks
the patient to use soap to continue showering. This causes the confusion of the
patient and could agitate them. Another scenario is that the reminder is sent to
the wrong person. These problems can be specified in reachability properties.

5 Rules Verification

PvC systems are widely applied in healthcare domain, especially in the area of
assistive living. In fact, it is challenging to automatically recognise activities of
assisted people and to render adequate assistive services. In the current litera-
ture, rule based system design is adopted that it is able to provide dependable
assistance services based on sensors integrated into the living ambient environ-
ment [25,26]. In such systems, rules are manually defined by system engineers
based on observations from doctors and caregivers. As introduced in Sect. 2.3, a
rule consists of a name, a condition field and an action field. In the condition, a
certain activity to be monitored is defined based on contexts such as status of
sensors, duration of sensor readings or system flag variables. The assistive service
is an adaptation decision which is defined in the action field. During the rea-
soning process, all the rules will be evaluated based on the current contexts and
actions will be executed upon the satisfaction of the rule’s condition. Working
in such a fashion, rule based system is able to intelligently recognise activities
of users and adapt to their needs accordingly.

However, the correctness of the rules remains a non-trivial problem. Anom-
alies such as duplication, unreachable condition and conflicts widely exist in rule
bases. Due to rule engineer may have limited knowledge of assisted user, incor-
rect or vague rules may be defined which will impair the system’s capability in
determining activities. The accuracy of activity information is lowered that it
may further result in a lack of service to be offered. What’s more, unreliable
rules would also provide a misleading reflection of the actual situation, which is
unacceptable in mission-critical or urgent scenarios. Besides, to verify relatively
large rule repositories is considerably laborious. Therefore there is a need to con-
struct an approach that is able to verify and ensure the specificity of rules, and
to also provide evidence of the erroneous rules.

In this work, we propose the definition and specification of rule anomalies
according to their behaviours and influence on the system behaviour (instead
of using common definitions based on the syntax and semantics). By reusing
the system model constructed in Sect. 3, we are able to detect rules anomalies
feasibly using existing model checking algorithms. In the following, we list the
three types of rule anomalies.

Towards Formal Modelling and Verification of Pervasive Computing Systems 77

5.1 Non-reachable Rules

Non-reachable rules are trivial as some rules’ conditions are never satisfied during
all system runs. These rules can be unintentionally introduced by rule developers.
Although the system’s correctness is unaffected, they add complexity to the
model and slow down the rules evaluation process. On the other hand, it could
be the reason that a critical context used in the rule condition is always not
available. This, in fact, means the system fails to detect certain events in the
environment. For example, in the scenario of detecting the usage of cupboard,
the rule defined for this behaviour is never fired because the sensor engineers
forget to deploy a reed switch sensor (which is used for detecting open/close
action). In such a case, detecting these rules will reveal critical problems of the
system.

Detection of non-reachable rules can be done by reachability checking. Based
on the system model, we analyse all the system states for each rule individually
to see whether its condition can be satisfied or not. The pattern proposed for
expressing this property is as follows.

assert rule SBTLAA.condition reachable

We take the rule in Sect. 2.3 as an example. The rule name is represented as
rule SBTLAA (where SBTL AA stands for sitting on bed too long for person
A on Bed A). By defining its condition as a state, we try to assert whether this
specific state is reachable or not. During the verification process, each system
state will be compared to see if there is a match by using existing reachabil-
ity checking algorithms. Non-reachable rules are better to be eliminated before
checking other rule anomalies.

5.2 Redundant Rules

Redundant rules are occurrences of multiple rules firing together at same system
states and producing non-conflicting system results. In fact, the rule system is
usually maintained by multiple engineers, even end-users. It is often the case that
they put similar rules into the system such as similar condition with different
parameters or different actions. Redundant rules will increase the complexity
of the rules and slow down the rule execution process. Furthermore, redundant
rules create redundant information that blows up memory easily.

We define two kinds of redundant rules, duplicated rules and subsuming rules.
The former refer to rules that always fire together at the same time and have
a non-conflicting actions. Identical rules where their conditions and actions are
both the same is considered as one special case of duplication. The latter applies
to the case that one rule is always fired with the other rule where their actions
are not contradict. Thus, the scenario covered by the first rule is included in the
second one.

Redundant rules can be specified as LTL formulae. By the above definition,
we propose the specification patterns in LTL as follows:

78 Y. Liu et al.

�(rule1.condition → rule2.condition) (1)

�(rule2.condition → rule1.condition) (2)

In the example, if (1) and (2) both turns out to be true, then we say rule1
and rule2 are duplicates. If only one of them is true, for instance, (1) is true,
then rule1 is subsumed by rule2 where the scenarios at which rule1 satisfies is
covered by rule2 as well.

5.3 Conflicting Rules

Conflict anomalies focus on the actions of rules. In a particular state, two rules
both fires but with contradicting actions triggered. Then, they are considered as
conflicting rules. This type of anomalies is usually not because of careless human
errors, but because of limitations in the rule design. In fact, engineers define
rules based on their limited knowledge of the actual user behaviour. However,
it is impossible for them to figure out all the scenario. Especially in the case of
dementia patient caring, the abnormal behaviour is beyond the imagination of
normal people. Thus, contradictions often happen in the system. Furthermore,
conflict rules are critical but difficult to detect. They could cause the user to
be confused which may be harmful to their health or even life. But conflicting
situations are not easily revealed during lab testing where only selected scenarios
are tested. Thus, using advanced techniques such as model checking which can
simulate every possible behaviour of user and perform complete search of state
space are favourable.

In an attempt to reuse existing techniques, we detect conflicting rules in two
ways: (1) we perform verification of Sect. 5.2. Based on the verification result,
we inspect the actions of the redundant rules to find conflicting cases; (2) by
defining impermissible sets which contains contradict knowledge, we check if such
occasion can be reached during the system run. Note that, since the contexts only
kept in the knowledge base of rule systems, contradictory contexts must imply
contradicts in the rules. By performing reachability checking, we are able to find
conflicts with witness traces revealing the rules which lead to the conflicting
state. We take an example in AMUPADH system.

impermissible set (Loc PersonA = ShowerRoom, Status PersonA = Sleeping)

assert impermissible set reachable

In the example, we define an impermissible set says person in the shower
room and person sleeping cannot be true at the same time. These two contexts
both are high level contexts that are generated by rules. Thus, if two elements
in the impermissible set becomes true at the same time in the model, the two
rules which generate them must be conflicting in a particular scenario.

In [27], a rule modelling approach based on language translation is con-
structed to automate the process of rules verification. The correction strategies
for rule anomalies are also proposed.

Towards Formal Modelling and Verification of Pervasive Computing Systems 79

OS- Outside
BR- Bedroom
SR- Shower
Room

OSstart

BRBED SR

openBedroomDoor
closeBed-
roomDoor

enterBedroom

openBedroomDoor
closeBedroom-
Door openShow-
erRoomDoor
closeShower-
RoomDoor

exitBedroom

enterShowerRoom

sitOnBed

wandering
turnOnTap
turnOffTap
pressSoap
openShowerRoomDoor
closeShowerRoomDoor

exitShowerRoom

sitUp
lyDown

leaveBed

Fig. 6. Patient behaviours

6 Case Study: Formal Analysis of AMUPADH

The proposed approach is applied to analyse AMUPADH. We adopt CSP# mod-
elling language since it supports most of the modelling patterns in the framework.
Important properties are specified in reachability semantic and LTL formulae.
PAT model checker is chosen to parse the model, build up the system state space
and verify these properties. Experiment results are listed and unexpected bugs
are reported.

Open Close

enterBedroom
exitBedroom

closeBedroomDoor

openBedroomDoor

(a) Bedroom Door behaviour

Empty Sitted Lied

sitOnBed

leaveBed

lyDown

sitUp

leaveBed

(b) Bed behaviour

Fig. 7. Surrounding environment

6.1 System Modelling

In this section, we model the environments and the system design using our
framework and use Labeled Transition Systems (LTS) for demonstration.

80 Y. Liu et al.

Environment Model. As shown in Figs. 6 and 7. These LTSs can be generated
using simulation function of PAT. In Fig. 6, there are four possible locations
that a patient can reside. The transition edges between states are labeled with
patient’s activities.

This patient model should be synchronised with objects within the surround-
ing environment. The objects that are modelled include doors of bedroom and
washroom, beds and washroom taps. The behaviour models of the doors and
beds are shown in Figs. 7a and b respectively.

Sensor Model. Different sensors are used in AMUPADH to monitor specific
behaviours of the patients. For example, pressure sensors attached to the bed
mattresses are for monitoring how the patients use the beds. The information
captured by sensors is passed from sensors to the controller via a synchronised
channel port . Every sensor possesses multiple unique states when made available
to the system. Figure 8 shows the modelling of sensors using the bed RFID
readers and bed pressure sensors as mentioned in Sect. 2.2. Then, we combine
all processes of sensors to one process Sensors using composition patterns.

Sensors()=Rfid_Bedroom() ||| (Rfid_Beds() ‖ FSR_Sensors())

||| (Rfid_ShowerRoom() ‖ PIR_ShowerRoom()) ||| ShakeSensors();

Empty

Occupied

Reasoning
Engine

sitOnBed.i leaveBed

lyDown

port!Empty

port!i

(a) Bed RFID Reader

Empty

Occupied

Reasoning
Engine

sitOnBed.i leaveBed

lyDown

sitUp

port!Empty

port!Lying

port!Sitting

(b) Bed Pressure Sensor

Fig. 8. Sensor behaviours

Controller and Reasoning Engine Model. Inside the reasoning engine,
rule evaluation is triggered by two processes, namely the MainInterface and
ContextChecker processes. In order to model the periodical evaluation by process
ContextChecker , we use a constant integer RATE to represent the interval and
Duration variable to record elapsed time. The atomic syntax used here is to
ensure the process inside the block is executed without interference from other
processes.

Towards Formal Modelling and Verification of Pervasive Computing Systems 81

ReasonEngine() = MainInterface() ||| ContextChecker();

MainInterface() =

atomic{port?id.status → update{sensors[id]=status;
Duration= call(setTimer,id,status,Duration)} →
FireAllRules()};MainInterface();

ContextChecker()=

atomic{update{Duration = call(tick,Duration,RATE)}
→ FireAllRules()};ContextChecker();

On receiving a message from any sensor, the MainInterface updates the sen-
sor status and Duration. Then, the FireAllRules process is invoked to perform
rules evaluation. The syntax call(setTimer , id , status,Duration) in the above
model is used to call an external static function setTimer (written in C#).
Duration be will updated externally according to the input of sensor id and
status. This is a special feature in PAT, which allows users to separate com-
plicated calculation from the high level model in order to have a simple model
with efficient verification. The ContextChecker is similar to the MainInterface
in updating sensor statuses and Duration, but does so in a periodic cycle instead
of using a listener.

The process FireAllRules sequentially evaluates every rule independent of the
results from previous cycles of rule evaluation and triggers proper actions such
as setting a flag or sending a message to the reminding system. Messages are
passed via a synchronous channel named res. We model every rule in a separate
process. In the following, we list one rule to illustrate the modelling. The process
Rule 14 1() models a complicated rule defined for recognising the wandering
behaviour of the dementia patient. It says if the shake sensor on shower tap is
stationary, the PIR sensor detects the patient’s presence has lasted for 15 time
units, the shower flag is still false and patient 1 is in the shower room, then
patient1 is wandering in the shower room. Consequently, the reasoning engine
sets the wander flag to true and passes a message to inform the reminding system
that patient1 needs to be reminded to leave the room.

FireAllRules() = Rule0();

...

Rule_14_1() = if(sensors[ShakeTap] == STATIONARY &&

sensors[PirShowerroom] == FIRING &&

Duration[PirShowerroom] ≥ 15 &&

!ShowerFlag && Location_Person[1] == SHOWERROOM){
setFlag{WanderFlag = true} →
res!Error.WanderingInShowerroom.1 → Rule_14_2()}

else {Rule_14_2()};
...

RemindingSystemModel. In the system, reminders are activated/deactivated
upon receiving corresponding messages from the controller. As shown in Fig. 9,
the reminding system receives a triplet from the controller via channel res. This
triplet consists of a command, behaviour code and patient ID. If the command is

82 Y. Liu et al.

ActRm

DeactRm

res?status.rid.pid

[status==ACT]

[status==DEACT]

Fig. 9. Reminding system behaviours

ACT , the reminder rid will be activated and prompted to patient pid , otherwise
the specified reminder will be stopped if it is active. The ACT and DEACT are
command constants corresponding to Normal and Error in rule processes.

Finally we integrate all the sub-system models together into a process named
SmartRoom() using composition patterns. Interested readers are referred to [17].

6.2 Scenario Verification Experiments

In this section we verify the proposed properties against the system model built
in Sect. 6.1. He experiments test bed is a PC with Intel Xeon CPU at 2.13 GHz
and 32 GB RAM.

Deadlock Freeness. Since each layer of the system as well as the environ-
ment model are independent from each other except for channel communications,
we conducted the experiments incrementally. During verification of a particular
component model, we abstract away the details of other component models leav-
ing only the channels for receiving messages. Doing in this way, we are able to
check deadlock freeness locally for all system components and keep the composi-
tion of component models in a manageable level. In the Table 13, the row starts
with env represents the environment model; row env + snr represents the model
composed by environment model and sensor model; row env + snr + mdw adds
middleware model into previous one; and the last row is the complete model
with all components. It turns out to be that the complete model including bed-
room and shower room scenario is too large for verification. We split it into two
sub-models according to the locations. The experiment results show the rapid
increase of state space when more components are composed.

In CSP#, a deadlock freeness property is specified as

#assert CompleteSmartRoom() deadlockfree;

3 St- States, OOM- Out of Memory.

Towards Formal Modelling and Verification of Pervasive Computing Systems 83

Table 1. Results of deadlock freeness checking

Model Bedroom ShowerRoom BothRooms

#St/k Time/s #St/k Time/s #St/k Time/s

env 0.028 0.005 0.008 0.005 0.082 0.010

env + snr 0.157 0.080 0.072 0.030 0.906 0.339

env + snr+ mdw 17.40 7.799 56.01 23.00 8319 4017

Complete 731.5 384.2 7059 4031 OOM OOM

Guaranteed Reminders. Guaranteed reminders are important measurements
of the system, which are illustrated using the patterns of service effectiveness.
We take the reminder services of Lying Wrong Bed in bedroom as examples.
Other properties for guaranteed reminder services can be specified similarly.

#define LyingWrongBed (sensors[RfidBed_1] �= EMPTY

&& sensors[RfidBed_1] �= 1);

#define RemindedWrongBed

(ReminderStage[LyingWrongbed*2 + 1] �= 0);

#assert SmartBedroom() �
� (LyingWrongBed → � RemindedWrongBed);

Here, condition LyingWrongBed specifies the scenario that someone else is sleep-
ing on patient1’s bed, and RemindedWrongBed defines the state the reminder
is prompted. This property states that when a patient is sleeping in a wrong
bed, the system will always prompt the LyingWrongBed reminder eventually.
The results of the verification are shown in Table 2. The first two reminders are
checked against the bedroom system model while the rest are against shower
room model. Surprisingly, all the reminders on shower room fails and it takes
variant time to invalid a property due to the depth of the bugs.

Table 2. Results of guaranteed reminders checking

Property Result # States/k Time/s

LyingWrongBed (LWB) True 808.4 616.8

SitBedTooLong (SBTL) True 798.3 607.2

ShowerNoSoap (SNS) False 196.6 107.5

ShowerTooLong (STL) False 1018 2635

ShowerNotOff (SNO) False 701.8 489.1

WanderingInSR (WIS) False 58.24 27.48

84 Y. Liu et al.

Testing of Faults. Various fault occur in AMUPADH system, the most com-
mon ones are the inconsistencies, the false reminder and reminder conflicts. They
are introduced in the following. Experiment results shown in Table 3 reveals
multiple bugs.

Table 3. Results of testing faults

Model Fault type Result # States/k Time/s

Bedroom FalseAlarm: LWB False 731.5 371.7

FalseAlarm: SBTL True 1.463 0.479

CR: LWB vs. SBTL True 20.6 7.89

Shower Room InConsistency True 0.404 0.180

CR: SNS vs. WIS True 10.34 4.150

CR: SNS vs. STL True 20.98 7.898

CR: SNS vs. WNO True 10.54 3.660

CR: STL vs. SNO True 16.35 5.785

CR: STL vs. WIS True 16.35 5.767

CR: WIS vs. WNO True 5.2 1.758

Inconsistent Knowledge. In the shower room, it is the case that there is no
one in the room (the PIR sensor indicates SILENT status), while the system
variable recording patient 1’s location remains to be in the room. This property
is specified as follows:

#define Contradiction (Pos_Person[1] == SHOWERROOM

&& sensors[PIR] == SILENT);

#assert SmartShowerRoom() reaches Contradiction;

False Reminders. False reminders are generated prompts that should not be sent
to patients. In the following, we specify a situation that the Sit Bed Too Long
reminder is sent to patient1 but in fact he is not in the bedroom.

#define FalseReminder (Pos_Person[1] �= BEDROOM

&& ReminderStage[SitBedLong] �= 0);

#assert SmartBedRoom() reaches FalseReminder;

Conflicting Reminders (CR). In the following, ConflictReminder defines a state
where two reminders (i.e. WanderingInSR reminder and Shower No Soap
reminder) are simultaneously prompted to one patient.

#define ConflictReminder

(ReminderStage[ShowerNoSoap * 2] �= 0

&& ReminderStage[WanderingInSR * 2] �= 0);

#assert SmartShowerRoom reaches ConflictReminder;

Towards Formal Modelling and Verification of Pervasive Computing Systems 85

6.3 Detecting Rule Anomalies in AMUPADH: Experiments

We perform rules verification in the following steps.

Parsing Drools Rule to CSP#. Manually modelling of all the rules are time
consuming and error prone due a large number of rules are defined. Thus, we
developed tool for automatically translate Drools rules used in AMUPADH to
CSP# syntax in two steps.

Step 1: Extract Shared Information. For the purpose of easy management,
the shared information is declared and kept in separate files from rule files.
We need to first extract these information. Fortunately, customised data type
and external function calls are supported in PAT. Thus, it is only needed to
extend the original Java classes with additional methods for value retuning
conform to PAT models. However, rewrite the Java methods to C# codes is
a better solution since PAT is written in C#.

Step 2: Mapping Rules into CSP#. The parser processes the rules one at
a time and splits the rule into three parts, i.e., rule name, conditions and
consequences by reading the keywords rule, when and then respectively.
We then map the Drools rule into CSP# by mapping rule names into rule
associated comments, the conditions to ifa expressions, the consequences
into ifa statements and point to the next rule in the else part (evaluation of
the rules is sequential).

The two-step parsing tool automates the process of modelling rules and
reduces the time required for verifying rules. Although human intervention might
be required in rewriting Java classes into C#, the effort is minimal since Java
classes are seldomly changed during development. However, this parser is unable
to treat rules with priorities and rule chaining at the moment, extension is pos-
sible once needed.

Detetcting Rule Anomalies

Step 1: Define Rule Conditions as States. In order to specify the prop-
erties associated with evaluating conditions of rules, we explicitly define all
the rule conditions as specific states. We take Rule 14 1 in Sect. 6.1 as an
example. Rule 14 1 is the 14th rule in the rule base defined for person 1.

#define Rule_14_1 (sensors[ShakeTap] == STATIONARY &&

sensors[PirShowerroom] == FIRING &&

Duration[PirShowerroom] ≥ 15 &&

!ShowerFlag && Location_Person[1] == SHOWERROOM)

Step 2: Specify Rule Anomalies. We check three types of rule anomalies.
– Non-reachable rules are rules that cannot be satisfied during all exe-

cutions of the system. The following property asserts if Rule 14 1 is
reachable.

86 Y. Liu et al.

#asset SmartShowerRoom reaches Rule_14_1;

– Redundant Rules are rules that have similar effects on the system such
as always fires together. We first check the subsumed rules which is the
case that one rule always fires with the other rule. An simple example
property specification is as follows.

#asset SmartShowerRoom � � (Rule_1 → Rule_2);

#asset SmartShowerRoom � � (Rule_2 → Rule_1);

By checking every pair of rules, we are able to do a thorough testing to
find all possible subsumed rules. Duplicated rules are two rules subsumed
with each other.

– Conflicting Rules are rules that fires together at a particular state
but have conflict consequences. To detect this anomaly is to define an
impermissible set like the following example.
#define contradict_state (ShowerFlag == true &&

Location_Person[1] != SHOWERROOM &&

Location_Person[2] != SHOWERROOM);

#assert SmartShowerRoom reaches contradict_state;

This contradict state says someone is taking shower, but neither of the
two patients is in the shower room. Note that there are only two users in
the model and ShowerFlag , Location Person[1] and Location Person[2]
are all variables updated by some rules. If this contradict state is reach-
able, there must be some rules conflicting. By inspecting the witness
trace reported by PAT, we are able to identify them.

Step 3: Verify Rules Using PAT. Finally, we integrate all the rules into
the formal model and verify the properties specified in previous step using
built-in verification algorithms in PAT. The results are shown in Table 4 with
multiple conflicts found.

Table 4. Results of detecting rule anomalies

Scenario # Rules # Non-reachable # Subsumed/# Duplicated # Conflict

Bedroom 17 2 8/3 2

Shower Room 22 5 16/2 4

Avg. Time(s) - 2.05 3.05 -

6.4 Bug Report

Discovery of Unexpected Bugs. Counterexamples are returned as evidences
if the system model violates certain properties. They are of great value to system
engineers to debug the system. The set of confirmed bugs are reported as follows
which are unexpected by the development team.

Towards Formal Modelling and Verification of Pervasive Computing Systems 87

System implementation fails to meet requirements

– Guaranteed Reminders. This experiment reveals a critical problem of the sys-
tem that the system fails to monitor the patient’s location correctly. A patient
exiting the shower room with tap left on is a typical case. The two reminders,
Shower Not Off and WanderingInSR will repeatedly prompt even though
there is no one in the shower room.

Unexpected Faults Arising out of system complexity

– False Alarm in Bedroom. The result of the second property is witnessed to
be valid. Through careful investigation, we notice that the rule defined for
Sit Bed Too Long does not have an identity attached to the rule’s condition
and hence this reminder is sent to the bed’s default owner regardless of the
bed’s current user.

– Conflict Reminders. From the experiment results, we found many scenar-
ios where there are reminder conflicts. For example, a patient wandering
in the shower room tirggers the WanderingInSR reminder. He then ignores
the reminder and turns on the shower tap to play with water (A typical
behaviour of a dementia patient). The water runs for a long time that the
Shower No Soap reminder is triggered, therefore causing the system to prompt
the conflicting reminders.

Anomalies in Activity Recognition Rules

– Non-reachable rule. In the bedroom scenario, the rule defined to recognise an
activity of opening a cupboard is not reachable. The reason is that sensor
engineers removed the reed switch sensor on the cupboard without notifying
the rule engineers.

– Redundant rules. Five duplicated rules are discovered which were acciden-
tally added into the rule repository for testing and were not removed due to
negligence.

– Conflicting rules. A scenario where a pair of conflicting rules are witnessed
that the monitored user have been showering for a long period of time, yet
continues to ignore the reminder that prompts him to use the shower foam.
This was the reason that led to the triggering of two contradictory reminders
that request a user to perform activities in two different locations at the same
time, which is physically impossible.

Discussion

Usefulness. We gained several observations from this case study. First, model
checking techniques can provide a very good guide on system design. From our
experiences of working with designers of the system, they usually focus on setting
up a demonstration based on selected scenarios without considering other useful
situations. It is not only because of the high cost of hardware devices but also

88 Y. Liu et al.

to complete a full demonstration is time consuming. In fact, the development
and consideration of all possibilities when constructing scenarios and rules is
an impossible task and would either take many man-hours to find out through
actual deployment. In fact, some of the bugs (e.g., False Alarm) we reported are
occurring in execution of AMUPADH system and some of them are unexpected
(e.g., inconsistency). The counterexamples reported from the experiment also
helped the engineers to pinpoint the source of the bug. Besides, it is important to
find unexpected bugs based on the stakeholders requirements before deployment
of the whole system. Hence the engineers can retrieve certain normal or abnormal
scenarios they are interested in based on our analysis results.

Additionally, we observed the failure of updating the correct location infor-
mation of the patient leads to the violation of important properties. From the
discussion with hardware engineers, we learned that RFID readers have limited
detection range. We may think it is unwise to solely rely on RFID readers to track
the patients. During the experiments, we also noticed that a lot of redundant
messages are sent out by the reasoning engine which increase the complexity of
the system and slow down the verification.

Thoughts of solving state space explosion in PvC system verification. The exper-
imental results reflect the typical state space explosion problem. The number of
states in checking deadlock freeness of the complete model reaches the level of
108, which is the limit of explicit-state model checkers like SPIN and PAT. The
state of art state space reduction methods like partial order reduction may not
have significant improvement of this problem. Compositional verification on the
other hand draws our attention. From the deadlock freeness checking, we noticed
that if all components are locally deadlock-free, it is of great possibility that the
complete system model which is a composition of all the components is free of
deadlock. Obviously verifying a local property of a component is much easier
than verify it against the system model. Furthermore, the general architecture
of PvC systems suggests that there are almost no sharing recourses between
components. The independency between system components further proves that
compositional verification could be a feasible solution to state space explosion
problem. Thus, in future, we shall explore how composition verification tech-
niques can be applied.

7 Related Work

PvC systems have achieved many milestones in recent years. However, works on
applying formal methods to assure the correctness of such systems are limited.
In [7], they proposed a TCOZ model for a smart meeting room system which
very well captured the synchronised communications and real-time constraints
of sensors and actuators. Researchers in [8] used Ambient Calculus to model a
location sensitive smart guiding system in a hospital. The mobility issue is well
modelled in their work. Important properties are manually proved in both of
the two papers. However, both of the two languages does not have support for
hierarchical structures. Moreover, lack of verification tools support restricts the

Towards Formal Modelling and Verification of Pervasive Computing Systems 89

applicability of their approaches to large pervasive systems. Our work advances
them by adopting hierarchical modelling patterns. Automatic verification of our
modelling framework can be supported by popular model checkers.

In [28], Adaptation Finite-State-Machine (A-FSM) is proposed for modelling
adaptations between system states in context aware adaptive applications. Fault
patterns based on the A-FSM and their detection algorithms are presented as
well. However, how to model systems in A-FSM is not clear and liveness prop-
erties are not supported in their work. Researchers in [11] proposed multiple
important properties regarding security, safety requirements in PvC systems.
Formalisation patterns are illustrated and possible verification approaches are
explored. However, since they lack the underlying modelling patterns, the prop-
erties and their verifications are very difficult to apply. In our work, we fur-
ther classified the important requirements into safety and liveness properties
and formalise them in popular logics which are checkable based on our mod-
elling framework. Besides, we propose scenario verification which verifies critical
requirements on an exhaustive enumeration of targeted scenarios which is more
focused than aimless, random verification approaches and more complete than
verification/testing upon selected cases.

In rules verification, Ligeza and Nalepa [13] proposed definitions for rule
anomalies regarding redundancy, consistency, completeness and determinism.
Preece et al. [14] surveyed the verification of rule based systems focusing on
detecting anomalies. Five rule verification tools are compared based on their
capability of detecting rule anomalies such as redundancy, ambivalence etc. How-
ever, their definitions for anomalies and the surveyed algorithms are not directly
applicable to PvC systems. Most of their algorithms detect anomalies based on
syntax checking and semantic logics inspection between rules, instead of how
the rules affect the system behaviour. Furthermore, the algorithms are mostly
designed for goal-driven (stateless) rules where knowledge is not shared between
different rounds of evaluation. This is certainly not the case of how rules working
in PvC systems. Thus, in our work, we redefined the rule anomalies according
to their influences upon the system behaviours and formulate them into proper-
ties which are verifiable on our modelling framework by reusing existing model
checking algorithms.

8 Conclusion

In this work, we propose a formal modelling framework for pervasive comput-
ing systems. Different modelling patterns are discussed according to the typical
features of systems such as concurrent interactions, context-awareness and lay-
ered architectures. We also provide environment modelling patterns which are
usually not considered in modelling complex systems. Based on the modelling
framework, we propose scenario verification where critical properties of safety
and liveness requirements are identified and specified in proper logics such as
specifying guaranteed reminder services using LTL, and rules verification where
rule anomalies are redefined upon system behaviours and formulated to for-
mal properties which can be verified using existing model checking algorithms.

90 Y. Liu et al.

To demonstrate our approaches, we present a case study of an living assisting
system for elder dementia patients. We model the system using our modelling
framework and conduct experiments of scenario verification and rules verifica-
tion. Multiple bugs are revealed. Experimental results and sources of the bugs
are explained.

This work demonstrates the usefulness of formal methods (particularly model
checking techniques) in analysing PvC systems. In the future, we will apply
probabilistic model checking techniques for quantitative analysis of PvC systems
and explore compositional verification techniques to alleviate the state space
explosion problem.

Acknowledgment. The authors would like to thank Lee Vwen Yen Alwyn, Clifton
Phua, Zhu Jiaqi and Kelvin Sim from Institute for Infocomm Research in Singapore
for the kindness contributions and valuable feedback to this work. We also want thanks
the anonymous reviews for their valuable suggestions in improving the manuscript.

References

1. Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 66–75 (1991)
2. Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world

with pervasive networks. IEEE Pervasive Comput. 1(1), 59–69 (2002)
3. Nehmer, J., Becker, M., Karshmer, A., Lamm, R.: Living assistance systems: an

ambient intelligence approach. In: Proceedings of the 28th International Conference
on Software Engineering, ICSE ’06, pp. 43–50 (2006)

4. Saha, D., Mukherjee, A.: Pervasive computing: a paradigm for the 21st century.
Computer 36, 25–31 (2003)

5. Edwards, W.K., Grinter, R.E.: At home with ubiquitous computing: seven chal-
lenges. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001. LNCS, vol.
2201, pp. 256–272. Springer, Heidelberg (2001)

6. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: TASE, pp. 127–135 (2009)

7. Dong, J.S., Feng, Y., Sun, J., Sun, J.: Context awareness systems design and rea-
soning. In: ISoLA, pp. 335–340 (2006)

8. Coronato, A., Pietro, G.D.: Formal specification of wireless and pervasive health-
care applications. ACM Trans. Embed. Comput. Syst. 10, 12:1–12:18 (2010)

9. Mahony, B., Dong, J.S.: Blending object-Z and timed CSP: an introduction to
TCOZ. In: ICSE ’99, pp. 95–104 (1998)

10. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

11. Arapinis, M., Calder, M., Denis, L., Fisher, M., Gray, P.D., Konur, S., Miller, A.,
Ritter, E., Ryan, M., Schewe, S., Unsworth, C., Yasmin, R.: Towards the verifica-
tion of pervasive systems. ECEASST 22, 1–15 (2009)

12. Clarke Jr, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

13. Ligeza, A., Nalepa, G.J.: Rules verification and validation. In: Giurca, A., Gase-
vic, K.T.D. (eds.) Handbook of Research on Emerging Rule-Based Languages and
Technologies: Open Solutions and Approaches, pp. 273–301. IGI Global, Hershey
(2009)

Towards Formal Modelling and Verification of Pervasive Computing Systems 91

14. Preece, A.D., Shinghal, R., Batarekh, A.: Principles and practice in verifying rule-
based systems. Knowl. Eng. Rev. 7(02), 115–141 (1992)

15. Biswas, J., Mokhtari, M., Dong, J.S., Yap, P.: Mild dementia care at home –
integrating activity monitoring, user interface plasticity and scenario verification.
In: Lee, Y., Bien, Z.Z., Mokhtari, M., Kim, J.T., Park, M., Kim, J., Lee, H., Khalil,
I. (eds.) ICOST 2010. LNCS, vol. 6159, pp. 160–170. Springer, Heidelberg (2010)

16. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

17. Liu, Y., Zhang, X., Liu, Y., Sun, J., Dong, J.S., Biswas, J., Mokhtari, M.: Technical
report for formal analysis pervasive computing systems. http://www.comp.nus.
edu.sg/∼yanliu/techreport.pdf

18. Olveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in real-time maude. Theor.
Comput. Sci. 410, 254–280 (2009)

19. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., Andre, E.: Modeling and verifying
hierarchical real-time systems using stateful timed CSP. ACM Trans. Software
Eng. Methodol. (TOSEM) 22(1), 3:1–3:29 (2013)

20. Alur, R.: Timed automata. Theor. Comput. Sci. 126, 183–235 (1999)
21. Sun, J., Song, S., Liu, Y.: Model checking hierarchical probabilistic systems. In:

Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer,
Heidelberg (2010)

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

23. Marrero, W., Clarke, E., Jha, S.: Model checking for security protocols. Technical
report. Carnegie Mellon University (1997)

24. Du, K., Zhang, D., Zhou, X., Hariz, M.: Handling conflicts of context-aware remind-
ing system in sensorised home. Cluster Comput. 14, 81–89 (2011)

25. Antoniou, G.: Rule-based activity recognition in ambient intelligence. In: Bassili-
ades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol.
6826, pp. 1–1. Springer, Heidelberg (2011)

26. Storf, H., Becker, M., Riedl, M.: Rule-based activity recognition framework: chal-
lenges, technique and learning. In: PervasiveHealth, pp. 1–7 (2009)

27. Lee, V.Y., Liu, Y., Zhang, X., Phua, C., Sim, K., Zhu, J., Biswas, J., Dong, J.S.,
Mokhtari, M.: ACARP: auto correct activity recognition rules using process analy-
sis toolkit (PAT). In: Donnelly, M., Paggetti, C., Nugent, C., Mokhtari, M. (eds.)
ICOST 2012. LNCS, vol. 7251, pp. 182–189. Springer, Heidelberg (2012)

28. Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Wang, Z.: Context-aware
adaptive applications: fault patterns and their automated identification. IEEE
Trans. Softw. Eng. 36, 644–661 (2010)

http://www.comp.nus.edu.sg/~yanliu/techreport.pdf
http://www.comp.nus.edu.sg/~yanliu/techreport.pdf

Revisiting Agent-Based Models of Algorithmic
Trading Strategies

Natalia Ponomareva(B) and Anisoara Calinescu

Department of Computer Science, University of Oxford, Oxford, UK
natalia ponomareva@yahoo.com, Ani.Calinescu@cs.ox.ac.uk

Abstract. Algorithmic trading (AT) strategies aim at executing large
orders discretely, in order to minimize the order’s impact, whilst also
hiding the traders’ intentions. The contribution of this paper is twofold.
First we presented a method for identifying the most suitable market
simulation type, based on the specific market model to be investigated.
Then we proposed an extended model of the Bayesian execution strat-
egy. We implemented and assessed this model using our tool AlTraSimBa
(ALgorithmic TRAding SIMulation BAcktesting) against the standard
Bayesian execution strategy and näıve execution strategies, for momen-
tum, random and noise markets, as well as against historical data. Our
results suggest that: (i) momentum market is the most suitable model
for testing AT strategies, since it quickly fills the Limit Order book and
produces results comparable to those of a liquid stock; (ii) the priors
estimation method proposed in this paper − within the Bayesian adap-
tive agent model − can be advantageous in relatively stable markets,
when trading patterns in consecutive days are strongly correlated, and
(iii) there exists a trade-off between the frequency of decision making and
more complex decision criteria, on one side, and the negative outcome of
lost trading on the agents’ side due to them not participating actively in
the market for some of the execution steps.

Keywords: Algorithmic trading · Bayesian adaptive agents ·
Simulation · Backtesting

1 Introduction

Algorithmic trading (AT) strategies, which model decisions made by the algo-
rithms as opposed to human actors [28], have gained significant strength in the
recent years [20]. According to [20], “for large stocks AT narrows spreads, reduces
adverse selection, and reduces trade-related price discovery. Their findings indi-
cate that AT improves liquidity and enhances the informativeness of quotes”.
Similarly, [15] found AT to be a cost-effective technique for large orders.

Market activity is comprised of the execution of orders submitted by the
market participants, and the most common types of orders are market orders
and limit orders [31]. A market order is the order to be executed immediately,

c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 92–121, 2014.
DOI: 10.1007/978-3-662-44871-7 4

Revisiting Agent-Based Models of Algorithmic Trading Strategies 93

at the best available price on the market. A Limit order is defined by additionally
providing a limit (or activation) price, i.e., the price which, once reached by the
market, will activate the order and lead to its execution. The limit price for
the Sell order is above the current price, and for the Buy order it is below the
market price.

Execution trading algorithms, which we will focus on, aim to execute an
order submitted by a human, such as to minimize both the associated transac-
tion cost and the market impact of the order. The two most common approaches
for evaluating trading strategies are backtesting [21,28] and evaluation via arti-
ficial market simulation [10,21,24]. In backtesting the algorithms are evaluated
using historical market data [21,28]. For each discrete time point t, the agents
have access to historical data on the current price at time t. The agents submit
two different types of orders: market orders and limit orders. Market orders are
executed at the current price. Limit orders are either executed at the current
price, if their limit price allows immediate execution, or are saved into the Limit
Book. Then time is incremented, (t + 1), the next current price is read from
historical data, and the agents repeat the previous steps. This iterative process
continues until all historical data items are processed. Backtesting of AT strate-
gies is acceptable under the assumption that the agents’ orders have little or no
market impact, and would not have changed the historical prices if they were
executed within the real market.

In agent-based simulations the agents representing humans and AT strategies
compete with each other and determine the price of the stocks [10,21,24]. Since
price fluctuations depend on the interactions of all the agents, and additional
conditions that did not take place in historical data can occur, trading strategies
can be arguably more fully evaluated by this approach than in the backtesting
model. Bonabeau [10] state that an agent-based model that simulates the effect of
regulatory changes on markets, under various market conditions and for different
agent capabilities and strategies, has been used by NASDAQ to evaluate the
impact of tick-size reduction. This model revealed a surprising behaviour, such
as the fact that a reduction in the market tick’s size can reduce the market’s
ability to perform price discovery, thus leading to an increase in the bid-ask
spread.

The contribution of the work presented in this paper is twofold. First we
investigated different types of agent-based market simulations and suggested
how to identify the most suitable market simulation type, based on the specific
market model to be investigated.Then we proposed an extended model of the
Bayesian execution strategy. We implemented and assessed this model using
our AlTraSimBa (ALgorithmic TRAding SIMulation BAcktesting) tool against
the standard Bayesian execution strategy and näıve execution strategies, for
momentum, random and noise markets, as well as against historical data. The
results revealed valuable insights on the trade-offs between the frequency of
decision making and more complex decision criteria, on one side, and the negative
outcome of lost trading on the agents’ side due to them not participating actively
in the market for some of the execution steps.

94 N. Ponomareva and A. Calinescu

The remainder of this paper is organised as follows. Section 2 reviews agent-
based simulation models within an AT context. Section 3 describes architectural
challenges to consider and summarizes some of the features of our tool. Section 4
reviews algorithmic execution agents, performance metrics, the standard adap-
tive Bayesian execution algorithm, and presents the theoretical extension we pro-
posed to this approach. Section 5 presents and analyses our results and assesses
our approach. The last section summarises and concludes the paper, and suggests
future work directions.

2 Agent-Based Models of Financial Markets

In order to build a realistic market model and simulation, one must decide the
algorithm which will model how the price of the stocks will vary over time,
and the type of agents that will participate in the market. Once these modelling
decisions have been made, the model implementation and architectural decisions
pose several challenges, too. This section reviews the different features that are
relevant for agent-based modelling and simulation, within a financial market
context.

2.1 Continuous Double Auction

Price determination specifies how the prices of securities change within a market
context where supply and demand do not match each other [24]. The most
realistic way to simulate real markets is the Continuous Double Auction (CDA)
market [24,33], where the agents are allowed to submit any type of orders (Buy
or Sell), at any time.

CDA maintains an Order Book containing the list of the submitted limit
orders. For each type of order (Buy and Sell) there is a separate queue. In the
Buy queue the orders are sorted in decreasing order of limit price; if several limit
orders have the same limit price, they are stored using a FIFO criterion. The Sell
queue orders are sorted in increasing order of both limit price and their arrival
time. The first order in the Buy queue determines the bid price, i.e. the highest
price at which buyers are willing to purchase securities. The first order in the
Sell queue dictates the ask price – the lowest price which sellers are willing to
accept [23,33].

A submitted market order is executed against the Limit Order Book of an
opposite direction. If the market order is larger than the limit order at the head
of the queue, the next limit order from the queue is retrieved. Similarly, if a limit
order arrives, it is first checked against a queue of opposite direction, to see if its
immediate execution is possible, i.e., if a buy limit order has a limit price more
or equal to the current ask price, or if a sell limit order’s price is less or equal
to the current bid price. If a limit order cannot be executed yet, it is saved into
the queue of the order’s direction. Due to the nature of this mechanism, the bid
price is always lower than the ask price.

Revisiting Agent-Based Models of Algorithmic Trading Strategies 95

CDA assumes order divisibility, i.e., an order can be executed partially – any
agent willing to buy (sell) stocks agrees to have only part of the order executed,
if necessary [33].

2.2 Human-Like Agents

Human-like agents are used to model human actors on the market, to generate
trading volume and liquidity, and fill the limit order book - e.g. initialize the
simulation for testing AT strategies. These agents need to generate order flows
comparable to those in real financial markets. For this purpose, four main human-
like agent types are proposed in the literature: noise agents, random trading
agents, momentum trading agents and contrary trading agents [21].

Noise Agents (Zero Intelligence). Many researchers choose to use zero intel-
ligence agents in their financial market simulations, for example in the models
presented in [12,13,18,28]. There is a strong empirical evidence backing up such
a widespread use of noise agents - [18] has shown that noise agents with para-
meters derived from empirical data can explain up to 96 % of the variance of
spreads and 76 % of the diffusion rates. There are different variations of zero-
intelligence agents, the simplest ones ranging from submitting buy or sell and
market or limit orders with equal probabilities, to extended models like those
in [14].

Noise agents represent uninformed traders on the market. There exist a num-
ber of noise agent variations. Relatively complicated strategies for noise traders
are used in [12–14]. In these papers, the agents can submit Buy and Sell orders
with equal probabilities, and can submit Limit and Market orders, or can can-
cel existing an limit order if it was not yet executed. For limit orders, limit
prices can lie inside the current spread, outside the current spread, or they can
be equal to the current spot price. The inside-the-current-spread limit price is
derived using the uniform distribution, and the outside-the-current-spread limit
price is derived using the power law. The size of the market and limit orders
follow power law distributions, with different parameters. The corresponding set
of parameters suggested by [13] is presented in Table 1.

Equation 1 illustrates how a random value can be obtained from the power
law distribution, with parameters A and α.

y = A/x
1

α−1 , x ∼ uniform(0, 1) (1)

Random Trading Agents. Random trading agents can submit either a Sell or
a Buy order, each with probability 0.5 [21]. In contrast with noise agents, random
agents never submit market orders, instead they always submit limit orders for
a fixed number of shares. The random trading agent’s logic is summarized in
Table 2, where αt is a random variable ∼ uniform(−0.1, 0.1) and pt−1 is the
previous price of the security [21].

96 N. Ponomareva and A. Calinescu

Table 1. Noise agent parameterization

Parameter Value

Order cancellation probability 0.5

Market order probability 0.16

Market order size ∼ powerlaw(10, 2.7)

Limit order probability 0.35

Limit order in spread probability 0.32

Limit order at spot price probability 0.33

Limit order outside the spread probability 0.35

Limit price inside the spread ∼ uniform(bid, ask)

Limit price outside the spread ∼ powerlaw(50, 2.5)

Limit order size ∼ powerlaw(10, 2.1)

Table 2. Random trading agents parameterization [21]

Order type Action

Buy order Submit Limit Buy order with quantity N and limit price (1 + αt)pt−1

Sell order Submit Limit Sell order with quantity N and imit price (1 + αt)pt−1

Momentum Trading Agents. Momentum trading agents are trend followers –
they assume the persistence of an observed (so far) trend and act based on this
belief [21]. For example, if the stock price went up compared to the previous
observations, momentum agents buy this stock, assuming that it will continue
to appreciate in price.

Contrary Trading Agents. Contrary agents have an opposite opinion and
assume that a trend is just a temporary inconsistency in the market, perhaps an
overreaction to a new announcement, and thus act against the trend [21]. For
example, they choose to sell stocks if there was an upwards trend, and buy if
there was a downwards price trend. The strategies of momentum and contrary
trading agents are presented in detail in [21], and are summarised in Table 3.

3 Implementation

3.1 Essential Features of the AT Simulation Tool

Once the features and parameters of the model are decided, the next impor-
tant question that arises is what features should the simulation tool include,
and how it should be implemented. Based on the analysis and evaluation of
several financial market simulation tools [12,19,21,29,32] and available agent-
based platforms like SWARM [6] and JASA [4], we identified the following list
of features that a suitable tool for evaluating AT strategies should have:

Revisiting Agent-Based Models of Algorithmic Trading Strategies 97

Table 3. Momentum and contrary agents parameterization [21]

Condition Action

Momentum agent

pt−1 < pt Submit Limit Buy order with quantity N and limit price (1 + αt)pt−1

pt−1 > pt Submit Limit Sell order with quantity N and limit price (1 + αt)pt−1

Contrary agent

pt−1 < pt Submit Limit SELL order with quantity N and limit price (1 + αt)pt−1

pt−1 > pt Submit Limit BUY order with quantity N and limit price (1 + αt)pt−1

– The ability to switch between backtest mode and CDA mode, like in [28], thus
rendering the AT simulation tool suitable for both testing the performance of
AT strategies against historical data, as well as allowing to explore how the
agents and algorithms will behave and what patterns might emerge from the
agent interactions for CDA-based simulations.

– The ability to simulate real market features − while this requirement adds
complexity, these features might be essential to understand what strategy will
perform best in a real market context. They include:
• Short selling. Short selling is essential because allowing algorithms to model

short trading can substantially extend their power, and thus more compli-
cated algorithmic agents can be evaluated.

• Commisions are also a prerequisite, because modelling them can have a
substantial impact on the agents’ performance.

• Lower latency - as AT strategies can process information, make decisions
and execute orders considerably faster than humans.

– Finally, as suggested in [32], the system should be of a pluggable architecture
and easily extensible, to allow the addition of new agents and new modules.

An important part of implementation is to decide how the agents will behave
during simulations. Many implementations, like [19], choose an approach where
at each point of time only one agent, selected randomly, will be able to perform
any market actions. This is usually simulated by selecting an agent number from
a distribution, and then giving this agent opportunity to act. This, however,
makes it complicated to simulate the lower latency of algorithmic agents as, for
this feature to be simulated, algorithmic agents should have a higher probability
of being selected.

We, however, chose to adopt a different approach: at each time all agents
can act simultaneously. In the implementation of our simulation tool, each agent
is represented by a thread and can make decisions and submit orders at each
auction time moment (price tick). Agents are synchronized only when they are
submitting orders, because it is impossible to submit two orders simultaneously
and there is always an order submitted earlier. When the next tick occurs, all
agents are notified and can choose either to skip the step or act at this time.
The probability of skipping the step should be higher for human-based agents

98 N. Ponomareva and A. Calinescu

than the probability of skipping the step for algorithmic agents, thus simulating
the lower latency.

In the next section we briefly describe the architecture we used for our sim-
ulation tool, AlTraSimBa, in terms of its modules and how they are linked, and
we explain the reasoning behind these design and implementation decisions.

3.2 AlTraSimBa Implementation

There are two separate components of AlTraSimBa: a core component and a
UI component, in charge of graphical user interface. In the core part the main
modules are Auction, PriceDetermination, ClearingHouse and HistoricalData-
Log. Figure 1 demonstrates the schematic view of the modules’ interaction.

Fig. 1. Modules of AlTraSimBa system

Auction is the core module in charge of time iteration, notification of agents
about auction events (tick time passed, auction day passed, etc.), collection of
orders and directing them to the appropriate price determination module (either
CDA or BackTest). It is implemented as a separate thread that communicates
with the Agent threads via observer–like communication (all agents are listeners
of auction events).

PriceDetermination is in charge of price formation and models the market
mechanism. For CDA, price changes are determined by the executed orders on
the market, while for BackTest prices follow prefixed fluctuations from the loaded
data file. This module executes market orders, maintains the Limit order book,
and executes limit orders when limit price conditions are met. The PriceDe-
termination module is connected to the ClearingHouse module, to be able to
inform the latter that the order of an agent was executed, and therefore that

Revisiting Agent-Based Models of Algorithmic Trading Strategies 99

the agent’s holdings should be updated. Additionally, this module notifies His-
toricalDataLog when trading takes place and forwards the details of the trade
to be recorded.

HistoricalDataLog contains the information about the trades that took
place on the market in the past. It also makes historical price movements and
trading volumes available to all the agents in the model, for training and decision-
making purposes.

ClearingHouse is in charge of keeping agent-specific information: the cur-
rent holdings of an agent (the number of stocks owned, free cash and level of
credit, number of shares shortsold), initial wealth level, and the list of submitted,
cancelled, executed or still outstanding orders.

Even though we tried to implement as many key features as possible, due
to the limited time AlTraSimBa suffers from a number of shortcomings which
should be addressed in the future work. These limitations are:

– Borrowing is interest-free in our implementation. Ideally interest should be
added for each period of having negative balance, however it requires main-
taining a history of holdings and applying interest accordingly. This real mar-
ket feature is left for later implementations.

– Short selling does not incur commissions. By contrast, in the real world short
selling requires to have a margin account with holdings that should not fall
below a certain level of the price of all borrowed securities, otherwise a margin
call is encountered [31]. In the future versions of the tool interest and margin
calls should be implemented.

– The AlTraSimBa agents can so far submit market and limit orders only, other
types of real orders are not implemented. Adding agents who can submit,
for example, stop and stop limit orders can result in more sophisticated and
potentially profitable strategies.

Even though the AlTraSimBa simulation tool does not incorporate all real
market features, it nevertheless provides a powerful and flexible functionality
for the complex evaluation of different algorithmic trading strategies, on differ-
ent types of markets, and can therefore be valuable for both researchers and
practitioners.

4 Execution Algorithmic Agents

In this section we explain why execution strategies are important, review metrics
used to assess these strategies, and list the main relevant execution strategies.
Finally, we summarize the Bayesian execution agent with daily cycle strategy
and describe our theoretical extension to this strategy.

4.1 Background

An order of almost any size can be executed via the market order. However, a
large market order will consume limit orders from the limit order book, step by

100 N. Ponomareva and A. Calinescu

step, from the top of the queue, obtaining worse prices as deeper limit orders
are executed to satisfy the market order. Execution algorithms aim at execut-
ing large orders in such a way as to minimize the market impact of the order.
They generally work by slicing large orders into smaller orders (suborders) and
submitting the latter to the market at discrete times.

The problem of an optimized trade execution can be formulated as follows:
the algorithm is supposed to buy or sell a specified number of shares of a speci-
fied stock, over a predetermined horizon, while taking into account the execution
goals. Execution goals can be maximizing the revenue (for Sell orders) or min-
imizing the cost (for Buy orders), or aim to meet other investor performance
metrics (e.g., speedy execution, minimization of market impact). The trading
strategy controls decisions about how to best split the order into smaller orders,
the timing for submission of each suborder, what type of order to use, and how
aggressively priced should the suborders be if limit orders are used [12].

Execution strategies can be divided into strategies that aim to meet market
benchmarks and strategies aiming to meet criteria imposed by the order itself,
at the moment of order submission [19].

4.2 Execution Strategy Evaluation

The objectives of an execution strategy dictate the performance metrics to be
used for its evaluation. The algorithms focused on meeting market benchmarks
could be assessed using the Volume Weighted Average Price (V WAP) metric
[13,23].

The Volume Weighted Average Price (V WAP) is the average price on a per
share basis over a specified period H, for example over one trading day [13,23]. If
during the horizon H, T trades took place on the market {(p1, v1), . . . , (pT , vT)},
where pi denotes the price at which the trade was executed and vi the traded
volume, then the market VWAPM is defined as:

VWAPM =
T∑

t=1

ptvt

/
T∑

t=1

vt (2)

The V WAP of some algorithm A is defined analogously using the sequence of
orders algorithm executed. To compare the market and algorithm’s metrics, the
VWAP Ratio (V WAPR) is used [23]:

VWAPR =

⎧
⎪⎨

⎪⎩

10000 × (V WAPA − V WAPM)
V WAPM

for a Buy order

10000 × (V WAPM − V WAPA)
V WAPM

for a Sell order
(3)

The smaller the V WAPR, the better is considered the strategy. A negative
V WAPR means that the V WAPA was better than VWAPM [23]. Apart from
just the V WAPR, [13] also considers the algorithm’s V WAPR mean and stan-
dard deviation over N trading days. Low V WAPR mean and standard devia-
tion values are expected from a good execution strategy aimed at achieving the
V WAP metric.

Revisiting Agent-Based Models of Algorithmic Trading Strategies 101

Another metric, the Mid-Spread Metric (MSM) is calculated by comparing
the overall execution price achieved by an execution strategy to the average of
the bid-ask spread at the time when the order was submitted to the strategy
for execution [26]. MSM provides a good baseline for the comparison of differ-
ent execution algorithms that do not aim at achieving market-specific metrics.
In general, any real strategy is expected to do worse than this idealized policy
(MSM is also referred to as underperformance or trading cost) [25], unless mar-
ket prices will move in a direction that favours the trader. MSM is measured
in basis points (1/100 unit of percent); the MSM equation is given below:

MSM =

⎧
⎪⎪⎨

⎪⎪⎩

104 ∗ (
∑K

t=1 ptnt + C(K − 1) − pmid ∗ X)
pmid ∗ X

for a Buy order

104 ∗ (pmid ∗ X − ∑K
t=1 ptnt − C(K − 1))

pmid ∗ X
for a Sell order

(4)

where {(p1, n1), (p2, n2), . . . , (pK , nK)} is the sequence of suborders executed by
the strategy, pmid is equal to (pask − pbid)/2 , X =

∑K
t=1 nt is the volume of

original (large) order, and C ≥ 0 is the commission size per order.
If during a strategy execution the suborders submitted by the strategy

exhaust all limit orders offering to buy (or sell) at the spot price, the spot
price will go down for Sell orders and up for Buy orders, and thus the MSM
value will be positive. If the trader’s suborders are executed with a price below
the current mid-spread price for Buy and higher for Sell orders, then the MSM
value will be negative and that strategy will be considered successful [26].

4.3 Näıve strategies

To estimate the performance of complex execution strategies, the main execution
strategy types, such as those described in [13,25], can be used. Below we briefly
summarize these strategies; for full details refer to [12,13,25,26].

– Strategies that submit only market orders:
• Market Order Agent – submits 10 equal suborders at equal time intervals;
• V WAP Agent – submits suborders at each tick,with size = fullOrderSize/

N , where N is the number of tick updates received during the execution hori-
zon H.

– Strategies that use limit orders:
• Näıve Limit Order Agent – submits one limit order for the full quantity

and amends the limit price to the current spot price at each tick;
• Chunked Limit Order Agent – divides each order into 10 equal suborders,

submits each chunk with equal intervals, and returns to chunks and amends
them after a fixed time interval (less than the interval between the chunks’
submissions).

102 N. Ponomareva and A. Calinescu

4.4 Bayesian Adaptive Trading Agents

Theory. Bayesian adaptive trading with a daily cycle is a dynamic strategy for
executing large orders [7]. This strategy is adjusted at each arrival of a price
update (at each price tick). The derivation of the Bayesian-based strategy is
based on the following assumptions [7]:

(i) The stock’s price can be described as an arithmetic random walk: S(t) =
S0+αt+σB(t), where S(t) is the price of the stock at time t, S0 is the price
of the stock at the beginning of the day, α is a drift, thought to be determined
by the actions of the informed traders, σ is the market volatility, and B(t)
models standard Brownian motion.
Almgren et al. believe that large investors decide on their trading strategy
in the morning and thus they determine the overall direction of the price
movements [7]. This approach is in contrast with many execution strategies
which treat price fluctuations caused by other traders as noise in the data
[7]. The drift rate is assumed to be constant throughout the whole day,
however, its value is unknown and has to be estimated via observations of
the price movements. This assumption is supported by another assumption,
that informed traders use strategies that have V WAP as their benchmark.
The volatility σ is determined from the actions of informed traders, as their
trades are of a noise type and thus can be predicted on average [7]. Almgren
et al. suggest to estimate σ from the short period of observations of price
movements [7].

(ii) The true drift value is unknown, but it is assumed to be drawn from the
Normal distribution.

α ∼ N (ᾱ, ν2) (5)

This drift estimate will be updated as more stock price updates arrive during
the day. According to Almgren et al. [7], the best estimate of α at time t is
given by:

α�(t) =
ᾱσ2 + ν2(S(t) − S0)

σ2 + ν2t
(6)

(iii) It is assumed that the market impact of order execution can be described
as a linear function of the execution speed.

The formulation of the problem is as follows: X represents the number of
shares to be bought by the end of the trading horizon H, x(t) represents the
number of shares left to be bought at time t and is called trading trajectory. The
trading rate (or speed of execution), v(t), is defined as:

v(t) = −dx

dt
; ∀t v(t) ≥ 0 (7)

The requirement of non-negativity means that the strategy should never sell to
execute a Buy order.

Using assumption (iii), the price after the execution of a part of the order
can be defined by:

S̄(t) = S(t) + ηv(t) (8)

Revisiting Agent-Based Models of Algorithmic Trading Strategies 103

where S̄(t) is the price of the stock after executing the strategy at moment
t, S(t) is the initial price of the stock at moment t, before any suborder was
executed as a part of the strategy, and η is the market impact coefficient. For
Buy orders η ≥ 0, as every Buy order can only either drive the price up or leave
it at the same level (according to the Limit Order Book mechanism). Taking into
account Eq. (7) and adding the requirement that the trading rate v(t) should be
continuous, Almgren et al. [7] derived Eq. (9) for x(τ), where t ≤ τ ≤ H:

x(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

X τ < t�

H − τ

H − t
x(t) − α�

4η
(τ − t)(H − τ) τ ≥ t�

α� < −αc

H − τ

H − t
x(t) − α�

4η
(τ − t)(H − τ) |α�| ≤ αc

⎧
⎨

⎩

H� − τ

H� − t
x(t) − α�

4η
(τ − t)(H� − τ) τ ≤ H�

0 τ > H�
α� > αc

(9)

t� = H −
√

4ηx(t)
−α�

; H� = t +

√
4ηx(t)

α�
(10)

αc is the critical value of the drift, estimated using αc = 4ηx(t)
/
(H − t)2 .

Overall, the above equations mean that, if α� < −αc, the trading does not start
until the t� period. If α� > αc, then the trading finishes before the end period
H – the last trade is expected to occur no later than at time H�. For exact
details of the derivations refer to [7].

Extending the Standard Bayesian Agent Approach. In this section we
propose three theoretical extensions to the standard Bayesian adaptive trading
model presented in the previous section. We assume that trades will happen at
discrete points of time {1, 2, . . . ,H}, time 0 is the beginning of the algorithm,
and x(0) = X. The trade should be executed during one business day, so:

H =
End of market day − beginning of market day

tick step
− 1 (11)

where tick step indicates the time interval between two consecutive price updates
(e.g. every minute or 10 min).

(i) The maximum number of orders an agent can submit is H. Reference [25]
mentions that the execution strategy may not consider the commissions,
as execution strategies are usually employed by large institutional investors
who receive considerably lower commission rates compared to the regular
investors. However, it still seems appropriate to include the commissions
into the calculation of the optimal strategy. If the algorithm trades too
often, the commission incurred can be too high, as it is paid for every

104 N. Ponomareva and A. Calinescu

order executed. We can select H in such a way that the overall commission
incurred for all orders will be no more than a certain percentage of the
overall spot price of the order. We define the number of steps as:

step =
H

min(max(1,maxStepsNum),H)
(12)

where maxStepsNum = S0X ∗ ε/ComSize , ε is a commission threshold
(e.g., 0.001) and ComSize is the size of the commission per order. Then
our strategy will act only when t mod step ≡ 0.

(ii) In [7] the schedule x(τ) (Eq. (9)) was derived for Buy orders. To adjust
it to Sell orders, we analyse Eq. (8). Any Buy order can only worsen the
spot price of a stock. For a Sell order, large orders will dive deeper into
the Limit Order Book, and executing limit orders will gradually reduce
prices the deeper the Limit Order Book is traversed, so the market impact
equation becomes S̄(t) = S(t) − ηv(t). Then the equation for the trading
rate becomes:

x(τ) =
H − τ

H − t
x(t) +

α�

4η
(τ − t)(H − τ) (13)

From here we can derive the Sell schedule x(τ):

x(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

X τ < t�

H − τ

H − t
x(t) +

α�

4η
(τ − t)(H − τ) τ ≥ t�

α� > αc

H − τ

H − t
x(t) +

α�

4η
(τ − t)(H − τ) |α�| ≤ αc

⎧
⎨

⎩

H� + τ

H� − t
x(t) − α�

4η
(τ − t)(H� − τ) τ ≤ H�

0 τ > H�
α� < −αc

(14)

Further, by examining Eqs. (9) and (14) we can notice, that if in (14) we
replace α� to α�′ = −α�, then (14) becomes exactly (9). This means that
the only difference in our algorithm for the Sell order is in the calculation
of the drift estimate:

α�(t) =

⎧
⎪⎨

⎪⎩

ᾱσ2 + ν2(S(t) − S0)
σ2 + ν2t

for a Buy order

− ᾱσ2 + ν2(S(t) − S0)
σ2 + ν2t

for a Sell order
(15)

(iii) How do we set α, ν2 and σ for the current day in Eq. (6)? According to
[7], if a trader believes that his prior belief ᾱ is correct, then he needs to
set the variance ν to 0; in this case price updates will not modify the value
of α. If no reliable information about prior α is available, setting variance
ν to ∞ will result in the estimate of the drift α to be formed only by

Revisiting Agent-Based Models of Algorithmic Trading Strategies 105

price observations during the day. If we assume that the investors’ overall
drift for the previous day can be a good prior for the drift in the current
day and that the absolute volatility σ is the same for both days, then the
estimated value for the drift from the previous day can be evaluated using
historical data for the previous day. Thus S(t) = S0 + αt + σB(t) and
S(t + 1) = S0 + α(t + 1) + σB(t + 1). Subtracting one from another, we
obtain:

S(t + 1) − S(t) = α + σ(B(t + 1) − B(t)) (16)

where S0 is the stock price at the beginning of the trading period on the
previous day, and S(t) and S(t + 1) are the stock prices at times t and
t + 1, respectively, on the previous day. Since B(t) models the Brownian
motion, B(t + 1) − B(t) is a random variable ∼ N (0, t + 1 − t) = N (0, 1)
and σ(B(t + 1) − B(t)) can be considered a random variable drawn from
∼ N (0, σ). Now if we use the MLE estimate [9]:

0 =
1

N − 1

N−1∑

t=1

(S(t + 1) − S(t) − α) (17)

σ =
1

N − 1

N−1∑

t=1

(S(t + 1) − S(t) − α)2 (18)

where N is the number of price observations and S(t) the stock price at
time t on the previous day. From Eq. (17) we can derive:

α =
1

N − 1

N−1∑

t=1

(S(t + 1) − S(t)) (19)

and then we can calculate σ using Eq. (18).
The assumption that the drift value from the previous day can be a good
prior for the belief of the drift value of the current day means that we believe
that the intentions of the investors did not change much compared to the
previous day. The results of our experiments presented in Sect. 5 will show
whether these assumptions lead to an improved performance of the trading
algorithms, on backtesting and on market simulation.

5 Results

In this section we present the quantitative results and qualitative insights from
the experiments we conducted with human-like and execution agent models
implemented and assessed using the AlTraSimBa tool. Then we present the
results of testing the Bayesian execution strategy and we compare it with näıve
execution strategies. We also test whether the Bayesian agent assumptions we
presented in Sect. 4.4 hold for backtesting and simulation.

106 N. Ponomareva and A. Calinescu

5.1 Human-Like Agent Experiments

In this simulation model, human-like agents will be required to fill in a Limit
Order book and simulate trade flows corresponding to real market trade flows.
To assess whether the human-like agents generate a realistic flow of orders, from
an economic perspective, we used two metrics frequently used in real markets –
the annualized daily returns volatility and bid-ask spread [8,17,30].

Annualized daily returns volatility (ADRV) is a common metric used to
report the volatility of different stocks [16] and is calculated using the following
equations:

Daily return = 100 ∗ today closing price − yesterday closing price

yesterday closing price
(20)

ADRV =
√

252 ∗ standard deviation of daily returns for period (21)

Spread = 100
ask price − bid price

ask price+bid price
2

(22)

Reference [2] provides month-by-month statistics of annualized daily returns
for 2893 stocks with different capitalizations. We downloaded these files and
processed them in order to derive the “normal” levels of annualized volatility we
would like our simulations to exhibit. The ADRV mean and standard deviation
results we obtained for the 2010 data are illustrated in Table 4. This analysis
showed that 95 % of stocks had an annualized volatility between 1 and 80, and
the interval of possible volatility values is [0.7250, 251.6504].

Table 4. Statistics of stocks ADRV for year 2010

Volatility # % Example of stocks

0.7250–13.9316 2000 7.9261 % [AON, CDNS, BCE]

13.9316–27.1382 7238 28.6847 % [GXP, DBD, FLIR]

27.1382–40.3448 6953 27.5552 % [BRF, IM, PPDI]

40.3448–53.5514 4472 17.7228 % [WYNN, VNO, LEN]

53.5514–66.7580 2369 9.3885 % [AEIS, EXK, HMIN]

66.7580–79.9646 1096 4.3435 % [BGZ, GMO, MELA]

Annualized volatility mean: 37.4928

Annualized volatility S.D: 22.2068

Regarding the bid-ask spread, [22] suggests that for liquid stocks the average
bid-ask spread is 2.0 %, and [11] reports average bid-ask spreads on NASDAQ
and NYSE being 1.0133 % and 0.5773 % respectively, with 95 % of the stocks hav-
ing spread of no more than 2.6486 % for NASDAQ and no more than 1.4442 %
for NYSE. Thus, we concluded that, to validate our assumptions and modelling

Revisiting Agent-Based Models of Algorithmic Trading Strategies 107

approach, our simulation experiments should produce price fluctuations with
bid-ask spread no more than 3 % of the stock’s mid-quote price.

In all our human-agents experiments we used a tick step of 1 min (every
minute agents can submit new orders), a 6-hour trading day (from 13 to 19),
a tick size of 1 cent; each market setting is run for 1 day to allow agents to
fill the Limit Order Book. Simulations were run for a 10-day testing period, for
which metrics are reported. We first calculated the average Daily return and then
converted it to the annualized volatility using Eqs. (20) and (21). The Spread
is calculated for all tick steps over the testing period using Eq. (22), and then
the Annualized volatility mean and standard deviation are reported. The sizes
of Buy and Sell queues are reported at the end of the testing period.

For each type of the market we ran several experiments with a different
number of agents, to test whether a larger number of agents leads to more
realistic results. For each market we reported ADRV , the bid-ask Spread mean
and standard deviation, and the sizes of the Buy and Sell queues.

The conclusions of our analysis of the impact of different agent markets on
the market validity are briefly presented next.

Markets with Random Trading Agents Only. In addition to the markets
described in [21] (contrary, momentum and half-and-half) we decided to also
investigate markets where all the agents are random trading agents (described
in Sect. 2.2). This market type can be used if the no intelligence assumption is
sufficient for the purpose of the research, and the experimenter believes that
stock price fluctuations follow a random pattern.

The results of experiments for markets containing 5, 11, 22, 55 and 110 agents
are presented in Table 5.

Table 5. Random agent market Annualized Volatility (AV) and bid-ask Spread

Agents AV Spread mean Spread S.D. Buy queue Sell queue

5 168.4439 3.8802 2.3468 1788 1584

11 73.0448 4.1120 2.5591 3801 4025

22 138.6540 4.1075 2.4528 7431 7761

55 109.9939 3.9487 2.3586 17905 17855

110 139.5403 3.7866 2.3630 33376 33430

From Table 5 we can notice that random trading agents fill the Limit Order
Book quickly enough − after 1 day neither the Buy nor the Sell queue are ever
empty (otherwise the Spread reported would have been NaN). Additionally,
they fill limit books almost equally.

Daily returns for a different number of random agents are shown in Fig. 2. It
appears that there is no pattern between the number of agents and daily returns
fluctuations. That also explains why we cannot derive a pattern of Annualized

108 N. Ponomareva and A. Calinescu

Volatility − AV seems to be independent of the number of agents. However,
as reported in Table 4, AV is within (not very common) real-market values.
Overall, markets generated by random trading agents can represent a market
where a very volatile stock is traded.

By analysing the results, we saw that the Spread values for the 11-agent
markets and for the 110-agent markets are the most volatile, however we see
no reasonable explanation for this phenomenon. This behaviour is most likely
caused by the underlying random nature of the agents used. The results in Table 5
show that the overall Spread mean and standard deviation are unchanged when
increasing the number of agents. Spread values are slightly larger than expected
for liquid stocks, because, as stated previously, for liquid stock we would expect
spread values to be less than 3 %.

Overall, the market simulation with random agents seem to create an eco-
nomically plausible situation, however slightly on the volatile side and more for
illiquid stocks. The number of agents does not have a significant impact on the
parameters of the market, and they should be chosen based only on volume (sizes
of limit queues) a market should have.

Momentum Markets. Reference [21] in their experiments used a market with
50 momentum agents and 5 random agents. We additionally tested a Llimit
Order Book filled by 10, 20 and 100 momentum agents, while maintaining the
proportion of momentum and random agents. The summary of the experimental
results is presented in Table 6.

Table 6. Momentum market Annualized Volatility (AV) and bid-ask Spread (The #
Agents column contains the number of momentum : random agents.)

Agents AV Spread mean Spread S.D Buy queue Sell queue

10:1 118.1072 1.6752 1.2114 6512 7303

20:2 103.7858 1.4024 1.0369 14320 13483

50:5 149.2243 1.0546 0.7812 33613 34058

100:10 94.3928 0.8391 0.6262 59964 69918

For the momentum markets we observe again no connection between the
Annualized Volatility and the number of the agents in the simulation model,
however both Spread mean value and standard deviation decrease with increas-
ing the overall number of agents. The AV values are plausible and comparable
with the corresponding random agent market values. However the Spread values
are within the target spread values of 3 %, and therefore suggest a more liquid
stock. From Fig. 3 we can see that, indeed, for the 100:10 configuration market
the Spread fluctuations are less volatile than for the markets with fewer agents.
Both limit books in the momentum markets seem to be filled equally.

Revisiting Agent-Based Models of Algorithmic Trading Strategies 109

Fig. 2. Daily returns for random
agents

Fig. 3. Bid-ask spread for the last
30 min of the momentum market

Table 7. Contrary market Annualized Volatility (AV) and bid-ask Spread (The #
Agents column contains the number of contrary : random agents.)

Agents AV Spread mean Spread S.D Buy queue Sell queue

10:1 46017.1713 NaN NaN 0 14749

20:2 478285.9925 NaN NaN 16 22448

50:5 2063384.608 NaN NaN 0 3666

100:1 1529582.742 NaN NaN 1669 24768

Contrary Markets. Contrary markets according to [21] are the markets filled
with contrary and random agents in proportion 10:1. The results we observed in
experiments at the first sight seem perplexing (Table 7).

The values NaN in the columns for the bid-ask Spread standard devi-
ation indicate that, during the testing period, one of the limit order books
became empty. Indeed, we can see that the Sell queue is severely underfilled
in comparison with the Buy queue. Additionally, the AV values indicate an
extremely volatile stock, from an unrealistic (hopefully − unless another major
crisis strikes) world. This is in accordance with [21], which, via experiments,
showed that the contrary agents’ actions quickly reverse any trend and simulate
very volatile markets.

Even if such agents are allowed more time to fill the Limit Order Book, the
antisymmetry feature of limit order books filling will result in one queue being
periodically exhausted. Overall, it seems that contrary markets are not suitable
for testing algorithmic trading strategies.

Half and Half Markets. Half and half markets are comprised of contrary,
momentum and random agents in proportion 5:5:1, respectively [21] (Table 8).

The half-and-half market is more volatile than the momentum market, and
the simulated stock is more illiquid (Spread of up to 7 %, with a high stan-
dard deviation). There is no observed connection between the number of agents
and the AV and Spread values; both queues are filled approximately equally.
This market type seems to be truly random, beating in randomness even the pure

110 N. Ponomareva and A. Calinescu

Table 8. Half-and-half market Annualized Volatility (AV) and bid-ask Spread (The
Agents column contains the number of contrary : momentum : random agents)

Agents AV Spread mean Spread S.D Buy queue Sell queue

5:5:1 186.8334 4.3441 2.8278 3631 3847

10:10:2 260.533 7.1614 5.3655 7330 8087

25:25:5 236.0432 5.123 4.8293 16631 16636

50:50:10 187.67 3.5133 2.3815 32607 32855

random agent market. Indeed, according to the experiments carried out in
[21], the half-and-half market was the least stable market, with larger price
fluctuations.

Noise Markets. Reference [13] claims that, for noise agents with the parame-
ters described in Table 1, the flow of orders generated is economically plausible
and can be compared with the real market activity. Additionally, [18] has shown
that zero intelligence agents with slightly different parameters could mimic real
order flow in CDA simulations and are able to explain 96 % of the variance for
bid-ask price fluctuations. Thus we would expect that zero intelligence agents
can create a flow of orders which will result in realistic price and bid-spread
fluctuations. However, it still remains a question of how many agents should we
include into the market simulation and how many days should they first run
before their overall activity simulates a realistic market setting.

Nevertheless, running the experiments with parameters from Table 1 we found
out that the market thus generated is extremely volatile, and 1 full day is not
enough to fill the Limit Order Book − over a 10-day testing period one of the
limit books was exhausted each day, resulting in a NaN bid-ask Spread. We ran
a sequence of experiments to see whether we can find better parameters for the
agents. During testing it turned out that an extremely high probability of order
cancellation (and only limit orders can be cancelled) in conjunction with a high
market order probability resulted in queues being emptied very quickly by the
arriving market orders. We ran a series of experiments with different probabili-
ties for market, limit and order cancellation (where all probabilities ranging from
0.3 up to 0.9 were tried, with a 0.05 step) and the following different parameters
were found to give more plausible results (Table 9) (different values were obtained
only for the market order, limit order and order cancellation probabilities; the
amended values are in red).

The results of the set of experiments with the parameters in Table 9 are
summarized in Table 10. Interestingly, if we extend the period agents are given
to fill the Limit Order Book before we test the market characteristics from 1 day
to 5 days, the results obtained are economically more plausible, since annualized
volatility is lower. Also, spread diminishes as more agents are used. This can be
explained by more limit orders within the spread being entered, which diminishes
the spread and increases the number of limit orders which offer to buy or sell
at prices close to the spot prices, thus making incoming market orders execute

Revisiting Agent-Based Models of Algorithmic Trading Strategies 111

Table 9. The modified noise agent parameterization

Parameter Value

Order cancellation probability 0.05

Market order probability 0.3
Market order size ∼ powerlaw(2.7)

Limit order probability 0.65
Limit order in spread probability 0.32
Limit order at spot price probability 0.33
Limit order outside the spread probability 0.35
Limit price inside the spread ∼ uniform(bid, ask)
Limit price outside the spread ∼ powerlaw(2.5)
Limit order size ∼ powerlaw(2.1)

Table 10. Noise markets Annualized Volatility (AV), bid-ask Spread, and Buy and
Sell queues sizes. (Agents are given 1 and 5 days to fill the limit order book. The #
Agents column contains the number of noise agents.)

Agents Annualized Volatility Spread mean Spread S.D Buy Sell

Agents are given 1 day before testing

5 381.676 2.2934 6.5205 42423 408863

11 349.094 0.954 3.7674 65048 227519

22 492.48 0.1997 1.0485 223342 155818

55 27.8309 0.0339 0.3631 442579 851887

Agents are given 5 days before testing

5 170.4793 0.6734 1.8316 55514 65256

11 161.0567 0.6092 1.7014 120106 109189

22 172.1393 0.4141 1.6055 211893 711861

55 64.3345 0.0836 0.5424 992644 922889

at closer prices. Overall, noise agents seem to fill queues unequally, but as time
elapses (or more agents are used), the spread and volatility diminishes.

Human-Like Agents Markets Conclusion. Based on the results and analy-
sis presented in Sect. 5.1, we concluded that the momentum market is the best
model for testing algorithmic trading strategies, since it quickly fills the Limit
Order Book and produces results comparable to those of a liquid stock. On the
other hand, random markets can simulate a more volatile and less liquid stock,
whereas markets containing noise agents should be used with more time (5 and
more days) given to fill the Limit Order Book, and they can represent a very
liquid and volatile stock.

112 N. Ponomareva and A. Calinescu

5.2 Bayesian Adaptive Learners

Execution strategies aim at minimizing the market impact of the order to be
executed, therefore they should be mainly tested on the simulation part of the
software, since the market impact of each order could thus be measured. Back-
testing assumes infinite liquidity and zero impact of any order submitted by an
artificial agent, but it also considers all agents evenly, which cannot be achieved
with the market simulation, due to the random nature of the simulation of price
movements. So backtesting can still be used to check whether a strategy adjusts
its aggressiveness of order submission as a consequence of price variations.

Experiment Setup. At first we filled the Limit Order books with the human-
like agents of a specified market type, and saved the configuration to file. Then
we ran each test on this initial configuration, to ensure the tests have the same
initial conditions. We thus eliminated the situation where one of the strategies is
launched on a more favourable market. Each agent was then given to execute a
large order and statistics were calculated. In theory, the starting price for the
security should be the same, since the market configuration is loaded from the
configuration file for each test. However, due to the random order in which agents
act, initial spot prices can differ slightly.

Simulations were run for five different configurations for two market types:
momentum markets and random agent markets. For each agent, we reported
the MSM metric with commissions considered (Eq. (4)), VWAPR (Eq. (3)), the
achieved price of an overall execution and the ideal price of an order – the price
of an order at its creation time.

For each saved initial market configuration, we estimated the daily trading
volume. [13] claims that execution strategies are used to execute the orders of size
5–15 % of the Average Daily Volume (ADV). Orders less than 5 % are believed
to have a small market impact and can be executed either as market orders or
using simple executional strategies. Orders bigger than 15 % of ADV should be
traded over several days.

For momentum markets tests, we used 50 momentum agents and 5 ran-
dom agents, whereas for random markets we chose a configuration of 55 ran-
dom agents. All markets were first run for 5 days before tests of different types
of agents were launched.

Each Bayesian agent is initialised with two parameters: Bayesian(consider-
Commissions, learnPriors). The parameter considerCommissions indicates
whether commissions should be considered when calculating the trading sched-
ule. When it is set to true, the Bayesian agent might do less trading, in an
attempt to minimize the commission costs; learnPriors indicates whether the
agent should try to estimate σ and ᾱ (Eq. (5) and Sect. 4.4) from previous days
observations.

The simulation parameters we used are described in Table 11. We will con-
sider the results for each market type separately and then will draw global
conclusions.

Revisiting Agent-Based Models of Algorithmic Trading Strategies 113

Table 11. Simulation parameters for Bayesian agent experiments (Parameters marked
with ∗ are derived from previous day observations if learnPriors is true. Parameters σ,
ᾱ and ν2 are used to estimate the drift, using Eq. (15)).

Parameter Value

Commission 8 units per order

Commission threshold 0.001 of initial order price

Tick step (updates every) 1 min

Market open time 13:00

Market close time 19:00

Default∗ Market Volatility σ 1.5

Default∗ prior estimate of drift ᾱ 0.7

Default prior STD of drift ν2 1.0

Table 12. Bayesian versus näıve execution strategies for momentum markets. (The
parameters correspond to Bayesian(considerCommissions, learnPriors)).

Order Agent Ideal Achieved MSM MSM Rank VWAPR

Buy Bayesian (false,false) 564131.06 584106.45 354.0912 4 −9.1662
Bayesian (true,false) 564139.06 594657.66 540.9765 7 96.6631

Bayesian (false,true) 564131.06 581117.8 301.1133 3 449.5647

Bayesian (true,true) 564139.06 589819.53 455.2152 6 321.1232
VWAP 564131.06 589342.46 446.9067 5 39.5673
NäıveLimitOrder 564131.06 575703.94 205.1452 2 −293.1889
ChunkedLimitOrder 564131.06 560338.74 −67.224 1 −0.2298

Sell Bayesian (false,false) 599083.8 559206.91 665.6312 7 173.0038

Bayesian (true,false) 604936.52 568520.81 601.9757 5 304.0506

Bayesian (false,true) 604928.52 565012.03 659.8546 6 332.0176
Bayesian (true,true) 604936.52 565265.26 655.7921 4 −27.1817

VWAP 608685.84 611498.17 −46.2033 1 −1.5198
NäıveLimitOrder 608685.84 604873.3 62.6355 2 281.1482
ChunkedLimitOrder 608685.84 588004.18 339.7756 3 104.0207

Momentum Market Results. Table 12 summarizes the results for the momen-
tum markets. We remind the reader that for both MSM and VWAPR, the lower
their values, the better is considered the strategy. We can see that estimating
prior values for σ and ᾱ for both Buy and Sell orders improves the MSM metric
but decreases the VWAPR values. This indicates that estimating parameters
from previous day observations provides a better starting point than using their
default values. The improvement in MSM is more pronounced for the Buy order.
The decrease in VWAPR is a side effect of the change in the trading speed,
however the Bayesian strategy is not a VWAP-benchmark following strategy,
since it bases its decisions only on sequences of price updates. Therefore poor
VWAPR values in all types of Bayesian agents is an illustration that this strat-
egy should not be used if a good VWAPR is needed. Not surprisingly, Bayesian

114 N. Ponomareva and A. Calinescu

agents receive the worst VWAPR in ranking when compared to näıve executional
strategies (Table 12).

For Sell orders Bayesian agents (BA) that consider commissions and thus
act less frequently than the standard BA improve the MSM only slightly, but
deteriorate it for the Buy orders. This suggests that, even though such agents do
less trading, they miss the important price changes updates that can result in an
earlier adjustment of their execution strategies. This further suggests that per-
haps setting a larger commission threshold may result in a bigger improvement
of the BA performance, since they would receive more price updates and will
have the opportunity to act more often. The trading trajectories (the sequence
of the values of the number of shares an agent still has to buy or sell over time)
for four Bayesian agents are presented in Fig. 4.

Fig. 4. The trading trajectories for Bayesian agents, in momentum markets, for Buy
orders. The x-axis is the number of price updates, and the y-axis is the number of shares
the agents still have to buy at each moment of time. The parameters correspond to
Bayesian(considerCommissions, learnPriors). (The agents that consider commissions
are given fewer opportunities to act, and thus they are allowed to execute orders in a
lower number of steps than the no-commission agents.)

We can see that the smoothest trajectory is of the agent that does not con-
sider commission and uses default prior values (Bayesian(false,false)). Its trading
speed increases slightly towards the end, when the agent trades less aggressively,
thus minimizing the possibility of exhausting limit orders with prices close to the
spot price and obtaining worse prices. Two agents which consider commissions
have to buy a large number of shares at the end, since they did not acquire
them during the trading, and this ought to drive the price in negative for an
agent direction. This suggests that perhaps setting a larger commissions thresh-
old may result in a bigger improvement of the Bayesian agents performance since
they will receive more price updates and will thus have opportunity to act more
often. The agent that estimates prior from previous day observations seems to
have more even liquidation speed in comparison with the agent that uses default
values and trades more slowly at the beginning.

Revisiting Agent-Based Models of Algorithmic Trading Strategies 115

Chunked limit order and naive limit order strategies outperform all Bayesian
agents in terms of MSM , however this might be due to the fact that they engage
in much less trading then even Bayesian agents that consider commissions. The
trading trajectory for VWAP, näıve limit order and chunked limit order strate-
gies are presented in Fig. 5. The VWAP agent steadily submits orders for equal
quality at each price update it receives, whereas näıve limit order and chunked
limit order agents execute orders much faster, thus they incur less commissions.

Random Market Results. Random market results and ranking of the agents
according to the MSM metric are presented in Table 13.

Table 13. Bayesian versus näıve execution strategies and their MSM rank, for ran-
dom markets. (The parameters correspond to Bayesian(considerCommissions, learn-
Priors)).

Order Agent Ideal Achieved MSM Rank VWAPR

Buy Bayesian (false,false) 365764.64 380432.2 401.0109 6 346.1609

Bayesian (true,false) 365772.64 369826.34 110.8256 2 660.0392

Bayesian (false,true) 365764.64 385983.38 552.7801 7 522.92

Bayesian (true,true) 365772.64 380246.36 395.7026 5 660.8258

VWAP 365764.64 375378.25 262.8359 4 318.1245

NäıveLimitOrder 365764.64 370027 116.5329 3 228.4315

ChunkedLimitOrder 365764.64 361184.24 −125.228 1 −10.9637

Sell Bayesian (false,false) 430498.36 417768.65 295.697 7 313.3508

Bayesian (true,false) 417752.08 434243.34 −394.76188 4 730.0739

Bayesian (false,true) 417744.08 411427.53 151.2062 6 437.2886

Bayesian (true,true) 417752.08 411954.97 138.7691 5 292.4836

VWAP 434805 482559.75 −1098.3026 1 278.2538

NäıveLimitOrder 434805 466496.36 −728.8637 3 227.9997

ChunkedLimitOrder 434805 475926.36 −945.7425 2 −131.7396

Estimating prior values in random markets considerably improves the MSM
metric for the Sell orders, but deteriorates it slightly for the Buy orders. Since
a random market is more volatile and less liquid than a momentum market, this
suggests that estimates of priors based on previous days observations have less
power in more volatile markets.

For both Sell and Buy orders the Bayesian agents that consider commissions
considerably improve the MSM metric in comparison with the Bayesian agents
that trade more frequently. However, it would be wrong to attribute such an
improvement in MSM only to the influence of the commission parameter, as the
market is volatile and less frequent trading can by chance lead to better results.

For Sell orders we can see that a simple strategy such as VWAP achieved an
extremely good performance by trading very often. Näıve Limit Order and Chun-
ked Limit Order strategies, just as in the Momentum market, outperformed
all Bayesian agents, apart from the Bayesian agent with commissions, which

116 N. Ponomareva and A. Calinescu

Fig. 5. Trading trajectory for simple
executional strategies in momentum
market for Buy orders. The x-axis is
the number of price updates, and the
y-axis is the number of shares agents
still have to buy.

Fig. 6. Trading trajectory for execu-
tional strategies in random market for
Buy orders. The x-axis is the number of
price updates and actions of the agent,
and the y-axis is the number of shares
agents still have to buy.

was able to do slightly better than NäıveLimitOrder agents for a Buy order
(Table 13).

The trading trajectories for Buy orders are presented in Fig. 6.

Noise Market Results. Noise market results are summarized in Tables 14
and 15.

This market is the most volatile and represents the least liquid stock. For
this market considering commission estimates improved the performance only
for the Buy orders, and significantly deteriorated performance for Sell orders.
Prior parameters estimated did not bring any improved performance, which is
explainable, since in such market trends do not last long enough and thus previ-
ous days values have no bearing on the current day price fluctuations. Chunked
limit order and näıve limit order strategy again outperformed all the types of
Bayesian agents.

BackTesting Results. We performed a backtest for a very liquid stock Amazon
(AMZN) [5] for the period between 29 June−06 July 2010, with a one-minute tick
step. We chose Amazon because it is actively traded and has large capitalization,
thus it is possible that institutional investors will trade in this stock and that
Almgren et al.’s assumption about the daily drift being formed by actions of the
traders can hold for this data [7]. We can see in Fig. 7 that during this period
there were two general trends - a downward trend from 25th June to 2nd July,
followed by an upward trend until 9th July. Since backtesting does not allow to
replicate a market impact of a large order, the size of the order does not matter,
so we gave the agents the task to Buy/Sell 5000 shares. The results for 5 trading
days for Buy and Sell orders are summarized in Table 16.

One of the problems in backtesting can be understood looking at the
NäıveLimitOrder agent’s performance indices. This agent submits a Limit Order
for the full quantity at the current spot price. In real markets, if there is sufficient

Revisiting Agent-Based Models of Algorithmic Trading Strategies 117

Table 14. Bayesian agent results in comparison with näıve execution strategies for
noise markets. (The parameters correspond to Bayesian(considerCommissions, learn-
Priors)).

Order Agent Ideal Achieved MSM VWAP Ratio

Buy Bayesian(false,false) 790132.3 832538.73 536.7003 119.1093
Bayesian(true,false) 790140.3 808998.53 238.6693 498.9715
Bayesian(false,true) 790132.3 848776.9 742.2124 654.0119
Bayesian(true,true) 790140.3 832450.65 535.4789 786.9869
VWAP 790132.3 818957.2 364.8111 292.8517
NäıveLimitOrder 790132.3 805074.84 189.1144 −148.7392
ChunkedLimitOrder 790132.3 793131.89 37.9631 −118.1761

Sell Bayesian(false,false) 509783.85 510380.53 −11.7046 470.7504
Bayesian(true,false) 503590.1 497954.73 111.9039 426.3716
Bayesian(false,true) 503582.1 501832.83 34.7365 435.5821
Bayesian(true,true) 503590.1 506548.04 −58.737 165.9824
VWAP 541536.81 591678.12 −925.9076 164.197
NäıveLimitOrder 541536.81 576314.39 −642.2015 44.4981
ChunkedLimitOrder 541536.81 576979.55 −654.4844 −29.5074

Table 15. Ranking of agents by the MSM metric for the noise market

Order Rank Agent MSM

Buy (8264) 1 ChunkedLimitOrder 37.9631
2 NäıveLimitOrder 189.1144
3 Bayesian(true,false) 238.6693
4 VWAP 364.8111
5 Bayesian(true,true) 535.4789
6 Bayesian(false,false) 536.7003
7 Bayesian(false,true) 742.2124

Sell (8282) 1 VWAP −925.9076
2 ChunkedLimitOrder −654.4844
3 NäıveLimitOrder −642.2015
4 Bayesian(true,true) −58.737
5 Bayesian(false,false) −11.7046
6 Bayesian(false,true) 34.7365
7 Bayesian(true,false) 111.9039

liquidity, an order is executed at the current spot price. However usually a Limit
Order is only partially executed and the spot price goes down − for Sell orders,
and up − for Buy orders. The remaining part of that Limit Order is amended
subsequently to the spot price, at specified time intervals. Backtesting assumes
unlimited liquidity, so the Limit Order is fully executed without modifying the
price, as would happen in a real market. Actually, in backtesting, the Näıve exe-
cution strategy becomes the “Ideal (reference) strategy” that the MSM metric
compares the agents’ behaviour against.

118 N. Ponomareva and A. Calinescu

Fig. 7. Price fluctuations for AMZN stock (Picture taken from Google Finance [3])

Table 16. Backtesting: Bayesian agent versus näıve execution strategies for Buy (top)
and Sell (bottom) orders. E1 and SD1 are the expectation and the standard deviation
of MSM , respectively; E2 and SD2 are the expectation and the standard deviation of
V WAPR, respectively.

Agent 29/6 30/6 1/7 2/7 5/7 E1 SD1 E2 SD2

Bayesian(false,false) −9.75 202.88 −1.27 −115.97 −0.04 15.16 103.49 15.28 86.04

Bayesian(true,false) −8.45 258.94 86.02 −150.45 12.06 39.62 133.75 29.53 69.36

Bayesian(false,true) −9.75 279.89 100.22 −167.26 −0.04 40.61 147.11 40.03 66.52

Bayesian(true,true) −8.45 257.72 118.67 −169.77 12.06 42.04 141.91 33.30 68.92

VWAP −9.84 273.91 32.15 −144.35 0.02 30.37 135.93 30.02 74.75

NäıveLimitOrder 0 0 0 0 0 0 0 1.43 151.87

ChunkedLimitOrder −9.84 258.45 25.49 −134.51 109 49.71 130.50 27.67 75.79

Bayesian(false,false) 9.93 −264.39 −47.80 155.82 −0.03 −29.29 135.85 −28.91 72.32

Bayesian(true,false) 8.63 −227.31 −105.28 162.86 −9.62 −34.14 129.32 −26.12 71.21

Bayesian(false,true) 9.93 −223.08 52.56 93.77 −0.03 −13.36 110.02 −13.54 100.02

Bayesian(true,true) 8.63 −230.64 −63.87 138.38 −9.62 −31.42 119.71 −22.55 73.36

VWAP 9.84 −273.91 −32.15 144.35 −0.02 −30.38 135.93 30.02 74.75

NäıveLimitOrder 0 0 0 0 0 0 0 1.435 151.87

ChunkedLimitOrder 9.84 −258.45 −25.49 134.51 0 −27.91 127.86 27.671 75.79

Another problem is revealed when comparing metrics for Buy and Sell orders
(Table 16). Generally speaking, if the price of a security goes down, the best Buy
strategy is the one that buys closer to the end of the period. If the price goes up,
then any Sell order strategy that breaks an order into chunks will benefit. This
is why we can observe in backtesting that, if an agent has a negative MSM value
for a Buy order, it will have a positive MSM value for a Sell order on this day.
Further, simpler strategies like Näıve Limit order, VWAP agent and Chunked
Limit Order have exactly opposite in sign values for Buy and Sell orders, since
they do not adjust their behaviour based on the order’s direction.

Considering commissions for Bayesian agents deteriorates the MSM metric
for both Buy and Sell orders on all days apart from 5th July for the Sell order
and 2nd July for the Buy order (Table 16). Actually, on the trading days before
5th July the closing price was less than the closing price of the previous day,
the trend was downwards, as we can see in Fig. 7, and on 5th July the trend
was already upwards. So it seems that when the trend is upwards, the option
to consider commissions results in an improvement of the MSM metric. Overall,
less frequent trading (the one we obtain when considering commissions) should

Revisiting Agent-Based Models of Algorithmic Trading Strategies 119

be favourable for Buy orders − when the price trend is downwards − and for
Sell orders − when the price trend is upwards. However, daily fluctuations of
prices can result in this rule not working, as we can see for other days for Buy
and Sell orders (Table 16).

Estimating priors increases the performance of an agent only on 2nd July,
for both Buy and Sell orders. This is probably due to the fact that the price
fluctuations of the 1st and 2nd of July are indeed correlated. Interestingly, on the
1st July the news “Amazon bought wacky retailer” were announced [1], which
probably resulted in investors selling stocks over 1st and 2nd July, which then
created correlated overall drifts in price.

Finally, if we do not consider Näıve Limit order strategy which leads to a
0 MSM metric value due to backtest infinite liquidity, we can notice that the
Bayesian agents obtain the best MSM mean value for the period considered.

Bayesian Agent Conclusions. Bayesian agents assume that market price
fluctuations are defined by the bulk number of intelligent institutional investors
which determine the overall direction of price movements, thus the market cre-
ated by such investors is not supposed to be very volatile. Estimating priors (α
and σ) of Bayesian agents based on previous day observations is advantageous
only in stable markets or if there is a strong correlation between price fluctua-
tions for two days, for example when these days are close to the day a financial
report was released or stock news were announced.

Considering commissions may result in large orders being executed at the
end of the period and thus in a deterioration in the MSM metric values. This
could perhaps be mitigated by increasing the commission threshold, so the agents
trade more frequently. The more frequent trading seems to improve the overall
performance since, even though the agents encounter higher commissions, they
are given more frequently the opportunity to react to price movements and can
therefore adjust their aggressiveness at the earliest possible moment. Finally, as
Bayesian agents are not focused on achieving good VWAP Ratio values, they
should not be used to model a VWAP-achieving strategy market.

We would like to conclude by noting that the core assumption of the Bayesian
agents is that there is a daily drift in prices caused by the investors’ intelligent
actions. Almgren et al. in [7] mention that this assumption cannot be proven by
empirical studies, but it probably does take place, since some real traders express
interest in this strategy. From our observations, it seems that, for real data, this
assumption does not necessarily hold each day, otherwise Bayesian agents would
have consistently outperformed other strategies in the backtesting configuration.

6 Conclusions and Future Work

On the basis of the results presented in this paper, we propose that momentum
market is the most suitable model for testing algorithmic trading strategies,
since it quickly fills the Limit Order book and produces results comparable to
those of a liquid stock (Sect. 5.1). The standard Bayesian execution agent model

120 N. Ponomareva and A. Calinescu

(Sect. 4.4) was implemented and its performance assessed. Additionally, we pro-
posed an extended Bayesian model that models commissions when generating the
schedule of order executions, and also models the ability to estimate prior values
for the daily price drift and market volatility, based on previous day observa-
tions. The schedule for Sell orders was analytically derived using a methodology
similar with that employed in [7] for Buy orders. Our experiments revealed that
the method of estimating priors proposed in this paper can be advantageous in
relatively stable markets, when trading patterns in consecutive days are strongly
correlated. The results also showed that adjusting the execution strategy accord-
ing to a reducing commission criterion can result in a worse performance, since
agents trading less frequently seem to miss important price trend changes and
act with a delay. Additional experiment results and insight analysis, which could
not be included in this paper due to space constraints, are included in [27].

In terms of future work, in the Bayesian agent analysis it would be worth
experimenting with different commission thresholds, to find the best proportion
of price updates frequencies and trading.

Acknowledgements. Natalia Ponomareva would like to gratefully acknowledge the
Hill Foundation for supporting her study for an MSc degree at the Department of
Computer Science of the University of Oxford.

References

1. Amazon buys wacky retailer. http://www.theregister.co.uk/2010/07/01/amazon
buys woot/

2. Cboe historical stock volatilities. http://www.cboe.com/data/historicalvolatility.
aspx

3. Google finance. http://www.google.com/finance
4. JASA - Java Auction Simulator API. http://www.essex.ac.uk/ccfea/research/

software/jasa/
5. Online tick-level dataset Dukascopy. http://freeserv.dukascopy.com/exp/
6. A resource for agent- and individual-based modellers, and the home page of Swarm.

http://www.swarm.org/index.php/Main Page
7. Almgren, R., Lorenz, J.: Bayesian adaptive trading with a daily cycle. J. Trading

1(4), 38–46 (2006)
8. Andersen, T.G., Bollerslev, T., Diebold, F.X., Ebens, H.: The distribution of real-

ized stock return volatility. J. Financ. Econ. 61, 43–76 (2001)
9. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg

(2006)
10. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating

human systems. PNAS 99(3), 7280–7287 (2002)
11. Chung, K.H., Kim, Y.: Volatility, market structure, and the bid-ask spread. Asia-

Pac. J. Financ. Stud. 38(1), 67–107 (2009)
12. Cui, W., Brabazon, A., O’Neill, M.: Efficient trade execution using a genetic algo-

rithm in an order book based artificial stock market. In: Conference Companion
on Genetic and Evolutionary Computation, pp. 2023–2028 (2009)

13. Cui, W., Brabazon, A., O’Neill, M.: Evolving dynamic trade execution strategies
using grammatical evolution. In: Di Chio, C., et al. (eds.) EvoApplications 2010,
Part II. LNCS, vol. 6025, pp. 192–201. Springer, Heidelberg (2010)

http://www.theregister.co.uk/2010/07/01/amazon_buys_woot/
http://www.theregister.co.uk/2010/07/01/amazon_buys_woot/
http://www.cboe.com/data/historicalvolatility.aspx
http://www.cboe.com/data/historicalvolatility.aspx
http://www.google.com/finance
http://www.essex.ac.uk/ccfea/research/software/jasa/
http://www.essex.ac.uk/ccfea/research/software/jasa/
http://freeserv.dukascopy.com/exp/
http://www.swarm.org/index.php/Main_Page

Revisiting Agent-Based Models of Algorithmic Trading Strategies 121

14. Daniel, G.: Asynchronous simulations of a limit order book. Ph.D. thesis, Univer-
sity of Manchester (2007)

15. Domowitz, I., Yegerman, H.: The cost of algorithmic trading: a first look at com-
parative performance. J. Trading 1, 33–42 (2006)

16. Ederington, L.H., Guan, W.: Measuring historical volatility. J. Appl. Financ. 16,
5–14 (2006)

17. Engle, R., Patton, A.: What good is a volatility model? Quant. Financ. 1, 237–245
(2001)

18. Farmer, J.D., Patelli, P., Zovko, I.I.: The predictive power of zero intelligence in
financial markets. SSRN eLibrary (2004)

19. Gsell, M.: Assessing the impact of algorithmic trading on markets: a simulation
approach. In: 16th European Conference on Information Systems, pp. 587–598
(2008)

20. Hendershott, T., Jones, C., Menkveld, A.: Does algorithmic trading improve liq-
uidity? J. Financ. 66, 1–33 (2011)

21. Izumi, K., Toriumi, F., Matsui, H.: Evaluation of automated-trading strategies
using an artificial market. Neurocomputing 72, 3469–3476 (2009)

22. Jiang, C.X., Kim, J.-C., Wood, R.A.: A comparison of volatility and bidask spread
for NASDAQ and NYSE after decimalization. Appl. Econ. 43(10), 1227–1239
(2011)

23. Kakade, S.M., Kearns, M., Mansour, Y., Ortiz, L.E.: Competitive algorithms for
VWAP and limit order trading. In: Proceedings of the 5th ACM Conference on
Electronic Commerce, pp. 189–198 (2004)

24. Lebaron, B.: Agent-based computational finance. In: Handbook of Computational
Economics, Agent-based Computational Economics, pp. 166–209 (2006)

25. Nevmyvaka, Y., Feng, Y., Kearns, M.: Reinforcement learning for optimized trade
execution. In: Proceedings of the 23rd International Conference on Machine Learn-
ing, pp. 673–680 (2006)

26. Nevmyvaka, Y., Kearns, M.S., Papandreou, A., Sycara, K.P.: Electronic trading in
order-driven markets: efficient execution. In: CEC’05, pp. 190–197 (2005)

27. Ponomareva, N.: Using agent-based modelling and backtest to evaluate algorithmic
trading strategies. Master’s thesis, Department of Computer Science, University of
Oxford (2011)

28. Raghavendra, S., Paraschiv, D., Vasiliu, L.: A framework for testing algorithmic
trading strategies. Working Paper No. 0139 (2008). http://hdl.handle.net/10379/
325

29. Rashid, A.: Using a service oriented architecture for simulating algorithmic trading
strategies. In: Proceedings of the 12th International Conference on Information
Integration and Web-based Applications & #38; Services, iiWAS ’10, France, Paris,
pp. 925–929 (2010)

30. Roll, R.: A simple implicit measure of the effective bid-ask spread in an efficient
market. J. Financ. 39, 1127–1139 (1984)

31. Sharpe, W., Alexander, G.J., Bailey, J.W.: Investments, 6th edn. Prentice Hall,
New York (1998)

32. Wang, F., Dong, K., Deng, X.: Algorithmic trading system: design and applications.
Front. Comput. Sci. China 3, 235–246 (2009)

33. Wurman, P.R., Walsh, W.E., Wellman, M.P.: Flexible double auctions for elec-
tronic commerce: theory and implementation. Decis. Support Syst. 24(1), 17–27
(1998)

http://hdl.handle.net/10379/325
http://hdl.handle.net/10379/325

Self-Explanation in Adaptive Systems
Based on Runtime Goal-Based Models

Kris Welsh1(B), Nelly Bencomo2, Pete Sawyer3, and Jon Whittle3

1 School of Computing, University of Kent, Canterbury, UK
k.welsh@kent.ac.uk

2 School of Engineering and Applied Science, Aston University, Birmingham, UK
nelly@acm.org

3 School of Computing and Communications, Lancaster University, Lancaster, UK
{sawyer,whittle}@comp.lancs.ac.uk

Abstract. The behaviour of self adaptive systems can be emergent,
which means that the system’s behaviour may be seen as unexpected by
its customers and its developers. Therefore, a self-adaptive system needs
to garner confidence in its customers and it also needs to resolve any sur-
prise on the part of the developer during testing and maintenance. We
believe that these two functions can only be achieved if a self-adaptive
system is also capable of self-explanation. We argue a self-adaptive sys-
tem’s behaviour needs to be explained in terms of satisfaction of its
requirements. Since self-adaptive system requirements may themselves
be emergent, we propose the use of goal-based requirements models at
runtime to offer self-explanation of how a system is meeting its require-
ments. We demonstrate the analysis of run-time requirements models
to yield a self-explanation codified in a domain specific language, and
discuss possible future work.

Keywords: Self-explanation · Self-adaptive · Goals · Claims

1 Introduction

Self-adaptive systems are able to adjust their behaviour according to changes
in their operating environment. Uncertainty in the operating environment may
cause the behaviour of self-adaptive systems to be emergent. A system whose
behaviour cannot be accurately predicted poses serious problems in terms of
assurance and acceptance. A lack of intelligibility may cause users to stop using
a self-adaptive system [1–3]. Because its behaviour is emergent, a self-adaptive
system needs to garner confidence in its stakeholders, and allow developers to

This paper is an extended version of the paper “Towards Requirements Aware
Systems: Run-time Resolution of Design-time Assumptions” by Bencomo, Welsh,
Sawyer and Whittle, 17th IEEE International Conference International Conference
on Engineering of Complex Computer Systems ICECCS 2012, Paris, France, July
2012.

c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 122–145, 2014.
DOI: 10.1007/978-3-662-44871-7 5

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 123

understand observed behaviour [3]. We believe that these two functions can only
be achieved if a self-adaptive system is also capable of self-explanation.

We argue that a self-adaptive system’s behaviour is best explained in terms
of the satisfaction of its requirements. Observing the degree to which a system
satisfies its requirements is well-discussed in requirements monitoring literature
[4], and addresses questions of what the system is doing. The ability of a self-
adaptive system to select alternative configurations based on environmental trig-
gers raises questions on how the system is doing it, with more useful explanations
offering clues to why the system is behaving as observed. Readily-understandable
explanations are challenging to produce, with several key challenges preventing
developers from creating such functionality. These challenges are discussed in
the following paragraphs.

Firstly, an ability to explain behaviour relies upon an ability to monitor,
introspect and reason about the system’s current and past behaviour. There has
been significant research interest in providing support for requirements monitor-
ing [4,5], and in the specific area of self-adaptive systems, advances have also
been made towards better support for introspection by adaptive middleware [6,7]
and other frameworks [8,9]. However, work seeking to combine these two capa-
bilities with reasoning still needs more research effort. The new and broader
research area of requirements-aware systems covers similar interests [3,10,11].

Secondly, explanations need to be created at a sufficiently high level as to
be understandable by a variety of interested stakeholders (e.g. end-users, but
also by maintainers and support personnel). Ideally, users should interact with
the system at a level of abstraction that is meaningful to them. This requires
that the system is able to trace backwards and forwards between abstractions
at the user’s level and abstractions used by the systems at lower levels (e.g.
components, component configurations, etc.). Furthermore, a trace of relevant
events in the history of the adaptations the system has gone through should be
kept by the system.

Thirdly, for self-explanations to be trustable, a self-adaptive system should be
able to trace down from goals towards code to keep a synchronized link between
requirements and architecture during execution. This trace needs to consider the
dynamic changes that will affect requirements and the architecture of the system
at runtime and keep a causal connection between the two.

Finally, a self-adaptive system should be able to reproduce a trace history
of the adaptations it has performed in a way that is meaningful to support
self-explanation.

In [12], we described our view of requirements-aware systems. In our work,
representations of assumptions are made explicit using the concept of claims in
goal models at design time. Using what we call claim refinement models (CRMs),
we have defined the semantics for claims in terms of their impact on alternative
strategies that can be used to pursue the goals of the system. The impact is
calculated in terms of satisfaction and trade-off of the system’s non-functional
requirements (modeled as softgoals). Crucially, at runtime, when the executing
system monitors that a given claim does not hold anymore, the system may adapt

124 K. Welsh et al.

to an alternative goal realization strategy that may be more suitable for the
new contextual conditions. Importantly, our approach tackles uncertainty, i.e. the
new goal realization strategy may imply a new configuration of components that
was not necessarily foreseen at design time. With the potential for unforeseen
behavior, self-explanation capabilities are crucial. In this paper we build on the
approach described in [12] to address the challenges posed by self-explanation
described above.

The rest of the paper is organized as follows: In Sect. 2 we present the moti-
vation of the paper using a simple but yet useful discussion. In Sect. 3, we dis-
cuss our initial progress towards a mechanism by which self-explanation can be
achieved. In Sect. 4, we apply this means of providing self-explanation to a short
case study. In Sect. 5, we propose a simple domain-specific language in which
to convey self-explanations generated using our technique. Section 6 describes
relevant related work. Section 7 concludes the paper and discusses future work.

2 Motivating Example

Consider the example of a robotic vacuum cleaner for domestic apartments,
which uses self-adaptation to balance two conflicting non-functional require-
ments: to avoid causing a danger to people within the apartment (avoid tripping
hazard) and to be economical to run (minimise energy costs). The cleaner sup-
ports two modes of operation: clean at night and clean when empty. Cleaning at
night will likely yield lower energy costs, but could cause the occupants to trip
should they awake and move about the apartment. Cleaning when the apartment
is empty eliminates this hazard, but if the apartment is only empty during day-
time this will come at a cost of increased energy costs. A standard goal model,
showing the different ways in which the robot can clean the apartment, and
each method’s impact on the two competing NFRs (which can be modelled as
softgoals) would be deadlocked, with no clear favourable goal operationalisation
strategy. We have previously discussed [13] the use of claims, which were first
proposed in the Non-functional Requirements (NFR) Framework [14], to model
an assumption made to break the deadlock in a goal model. In this case, we
can make an assumption that the tripping hazard is unlikely to cause an acci-
dent. We illustrate this using an i* [15] Strategic Rationale (SR) model, which
models how an agent achieves its goals, and allows alternative goal satisfaction
strategies to be compared in terms of their impact on softgoals. The model in
Fig. 1 shows a claim “No Tripping Hazard” breaking the deadlock that would
otherwise occur.

In Fig. 1, the vacuum cleaner’s “Clean Apartment” goal may be satisfied
either by the “Clean at night” task, or the “Clean when empty” task. Cleaning
at night helps satisfy the “Minimise energy costs” softgoal, but hurts the “Avoid
tripping hazard” softgoal, as represented by the contribution links attached to
the task. The “Clean when empty” task makes the inverse contributions to each
of the softgoals.

The “No tripping hazard” claim breaks the negative contribution made to
the “Avoid tripping hazard” softgoal by the “Clean at night” task, which means

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 125

Fig. 1. Goal model of a robot vacuum cleaner from [16]

that this contribution should be lent less credence, or disregarded completely
when deciding between the competing goal operationalisation strategies. With
this assumption made, the decision to clean at night follows naturally.

Although assuming that the tripping hazard doesn’t pose any real risk makes
for a convenient way to break the deadlock in the goal model, the assumption
is mere conjecture and would prove difficult to verify at design time. Thus, the
robot vacuum cleaner is provided with a means of verifying the assumption
at runtime, using monitoring. The broad nature of the “No tripping hazard”
claim makes it more difficult to identify a suitable monitoring mechanism, so
we use a claim refinement model (CRM) to decompose the claim hierarchically
into its underlying assumptions, until some more precise, and crucially moni-
torable, assumptions are identified. We consider a claim refinement model to be
sufficiently complete when all leaf claims are either: monitorable, axiomatic or
considered an unmitigatable risk. In the latter case, the claim marks the edge of
the contextual envelope in which the system is capable of tailoring itself to suit.

In this example, our “No tripping hazard” claim can be decomposed into
the CRM shown in Fig. 2. There are four sub-claims organized in two ANDed
branches (claims may also be OR-ed). Together, the branches illustrate the ratio-
nale for why the root claim should hold. In this case, “No tripping hazard” holds
because there is no-one in the room in which the vacuum cleaner is working AND
no external impact has been detected by the vacuum cleaner. The leaf claims of
the CRM, “Light level [remains] constant” and “No shock detected” are directly
monitorable via events or statistical data collected by the system. We refer to
claims that are possible to directly monitor and verify at runtime as monitorables.
If a monitorable turns out to be false, for example, if the vacuum’s inertial sensor
detects an external shock, then claim falsification propagates upwards towards
the root. Thus, in this case, the impact event would falsify the “No tripping haz-
ard” claim by propagation. Similarly, a sudden increase in the light level would
indicate that a light has been switched on by a woken occupant, and the “No
Tripping Hazard” claim would again be falsified by propagation.

With a means of run time verification for the deadlock-breaking “No trip-
ping hazard” assumption having being found, the robot vacuum cleaner can be

126 K. Welsh et al.

Fig. 2. Claim refinement model for robot vacuum cleaner

specified as using a clean at night strategy unless a shock is detected or a light
is switched on, in which case the robot should self-adapt to use the “Clean when
empty” strategy.

However, after it has been in operation for some time, the owners of the
robot vacuum cleaner find that it is costing more to run than expected. A self-
explanation capability would mean that the vacuum cleaner could explain that
it is required to avoid causing a tripping hazard, and that it has been unable to
clean at night because the occupants frequently wake up and turn the lights on.
In this scenario, the explanation would help the users to understand the system’s
behaviour, and help to pinpoint the reason the system is not behaving in the
manner they would have imagined. The customer understands the reasoning, but
is still dissatisfied because the operating costs are unacceptable. They submit a
change request to the developer for the vacuum cleaner to be modified so that
it only adopts the clean when empty strategy if two consecutive nights’ cleaning
have been interrupted.

In isolation, this change request may seem unimportant to the developers,
especially if the change request is scant on background information justifying it.
To contextualize the request, they interrogate the vacuum cleaner to determine
its history of operation, with special attention to its history of self-adaptation and
the events sensed in its environment that triggered adaptations. They discover
the light detection event is being triggered more frequently than expected, and
understand by consultation of the requirements model that this is interpreted
as invalidation of the assumption that underpins prioritization of energy cost
minimization.

The developers realize that running costs are high but note also that the
customer does move around the apartment at night. They modify the vacuum
cleaner’s software to adopt a new strategy; they relax [17] the clean apartment
goal by accepting that the clean apartment goal may be satisfied at a later time.
The user change request is accepted; when interrupted, the robot tries to clean
the following night before resorting to the clean when empty strategy.

In this simple example, the information contained within the explanation
offered by the system could be obtained by analysis of standard debugging output
or logs, and by deduction. However, these sources of information are low-level

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 127

artefacts of particular code execution paths, and such analysis is performed
by the system’s developers, who will need time to perform the analysis. The
potential for a self-adaptive system to adopt an unexpected configuration, or
adopt an expected configuration in unexpected circumstances, means that there
is a need for users to be able to understand what the system is doing, and why.

Our interest lies in reconciling a higher-level trace of the system’s behaviour
with its requirements, to establish whether the system’s behaviour is appropri-
ate, or better optimal, and whether the requirements themselves are correct.
Although an explanation in terms of requirements may still prove too complex
for some users to be able to understand a system’s operation in some circum-
stances, the higher-level explanation may allow non-developer support personel
to resolve queries without requiring developer input.

3 Self-Explanation Through Run-Time Requirements
Models

Andersson et al. propose a means of characterising the change a self-adaptive
system is designed to tolerate. Changes can be foreseen, foreseeable or unforeseen,
as explained in [18]. We ignore here systems dealing with unforeseen change,
which are more properly a topic for artificial intelligence research and pose a
different order of challenge both for self-adaptation and self-explanation.

Much of our previous work has concerned requirements modeling for sys-
tems dealing with foreseen change [13,16,19]. Where change is foreseen, the set
of contexts that the system may encounter are known at design time. Here, a
self-adaptive system can be defined as a set of pre-determined system configura-
tions that define the system’s behaviour in response to changes of environmental
context. Thus, there is little or no uncertainty about the nature of the system’s
environment and, if it is developed to high quality standards, satisfaction of the
systems requirements should be deterministic.

More recently [12], we have started to address systems dealing with change
that is, in [18]’s terms, merely foreseeable. Here, the key challenge is uncertainty,
where at design time some features of the problem domain are unknown, perhaps
even unknowable. Crucially, and in contrast to unforeseeable change, the fact of
this uncertainty can be recognized, offering the possibility of mitigating it by
resolving the uncertainty at runtime. The uncertainty associated with foreseeable
change typically forces the developers to make assumptions in order to define
the means to achieve the system’s requirements. Thus, for example, a particular
environmental context may be assumed to have particular characteristics and
the system’s behaviour defined accordingly. If the context turns out to have
different characteristics, the system may behave in a way that is inappropriate.
This has led us to exploit the concept of markers of uncertainty. Markers of
uncertainty serve as an explicit marker of an unknown that forces the developer
to make an assumption. We implement markers of uncertainty using claims as
described in the previous section. A benefit of using claims to represent design-
time assumptions is that the uncertainty is bounded and thus the risk of the

128 K. Welsh et al.

system behaving in an inappropriate may be mitigated by monitoring, claim
and goal evaluation, and adaptation.

Our solution uses i* goal and claim refinement models, as depicted in Figs. 1
and 2. As described in the previous section, claim monitoring may permit assump-
tions to be verified during operation. Where a claim turns out to be false, the
corresponding portion of the goal model can be re-evaluated at run-time with
the claim removed, or its effect on the model weakened. If, as a consequence
of this, the original goal operationalisation strategy no longer evaluates as the
optimal solution, an alternative goal operationalisation strategy can be substi-
tuted dynamically, using the system’s adaptation mechanism. We have applied
our work to the domain of wireless sensor networks where our run-time models
are supported by advanced adaptive middleware and domain-specific compo-
nent models [6]. The overview of the approach is shown in Fig. 3. The overview
is explained in terms of the development process (the box @design time) and the
run-time components (the box @runtime). The module Self-Explanation is part
of the module Runtime Reasoner, which is responsible for the transformation of
the run-time goal models, as will be explained further in the next section.

In the context this paper, the key feature of foreseeable change is that it
may result in behaviour that is emergent. Emergent behaviour may surprise
stakeholders who may require the behaviour to be explained in order to build
and maintain their confidence in the system. Our thesis is that the same run-
time requirements models that we employ to handle unforeseen change can also
be employed as the basis of a self-explanation capability. Partially based on [20],
a useful self-explanation of an adaptation needs to include:

1. Details of any change in priority, or the proposed degree of satisfaction of a
system (soft)goal.

2. Details of the adaptation performed by the system.
3. The history of the adaptation, and the related events that triggered it.

In the next section, we illustrate how a self-explanation of a system’s behav-
iour that contains this information may be provided using our run-time require-
ments models solution for the GridStix wireless sensor network.

4 Case Study

To demonstrate self-explanation in the context of a system which adapts to con-
texts not fully foreseen, we present the GridStix flood prediction system [21].
We have previously discussed this system in the context of requirements mod-
elling [13], and have recently been exploring run-time uses of these requirements
models. In [12], we discuss systems using run-time goal-based models to guide
adaptation to circumstances where assumptions on which the originally pre-
scribed configuration(s) rely no longer hold. In this paper, we show how claims
and run-time requirements models that have been implemented for GridStix
support self-explanation.

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 129

Fig. 3. Overview of the approach

The GridStix system is a wireless sensor network (WSN) for detecting and
predicting flooding, versions of which were deployed on the river Ribble in North-
West England and on the River Dee in North Wales. GridStix comprises a
number of nodes (14 on the Ribble installation), each of which are equipped
with sensors for detecting water depth and flow rate. The captured sensor data
is processed by a stochastic model of the river to predict future river state.
A feature of this algorithm is that it is distributed and lightweight enough to
be executable by the GridStix nodes. Incremental results are cascaded from the
most up-stream node down to the gateway node and from there via a GSM
link to Lancaster University. Its accuracy is a function of the number of nodes
contributing data.

GridStix is deployed in relatively remote, inaccessible locations with no mains
power available, requiring that GridStix nodes rely on batteries and solar panels
for power. As a result, energy conservation is a key non-functional requirement.
GridStix uses an ad-hoc overlay network in which nodes can communicate using
Bluetooth or WiFi, configured as either a shortest-path or fewest-hop spanning
tree.

To help test feasibility and derive requirements for GridStix, empirical data
was collected from experiments with a laboratory-based prototype. Data was
collected to measure (among other metrics) resilience and power consumption [6],

130 K. Welsh et al.

as illustrated by the graphs in Fig. 4. Here, resilience is a measure of network
fragmentation; the more nodes become isolated from the gateway (uplink) node,
the less resilient is the network. If too many nodes become isolated from the
gateway node, it becomes impossible for the system to offer an accurate flood
prediction. Power consumption measures per-hop power consumed during the
transmission of 1 KB of data from each node to the gateway. The graph Physical
Network Resilience in Fig. 4 shows that the greater range of WiFi meant that
data from each node could be routed to the gateway by a larger number of
paths with WiFi than using Bluetooth, while the graph Physical Network Power
Consumption in Fig. 4 shows that the additional resilience comes at the cost of
higher power consumption.

Similarly, the graph Spanning Tree Resilience shows that, for a small number
of nodes (nodes B, H and I), the number of routes to the gateway affected by node
failure is much higher when using a shortest-path (SP) spanning tree algorithm
than when using a fewest-hop (FH) spanning tree. This means that fewer nodes
are likely to become isolated from the gateway node when GridStix is configured
to use its FH spanning tree. The graph Spanning Tree Power Consumption shows
that for the nodes furthest from the gateway node (nodes L, M, N and O) the

Fig. 4. Laboratory performance data (reproduced from [6])

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 131

power consumed in transmitting the data is significantly higher for a FH than
SP spanning tree.

In other words, GridStix was predicted to be relatively resilient to node
failure when configured to use WiFi and a fewest hop spanning tree, but at the
cost of high power consumption.

Resilience and power consumption were two of GridStix’s important non
functional requirements. However, as shown in the experiments it is hard to
optimize for both, meaning that one would have to be prioritized over the other.
However, a feature of self-adaptive systems is that the extent to which any NFR
must be satisficed (sufficiently satisfied) tends to be context-dependent, and
this was the case with GridStix. Goal-based models, and specifically softgoals,
support reasoning about tradeoff decisions that are aimed at achieving optimal
goal satisfaction.

For the purposes of GridStix, expert environmental scientists had partitioned
river behaviour into three distinct operating conditions (domains); quiescent,
high flow and flood. Quiescence was predicted to be the most common domain
over time and so, with the need for the nodes to retain enough power to react
when the river state changed, energy efficiency was the priority. When in the
flood and high flow domains, by contrast, resilience was prioritized to better
tolerate any node loss that could impair the accuracy of GridStix’s flood predic-
tions. Thus, a particular GridStix configuration was specified for each domain,
with (what was predicted to be) adaptation from one configuration to another
specified to happen when the river was observed to change from one domain to
another. These domain changes were based on sound knowledge and were there-
fore foreseen, meaning that we knew that the river’s state would change and
could specify the behaviour required of GridStix for each domain. Figure 5 shows
the goal model for the flooding domain (which we call S3). The figure shows
the claims “Bluetooth too risky for S3”, “SP too risky for S3” and “Single node
image processing not accurate enough for S3”. Each claim records an assumption
about a design-time choice of goal operationalization, made because of uncer-
tainty about the relative performance of alternative operationalizations in the
field. The tasks (goal operationalisation strategies) chosen are in white (i.e. WiFi,
and FH). Note that for simplicity reasons the single-node and multi-node image
processing shown in the figure is not part of the explanation. However, similar
conclusions can be made if we take into account these operationalizations and
their effect on the NFRs, therefore the calculate flow rate goal should be ignored
in the figure.

The configurations that were specified at design-time for each domain were
based on the performance of the alternative communication technologies and
spanning tree configurations observed in the laboratory experiments described
above. However, we were aware that the lab results might prove imperfect pre-
dictors of how GridStix performed in the field. The initial River Ribble deploy-
ment confirmed that the effects of radio signal absorption by the river banks,
rain, trees, etc., had a significant affect on performance [21]. To make Grid-
Stix more tolerant of these effects, it was augmented with claims to monitor

132 K. Welsh et al.

Fig. 5. Gridstix goal models for the flooding state of the river

the design-time assumptions, and to adapt to an alternative configuration if
monitoring suggested that the alternative configuration could perform better.
This was an important change because it meant that, in addition to the changes
foreseen by knowledge of the different river domains, change as a consequence
of operational experience was also foreseeable. When using claim monitoring,
GridStix can decide by itself to adapt to a new configuration under some circum-
stances that were not predefined at design time. Thus, whereas GridStix’s adap-
tive behaviour had been deterministic (even if its adequacy as a WSN had not
been), its adaptive behaviour was now non-deterministic. Such non-deterministic
behavior could cause “surprise” to an operator of the system, and therefore a
self-explanation capability is appropriate.

A portion of the claim refinement models used by the GridStix flood and
high flow domains is presented in Fig. 5. There is one top-level claim shown (in
bold). This represents assumptions derived from the laboratory experiments that
Bluetooth communication technology is too risky. In other words, the assumption
is that if GridStix was configured to use Bluetooth, network resilience would
likely be poor; implicitly poorer than if WiFi was used instead. The associated
claim refinement model represents derivation of the means to sustain the claim
and results in (using the labels in Fig. 6 as shorthand for the subclaims):

BT Too Risky ⇔ (A0 ⇔ (A1 ∨ A2)) ∧ (B0 ⇔ (B1 ⇔ (B2 ∨ ¬B3)))

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 133

Fig. 6. GridStix claim refinement model justifying choice of WiFi for Inter-Node Com-
munication

Thus, our root assumption, that using Bluetooth will lead to greater frag-
mentation than using WiFi (the BT Too Risky claim), will be disproved if any
of the leaf (monitorable) subclaims is negated. In other words, Bluetooth is not
likely to fragment the network if the river depth is below the safe threshold level
or, at the current rate of change it will not exceed the safe level anytime soon.
Similarly, Bluetooth is unlikely to lead to excessive fragmentation of the network
if the rate of fragmentation when using Bluetooth is no higher than when using
WiFi or, if there is data that contradicts this, there is too little data to make
the contradiction statistically sound.

Because the River Ribble deployment of GridStix has been decommissioned,
we used a simulator to observe the system’s behaviour when experimenting with
claim monitoring. The simulator has been developed using the collected data of
the several months GridStix was deployed with the advantage that we can run
experiments when needed. The simulator handles factors such as: power usage
by batteries of nodes and according to whether the nodes were configured to
use WiFi or Bluetooth, fewest hops or shortest path; whether the nodes were
idling or performing computationally intensive tasks; and power replenishment
from solar panels depending on time of day, amount of sunlight received or how
cloudy the weather is, among others. Using a simulator constructed for GridStix,
we ran an experiment to compare the longevity of the claim-augmented version
of GridStix with the original. Longevity in this context means the length of time
during which a sufficient number of nodes were connected to allow a meaningful
result to be returned by the gateway. The simulator includes randomization

134 K. Welsh et al.

to simulate jitter and packet loss. We complemented this with random node
failures to simulate those actually observed. We ran the simulator with a profile
of river behaviour over a fixed period comprising a sequence of flow rate and
depth values that simulated the river in every mood from quiescent to flood.
We varied a single variable; the amount of sunlight received by the nodes’ solar
panels, using percentage of cloud cover during daylight hours as a proxy. The
experiment was run three times and the results averaged to account for the
randomization elements.

The experiments suggest no significant benefit from claim augmentation
when cloud cover is above approximately 40 %. Once cloud cover drops below
40 %, however, the augmented version has significantly greater longevity. For
example, at 30 % cloud cover, instead of failing after approximately 180 h of
operation, GridStix survives for approximately 250 h.

The increase in GridStix’s longevity under some conditions appears to cor-
relate with a particular self-adaptation being performed in these simulations.
In those simulations where the claim-augmented version of the system outper-
formed the original version, GridStix substituted the use of WiFi for communica-
tion whilst the river was flooding, as originally specified, for the use of Bluetooth.
The history of the monitoring data shows that over the defined minimum period
of accumulating data, network fragmentation was no less during that period
when using Bluetooth than when using WiFi. The effect of this on the claim
refinement model (Fig. 6) in which the falsified monitorable claims B2 ∨ ¬B3 ...
became ... ¬B2 ∧ B3 and propagated up the hierarchy to falsify the top-level
BT Too Risky claim that justified the original (design-time) choice of WiFi over
Bluetooth. This in turn triggered the run-time re-evaluation of the goal model,
revealing that the operationalization of the Transmit Data goal now favoured
the use of Bluetooth rather than WIFi because Bluetooth’s net impact on power
consumption and resilience had become more +ve (positive) than that of WiFi.
The goal model was thus changed to select Bluetooth as Transmit Data’s oper-
ationalization which in turn triggered the GridStix middleware to adopt a new
component configuration, dynamically binding the Bluetooth component in place
of the WiFi component (Fig. 7).

Discussion

Revisiting the challenges presented in the introduction of this paper we conclude
that our approach:

1. Offers suitable monitoring capabilities for self-explanation through the use of
claim monitoring. As for reasoning capability, our claim refinement models
allow a change of configuration to be traced back to the monitored, and
falsified, assumption that caused it.

2. Can offer self-explanation and discourse at the level of requirements. Self-
adaptation (that maybe misunderstood by operators) can be explained in
terms of goals, operationalisations and assumptions. This level of abstraction

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 135

Fig. 7. Falsified claim propagation

is closer to natural language than architectural or code-level descriptions,
offering more understandable explanations.

3. Provides the required link between the requirements and the architecture.
The currently active configuration, at an architecture level, is linked to goal
operationalisations, to the goals they achieve and their expected impact on
system NFRs. (e.g. a proper link between the architectural use of BlueTooth
and the “Communicate Data” goal it achieves, and the effect on system NFRs
such as power consumption).

4. Finally, allows the system to be able to reproduce a trace history (i.e. a
sequence of steps) of monitored events, assumption falsifications and resultant
reconfigurations to explain the reasons behind a self-adaptation being carried
out.

5 A Domain-Specific Language for Self-Explanation

An obvious goal for self-explanation research would be to offer natural lan-
guage explanations, understandable by a system’s users and other stakeholders.
However, at present we feel that offering explanations in a simply-structured
domain-specific language (DSL) is a more feasible goal. We propose a self-
explanation DSL designed to convey explanations of self-adaptations in terms of
requirements met, softgoals satisficed and claims invalidated, and supporting the
identification of the run-time monitoring data that triggered a self-adaptation.
Although explanations expressed in our DSL can be trivially transformed into

136 K. Welsh et al.

text approaching natural language, knowledge and understanding of the system’s
requirements models is required to fully understand the explanation. Thus, our
self-explanation DSL is targetted at support personel rather than end users. To
extend our approach to come closer to the goal of offering user-understandable
natural language self-explanations, some means of explaining the requirements
models themselves would have to be devised.

As discussed in the previous section, self-adaptation in systems using our
run-time requirements models can be either planned or unplanned. Planned
self-adaptation fits the definition of foreseen adaptive behaviour in [18]. For
unplanned self-adaptation, the acts of identifying an assumption, codifying it in
a claim and devising a monitor for it imply a degree of foresight on the part of
the developers that the system may need to tolerate conditions under which the
assumption doesn’t hold. However, the exact nature of the circumstances under
which a claim (or some combination of claims) would be invalidated remain
ambiguous, meaning that unplanned adaptation is most analagous to [18]’s fore-
seeable adaptive behaviour.

Planned self-adaptation takes place between a pair of pre-specified config-
urations, in response to a trigger conditions identified during the RE process.
Planned self-adaptation requires the least detailed self-explanation, with the
system needing to explain that the trigger conditions for a specific planned
adaptation were met, and that the system has reconfigured itself to a specific,
pre-specified configuration. This simpler self-explanation offers little more than
standard logging output, and as such our DSL is designed to convey explanations
of unplanned self-adaptation.

Unplanned self-adaptation takes place when a claim is invalidated, and the
system’s run-time requirements models are re-evaluated. Prior to an unplanned
self-adaptation, the system may have adopted one of its pre-specified configura-
tions, or another unplanned adaptation may have occurred, leaving the system
in a configuration not foreseen at design time. A suitable self-explanation of an
unplanned self adaptation needs to identify:

1. The configuration change that has been made.
2. The goal model change that resulted in the configuration change.
3. The softgoal(s) expected to be better satisfied in the new configuration.
4. The monitoring data that triggered the goal model change.

Explaining the details of the configuration change is a relatively simple mat-
ter, that could be achieved with more traditional logging or monitoring tech-
niques. In terms of our run-time requirements models, the information required
for the explanation is the task in the goal model whose selection to satisfy a par-
ent goal is no longer supported by analysis of its contribution links and claims
influencing them, and the task selected to replace it. Likewise, the monitoring
data that triggered the goal model change is captured during the model transfor-
mation process, and could equally be captured through logging or monitoring.

The source of variability in our run-time requirements goal models is the
invalidation of claims. Thus, the goal model change that resulted in an unplanned

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 137

self-adaptation will be the invalidation of a specific claim, or combination of
claims. In cases where claims are invalidated by propagation, the explanation
should allow an indirectly invalidated claim’s invalidation to be traced back to
the original claim, whose invalidation triggered the propagation.

By default, the transformation to the run-time requirements models applied
as a result of claim invalidation is an inversion of the claim’s contribution link, by
which it is connected to the model. Other transformations, such as the removal
of claims or removing a malfunctioning goal operationalisation strategy, are sup-
ported. However, these other transformations either require further claims to be
added to the model, or risk deadlock in the requirements model after claim inval-
idation, and we also prefer to invert claim contribution links where possible. For
simplicity, we prefer to use a single root claim in the goal model to represent a
specific area of uncertainty surrounding a variation point.

The softgoal(s) that are expected to be better satisfied as a result of the con-
figuration change can be identified through model analysis. If the default (contri-
bution inversion) transformation is used, and our model construction guideline of
using a single claim per variation point has been followed, the promoted softgoal
or softgoals are readily identifiable. Table 1 shows details, for each combination
of the value of the contribution link connected to a claim (the “claim contribu-
tion”) and the polarity of the contribution link to which the claim’s contribution
is attached (the “attached contribution”); which softgoal(s) can be expected to
be better satisfied as a result of the self-adaptation.

In Table 1, the “Complementary” softgoals are defined as the softgoals con-
nected to the task the attached contribution link belongs (and thus connects) to
with the same polarity. Conversely, “Competing” softgoals are defined as those
connected to the task the attached contribution link belongs with the opposing
polarity.

An unplanned self-adaptation may also be triggered in response indicating
that a claim that was previously invalidated does, in fact, appear to be valid
once more. This would typically occur as a result of developers having missed
some operating context encountered by the system only temporarily. We refer
to this as claim revalidation. For this class of unplanned self-adaptation, the
softgoal(s) expected to be better satisfied as a result of the configuration change
are different to those in Table 1. Table 2 details the softgoals affected by claim
revalidation, using the same columns and terminology as Table 1.

Table 1. Softgoals promoted by claim invalidation, for different model structures

Claim contribution Attached contribution polarity Softgoals affected

Make Positive Competing

Break Positive Complementary

Make Negative Complementary

Break Negative Competing

138 K. Welsh et al.

Table 2. Softgoals promoted by claim revalidation, for different model Structures

Claim contribution Attached contribution polarity Softgoals affected

Make Positive Complementary

Break Positive Competing

Make Negative Competing

Break Negative Complementary

Even if the explanation of an unplanned adaptation contains all of the infor-
mation discussed so far, it may still prove difficult to understand the circum-
stances surrounding, and the reason for, an unplanned adaptation in cases where
the system has previously performed another unplanned adaptation. In such cir-
cumstances, the configuration of the system prior to the adaptation under query
may not be one of the configurations specified for the system at design time.
Therefore, explanations of an unplanned self-adaptation must include the infor-
mation of any previous unplanned self-adaptations performed by the system.

To summarise, our DSL is designed to convey self-explanations in terms of
the satisficement of softgoals, reconfigurations, model transformations, claims
invalidated, and monitoring events. Monitoring events are fired by monitors upon
the collection and analysis of data indicating that a claim does not hold. Claims
are invalidated as a result of monitoring data, and should the root claim in
a claim refinement model (i.e. a claim upon which a decision rests) become
invalidated then a model transformation is performed. A model transformation
is a change to the run-time requirements model which may, if analysis of the
modified run-time model indicates it is necessary, lead to a reconfiguration being
performed by the system to better satisfice a softgoal. These concepts are all at
the level of abstraction used in our requirements models, and thus this is the
level of abstraction used by our explanations.

In Sect. 3, we proposed that a meaningful self explanation of a self-adaptive
system’s current behaviour needs to include:

1. Details of any change in priority, or the proposed degree of satisfaction of a
system (soft)goal.

2. Details of the adaptation performed by the system.
3. The history of the adaptation, and the related events that triggered it.

In these terms, an explanation of a planned self-adaptation consists of details
of the change in context identified by the system, the self-adaptation performed,
and details of previous self-adaptations that have been performed. For unplanned
self-adaptations, an explanation consists of details of the softgoals that are to be
better satisfied by the adaptation, details of the configuration change performed,
and details of the goal model changes that were made (claims invalidated) trig-
gering the self-adaptation, along with the monitoring data that caused the goal
model changes. Further history is also provided by including details of previous
unplanned self-adaptations.

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 139

Our self-explanation DSL targets the more complex unplanned self-adap-
tations performed by a system, and presents the information discussed in tuples
of:

{Softgoals Satisficed, Change Performed, Claim Invalidated, Cause}

A tuple is required for every change to the run-time requirements models
performed by the running system. As a result, not all values in the tuple may
be populated for every model transformation (e.g. the invalidation of an inter-
mediate claim in a run-time Claim Refinement Model) as some information (e.g.
the softgoals better satisficed by a self-adaptation) will not yet be available.
The contents of the first three values in each tuple are as discussed so far in
this section. Acceptable values for the “Cause” value in the tuple, however, vary
depending on the type of change being made to the run-time requirements model.
For a claim being invalidated directly by its own monitoring data, the cause is
the monitoring data indicating the claim’s invalidity. For claims invalidated by
propagation, the cause identifies the claim invalidation propagated from, along
with an indication of the Claim Refinement Model semantics dictating the claim
be invalidated by propagation.

Analysis performed on a collection of tuples for an unplanned adaptation can
yield a textual explanation, in terms of requirements, softgoals and claims, that
approaches natural language. For the robot vacumm cleaner example discussed
in Sect. 2, an explanation of the unplanned adaptation to clean the apartment
when empty as opposed to cleaning at night would be explained as:

Adapted to “Clean When Empty” instead of “Clean at Night” to better satisfice
“Avoid Tripping Hazard”, due to the (invalidated) “No Tripping Hazard” claim.
The “No Tripping Hazard” claim was invalidated because its supporting “No
Foot Impact” claim was invalidated. The “No Foot Impact” claim was inval-
idated because monitoring data indicating its invalidity (FootShockEvent) was
received.

Of course, our self-explanation DSL is tightly-coupled to our run-time require-
ments modelling approach, and to the use of claim invalidation as a source of
run-time requirements model variability. However, our ability to generate self-
explanations using our DSL from a running system, and to interpret them into
a usable textual explanation serves to demonstrate the approach’s feasibility.
We also note that, at present, our method for generating output in the self-
explanation DSL from a running system equipped with run-time requirements
models using our run-time requirements models and reasoning tools depends
on the (previously considered optional) one-claim-per-variation point modelling
guideline being followed, and supports only one of three model transformations
supported by the our run-time reasoner. We consider the use of more complex
claim hierarchies, and particularly the “remove claim on invalidation” run-time
model transformation with our self-explanation generator and DSL as interesting
areas for future exploration.

140 K. Welsh et al.

6 Related Work

Although, to our knowledge, we are the first to discuss self-explanation in the
context of self-adaptive systems; the desire for systems to produce output at
a higher level to improve understanding is long-standing. For example, there
has been significant research into Natural Language Generation by the Artificial
Intelligence and Computational Linguistics communities.

In [22], Duggan and Bent present an algorithm, designed to infer the type of
variables during compilation of programs written in implicitly typed languages
such as ML or Haskell, where explicit variable type declarations are not used.
The algorithm infers variable type by analysis of variable usage, annotating the
program’s syntax tree as it progresses. Inference is performed using a set of
rules; for example a variable to which the addition operator is applied, with
a right hand operand of 1, is an integer. A variable whose type is determined
to be integer through this example rule would have the following explanation
annotated to the program’s syntax tree: +(x,1) gives x: int. Explanations can
become considerably more complex when a variable’s type is dependent on that
of one or more other variables, however the base format remains the same. In
this work, the explanation is used by the algorithm itself to allow explanation
fragments previously generated to guide later type inferences, but the authors
consider the approach potentially useful in providing debugging support.

Similarly, in [23], Van Baalen et. al. retrofit a domain specific code generator
with explanatory capability for use at NASA. In this work, the explanation
covers the relationship between a specification, domain theory and synthesised
code. The explanation is relatively low-level, designed to allow developers to
prove correctness, given NASA’s obvious need for high-assurance software.

In [24], Huang and Fiedler discuss the PROVERB text planner, which ver-
balises mathematical (natural deduction) proofs. The planner uses a three-stage
approach, with the first stage responsible for hierarchically decomposing com-
plex proofs into a series of subproofs, the second stage identifies possible oppor-
tunities to “paraphrase” (or rather combine proof elements into larger, useful
sentences) with the third stage actually generating the textual output. A more
general overview of the state of the art in automated theorem provers, including
discussion of the usefulness of their output, is offered in [25].

Although this work shows a research interest in providing high-level output
to ease human understanding, our focus is not on programs providing natural
language output, but in providing explanations of observed behaviour. Further-
more, the explanations offered by [22,23] are aimed at developers and mathe-
maticians, respectively. The self-explanations we advocate are at a higher-level
of abstraction, aimed at users and support personnel.

Debugging mechanisms, even those considered high-level [26,27], are focussed
on data structures and code rather than on requirements, goals and operational-
isation strategies. More closely-related work can be found in the field of require-
ments monitoring [4,5], from which we derive our claim monitoring. [28] proposes
“awareness requirements”, which are requirements that refer to the success or
failure of other requirements. The authors state that awareness requirements

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 141

may refer to goals, tasks, quality constraints and domain assumptions. Claim
monitoring in our work is similar to domain assumption awareness requirements
in [28], but their focus is on the mapping from requirements models to feedback
loops, with no run-time representation of the awareness requirements.

The claim reasoning we use to demonstrate the utility of run-time require-
ments models in offering self-explanation is based on a combination of two pre-
vious streams of our work. In [13], we discuss the use of claims to highlight
assumptions made during self-adaptive system specification, with a view to them
being revisited in light of later requirement changes. In [10], we make the case
for the run-time use of requirements models, with the ability to rectify deficien-
cies in requirements satisfaction using self-adaptation being a key motivator.
Although we use reasoning of run-time claim refinement models to offer a lim-
ited form of self-explanation, the type of self-adaptive system claim reasoning
proves most useful for are those with a limited number of potential goal operi-
sational strategies, or where self-adaptation is being used to balance a set of
conflicting non-functional requirements.

Approaches such as RELAX [17] and FLAGS [29] adopt fuzziness in require-
ments to allow self-adaptation to prioritise and optimise their satisfaction. In
these approaches, a run-time requirements model could be used to record the
(re)prioritisations that take place, and to allow explanations of adaptations
in the context of which requirements were compromised and which favoured.
Approaches such as [30], which use KAOS [31] goal models, could benefit from
run-time analysis of obstacle models to offer self-explanation in terms of which
obstacles have been detected in the operating environment, and which goal oper-
ationalisation strategies have been adopted to overcome them.

When tackling uncertainty, the ideas discussed in [32] are also related. As we
do, the authors of [32] argue that uncertainty plays an important role in any
software based system that needs adapt continuously to meet the goals. They
argue that the focus of managing uncertain information should be on the ratio-
nale used to come to a decision. We emphasize the importance of being able
to explain this rationale. In their case, the decision may be taken either during
design or requirements (i.e. before execution). In our case, we go further because
the self-adaptive system is able to make decisions at runtime as well. Finally,
we believe our work is relevant to the implementation of dynamic traceability
needed when dealing with self-adaptive systems where little work has yet been
done. The authors of [33] discuss traceability in the presence of uncertainty. Sim-
ilar to our work on claims, the authors of [33] propose to attach supplementary
information to traceability links. This additional information describes the con-
fidence and the rationale for its creation. The authors take into account the fact
that the rationale that supports design decisions is often based on assumptions
and beliefs. However, in contrast to our work, their work focuses on the case of
software product lines and their evolution during software life cycle rather than
on runtime adaptation

142 K. Welsh et al.

7 Conclusions and Future Work

This paper has argued that self-adaptive systems with the potential to behave in
a manner not prescribed at design-time require self-explanation to allow emergent
behaviour to be diagnosed, understood and explained. Self-explanation is impor-
tant because it provides a means to increase confidence in, and resolve queries
about, the behaviour of a self-adaptive system by its users. Self-explanation can
also aid developers in understanding the behaviour of a self-adaptive system by
tracing observed run-time behaviour (the what) to design-time assumptions,
instrospect the strategy chosen (the how) and the extent to which they proved
to be valid in operation (the why).

As already described in [12,16] we have developed an approach to creating
self-adaptive systems capable of tailoring their behaviour to an operating envi-
ronment not fully foreseen at design-time, using run-time requirements mod-
els. These systems are capable, indeed likely, to exhibit emergent behaviour.
In this paper we show how self-explanation of such behaviour might be gener-
ated from the systems’ adaptive reasoning machinery. The particular run-time
requirements models used by our approach are in-memory representations of i*
Strategic Rationale and NFR framework Claim Refinement Models, which are
notably high-level in their nature. Our hypothesis is that these dynamic models,
interpreted through the history of observed behaviour and adaptation events
can provide a plausible means of explaining why the observed behaviour came
about. This contrasts with the use of low-level reconfigurations and executed
code paths used in standard debugging tools which are difficult to interpret in
terms of systems’ requirements, even for expert developers working on systems
that don’t have the added complexity of a self-adaptive capability.

We have demonstrated how a system equipped with our run-time require-
ments models for self-adaptation may also analyse these models to support
self-explanation. We have introduced a simple self-explanation domain-specific
language, and have shown that analysis by a running system of an explanation
conveyed in our self-explanation DSL can yield a near natural language expla-
nation in terms of requirements, claims and monitors.

There are several ways in which our approach can be improved. Currently,
the claim reasoning and model transformation based adaptation mechanism dis-
cussed in this paper applies where goals are achieved by selecting from a finite
number of goal operationalisation strategies defined a-priori but selected dynam-
ically. Our approach is able to improve the flexibility of an executing system
facing unforeseen situations, but the potential operationlization strategies, and
the goals they achieve are defined and analysed at design time. Where new goal
operationalisation strategies may themselves be emergent (e.g. through dynamic
service discovery), further research is needed. This is one of the topics we are
investigating in the FP7 CONNECT project1. Specifically, we are studying ways
in which a new goal operationalisation strategy can be conceived at runtime.
1 http://connect-forever.eu//

http://connect-forever.eu//

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 143

One of the challenges explored is that of updating goal models during execution
to keep the required causal link between architecture and requirements.

Looking to more distant research prospects, two clear goals of self-explanation
research are to provide natural language explanations that are within the capa-
bilities of users to understand, and to allow users themselves to instruct the
system to perform a self-adaptation by interacting with the system at this same
level. The ability for a running system to use run-time requirements models to
trace between high-level concepts such as goals and claims and lower-level sys-
tem configurations, as demonstrated in this paper, indicates that this may be
possible with future work.

References

1. Muir, B.M.: Trust in automation: Part I. theoretical issues in the study of trust and
human intervention in automated systems. Ergonomics 37(11), 1905–1922 (1994)

2. Gillieis, A.C., Hart, A.: Using kbs ideas in image processing - a case study in
human computer interaction. In: Research and Development in Expert Systems V:
Proceedings of Expert Systems ’88, pp. 258–268 (1988)

3. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
aware systems: a research agenda for re for self-adaptive systems. In: IEEE Inter-
national Conference on Requirements Engineering, pp. 95–103 (2010)

4. Robinson, W.: A requirements monitoring framework for enterprise systems.
Requir. Eng. 11(1), 17–41 (2005)

5. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: Sec-
ond IEEE International Symposium on Requirements Engineering (RE’95) (1995)

6. Grace, P., Hughes, D., Porter, B., Blair, G., Coulson, G., Taiani, F.: Experiences
with open overlays: a middleware approach to network heterogeneity. In: Submitted
to Eurosys 2008, Glasgow, UK (2008)

7. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.:
A generic component model for building systems software. ACM Trans. Comput.
Syst. 26(1), 1–42 (2008)

8. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Comput.
37(10), 46–54 (2004)

9. Georgas, J.C., van der Hoek, A., Taylor, R.N.: Using architectural models at run-
time to manage and visualize the adaptation process. In: Bencomo, N., Blair, G.S.,
France, R. (eds.) Models@run.time, Special Issue. IEEE Computer (2009)

10. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Require-
ments reflection: requirements as runtime entities. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE ’10, vol. 2,
pp. 199–202. ACM, New York (2010)

11. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
requirements for adaptive systems. In: ICSE Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS 2011, Waikiki, Honolulu,
HI, USA, 23–24 May 2011, pp. 60–69 (2011)

12. Welsh, K., Sawyer, P., Bencomo, N.: Towards requirements aware systems: Run-
time resolution of design-time assumptions. In: Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering (2011)

144 K. Welsh et al.

13. Welsh, K., Sawyer, P.: Requirements tracing to support change in dynamically
adaptive systems. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol.
5512, pp. 59–73. Springer, Heidelberg (2009)

14. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering, vol. 5. Springer, Heidelberg (1999)

15. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: RE ’97: Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering (RE’97), Washington, DC, USA (1997)

16. Welsh, K., Sawyer, P.: Understanding the scope of uncertainty in dynamically
adaptive systems. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol.
6182, pp. 2–16. Springer, Heidelberg (2010)

17. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: Relax: a lan-
guage to address uncertainty in self-adaptive systems requirement. Requir. Eng.
15(2), 177–196 (2010)

18. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 27–47. Springer,
Heidelberg (2009)

19. Goldsby, H.J., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.: Goal-based
modeling of dynamically adaptive system requirements. In: 15th Annual IEEE
International Conference on the Engineering of Computer Based Systems (ECBS)
(2008)

20. Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve
the intelligibility of context-aware intelligent systems. In: Proceedings of the 27th
International Conference on Human Factors in Computing Systems, CHI ’09, pp.
2119–2128. ACM, New York (2009)

21. Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F., Smith, P.,
Beven, K.: Gridstix: Supporting flood prediction using embedded hardware and
next generation grid middleware. In: 4th International Workshop on Mobile Dis-
tributed Computing (MDC’06), Niagara Falls, USA (2006)

22. Duggan, D., Bent, F.: Explaining type inference. Sci. Comput. Program. 27, 37–83
(1995)

23. Van Baalen, J., Robinson, P., Lowry, M., Pressburger, T.: Explaining synthesized
software. In: Proceedings of the 13th IEEE International Conference on Automated
Software Engineering, ASE ’98, pp. 240-249. IEEE Computer Society, Washington
DC, USA (1998)

24. Huang, X., Huang, X., Fiedler, A., Fiedler, A.: Proof verbalization as an application
of NLG. In: Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 965–970. Morgan Kaufmann (1997)

25. Bundy, A.: Automated theorem provers: a practical tool for the working mathe-
matician? Ann. Math. Artif. Intell. 61, 3–14 (2011). doi:10.1007/s10472-011-9248-8

26. Golan, M., Hanson, D.R.: Duel - a very high-level debugging language. In: USENIX
Winter, pp. 107–118 (1993)

27. Yang, J., Soffa, M.L., Selavo, L., Whitehouse, K.: Clairvoyant: a comprehensive
source-level debugger for wireless sensor networks. In: Proceedings of the 5th Inter-
national Conference on Embedded Networked Sensor Systems, SenSys ’07, pp.
189–203. ACM, New York (2007)

28. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
requirements for adaptive systems. Technical report, University of Trento (2010)

http://dx.doi.org/10.1007/s10472-011-9248-8

Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models 145

29. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adap-
tation. In: 2010 18th IEEE International Requirements Engineering Conference
(RE), pp. 125–134 (2010)

30. Nakagawa, H., Ohsuga, A., Honiden, S.: Constructing self-adaptive systems using
a kaos model. In: Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems Workshops, 2008, SASOW 2008, pp. 132–137 (2008)

31. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20, 3–50 (1993)

32. Lehman, M.M., Ramil, J.F.: Software evolution: background, theory, practice. Inf.
Process. Lett. 88, 33–44 (2003)

33. Anquetil, N., Grammel, B., Galvao, I., Noppen, J., Shakil, S., Arboleda, H., Rashid,
A., Garcia, A.: Traceability for model driven, software product line engineering.
In: ECMDA (2008)

A Higher-Order Agent Model with Contextual
Planning Management for Ambient Systems

Ahmed-Chawki Chaouche1,2(B), Amal El Fallah Seghrouchni1,
Jean-Michel Ilié1, and Djamel Eddine Säıdouni2

1 LIP6 Laboratory, University of Pierre and Marie Curie,
4 Place Jussieu, 75005 Paris, France

{ahmed.chaouche,amal.elfallah,jean-michel.ilie}@lip6.fr
2 MISC Laboratory, University Constantine 2,

Ali Mendjeli Campus, 25000 Constantine, Algeria
saidouni@misc-umc.org

Abstract. This paper presents a concrete software architecture dedi-
cated to ambient intelligence (AmI) features and requirements. The pro-
posed behavioral model, called Higher-order Agent (HoA) captures the
evolution of the mental representation of the agent and the one of its plan
simultaneously. Plan expressions are written and composed using a for-
mal algebraic language, namely AgLOTOS, so that plans are built auto-
matically and on the fly, as a system of concurrent processes. Based on a
specific semantics, a guidance service is also proposed to assist the agent
in its execution. Moreover due to the specific structure of AgLOTOS
expressions, the update of sub-plans is realized automatically accord-
ingly to the revising of intentions, hence maintaining the consistency of
the agent.

Keywords: Ambient intelligence · BDI agent · Formal planning
language and semantics · Dynamical plan revising · Planning
consistency and guidance

1 Introduction

Ambient Intelligence (AmI) is the vision of ubiquitous electronic environment
that is non-intrusive and proactive, when assisting people during various activ-
ities [1,2]. For the design of such complex systems, Multi-agent System (MAS)
approaches offer interesting frameworks, since their agents are considered as
intelligent, proactive and autonomous [3]. Thanks to their mental attitudes, the
Belief-Desire-Intention (BDI) agents of [4] are able to use their Beliefs, Desires,
and Intentions rationally, in order to select and execute a plan of actions.

The major problem for AmI agent consists in recognizing its environmental
contexts, including its location and the discovery of other agents. Neverthe-
less, the HoA model proposed recently in [5], outlined how autonomous BDI
agents can evolve and move within an ambient environment, based on a context-
awareness. The major features and functionalities of AmI are taken into account,
c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 146–169, 2014.
DOI: 10.1007/978-3-662-44871-7 6

A Higher-Order Agent Model with Contextual Planning Management 147

in particular dynamic requirements such that: AmI systems can be open, thus
agents can dynamically enter or leave the system.

The presented paper is inspired by the HoA model however an efficient plan-
ning management process is introduced in the architecture of the agent. We take
profit from the fact that the plan of the agent can be derived from the current
set of intentions of the agent. Our approach is based on a formal description lan-
guage, namely AgLOTOS, allowing us to introduce modularity and concurrency
aspects to compose sub-plans, viewed as processes. Unlike the formal description
of [6], the AgLOTOS semantics overpasses the sequential execution of sub-plans.
Rather, the concurrency of sub-plans is fully implemented and is only restrained
with the purpose of solving possible inconsistency between intentions.

In this context, the planning process must be able to select and try one or
more plans from some intention, and even deal with several intentions at the
same time. Moreover, plans must be revised on the fly, in the sense that agents
are dynamic entities which are changing the set of intentions and then plan,
throughout their evolutions. As underlyied by several authors, this is considered
an important notion in BDI agent conceptual frameworks [7–9].

The planning process we propose also aims at offering to each AmI agent,
powerful predictive services, that can run on the fly. Like in other recent
approaches which are dedicated to the planning and the validation of BDI MAS
systems, e.g. [6,10], we focus on one agent rather than on the whole MAS, since
this eases us to embed agent in whatever environment and to deal with the
openness of AmI systems.

The original contributions of this paper are the following (1) a well-structure
extension of the AgLOTOS language and its semantics, which allows automatic
revisions of plans, (2) a concrete software architecture allowing the management
of the possible actions failures and (3) automatic guidance service based on the
representation of plans. The paper is organized as follows: Sect. 2 details the
considered AmI features. This allows us to introduce our Agent model in Sect. 3,
namely Higher-order agent model (HoA), which captures the evolution of the
agent in both its mental and planning states. In Sect. 4, the (structured) AgLO-
TOS language is defined to build plans automatically from the set of intentions,
based on a library of elementary plans. then, an efficient plan revising is pro-
vided in Sect. 4, which works accordingly to the revision of intentions. In Sect. 5,
the semantics of AgLOTOS is enriched to automatically produce a Contextual
Planning System (CPS), in order to guide the execution of plans contextually.
In Sect. 6, the description of our experiment project illustrates a concrete use of
our approach. Section 7 presents the related works concerning the modeling and
the specification of AmI agents and systems. The last section is our conclusion.

2 AmI Requirements

The AmI systems we consider are open space and dynamic systems. Their agents
can reason and are assumed to be BDI agents thus have complex features as
described in Fig. 1. An agent is assumed to be autonomous and pervasive,

148 A.-C. Chaouche et al.

thus operate without the direct intervention of humans or other agents. It is
anticipative and can process rational decisions, based on its own knowledge
and beliefs.

Fig. 1. Agent features for AmI systems

As a corollary of autonomy, an AmI agent is context-aware. We see the
context of an agent as every environmental information perceived by the agent,
in particular vicinity notions in a domain that considers space, time and social
relationships. Thus, determining if a piece of information is relevant for an agent
should be done based on its local context information.

To improve behavior and knowledge, an AmI agent can communicate and
cooperate with its neighbors. Also, AmI agent can be mobile moving from one
location to another one in a given space.

The BDI architecture is one of the major approaches to design pro-active
agents in MAS [11]. Inspired from [4,12], the following functions describe the
reasoning mechanism in the BDI agent, in order to produce a plan of actions. It
is triggered by the perceived events (Evt) and often helped by a library of plans
(LibP).

– revs : 2B × Evt → 2B is the belief revision function applied when the agent
receives a new event.

– des : 2B × 2D × 2I → 2D is the Desire update function that maintains consis-
tency with the selected desires,

– filter : 2B × 2D × 2I × LibP → 2I is the Intention function which yields
the intentions the agent decides to pursue, among the possible options, taking
into account new opportunities.

– options : I × LibP → P is the function which associates a plan with each
intention of the agent by using the LibP library.

– plan : 2I → P is a Plan function that processes an executable plan from some
(filtered) Intention, knowing that any intention can be viewed as a partial
plan.

3 The Higher-Order Agent Model

We are interested in modeling the evolution of the agent. Figure 2 highlights
the agent architecture we consider in this paper, called Higher-order Agent

A Higher-Order Agent Model with Contextual Planning Management 149

architecture (HoA). In contrast to the traditional BDI architecture, our app-
roach enhances a clear separation in three processes:

– The Context Process is in charge of the context information of the agent. It is
triggered by new perceptions of the environment and also by internal events
informing about the executions of actions. At a low level, it is in charge of
observing the realization of the executions of actions and plans of actions, in
order to state whether they are successfully achieved or if a failure occurs.

– The Mental Process corresponds to the reasoning part of the agent. It is
notified by the context process so that it can be aware of the important context
changes and can provoke possible revisions of the beliefs (B), desires (D), and
intentions (I) data.

– The Planning Process is called by the mental process. Helped by the LibP
library, it mainly produces a plan of actions from the set of intentions, but
also offers some services related to the management of plans.

Fig. 2. Higher-order agent architecture

The behavioral model of the agent only relates on two main aspects of the
agent: (1) the mental reasoning of the agent and (2) the evolution of the selected
plan. Hence, we consider that the state of the agent, namely its HoA configura-
tion, is a pair composed of a BDI state and a Planning state. As illustrated by
Fig. 3, the occurrences of events may cause some changes of one of these parts
or both.

The evolution of configurations is formally represented by the following
Higher-order Agent (HoA) behavioral model. It is defined over an alphabet of
events triggered by the actions being executed and by perception events, namely
Evt = EvtAct∪EvtPerc. Among the actions, message sendings are available, and
message receivings are viewed as specific environmental perceptions. Moreover,
mobility is handled as a specific action (move).

150 A.-C. Chaouche et al.

q0 qi

B0
D0
I0

Ps0

Bi

Di

Ii

Psi

e1 ei+1

q1

B1
D1
I1

Ps1

Fig. 3. The agent behavioral changes

Definition 1. (The HoA model and HoA configuration)
Consider any agent of the AmI system, then let BDI be the set of all the pos-

sible states that can be defined over the BDI structure. Moreover, let P be the
set of all the possible corresponding plans, PS be the set of all the possible plan-
ning states evolving in some plan and let LibP be a subset of P representing the
library of plans. The HoA model of the agent is a transition system, represented
by a tuple 〈Q, q0,→, FM , FP , FPS〉, where:

– Q is the set of HoA configurations such that any configuration q is a tuple
q = (bdi, ps) where bdi and ps respectively represent the BDI and the planning
states of the agent in q,

– q0 ⊆ Q is the initial HoA configuration, e.g. q0 = (bdi0, ps0),
– → ⊆ Q × Evt × Q is the set of transitions between configurations,
– FM : Q −→ BDI associates a BDI state with each HoA configuration,
– FP : BDI × LibP −→ P associates with each BDI state, an agent plan built

from the LibP library,
– FPS : Q −→ PS associates a planning state with each HoA configuration.

In this paper, a BDI state is composed of three sets of propositions, represent-
ing the Beliefs, Desires and Intentions of the agent. The intentions are assumed
to be partially ordered by associating a weight to each intention. This allows
the mental process to organize its selected intentions, in order to solve possible
conflicts. The Plan is directly derived from the intentions and is written as an
AgLOTOS plan expression. Actually, the possible planning states are derived by
using the semantics of AgLOTOS from the plan expression (see Sect. 4 to get
more details).

A Simple AmI Example

Let Alice and Bob be two agents of an AmI Universitary system. Such a system
is clearly open since agents can enter and leave. The fact that Bob is entering
the system can be perceived by Alice in case she is already in. Since Alice is
context-aware, she can take advantage of this information, together with other
information like the fact she is able to communicate with Bob through the
system.

Let Θ = {�1, �2} be two locations of the system where the agents behave.
The proposed problem of Alice is that she cannot make the two following tasks

A Higher-Order Agent Model with Contextual Planning Management 151

in the same period of time: (1) to meet Bob in �1, and (2) to get her exam copies
from �2. Clearly, the Alice’s desires are inconsistent since Alice cannot be in two
distinct locations simultaneously.

In the following sections, the AgLOTOS specification language will be used
for formalizing this scenario.

4 Planning Formal Syntax and Semantics

Fig. 4. Agent planning structure

Table 1. Synthetic presentation of the used notations

Notation Description

q HoA configuration

bdi BDI state

ps Planning state

E AgLOTOS expression

P Elementary plan

̂P Intention plan

P Agent plan

(E,P) Elementary plan configuration

(E, ̂P) Intention plan configuration

[P] Agent plan configuration

In our approach, the planning language is well-structured as described in
Fig. 4 and the associated notation in Table 1. Any plan of the agent, namely the
Agent plan accords with the two following levels: (1) the agent plan is made of
sub-plans called Intentions plans. Intentions plans correspond to the agent inten-
tions and each one is dedicated to achieve the corresponding intention; (2) each
intention plan can be an alternate of several sub-plans, called Elementary plans,

152 A.-C. Chaouche et al.

each one being extracted from the LibP library. This allows one to consider dif-
ferent ways to achieve the corresponding intention (see Sect. 4.1). Further, we
assume that the LibP library is indexed by the set of all the possible intentions
that the agent can engage.

4.1 The Syntax of AgLOTOS Plans

Syntax of Elementary Plans. Elementary plans are written using the alge-
braic language AgLOTOS [13]. This language inherits from the LOTOS lan-
guage [14] so offers different ways to express the concurrency of actions in plans.
The building of an AgLOTOS expression refers to a finite set of observable
actions. Further, let O be this set whose elements range over a, b, ... and let L
be any subset of O. Let H ⊂ O be the set of the so-called AmI primitives which
represent the mobility and communication:

– In AgLOTOS, actions are refined to make the AmI primitives observable:
(1) an agent can perceive the enter and leave of another agent in the AmI
system, (2) it can move between the AmI system locations, and (3) it can
communicate with another agent in the system.

– An AgLOTOS expression refers to contextual information with respect to the
(current) BDI state of the agent: (1) Θ is a finite set of space locations, (2) Λ
is a set of agents with which it is possible to communicate, and (3) M is the
set of possible messages to be sent and received.

– The agent mobility is expressed by the primitive move(�) which is used to
handle the agent move to some location � (� ∈ Θ). The syntax of the com-
munication primitives is inspired from the semantics of π-calculus primitives,
however with the consideration of a totally dynamic communication support,
hence without specification of predefined channels: the expression x!(ν) speci-
fies the emission to the agent x (x ∈ Λ) of some message ν (ν ∈ M), whereas,
the expression x?(ν) means that ν is received from some agent x.

Let Act = O ∪ {τ, δ}, be now the considered set of actions, where τ /∈ O is
the internal action and δ /∈ O is a particular observable action which features
the successful termination of a plan.

The AgLOTOS language specifies a pair for each elementary plan composed
of a name to identify it and an AgLOTOS expression to feature its behavior.
Consider that elementary plan’s names P are ranged over P,Q, ... and that
the set of all possible behavior expressions is denoted E , ranged over E,F,
The AgLOTOS expressions are written by composing actions through LOTOS
operators. The syntax of an AgLOTOS elementary plan P is defined inductively
as follows:

P ::= E Elementary plan
E ::= exit | stop

| a;E | E 	 E (a ∈ O)
| hide L in E

H ::= | move(�) (H ⊂ O, � ∈ Θ)
| x!(ν) | x?(ν) (x ∈ Λ, ν ∈ M)

	 = { [], |[L]|, |||, ||,
, [> }

A Higher-Order Agent Model with Contextual Planning Management 153

The elementary expression stop specifies a plan behavior without possible
evolution and exit represents the successful termination of some plan. In the
syntax, the set 	 represents the standard LOTOS operators: E []E specifies a
non-deterministic choice, hide L in E a hiding of the actions of L that appear in
E, E
 E a sequential composition and E [> E the interruption of the left hand
side part by the right one. The LOTOS parallel composition, denoted E |[L]|E,
can model both synchronous composition, E ||E if L = O, and asynchronous
composition, E |||E if L = ∅. In fact, the AgLOTOS language exhibits a rich
expressivity such that the sequential executions of plans appears to be only a
particular case.

Building of the Agent Plans from Intentions and Elementary Plans.
The building of an agent plan requires the specific AgLOTOS operators:

– at the agent plan level, the parallel ||| and the sequential
 composition
operators are used to build the agent plan, in respect to the intentions of the
agent and the associated weights.

– the alternate composition operator, denoted ♦, allows to specify an alternate
of elementary plans. In particular, an intention is satisfied iff at least one of
the associated elementary plans is successfully terminated.

Let P̂ be the set of names used to identify the possible intention plans: P̂ ∈ P̂
and let P be the set of names qualifying the possible agent plans: P ∈ P.

P̂ ::= P | P̂ ♦ P̂ Intention plan

P ::= P̂ | P ||| P | P
 P Agent plan

With respect to the set I of intentions of the agent, the agent plan is formed in
two steps: (1) by an extraction mechanism of elementary plans from the library,
then (2) by using the composition functions called options and plan:

– options : I → P̂, yields for any i ∈ I, an intention plan of the form: P̂i =
♦P∈libp(i) P .

– plan : 2I → P, creates the final agent plan P from the set of intentions I.
Depending on how I is ordered, the intention plans yielded by the different
mappings P̂i = options(i) for each i ∈ I, are composed by using the AgLOTOS
composition operators ||| and
.

In our approach, the mental process can label the different elements of the set
I of intentions by using a weight function weight : I −→ N. This allows
the planning process to schedule the corresponding intention plans yielded by the
mapping options. The ones having the same weight are composed by using the
concurrent parallel operator |||. In contrast, the intention plans corresponding to
distinct weights are ordered by using the sequential operator
. For instance, let
I = {i10, i

2
1, i

1
2, i

0
3} be the considered set of intentions, such that the superscript

information denotes a weight value, and let P̂0, P̂1, P̂2, P̂3 be their corresponding
intention plans, the constructed agent plan could be viewed (at a plan name
level) as: plan(I) = P̂1
 (P̂0|||P̂2)
 P̂3.

154 A.-C. Chaouche et al.

4.2 Semantics of AgLOTOS Plans

The AgLOTOS operational semantics is basically derived from the one of Basic
LOTOS, which is able to capture the evolution of concurrent processes. A con-
figuration (E,P) represents a process identified by P , such that its behavior
expression is E. Table 2 recalls the Basic LOTOS semantics which formalizes
how a process can evolve under the execution of actions. Here, it represents the
operational semantics of elementary plans, viewed as processes. In particular, the
last rule specifies how any (E,P) configuration is changed to (E′, P) under any
action a. Actually, P := E denotes that the behavior expression E is assigned
to P and P

a−→ E′ represents the evolution of P from E to E′. Observe that for
sake of simplicity, the notification that an action is launched is not represented
in the semantics.

Table 2. Semantic rules of elementary plans

(Termination)
exit

δ−→ stop

(Action prefix)
a∈O

a;E a−→ E

(Choice)
E

a−→ E

F [] E
a−→ E E [] F

a−→ E

(Concurrency)
E

a−→ E a/∈L∪{δ}
E |[L]| F

a−→ E |[L]| F

E
a−→ E a/∈L∪{δ}

F |[L]| E
a−→ F |[L]| E

E
a−→ E F

a−→ F a∈L∪{δ}
E |[L]| F

a−→ E |[L]| F

(Hiding)
E

a−→ E a/∈L

hide L in E
a−→ hide L in E

E
a−→ E a∈L

hide L in E
τ−→ hide L in E

(Sequence)
E

a−→ E a=δ

E F
a−→ E F

E
δ−→ E

E F
τ−→ F

(Interruption)
E

a−→ E a=δ

E [> F
a−→ E [> F

E
δ−→ E

E [> F
δ−→ E

F
a−→ F

E [> F
a−→ F

(Relabeling)
E

a−→ E a/∈{a1,...,an}
E[b1/a1,...,bn/an]

a−→E [b1/a1,...,bn/an]
E

a−→ E a=ak (1≤k≤n)

E[b1/a1,...,bn/an]
bk−→E [b1/a1,...,bn/an]

(Plan definition)
P :=E E

a−→ E

P
a−→ E

Definition 2 specifies how the expression of an agent plan is formed compo-
sitionally. Further, the behavior expression of the agent plan P is denoted [P]
and is called the agent plan configuration. It is formed compositionally from the
intention plan configurations of the agent, like (E, P̂) (see rule 2), themselves
built from an alternate of elementary plans configurations, like (Ek, Pk) (see
rule 1).

A Higher-Order Agent Model with Contextual Planning Management 155

Definition 2. Any agent plan configuration [P] has a generic representation
defined by the following two rules:

1. P ::=P̂ P̂ ::=♦k=1..n Pk Pk::=Ek

[P]::=(♦k=1..n Ek, P̂)

2. P ::=P1 � P2 �∈{|||,�}
[P]::=[P1] � [P2]

Table 3 shows the operational semantic rules defining the possible planning
state changes for the agent. The rules apply from any HoA configuration q =
(bdi, ps), where the planning state ps is directly specified as an agent plan con-
figuration, like [P]. In each row of the table, there are three kinds of deriva-
tions: (1) the first rule shows the nominal case considering the execution of any
action a (a ∈ O ∪ {τ}), (2) and (3) the other two rules focus on the termina-
tion action of some intention plan, P̂ . In the second one, the considered intention
plan is successfully terminated whereas in the third one, the failure termination
case is treated. With respect to any intention plan P̂ , P̂ and ¬P̂ respectively
represent the successful and failure termination cases of P̂ . Hence, if PS is the
set of all the possible planning states for the agent, then the transition relation
between the planning states is a subset of PS ×Act× (P̂ ∪¬P̂)×PS. The tran-
sitions (ps1, a, P̂ , ps2) and (ps1, a,¬P̂ , ps2) such that P̂ ∈ P̂, provoke an internal
event informing the mental process of the termination of the intention plan P̂ .
For sake of clarity, the transition (ps1, a, nil, ps2) is simply denoted ps1

a−−→ ps2,
representing the execution of a non termination action a.

– The two first rows concern the derivations of the behavior expression of an
intention plan P̂ , under the execution of some action. The Action rules exhibit
the simple case where E is an elementary expression of P̂ , whereas the Alter-
nate rules focus on the execution of an alternate of elementary expressions,
like ♦k=1..nEk. The second rule captures the successful termination of P̂ ,
under the execution of the action δ, while the third one captures the failure,
in case the behavior expression of P̂ is equivalent to fail. In this paper, fail
represents the fact that the execution of some behavior expression E fails due
to the dynamical context of the agent. In the first Alternate rule, the behav-
ior expression E = ♦k=1..n Ek of an intention plan P̂ , is refined by using the
mapping select, the role of which is to select one of the elementary expression
among the ones of E, e.g. Ej = select(P̂). The alternate operation is semanti-
cally defined by introducing a new semantic operator �, in order to take this
selection into account: Ej � (♦Ek=1..n

k �=j Ek). Observe that E � F , yields E if
E is a success and F if E fails.

– In the two last rows, the sequential and parallel LOTOS operators are used
to express the compositions of intention plan configurations, in a sequential
or parallel way. Here again, the rules are refined to take possible failure cases
into account.

Application to the Scenario. Let us take the scenario of Sect. 3 again. Table 4
separately represents a possible evolution of the HoA configurations for the agent

156 A.-C. Chaouche et al.

Table 3. Semantic rules of agent plan configurations

(Action)
E

a−−→E

(E,P)
a−−→(E ,P)

E
δ−→stop

(E,P)
τ−−→
P

(stop,P)

E≡fail

(E,P)
τ−−−→

¬P
(stop,P)

(Alternate)
Ej

a−−→Ej Ej=select(P)

(♦k=1..n Ek,P)
a−−→ (Ej (♦k=1..n

k=j Ek),P)

E
δ−→stop

(E F,P)
τ−−→
P

(stop,P)

E≡fail F
a−−→F

(E F,P)
a−−→ (F ,P)

(Sequence)
ps1

a−−→ps1

ps1 ps2
a−−→ps1 ps2

ps1
τ−−→
P

ps1

ps1 ps2
τ−−→
P

ps1 ps2

ps1
τ−−−→

¬P
ps1

ps1 ps2
τ−−−→

¬P
ps1 ps2

(Parallel)
ps1

a−−→ps1

ps1|||ps2
a−−→ps1|||ps2 ps2|||ps1

a−−→ps2|||ps1
ps1

τ−−→
P

ps1

ps1|||ps2
τ−−→
P

ps1|||ps2 ps2|||ps1
τ−−→
P

ps2|||ps1

ps1
τ−−−→

¬P
ps1

ps1|||ps2
τ−−→

¬P
ps1|||ps2 ps2|||ps1

τ−−→
¬P

ps2|||ps1

Alice and Bob, to solve the Alice’s problem. In order to express the agent plan
configurations, BDI propositions and plan of actions are simply expressed by
using instantiated predicates, e.g. get copies(�2). Intention plans are composed
from elementary plans which are viewed as concurrent processes, terminated
by exit.

The initial configurations of Alice and Bob are respectively qA
0 and qB

0 , such
that Alice is in �1 and has the mentioned two inconsistent desires, whereas Bob
is in �2 and has expressed the desire to work with Alice. The current intention
of Alice is only to meet with Bob. Here, BDI information is simply expressed by
using intuitive predicate assertions.

The mental process can order the set of intentions to be considered. For
instance, the intentions of Bob in qB

1 : I1 = {meeting(Alice, �1), getting copies
(�2)} are ordered such that weight(meeting(Alice, �1)) < weight(getting copies
(�2)). In the intention set I1 of Bob, the corresponding agent plan configu-
ration is: [P1] = ((Eg, P̂g)
 (Em, P̂m)), where (Eg, P̂g) and (Em, P̂m) are
the two intention plan configurations of Bob. The first one corresponds to the

A Higher-Order Agent Model with Contextual Planning Management 157

Table 4. A state evolution for Alice and Bob

Alice’s scenario

B0 = {in(me, 1), in(2)}
qA
0 D0 = {meeting(B 1), getting copies(2)}

I0 = {meeting(B 1)}
[P0] = (meet(Bob); exit, Pm)

B1 = {in(me, 1), in(2), in(2)}
qA
1 D1 = {meeting(B 1), asking(Bob, get copies(2))}

I1 = {meeting(B 1), asking(Bob, get copies(2))}
[P1] = (meet(Bob); exit, Pm) ||| (Bob!(get copies(2)); exit, Pa)

Bob’s scenario

B0 = {in(me, 2)}
qB
0 D0 = {waiting(ν), meeting(1)}

I0 = {waiting(ν), meeting(1)}
[P0] = (Alice?(ν); exit, Pw) ||| (move(1); meet(Alice); exit, Pm)

B1 = {in(me, 2), in(2)}
qB
1 D1 = {meeting(Al 1), getting copies(2)}

I1 = {meeting(Al 1), getting copies(2)}
[P1] = (get copies(2); exit, Pg) (move(1); meet(Alice); exit, Pm)

intention getting copies(�2) and the second to meeting(Alice, �1), such that
Eg = get copies(�2); exit and Em = move(�1);meet(Alice); exit.

An example of execution derived from the initial planning state of Bob in
qB
1 is the following, expressing that Bob fails to get the copies but this does not

prevent him to move and perform the meeting with Alice:

((Eg, P̂g)
 (Em, P̂m)) τ−−−−→
¬P̂g

(Em, P̂m)
move(�1)−−−−−−→ (E′

m, P̂m) meet−−−−→ (E′′
m, P̂m)

τ−−−→̂
Pm

(stop, P̂m).

The reader may notice that the Alice and Bob agent plan configurations in
qA
1 and qB

1 can change according to their revised intentions. Section 4.3 enriches
the semantics with the plan revising service. This scenario will be taken again
as an illustration.

4.3 Dynamical Plan Revising

In our model, the mental process drives the planning process such that adding
or removing intentions possibly provoke the change of the agent plan. Of course,
the mental process cannot ask for such a change on some plan is in progress,
since this could imply that the agent could fall down in an incoherent state.
In fact, the mental process must be informed by the planning process about
the terminations of sub-plans, in particular intention plans, in order to act with
consistency. At this point, we assume that the only dependencies within the
intention set are due to the organization of the weighted intentions, required by

158 A.-C. Chaouche et al.

the mental process. A rough approach would consist in waiting the whole plan
termination, meaning that the planning process reaches the final planning state
of the current agent plan, before taking the change of intentions into account.
In this paper, we propose an improved method which consists in updating the
agent plan as the revisings of intentions are required by the mental process. Such
updates consist in adding new intention plans and removing some of the remain-
ing intention plans in progress. We take profit from the compositional nature of
AgLOTOS, that allows the planning process to manage the different intention
plans distinctly. Recall that any planning state specifies different intention plan
configurations corresponding to intentions to be achieved.

In some HoA configuration q = (bdi, ps), I(bdi) represents the intention set
in this configuration. Let us consider some planning state ps = [P], such that
[P] = 	i∈1..n (Ei, P̂i) represents the remaining intention plan configurations to
execute, where each P̂i corresponds to the plan of the intention i, Ei is its
associated AgLOTOS expression and 	 ∈ {|||,
}.

The updatings of the intention set and of the corresponding agent plan rely
on the following principles:

– according to the semantics, every termination of intention plan produces an
internal event which changes the BDI state, in particular the updating of the
intention set.

– it is easy to build some mappings which relates every intention i ∈ I to the
corresponding pair (E, P̂) and vice versa: (1) remain : P × I → E × P̂ maps
each intention i ∈ I to the corresponding pair (E, P̂) of [P]; (2) index : P̂ → I

maps each P̂ to the corresponding intention i ∈ I. It is worth noting that from
weight(index(P̂i)) such that i ∈ I, one yields the weight of the intention i.

The add and remove of updating operations are formalized by the following
two mappings: add, remove : 2E×P̂ × I → [P], be the mapping which builds an
agent plan configuration [P] from a set of intention plan configurations.

The Adding of a new intention k, assuming its intention plan configuration
is (Ek, P̂k), means:

– adding k in I and updating the weight mapping to take k into account, then
– building a new agent plan configuration, from the set of remaining intention

plan configurations ∪i∈I remain(P , i) and their respective weights weight(i).

Formally, let ps be the current planning state of the agent and k be the
intention to be added, the resulting planning state after the revising is defined
by: (add(∪i∈I remain(ps, i), k)).

The explicit Removing of a (non-terminated) intention k from I, means that
the corresponding (Ek, P̂k) = remain(P , k) must be removed from P . As for the
adding function the resulting planning state after removing the intention k is:
(remove(∪i∈I remain(ps, i), k)).

Application to the Scenario. Consider the example of Table 4 again, the
changes of configurations for Alice and Bob (taken separately) are due to the

A Higher-Order Agent Model with Contextual Planning Management 159

respective perceptions of Alice and Bob and the fact they are anticipative. Actu-
ally, after having perceived that Bob is in �2 (e1 = perc(in(Bob, �2))), meaning
in the same location as the exam copies, Alice enriches her beliefs, desires and
intentions, aiming communicating with Bob and asking for his help to bring her
the copies. Consequently, she evolves to the new configuration qA

1 , where the
generated plan suggests that Alice sends the message Bob!(get copies(�2)).

Notice that Bob is able to receive any message from Alice, which is denoted
Alice?(ν) in qB

0 . The reception of the message sent by Bob triggers an event
at the Bob’s mental process level. Since here Bob is accepting bringing the
copies to Alice, he expands his beliefs (in(copies, �2)) and also considers a new
intention getting copies(�2) to take into account, in fact consistent with the
previous ones. Consequently, the HoA configuration of Bob is changing to qB

1

i.e. I1 = I0 ∪ {getting copies(�2)}, and the plan [P0] of Bob is updated by using
the add mapping: [P1] = add(∪i∈I0 remain(P0, i), getting copies(�2)), in order
to satisfy all of his desires, getting first the copies then going to meet Alice.

Fig. 5. HoA evolution of the agent Bob

The sequence diagram of Fig. 5 focuses on the behavior of Bob, in order to
highlight the mutual updates required by the mental process and the planning
process, to synchronize the content of the intention set and the specification of
the agent plan. For sake of simplicity, notice that:

• w and m respectively represent the two initial intentions of Bob in I0, that
are waiting(ν) and meeting(Alice, �1),

• g represents the intention getting copies(�2)

Moreover, the signs + and − respectively mean adding the intention and remov-
ing it.

The bold horizontal arrows show the updates of this part of the scenario.
First, the agent plan is built from the fact that w and m are added to the

160 A.-C. Chaouche et al.

intentions set (with the same weight). This results in two concurrent intention
plans, [PB

0] = (Ew, P̂w)|||(Em, P̂m). Due to the reception of the Alice’s message,
this yields to the execution of the reception action, followed by the exit action
(τ) mentioning the termination of the intention plan P̂w. This yields the agent
plan [P ′′B

0] = (Em, P̂m). Since the mental process is informed of both actions (by
internal events), it finally decides to update its set of intentions, with −w,+g (m
has a lower weight than g). As a consequence, the planning process is triggered
to revise its agent plan in accordance, so [PB

1] = (Eg, P̂g)
 (Em, P̂m).

5 Contextual Planning Services

We now augment the planning process by two new services, exploiting the con-
textual information of the agent. Our aim is to provide a guidance service for
the mental process and a model checking approach to analyze some temporal
properties over the agent plan. Both services are based on the building of a
specific transition system called Contextual Planning Systems (CPS), that can
represent the different execution traces the agent could perform, from a given
HoA configuration, in the best case, assuming the information context of the
HoA configuration hold.

5.1 Building of a Contextual Planning System

Let consider any HoA configuration, the CPS state of the agent is now defined
contextually to this configuration, taking into account the agent location and a
termination information about the different intention plans.

Let q be any HoA configuration of the agent, and I(q) its intention set in
q, the rules used to build the CPS, take into account contextual information of
three kinds which are: (1) the reached location in a CPS state, (2) the set of
intention plans that are terminated when reaching a CPS state, and (3) more
globally, the set Λ(q) of neighbors currently known by the agent.

Definition 3. A CPS state is a tuple (ps, �, T), where ps is the current planning
state of the agent which represents its agent plan configuration [P], � corresponds
to the location within which the agent is placed, and T is the subset of intention
plans which are terminated.

Table 5 brings out the operational semantic rules, defining so the possible
ways of CPS state changes. These rules are applied from an initial CPS state
and ([P], �, ∅) means that the agent is initially considered at location �, and its
plan configuration is [P].

The Action rules are used to derive the execution of an action with respect
to an intention plan. The left hand side rule exhibits the case of a regular action,
whereas the right hand side one shows the termination case of an intention plan,
wherein the terminated intention plan is added to T . Also, the Mobility rules
capture the change of location from � to �′ and in the Communication rules,

A Higher-Order Agent Model with Contextual Planning Management 161

Table 5. Semantic rules of CPS state changes

(Action)
ps

a−−→ps a∈O∪{τ}
()

a−−→(ps)

ps
τ−−→
P

ps

()
τ−−→(ps ∪{P})

(Mobility)
ps

move()−−−−−→ps =

()
move()−−−−−→(ps ,T)

ps
move()−−−−→ps

()
τ−−→(ps)

(Communication)
ps

x!(ν)−−−−→ps x∈Λ

()
x!(ν)−−−−→()

ps
x?(ν)−−−−→ps x∈Λ

()
x?(ν)−−−−→(ps)

the action send x!(ν) (resp. receive x?(ν)) is constrained by the visibility of the
agent x in its neighborhood.

Observe that due to the fact we consider a predictive approach in this section,
only successful executions are taken into account, thus abstracting that a plan
may fail. Moreover, the semantics of the alternate operator is reduced to a simple
non-deterministic choice of LOTOS: ♦k=1..nEk ≡ []k=1..nEk in order to possibly
try every elementary plan to achieve the corresponding intention.

Definition 4. Let q = (bdi, ps) be any HoA configuration of the agent, the
Contextual Planning System of q, denoted CPS(q), is a labeled kripke structure
〈S, s0, T r,L, T 〉 where:

– S is the set of CPS states,
– s0 = (ps, �, ∅) ∈ S is the initial CPS state, such that ps = [P] represents the

current planning state of the agent in q and � its current location,
– Tr ⊆ S ×Act×S is the set of transitions. The transitions are denoted s

a−→ s′

such that s, s′ ∈ S and a ∈ O ∪ {τ},
– L : S → Θ is the location labeling function,
– T : S → 2P̂ is the termination labeling function which captures the terminated

intention plans in some CPS state.

Moreover, in a CPS, the transitions from a CPS state only represent actions
that are realizable. In this paper, actions are modeled by instantiated predicates
and their execution in CPS state is submitted to pre-conditions to be satisfied
with respect to the contextual information known in that state, e.g. pre(x!(ν)) =
pre(x?(ν)) = x ∈ Λ.

Remark 1. (Realizable actions) Let pre(a) be the pre-condition of the action a.
A transition (s a−→ s′) ∈ Tr is realizable in the state s of CPS(q) iff pre(a) ⊆
L(s) ∪ Λ(q).

Consider Table 4 where [P1] is the agent plan configuration considered for
Bob in the HoA configuration qB

1 . The initial CPS state s0 in qB
1 is written:

s0 = ([P1], �2, ∅) where [P1] = ((Eg, P̂g)
 (Em, P̂m)). An example of trace

162 A.-C. Chaouche et al.

of CPS(qB
1) derived from s0 is: ((Eg,̂Pg) � (Em, ̂Pm), �2, ∅)

getc−−−→ ((E′
g,̂Pg) �

(Em, ̂Pm), �2, ∅) τ−−−−→ ((Em, ̂Pm), �2, {P̂g})
move(�1)−−−−−−→ ((E′

m, ̂Pm), �1, {P̂g}) meet−−−−→
((E′′

m, ̂Pm), �1, {P̂g}) τ−−−→ (stop, �1, {P̂g, P̂m}).

5.2 Planning Guidance

In a CPS, the mapping T (s) captures the termination of intention plans in the
CPS state s, hence the satisfaction of the corresponding intentions. In order to
guide the agent, the planning process can select an execution trace through the
plan, which maximizes the number of intention terminations.

Definition 5. (Maximum trace) Let end : Σ −→ 2P̂ specify the set end(σ)
of termination actions that occur in a trace σ, then, the trace σ is said to be
maximum iff there is no trace σ′ in CPS(q) such that |end(σ′)| > |end(σ)|.
As a corollary, a similar technique can be used to check the consistency of
the agent intentions. With respect to any HoA configuration q, the compari-
son between one maximum trace σ in CPS(q) and |end(σ)| allows one to exhibit
two extreme cases:

– if |end(σ)| = |I(q)|, we conclude that all the intentions of I(q) are consistent,
– if |end(σ)| = 0, there is no satisfied intention, so the agent plan P of q is

unappropriated with respect to the set of agent intentions.

We reconsider the scenario of Table 4 to achieve the intentions of Bob in a
parallel way: [P1] = ((Eg, P̂g)|||(Em, P̂m)) is the agent plan configuration con-
sidered for Bob. The Contextual Planning System CPS(qB

1) is highlighted in

Fig. 6. CPS(qB1) corresponding to the plan P1 of Bob

A Higher-Order Agent Model with Contextual Planning Management 163

Fig. 6. It is built from the initial CPS state ([P1], �2, ∅) in qB
1 . In the figure, the

dashed edges represent the unrealized transitions from the states s ∈ {s2, s5, s8},
because pre(getC) = {�2} � L(s) ∪ Λ(q).

Model Checking of a Plan Properties

The fact that CPS(q) is a kripke structure, allows one to process temporal
logic verification, such as LTL or CTL. Due to the contextual labeling of states
in CPS(q), the properties to be checked concern the mobility, the communi-
cation and the terminations of intention plans. For instance, with respect to
the CPS(qB

1) of Fig. 6, the CTL-formula AF(�1) is checked true. This property
means that the agent eventually reaches or crosses the location �1 on all the pos-
sible traces featured in the CPS. The use of model checking techniques is rather
large since the possible properties cover both safety and liveness considerations.
In fact, we view the CPS-based model checking service as a way to reinforce the
planning guidance.

6 Experimentation: The Smart-Campus Project

We experiment our agent-based approach in a distributed system project called
Smart-Campus. The aim is to assist the users of a complex Universitary campus
in their activities. Concretely, we equip a float of (Android) smart-devices by
the smart-campus application. In this application, the software architecture is
composed of an HoA agent and a specific graphical user interface (GUI) to inter-
act with the user to be assisted. Basic services are currently implemented over
the HoA architecture, based on physical localization and (a)synchronous com-
munication mechanisms. They are supported by the smart-device API facilities,
in particular the Wireless Local Area Network (WiFi) API. As an example, the
navigation service takes profit from the underlyied localization service to deter-
mine on the fly, the position and the move of the assisted user. Moreover, the
contextual guidance service allows the agent to assist the user in realizing his
desires in proposing different alternatives.

At the level of the Smart-Device (SD), the campus is concretized by the
starting service which automatically connects the SD to the "CAMPUS" network,
through one of the possible WiFi Access Points (AP). As illustrated in Fig. 7,
the SD can automatically access to the server “SC Directory”, dedicated to
the smart-campus. This server is viewed as a middleware which maintains the
persistence of contextual information like the discovery and the locations of other
SD and objects concerning the campus. The starting service is also dedicated
to declare the public information of the user to the server, in particular its
location. One of the specificity of this project is that the agent embedded in
the SD remains autonomous when the SC directory cannot be reached or when
the user is exiting the campus. It can continue assisting the user, due to the
context information and persistent data previously stored in the SD, that can
be pervasively updated with the help of other neighbor agents.

164 A.-C. Chaouche et al.

Fig. 7. Smart-campus architecture

Observe that the localization service must work over the campus ground as
well as the different stairs of the buildings. The best localization indoor technique
is currently a research in progress e.g. [15]. Currently, we use different WiFi
access points within the campus to compute the geographical locations, since this
works in both indoor and outdoor locations. Anyway, the localization process
requires a tune calibration phase to store specific information in the SC directory,
concerning a set of physical reference points that must be selected over the
campus, as mentioned in the finger printing approach, e.g. in [16].

In our case, information includes the physical location of the reference point
(GPS), its symbolic name (place/room/corridor) and above all the perceived
signal attenuation (RSSI1) from that location, in respect to the different WiFi
access points. The localization service on the SD can then compare its proper
perceptions of the WiFi attenuation in respect to the same references stored in
the server, so that to deduce an approximation of its position through statistical
computations and trilateration concepts.

GUI is also an important issue in our application since the user is definitively
a mental process and also have physical capabilities expressed by all its senses.
In particular, the move action finally results in some notification/proposal to
the user which can walk in the good direction. Actually, all the actions that
the HoA agent cannot perform can be delegated either to other agents or to
some connected user, accordingly to the required capacities. As a specific GUI,
graphical maps are modern and useful interfaces for the users. Our application
is able to manage the maps of the campus, over which additional layers are used
to render maps interactive and to show different locations and paths.

7 Related Work

Since the last decade, several MAS projects were proposed embedding AmI sys-
tems. In conjunction with them, an important issue was to understand how AmI
1 RSSI: Received Signal Strength Indication.

A Higher-Order Agent Model with Contextual Planning Management 165

agents can interact and reason within a dynamic environment. One important
topic was thus to model context-awareness within agent. Among the different
existing works, different management of contexts were proposed: In [17], a hier-
archical space system is considered which allows to directly specify location and
some context elements for each agent moving in the space. Moreover, a list of
interesting AmI system projects is brought out in the paper. In [17], the system
view is abstracted but the agent context is modeled as a dynamic structure over
which coordination activities are recognized by a pattern matching technique.

Among the different existing works, different management of contexts were
proposed, and were dedicated to the description of AmI applications and scenar-
ios, e.g. in [1–3]. These works concentrate on engineering issues of AmI systems
while taking into account sophisticated contexts. In our formal approach, the
context we deal with only refers to location and neighboring information, how-
ever, it could be extended with additional managements and techniques.

The fact to consider MAS as distributed systems composed of different com-
municating entities is not new, however the first proposals either do not include
any built-in capacity for “lookahead” type of planning or they do it only at the
implementation level without any precise defined semantics. Since 2006, BDI
agent-centric approaches emerge to cope with the dynamicity of the agent envi-
ronment. In [6], a hierarchical model (HTN) is proposed to better control the
scheduling of plans in BDI agents, following an alternating goal-plan oriented
strategy. Later on the same bases, Sardina et al. [18] showed how to specify and
test learning approaches in some particular cases. In [8], they proposed a formal
procedure to manage and update the intention sets according to the agent BDI
attitudes and the occurrences of new events.

Our proposed model is also agent-centric and accords with the principle of
tightly controlling plan from the BDI mental attitudes. In contrast to the for-
mer works, the realizations of different intentions can be simultaneously consid-
ered and concurrently executed, in a higher level planning model. Conflicts are
assumed to be solved by the mental process of the agent, however with the help
of intention priorities. It is worth noticing that the conflicts which are caused
by the contextual information are taken into account when building a CPS from
the intention set. Dealing with action dependencies to restrain the agent activity
have already largely been studied in the literature. In particular a GraphPlan
planner can efficiently produce a global plan as a flow of actions, that corre-
sponds to the subset of the desires that could be executed concurrently [10].
However, GraphPlan only deals with some of the possible schedulings between
actions, since it follows a global time step approach. In contrast, our approach
takes all the possible cases into account.

The on the fly revision of plans throughout the evolution of the agent is in fact
a recent research topic in MAS approaches, e.g. [19]. In [8], the authors propose to
revise the agent plans from the modifications of the agent’s goals, in particular
from the fact that some plans corresponding to intentions can be conflictual.
However, the proposed solution comes from the fact that actions are processed
atomically, so without concurrency, and in a tight alternate of goals and basic

166 A.-C. Chaouche et al.

actions, expressed in a hierarchical structure. The well-structured semantics of
AgLOTOS, especially with the intermediary notions of intention plans allows us
to smoothly develop the planning update service from some changes in the set
of intentions. It is not related to the concurrency of intention plans and has the
capacity of continuing the execution of intention plans which are not related to
the change of some intention.

In the literature there are a number of (BDI) agent programming languages
[20], highlighting different aspects or modules developed in agent softwares like
goal, planning, organization, reinforcement learning, ..., e.g. S-CLAIM [21], Jason
[22], 2APL [23] and JIAC [24]. Most of them lack from formal description, but,
the work of [6] has extended some existing formal algebraic specification models
dedicated to distributed systems, in order to specify the concurrency of actions
in plans. The proposed language integrates BDI ingredients within plans in a
unified and interactive way. Nevertheless, our formal algebraic language based
on LOTOS, appears to be more expressive in its capacity to express plans as
concurrent processes as well as concurrent actions. It is also operational by the
way to handle action and plan failures in the AgLOTOS language and the HoA
architecture. Lastly, pay attention that in our approach, a clear separation exists
between the mental and planning levels. Actually, our planning process behaves
like a service that could be embedded in existing BDI architectures.

The verification task standardly applied to MAS is mainly driven by a global
vision of the system, e.g. in [25]. In [26], the reuse of some program checking
techniques are proposed, based on a BDI representation of the system state
space. Moreover, in order to cope with the well-known combinatorial explo-
sion of states, abstraction/reduction techniques are applied over the BDI states.
One could think to introduce similar techniques within AmI agents, however, the
high-level dynamics that usually features an AmI environment could introduce
too much states to consider, even after reduction. Moreover, it remains open
to apply these techniques according to the changes of contexts. In our paper,
the proposed techniques, guidance and plan model checking, capture the AmI
context but remains agent-centric. This avoids considering the system combi-
natorial explosion problem while allowing to take into account the AmI system
dynamicity.

Petri net-based models were proposed to represent some MAS paradigms.
Basically, such models can easily capture resource notions and concurrency exe-
cution of actions and dynamic processes, e.g. [27,28]. With some typing mech-
anisms (coloration), MAS distributed entities can be designed and their way to
communicate between them, e.g. [29]. Thus, agent interactions can be handled
at different operational levels, like agent plans [30]. As interesting works, the
Petri Net modeling were useful to study the global coherencies of plans or agent
interactions to recognize some FIPA protocols [31]. Nevertheless, many problems
remain open in order to capture a whole AmI system requirements such as the
system openness or the dynamics inherent to the change of agent contexts. In
fact, Petri Nets remain low level representations with respect to the concepts
used to build the mental attitudes of the agent. In contrast, AgLOTOS brings

A Higher-Order Agent Model with Contextual Planning Management 167

out abstraction capacity and high level composition means whereas the proposed
HoA model allows to correlate both mental and planning levels.

8 Conclusion

The Higher-order agent model (HoA) formally represents a BDI-AmI open sys-
tem where agents can reason, communicate and move. Agent dynamicity and
context-awareness are handled due to the fact that a BDI agent can change its
BDI state adequately to the perceptions of new events. The proposed AgLOTOS
process-based algebra appears to be a powerful and intuitive way to express an
agent plan as a set of concurrent processes. The presented scenario shows how
the AgLOTOS language is rich due to modularity concepts and concurrency
operators.

We demonstrate that the proposed model is operational. Actually, plans are
automatically built from the set of intentions of the agent and a library of
elementary plans already expressed in AgLOTOS. In contrast to existing works,
the planning process can execute the different intention sub-plans concurrently.
Moreover, the planning structure appearing in the AgLOTOS expressions allows
to automatize the plan revisions on the fly, accordingly to the updates of inten-
tions. Hence, an AmI agent can be viewed as having only one plan, updated all
along the evolution of the agent behavior.

On another point, the CPS structure appears to be an interesting state-
transition structure to select optimal execution from the contextual situation
of the agent. In this paper, the proposed guidance service based on the CPS
is used to optimize the satisfaction of the agent intentions. Moreover, intention
consistency can be checked over the CPS structure. One of our next perspec-
tives will consist to reinforce the proposed guidance service and temporal model
checking techniques could be used in that sense.

References

1. Guivarch, V., Camps, V., Péninou, A.: Context awareness in ambient systems by
an adaptive multi-agent approach. In: Paternò, F., de Ruyter, B., Markopoulos,
P., Santoro, C., van Loenen, E., Luyten, K. (eds.) AmI 2012. LNCS, vol. 7683, pp.
129–144. Springer, Heidelberg (2012)

2. Olaru, A., Florea, A.M., El Fallah Seghrouchni, A.: A context-aware multi-agent
system as a middleware for ambient intelligence. MONET 18(3), 429–443 (2013)

3. Pi, N.S., Griol, D., Carbó, J., López, J.M.M.: Evaluation of agents interactions in
a context-aware system. T. Comput. Collective Intell. 9, 79–97 (2013)

4. Georgeff, M., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.J.: The belief-
desire-intention model of agency. In: Papadimitriou, C., Singh, M.P., Müller, J.P.
(eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

5. Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Säıdouni, D.E.: A higher-
order agent model for ambient systems. Procedia Comput. Sci. 21, 156–163 (2013)

6. Sardina, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent pro-
gramming languages: a formal approach. In: AAMAS ’06, pp. 1001–1008 (2006)

168 A.-C. Chaouche et al.

7. Icard III, T.F., Pacuit, E., Shoham, Y.: Joint revision of beliefs and intention. In:
Principles of Knowledge Representation and Reasoning, pp. 572–574 (2010)

8. Shapiro, S., Sardina, S., Thangarajah, J., Cavedon, L., Padgham, L.: Revising
conflicting intention sets in BDI agents. In: AAMAS ’12, pp. 1081–1088 (2012)

9. Hoek, W., Jamroga, W., Wooldridge, M.: Towards a theory of intention revision.
Synthese 155(2), 265–290 (2007)

10. Meneguzzi, F., Zorzo, A.F., da Costa Móra, M., Luck, M.: Incorporating planning
into BDI agents. Scalable Comput. Pract. Experience 8, 15–28 (2007)

11. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell.
42(2–3), 213–261 (1990)

12. d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of
dmars. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol.
1365, pp. 155–176. Springer, Heidelberg (1998)

13. Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Säıdouni, D.E.: A dynamical
plan revising for ambient systems. Procedia Comput. Sci. 32, 37–44 (2014)

14. Brinksma, E. (ed.): ISO 8807, LOTOS - A Formal Description Technique Based
on the Temporal Ordering of Observational Behaviour (1988)

15. Galván-Tejada, C.E., Garca-Vázquez, J.P., Garc-Ceja, E., Carrasco-Jiménez, J.C.,
Brena, R.F.: Evaluation of four classifiers as cost function for indoor location sys-
tems. Procedia Comput. Sci. 32, 453–460 (2014)

16. Gansemer, S., Grossmann, U., Hakobyan, S.: Rssi-based euclidean distance algo-
rithm for indoor positioning adapted for the use in dynamically changing wlan
environments and multi-level buildings. In: Indoor Positioning and Indoor Naviga-
tion (IPIN), pp. 1–6 (2010)

17. Olaru, A., Florea, A.M., El Fallah Seghrouchni, A.: Graphs and patterns for
context-awareness. In: Novais, P., Preuveneers, D., Corchado, J.M. (eds.) ISAmI
2011. AISC, vol. 92, pp. 165–172. Springer, Heidelberg (2011)

18. Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a BDI
agent for environments with changing dynamics. In: Toby Walsh, C.K., Sierra, C.
(eds.) Proceedings of IJCAI’11, pp. 2525–2530 (2011)

19. Grant, J., Kraus, S., Perlis, D., Wooldridge, M.: Postulates for revising bdi struc-
tures. Synthese 175(1), 39–62 (2010)

20. Hindriks, K.: Twenty years of engineering multiagent systems. In: Keynote of the
EMAS Workshop, Part of AAMAS’14 (2014)

21. Baljak, V., Benea, M.T., El Fallah Seghrouchni, A., Herpson, C., Honiden, S.,
Nguyen, T.T.N., Olaru, A., Shimizu, R., Tei, K., Toriumi, S.: S-claim: an agent-
based programming language for Am I, a smart-room case study. Procedia Comput.
Sci. 10, 30–37 (2012)

22. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented
programming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-agent Programming: Languages, Platforms and Applications, pp. 3–37.
Springer, New York (2005)

23. Dastani, M.: 2apl: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16(3), 214–248 (2008)

24. Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A.,
Keiser, J., Burkhardt, M., Kaiser, S., Albayrak, S.: Jiac v: A MAS framework for
industrial applications. In: Proceedings of AAMAS ’13, pp. 1189–1190 (2013)

25. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation of
BDI agents. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) PROMAS 2006. LNCS (LNAI), vol. 4411, pp. 185–200. Springer, Heidelberg
(2007)

A Higher-Order Agent Model with Contextual Planning Management 169

26. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Engg. 19(1), 5–63 (2012)

27. Dahmani, D., Ilié, J.-M., Boukala, M.: Time recursive petri nets. In: Jensen, K.,
van der Aalst, W.M.P., Billington, J. (eds.) ToPNoC I. LNCS, vol. 5100, pp. 104–
118. Springer, Heidelberg (2008)

28. Säıdouni, D.E., Bouneb, M., Ilié, J.M.: Maximality semantic for recursive petri
nets. In: ECMS, pp. 544–550 (2013)

29. Kouah, S., Säıdouni, D.E., Ilié, J.M.: Synchronized petri net: a formal specification
model for multi agent systems. J. Softw. 8(3), 587–602 (2013)

30. Ziparo, V.A., Iocchi, L., Nardi, D., Palamara, P.F., Costelha, H.: Petri net plans: a
formal model for representation and execution of multi-robot plans. In Padgham,
L., Parkes, D.C., Mller, J.P., Parsons, S. (eds.) AAMAS (1), IFAAMAS, pp. 79–86
(2008)

31. Mazouzi, H., El Fallah-Seghrouchni, A., Haddad, S.: Open protocol design for
complex interactions in multi-agent systems. In: AAMAS’02, pp. 517–526 (2002)

An Ontological Consensus Augmented
Framework for Collaborative Business

Process Formulation

Hanh H. Hoang1(&), Trung V. Nguyen1, and Vu Minh Hoang2

1 Hue University, 3 Le Loi Street, Hue, Vietnam
{hhhanh,nvtrung}@hueuni.edu.vn

2 Vietnam Posts and Telecommunications, Hue, Vietnam
minhvu@hue.vnn.vn

Abstract. Dynamic cross-enterprise collaboration through business process
management is one of challenges on the business-to-business integration (B2Bi)
research nowadays. Semantic Web-based approaches for BPM have been
foreseen as a promising solution with taking advantages of Semantic Web
technologies such as ontologies, semantic web services. With the support of
Semantic Web technologies, the gap between business and information tech-
nology (IT) communities has been reduced in order to tackle the challenge.
Together with the development of web services and its augmented extension
with Semantic Web—Semantic Web Services (SWS), recent approaches in
B2Bi research focus on their business process integration between enterprises
using SWS for more appropriate service discovery. Taking into account the
challenge of dynamically forming collaborative business processes for B2Bi
form business view into their execution, in this article, we introduce an onto-
logical approach for forming collaboration of business processes agilely within
our BizKB framework; moreover, we use the Consensus theory in distributed
knowledge processing in our novel method for service discovery.

Keywords: Business process modelling � BPM � Collaborative business
processes � Business-to-business � B2B � B2B integration � Semantic BPM �
Ontology � Consensus theory � Semantic web services

1 Motivation

Business-to-business integration (B2Bi) or so-called cross-enterprise collaboration in
several contexts is one of priority strategies of the e-business research to improve
enterprise excellences [1]. It requires exchanging and sharing business processes
between business partners such as customers, suppliers, and distributors. One of the
most important challenges in integrating or collaborating between companies in the e-
business environment is how to collaborate business processes automatically, more
accurately, flexibly and effectively. The success of the integration between businesses
requires forming and managing collaborative business processes to achieve business
goals. This process includes from high level of business process collaboration which is
closer to business community, to lower levels in view of the execution of formed

© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 170–189, 2014.
DOI: 10.1007/978-3-662-44871-7_7

collaborative processes through web services which are more IT relevance. Therefore,
business process modelling has been considered as a mediation for the fusion of IT and
business community for the better of cross-enterprise collaboration.

Semantic business process management (SBPM) emerged as a promising solution
to bridge the gap between businesses and information technology field with the
approach to perform business actions which are supported by the information tech-
nology with perspective of business process rather than technical perspective [2].
Managing businesses processes shall include methods, techniques and tools to support
in designing and constructing rules, managing and analysing businesses operations.
This is crucial in this new emergent data-intensive environment for e-business today as
every business now has to see that their business processes are very precious data of
their own [3]. However, handling of the BPM automatically in integrating business
processes among enterprises is still low due to the interaction between the business
process collaboration’s semantics. To solve this problem, many researchers have
recently proposed solutions in apply artificial intelligence in managing the processes of
the collaboration between enterprises discussed in [4].

In our previous work [5], we proposed an approach called Ontological HTN (O-
HTN) based on HTN Planning [6] and Web Service Modeling Ontology (WSMO) for
forming collaborative business processes (CBP) dynamically in the problem of the
cross-enterprise collaboration. The research results CBP formed with help of O-HTN
and attached services profiles. The next phase is to discover the appropriate web
services to match with service profiles kept in ontologies. In this article, while men-
tioning our recent research work in the BizKB framework, we emphasise on intro-
ducing a novel approach using consensus theory which is originated from solving
conflict of data versions [7].

With these motivations, the article is structured as follows: BizKB Framework [4]
is briefly described in the following section. In this section, we also introduce HTN-
augmented in support for an effective decomposition of process from its high level in
context of forming collaborative process in phases for the business collaboration. In
Sects. 3 and 4, we focus our research on the discovery of web services for execution
level using consensus theory. We propose algorithm for matching in view of its usage
for web services discovery. The article is concluded with a sketch of future work.

2 BizKB Approach for B2Bi

The ultimate goal of our BizKB approach is to build a platform for BP discovery and
integration based-on Semantic Web technologies, which supports the process of cross-
enterprise collaboration. Many initiatives restrict the range of standards they deal with
for political, practical or technical reasons. For companies exposed to different national,
industry or enterprise-specific standards – as is practically every business if all of its
communications are addressed – this approach is clearly of low practical value. A
universally usable methodology will avoid the predefinition of a range of manageable
standards [8].

An Ontological Consensus Augmented Framework for CBP Formulation 171

2.1 BizKB Framework

As depicted in Fig. 1, the overall conceptual architecture of the BizKB framework
consists of two main parts: the BizKB and the Process Formulator. The output of
BizKB framework is CBP with Semantic Web Services profiles attached to the CBP.
BizKB is the heart of the BizKB Framework which contains the knowledge of the
businesses in the form of Business Process Modeling Ontology (BPMO)-based col-
laborative business processes with different levels of the abstraction [4].

In order to formulate these BPMO-based processes to store in the BizKB, the BP
analysts are required as an important human factor of the system. Based on the analysis
on the BPs, the found CBP patterns, level of the abstraction and associate business
rules are also extracted and realised.

As described in Fig. 1, extracted artifacts of BPs are modelled using BPMO
according to specific domains and kept in the BizKB. This repository is considered as
the process feeder for the later stage of the CBP pattern discovery and CBPs formu-
lation. The interactive part of the BizKB framework (Fig. 1) is the Process Formulator

BizKB

BPs with info/services

discover processes

collaborate

BizKB Framework

Collaborative Business Process

enterprises

BP analyst

- Business processes analyzing and
- Business rules extracting

Process Formulator

Process Querier

Collaborator

matched
BPs

BP
query

Choreo-
grapher

Fig. 1. BizKB conceptual architecture

172 H.H. Hoang et al.

component which consists of two main subparts – Process Querier and the Collabo-
rator. These parts are interacted by the demanding enterprise to find out the appropriate
CBP patterns to form a collaborative business process with the help of the third subpart
- Choreographer.

2.2 BizKB Ontology for Collaborative Business Processes

2.2.1 BizKB Ontology - BO
Current approaches to BPM suffer from a lack of automation that would support a
smooth transition between the business world and the IT world and do not fulfil the
task of the automation of BP integration in the B2B integration context [8]. According
to the analysis in [1], the current BPM standards for B2B integration are lack of
semantics that cannot coordinate the automated and dynamic B2B integration process
which assumes that the partners are unknown. SBPM that is, the combination of
Semantic Web and Semantic Web Services technologies with BPM, has been proposed
as a solution for overcoming these problems [8].

In our approach, we use BPMO as the modelling notation to represent the CBPs in
a semantics-enriched manner. BPMO is based on WSMO which is an ontology lan-
guage for Semantic Web Services. WSMO is a comprehensive framework for
semantically enabled Service-Oriented Architecture (SOA) technology. It defines
semantic description models for four top level notions along with respective reasoning
support for managing these: ontologies, Web services, goals, and mediators. WSMO
appears to be a suitable extension to BPM in order to overcome the missing paces in
current BPM standards for B2B integration [8]. Furthermore, with this modelling
methodology, we can tackle the difficulties as follows (Fig. 2):

– Ontologies allow to model processes and data as shared conceptual model; their
formalization allows semantically enhanced information processing;

– Semantic annotations of Web services allow to precisely detect and automatically
executed suitable business functionalities as well as to maintain them;

Fig. 2. Fragment example of the BPMO-based procurement process

An Ontological Consensus Augmented Framework for CBP Formulation 173

– Goals allow to specify processes and tasks on the problem layer for which suitable
Web services can be detected dynamically at execution time;

– Mediators allow handling potentially occurring mismatches on the data and the
process level, therewith enabling semantically stable interchange within and across
enterprises if this is not given in advance.

2.2.2 BO for CBP
From B2B collaboration phases, a comprehensive list of CBP tasks can be modelled in
BO. First, the sequences and hierarchies of granular tasks were synthesised into the
three B2B collaboration phases.
Tasks. Business processes are a set of ordered compound or primitive tasks. In BO, both
compound tasks and primitive tasks and they both are modelled as tasks. The two tasks
may be differentiated by their hasMethod property. Compound tasks have one or more
hasMethod property since they can be decomposed; not primitive tasks. Figure 3 shows
the “Buy” compound task and its properties (i.e. hasMethod, hasActor, hasParent).

Methods. A single compound task may have more than one method to decompose into
primitive tasks. Each method has a prescription for how to decompose some task into a
set of subtasks, with different restrictions that must be satisfied in order for method to
be applicable and also various constraints of the subtask and relationship among them
(Fig. 4).

In short, BO contains a set of ordered compound or primitive task and methods.
Compound tasks have one more “hasMethod” property since they can be decomposed
into primitive tasks that can be performed directly using O-HTN. Each method has a
prescription for how to decompose some task into a set of subtasks, with different

Fig. 3. Simple task description in BO

Fig. 4. A local method definition with embedded criteria matching, and control flows of
subtasks

174 H.H. Hoang et al.

restrictions that must be satisfied in order for method to be applicable and also various
constraints of the subtask and relationship among them [5].

2.3 O-HTN Augmented BizKB

2.3.1 HTN in Brief
The nature of dynamic business process formulation greatly resembles HTN planning
from the field of artificial intelligence (AI) planning [6]. In HTN planning, a goal to a
problem is realised via a plan of simple steps generated by the dynamic decomposition
of a hierarchical network of compound tasks into sub-tasks in a domain. The lowest
level task is a primitive task. To decompose and chain task, the HTN planning algo-
rithm matches the constraints with the criteria of the appropriate method.

For illustration, consider two methods of travel planning for the compound task
travel(x,y) (Fig. 5). The choice whether to travel by taxi or by air depends on the
distance between x and y. If the distance (i.e. the constraint) is large, travel(x,y) will be
decomposed into sub-tasks via the method “travel by air”; if the distance is short, the
travel(x,y) task will be decomposed into sub-tasks “travel by taxi”. All tasks are rep-
resented in a network of parent-child relationships.

After the HTN planning algorithm traverses through the HTN recursively
decomposing tasks according to the matching methods, a result (or plan) is generated
for “travelling from University of Maryland (UMD) to Massachusetts Institute of
Technology (MIT)” (Fig. 6). Thus, it can be seen that HTN planning decomposes and
sequences tasks (e.g. travel (UMD, MIT)).

2.3.2 HTN and CSP Combination
Users require various types of information and constraints, and automatic service
composition requires several rounds of planning, because of trial and error, or for
flexibly coping with dynamic exceptions. Web service composition by a planner alone
has limitations that apply to a more general and intelligent composition of services [9].

First, it is inefficient for autonomously finding a solution in planning, because it
does not provide a suitable basis for dealing with the evaluation of planning results
with constraints. Second, although it works well for task ordering in planning, it is not
good for dealing with a user’s various requests for information. As real-life problems

Fig. 5. A travel problem represented as a HTN

An Ontological Consensus Augmented Framework for CBP Formulation 175

involve planning, scheduling, and executing, web service composition in real life
requires not only planning information, but also additional information requests with
constraints, which can be met by scheduling tasks jointly. A constraint satisfaction
problem (CSP) formulation provides a strong basis for scheduling in a variety of real-
life problems on the web. Third, it is weak regarding maintenance, because of the
frequent invocation of services on the web. Although an Hierarchical Task Network
(HTN) planner can invoke outside web services during planning, this causes severe
restrictions and inefficiency, because service invocations in the planner are merged with
the planning strategy [10, 11]. Combination of architecture planning and CSP help
solve problems above. HTN and CSP combination is better than an HTN alone when
problems involve scheduling plus other parameters.

We illustrate an example [10] as follows: A user, who lives in Aizu City in Japan,
wants to go to South Carolina in the U.S.A for a vacation. If the user wants to go by
train to the Narita international airport near Tokyo, there are three stages: by local train
from Aizu to Koriyama to Tokyo, and by JR Express from Tokyo to Narita, from
where a series of flights completes the journey to South Carolina.

Therefore, the user calls an agent to construct an itinerary to South Carolina. For
this, the user provides basic information such as the departure date and location, and
the arrival date and location. Suppose that the user wants to depart at 2:00 PM from
Aizu because of a special business meeting. Therefore, he adds this new constraint to
the basic input information.

Now, when the travel planner solves this problem, the solution may produce other
internal spontaneous constraints temporarily. For instance, the planner should reserve a
one-night stay in a hotel near Narita and a flight the next day when there is no flight to
South Carolina at Narita on that day. On another occasion, the user may specify the arrival
time in South Caroline as a constraint, which the planner will also need to accommodate.

2.3.3 O-HTN Approach for High-Level CBP Formulation
We proposed an approach, O-HTN for dynamic collaborative B2B using Web Service
Modeling Ontology (WSMO) as the modelling foundation, WSMO is a flexible

Fig. 6. A plan generated by the HTN algorithm

176 H.H. Hoang et al.

ontology language with dynamic reasoning features, supports execution based-on Web
services as well. BO describe the hierarchical relationships between compound and
primitive B2B collaboration tasks, and methods for task decompositions, and relevant
planning criteria (e.g. cost, quantity ordered, type of collaboration) embedded in the
methods. Different criteria input by the user result in different permutations of sub-
tasks. Main reasons for the creation of O-HTN: O-HTN is feasible for dynamically
creating CBP task sequences ideal for direct web services execution.

O-HTN Algorithm. Start with an initial high-level task and algorithm decomposes the
task into subtasks, until primitive tasks are found that can be performed directly with
web services. The O-HTN algorithm originates from [10, 11] and we have improved
the algorithm which shown as follows.

Create three thread
Each thread

/*save Task when decompose in BO*/
Decompose (nameTask, listMethod, listTask, criteria
Return tree

End HTNPlanning

Procedure Decompose (nameTask, listMethod, listTask, criteria)
Count number of methods in nameTask

if there are no methods
Mark task nameTask as primitive task for service execution
Extract actor of task nameTask
Write nameTask in tree

else
while there are methods for namTask not processed

Select the next method nameMethod of nameTask
Check supervised criteria of nameMethod with user criteria
if supervised criteria matches user criteria

Check number of control flows in nameMethod
/* subtasks will be chained in control flows */

while there are still control flows in nameMethod
Read the outermost control flow cf
Write the start of the cf in tree
foreach subtask st in cf

Decompose(st,"","",criteria)
Write the end of cf in tree

endwhile
endif

endwhile
endif

End Decompose

Input: Task to be decomposed.
Output: Decomposed Tree, primitive actions.

Procedure HTNPlanning:
Create empty tree
/*decompose for three hierarchies of tasks for each

collaboration phase*/

An Ontological Consensus Augmented Framework for CBP Formulation 177

2.3.4 O-HTN Advantages
Flexible collaboration at anywhere and anytime: Customers can access the system
anywhere such as at office, at home, and at public Internet site, anytime.

Cost savings: Customers can save much money, mainly for collaboration between
businesses. Therefore they can find potential partners anywhere without costly travel.

Flexibility: Customers can choose a partner that is most suitable to them with many
diverse services.

Optimization: This framework can quickly assess customer need and then provide
the collaborative models to meet the needs of customers.

Diversity: Many basic and specialized collaborative models can use the application
O-HTN of collaboration between enterprises.

With the benefits listed above, the collaborative application O-HTN among businesses
opens new opportunities in e-business environment. Customers may choose the appropriate
partners dynamically. They also have many opportunities to contact with many new
partners, save a lot of business resources, and access quality businesses (Fig. 7).

3 Consensus-Based Approach for Dynamic Service Discovery

3.1 Consensus Theory in Brief

Consensus methods were known in ancient Greece and were applied mainly in
determining vote results. Along with the development of software methods we can see

Fig. 7. Task tree is generate of algorithm

178 H.H. Hoang et al.

consensus methods can be applied into many applications fields, especially in solving
conflicts and reconciling inconsistent data [12, 13]. Several results of consensus theory
using for knowledge integration have been proposed in [12]. In this section, we
introduce basic notations which are directly used in the problem of ontology
integration.

By U we denote a finite set of objects representing possible values for a knowledge
state. We also denote:

• pkðUÞ is the set of all k-element subsets (with repetitions) of set U. k 2 N (set of
natural numbers).

• p Uð Þ ¼ S
k2N pkðUÞ is the set of all nonempty subsets with repetitions of set U. An

element in pðUÞ is called as a conflict profile.

Definition 1 - Distance function. A distance function d : U � U ! ½0; 1� is defined
so that it has these following features:

(a) Nonnegative: 8x; y 2 U : d x; yð Þ� 0;
(b) Reflexive: 8x; y 2 U : d x; yð Þ ¼ 0 , x ¼ y;
(c) Symmetrical: 8x; y 2 U : d x; yð Þ ¼ dðy; xÞ.

We call a space ðU; dÞ which is defined in the above way is a distance space. With a
X 2 p Uð Þ, we denote:

• d x;Xð Þ ¼ P
y2X dðx; yÞ, with x 2 U.

• dt mean Xð Þ ¼
P

x;y2X dðx;yÞ
k kþ1ð Þ , with k ¼ Xj j.

• dmin Xð Þ ¼ minfd x;Xð Þ : x 2 Ug.

Definition 2 - Consensus function. By a consensus function in space ðU; dÞ, we mean
a function

C : pðUÞ ! 2U :

For a conflict profile X 2 pðUÞ, the set C Xð Þ is called the representation of X, and
an element in X is called a consensus of profile X. X is a normal set (without
repetitions).

Consensus functions need to satisfy some postulates [13] in order to elect “proper”
representation(s) from a conflict profile. The mostly used consensus function are O1-
functions. The functions of this kind satisfy the so-called O1 postulate [6]:

x 2 C Xð Þ) d x;Xð Þ ¼ miny2U d y;Xð Þ;with 8X 2 pðUÞ:

Definition 3 - Criteria for Consensus Susceptibility. Not from any conflict profile
we can choose a consensus solution in general and O1-consensus in specifically. We
say that, profile X is susceptible to consensus in relation to postulate O1 iff

An Ontological Consensus Augmented Framework for CBP Formulation 179

dt meanðXÞ� dminðXÞ:

3.2 Inconsistent Ontologies Integration at the Concept Level
Using O1-function

Definition 4 – Ontology. Ontology is a quadruple C; I;R;Zh i, where:
• C is a set of concepts (classes).
• I is a set of instances of concepts.
• R is a set of binary relations defined on C.
• Z is a set of axioms which are formulae of first-order logic and can be interpreted as

integrity constraints or relationships between instances and concepts, and which
cannot be expressed by the relations in set R, nor as relationships between relations
included in R.

Definition 5 – The real world. Let A is a finite set of attributes. Each attribute a 2 A
has a domain Va. Let V ¼ S

a2A Va, we call ðA;VÞ as a real world.

A domain ontology that refers to the real world ðA;VÞ is called as ðA;VÞ-based.
Definition 6 – Structure of a concept. A concept in an ðA;VÞ-based ontology is
defined as a triple ðc;Ac;VcÞ, where:
• c is the unique name of the concept,
• Ac � A is a set of attributes describing the concept,
• Vc ¼ S

a2Ac Va is the domain of attributes. (Vc � V)

Pair ðAc;VcÞ is called the structure of concept c.

Definition 7 – Relations between attributes. Two attributes a; b in structure of a
concept can have following relations:

• Equivalence: a is equivalence to b, denoted as a $ b, if a and b reflect the same
feature for instances of the concept.
For example, occupation $ job.

• Generalization: a is more general than b, denoted as, a ! b, if information given by
property a including information given by property b.
For example: dayOfBirth ! age.

• Contradiction: a is contradictory with b, denoted as a # b, if their domains are the
same two-element set and values of them for the same instance are contradictory.
For example: isFree # isLen, where VisFree ¼ VisLent ¼ ftrue; falseg which can be
used to describe instances in the Book concept whether its instances’ property
isFree changed to isLent.

Definition 8 - The ontology integration problem on the concept level. Let
O1;O2; . . .;Onðn 2 NÞ are ðA;VÞ-based ontologies. Let the same concept c belong to

180 H.H. Hoang et al.

Oi is ðc;Ai;ViÞ, i ¼ 1; 2; . . .; n. From the profile X ¼ Ai;Við Þ : i ¼ 1; 2; . . .; nf g we
have to determine the pair A�;V�ð Þ which present the best structure for the concept c.

3.3 Postulates for Optimised integration A�;V�ð Þ:
Inspired by [7, 12, 13], we formulate the following postulates for determination of pair
A�;V�ð Þ.
P1. For a; b 2 A ¼ Sn

i¼1 A
i if a $ b then all occurrences of a in all sets Ai may be

replaced by attribute b or vice versa.

P2. If in any set Ai attributes a and b appear simultaneously and a ! b then attribute b
may be removed.

P3. For a; b 2 A ¼ Sn
i¼1 A

i; a # b, all occurrences of a in all sets Ai may be replaced by
attribute b ore vice versa.

P4. Occurrence of an attribute in set A� should be dependent only on the appearances of
this attributes in sets Ai.

P5. An attribute a appears in set A� if it appears in at least half of sets Ai.

P6. Set A�is equal to A after applying postulates P1–P3.

P7. For each attribute a 2 A�, its domain V�
a is determined so that:

da V�
a ;Xa

� � ¼ min d Va; Xað ÞjVa 2 Uaf g

where:

– Xa is conflict profile which is formulated from domains Vi
a; i ¼ 1; . . .; n.

– Ua is universe set, contains possible values for Va.

Postulates P1–P6 are adapted to ones in [13]. We propose the P7 postulate to gain
the result of consensus theory. More specifically, we use the O1 function to determine
the optimal domain for the attribute a 2 A�. It is important to formulate distance space
ðU; dÞ for using O1 function to find the consensus domain. The important issue is about
appropriately defining space distance ðU; dÞ to compute the optimised solution for the
ranges of properties in integration set.

The remain part of this paper, we are going to describe the way how to formulate
the space distance and integration algorithm according to these postulates.

3.4 Distance Function Between Two Concepts

There are several ways to measure the similarity between concepts in an ontology. In
this article, we use idea of [14]. According to these authors, we allocate weight values
to the edges between concepts:

An Ontological Consensus Augmented Framework for CBP Formulation 181

w parent; childð Þ ¼ 1þ 1
2depthðchildÞ

where, depthðchildÞ present the depth of concept child from the root concept in
ontology hierarchy.

The so-called semantic distance between concepts can be determined using the
following algorithm [14]:

We can see clearly that, the Sem Disc function is not normalized, i.e. its values
may be out of ½0; 1�. We can normalise it and formulate a distance space U; dð Þ from
the ontology hierarchy like this:

• U: the set of concepts in the ontology hierarchy.
• d: U � U ! ½0; 1�

d c1; c2ð Þ 7! 1� 1
Sem Disc c1;c2ð Þþ1.

3.5 Optimal Integration Based on the Consensus

Based on postulates that are presented in Sect. 3.3, we propose an algorithm for
determining integration structure for concept c from element ontologies O1;O2; . . .;On

as follows.

182 H.H. Hoang et al.

An Ontological Consensus Augmented Framework for CBP Formulation 183

We have remarks for this algorithm:

– The complexity of the algorithm is Oðm3Þ where m ¼ Sn
i¼1 A

i
�� �� (m is the number of

different attributes from sets Ai; i ¼ 1::n).
– The algorithm only show way to determine optimal attributes for ones has domain

in the ontology hierarchy OREF�TREE . For attributes which have other kinds of
domain (such as range of numbers) we can still use consensus theory to determine
optimal domain.

– The algorithm determines consensus structure for concept c in both component:
attributes and their domains.

– We can make some modifications in step (3) of algorithm to get some interesting
results:

• Get V�
a from Xa rather than from U, i.e.: da V�

a ;Xa
� � ¼

min d Va; Xað ÞjVa 2 Xaf g. We can use this condition in cases that CREF�TREE

contains a large of concepts so that the algorithm has less time to run.
• If Xa is not susceptible in relation to O1, we can choose V�

a as the common
parent concept of concepts in Xa rather than remove attribute a from A�.

3.6 Consensus-Based Collaborative Service Discovery

The ontology matching process is the result of alignments made by the semantic
distance calculation. In order to discover the appropriate semantic web services, we use
above algorithms for discovering the appropriate semantic web services from different
partners which presented as profiles. We call our approach is “collaborative service
discovery” because of searching the services from different partners with respect to
their contexts and domain, and finding out a “consensus optimal” solution for appro-
priate services.

The result of the procedure will have a structure of the service profiles for the
formed collaborative business process of previous step. This is one of the most
important steps in BizKB framework for a dynamic approach from automatic
decomposition of high-level process into collaborative processed attached profiles.

184 H.H. Hoang et al.

4 Collaborative Service Discovery for BizKB Framework

We have proposed an approach, O-HTN for dynamic collaborative B2B using Web
Service Modeling Ontology (WSMO) as the modelling foundation [5]. The main
reason for the creation of O-HTN-based BizKB is: O-HTN approach is feasible for
dynamically creating CBP task sequences which is significant for a high level tasks
composition for formed CBP. Next is about finding the appropriate web services to fill
in the service profiles and this will be done by an ontology matching process.

In a collaborative environment, services are composed from different domains and
contexts. Therefore, we can be challenged by the inconsistency of different knowledge-
based domains. In our approach, we use the consensus methodology [12] to solve this
problem.

4.1 Collaborative BizKB with O-HTN and Consensus Service Discovery
Component

Applying these algorithms together with O-HTN in our approach, we structure the new
process for CBP formulation and service discovery for BizKB framework as described
in Fig. 8.

Collaborative business processes are dynamically formed by using O-HTN algo-
rithm in a flexible task decomposition process. Formed CBP with service profiles will
then hand-in the services discovery phase for finding appropriate services.

The consensus service discovery based on newly invented ontology matching
process helps to find out requested services in a better solution in collaborative service
partner providers. The discovered services will be then transferred into the choreog-
raphy mechanism for forming executable business processes.

4.2 Process Formulator Workflow

The O-HTN based Architecture for the Process Formulator is described in Fig. 9. The
Process Querier helps to find the appropriate process patterns at a certain abstraction

Fig. 8. A collaborative Biz-KB process with support of O-HTN and consensus service discovery
mechanisms

An Ontological Consensus Augmented Framework for CBP Formulation 185

level. Due to the enterprise’s discovery into the BizKB, the detailed level will be matched
to the need. For example, in the Order Management process, one participant wants to
identify the process of “Buy” products, however the participant cannot clearly identify
parts of the process and related information, the Process Querier can help to identify the
basic patterns, sample processes, and even the generalization levels of the needed pro-
cess. After matched processes returned, the Choreographer will coordinate to finalize the
output collaborative business process to fulfil the B2B integration demand. Here, we use
O-HTN Algorithm as described in following sub-section for this phase.

The new formed CBP is attached with WSMO services profiles for specific
Semantic Web Services. This process is serialized using WSMO standard which
conforms the unification of the framework’s BPMO standard (which is based on
WSMO) and benefits from semantic web services’ advantages.

User’s request is presented in WSMO ontologies and a WSMO Goal. Every
Semantic Web service has a specific choreography that describes the way in which the
user should interact with it. This choreography describes semantically the control and
data flow of messages the Web Service can exchange. In cases where the choreography
of the user and the choreography of the Web Service do not match, process mediation
is required. The process Mediation component is WSMX is responsible for resolving
mismatches between the choreographies of the user and web service.

If there is no single web service that satisfies the request then the request will be
offered to the planner. The planner then tries to combine existing Semantic Web
services and generate the process model. In the proposed framework, the process
generator is based on HTN-planning. The process generator to tackle the problems of
heterogeneous ontologies and choreography uses discovery component of WSMX.
Thus via this component, the process generator will be able to discover the appropriate
Semantic Web services for dynamic cross-enterprise collaboration. Finally the process
model will be offered to the WSMX for its execution. The stages for execution of Web
services as a process model are like as single web services.

Service
Requester

WSMX

Data Mediation

Process Mediation

Choreography Engine

WSMO Goal

HTN -
PlanningBO

Process Mediator

Runtime Mediation
Component

Discovery WSMX Invoker

Task

Web Services

Fig. 9. The O-HTN-based process formulator architecture

186 H.H. Hoang et al.

5 Related Work

Since the failure of the non-semantic approaches as mentioned above, research efforts
have been emerged from the motivation of knowledge management and applying
Semantic Web technologies into BPM researches to bring the administrative side and
IT side together.

SUPER [11] addresses the ever enduring need of new weaponry in struggle for
survival in optimistic business environment where profit margins dramatically drop
while competitiveness reaches the new sky high limits. The major objective of the
SUPER project is to raise BPM to the business level, where it belongs, from the IT
level where it mostly resides now. This objective requires that BPM is accessible at the
level of semantics of business experts. SUPER’s approach has tried to transform
existing BPMN and BPEL standards into a semantics-enriched form, respectively
called sBPMN and sBPEL in the attempt to realize their goals.

In the same line, the SemBiz project (http://www.sembiz.org/) aims at bridging the
gap between the business level perspective and the technical implementation level in
Business Process Management (BPM) by semantic descriptions of business processes
along with respective tool support. This approach used WSMO as a basis for defining
an exhaustive semantic description framework for business processes. On basis of this,
novel functionalities for BPM on the business level can be supported by inference-
based techniques that work on semantic process descriptions.

Haller in [16] extended the multi metamodel process ontology (m3po) introduced
with concepts for a full formalisation of the meta-model of XPDL. In the context of
their approach, to deal with collaborative processes (choreographies) these internal
workflow models are aligned to the external behaviour advertised through web services
interfaces. The m3po ontology presented explicitly models the complete semantics of
XPDL. The integrated m3po is used as shared representation to perform the integration.
The advantage of this approach is that authors use a web ontology language to for-
malise proposed model into linked data with established business document standards.

One of recent efforts in cross-enterprise collaboration research is Genesis approach
based on its ontology called Business-OWL (BOWL) [11]. The core of the approach is
about BOWL that is a hierarchical task networking (HTN) [10] modelled in OWL
describing the hierarchical relations between tasks of collaborative business processes
consist of compound tasks, primitive tasks and task decomposition methods. For a
suitable solution for current dynamic e-commerce today. Therefore, the knowledge
described by HTN needs to be modelled in forms of OWL ontologies proposed in this
approach. Following this research direction brings new opportunities, new prospects
and useful tools for e-business and B2B integration especially. The effort follows this
line is Jung’s work [2] which focus on basic problems of applying ontology aligning
for business process integration.

Consensus theory introduced in a research line [7, 12, 13] is becoming a power
method for knowledge integration of distributed systems. This methodology has
become a powerful tool for solving conflicts and inconsistency in ontological systems
as data and information from heterogeneous sources. Therefore, in the context of

An Ontological Consensus Augmented Framework for CBP Formulation 187

http://www.sembiz.org/

ontology matching problems, we have used this theory for finding appropriate services
for formed collaborative business processes in BizKB framework.

6 Conclusion

Business Process Management’s efforts are to bring business and IT communities
together to solve the problem of the integration and collaboration cross-enterprises.
BPM’s approach is to execute business tasks with the IT support in the business expert
perspective rather than technical one. BPM is challenged with issues of the automation
of dynamic business collaboration and the integration/collaboration of business process
in B2Bi. In this article, we have introduced a framework which is a fusion of Semantic
Web technologies, AI planning and Consensus theory for solving the challenge of
dynamic B2B integration: formulating collaborative business process with under-
standing the semantics in a specific domain application and ‘on the fly’.

Also in this article, we emphasise on a novel approach to formulate distance space
from a similarity measure of concepts and use it for develop an algorithm determining
integration of ontologies which are conflict on concept level. The article also showed
that consensus theory is an appropriate and effective way for ontology integration
problem in view of its usage for semantic web service discovery. For the next steps, we
plan to fully developed this framework for more several business cases.

Acknowledgement. This work was generously sponsored by Vietnam’s National Foundation
for Science and Technology Development (NAFOSTED) in the framework of research grant
“Application of Semantic Web concepts for Collaborative Business Process Management” -
102.02-2010.14.

References

1. Hoang, H.H, Jung, J.J., Tran, C.P.: Ontology-based approaches for cross-enterprise
collaboration: a literature review on semantic business process management. Enterp. Inf.
Syst. (2013). doi:10.1080/17517575.2013.767382 (Taylor and Francis)

2. Jung, J.J.: Semantic business process integration based on ontology alignment. Expert Syst.
Appl. 36(8), 11013–11020 (2009). (Elsevier)

3. Vossen, G.: Big data as the new enabler in business and other intelligence. Vietnam J.
Comput. Sci. 1(1), 3–14 (2013). (Springer)

4. Hoang, H.H., Le, T.M.: BizKB: a conceptual framework for dynamic cross-enterprise
collaboration. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS,
vol. 5796, pp. 401–412. Springer, Heidelberg (2009)

5. Hoang, V.M., Hoang, H.H.: An ontological approach for dynamic cross-enterprise
collaboration. In: WAINA-2012, IEEE Computer Society, pp. 1355–1360. IEEE (2012)

6. Erol, K., Hendler, J., Nau, D. S.: HTN planning: complexity and expressivity. In:
Proceedings of the National Conference on Artificial Intelligence, pp. 1123–1123. Wiley
(1995)

7. Nguyen, N.T.: Consensus systems for conflict solving in distributed systems. Inf. Sci. 147
(1–4), 91–122 (2002). (Elsevier)

188 H.H. Hoang et al.

http://dx.doi.org/10.1080/17517575.2013.767382

8. Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.:
Semantic business process management: scaling up the management of business processes.
In: Proceedings of 2008 IEEE International Conference on Semantic Computing,
pp. 546–553. IEEE (2008)

9. Damodaran, S.: B2B integration over the Internet with XML: RosettaNet successes and
challenges. In: Proceedings of the 13th international World Wide Web conference on
Alternate track papers and posters, pp. 188–195. ACM (2004)

10. Paik, I., Maruyama, D., Huhns, M.N.: A framework for intelligent web services: combined
HTN and CSP approach. In: Proceedings of IEEE International Conference on Web
Services, pp. 959–962. IEEE (2006)

11. Ko, R.K.L., Lee, E.W., Lee, S.G.: Business-OWL (BOWL)—a Hierarchical task network
ontology for dynamic business process decomposition and formulation. IEEE Trans. Serv.
Comput. 5(2), 246–259 (2012). (IEEE)

12. Nguyen, N.T.: Using consensus methodology in processing inconsistency of knowledge. In:
Last, M., Szczepaniak, P., Volkovich, Z., Kandel, A. (eds.) Advances in Web Intelligence
and Data Mining, pp. 161–170. Springer, Heidelberg (2006)

13. Nguyen, N.T.: Processing inconsistency of knowledge in determining knowledge of a
collective. Cybern. Syst. 40(8), 670–688 (2009). (Taylor and Francis)

14. Ge, J., Qiu, Y.: Concept similarity matching based on semantic distance. In: Proceedings of
Fourth International Conference on Semantics, Knowledge and Grid 2008 (SKG’08),
pp. 380–383. IEEE (2008)

15. Born, M., Drumm, C., Markovic, I., Weber, I.: SUPER - raising business process
management back to the business level. ERCIM News 70, 43–44 (2007). (ERCIM)

16. Haller, A., Oren, E., Kotinurmi, P.: m3po: an ontology to relate choreographies to workflow
models. In: Proceedings of IEEE International Conference on Services Computing
(SCC’06), pp. 19–27. IEEE (2006)

17. Nurmilaakso, J.M.: EDI, XML and e-business frameworks: a survey. Comput. Ind. 59(4),
370–379 (2008). (Elsevier)

An Ontological Consensus Augmented Framework for CBP Formulation 189

Author Index

Bencomo, Nelly 122
Biswas, Jit 62

Calinescu, Anisoara 92
Chaouche, Ahmed-Chawki 146

Dong, Jin Song 62

El Fallah Seghrouchni, Amal 122

Harel, David 1
Hoang, Hanh H. 170
Hoang, Vu Minh 170

Ilié, Jean-Michel 122

Katz, Guy 1

Liu, Yan 62
Liu, Yang 62

Marron, Assaf 1
Mokhtari, Mounir 62

Nguyen, Trung V. 170

Ponomareva, Natalia 92

Saïdouni, Djamel Eddine 122
Sanders, J.W. 34
Sawyer, Pete 122
Smith, Graeme 34
Sun, Jun 62

Weiss, Gera 1
Welsh, Kris 122
Whittle, Jon 122
Winter, Kirsten 34

Zhang, Xian 62

	Preface
	Transactions on Computational Collective Intelligence
	Contents
	Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs
	1 Introduction
	2 Background
	3 Outline of the Repair Approach
	4 Definitions
	4.1 The Behavioral Programming Computational Model
	4.2 Specifications

	5 Extending the Model-Checking of Invariants and Deadlocks
	6 Safety Patches for Loopless Programs
	6.1 Generating Linear Safety Patches
	6.2 Patching for a Specific Event Selection Mechanism
	6.3 Example: Patching Tic-Tac-Toe

	7 Safety Patches for Programs with Cycles
	7.1 Generating Safety Patches for Cycles
	7.2 Subgraph Representation
	7.3 Example: Patching a Coffee Machine

	8 Dealing with Liveness
	8.1 Classifying Hot States
	8.2 Handling Hot-Trap States
	8.3 Hot-Escapable States and Transition Fairness
	8.4 Liveness Patches
	8.5 The Liveness Patching Algorithm
	8.6 Minimal Fairness Enforcement
	8.7 Example: Liveness Patching for the Dining Philosophers

	9 Limited-Depth Repair
	9.1 Automatic Repair from Field Error Reports
	9.2 Example: Limited-Depth Repair of the Dining Philosophers

	10 Related Work
	11 Conclusion and Next Steps
	References

	Designing Adaptive Systems Using Teleo-Reactive Agents
	1 Introduction
	2 What is Adaptivity?
	3 A Formal Model of Multi-Agent Systems
	3.1 Agents as Component Automata
	3.2 Multi-Agent Systems as Team Automata

	4 Adaptivity Defined
	4.1 Adaptivity of Closed Systems
	4.2 Adaptivity of Open Systems

	5 A Teleo-Reactive Development Framework
	5.1 Designing Adaptivity
	5.2 From Teleo-Reactive Specification to Component Automaton
	5.3 Adapting to Internal Disturbances

	6 Case Study: The Self-Adaptive Production Cell
	6.1 Normal Behaviour and Self-Configuration
	6.2 Adapting to Loss of Capabilities
	6.3 Combining the Modes

	7 Conclusion
	References

	Towards Formal Modelling and Verification of Pervasive Computing Systems
	1 Introduction
	2 A Motivating Example: AMUPADH - An Ambient Assisted Living System for Dementia Healthcare
	2.1 System Overview
	2.2 Sensors
	2.3 Controller
	2.4 Reminding System

	3 A Modelling Framework for PvC Systems
	3.1 Modelling Environments
	3.2 Modelling System Design
	3.3 Compose a Complete Model

	4 Scenario Verification
	4.1 Desirable Properties
	4.2 Testing Purposes

	5 Rules Verification
	5.1 Non-reachable Rules
	5.2 Redundant Rules
	5.3 Conflicting Rules

	6 Case Study: Formal Analysis of AMUPADH
	6.1 System Modelling
	6.2 Scenario Verification Experiments
	6.3 Detecting Rule Anomalies in AMUPADH: Experiments
	6.4 Bug Report

	7 Related Work
	8 Conclusion
	References

	Revisiting Agent-Based Models of Algorithmic Trading Strategies
	1 Introduction
	2 Agent-Based Models of Financial Markets
	2.1 Continuous Double Auction
	2.2 Human-Like Agents

	3 Implementation
	3.1 Essential Features of the AT Simulation Tool
	3.2 AlTraSimBa Implementation

	4 Execution Algorithmic Agents
	4.1 Background
	4.2 Execution Strategy Evaluation
	4.3 Naïve strategies
	4.4 Bayesian Adaptive Trading Agents

	5 Results
	5.1 Human-Like Agent Experiments
	5.2 Bayesian Adaptive Learners

	6 Conclusions and Future Work
	References

	Self-Explanation in Adaptive Systems Based on Runtime Goal-Based Models
	1 Introduction
	2 Motivating Example
	3 Self-Explanation Through Run-Time Requirements Models
	4 Case Study
	5 A Domain-Specific Language for Self-Explanation
	6 Related Work
	7 Conclusions and Future Work
	References

	A Higher-Order Agent Model with Contextual Planning Management for Ambient Systems
	1 Introduction
	2 AmI Requirements
	3 The Higher-Order Agent Model
	4 Planning Formal Syntax and Semantics
	4.1 The Syntax of AgLOTOS Plans
	4.2 Semantics of AgLOTOS Plans
	4.3 Dynamical Plan Revising

	5 Contextual Planning Services
	5.1 Building of a Contextual Planning System
	5.2 Planning Guidance

	6 Experimentation: The Smart-Campus Project
	7 Related Work
	8 Conclusion
	References

	An Ontological Consensus Augmented Framework for Collaborative Business Process Formulation
	Abstract
	1 Motivation
	2 BizKB Approach for B2Bi
	2.1 BizKB Framework
	2.2 BizKB Ontology for Collaborative Business Processes
	2.2.1 BizKB Ontology - BO
	2.2.2 BO for CBP

	2.3 O-HTN Augmented BizKB
	2.3.1 HTN in Brief
	2.3.2 HTN and CSP Combination
	2.3.3 O-HTN Approach for High-Level CBP Formulation
	2.3.4 O-HTN Advantages

	3 Consensus-Based Approach for Dynamic Service Discovery
	3.1 Consensus Theory in Brief
	3.2 Inconsistent Ontologies Integration at the Concept Level Using O1-function
	3.3 Postulates for Optimised integration \left({{{\bf A}}^{*} , {{\bf V}}^{*} } \right).
	3.4 Distance Function Between Two Concepts
	3.5 Optimal Integration Based on the Consensus
	3.6 Consensus-Based Collaborative Service Discovery

	4 Collaborative Service Discovery for BizKB Framework
	4.1 Collaborative BizKB with O-HTN and Consensus Service Discovery Component
	4.2 Process Formulator Workflow

	5 Related Work
	6 Conclusion
	Acknowledgement
	References

	Author Index

