
Extraction and Reconstruction
of Enterprise Models

Mario Sánchez(B), Julio Cesar Reyes, and Jorge Villalobos

Systems and Computing Engineering Department, School of Engineering,
Universidad de Los Andes, Bogotá, Colombia

{mar-san1,jc.reyes159,jvillalo}@uniandes.edu.co

Abstract. Enterprise Models for analysis, and especially for automated
analysis, should have five characteristics: they have to be accurate rep-
resentations of the reality; they have to be well structured; they have to
be complete with respect to their intended usage; they have to be kept
up-to-date; and the cost of their construction and maintenance has to
be as low as possible. In this paper we present an approach for the semi-
automatic construction of enterprise models which gathers and weaves
information from multiple sources such as information systems, data-
bases, files (system’s logs, source code, configuration), and previously
existing models. This approach is based on modeling and metamodeling
techniques, and has been implemented in a tool called EM-AutoBuilder.

Keywords: Enterprise modeling · MDE · Automatic documentation ·
Model analysis

1 Introduction

Enterprise Modeling (EM), the discipline and practice of building and analyz-
ing models representing one or many concerns of an enterprise, is progressively
becoming mature and widespread. The value that can be gained from doing EM
is directly proportional both to the quality of the models, and the quality of the
available tools and methods to perform the analyses: if models are small, have
low level of detail, have low fidelity, or are unstructured (e.g., text documents),
it is difficult to perform insightful analyses; on the other hand, if analyses are
simple and naive, there is no point in building advanced and detailed models.
A clear example of this are simulation-based analyses, which are very advanced
but require high-quality models with information spanning several domains. In
this paper we focus on the first concern (model quality) and make a proposal to
address this problem and thus increment the value that can be gained from EM,
and especially from model analysis.

The biggest issue affecting the quality of enterprise models is the elevated
costs of construction and maintenance. Since building these models is typi-
cally a human-intensive task, compromises are made which go against quality.
For example, the scope of the model may be limited, or its depth, or its complete-
ness. Furthermore, the lack of widespread modeling tools usually results in the
c© Springer International Publishing Switzerland 2014
J. Barjis and R. Pergl (Eds.): EOMAS 2014, LNBIP 191, pp. 3–20, 2014.
DOI: 10.1007/978-3-662-44860-1 1



4 M. Sánchez et al.

usage of inadequate technologies (e.g., text processors, spreadsheets, unstruc-
tured diagrams) that produce models that are impossible to process. Finally,
enterprises are ever changing, and thus enterprise models must be permanently
maintained. However, the current situation makes it very expensive to make
these permanent upgrades.

The hypothesis that we attempt to validate with this work is that a lot of
the information that should be included in an enterprise model can be obtained
and structured in a largely automated way. For example, it should be possible
to gather information about the architecture of deployed information systems,
combine it with information about the enterprise coming from structured doc-
umentation, and finally enrich it with real statistics about its behavior coming
from systems’ log registries. The result of this, would be a comprehensive enter-
prise model which can be easily kept updated. Automating steps in the process
of collecting and structuring the models, should also remove potential sources
of errors and inconsistencies. Ultimately, this all should lead to increasing the
quality of enterprise models and the value that can be obtained from them.

To validate this hypothesis, we designed an approach and architecture for
building enterprise models using information obtained from different sources.
This approach was implemented in a tool called EM-AutoBuilder, which has
already been tested in an internal case study, and is now starting to be applied
in real scenarios.

The structure of the paper is as follows. Section 2 discusses in more detail
what Enterprise Models are, the possible sources of information to build them,
and the current state of art in automatic construction of enterprise models.
Section 3 introduces a scenario to illustrate the solution. Then, the proposed app-
roach and its implementation are presented and illustrated in Sect. 4. Section 5
concludes the paper and discusses the outlook for the presented work.

2 Automatic Construction of Enterprise Models

An Enterprise Model is a representation of elements of an enterprise that typ-
ically belong to different domains (e.g., business processes, business and regu-
latory environment, organizational structure, or information technology). The
cost of building enterprise models varies depending on two factors: the required
level of detail, and the scope that the model should cover (i.e., how much of the
enterprise and how many domains should be represented in the model). Before
making a commitment to build a model, these two variables should be analyzed
and balanced against the cost of construction, and against the benefits that the
model can eventually bring. To further complicate the matter, these benefits
are not intrinsic to the model, but depend on how it is used. For instance, it
can be used for (i) documentation or communication purposes; (ii) as a way to
increase understanding of the enterprise; (iii) as the starting point for analyzing
the current situation of the company; (iv) or to evaluate transformation projects.

Given the aforementioned potential uses of enterprise models, there are a
number of desirable qualities that said models should posses. The first and most



Extraction and Reconstruction of Enterprise Models 5

important one is accuracy : a model that does not reflect the reality cannot
answer truthfully any kind of answer, and thus is useless. On top of that, making
decisions based on incorrect information can be worse than not making the
decisions at all. A second, related quality is that a model has to be up to date (old
information is just a particular kind of incorrect information, and just as risky as
inaccurate information). Next, an enterprise model should to be structured : while
models are frequently represented using unstructured means such as documents,
diagrams, and spreadsheets, their real value can only be achieved if they are built
around well defined structures and using representations that favor automatic
processing. The fourth quality is completeness: a model should be complete
with respect to its intended usage, and it should not lack information that it
is expected to have. Finally, the cost of building and maintaining an enterprise
model should be as low as possible; otherwise, it will probably be incomplete or
will quickly cease to be up to date.

To build an enterprise model, it is critical to discover the potential sources of
information. The typical sources include personnel of the company that deliver
the information by means of interviews; manuals and documentations about
processes, procedures, organizational structures, and responsibilities; and tech-
nical documentation about applications and technological elements. Other pow-
erful sources of information are the Information Systems (IS) themselves, which
are usually capable of providing structural and behavioral information. This can
be achieved by direct observation of the IS technological components (interfaces,
configuration files, source code, etc.), or by studying the relevant documentation
and architectural documents. Furthermore, observing the storage systems and
logging records of those IS provides valuable information to build models that
are also behavioral, instead of purely structural.

Automatically building enterprise models is ideal, considering the discussed
qualities. However, most sources of information are not suitable for this: only very
well structured documentation (e.g., based in a Quality Management System
Software), and the information systems themselves, can be automatically studied
in order to build accurate, up to date, structured, and complete models, at
relatively low costs.

In the past, some projects have made attempts at automatically building
models with different levels of detail and focusing on particular domains. The
work of Buschle et al. [1] reconstructs models of enterprise architecture based
on network scanning and retrieving, in a graph-based structure, the main com-
ponents of the application infrastructure of information systems. In this work
they collected information using network analysis tools and vulnerability exami-
nation tools, and the results were application deployment models. Similarly, the
work of Binz et al. [2] combined a manual and a semi-automatic approach for
model construction. The automatic part was limited to network assets discov-
ery (e.g., operative systems, DBMS, Application Servers), and the result was a
graph representing the topology of enterprise systems.

Other works have tackled the problem from a source code perspective. Instead
of obtaining the information from the systems already deployed, they have



6 M. Sánchez et al.

collected the information from their source code. These works include MoDisco
[3], the work of Schmerl et al. [4], and the work of Song et al. [5]. MoDisco is an
extensible framework that is targeted to support software modernization. More-
over, as part of this, MoDisco is capable of analyzing artifacts such as source
code, database structures, and configuration files, in order to create models repre-
senting existing systems. The work that we present in this paper borrows some
architectural ideas from MoDisco, especially with respect to the extensibility
capabilities.

On the other hand, the work of Schmerl et al. combines the analysis of source
code with the analysis of low-level system events to obtain a representation that
relates events that happen in specific use cases of the system, in a specific runtime
scenario. Finally, the work of Song et al. [5] analyzes application API and calls,
and uses this information to reconstruct the structure of the systems.

Our approach differs from the above mainly because they focus on a sin-
gle domain, whereas we intend to create multi-dimensional enterprise models.
We later show that our enterprise models are produced by combining static
information obtained from documents, structural information coming from the
observation of deployed information systems and/or their source code, and from
the capture of behavioral information that is usually stored in such information
system’s logfiles.

3 An Illustrative Case Study

To illustrate the work presented in this paper, a case study is now introduced.
This case study is a fictitious but realistic company called BPO Los Alpes1,
which offers outsourced services. In particular, we are going to focus on services
for creating and managing donation campaigns. These include managing infor-
mation, publicity, and press releases about the campaigns; gathering information
about potential donors; contacting the donors; collecting payments; and tracking
the success or failure of the campaigns.

The BPO bases its operation on the following internal information systems,
which are illustrated in Fig. 1.

– Donations System: this is the system that handles donation campaigns and
it is responsible both for managing the business logic as for storing the relevant
information. This includes information about donation campaigns, potential
and actual donors, donations, payments, and certificates. Information is stored
in a relational database (DB DON).

– CCA: this is the system used by the call-center of the BPO to contact the
potential donors and register information about the outcomes of the calls.

1 We call the company fictitious because it does not really exist or offer any service.
However, it is realistic because it was modeled after real companies that provide
similar services, and because its information systems are completely build and oper-
ational. We use this, and other similar scenarios, to support research and initial
prototypes, and also for educational purposes in the courses we teach.



Extraction and Reconstruction of Enterprise Models 7

Fig. 1. Architecture of the case study

This system handles the contact-center agents, the lists of pending calls and
their assignment, and an annotated registry of calls. Information is stored in
a relational database (DB CCA).

– AlFresco (ECM): this is the enterprise content management system used to
store the certificates for donors (which have legal validity for tax-exemption
purposes), and to publish information about donation campaigns. The storage
of its information is entirely handled by AlFresco.

– LDAP: this is the system that stores information about the users of the
different applications and is capable of granting or denying usage privileges.
All the applications use this LDAP system for authentication purposes.

In addition to these internal systems, the BPO depends on consuming ser-
vices from payment transaction systems provided by allied banks and by credit
card authorization systems. There are also three elements used for integration
and coordination purposes: these are a BPEL engine, an Enterprise Service Bus
(ESB), and a Portal. Finally, there is a BAM system to calculate and display
indicators based on information obtained from the different applications, the bus
and the BPEL engine.

In addition to this, there are several documents and artifacts describing the
structure and operation of the BPO. Some of them are unstructured documents
created with a common text editor, and thus are very difficult to process; others
are diagrams and models created with specialized tools (i.e., ArchiMate and
BPMN editors) and thus can be processed with relative ease.

4 Automatic Documentation: EM-AutoBuilder

The goal of this section is to present an approach to build enterprise models with
the qualities that were discussed in Sect. 2. This approach has been implemented
in a tool called EM-AutoBuilder, has been validated using the scenario presented
in Sect. 3, and is currently starting to be used in a real scenario.



8 M. Sánchez et al.

The approach was designed to address four critical requirements. The first
one required models to be constructed in a way as automatic as possible. There-
fore, the approach is targeted to collecting information from sources that can
be automatically processed, i.e. information systems and well-structured docu-
ments and models. The second requirement was supporting heterogeneity. That
is, it should be possible to gather information from various sources that have
different structures, support different purposes, and are built around different
technologies. These sources may also include documents, further increasing the
complexity and heterogeneity. The next requirement is also closely related: the
approach should be extensible, in order to be applicable to new sources of infor-
mation. The fourth and final requirement regards the output of the approach: it
should be a single, integrated artifact that can be processed or loaded into other
tools that provide analysis capabilities.

Given these requirements, we designed the approach that is illustrated in
Fig. 2. The core of this approach is a component that hosts several configurable
extractors and processes their outputs. Extractors are independent components,
and each one is capable of connecting to some specific kind of source to extract
information. This information is returned to the core structured as a model.
After each extractor has provided one or several models, the core has to process
them to build an integrated one. However, the models may conform to different
metamodels, and the core cannot know those metamodels before hand. There-
fore, each extractor also has the capacity to provide the metamodels that it uses
to build the models.

A final point in the strategy is the capacity of the core to weave the models,
based on the weaving of the metamodels. It has been shown that completely
automating the latter procedure is not feasible [6]. Therefore, we decided to let
this step under the responsibility of the user, which has to specify the neces-
sary relations between the metamodels. Finally, models are woven based on the
information that the user provided, and a single tuple <metamodel, model> is
produced.

Fig. 2. Overview of EM-AutoBuilder architecture



Extraction and Reconstruction of Enterprise Models 9

The approach has been implemented in a tool called EM-AutoBuilder. This
tool is based on Java and EMF2 technologies because this makes it compatible
with many tools for model processing, analysis, and visualization. Moreover, it
should be possible to build similar tools using other technologies that match
other tool environments. The following sections provide more details about each
of the elements involved and about the responsibilities of each one.

4.1 Individual Extraction of Information

The first step in the automatic creation of enterprise models is to collect infor-
mation from all the relevant data sources. However, these sources have a level
of diversity that makes it impossible to have an universal component capable
of querying them all. Even in the simplest cases, such as extracting information
from relational databases, small technical differences in the way of managing the
schema structure may prevent the same component for querying any RDMS.

In EM-AutoBuilder, the solution for this diversity problem was to build a
framework and define an abstract component, the extractor, that is capable of
querying systems to obtain and structure information. Concrete extractors are
built using the framework, and they only share an API and some libraries to
assemble and process models. The API that all concrete extractors implement
has the following two main methods:

– configure: this method receives a set of Java properties with the information
that the extractor needs to find its data source. For example, in the case of
an extractor to collect information from a relational database that is accessed
through JDBC, the properties include the name of the driver to use, the url
to locate the DB, and the username and password to connect.

– collectInformation: this method uses the configuration information to
obtain information and structure it in an EMF model. The output of this
method is a tuple containing a model and a metamodel that are used subse-
quently by the EM-AutoBuild core.

It is worth noting that the metamodel that each extractor returns is some-
times calculated as part of the process of collecting information, i.e. it cannot be
known a priori and it depends on the information obtained from the source. The
reason for this has two parts. Firstly, the relation instanceOf, between instances
and their types naturally exists within some domains. Secondly, both the types
and the instances should appear in the same model, and the structure of the
instances should conform to the restrictions imposed by their corresponding
types. Unfortunately, this is not something typically supported by modeling
frameworks, and thus it would require ad hoc solutions in each case. We exper-
imented with some alternatives to manage these situations, but they required
capabilities not supported by EMF, such as deep instantiation and potencies
[7]. Ultimately, the chosen strategy was also adopted because it simplifies the
weaving process.
2 EMF - Eclipse Modeling Framework: http://www.eclipse.org/modeling/emf/.

http://www.eclipse.org/modeling/emf/


10 M. Sánchez et al.

Fig. 3. Models obtained from the CCA and Donations System database

Figures 3 and 4 present a fragment of the results obtained from applying
extractors to the BPO case study. In this case, the extractors utilized were capa-
ble of collecting information from relational databases, and they were applied to
the Donations System database and to the CCA database. The results obtained
were one model and one metamodel for each system.

Figure 3 presents the two models: on the top of the figure, there is the model
obtained from analyzing the Donations System database; on the bottom of the



Extraction and Reconstruction of Enterprise Models 11

figure, there is the model obtained from analyzing the CCA database. Both mod-
els include two kinds of elements. Firstly, there are elements that have been rep-
resented as classes and are marked with the <<type>> stereotype. These elements
appear in the model because the databases contained tables with those names,
and because it was useful to include those concepts in the models. Secondly, there
are elements represented as objects which received the stereotype <<instance>>.
These elements appear in the model because there were corresponding regis-
ters in the tables. The relation instanceOf between an <<instance>> and a
<<type>> is of ontologic nature [8], and it is a reflection of the relation between a
registry in the database and the table that contains it. Furthermore, the elements
marked as <<type>> also appear on the metamodels, thus making it possible to
have linguistic instances of them in the models. Since the same extractor was
used to collect data from both databases, the structure of both models is very
similar.

Fig. 4. Metamodel obtained from the Donations System database



12 M. Sánchez et al.

Figure 4 depicts the metamodel obtained by the extractor when it analyzed
the Donations System database. The model on the top of Fig. 3 conforms to
this metamodel, which can be divided in three parts. The top part is com-
posed by elements that are generic in nature and are usually found in generic
meta-metamodels (e.g., MOF, Ecore): Type, Attribute, Relation, Instance,
AttributeValue, and InstanceRelation. These elements appear in every meta-
model created by an extractor, independently of the information source ana-
lyzed. In the models, the elements with stereotype <<type>> are instances of
Type. The second part of the metamodel is composed by the elements Donor,
Donation, and Campaign. These are all linguistic instances of Type, and they
match the <<types>> that were previously described in the model. Finally, the
third part of the metamodel is formed by DonorInstance, DonationInstance,
and CampaingInstance. In the models previously described, the elements with
stereotype <<instance>> are instances of the elements in this third part of the
metamodel.

There are several reasons that explain the apparent complexity of this meta-
model. First of all, relations of ontological and linguistic instantiation are put
together instead of creating a separated meta-meta-model. This strategy was
selected mainly because current, mainstream modeling tools only support two
modeling levels (model and metamodel) and thus making it impossible to intro-
duce a meta-meta-model. Furthermore, metamodel weaving (or type-level weav-
ing), which will be discussed in the next section, is easier to perform when some
elements are constant (in this case, the meta-meta-elements). Based only on
this, one could wonder whether the rest of the metamodel is really necessary,
since <<types>> are found in the models. The answer to this is twofold. On
the one hand, the case of database analysis is special, because tables determine
conceptual types which are important also in the model level; analyzing other
types of information sources, such as BPEL specifications, does not produce any
<<types>>, just <<instances>>. On the other hand, for many of the actions that
we want to perform on the models, it is important to have a domain metamodel
instead of a generic or linguistic one. On top of making analysis and queries
much more powerful, it simplifies the specification of operations. This is analo-
gous to defining a specific data model for a relational database instead of using
a generic data model. Finally, an unexpected element in the metamodels are the
attributes and relations found in the Instances. This is really duplicated infor-
mation that can also be found in the types. The explanation for this lays again
in the limitations of current modeling tools: they cannot support a mechanism
similar to potencies [7] to force <<type>> to have certain attributes or relations.
However, putting the attributes and relations in the Instances accomplishes
the same goal.

The extractor used to collect this information works as follows. Firstly, it
queries the database catalog to know the structure of the schema, including the
tables, columns and keys. This information is stored in a temporal model, with
a fixed structure. Afterwards, the extractor queries each table to obtain infor-
mation about the registers, and stores that information in the temporal model.



Extraction and Reconstruction of Enterprise Models 13

Finally, the obtained model is transformed to obtain the definitive metamodel,
which depends on the original structure of the database schema, and the defini-
tive model.

In addition to the relational database extractor, the BPO case study required
other extractors for a number of sources such as the BPEL engine, the BPEL
process description files, the ESB Engine (for services, routes and transforma-
tions), the LDAP service, BPMN models (built with Bizagi Process Modeler3),
and ArchiMate models (built with the Archi editor4), among others.

There is a further kind of extractors that stands apart to the ones that have
been described: extractors that collect information about behavior. What makes
these extractors special is that, instead of focusing on structural information,
they focus on information about the behavior of elements in the architecture.
For example, they can observe the execution logs of a BPEL engine and collect
information about the frequency of execution of each process, the frequency of
each path within the process, and the frequency of errors. This capacity adds
a new dimension to enterprise modeling that is seldom available, and makes it
possible to use the resulting models for purposes such as dynamic analysis and
simulation.

4.2 Cross-Domain Types and Instance Weaving

Since extractors are completely independent, it is only logical that their outputs
are completely independent as well. However, a great part of the value of an
enterprise model lies in the identification and reification of relations between
domains. Unless these relations are materialized, it is impossible to perform
analysis involving multiple domains.

In order to obtain a single enterprise model, our approach uses two kinds of
model-weaving techniques:

1. Weaving of types: this is the kind of weaving performed between the meta-
models and also between elements marked with the <<type>> stereotype in
the models.

2. Weaving of instances: this is the kind of weaving performed between ele-
ments marked with the <<instance>> stereotype.

Combined, these two types of weaving are capable of producing a unified
tuple containing an enterprise model and its metamodel. The rest of this section
presents in more detail these two kinds of weaving. In EM-AutoBuilder they
are implemented on top of a model-weaving machine that is controlled using
two different textual languages. These languages are enough to demonstrate
the expressiveness and capacity of the machine, but we are in the process of
developing a more usable interactive interface.

3 Bizagi Process Modeler homepage: http://www.bizagi.com/index.php/en/products/
bizagi-process-modeler.

4 Archi homepage: http://archi.cetis.ac.uk/.

http://www.bizagi.com/index.php/en/products/bizagi-process-modeler
http://www.bizagi.com/index.php/en/products/bizagi-process-modeler
http://archi.cetis.ac.uk/


14 M. Sánchez et al.

Type-Level Weaving. The first type of weaving that we are going to describe
is the one that is done between elements marked as <<type>>. This process is
performed at two levels: on the one hand, it is performed at the metamodel
level, to obtain a single metamodel for the enterprise model; on the other hand,
it is performed at the model level, to describe the same relations within the
enterprise model. The process is performed at both levels following a single
specification (i.e., it is not necessary to write one weaving script for each level),
which has to be written by a modeler after inspecting the types produced by the
extractors. Ideally, this task should be automated, but past experiences show
that metamodel-weaving always requires human intervention [6]. Furthermore,
this is a task that has to be done only when a new extractor is introduced.

The type-level weaving specification is written using a language based on
Fusion [9]. Fusion is a simple language and a platform for weaving metamod-
els, which we developed for a previous project. Compared to other approaches,
such as ATL, Fusion is extremely simple. However, it is powerful enough for its
intended purpose, and it is more than enough for specifying type-level weav-
ings. In fact, we only need to use two of the operators included in Fusion:
mergeEntities and newLink. The script in listing 1.1, which is based on the
example presented in Sect. 4.1, illustrates the language. This script is processed
by the weaving engine that is part of the EM-AutoBuilder Core, and which is
derived from the Fusion Weaver.

1 mergeEntities Donor {
2 entity1 = DB_DON.Donor
3 entity2 = DB_CCA.CustomerContact
4 }
5

6 newLink responsible {
7 source = DB_DON.Donation
8 target = DB_CCA.Agent
9 containment = false

10 minCard = 0;
11 maxCard = 1;
12 }

Listing 1.1. Example of type-level weaving

The example has two parts which depend on the metamodels called DB DON
and DB CCA. The former refers to the metamodel produced by the extractor
that explored the database of the Donations System. The latter refers to the
metamodel produced by the extractor that explored the database of the CCA
system. In the first part of the example, it is specified that the types Donor and
CustomerContact must be merged into a single type, in the resulting metamodel,
also called Donor. This kind of operation is used when the same concept appears
in two different domains and must be merged. This results in the creation of a
new type with a union of the attributes and relations of the original types. In
this case, the new type is called Donor, has attributes name and tel, and has
relations to Donation and Register.



Extraction and Reconstruction of Enterprise Models 15

The second part of the listing specifies a new relation called responsible
between the type Donation and the type Agent. In this case, the relation is
added because the modeler wants to make explicit the relation between a certain
donation and the agent in the call center that got it. Finally, the types in the
source metamodels that are not mentioned in the Fusion script, are simply copied
into the combined metamodel.

While the above example is rather simple, it illustrates all the capacities
required to create a unified metamodel. In the BPO case study we specified many
other relations between elements from different domains. Some of these relations
are represented in Table 1. In this table, the types in the columns and rows have
been grouped by the domain that they represent, and an X has been included
when the types have been related in the unified metamodel. For example, a new
relation has been added between BPMN/Process and BPEL/Process to represents
the fact that some BPEL processes are automated versions of BPMN processes.
Similarly, the Xs between BPEL/Partner Link and Application/Service and
External Application/Service serve to relate BPEL processes and the appli-
cations that they rely on, by means of the processes’ partner links and the
services that they are bound to.

Instance-Level Weaving. The elements described in the previous section are
only useful to weave elements marked with the <<type>> stereotype. Now we
show how elements marked with the <<instance>> stereotype are woven in
order to produce the expected unified model. In this point, it is important to
note that the potential number of instances is much larger than the potential
number of types. Therefore, it is important to have a largely automated process
to produce the final woven model. Furthermore, it should be possible to easily
run the instance-weaving scripts whenever the model has to be updated.

The language to describe the weaving process between instances is a reflec-
tion of the language used at the type level, and thus it has two weaving instruc-
tions. The first instruction, mergeInstances, is used to specify which instances
have to be combined, following the merging of their types. The script in list-
ing 1.2 specifies that Donors and CustomerContact should be combined into a
Donor whenever the attribute name of the former matches the attribute name of
the latter.

1 mergeInstances Donor where
2 (entity1.name == entity2.name)

Listing 1.2. Example of usage of instruction mergeInstances

The second instruction in the instance weaving language, relateInstances,
is used to create relations between instances, based on the new relations created
in the metamodel. The script in listing 1.3 continues the example and illustrates
this instruction.



16 M. Sánchez et al.

Table 1. Selected cross-domain relations in the BPO case study

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

DB DOM

e1: Donor x x x

e2: Donation x x x

e3: Campaign x x

DB CCA

e4: CustomerContact x x x

e5: Register x x

e6: Agent x x x x x

BPEL

e7: Partner Link x x

e8: Process x x x x

e9: Invoke x x

e10: Execution Log x x x x x x x x x x x

BPMN

e11: Process x x x x x x x x

e12: Role x x x

LDAP

e13: User x x

e14: Org. Unit x x

Internal Application

e15: Service x x x x

External Application

e16: Service x x x x

ArchiMate

e17: Business Service x x x

e18: Business Role x

The semantics of this script is as follows. Firstly, the model weaving engine
has to lookup all the instances of the type Donation, which was the source type
when the new relation was added. Then, for each Donation the engine has to
find Agents using the expression in the second line of the script. This expression
is written with the Cumbia Navigation Language [10], which is based mainly on
the Object-Graph Navigation Language (OGNL)5, the JSP Expression Language

1 relateInstances Donation.responsible ->
2 #this.donor.callLog.caller

Listing 1.3. Example of usage of instruction relateInstances

5 OGNL Language Guide: http://www.opensymphony.com/ognl/html/Language
Guide/index.html.

http://www.opensymphony.com/ognl/html/LanguageGuide/index.html
http://www.opensymphony.com/ognl/html/LanguageGuide/index.html


Extraction and Reconstruction of Enterprise Models 17

[11], and the MVEL6. The expression in the example specifies a path from each
Donation to 0 or more Agents, following the relations donor, callLog, and
caller.

Instance weaving instructions are executed in their order of appearance.
Thus, when listing 1.3 is run, the Donors have already been merged with the
CustomerContact, thus making donor.callLog a valid relation. Figure 5 depicts
the resulting merged model.

Fig. 5. Model obtained from merging the CCA and Donation models

6 Language Guide for MVEL 2.0: http://mvel.codehaus.org/Language+Guide+
for+2.0.

http://mvel.codehaus.org/Language+Guide+for+2.0
http://mvel.codehaus.org/Language+Guide+for+2.0


18 M. Sánchez et al.

When all the instance-weaving instructions have been executed, the meta-
model and the enterprise model are finally ready to be used.

4.3 Compatibility Concerns and Using the Models

The result of the weaving process is a model and the metamodel it conforms to.
By themselves, these artifacts are not really valuable. However, with adequate
tools a lot of value can be gained from them.

In consequence, a key requirement for EM-AutoBuilder was to produce mod-
els and metamodels that were compatible with other tools. In the end, the tool
was given the capacity to export the artifacts to XMI and ecore. Thus, the enter-
prise models obtained are easily compatible with other tools based on EMF, and
even with tools that are capable of using XMI models. Furthermore, the models
can be converted from XMI into other representations whenever it is necessary.

Figure 6 presents a screenshot of a fragment of the model obtained during
the case study. In the figure, the model was loaded into a tool for supporting
visual analysis of models [12]. Within this tool, it is possible to configure how
certain characteristics of the model and its elements should be mapped to visual
attributes. For example, colors can be mapped to domains, sizes can be mapped
to the number of relations, and forces (which the tool uses for calculating layouts)
can be mapped to topological proximity. Other tools that can use these enter-
prise models include generators of documentation, quantitative and qualitative
analysis tools (e.g., see [13]), and reporting tools.

Fig. 6. Visualization of a fragment of the BPO model



Extraction and Reconstruction of Enterprise Models 19

5 Conclusion

In this paper we have studied the problematic of building enterprise models
that are accurate, complete, structured, and up-to-date. For this purpose, we
presented an approach to build and maintain enterprise models in a largely
automated way, and we presented the tool that implemented the approach:
EM-AutoBuilder. EM-AutoBuilder provides fixed and variable elements. The
variable part is represented by a framework and an API for the implementa-
tion of extractors that connect to specific information sources. Among the fixed
elements, there is a core that hosts the extractors, weaves the models and meta-
models, and produces a single model and a single metamodel. This core is not
completely automatic: it requires some input from a modeler in order to know
how to put together the different pieces that should form the complete model.

In Sect. 2 we stated five desirable qualities for enterprise models. The pre-
sented approach, and the EM-AutoBuilder, are helpful for obtaining all of these
qualities: the resulting models are accurate, because their base information comes
from trustworthy sources; they are well structured because they conform to
known metamodels; they are complete with respect to the information avail-
able as long as the right extractors are used; finally, the cost of building them
may not be low if new extractors have to be developed from scratch, but the
maintenance cost to keep them up to date is low compared to traditional EM
methods.

The presented approach and its implementation have been tested so far with
a case study, but they are starting to be used in project with a big company.
Within this project, we are also building a reusable library of extractors. These
will include extractors for source code, and for performing security vulnerability
analysis, which will produce enterprise models annotated with security and risk
information.

References

1. Buschle, M., Holm, H., Sommestad, T., Ekstedt, M., Shahzad, K.: A tool for
automatic enterprise architecture modeling. In: CAiSE Forum. CEUR Workshop
Proceedings, vol. 734, pp. 25–32. CEUR-WS.org. (2011)

2. Binz, T., Leymann, F., Nowak, A., Schumm, D.: Improving the manageability of
enterprise topologies through segmentation, graph transformation, and analysis
strategies. In: Proceedings of the 2012 IEEE 16th International Enterprise Dis-
tributed Object Computing Conference (EDOC ’12), pp. 61–70. IEEE Computer
Society, Washington, DC (2012)

3. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and exten-
sible framework for model driven reverse engineering. In: Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering
(ASE ’10), pp. 173–174. ACM, New York (2010)

4. Schmerl, B., Garlan, D., Yan, H.: Dynamically discovering architectures with Dis-
coTect. In: Proceedings of the 10th European Software Engineering Conference
held Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE-13), pp. 103–106. ACM, New York (2005)



20 M. Sánchez et al.

5. Song, H., Huang, G., Xiong, Y., Chauvel, F., Sun, Y., Mei, H.: Inferring meta-
models for runtime system data from the clients of management APIs. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395,
pp. 168–182. Springer, Heidelberg (2010)

6. Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic model
weaver. In: Proceedings of the 1ere Journée sur l’Ingénierie Dirigée par les Modèles
(IDM05) (2005)

7. Atkinson, C., Kuhne, T.: Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul. 12(4), 290–321 (2002)

8. Kuhne, T.: Matters of (meta-) modeling. Softw. Syst. Model. 5(4), 369–385 (2006)
9. Florez, H., Sánchez, M., Villalobos, J.: EnAr-Fusion. A Tool for Metamodel

Composition. Technical Report, Universidad de los Andes, ISIS-01-2012 (2012)
http://backus1.uniandes.edu.co/∼enar/dokuwiki/doku.php?id=fusion

10. Sánchez, M.: Executable Models for Extensible Workflow Engines. Ediciones
Uniandes, Bogotá (2012)

11. Armstrong, E., Ball, J., Bodoff, S., Carson, D.B., Evans, I., Green, D., Haase,
K., Jendrock, E.: JSP expression language. In: The J2EE 1.4 Tutorial, ch. 12:
JavaServer Pages Technology, pp. 499–506. Sun Microsystems Inc., Santa Clara
(2005)

12. Naranjo, D., Sánchez, M., Villalobos, J.: Connecting the dots: examining visualiza-
tion techniques for enterprise architecture model analysis. In: Grabis, J., Kirikova,
M., Zdravkovic, J., Stirna, J. (eds.) Short Paper Proceedings of the 6th IFIP WG
8.1 Working Conference on the Practice of Enterprise Modeling (PoEM 2013), vol.
1023, pp. 29–38. CEUR-WS (2013)

13. Ramos, A., Gomez, P., Sánchez, M., Villalobos, J.: Automated enterprise-level
analysis of ArchiMate models. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S.,
Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS 2014 and EMMSAD 2014.
LNBIP, vol. 175, pp. 439–453. Springer, Heidelberg (2014)

http://backus1.uniandes.edu.co/~enar/dokuwiki/doku.php?id=fusion

	Extraction and Reconstruction of Enterprise Models
	1 Introduction
	2 Automatic Construction of Enterprise Models
	3 An Illustrative Case Study
	4 Automatic Documentation: EM-AutoBuilder
	4.1 Individual Extraction of Information
	4.2 Cross-Domain Types and Instance Weaving
	4.3 Compatibility Concerns and Using the Models

	5 Conclusion
	References


