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Abstract. Current symbol spotting and retrieval methods are not yet
able to achieve the goal of both high accuracy and efficiency on large
databases of line drawings. This paper presents an approach for focused
symbol retrieval as step towards achieving such a goal by using concepts
from image retrieval. During the off-line learning phase of the proposed
approach, regions of interest are extracted from the drawings based on
feature grouping. The regions are then described using an off-the-shelf
descriptor. The similar descriptors are clustered, and finally a visual sym-
bol vocabulary is learned by an SVM classifier. The vocabulary is con-
structed assuming no knowledge of the contents of the drawings. During
on-line retrieval, the classifier recognizes the descriptors of query regions.
A query can be a partial or a complete symbol, can contain contextual
noise around a symbol or more than one symbol. Experimental results
are presented for a database of architectural floor plans.

Keywords: Symbol retrieval · Multi-part graphical query · Visual
symbol vocabulary · Technical line drawings

1 Introduction

Symbol recognition and retrieval in technical line drawings is one of the main
challenges in document analysis and graphics recognition communities. State-
of-the-art methods work well on small databases of isolated symbols, but their
performance significantly decreases on large databases of complicated drawings
containing many symbols connected to each other and to connection lines. To
achieve realistic large scale symbol retrieval, we could use ideas from the field
of content-based retrieval in natural image databases. The famous bag-of-visual-
words (BoVW) approach [2], with its many variants, have been successfully used
in large scale object retrieval and image analysis tasks. The main idea there is
not to search images one by one looking for a queried object, but rather to
perform off-line content analysis of an image database, and create a compact
and quickly accessible representation of the whole database. Such representation
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can be searched quickly for a query. The symbol retrieval approach presented
in this paper, loosely follows some of the concepts of the BoVW approach. Our
approach consists of an off-line and an on-line stage. Within the off-line stage,
local regions of interest (ROIs) are extracted from the line drawings, and then
described by a shape descriptor. The descriptors are clustered, and then prepared
to be quickly accessible based on queries. The idea behind this stage is to create a
compact and quickly accessible representation of the contents of the line drawings
database. Within the on-line stage, contents similar to images of query symbols
are retrieved. Our approach is for focused retrieval, which means retrieval with
localization of the queried symbol inside the retrieved line drawings.

The rest of this paper is organized as follows. Section 2 reviews the related
work in comparison to the proposed approach. Section 3 explains the overall
proposed approach with a detailed description of each step. In the section after
that, we present the performance evaluation of the proposed retrieval system.
Finally, we present conclusions and directions for future work.

2 Related Work

Some state-of-the-art methods/systems that perform symbol spotting or
retrieval, follow the BoVW approach as well. Nguyen et al. [18] proposed a
symbol spotting method that is very similar to the BoVW model. In their work,
DOG-SIFT [13] is used to detect ROIs. The ROIs are described using shape
context descriptor, and then clustered by k-means to build a visual vocabulary.
An inverted file index is built from the clusters (similar to the inverted index of
text retrieval systems). The location information of the ROIs are also kept in
the index, since the spotting system should locate regions in the drawing rather
than returning the complete drawings. It is not clear how their method would
scale using a larger number of symbols and line drawings.

Kong et al. [10] presented a symbol spotting/retrieval method where the
ROIs are found using overlapping sliding windows. The ROIs are then described
by a shape descriptor called the deformed blurred shape model. The descriptions
are computed at different scales and orientations. Then the vectors describing
the ROIs are clustered using k-means. In their method (as well as in the method
of Nguyen et al. [18]), k-means is used as a clustering method. The use of such
a simple clustering method means relying more on the goodness of the output
of the preceding ROI detection and description steps. In [10], those steps use
overlapping sliding windows, which are not invariant to scale and rotation. This
results in different ROIs that should correspond to the same symbol part. More-
over, the used ROI-descriptor is not invariant to rotation and scale, so, the ROIs
have to be stored many times at different scales and orientations. The increased
number of ROIs makes it harder for a clustering algorithm to output the correct
partitioning of the data. For indexing, hash tables are built from the clusters for
each image, where the labels of the clusters are the keys to a hash table. In their
system, such a table is used for every image. This requires processing each image
of the database sequentially during spotting/retrieval. Moreover, scalability is an
issue when using a hash table.
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Luqman et al. [14] extracted ROIs from graph-based representations. The
ROIs are converted to fuzzy structural signatures. This descriptor is also intro-
duced by them where a structural graph representation is converted to a numer-
ical vector representation. The similar signatures are then clustered together
using agglomerative (or hierarchical) clustering method. The city distance is
used as a similarity measure of clustering. Labels are assigned to clusters. An
inverted file index is used for indexing the contents of the drawings. The keys
of this index are learned by a Bayesian network, and the index naturally contains
the ROIs locations and the labels of the clusters to which they belong. During
the on-line querying, the ROIs of a query are extracted and described, and then
classified as a member of some cluster. The corresponding ROIs in the drawings
are retrieved by looking up the index.

The retrieval approach presented in this paper, includes detection of regions
of interest (ROIs) using feature grouping proposed by the authors [16]. This ROI
detection method has been shown to be highly accurate in finding regions that
correspond to similar parts of symbols despite transformations. In the description
step, we use a pixel-based compact symbol descriptor proposed by Yang [21],
that is invariant to transformations and robust to noise. As for creating the
compact and quickly accessible representation of the line drawings, we use the
concept of the visual symbol vocabulary from the BoVW approach. We create a
visual vocabulary of the database by k-means clustering and SVM learning. The
presented approach has the ability to deal with different query complexity thanks
to the region detection step. A query could contain contextual noise (additional
line segments), or could have multiple parts. Retrieval of a query is performed
on the each of the query regions.

The authors have also recently presented another symbol retrieval system [17]
that has the same structure as the one proposed here. The system in [17] out-
performs state-of-the-art methods including the one presented in this paper.
However, our work in [17] requires big memory and time resources for the off-
line stage, as the clustering step is based on accurate geometric matching of
shapes. Additionally, the time required for on-line query retrieval depends on
the size of the visual vocabulary, and it also uses geometric matching for com-
paring a query with the elements of the visual vocabulary. So, in this paper, we
investigate techniques for faster query symbol look up time, and we will seek
to improve higher localization and retrieval accuracy. The performance of the
approach presented here compares favorably to other state-of-the-art methods.

3 Description of the Retrieval Approach

The retrieval approach proposed in this paper has two stages. The steps of the
first stage – the off-line stage – are as follows. First, ROIs of line drawings are
identified (Subsect. 3.1). The identified ROIs correspond to symbols’ parts up to
complete symbols. This step is accomplished via grouping line segment features
of the line drawings. The method used for feature grouping was introduced by
the authors in [16]. Second, an off-the-shelf symbol descriptor is applied on the
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extracted ROIs to represent them in vector format. We use the symbol descriptor
introduced by Yang [21]. The descriptors are the visual words of the line drawings
database. The next step is applying k-means clustering to group the similar
descriptors together. Finally, an SVM classifier is trained on clusters to learn
the class labels of the clusters, where each cluster should contain similar visual
words corresponding to similar symbol parts.

In the on-line stage, a query symbol is given as input. The ROIs of the query
are detected and described using the same methods used in the off-line stage. The
trained SVM classifier quickly classifies the descriptors of the query regions as
belonging to which clusters. All the similar regions from the drawings database
are then retrieved from the clusters. The following subsections describe each step
of the retrieval approach in more detail.

3.1 Detection of Regions of Interest

We argue that the ROI-finding step is the most important step within a content-
based retrieval system. The ROIs should be detected consistently and accurately
such that a region that corresponds to a symbol is always found in different
drawings regardless of the position and the transformation of that symbol. If a
method is capable of finding ROIs in such a consistent way, then the later steps
of describing, clustering and retrieving those regions become easier to develop
and would yield better performance.

We will use a region detection method from our previous works in [15,16],
which is based on feature grouping. We have illustrated the accuracy of this
method and its invariance to transformed regions in [15,16]. In the following we
describe how the method works.

Images of line drawings are given as input to the region detection method.
First, to vectorize the line drawings, simple preprocessing is applied: edge detec-
tion followed by sampling line segments along the edges. The edges may be
straight or curved, the process of sampling line segments along the edges con-
verts all the edges to straight line segments. For example, a curved edge will
be converted into a set of small straight segments. The line segments are the
features of the line drawings. A set of line segments are grouped together if they
form a convex shape. Grouping line segments based on convexity was introduced
by Jacobs [7,8] to find meaningful shapes or parts of objects. Such feature group-
ing method is invariant to scaling and rotation. After finding initial groups of
line segments that satisfy convexity property, the following cleaning up steps are
carried out: removing all groups that have less than 3 segments, and groups that
are cyclic repetitions of each other. As a last step, a group whose bounding box
falls completely within a bounding box of another group, is discarded.

After these steps, we get a list of groups of line segments. Each group consists
of line segment features that were grouped based on the method described above.
The goal is to identify ROIs in a line drawing, hence, we define an ROI as the
region (bounding box) that contains a group of line segment features.

Figure 1 shows the output of the grouping method applied on a line draw-
ing. The shaded parts are the ROIs found by the method. In the figure, red
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Fig. 1. Output of the region detection method shown on a complete line drawing. The
found ROIs (symbols’ parts) of a line drawing are shown shaded (adjacent different
ROIs have different shading). Red bounding boxes are drawn around only some of
the found ROIs for clarity of illustration (Color figure online).

bounding boxes are drawn around some of the found ROIs, we also use differ-
ent shading for adjacent ROIs. It can be seen that the found ROIs correspond
mostly to meaningful parts of the symbols up to complete symbols. Note that
those symbols appear in different sizes and rotations within a line drawing. For
each region, we need to keep information about where this region can be found
in a line drawing, i.e. which image it comes from and its location in that image.

3.2 Description of Regions of Interest

The extracted interest regions contain symbol parts up to complete symbols.
A shape descriptor is needed to represent a region in a vector form. The vec-
tor representation can then be used for the following steps of clustering and
learning. Ideally, a symbol descriptor should be used to compute such a vector
representation. In this step of our proposed approach, any off-the-shelf symbol
descriptor can be used to represent the extracted regions. We have chosen the one
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proposed by [21], as it has high accuracy in recognizing symbols. This descriptor
is invariant to similarity transformation and is robust to noise as shown in Yang’s
experiments. In the following we present a brief review of the used descriptor,
the complete details can be found in [21].

Yang’s symbol descriptor is represented by two histograms. Each histogram
contains both statistical and structural information of a shape. Each pixel with
its surrounding pixels describes the shape by certain constrains (length-ratio
and angle) which provide the detailed structure of the symbol with rotation-
scale invariance. In addition, it is robust to noise or distortion by quantization
and integration to the fixed dimensions.

The procedure of the descriptor is as follows: (1) shape skeletonization
(2) computing pixel-level constraints (3) generating length-ratio (LRH) and
angle (AH) based histograms for each pixel (4) statistical integration of all pix-
els based on LRH and AH. From this integration, we finally obtain two fixed
dimensional vectors.

The skeleton of the input shape is sampled into N pixels. Those are N refer-
ence points (Pk, k ∈ {0, ..N − 1}). Each reference point describes the relationship
with all other pixels by length-ratio and angle:
{(Lij , Θij) | i ∈ [1, N − 2]; j ∈ [i + 1, N − 1]} (except Pk), where:

Lij = min {| PkPi | / | PkPj |, | PkPj | / | PkPi |} (1)

Θij = ∠PiPkPj (2)

| PkPi | and | PkPj | are the length of the two vector PkPi and PkPj . The
advantage of this representation is that it is not affected by scaling and rotation.

These constraints between every pair of pixels are in a range [0, 1] for length-
ratio and [0, 180] for angle. We then construct the matrix to show the distribution
of the constraints as well as to generalize the form:

LRH =

⎡
⎢⎢⎢⎢⎢⎢⎣

n1 (P0) n2 (P0) · · · nM (P0)
...

...
...

n1 (Pk) n2 (Pk) · · · nM (Pk)
...

...
...

n1 (PN−1) n2 (PN−1) · · · nM (PN−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

where
n{1..M} (Pk) =

2
(N − 1)(N − 2)

Hist{1..M}(Lk) (4)

Hist{1..M}(Lk) is the histogram for the reference point Pk divided by the number
of bins M.

Finally, statistical integration of points Pk∈{0..N−1} is performed from the
previous matrix LRH (SIHA-LRH) and we obtain:

SIHA − LRH =

⎡
⎢⎢⎢⎣

m1 (1) m2 (1) · · · mM (1)
m1 (2) m2 (2) · · · mM (2)

...
...

...
m1 (Q) m2 (Q) · · · mM (Q)

⎤
⎥⎥⎥⎦ (5)
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where
mi (1..Q) =

1
N

Hist{1..Q}(ni(P{0..N−1})) (6)

Hist{1..Q}(ni(P{0..N−1})) is the histogram divided as Q number of bins for each
column i ∈ {1..M} of LRH. Note that this is applied on the matrix of dimensions
Q × M . So, from Eq. 6, we obtain a vector for length-ratios, which is the first
part of the descriptor. The vector of angles is constructed in the same manner
(SIHA-AH), but the dimension is not necessarily same as SIHA-LRH.

In order to get the final vector form, the two vectors of length-ratio and angle
are concatenated into one vector. The same symbol descriptor is applied on all
the regions extracted in the previous step. In his work, Yang [21] proposed the
sum of absolute differences (SAD) to compare the similarity/difference between
descriptors. As will be seen in the next subsection, we use the Euclidean distance
(square root of the sum of squared differences) to compare descriptors in the next
clustering step. Either distance can be used.

3.3 Clustering and Learning the Classes of the Clusters

At this step of off-line content analysis of line drawings, we have thousands
of descriptors of regions of interest. Analogous to the BoVW approach, those
descriptors are the visual words of the line drawings. Performing the search in a
large space of visual words is computationally expensive, and does not allow for
interactive browsing and searching the contents of line drawings. That’s why a
more compact representation is required in order to provide acceptable search
response time. The numerous methods that follow the BoVW approach use tech-
niques such as k-means clustering [12], self-organizing maps [6] and vector quanti-
zation [5,11] for creating compact representations from high dimensional feature
spaces [9,19].

Similarly, we use standard k-means clustering for grouping the similar
descriptors together. The input to the clustering method is the list of descriptors –
in vector form – computed in the previous step. Recall that each descriptor repre-
sents a region of interest, that in turn represents a symbol part up to a complete
symbol. Figure 2 shows examples of the constructed clusters.

Clustering parameters – mainly the number of clusters – should be chosen to
be proportional to the expected number of regions that could be extracted from
the symbol alphabet that is used to draw technical line drawings of some domain.
The number of clusters is one of the factors affecting the relation between recall
and precision values in the retrieval process. Other enhanced clustering tech-
niques can be used to improve this step. Our goal here is just to develop a
framework for retrieval, and show that invariant region detection and descrip-
tion are more critical to the performance of the overall retrieval system.

Once the clusters are created, the only remaining step is to prepare them for
query retrieval, such that, when a query descriptor is given, the retrieval system
can decide quickly, to which cluster the query belongs. For this purpose, an SVM
classifier is used. The classifier is trained on the clusters, where the members of
a cluster are the training samples of a class. The class is assigned the same label
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Fig. 2. Examples of the resulting clusters of ROIs (symbols parts). K-means clustering
is applied on the descriptors of the ROIs to get such clusters.

of the cluster. The used SVM classifier is from the python MLPY package that
implements libSVM [1], with a “linear” kernel type.

Alternatively, the means of the clusters can be used for comparisons with a
query. However, it would be slower in case of a large number of classes. Moreover,
a learning step in the retrieval framework could be useful in other datasets that
might have labeled training data.

3.4 On-line Query Retrieval

A query symbol can be a segmented symbol from the symbol alphabet of the
technical drawings, or can be a cropped region from a line drawing. A query that
is cropped from a drawing may contain contextual noise around the symbol, such
as connection lines or parts from neighboring symbols. The first step to deal with
a query, is to extract its regions of interest using the same method discussed in
Subsect. 3.1. The contextual noise around a query will not be parts of the interest
regions. After that, a descriptor is computed from each region of a query as
explained in Subsect. 3.2. Figure 3 shows the extracted regions of interest for
different queries. Extracting the regions and computing the descriptors of the
query do not consume much time as a query is usually very small compared to
a complete line drawing.

Finally, the regions are classified by the trained SVM classifier. The similar
regions from all the drawings are retrieved from the cluster that has the same
label. If a query symbol consists only of one region, then no further steps are
required. For multi-region queries, a voting procedure or a spatial verification



46 N. Nayef et al.

Fig. 3. The left column shows examples of the used query symbols. The second symbol
in that column is a cropped symbol from a line drawing, the rest are segmented symbols
from the alphabet. The right column shows the extracted regions of interest (ROIs)
from the queries on the left.

step can be applied to retrieved regions from different clusters. We have presented
a spatial verification step in our recent work in [17] within a geometric-based
symbol retrieval system. Such steps can be added to the approach presented in
this paper to improve the precision.

4 Performance Evaluation

The database we use for evaluation has 300 images of architectural floor plans.
The images are a subset of the graphics recognition database called “Sesyd”. The
database is publicly available1, and it contains different types of technical line
drawings. The ground truth is also provided with the database. The ground
truth contains information (label and bounding box location) of each symbol in
all the drawings.
1 http://mathieu.delalandre.free.fr/projects/sesyd/index.html

http://mathieu.delalandre.free.fr/projects/sesyd/index.html
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The generation of the database is described in [3,4]. The images of the data-
base are synthetic clean images of line drawings that imitate real complete floor
plans with sizes between 2M to 7M pixels. Different subsets of this database have
been used for evaluation of symbol spotting systems in [14,18]. The GREC-2011
symbol spotting contest2 [20] used a set of images very similar to the images of
the Sesyd database, as the images of the contest were generated using the same
system of [3,4].

The recall and precision measures are used to evaluate the retrieval results
of the proposed approach as follows. If the bounding box of a retrieved region
contains at least 75 % of an instance of the query symbol (or a query region),
this is counted as a true positive, otherwise, it is a false positive. Figure 4 shows
the recall-precision curve of the retrieval results. Each value on the curve is the
average of the recall-precision values obtained for different queries that have a
total of 2249 instances in the database of the 300 line drawings.

Fig. 4. Retrieval results of the proposed approach. A number of queries of different
complexity levels are used, the queries have a total of 2249 instances in 300 line draw-
ings. The shown curve is the average achieved performance of the queries.

The results in Fig. 4 show a range of good performance in terms of both
recall and precision. We argue that this is due to the accuracy and invariance
of the used region detection method, and also the shape descriptor. We have
used simple standard clustering and learning steps (k-means clustering and SVM
learning) that were used by other systems for the same purpose, this suggests
that the main factors that control the retrieval performance are: the quality of
the detected regions of interest, and the powerfulness of the shape descriptor.
2 http://iapr-tc10.univ-lr.fr/index.php/symbolrecognitionhome

http://iapr-tc10.univ-lr.fr/index.php/symbolrecognitionhome
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We would like to briefly report the performance of state-of-the-art approaches
that follow the BoVW approach for symbol spotting and retrieval. Luqman
et al. [14] used a number of query symbols and 200 line drawings from the same
database used here. On this set of images, according to the recall-precision curve
obtained from the authors of [14], at recall values between 60.0 % and 70.0 %,
the precision was 60.0 %. For recall values above 85.0 %, the precision was below
50.0 %. Kong et al. [10] used a number of query symbols on 42 line drawings
from a different database. According to the recall-precision curve in [10], at
recall values between 50 % and 70 %, the precision was between 62 % and 42 %
respectively.

The approach presented in this paper – although unimproved by spatial verifi-
cation or post-processing – performs better than those state-of-the-art
approaches. As we mentioned in Sect. 2, although our recent work in [17] out-
performs the approach presented in this paper, it is rather time and memory
consuming. It would be interesting to investigate how to merge ideas from both
approaches to achieve both higher accuracy and faster query look-up time.

5 Conclusions and Future Directions

This paper has presented an approach for efficient retrieval of graphical content
of line drawings. The approach uses ideas from the famous bag-of-visual-words
approach, but presents methods for region detection and description that are
suitable to deal with line drawings. The use of simple and standard clustering
and learning steps (k-means clustering and SVM learning), suggests that the
main two factors that control the retrieval performance are: the quality of the
detected regions of interest, and the powerfulness of the shape descriptor.

Future work has many directions. One is performing retrieval from a diverse
collection of technical drawings. Another direction is to explore the use of hier-
archical representations for clustering the visual vocabulary.
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