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Preface

The European Conferences on Machine Learning (ECML) and on Principles and
Practice of Knowledge Discovery in Data Bases (PKDD) have been organized
jointly since 2001, after some years of mutual independence. Going one step
further, the two conferences were merged into a single one in 2008, and these are
the proceedings of the 2014 edition of ECML/PKDD. Today, this conference is
a world-wide leading scientific event. It aims at further exploiting the synergies
between the two scientific fields, focusing on the development and employment
of methods and tools capable of solving real-life problems.

ECML PKDD 2014 was held in Nancy, France, during September 15–19,
co-located with ILP 2014, the premier international forum on logic-based and
relational learning. The two conferences were organized by Inria Nancy Grand
Est with support from LORIA, a joint research unit of CNRS, Inria, and Uni-
versité de Lorraine.

Continuing the tradition, ECML/PKDD 2014 combined an extensive techni-
cal program with a demo track and an industrial track. Recently, the so-called
Nectar track was added, focusing on the latest high-quality interdisciplinary re-
search results in all areas related to machine learning and knowledge discovery
in databases. Moreover, the conference program included a discovery challenge,
a variety of workshops, and many tutorials.

The main technical program included five plenary talks by invited speakers,
namely, Charu Aggarwal, Francis Bach, Lise Getoor, Tie-Yan Liu, and Ray-
mond Ng, while four invited speakers contributed to the industrial track: George
Hébrail (EDF Lab), Alexandre Cotarmanac’h (Twenga), Arthur Von Eschen
(Activision Publishing Inc.) and Mike Bodkin (Evotec Ltd.).

The discovery challenge focused on “Neural Connectomics and on Predictive
Web Analytics” this year. Fifteen workshops were held, providing an opportunity
to discuss current topics in a small and interactive atmosphere: Dynamic Net-
works and Knowledge Discovery, Interactions Between Data Mining and Natural
Language Processing, Mining Ubiquitous and Social Environments, Statistically
Sound Data Mining, Machine Learning for Urban Sensor Data, Multi-Target
Prediction, Representation Learning, Neural Connectomics: From Imaging to
Connectivity, Data Analytics for Renewable Energy Integration, Linked Data for
Knowledge Discovery, New Frontiers in Mining Complex Patterns, Experimental
Economics and Machine Learning, Learning with Multiple Views: Applications
to Computer Vision and Multimedia Mining, Generalization and Reuse of Ma-
chine Learning Models over Multiple Contexts, and Predictive Web Analytics.

Nine tutorials were included in the conference program, providing a com-
prehensive introduction to core techniques and areas of interest for the scien-
tific community: Medical Mining for Clinical Knowledge Discovery, Patterns
in Noisy and Multidimensional Relations and Graphs, The Pervasiveness of
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Machine Learning in Omics Science, Conformal Predictions for Reliable Ma-
chine Learning, The Lunch Is Never Free: How Information Theory, MDL, and
Statistics are Connected, Information Theoretic Methods in Data Mining, Ma-
chine Learning with Analogical Proportions, Preference Learning Problems, and
Deep Learning.

The main track received 481 paper submissions, of which 115 were accepted.
Such a high volume of scientific work required a tremendous effort by the area
chairs, Program Committee members, and many additional reviewers. We man-
aged to collect three highly qualified independent reviews per paper and one
additional overall input from one of the area chairs. Papers were evaluated on
the basis of their relevance to the conference, their scientific contribution, rigor
and correctness, the quality of presentation and reproducibility of experiments.
As a separate organization, the demo track received 24 and the Nectar track 23
paper submissions.

For the second time, the conference used a double submission model: next to
the regular conference track, papers submitted to the Springer journals Machine
Learning (MACH) and Data Mining and Knowledge Discovery (DAMI) were
considered for presentation in the conference. These papers were submitted to
the ECML/PKDD 2014 special issue of the respective journals, and underwent
the normal editorial process of these journals. Those papers accepted for the
of these journals were assigned a presentation slot at the ECML/PKDD 2014
conference. A total of 107 original manuscripts were submitted to the journal
track, 15 were accepted in DAMI or MACH and were scheduled for presentation
at the conference. Overall, this resulted in a number of 588 submissions, of
which 130 were selected for presentation at the conference, making an overall
acceptance rate of about 22%.

These proceedings of the ECML/PKDD 2014 conference contain the full pa-
pers of the contributions presented in the main technical track, abstracts of the in-
vited talks and short papers describing the demonstrations, and theNectar papers.
First of all, wewould like to express our gratitude to the general chairs of the confer-
ence, AmedeoNapoli andChedyRäıssi, as well as to all members of theOrganizing
Committee, for managing this event in a very competent and professional way. In
particular, we thank the demo, workshop, industrial, and Nectar track chairs. Spe-
cial thanks go to the proceedings chairs, Élisa Fromont, Stefano Ferilli and Pascal
Poncelet, for the hard work of putting these proceedings together. We thank the
tutorial chairs, the Discovery Challenge organizers and all the people involved in
the conference, who worked hard for its success. Last but not least, we would like
to sincerely thank the authors for submitting their work to the conference and the
reviewers and area chairs for their tremendous effort in guaranteeing the quality
of the reviewing process, thereby improving the quality of these proceedings.

July 2014 Toon Calders
Floriana Esposito
Eyke Hüllermeier

Rosa Meo
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Chotirat

Ratanamahatana
Jan Rauch
Soumya Ray
Steffen Rendle
Achim Rettinger



XII Organization

Fabrizio Riguzzi
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Céline Rouveirol
Stefan Rüping
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Scalable Collective Reasoning Using

Probabilistic Soft Logic

Lise Getoor

University of California, Santa Cruz
Santa Cruz, CA, USA

getoor@cs.umd.edu

Abstract. One of the challenges in big data analytics is to efficiently
learn and reason collectively about extremely large, heterogeneous, in-
complete, noisy interlinked data. Collective reasoning requires the ability
to exploit both the logical and relational structure in the data and the
probabilistic dependencies. In this talk I will overview our recent work
on probabilistic soft logic (PSL), a framework for collective, probabilistic
reasoning in relational domains. PSL is able to reason holistically about
both entity attributes and relationships among the entities. The under-
lying mathematical framework, which we refer to as a hinge-loss Markov
random field, supports extremely efficient, exact inference. This family of
graphical models captures logic-like dependencies with convex hinge-loss
potentials. I will survey applications of PSL to diverse problems ranging
from information extraction to computational social science. Our recent
results show that by building on state-of-the-art optimization methods
in a distributed implementation, we can solve large-scale problems with
millions of random variables orders of magnitude faster than existing
approaches.

Bio. In 1995, Lise Getoor decided to return to school to get her PhD in Com-
puter Science at Stanford University. She received a National Physical Sciences
Consortium fellowship, which in addition to supporting her for six years, sup-
ported a summer internship at Xerox PARC, where she worked with Markus
Fromherz and his group. Daphne Koller was her PhD advisor; in addition, she
worked closely with Nir Friedman, and many other members of the DAGS group,
including Avi Pfeffer, Mehran Sahami, Ben Taskar, Carlos Guestrin, Uri Lerner,
Ron Parr, Eran Segal, Simon Tong.

In 2001, Lise Getoor joined the Computer Science Department at the
University of Maryland, College Park.



Network Analysis in the Big Data Age: Mining

Graph and Social Streams

Charu Aggarwal

IBM T.J. Watson Research Center, New York
Yorktown, NY, USA

charu@us.ibm.com

Abstract. The advent of large interaction-based communication and
social networks has led to challenging streaming scenarios in graph and
social stream analysis. The graphs that result from such interactions
are large, transient, and very often cannot even be stored on disk. In
such cases, even simple frequency-based aggregation operations become
challenging, whereas traditional mining operations are far more com-
plex. When the graph cannot be explicitly stored on disk, mining algo-
rithms must work with a limited knowledge of the network structure.
Social streams add yet another layer of complexity, wherein the stream-
ing content associated with the nodes and edges needs to be incorporated
into the mining process. A significant gap exists between the problems
that need to be solved, and the techniques that are available for stream-
ing graph analysis. In spite of these challenges, recent years have seen
some advances in which carefully chosen synopses of the graph and social
streams are leveraged for approximate analysis. This talk will focus on
several recent advances in this direction.

Bio. Charu Aggarwal is a Research Scientist at the IBM T. J. Watson Research
Center in Yorktown Heights, New York. He completed his B.S. from IIT Kan-
pur in 1993 and his Ph.D. from Massachusetts Institute of Technology in 1996.
His research interest during his Ph.D. years was in combinatorial optimization
(network flow algorithms), and his thesis advisor was Professor James B. Orlin.
He has since worked in the field of data mining, with particular interests in data
streams, privacy, uncertain data and social network analysis. He has published
over 200 papers in refereed venues, and has applied for or been granted over 80
patents. Because of the commercial value of the above-mentioned patents, he has
received several invention achievement awards and has thrice been designated a
Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for
his work on bio-terrorist threat detection in data streams, a recipient of the IBM
Outstanding Innovation Award (2008) for his scientific contributions to privacy
technology, and a recipient of an IBM Research Division Award (2008) for his
scientific contributions to data stream research. He has served on the program
committees of most major database/data mining conferences, and served as pro-
gram vice-chairs of the SIAM Conference on Data Mining, 2007, the IEEE ICDM
Conference, 2007, the WWW Conference 2009, and the IEEE ICDM Conference,
2009. He served as an associate editor of the IEEE Transactions on Knowledge
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and Data Engineering Journal from 2004 to 2008. He is an associate editor of
the ACM TKDD Journal, an action editor of the Data Mining and Knowledge
Discovery Journal, an associate editor of the ACM SIGKDD Explorations, and
an associate editor of the Knowledge and Information Systems Journal. He is a
fellow of the ACM (2013) and the IEEE (2010) for contributions to knowledge
discovery and data mining techniques.



Big Data for Personalized Medicine: A Case

Study of Biomarker Discovery

Raymond Ng

University of British Columbia
Vancouver, B.C., Canada

mg@cs.ubc.ca

Abstract. Personalized medicine has been hailed as one of the main
frontiers for medical research in this century. In the first half of the
talk, we will give an overview on our projects that use gene expression,
proteomics, DNA and clinical features for biomarker discovery. In the
second half of the talk, we will describe some of the challenges involved
in biomarker discovery. One of the challenges is the lack of quality assess-
ment tools for data generated by ever-evolving genomics platforms. We
will conclude the talk by giving an overview of some of the techniques
we have developed on data cleansing and pre-processing.

Bio. Dr. Raymond Ng is a professor in Computer Science at the University of
British Columbia. His main research area for the past two decades is on data
mining, with a specific focus on health informatics and text mining. He has pub-
lished over 180 peer-reviewed publications on data clustering, outlier detection,
OLAP processing, health informatics and text mining. He is the recipient of two
best paper awards from 2001 ACM SIGKDD conference, which is the premier
data mining conference worldwide, and the 2005 ACM SIGMOD conference,
which is one of the top database conferences worldwide. He was one of the pro-
gram co-chairs of the 2009 International conference on Data Engineering, and
one of the program co-chairs of the 2002 ACM SIGKDD conference. He was
also one of the general co-chairs of the 2008 ACM SIGMOD conference. For the
past decade, Dr. Ng has co-led several large scale genomic projects, funded by
Genome Canada, Genome BC and industrial collaborators. The total amount of
funding of those projects well exceeded $40 million Canadian dollars. He now
holds the Chief Informatics Officer position of the PROOF Centre of Excellence,
which focuses on biomarker development for end-stage organ failures.
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Abstract. In the era of information explosion, search has become an
important tool for people to retrieve useful information. Every day, bil-
lions of search queries are submitted to commercial search engines. In
response to a query, search engines return a list of relevant documents
according to a ranking model. In addition, they also return some ads
to users, and extract revenue by running an auction among advertisers
if users click on these ads. This “search + ads” paradigm has become a
key business model in today’s Internet industry, and has incubated a few
hundred-billion-dollar companies. Recently, machine learning has been
widely adopted in search and advertising, mainly due to the availabil-
ity of huge amount of interaction data between users, advertisers, and
search engines. In this talk, we discuss how to use machine learning to
build effective ranking models (which we call learning to rank) and to
optimize auction mechanisms. (i) The difficulty of learning to rank lies
in the interdependency between documents in the ranked list. To tackle
it, we propose the so-called listwise ranking algorithms, whose loss func-
tions are defined on the permutations of documents, instead of individ-
ual documents or document pairs. We prove the effectiveness of these
algorithms by analyzing their generalization ability and statistical con-
sistency, based on the assumption of a two-layer probabilistic sampling
procedure for queries and documents, and the characterization of the re-
lationship between their loss functions and the evaluation measures used
by search engines (e.g., NDCG and MAP). (ii) The difficulty of learning
the optimal auction mechanism lies in that advertisers’ behavior data
are strategically generated in response to the auction mechanism, but
not randomly sampled in an i.i.d. manner. To tackle this challenge, we
propose a game-theoretic learning method, which first models the strate-
gic behaviors of advertisers, and then optimizes the auction mechanism
by assuming the advertisers to respond to new auction mechanisms ac-
cording to the learned behavior model. We prove the effectiveness of the
proposed method by analyzing the generalization bounds for both behav-
ior learning and auction mechanism learning based on a novel Markov
framework.

Bio. Tie-Yan Liu is a senior researcher and research manager at Microsoft Re-
search. His research interests include machine learning (learning to rank, online
learning, statistical learning theory, and deep learning), algorithmic game theory,
and computational economics. He is well known for his work on learning to rank
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for information retrieval. He has authored the first book in this area, and pub-
lished tens of highly-cited papers on both algorithms and theorems of learning
to rank. He has also published extensively on other related topics. In particular,
his paper won the best student paper award of SIGIR (2008), and the most cited
paper award of the Journal of Visual Communication and Image Representation
(2004-2006); his group won the research break-through award of Microsoft Re-
search Asia (2012). Tie-Yan is very active in serving the research community. He
is a program committee co-chair of ACML (2015), WINE (2014), AIRS (2013),
and RIAO (2010), a local co-chair of ICML 2014, a tutorial co-chair of WWW
2014, a demo/exhibit co-chair of KDD (2012), and an area/track chair of many
conferences including ACML (2014), SIGIR (2008-2011), AIRS (2009-2011), and
WWW (2011). He is an associate editor of ACM Transactions on Information
System (TOIS), an editorial board member of Information Retrieval Journal and
Foundations and Trends in Information Retrieval. He has given keynote speeches
at CCML (2013), CCIR (2011), and PCM (2010), and tutorials at SIGIR (2008,
2010, 2012), WWW (2008, 2009, 2011), and KDD (2012). He is a senior member
of the IEEE and the ACM.
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Abstract. Many machine learning and signal processing problems are
traditionally cast as convex optimization problems. A common difficulty
in solving these problems is the size of the data, where there are many
observations (“large n”) and each of these is large (“large p”). In this
setting, online algorithms such as stochastic gradient descent which pass
over the data only once, are usually preferred over batch algorithms,
which require multiple passes over the data. In this talk, I will show how
the smoothness of loss functions may be used to design novel algorithms
with improved behavior, both in theory and practice: in the ideal infinite-
data setting, an efficient novel Newton-based stochastic approximation
algorithm leads to a convergence rate of O(1/n) without strong convex-
ity assumptions, while in the practical finite-data setting, an appropriate
combination of batch and online algorithms leads to unexpected behav-
iors, such as a linear convergence rate for strongly convex problems, with
an iteration cost similar to stochastic gradient descent.
(joint work with Nicolas Le Roux, Eric Moulines and Mark Schmidt)

Bio. Francis Bach is a researcher at INRIA, leading since 2011 the SIERRA
project-team, which is part of the Computer Science Laboratory at Ecole Nor-
male Superieure. He completed his Ph.D. in Computer Science at U.C. Berkeley,
working with Professor Michael Jordan, and spent two years in the Mathemati-
cal Morphology group at Ecole des Mines de Paris, then he joined the WILLOW
project-team at INRIA/Ecole Normale Superieure from 2007 to 2010. Francis
Bach is interested in statistical machine learning, and especially in graphical
models, sparse methods, kernel-based learning, convex optimization vision and
signal processing.
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Abstract. New data is being collected from electric smart meters which
are deployed in many countries. Electric power meters measure and trans-
mit to a central information system electric power consumption from ev-
ery individual household or enterprise. The sampling rate may vary from
10 minutes to 24 hours and the latency to reach the central informa-
tion system may vary from a few minutes to 24h. This generates a large
amount of - possibly streaming - data if we consider customers from an
entire country (ex. 35 millions in France). This data is collected firstly
for billing purposes but can be processed with data analytics tools with
several other goals. The first part of the talk will recall the structure of
electric power smart metering data and review the different applications
which are considered today for applying data analytics to such data. In
a second part of the talk, we will focus on a specific problem: spatio-
temporal estimation of aggregated electric power consumption from in-
complete metering data.

Bio. Georges Hébrail is a senior researcher at EDF Lab, the research centre
of Electricité de France, one of the world’s leading electric utility. His back-
ground is in Business Intelligence covering many aspects from data storage and
querying to data analytics. From 2002 to 2010, he was a professor of computer
science at Telecom ParisTech, teaching and doing research in the field of informa-
tion systems and business intelligence, with a focus on time series management,
stream processing and mining. His current research interest is on distributed and
privacy-preserving data mining on electric power related data.
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Abstract. The advent of realtime bidding and online ad-exchanges has
created a new and fast-growing competitive marketplace. In this new
setting, media-buyers can make fine-grained decisions for each of the
impressions being auctioned taking into account information from the
context, the user and his/her past behavior. This new landscape is par-
ticularly interesting for online e-commerce players where user actions can
also be measured online and thus allow for a complete measure of return
on ad-spend.
Despite those benefits, new challenges need to be addressed such as:

– the design of a real-time bidding architecture handling high volumes
of queries at low latencies,

– the exploration of a sparse and volatile high-dimensional space,
– as well as several statistical modeling problems (e.g. pricing, offer

and creative selection).

In this talk, I will present an approach to realtime media buying for
online e-commerce from our experience working in the field. I will review
the aforementioned challenges and discuss open problems for serving ads
that matter.

Bio. Alexandre Cotarmanac’h is Vice-President Distribution & Platform for
Twenga.

Twenga is a services and solutions provider generating high value-added
leads to online merchants that was founded in 2006.

Originally hired to help launch Twenga’s second generation search engine
and to manage the optimization of revenue, he launched in 2011 the affinitAD line
of business and Twenga’s publisher network. Thanks to the advanced contextual
analysis which allows for targeting the right audience according to their desire to
buy e-commerce goods whilst keeping in line with the content offered, affinitAD
brings Twenga’s e-commerce expertise to web publishers. Alexandre also oversees
Twenga’s merchant programme and strives to offer Twenga’s merchants new
services and solutions to improve their acquisition of customers.

With over 14 years of experience, Alexandre has held a succession of in-
creasingly responsible positions focusing on advertising and web development.
Prior to joining Twenga, he was responsible for the development of Search and
Advertising at Orange. Alexandre graduated from Ecole polytechnique.
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Abstract. Data science is relatively new to the video game industry, but
it has quickly emerged as one of the main resources for ensuring game
quality. At Activision, we leverage data science to analyze the behavior
of our games and our players to improve in-game algorithms and the
player experience. We use machine learning and data mining techniques
to influence creative decisions and help inform the game design process.
We also build analytic services that support the game in real-time; one
example is a cheating detection system which is very similar to fraud
detection systems used for credit cards and insurance. This talk will
focus on our data science work for Call of Duty, one of the bestselling
video games in the world.

Bio. Arthur Von Eschen is Senior Director of Game Analytics at Activision. He
and his team are responsible for analytics work that supports video game design
on franchises such as Call of Duty and Skylanders. In addition to holding a
PhD in Operations Research, Arthur has over 15 years of experience in analytics
consulting and R&D with the U.S. Fortune 500. His work has spanned across
industries such as banking, financial services, insurance, retail, CPG and now
interactive entertainment (video games). Prior to Activision he worked at Fair
Isaac Corporation (FICO). Before FICO he ran his own analytics consulting firm
for six years.
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Abstract. Drug research generates huge quantities of data around tar-
gets, compounds and their effects. Network modelling can be used to
describe such relationships with the aim to couple our understanding of
disease networks with the changes in small molecule properties. This talk
will build off of the data that is routinely captured in drug discovery and
describe the methods and tools that we have developed for compound
design using predictive modelling, evolutionary algorithms and network-
based mining.

Bio. Mike did his PhD in protein de-novo design for Nobel laureate sir James
Black before taking up a fellowship in computational drug design at Cambridge
University. He moved to AstraZeneca as a computational chemist before joining
Eli Lilly in 2000. As head of the computational drug discovery group at Lilly since
2003 he recently jumped ship to Evotec to work as the VP for computational
chemistry and cheminformatics. His research aims are to continue to develop new
algorithms and software in the fields of drug discovery and systems informatics
and to deliver and apply current and novel methods as tools for use in drug
research.
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Alexandre Plastino, and Alex A. Freitas

A Unified Framework for Probabilistic Component Analysis . . . . . . . . . . . 469
Mihalis A. Nicolaou, Stefanos Zafeiriou, and Maja Pantic

Flexible Shift-Invariant Locality and Globality Preserving
Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Feiping Nie, Xiao Cai, and Heng Huang

Interactive Knowledge-Based Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Dino Oglic, Daniel Paurat, and Thomas Gärtner
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Abstract. We study a distributed training of a linear classifier in which the data is
separated into many shards and each worker only has access to its own shard. The
goal of this distributed training is to utilize the data of all shards to obtain a well-
performing linear classifier. The iterative parameter mixture (IPM) framework
(Mann et al., 2009) is a state-of-the-art distributed learning framework that has a
strong theoretical guarantee when the data is clean. However, contamination on
shards, which sometimes arises in real world environments, largely deteriorates
the performances of the distributed training. To remedy the negative effect of the
contamination, we propose a divergence minimization principle for the weight
determination in IPM. From this principle, we can naturally derive the Beta-IPM
scheme, which leverages the power of robust estimation based on the beta diver-
gence. A mistake/loss bound analysis indicates the advantage of our Beta-IPM
in contaminated environments. Experiments with various datasets revealed that,
even when 80% of the shards are contaminated, Beta-IPM can suppress the influ-
ence of the contamination.

1 Introduction

A linear classifier is one of the most fundamental concepts in the field of machine learn-
ing. Online learning algorithms [20,5,6] are able to train linear classifiers effectively.
An online algorithm sequentially processes data points, and thus, it requires all data to
be accessible from a single machine. While the training on a single machine is of its
own importance, training in distributed environments has attracted increasing interest
[1,10,16]. In such environments, data is divided up into disjoint sets of shards and each
worker has access to only one shard.

Iterative Parameter Mixture (IPM) [16,17] is a state-of-the-art distributed training
framework, which involves a master node and worker nodes. Advantages of IPM lies in
its communication efficiency and simplicity: in each epoch, each worker trains a model
in parallel on his own shard, and the master mixes the training results (Fig. 1).

IPM implicitly assumes that each shard is noiseless. However, it is not always the
case: there can be some adversarially or randomly labelled data in some distributed
learning scenarios. For example, web mail systems possibly involve some users who

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 1–17, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Illustration of the communication in IPM

Fig. 2. Illustrative example of KL-IPM and Beta-IPM. Each horizontal line represents a parameter
space, and each vertical line represents a parameter returned by a worker, the height of which is
proportional to the mixing weight. While KL-IPM equally weights all the parameter vectors,
Beta-IPM adaptively weights each parameter as described later.

adversarially labels spams and non-spams, or incorrect data formats [9] lead to cor-
rupted classification result. Let us call such flawed data contamination. We verified
that, the performance of the trained classifier is deteriorated by contamination.

Meanwhile, IPM has freedom in how to weight the individual workers’ results. If
some shards are known to be contaminated, we can avoid the effect of these shards by
setting their weights to zero. However, it is unlikely that there will be prior knowledge
about which shards are contaminated, and thus, the strategy we should take is to weight
seemingly contaminated results less on the basis of their statistical anomalousness.

With this in mind, we propose a weight determination principle based on a di-
vergence minimization criterion. This criterion reinterprets the most straightforward
choice, which is to weight each worker equally, as the minimization of the Kullback-
Leibler divergence (KL-IPM). On the other hand, the beta divergence, which is the
extension of the KL divergence, provides robust inference against contamination. We
propose the weight determination formula by minimizing the beta divergence (Beta-
IPM). Moreover, We prove a mistake/loss bound of IPM. This theoretical result shows
that, by weighting less heavily to contaminated shards with Beta-IPM we can suppress
the upper bound of losses over training. The difference between KL-IPM and Beta-IPM
is illustrated in Fig. 2. Finally, an empirical evaluation on various datasets confirms that
Beta-IPM remedies the effect of contamination.
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2 Related Work

2.1 Distributed Training of Linear Models

Distributed training frameworks for linear models have been studied in the literature.
Asynchronous updates are sets of models in which all workers simultaneously operate
on shared parameters. There is a long line of work related to asynchronous updates
from the 1980s [22] onwards [24,12]. A problem of the shared memory resource it that,
it does not scale with many shards because the communication cost is proportional to
the number of updates.

The distributed gradient method [4] is a distributed extension of the gradient descent
method, which optimizes some smooth function by taking steps proportional to the neg-
ative gradient. In the distributed gradient method, individual workers compute partial
gradients based on their shards, which are then summed to make an update.

In the IPM method, each worker operates independently and shares parameters after
each worker finishes an iteration. A master mixes the parameters of the workers with
weights whose sum is normalized. IPM is used in many linear and regression models,
such as logistic regression [16], structured perceptron [17], etc. McDonald et al. [17]
proved that IPM with perceptron has mistake bound in a linearly separable case (i.e.,
the case in which every data point is correctly classified by some classifier). Moreover,
Hall et al. [14] empirically compared the asynchronous updates, the distributed gradi-
ent method and IPM using large-scale click-through data. The results show that IPM
combined with the perceptron [20] performed the best.

2.2 Robust Training Against Flawed Data

Detection of spam and malicious activities is an important problem in the highly dis-
tributed web industry [18,7]. In addition, poorly formatted data [19,9] causes a con-
siderable problem in distributed training. Despite significant efforts made at removing
such flawed data, there still is a need for robust models. Robust models are used in many
fields, including multi-task learning [13,23] and sensor networks [3].

The problem of contamination in distributed data can be broken down into two cases:
the first case is when the contamination is scattered across every shard, and the second
case is when some shards are clean while others are contaminated. Studies on the ro-
bustness of online learning algorithms [5,6,15] have mainly dealt with the first case,
which considers a single data repository affected by noise. In this case, the clean data
are hard to distinguish from the noise. Instead, we consider the second case and show
that a significant improvement is possible by putting less importance on statistically
extraordinary shards which are likely to be wrongly labeled or corrupted.

We note that, Daumé III et al. [8] proposed a distributed learning algorithm with ad-
versarially distributed data. Their definition of adversarially distributed data is different
from our adversarial noise: while they considered separable data with an adversary who
can generate an arbitrary imbalance among shards, we consider an adversarial attacker
that can harm the separability assumption by maliciously labelling.
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Algorithm 1. Iterative Parameter Mixture (IPM)

1: Shards: T1, ..., TM , w(avg,0) = 0
2: for n = 1, ..., N do
3: w(i,n) = SingleIterationTrain(Ti,w(avg,n−1))
4: w(avg,n) =

∑
i αi,nw

(i,n)

5: end for

3 Problem Setup

We consider a binary classification. Let X ∈ Rd be the input space and Y = {−1, 1}
be the output space. A data point is defined as an input-output tuple (x, y) ∈ X ×Y . A
linear classifier with parameter vector w predicts an output as ŷ = sign(w ·x). The goal
of our distributed training framework is to find the parameter vector w which explains
the whole data most.

In distributed training, the training data is divided into M non-overlapping subsets
(shards), and a shard is assigned to each worker. There also is a master who integrates
the results of workers. Training based on IPM (Algorithm 1) goes as follows. In each
epoch n = 1, 2, ..., N , each worker i independently does a single iteration of training
its own parameters w(i,n), which are then sent to the master. The master waits until all
workers finish their training before it computes a mixed parameter w(avg,n), which is
a weighted sum of the trainers’ parameters. The weight αi,n of each worker i in each
epoch n can be chosen arbitrarily as long as it is normalized (i.e.

∑M
i=1 αi,n = 1).

Later in Section 4 we propose weight determination formulas that we call KL-IPM and
Beta-IPM. At the end of the epoch, the mixed parameters w(avg,n) are sent back to
the workers, who in the next epoch start the new single iteration training based on the
received mixed parameter. After N epochs have been completed, the master outputs the
final parameter vector (a linear classifier).

3.1 IPM Combined with Online Algorithms

We use online learning algorithms in single iteration training (“SingleIterationTrain” in
Algorithm 1). We specifically deal with the perceptron [20] and the Passive Aggressive
(PA) method [5]. Section 5 describes that, IPM combined with perceptron and PA is
able to extend the theoretical guarantee of these single-machine online algorithms.

4 Divergence Minimization Principle

In this section, we describe our main proposal, which is how to determine the weights
based on the divergence minimization principle. Section 4.1 describes our statistical
assumptions and the divergence minimization principle. Section 4.2 describes the KL
and beta divergences, and Section 4.3 shows KL-IPM and Beta-IPM formulas. Section
4.4 demonstrates the behavior of KL-IPM and Beta-IPM with a simple example.
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4.1 Statistical Assumption And Divergence Minimization Principle

The statistical assumption is as follows: the parameters returned by the workers in each
epoch n should be drawn from a Gaussian distribution Qn. Our proposal is that, in
each epoch n the mixed parameter vector w(avg,n) is determined to be the mean of the
Gaussian Qn. However, the parameters are actually drawn from Pn, which possibly
contains contamination. Namely, w(i,n) ∼ Pn. The mean μ and covariance Σ of Qn

are determined in such a way as to minimize the divergence:

arg min
μ,Σ

D(Pn||Qn(μ,Σ)), (1)

where D is the divergence between Pn and Qn. If we use a robust divergence that
suppresses the influence of contamination, we are able to estimate the true μ and Σ.

4.2 KL and Beta Divergences

The KL divergence is the most basic measure that indicates the deviation of a distribu-
tion from another distribution. The KL divergence between two probability distributions
P and Q on Rd is defined as

DKL(P ||Q) =

∫
P (w) log

P (w)

Q(w)
dw, (2)

which is non-negative and equal to zero if and only if P = Q almost everywhere. While
the KL divergence is of fundamental importance in information theory, it is not robust
to the contamination of outliers.

The beta divergence, which was introduced by [2] and [11], is parameterized by a
real parameter β > 0. The beta divergence between P and Q is defined as

Dβ(P ||Q) =

∫ {
P (w)

P β(w)−Qβ(w)

β

}
− P β+1(w)−Qβ+1(w)

β + 1
dw. (3)

When β → 0, the beta divergence is consistently defined as limβ→0 Dβ(P ||Q) =
DKL(P ||Q). Therefore, the beta divergence can be considered as an extension of the
KL divergence. One of the main motivations of investigating the beta divergence is to
devise a robust inference against contamination. That is, the beta divergence between
two distributionsP andQ remains undisturbed by some fraction of the contamination in
P . β is a trade-off parameter. The bigger β is, the more robust and less computationally
effective the divergence becomes.

4.3 KL-IPM and Beta-IPM

KL-IPM: KL-IPM is a weight determination formula in IPM that equally weights each
worker. Namely,

αi,n =
1

M
. (4)

However, if flawed data contaminate some of the shards, the performance of KL-IPM
deteriorates. To remedy this problem, we derive Beta-IPM that minimizes the beta di-
vergence.
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Fig. 3. Illustration of a two-dimensional example. Each of the 100 crosses represents the param-
eters w ∼ P . The 80 crosses are from the true distribution (Gaussian with μ = (0, 0)� and
Σ = diag(1, 1)). The other 20 crosses are contamination and generated from a false distribution
(Gaussian with μ = (20, 0)� and Σ = diag(2, 2)). The large red circle is the simple mean of all
parameters, determined by KL-IPM (Equation (4)). The large blue square is the mixed parameter
determined by Beta-IPM with β = 0.1 (Equation (6)).

Beta-IPM: Let μc and Σc are respectively the empirical mean and covariance of the
parameter vectors {w(i,n)} defined as

μc =
1

M

M∑
i=1

w(i,n), and Σc =
1

M

M∑
i=1

(w(i,n) − μc)(w
(i,n) − μc)

�. (5)

Beta-IPM is defined as a weight determination formula in IPM that in each epoch n
chooses weight αi,n as follows:

αi,n =
expS(w(i,n)|μc,

1
βΣc)∑M

j=1 expS(w
(j,n)|μc,

1
βΣc)

, (6)

where S(w(i,n)|μ,Σ) = −(1/2)(w(i,n) − μ)�Σ−1(w(i,n) − μ) is the exponent part
of the Gaussian. Namely, each weight of a shard is determined by the distance of the
parameter vector from the mean. Beta-IPM is parameterized by β ≥ 0 and is equivalent
to KL-IPM when β → 0 because the covariance (1/β)Σc in (6) becomes infinitely
large. The KL-IPM and Beta-IPM formulas above are derived in Appendix A.1. Note
that the problem of minimizing the beta divergence is non-convex, so we have made
some approximations in order to derive (6).

4.4 Example of KL-IPM and Beta-IPM

Fig. 3 is a two-dimensional example that displays the behaviors of KL-IPM and Beta-
IPM. While KL-IPM equally weights each parameter vector, Beta-IPM weights the
vector farther from the mean less, and in this way it suppresses the influence of con-
tamination. As a result, the mixed parameter vector chosen by Beta-IPM is closer to the
true center (=(0, 0)�) than that by KL-IPM.
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5 Mistake / Loss Bound in IPM

This section provides a theoretical viewpoint for the weight determination by Beta-IPM.
We first discuss the separable mistake bound of IPM with a single iteration perceptron
(IPM-perceptron) in Section 5.1, then goes to the corresponding loss bound of IPM
with a single iteration PA (IPM-PA) in Section 5.2. With these bounds, we discuss
about Beta-IPM as a suppressor of weights in contaminated shards in Section 5.3.

5.1 Mistake bound of IPM-perceptron

The following theorem, which is proven by McDonald et al. [17], is an extension of the
well-known mistake bound of the single machine perceptron to IPM,

Theorem 1. (Mistake bound of IPM-perceptron in the separable case) [Theorem 3 in
[17]] Assume all the training data is separable by a margin γ. Suppose that ||x|| ≤ R
holds for any training input x, and let ki,n be the number of mistakes in shard i during
the nth epoch of training. For any number of epochs N , the number of mistakes during
the training in the IPM-perceptron is bounded as

N∑
n=1

M∑
i=1

αi,nki,n ≤ R2

γ2
. (7)

Theorem 1 states that the IPM-perceptron with separable data has a finite number
of misses, which guarantees it converges to parameters that correctly classify the entire
data.

In contrast, when some fraction of the dataset is non-separable, there are no parame-
ters that perfectly classify all the data. Yet even in this case, we can bound the mistake
in terms of the loss of the possible best classifier (parameter vector) u.

Theorem 2. (Mistake bound of IPM-perceptron in the non-separable case) Let ki,n be
the number of mistakes in shard i during the nth epoch of training. Furthermore, let u
be an arbitrary normalized parameter vector u ∈ Rn(||u|| = 1) Let ξ = max{0, γ −
y(u · x)} and Ξi =

∑
t′ ξ, where the index t′ runs over all data points in shard i. For

any number of epochs N and any γ ≥ 0, the following inequality holds:

N∑
n=1

M∑
i=1

αi,nki,n ≤ R2

γ2
+

2

γ

N∑
n=1

M∑
i=1

αi,nΞi. (8)

Theorem 2 is proven by the combination of the technique for the IPM loss bound [17]
and an ordinary technique for the non-separable mistake bound of perceptron. The proof
of Theorem 2 is in a full version of this paper. Notice that, ξ is the distance from the
margin with a data point (x, y), which indicates how the classification with a classifier
u fails for this data point. Therefore, Ξi, the sum of ξ over shard i, can be considered
as a cumulative loss if u is run on shard i. From inequality (8), the number of mistakes
of IPM-perceptron is bounded in terms of the cumulative loss of an arbitrary vector u.
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5.2 Loss Bound of IPM-PA

Here, we describe the loss bound of IPM with the Passive Aggressive algorithm (IPM-
PA). As in the case of IPM-perceptron, we can obtain separable and non-separable loss
bounds. The proofs of the bounds are in Appendix A.2.

Theorem 3. (Loss bound of IPM-PA in the separable case)
Let there be a parameter vector u that suffers no loss for any data point (x, y) in the

training data set. Suppose that ||x|| ≤ R holds for any input x. Then,

N∑
n=1

M∑
i=1

αi,nLi,n ≤ ||u||2R2, (9)

where Li,n is the cumulative squared loss which worker i suffers in epoch n.

Theorem 4. (Loss bound of IPM-PA in the non-separable case)
Assume ||x|| = 1 holds for any data point. Then, for any parameter vector u,

N∑
n=1

M∑
i=1

αi,nLi,n ≤

⎛⎝||u||+ 2

√√√√ N∑
n=1

M∑
i=1

αi,nL∗
i

⎞⎠2

, (10)

where L∗
i is the cumulative squared loss of parameter vector u with data on shard i.

5.3 Superiority of Beta-IPM from a Theoretical Perspective

The cumulative loss in (8) is weighted by αi,n. Suppose the shards are divided into
two categories: separable shards i = 1, ...,m which can be classified by u and non-
separable shards i = m+1, ...,M with no vector to correctly classify them. The smaller
the weights of the non-separable shards αm+1, ..., αM are, the smaller the weighted cu-
mulative loss

∑M
i=1 αi,nΞi we can obtain, and this means that it is very important to

reduce the weights corresponding to contaminated shards. The same argument goes
with PA. In general, Beta-IPM suppresses the weights of non-separable shards as de-
scribed in Section 4, and thus Beta-IPM is expected to have a smaller mistake count
than KL-IPM.

6 Empirical Evaluation

We conducted an evaluation with various datasets. The overall goal of these experiments
was to study how KL-IPM and Beta-IPM behave in contaminated environments.

6.1 Setup

Our experiments involved 16 datasets (Table 1). Zeta and ocr datasets are from the
Pascal large-scale learning challenge1, and the imdb and citeseer datasets are from Paul
Komarek’s webpage2. The other datasets are from the LIBSVM dataset repository3.

1 http://largescale.ml.tu-berlin.de/
2 http://komarix.org/ac/ds/
3 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.
html

http://largescale.ml.tu-berlin.de/
http://komarix.org/ac/ds/
http://www.csie.ntu.edu.tw/~{}cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~{}cjlin/libsvmtools/datasets/binary.html
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Table 1. List of the binary classification datasets evaluated. The tasks of the datasets are CI
(census income prediction), DC (document categorization), HA (human answer prediction), IP
(involvement prediction of person to some contents), IR (image recognition), MD (malware /
suspicious contents detection), S (synthetically created problem), TC (toxicity categorization), or
TD (text decoding).

# of features # of data points task

ijcnn1.tr 22 49,990 TD
mushrooms 112 8,124 TC
a8a 123 22,696 CI
ocr 1,156 3,500,000 IR
epsilon 2,000 400,000 S
zeta 2,000 500,000 S
gisette 5,000 6,000 IR
real-sim 20,958 72,309 DC

# of features # of data points task

rcv1 47,236 20,242 DC
citeseer 105,354 181,395 IP
imdb 685,569 167,773 IP
news20 1,355,191 19,996 DC
url 3,231,961 2,396,130 MD
webspam 16,609,143 350,000 MD
kdda 20,216,830 8,407,752 HA
kddb 29,890,095 19,264,097 HA

Data shards: For each dataset, we used 80% of the data for training and 20% for
testing. Then, the training dataset is divided into 100 shards associated with workers.
Algorithms are trained with the training data and evaluated in terms of the classification
accuracy of the test data.

To study the proposed algorithms’ robustness against contamination, we studied the
clean setting (i.e. no contamination) and two following contamination settings. Note
that the contaminations are only on the training shards (the test data is always clean).
Setting 1 - adversarial labels: In this setting, 30 out of 100 shards are adversarial data:
the labels of the data are reversed. This setting models situations where the data in some
shards are maliciously labeled.
Setting 2 - random labels: In this setting, 80 out of 100 shards are assigned random
labels. Each data point in these randomly labeled shards is labeled yt ∼ Bernoulli(p),
regardless of its true label. The ratio of positive labels, p, varies from 0.1 to 0.9 among
workers. This setting models situations where data in most shards are corrupted.
Algorithms: We compared four algorithms: KL-IPM with a single-iteration perceptron
or Passive Aggressive (KL-IPM-perceptron and KL-IPM-PA, respectively) and Beta-
IPM with a single-iteration perceptron or Passive Aggressive (Beta-IPM-perceptron
and Beta-IPM-PA, respectively). All values of β were the best among {10−1, 10−2, ...,
10−8}. Since our research includes high-dimensional datasets, we assumed that the
Gaussian in Beta-IPM was diagonal. The features with zero-variances were ignored in
the weight calculation. We normalized the parameter vector of each worker by using
the l2-norm when calculating the weights in Beta-IPM.

6.2 Results

The results for all datasets are shown in Table 2. The results of KL-IPM in the clean
setting can be considered to be the possible best performance of linear classifiers in our
distributed setting. As aforementioned, the performance of IPM is degraded by contam-
ination. Note that our main interest in these experiments is the extent to which Beta-IPM
can remedy the effects of contamination. First, let us compare the results of KL-IPM in
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Table 2. Accuracy of the algorithms in the clean/adversarial/random settings at the 50th epoch.
Boldface entries in the contamination settings are the best among the individual datasets.

Clean Setting
ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.913 0.999 0.845 0.763 0.899 0.628 0.947 0.968
KL-IPM-PA 0.912 0.999 0.845 0.762 0.899 0.694 0.958 0.975

rcv1 citeseer imdb news20 url webspam kdda kddb
KL-IPM-perceptron 0.960 0.976 0.981 0.953 0.986 0.990 0.881 0.886
KL-IPM-PA 0.966 0.977 0.985 0.958 0.986 0.990 0.882 0.887

Contamination Setting 1: Adversarial Labels
ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.908 0.937 0.838 0.760 0.881 0.582 0.854 0.824
KL-IPM-PA 0.908 0.983 0.837 0.760 0.886 0.651 0.912 0.904
Beta-IPM-perceptron 0.908 0.998 0.846 0.763 0.898 0.665 0.935 0.961
Beta-IPM-PA 0.908 0.989 0.846 0.762 0.898 0.663 0.957 0.972

rcv1 citeseer imdb news20 url webspam kdda kddb
KL-IPM-perceptron 0.762 0.976 0.980 0.703 0.983 0.987 0.743 0.759
KL-IPM-PA 0.871 0.977 0.984 0.844 0.983 0.987 0.689 0.712
Beta-IPM-perceptron 0.955 0.976 0.981 0.945 0.986 0.991 0.876 0.882
Beta-IPM-PA 0.962 0.977 0.984 0.950 0.986 0.991 0.676 0.693

Contamination Setting 2: Random Labels
ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.886 0.858 0.820 0.750 0.737 0.516 0.698 0.680
KL-IPM-PA 0.855 0.942 0.817 0.674 0.758 0.545 0.827 0.741
Beta-IPM-perceptron 0.911 0.980 0.825 0.755 0.886 0.642 0.888 0.948
Beta-IPM-PA 0.913 0.999 0.830 0.723 0.890 0.624 0.942 0.958

rcv1 citeseer imdb news20 url webspam kdda kddb
KL-IPM-perceptron 0.600 0.657 0.611 0.644 0.971 0.951 0.739 0.734
KL-IPM-PA 0.701 0.685 0.684 0.730 0.971 0.960 0.761 0.757
Beta-IPM-perceptron 0.919 0.836 0.826 0.717 0.981 0.986 0.853 0.833
Beta-IPM-PA 0.910 0.916 0.943 0.730 0.985 0.985 0.868 0.868

the adversarial/random settings with those in the clean setting. The contamination neg-
atively affected the results on almost all datasets. On the random setting, where 80% of
the shards are contaminated, the damage to the results tended to be more severe than that
on the adversarial setting. Second, let us compare the performances of Beta-IPM and
KL-IPM in the adversarial/random settings. One can see that Beta-IPM outperformed
KL-IPM on almost all datasets. Indeed, one many datasets Beta-IPM performed almost
as well as KL-IPM under the clean setting; this confirms that Beta-IPM can remove the
influence of contamination.

Fig. 4 shows the classification results of Beta-IPM with a single iteration perceptron
for several values of β. The optimal value with this dataset was β = 10−5, and the
accuracy with this β value showed a steady rise in epochs. The accuracy after epoch
50 was nearly 95%. With a β value smaller than the optimal one (β = 10−6) and
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Fig. 4. Classification accuracy
of Beta-IPM with a single it-
eration perceptron for several
values of beta. The algorithms
were run with news20 in the ad-
versarial setting.
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with no beta (KL-IPM-perceptron), the algorithm failed to suppress the influence of the
adversarial workers. Conversely, with β values bigger than optimal (β = 10−3), the
regularization was so strong that even the influence of some of the correct workers was
suppressed. As a result, the learning rate with this beta value was very slow.

Fig. 7. Number of features and optimal
value of beta in the adversarial setting.
Each point corresponds to a dataset.

Fig. 5 compares several different algorithms
with the best beta values. Given a proper value
of β, Beta-IPM with a perceptron or PA success-
fully learned the parameter vectors. However,
PA-I and PA-II4, the noise-tolerant version of PA,
did not perform well. These results indicate that
robustness in a distributed environment is essen-
tially different from that of single machine online
learning: while we assume some fraction of the
data is clean and the rest is contaminated, robust
learning in a single machine aims to learn in envi-
ronments where the clean and contaminated data
are mixed. A possible hypothesis is that, the reg-
ularization of the learning rate in PA-I and PA-II
obscured the difference between clean and con-

taminated shards, which made the accuracies of IPM with PA-I and PA-II poor.
Fig. 6 compares Beta-IPM-perceptron with a single machine PA-I or PA-II and

AROW [6]. The hyper-parameter C in PA-I and PA-II and r in AROW were optimized
in {10−4, 10−3, ..., 104}. The data of all 100 shards were put into a single shard in
the single machine experiments. The two Beta-IPM algorithms performed better than
the single machine algorithms. These results are empirical evidence that Beta-IPM can
reduce the weights of adversarial shards.

Fig. 7 shows the optimal value of beta as a function of the number of features. Over-
all, in high-dimensional datasets, the value of beta tends to be small. The reason for

4 The parameter C in PA-I and PA-II was set to be 0.001.
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this is that the weight in Beta-IPM (Equation (6)) is a multivariate Gaussian, which is a
product of exponentials over all dimensions and thus is small at high dimensions.

7 Conclusion

We studied robust distributed training of linear classifiers. By minimizing the diver-
gence, we devised a criterion for determining the weights in IPM. Experiments revealed
that the performance of IPM is significantly recovered on many contaminated datasets
by determining the weights based on the beta divergence. An interesting direction of fu-
ture work is to remove the statistiscal assumption of Gaussian distribution, by allowing
more wider class of distributions, or non-parametric models.
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A Appendix

A.1 Derivation of KL-IPM and Beta-IPM

Derivation of KL-IPM. We want to show that a mixed weight based on KL-IPM mini-
mizes the KL-divergence between P and Q based on the parameter vectors {w(1,n), ...,
w(M,n)}. The following lemma states that KL divergence minimization based on Gaus-
sian distributions preserves the mean and covariance.

Lemma 5. [Theorem 3.2 in [21]] Let P be an arbitrary probability distribution on Rd

with a well-defined mean μ∗ and covariance matrix Σ∗, where Σ∗ is strictly positive-
definite. Let Q be a Gaussian distribution with mean μ and covariance matrix Σ. The
unique minimum value of DKL(P ||Q) is achieved when μ = μ∗ and Σ = Σ∗.

The inequality (4) follows by using Lemma 5 and the fact that the empirical mean of
P on the parameter vectors is (1/M)

∑
iw

(i,n).

Derivation of Beta-IPM. Let the parameters of the workers be {w(1,n), ...,w(M,n)},
which is generated from a distribution P , and Q(μ,Σ) be a Gaussian distribution. We
would like to minimize the beta divergence, namely, w(avg,n) = arg min

μ
Dβ(P ||Q

(μ,Σ)). Then,

Dβ(P ||Q(μ,Σ)) (11)

= − 1

β

∫
P (w)Qβ(w|μ,Σ)dw +

1

β + 1

∫
Qβ+1(w|μ,Σ)dw +Const. (12)

= − 1

β
EP (w)[Q

β(w|μ,Σ)] +
1

β + 1

∫
Qβ+1(w|μ,Σ)dw +Const., (13)

where Const. is a term independent of μ and Σ, and EP (w) is the expectation un-
der the assumption that w follows the probability distribution P (w). Replacing the
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expectation of the first term with an empirical expectation over the parameter vectors
{w(1,n), ...,w(M,n)} yields

(13) = − 1

β

M∑
i=1

1

M

[
Qβ(w(i,n)|μ,Σ)

]
+

1

β + 1

∫
Qβ+1(w|μ,Σ)dw. (14)

The multivariate Gaussian Q is explicitly written as Q(w|μ,Σ) = Z(Σ)
expS(w|μ,Σ), where Z(Σ) = 1/

√
(2π)d|Σ| and S(w|μ,Σ) = − 1

2 (w − μ)�Σ−1

(w−μ). The second term in (14) is, from the property of multivariate Gaussian distri-
bution,

1

β + 1

∫
Qβ+1(w|μ,Σ)dw = Z(Σ)β(β + 1)−1−d/2, (15)

which is independent on μ. By using these facts, the first derivative of Dβ(P ||Q(μ,Σ))
is equivalent to the one of the first term in the RHS of (14), which is transformed as,

d

dμ

{
− 1

β

M∑
i=1

1

M

[
Qβ(w(i,n)|μ,Σ)

]}
=

Z(Σ)β

βM

{
− d

dμ

M∑
i=1

expS(w(i,n),μ,
1

β
Σ)

}
.

=
Z(Σ)β

βM

{
M∑
i=1

expS(w(i,n),μ,
1

β
Σ)(βΣ−1)(w(i,n) − μ)

}

=
Z(Σ)β

βM

{
βΣ−1

M∑
i=1

expS(w(i,n),μ,
1

β
Σ)(w(i,n) − μ)

}
. (16)

Therefore, we obtain

d

dµ

{
− 1

β

M∑
i=1

1

M

[
Qβ(w(i,n)|µ,Σ)

]}
= 0 ⇔

M∑
i=1

expS(w(i,n),µ,
1

β
Σ)(w(i,n) − µ) = 0

⇔ µ =

∑M
i=1 expS(w(i,n),µ, 1

β
Σ)w(i,n)∑M

j=1 expS(w(j,n),µ, 1
β
Σ)

. (17)

RHS of (17) states that μ that minimizes Dβ(P ||Q) is a weighted mean
of each w(i,n) with weight expS(w(i,n),μ, 1

βΣ). Unfortunately, the weight

expS(w(i,n),μ, 1
βΣ) on the RHS includes μ, and thus, an exact solution is unattain-

able. To get a reasonable solution, we can approximate μ and Σ on the RHS of (17) by
the mean and covariance of the samples {w(1,n), ...,w(M,n)}, which finally yields (6).

A.2 Proof of Theorem 3 and 4

The crux in the mistake/loss bound proofs in online classifiers is to find some value
that can be bounded from both the upper and lower side: in the case of PA we bound
the value Δn = ||w(avg,n−1) − u|| − ||w(avg,n) − u||. By using these lower and upper
bounds we obtain Lemma 6, which leads to the proofs of Theorem 3 and 4.
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Algorithm 2. Single iteration Passive Aggressive
1: T = {(xt, yt)}, w
2: for t = 1, ..., |T | do
3: ŷt ← sign(w · xt)
4: lt ← max (0, 1− yt(w · xt))
5: τt ← lt/||xt||2
6: w← w + τtytxt

7: end for

Lemma 6. Let the index t = 1, ..., ki,n denotes the data points on shard i that the
worker suffered non-zero losses, and (xi,t, yi,t) be the data point at that round. More-
over, let li,t be the corresponding loss of the worker, and τi,t = li,t/||xi,t||2, and l∗i,t be
the loss of any constant classifier u with the data point. Then,

N∑
n=1

⎧⎨⎩
M∑
i=1

αi,n

ki,n∑
t=1

{
τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)

}⎫⎬⎭ ≤ ||u||. (18)

Proof (Lemma 6). Consider shard i in epoch n. Let Δi,n = ||w(avg,n−1) − u||2 −
||w(i,n) − u||2. Notice that the parameter vector is updated only when the loss is non-
zero, and For 1 ≤ t ≤ ki,n, let w([i,n]+t) be the parameter vector on shard i in epoch n

in the round just before the t-th loss occurred. Also, for t = ki,n + 1, let w([i,n]+t) =

w(i,n). Notice that w([i,n]+1) = w(avg,n−1). The update per single loss is,

||w([i,n]+t)− u||2 − ||w([i,n]+(t+1))− u||2
= ||w([i,n]+t)− u||2 − ||w([i,n]+t)− u+ yi,tτi,txi,t||2

= ||w([i,n]+t)) − u||2 −
{
||w([i,n]+t) − u||2 + 2yi,tτi,t(w

([i,n]+t) − u) · xi,t + τ2i,t||xi,t||2
}

= −2yi,tτi,t(w
([i,n]+t) − u) · xi,t − τ2i,t||xi,t||2. (19)

Since we assumed li,t > 0 with this data point, yi,t(w([i,n]+t) · xi,t) = 1 − li,t and
l∗i,t ≥ 1− yi,t(u · xi,t) always holds. Thus, (19) can be bounded as,

(19) ≥ 2τi,t((1− l∗i,t)−(1− li,t))−τ2i,t||xi,t||2 = τi,t(2li,t−τi,t||xi,t||2−2l∗i,t). (20)

By using (20), Δi,n is bounded as,

Δi,n = ||w(avg,n−1) − u||2 − ||w(i,n) − u||2

=

ki,n∑
t=1

(
||w([i,n]+t)− u||2 − ||w([i,n]+(t+1))− u||2

)

≥
ki,n∑
t=1

{
τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)

}
. (21)
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We now lower-bound Δn as follows:

Δn = ||w(avg,n−1)− u||2 − ||w(avg,n)− u||2 = ||w(avg,n−1)− u||2 − ||
∑
i

αi,n(w
(i,n)− u)||2

≥
M∑
i=1

αi,n

(
||w(avg,n−1) − u||2 − ||w(i,n) − u||2

)
=

M∑
i=1

αi,nΔi,n

≥
M∑
i=1

αi,n

ki,n∑
t=1

{
τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)

}
, (22)

where we have used
∑

i αi,n = 1 in going between the first and second line, and used
(21) at the last transformation.

On the other hand, the sum of Δn is upper-bounded as follows:

N∑
n=1

Δn =

N∑
n=1

(
||w(avg,n−1) − u||2 − ||w(avg,n) − u||2

)
= ||w(avg,0) − u||2 − ||w(avg,N) − u||2 ≤ ||u||, (23)

where the last inequality follows from the fact that the initial parameter vector is the
zero vector and ||w(avg,N) − u||2 ≥ 0. Using (22) and (23) yields (18).

��

Proof (Theorem 3). By using the fact that l∗i,t = 0, li,t = τi,t||xi,t||2, Lemma 6 is
transformed as follows:

N∑
n=1

⎧⎨⎩
M∑
i=1

αi,n

ki,n∑
t=1

(li,t)
2

||xi,t||2

⎫⎬⎭ ≤ ||u||2. (24)

With the fact that ||xi,t|| < R, we finally obtain

N∑
n=1

⎧⎨⎩
M∑
i=1

αi,n

ki,n∑
t=1

(li,t)
2

⎫⎬⎭ ≤ ||u||2R2. (25)

Li,n, the cumulative squared loss the worker i suffers during epoch n, corresponds to∑ki,n

t=1 (li,t)
2. Therefore, the inequality (25) is equivalent to (9).

��
Proof (Theorem 4). Next, we consider the case where l∗i,t is not necessarily zero. Let us
assume ||xi,t|| = 1. Notice that τi,t = li,t/||xi,t||2 = li,t. By these facts and Lemma 6,

N∑
n=1

⎧⎨⎩
M∑
i=1

αi,n

ki,n∑
t=1

{
(li,t)

2 − 2li,tl
∗
i,t)

}⎫⎬⎭ ≤ ||u||2. (26)

Let

XN =

√√√√ N∑
n=1

M∑
i=1

αi,n

ki,n∑
t=1

(li,t)2, and YN =

√√√√ N∑
n=1

M∑
i=1

αi,n

ki,n∑
t=1

(l∗i,t)
2. (27)
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Using the Cauchy-Schwarz inequality on the LHS of (26), we obtain X2
N − 2XNYN ≤

||u||2, which is a quadratic inequality of XN , and thus XN ≤ YN +
√
Y 2
N + ||u||2 ≤

||u||+2YN , where we used the fact that
√
a+ b ≤

√
a+

√
b for a, b ≥ 0. By explicitly

writing XN and YN we obtain√√√√ N∑
n=1

M∑
i=1

αi,n

ki,n∑
t=1

(li,t)2 ≤ ||u||+ 2

√√√√ N∑
n=1

M∑
i=1

αi,n

ki,n∑
t=1

(l∗i,t)
2. (28)

The cumulative squared loss the worker i suffers in epoch n is Li,n =
∑ki,n

t=1 (li,t)
2.

Moreover,L∗
i ≥

∑ki,n

t=1 (l
∗
i,t)

2 holds because the index t runs the subset of data on shard
i. Taking these into consideration, we finally obtain (10).

��
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Abstract. We propose a general method to assess the reliability of two-class
probabilities in an instance-wise manner. This is relevant, for instance, for ob-
taining calibrated multi-class probabilities from two-class probability scores. The
LS-ECOC method approaches this by performing least-squares fitting over a suit-
able error-correcting output code matrix, where the optimisation resolves poten-
tial conflicts in the input probabilities. While this gives all input probabilities
equal weight, we would like to spend less effort fitting unreliable probability es-
timates. We introduce the concept of a reliability map to accompany the more
conventional notion of calibration map; and LS-ECOC-R which modifies LS-
ECOC to take reliability into account. We demonstrate on synthetic data that this
gets us closer to the Bayes-optimal classifier, even if the base classifiers are linear
and hence have high bias. Results on UCI data sets demonstrate that multi-class
accuracy also improves.

1 Introduction

Classification problems can be approached using a range of machine learning models.
Some of these models, including decision trees, naive Bayes and nearest neighbour,
deal naturally with more than two classes. Others – most notably linear models and their
kernelised variants – are essentially two-class or binary. In order to solve a multi-class
problem with binary models we need to decompose the multi-class problem into a set of
binary subproblems, train a classifier on each subproblem and aggregate the predicted
classes or scores obtained on each subproblem into an overall multi-class prediction or
score vector. In the most common scenarios these subproblems are either pairwise (one
class against another class) or one-vs-rest (one class against all other classes), which in
matrix form could be described as follows:

M =

⎛⎝+1 +1 0
−1 0 +1

0 −1 −1

⎞⎠ N =

⎛⎝+1 −1 −1
−1 +1 −1
−1 −1 +1

⎞⎠
These are known as code matrices, with binary subproblems in columns and classes in
rows. M encodes pairwise subproblems and N encodes one-vs-rest. A vector of outputs
from the binary classifiers can often be traced back to one of the classes: e.g., if we
receive (+1,+1,−1) in the pairwise case we can construe this as two votes for the first
class and one vote for the third class.

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 18–33, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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The general approach of error-correcting output codes was pioneered by [4] and
later refined to take classifier scores into account [8,1]. Error-correcting capability is
achieved by building redundancy into the code matrix: for instance, we can use two
different binary classifiers for each subproblem, leading to two copies of each column
in the code matrix (in fact, ensemble methods can be represented by a code matrix
with repeated columns). More generally, ECOC can be described as an approach to
combining the opinions of many different experts. Each expert has its own group of
positive and negative classes (not necessarily covering all classes) and is trained to
decide whether an unlabelled example falls in the positive or negative group. Expert
opinions may disagree, in which case we need to figure out how to tweak the opinions to
agree, and possibly which experts to trust more than others. Therefore, it is important to
know how reliable or confident each expert is. For example, a properly Bayesian expert
would output a posterior probability distribution over all possible opinions, from which
we can infer a confidence level (e.g., expressed as a variance). However, while most
machine learning models can be made to output a (more or less calibrated) probability
score, they rarely give information about their confidence, and so a model-independent
method needs to learn the reliability of these scores. Note that a calibrated probability
score quantifies the expert’s uncertainty in the class value, but here we are after the
uncertainty in that probability estimate. That is, a weather forecaster can be very certain
that the chance of rain is 50%; or her best estimate at 20% might be very uncertain due
to lack of data.

This paper proposes a practical method to learn the reliability of probability scores
output by experts in the above scenario, in an instance-wise manner. Being able to
assess the reliability of a probability score for each instance is much more powerful
than assigning an aggregate reliability score to each expert, independent of the instance
to be classified. For example, we show later that an ECOC-based method that takes
instance-wise reliability into account allows us to learn non-linear decision boundaries
even when employing linear base models. As such the method can be seen as reducing
the bias of the base classifier. But the basic method has applicability beyond ECOC.
For example, in comparison with another bias-reducing technique, boosting [12], which
uses a single confidence factor per base classifier, our method offers the possibility to
generalise this to instance-wise confidence which should result in a better model. The
advantage of having calibrated probability estimates in a cost-based scenario is that we
can better minimise expected overall cost by predicting the class that minimises the cost
averaged over all possible true classes. Taking reliability of the probability scores into
account gives us the choice of choosing a non-minimising class if it has the benefit of
less uncertainty. This would be useful in the presence of hard constraints of the form
‘the probability that the cost exceeds budget B must be less than 5%’ which may be true
for a class even if it does not minimise expected cost.

The outline of the paper is as follows. Section 2 introduces reliability maps and their
relation to squared bias of probability estimates from the respective true posterior prob-
abilities. Section 3 develops an algorithm to learn reliability maps from class-labelled
data, without access to true posterior probabilities. Section 4 introduces LS-ECOC-R, a
reliability-weighted version of the LS-ECOC method to obtain multi-class probability
scores. In Section 5 we present two kinds of experiments: we investigate how far our
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estimates are from the truth on synthetic data, and we investigate the effect of using
reliabilities on the quality of multi-class predictions and probability scores. Section 6
discusses related work, and Section 7 concludes.

2 Calibration and Reliability

Let X ,Y be the random variables representing the unknown true model of our binary
classification task. That is, X is a random variable over the instance space X and Y
is a binary random variable with 1 and 0 standing for positive and negative classes,
respectively. Ideally, we would like to know the true positive class posterior q(x) for
each possible x ∈ X :

q(x) = P(Y=1|X=x). (1)

In reality, we use training data to learn a model g : X → [0,1] such that g(x) is approxi-
mating q(x). If the output of the model is g(x) = s, what can we say about the true value
q(x)? Let μg(s) be the expected proportion of positives among all instances x with the
same value g(x) = s:

μg(s) = E[q(X)|g(X)=s] = P(Y=1|g(X)=s). (2)

The function μg is known as the (true) calibration map of the probability estimator
g. If the estimator g is perfectly calibrated, then μg is the identity function. If not,
then there are many methods of calibration which can be applied to learn an estimated
calibration map μ̂g such that μ̂g(g(x)) is approximately equal to μg(g(x)). However, for
individual instances x the expected proportion of positives q(x) can deviate from the
mean proportion μg(g(x)), i.e. the following variance is non-zero:

σ2
g (s) = var[q(X)|g(X)=s] = E[(q(X)− μg(s))

2|g(X)=s]. (3)

The magnitude of σ2
g (s) across the estimates s from the model g actually determines

how useful g is for estimating q. For instance, a constant probability estimator g(x) =
P(Y=1) is perfectly calibrated, but has high σ2

g (s) for its constant estimate s =P(Y=1).
The perfect estimator g(x) = q(x) has σ2

g (s) = 0 for all s. The variance σ2
g is bounded

from above by σ2
g (s)≤ μg(s) · (1−μg(s)), where the equality holds when q(x) is either

0 or 1 for each x with g(x) = s.1 This leads to our following definition of the reliability
map rg of the probability estimator g.

Definition 1. Let g : X → [0,1] be an estimator of probability q(x) = P(Y=1|X=x).
Then the reliability map rg of the probability estimator g is defined as follows:

rg(s) = 1−
σ2

g (s)

μg(s) · (1− μg(s))
, (4)

where the calibration map μg(s) and variance σ2
g (s) are defined by (2) and (3). For an

estimate s from the model g, we refer to the value rg(s) as local reliability of g at s.

1 This can be seen as follows: σ2
g (s) = E[(q(X))2|g(X) = s]− (μg(s))2 ≤ E[q(X)|g(X) =

s]− (μg(s))2 = μg(s)− (μg(s))2 = μg(s) · (1− μg(s)). The equality holds when P[(q(X))2 =
q(X)|g(X) = s] = P[q(X) ∈ {0,1}|g(X) = s] = 1.
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Fig. 1. Synthetic 2-class data of Gaussians centered at (0,0) and (1,0). (A) Standard deviation
circles of the two Gaussians, 20 training instances and lines g(x) = 0.5 (blue) and g(x) = 0.9
(red) where g is the learned logistic regression model; (B) scatterplot of q(x) and g(x) for 2000
test points; (C) histogram of q(x) for the 1530 test points out of 200000 which have g(x) in
range [0.495,0.505]; (D) histogram of q(x) for the 1727 test points out of 200000 with g(x) in
[0.895,0.905].

Minimum and maximum values 0 and 1 for the local reliability mean respectively
that q(x) ∈ {0,1} and q(x) = g(x) for all x with g(x) = s. We call it local reliability so
that we can still talk about the (global) reliability of the probability estimator as a whole.
Figure 3 presents the calibration and reliability maps for a synthetic dataset described
in Section 5.

Example 1. To illustrate the above notions consider a synthetic two-class generative
model with uniform class distribution P(Y = 1) = P(Y = 0) = 1/2 and X distributed
as a standard 2-dimensional normal distribution centered at (1,0) for class Y = 1 and
at (0,0) for class Y = 0. We generated 20 training instances from this generative model
and learned a logistic regression model g : R2 → [0,1] to estimate posterior class prob-
abilities q(x) = P(Y = 1|X = x), see Fig. 1A. In this experiment our logistic regression
learner resulted in the model g(x) = 1/(1+ exp(1.37− 1.68x1+ 0.76x2)) whereas the
true model is q(x) = P(Y=1|X=x) = 1/(1+ exp(0.5− x1)). This implies that for any
instance x the learned estimate g(x) can deviate slightly from the true value q(x), see
Fig. 1B with 2000 test points drawn randomly from the same generative model with
two Gaussians.

Consider now the group of all instances with g(x) = 0.5, located on the blue line
in Fig. 1AB. The histogram of q(x) for a sample of these points is given in Fig. 1C
with mean μg(0.5) = 0.5675 and estimated variance σ2

g (0.5) = 0.0101, leading to a
reliability value of rg(s) = 0.9589. What this demonstrates is that at predicted score
0.5 there is little variation in the true probabilities, even though the estimator is not
perfectly calibrated at that score. For the group g(x) = 0.9 shown in red in Fig. 1AB
and with a histogram of q(x) in Fig. 1D the mean and variance are μg(x) = 0.7979 and
σ2

g (x) = 0.0042, resulting again in a high reliability of rg(s) = 0.9740.

The estimated g(x) = s can differ from the true q(x) for one or both of the following
two reasons. First, if μg(s) 
= s then there is a bias in g(x) from the average q(x) of the
group of instances with the same estimate s. Second, if σ2

g (s)> 0 then there is variance
in q(x) for the group of instances with the same estimate s. In fact, the instance-wise
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squared loss between g and q within the group of instances with the same estimate s
can be decomposed into these two losses:

E[(g(X)− q(X))2|g(X)=s] =

= E[(s− q(X))2|g(X)=s] = E[(s− μg(s)+ μg(s)− q(X))2|g(X)=s] =

= (s− μg(s))
2 + 2(s− μg(s))E[μg(s)−q(X)|g(X)=s]+E[(μg(s)−q(X))2|g(X)=s] =

= (s− μg(s))
2 +σ2

g (s),

where the last equality holds because E[μg(s)−q(X)|g(X)=s] = 0. This decomposition
can be averaged over the whole instance space, resulting in the following decomposi-
tion:

E[(g(X)− q(X))2] = E[(g(X)− μg(g(X)))2]+E[(μg(g(X))− q(X))2].

We will refer to these three quantities as instance-wise calibration loss, group-wise
calibration loss, and grouping loss.2 Any calibration procedure which transforms values
of g(x) with a calibration map can decrease the group-wise calibration loss but not the
grouping loss, which is inherent to the model. Grouping loss arises from the model’s
decision to group certain instances together with the same probability estimate whereas
the true probabilities are different. The quantity σ2

g (s) can be interpreted as the local
grouping loss for one group of instances with the same estimate g(x) = s and the total
grouping loss is the average σ2

g (s) across all groups s:

E[(μg(g(X))− q(X))2] = E[σ2
g (g(X))].

Example 1 (continued). In the example of Fig. 1, the group g(x) = 0.5 suffers instance-
wise calibration loss equal to 0.0147 decomposing into group-wise calibration loss of
(0.5675−0.5)2 = 0.0046 and grouping loss of σ2

g (s) = 0.0101. Calibration of g can de-
crease the group-wise calibration loss, but the grouping loss remains irreducible, unless
a new model is trained instead of g.

3 Learning Calibration and Reliability Maps

Learning calibration maps is a task that has been solved earlier with various methods.
One simple approach that we revisit below is to view the binary label Y as a dependent
variable and the probability estimate S = g(X) as the independent variable and apply
any standard regression learning algorithm. The training data for such approach is a list
of pairs (Si,Yi). Although each individual instance Si is far from the true calibration
map, the expected value of Y given a fixed estimate S lies at the calibration map (see
(6) below). In other words, Y is an unbiased estimator of the calibrated probability.
Assuming that the true calibration map is continuous, this allows to estimate it with
regression.

2 The instance-wise calibration loss bears similarity to the calibration loss which is obtained by
decomposing the Brier score [10], but the difference is that there the comparison is made with
the empirical probability rather than the true probability.
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For learning reliability maps it is also possible to use regression, but the challenge
is to come up with a suitable unbiased estimator. Since the Bernoulli distribution of
the binary label Y given an estimate S has only one parameter determining the cali-
brated probability, it does not contain information about the reliability map. For each
instance X we need more information about the true probability q(X) than just a single
binary label Y . Our solution is to gather a small group of similar instances X1, . . . ,Xm

with approximately the same estimate g(Xi)≈ S and approximately the same posterior
q(Xi) ≈ Q. We obtain such groups of instances by splitting the training instances into
clusters of equal size m according to some distance measure in the instance space. The
clustering method that we have used in the experiments to obtain clusters of size m = 10
is described in Section 3.1 below. The reason for building clusters is that the variance in
the number of positives ∑m

i=1 Yi in a cluster contains information about the variance in
the posterior, σ2

g (S). As an estimator of local reliability of g at S we use R(m), defined
as follows:

R(m) = 1+
1

m− 1
− (∑m

i=1 Yi −mμg(S))2

m(m− 1)μg(S)(1− μg(S))
. (5)

Theorem 1 proves by equality (7) that this estimator is unbiased if the instances within
the cluster have equal g and equal q.

Theorem 1. Let g : X → [0,1] be a fixed probability estimator and let (Xi,Yi) for i =
1, . . . ,m with m ≥ 2 be an i.i.d. random sample distributed identically to (X ,Y ) where
X is a random variable over X and Y is a binary random variable. Additionally, let C
stand for the condition where g(Xi) = g(X) and q(Xi) = q(X) for i = 1, . . . ,m, where q
is defined as in (1). Then the following two equalities hold:

μg(s) = E[Y |S=s] (6)

rg(s) = E[R(m)|S=s,C ] (7)

where S = g(X) and μg, rg, R(m) are defined above respectively in (2), (4) and (5).

Proof. Equation (6) can easily be proved by denoting Q = q(X) and applying the law
of total expectation:

E[Y |S=s] = E[E[Y |Q,S=s]|S=s] = E[Q|S=s] = μg(s).

Let us denote Z = ∑m
i=1 Yi. As Yi are independent given C then E[Z|S=s,C ] = mμg(s).

Therefore,

E[R(m)|S=s,C ] = 1+
1

m− 1
− var[Z|S=s,C ]

m(m− 1)μg(s)(1− μg(s))
.

Due to (4) it now remains to prove that

var[Z|S=s,C ]

m(m− 1)μg(s)(1− μg(s))
=

σ2
g (s)

μg(s)(1− μg(s))
+

1
m− 1

,
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or equivalently, that

var[Z|S=s,C ] = m(m− 1)σ2
g (s)+mμg(s)(1− μg(s)).

Let us denote Q = q(Xi). As Z is binomially distributed given Q, S=s and C , we have
E[Z|Q,S=s,C ] = mQ and var[Z|Q,S=s,C ] = mQ(1−Q). Also, E[Q|S=s,C ] = μg(s)
and var[Q|S=s,C ] = σ2

g (s) and E[Q2|S=s,C ] = var[Q|S=s,C ] + (E[Q|S=s,C ])2 =

σ2
g (s)+ μ2

g (s). Using this and the law of total variance (and algebraic manipulations)
we obtain the following:

var[Z|S=s,C ] = E[var[Z|Q,S=s,C ]]+ var[E[Z|Q,S=s,C ]] =

= E[mQ(1−Q)|S=s,C ]+ var[mQ|S=s,C ] =

= mE[Q|S=s,C ]−mE[Q2|S=s,C ]+m2var[Q|S=s,C ] =

= mμg(s)−mσ2
g (s)−mμ2

g (s)+m2σ2
g (s) =

= mμg(s)(1− μg(s))+m(m− 1)σ2
g (s),

which completes the proof. ��

In practice, the estimates g and true probabilities q are equal for a cluster only ap-
proximately, so the equality (7) also holds only approximately. Due to clustering the
number of training instances for regression is m times smaller than for the original
problem, so learning the reliability map is harder than learning the calibration map.
However, the experiments show that with a training set of 2000 instances the learned
reliability map can be already accurate enough to improve multi-class probability esti-
mation and classification. Next we describe what regression and clustering methods we
are using to achieve this.

3.1 Regression and Clustering Methods for Learning the Maps

First let us stress that there is a wide variety of regression and clustering methods and
many could be used for learning calibration and reliability maps. The choice has cer-
tainly implications on the performance of multi-class probability estimation and clas-
sification, but the comparison of different methods remains as future work. Here we
describe the methods we have chosen.

For regression we use local linear regression with the Epanechnikov kernel and fixed
bandwidth. For learning the calibration map we have the training pairs (Si,Yi) for i =
1, . . .n. The regression estimate μ̂g(s) for a target point s is calculated as follows:

μ̂g(s) = α(s)+β (s) · s,

α(s),β (s) = argmin
α ,β∈R

n

∑
i=1

Kλ (s,Si) · (Yi −α −β ·Si)
2

where λ > 0 is the fixed bandwidth of the Epanechnikov kernel Kλ defined as follows:

Kλ (s,Si) =

{
3
4 (1− (s− Si)

2) if |s− Si| ≤ 1;
0 otherwise.
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For learning the reliability map we use the same method, that is:

r̂g(s) = α ′(s)+β ′(s) · s,

α ′(s),β ′(s) = argmin
α ′,β ′∈R

n

∑
i=1

Kλ ′(s,Si) · (R(m)
i −α ′ −β ′ ·Si)

2.

Local linear regression can produce estimates outside of our range [0,1] and this
problem needs to be addressed. Actually, the extreme values 0 and 1 are also undesired,
because they present an over-confident statement about the probabilities. In the exper-
iments we used 0.001 and 0.999 as the lower and upper bound for regression and all
estimates outside of this range were changed to these values.

For the clustering method we set the following requirements:

(a) the resulting clusters must all be of fixed size m;
(b) within each cluster the estimate g should be approximately equal;
(c) within each cluster the true posterior q should be approximately equal.

Our first step is to order the instances by g and to cut the ordered list into super-clusters
of size k ·m, in the experiments we used k = 20 and m = 10. With n  k ·m every super-
cluster satisfies requirement (b) to some extent. We then cluster each super-cluster into
k clusters of size m according to some distance measure between the instances, in the
experiments we used the Euclidean distance. Depending on how smooth q is and how
tightly together the instances are, the resulting clusters can satisfy the requirement (c)
to some extent. A few instances can remain unclustered to satisfy the requirement (a).

To cluster k ·m instances of a super-cluster into k clusters of size m according to
some distance measure we modify the DIANA clustering algorithm for this purpose
[7]. DIANA is a divisive algorithm which splits at each step one of the existing clusters
into two. The splitting is initialised by creating an empty new cluster besides the existing
one. Then the algorithm iterates and in each iteration reassigns one instance from the old
cluster to the new one. For reassignment it chooses the instance with the largest value
for the sum of distances to the instances of the old cluster minus to the new cluster.
The original version of the algorithm stops reassignments when the respective value
becomes negative, we stop when the size of the new cluster is divisible by m and differs
from the size of the old cluster by at most m. The original DIANA has to decide which
cluster to split next, for us the order does not matter because of the required fixed size
m. Our algorithm ends when all clusters are of size m, except one can be smaller. The
smaller cluster is discarded from learning the reliability map.

4 LS-ECOC-R: Multi-class Probability Estimation with
Reliabilities

Next we show that the learned calibration and reliability maps μ̂g and r̂g can be used for
multi-class probability estimation with ECOC. The ECOC decomposition of a K-class
task into L binary tasks is represented as a code matrix M ∈ {−1,0,+1}K×L. The bi-
nary task represented by column l aims at discriminating between the positive group of
classes C +

l = {k|Mk,l = +1} and the negative group of classes C−
l = {k|Mk,l = −1}.
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The neutral group of classes C 0
l = {k|Mk,l = 0} is excluded from the training set for the

l-th binary model. Suppose that for a given coding matrix M we have trained L binary
probability estimators gl : X → [0,1] for tasks l = 1, . . . ,L, and learned their calibra-
tion maps μ̂gl and reliability maps r̂gl . LS-ECOC [8] estimates multi-class posterior
probabilities by combining the calibrated probability estimates μ̂gl (gl(x)) only.

First denote by ql(x) the true posterior of the positive group given that instance x is
not neutral:

ql(x) = P(Y ∈ C+
l |Y ∈ C ±

l ,X = x) =
∑k∈C+

l
pk

∑k∈C±
l

pk

where C±
l = C+

l ∪C −
l and pk = P(Y = k|X = x). Let εl be the error of μ̂gl (gl(x)) in

estimating the true ql(x):

εl = ql(x)− μ̂gl(gl(x))

The idea of LS-ECOC is to estimate the posterior probabilities pk such that the total
squared error ∑L

l=1 ε2
l is minimised:

p̂ = argmin
pk≥0

∑ pk=1

L

∑
l=1

ε2
l = argmin

pk≥0
∑ pk=1

L

∑
l=1

(
∑k∈C+

l
pk

∑k∈C±
l

pk
− μ̂gl(gl(x))

)2

If ∑k∈C±
l

pk = 1 for each l, that is if the coding matrix is actually binary, then this is a
straightforward least-squares optimisation with linear constraints which is convex and
can easily be solved to estimate p̂. The optimisation for ternary coding matrices can in
general be non-convex.

Effectively, LS-ECOC assumes that εl is normally distributed around 0 with the same
variance for all l. Therefore, LS-ECOC is equally confident in each value of μ̂gl (gl(x))
regardless of which binary model it is resulting from and what the value of the estimate
is. For example, the calibrated probability estimates 0.01 from model g1 and 0.5 from
model g2 are equally likely to be off by 0.1 according to LS-ECOC.

This is where we can benefit from the learned reliability map r̂gl . We propose a
variant of LS-ECOC which we denote LS-ECOC-R (for LS-ECOC with reliability es-
timates). LS-ECOC-R assumes that εl is normally distributed around 0 with variance
σ̂2

g (gl(x)) where σ̂2
g is calculated due to (4) as follows:

σ̂2
g (s) = (1− r̂g(s)) · μ̂g(s) · (1− μ̂g(s)). (8)

So there is potentially a different level of confidence in each probability estimate for
each instance. The multi-class probability estimates with LS-ECOC-R are obtained as
follows:

p̂ = argmin
pk≥0

∑ pk=1

L

∑
l=1

ε2
l

σ̂2
g (gl(x))

= argmin
pk≥0

∑ pk=1

L

∑
l=1

(
∑k∈C+

l
pk

σ̂gl (gl(x))∑k∈C±
l

pk
− μ̂gl (gl(x))

σ̂gl (gl(x))

)2

.
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Fig. 2. Generative model for the synthetic dataset with 5 Gaussians with black circles centered at
the means μc and radius equal to respective σc. Bayes-optimal decision regions are coloured by
classes.

5 Experimental Evaluation

In the experiments we have three objectives. First, we demonstrate that the proposed
learning methods can indeed provide good estimates of the calibration and reliability
maps. For this we use a synthetic dataset where we know exactly the true calibration
and reliability maps and can therefore compare our estimates to ground truth. Second,
we show on the same dataset that LS-ECOC-R using the estimated reliability map out-
performs LS-ECOC on probability estimation and classification. Finally, we show that
LS-ECOC-R outperforms LS-ECOC also on 6 real datasets.

5.1 Experiments on Synthetic Data

As we need to know the true posterior distribution for an in-depth evaluation, we gen-
erate synthetic data with a probabilistic generative model. We use the same model that
has earlier been used in several papers relating to multi-class probability estimation
[16,15,18]. This generative model has 5 equiprobable classes and the instances of each
class are distributed as a 2-dimensional normal distribution with the following parame-
ters:

class 1 class 2 class 3 class 4 class 5
μc (0,0) (3,0) (0,5) (7,0) (0,9)
σ2

c 1 4 9 25 64

where μc is the mean and the covariance matrix is the unit matrix multiplied by σ2
c .

Figure 2 shows in colours the Bayes-optimal decision regions of this probabilistic model
and the black circles are centered at the means of the Gaussians and have radius equal
to the respective σc.

In order to evaluate our calibration and reliability learning algorithms we consider
binary base estimators for which we can calculate the true calibration and reliability
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Fig. 3. Solid lines are the true (A) calibration map μgl and (B) reliability map rgl for the logistic
regression model gl comparing classes 3 and 5 against others for the synthetic dataset. The dashed
lines in (A) mark μgl −σgl and μgl +σgl .

maps. This is possible whenever the contours of equal probability estimate are straight
lines. Along any straight line the instances of each class have univariate Gaussian dis-
tribution, and we can analytically derive the class proportions and the parameters of
the respective Gaussians. The true calibration maps can be determined using the class
proportions and the reliability maps by numerical integration of the product of a den-
sity ratio and mixture density across the line. We choose logistic regression as our base
model for the synthetic task, as it is used often for probability estimation and has linear
contours.

For a 5-class problem there are 15 different ways to split the classes into two groups,
which correspond to 5 one-vs-four (one-vs-rest) and 10 two-vs-three (pair-vs-rest) tasks.
We first generate n = 400 (and repeat the same with 2000 and 10000) training instances
and train a logistic regression model gl for each of these tasks, l = 1,2, . . . ,15. Now
we can calculate the true calibration maps μgl and reliability maps rgl . For the model
comparing classes 3 and 5 against others these are plotted in Fig. 3. We next learn the
calibration maps μ̂gl and reliability maps r̂gl using our method described in previous
sections. For the clustering method we use super-cluster size 200 and cluster size 10. For
the regression task in learning calibration maps we test bandwidth values 0.005, 0.01,
0.02 and 0.05 and find 0.01 as the best performer. For reliability we use then bandwidth
0.1 as there are m = 10 times less instances for training the regression model.

Ultimately we are going to use the estimated calibration and reliability maps for
multi-class probability estimation. Therefore, we need the estimated and true distribu-
tion of q(X) given g(X) to be maximally alike. As LS-ECOC and LS-ECOC-R both
assume Gaussian distribution, we assess how close to each other are N (μ̂gl , σ̂

2
gl
) and

N (μgl ,σ
2
gl
), averaged over all instances, where σ2

gl
and σ̂2

gl
can be calculated as in (8)

from the true and estimated calibration and reliability maps, respectively. As a distance
measure we use Cramér distance, which is half of the energy distance [14]. Intuitively,
it measures how much work has to be done carrying pixels from one density plot to
another. The advantage over Kullback-Leibler divergence is that for equal variance it
measures the distance of means. Therefore its value is easier to interpret and perhaps
ultimately more relevant for multi-class probability estimation and classification.

With few training instances the regression learner for the reliability map can have a
large variance. Therefore, we consider in addition to our local linear regression method
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an averaging regression method which produces constant reliability across all values of
s. The method calculates the average of R(m) over all training instances. Table 1 shows
the results of the comparison between the estimated and true calibration and probability
maps for various training set sizes and the two regression methods. Cramér distance is
averaged over results on 10 independently generated training and test sets, the test set
size is 10000. For bandwidths we use 0.01 for calibration and 0.1 for reliability, as these
are the best according to the results shown later. The results indicate that we are able to
learn reliability maps that are better than the average line for already a training set of
size 400.

Next we proceed to evaluation of multi-class probabilities that can be obtained using
LS-ECOC-R from the learned calibration and reliability maps. For evaluating the prob-
ability estimates we use the following measures: root mean square error (RMSE), mean
absolute error (MAE), Pearson correlation (Pearson) and Brier score (Brier). For eval-
uating classification performance we use Error rate (Error) and Error compared to the
Bayes-optimal class (ErrVsOpt). Zhou et al. have recently compared 9 ECOC decod-
ing algorithms with regards to classification performance and LS-ECOC out-performed
other methods for 7 out of 8 datasets [18]. We use the same datasets (leaving out the
two smallest), therefore we compare LS-ECOC-R only against LS-ECOC.

On the synthetic dataset we consider three coding matrices — ‘one-vs-rest’
(5 columns), ‘pair-vs-rest’ (10 columns) and ‘all’ (15 columns). First we study which
bandwidth is best for calibration, in order to ensure that we use LS-ECOC at its best.
The RMSE between the true and LS-ECOC estimates of multi-class probabilities is
presented in Table 2 for three matrices and training set sizes 400, 2000, 10000. The re-
sults are averaged over 10 runs over independently generated datasets. Relying on these
results we have decided to use bandwidth 0.01 for calibration throughout the paper. As
reliability maps are learned on 10 times fewer values because of the clustering, we have
chosen 0.1 as the bandwidth for learning reliability.

Table 1. Comparison of the standard (REL) and averaging (R-AVE) regression method for learn-
ing reliabilities, assessed by Cramér distance and averaged over 10 runs. Bandwidths for calibra-
tion and regression are 0.01 and 0.1, respectively.

n method 1vsR 2vsR 3vsR 4vsR 5vsR 12vsR 13vsR 14vsR 15vsR 23vsR 24vsR 25vsR 34vsR 35vsR 45vsR
400 R-AVE .0208 .0253 .0271 .0589 .0567 .0321 .0336 .0577 .0483 .0386 .0678 .0453 .0430 .0684 .0358
400 REL .0175 .0233 .0258 .0588 .0564 .0303 .0327 .0564 .0481 .0382 .0672 .0451 .0431 .0683 .0354
2000 R-AVE .0081 .0080 .0093 .0209 .0162 .0101 .0102 .0165 .0137 .0143 .0242 .0127 .0096 .0228 .0096
2000 REL .0046 .0063 .0079 .0203 .0160 .0087 .0097 .0159 .0136 .0139 .0235 .0128 .0095 .0227 .0095

10000 R-AVE .0049 .0038 .0046 .0076 .0043 .0036 .0029 .0054 .0034 .0108 .0072 .0039 .0031 .0073 .0025
10000 REL .0018 .0023 .0035 .0071 .0041 .0025 .0025 .0048 .0032 .0103 .0067 .0037 .0027 .0072 .0024

Table 2. RMSE of multi-class probability estimates obtained with LS-ECOC on three different
ECOC matrices and training set sizes 400, 2000, 10000. Results are averaged over 10 runs.

matrix 1vsR 2vsR all
λcal n 400 2000 10000 400 2000 10000 400 2000 10000
.005 .1933 .1621 .1563 .1643 .1478 .1449 .1567 .1421 .1392
.01 .1729 .1594 .1562 .1563 .1480 .1464 .1494 .1425 .1406
.02 .1656 .1597 .1578 .1566 .1515 .1507 .1503 .1461 .1450
.05 .1708 .1673 .1667 .1664 .1635 .1632 .1616 .1588 .1584
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Table 3 compares the performance of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R
across three matrices and training set sizes 400, 2000, 10000. Both RMSE and error
rate are averaged over 10 runs. We also provide the standard deviation estimates for
these values, calculated as the sample standard deviation over square root of 10 (the
number of runs). The results indicate that both LS-ECOC-R methods outperform LS-
ECOC on all cases with n ≥ 2000 and in some cases with n = 400. The full version of
LS-ECOC-R performs better than the averaged, with some exceptions for n = 400.

It is in principle possible to improve LS-ECOC by improving the calibration map
learning method. The following results show that LS-ECOC-R remains superior, with
sufficient data given. For this we apply LS-ECOC on the true calibration map (not
the estimated one) and consider this as the performance-bound for LS-ECOC. Table 4
compares the results of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R with the results
obtained on the true calibration and reliability maps, averaged over 10 runs. The results
indicate that each following method is better than the upper bound for the previous
method. Therefore, on this dataset LS-ECOC-R remains superior to LS-ECOC even if
calibration is perfect.

5.2 Experiments on Real Data

Finally we show that LS-ECOC-R outperforms LS-ECOC on some real datasets. For
this purpose we use 6 UCI datasets shown in Table 5. As the binary base model we
use logistic regression and support vector machines with polynomial kernel. Zhou et
al. used also the polynomial kernel and published the best degree for it according to
cross-validation results [18]. We use the same degree, for easier comparison with their
work.

Table 3. Comparison of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R across three matrices
and three training set sizes. RMSE and error rate are both averaged over 10 runs and standard
deviation is calculated as the sample standard deviation over square root of 10.

n method RMSE 1vsR RMSE 2vsR RMSE all Error 1vsR Error 2vsR Error all
400 LS-ECOC .1729 ± .0015 .1563 ± .0012 .1494 ± .0009 .3860 ± .0065 .3450 ± .0049 .3265 ± .0044
400 LS-ECOC-R-ave .1774 ± .0023 .1526 ± .0020 .1456 ± .0025 .3872 ± .0056 .3572 ± .0051 .3366 ± .0049
400 LS-ECOC-R .1788 ± .0025 .1527 ± .0021 .1475 ± .0025 .3852 ± .0058 .3464 ± .0055 .3325 ± .0059

2000 LS-ECOC .1594 ± .0006 .1480 ± .0004 .1425 ± .0004 .3588 ± .0032 .3392 ± .0027 .3184 ± .0031
2000 LS-ECOC-R-ave .1487 ± .0006 .1314 ± .0005 .1135 ± .0011 .3539 ± .0029 .3367 ± .0025 .3034 ± .0030
2000 LS-ECOC-R .1468 ± .0006 .1243 ± .0007 .1102 ± .0011 .3493 ± .0026 .3224 ± .0030 .3004 ± .0030
10000 LS-ECOC .1562 ± .0004 .1464 ± .0003 .1406 ± .0003 .3509 ± .0020 .3350 ± .0017 .3143 ± .0018
10000 LS-ECOC-R-ave .1448 ± .0005 .1290 ± .0003 .1111 ± .0004 .3490 ± .0018 .3344 ± .0016 .2996 ± .0019
10000 LS-ECOC-R .1429 ± .0005 .1227 ± .0002 .1079 ± .0003 .3449 ± .0018 .3214 ± .0016 .2987 ± .0017

Table 4. Comparison of LS-ECOC, LS-ECOC-R-ave and LS-ECOC-R with the respective meth-
ods which use true calibration and reliability maps (bound). The results were obtained on the full
ECOC matrix ‘all’, on 10000 training instances, and are averaged over 10 runs.

method RMSE MAE Pearson Brier Error ErrVsOpt
LS-ECOC .1406 .1046 .8801 .2499 .3143 .1327
LS-ECOC bound .1356 .0976 .8843 .2463 .3108 .1239
LS-ECOC-R-ave .1111 .0745 .9253 .2314 .2996 .0943
LS-ECOC-R-ave bound .1093 .0727 .9269 .2303 .2988 .0929
LS-ECOC-R .1079 .0712 .9316 .2297 .2987 .0914
LS-ECOC-R bound .1018 .0666 .9411 .2264 .2928 .0810
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There are many possible choices for the ECOC matrix, some even domain-specific,
in the sense that each column is chosen based on the performance of the models for
the previous columns. In the LS-ECOC experiments of Zhou et al. the equidistant code
matrices performed best among the domain-independent matrices for 5 of our 6 datasets
[18]. We therefore use equidistant code matrices, which we create using BCH codes.
We have built a 15x15 binary matrix which was obtained by creating a BCH code with
code-length 15 and aligning all 15 code-words with exactly seven 1’s as columns of the
matrix. The Hamming distance between each pair of columns and each pair of rows is
exactly 8, making it equidistant. Another nice property is that any top k rows with k ≥ 5
have all columns splitting the classes differently into two groups. For a k-class problem
we use this matrix for our experiments if k ≥ 5 and for k = 4 we use the matrix with all
7 different splits of classes into two.

We perform 10-fold cross-validation and use error-rate as the evaluation measure.
The sample mean and variance of the training set are used to normalize each input
feature individually. Before calibration, the scores of SVM are transformed using the
standard logistic map. The calibration and reliability maps are learned with bandwidths
0.01 and 0.1, respectively — the same which performed best on the synthetic data.

Table 5 lists the error rate for methods LS-ECOC, LS-ECOC-R-ave, LS-ECOC-R on
the 6 datasets with two different base learners. We first note that LS-ECOC results in
our experiments are superior to the LS-ECOC results by Zhou et al. [18], probably due
to differences in normalization and calibration. To assess the differences between LS-
ECOC and the two variants of LS-ECOC-R we have performed significance tests with t-
test on confidence level 95%. The stars in the table indicate which errors of LS-ECOC-R
are significantly lower than the respective error for LS-ECOC. To conclude, LS-ECOC-
R outperforms LS-ECOC on four larger datasets (n ≥ 2000), with significance in 3 out
of the 4.

6 Related Work

The reliability of model predictions has been studied before but mostly in the con-
text of regression, where it is known as conditional variance estimation [5]. Conformal

Table 5. The comparison of 10-fold cross-validated error rate of classification for LS-ECOC, LS-
ECOC-R-ave and LS-ECOC-R on 6 real datasets with n instances, a attributes and k classes. The
stars in the table indicate which errors of LS-ECOC-R are significantly lower than the respective
error for LS-ECOC according to t-test at confidence level 95%.

dataset n a k model LS-ECOC LS-ECOC-R-ave LS-ECOC-R

shuttle 14500 9 7
LR .0383± .0016 .0259± .0014 * .0323± .0017 *
SVM .0914± .0015 .0888± .0017 .0859± .0018 *

sat 6435 36 6
LR .1713± .0021 .1514± .0028 * .1489± .0027 *
SVM .1737± .0026 .1554± .0021 * .1610± .0026 *

page-blocks 5473 10 5
LR .0453± .0025 .0420± .0034 .0426± .0035
SVM .0426± .0021 .0429± .0026 .0411± .0028

segment 2310 19 7
LR .0887± .0040 .0775± .0036 .0753± .0046 *
SVM .0987± .0041 .0788± .0036 * .0771± .0031 *

yeast 1481 8 10
LR .4327± .0134 .4279± .0124 .4314± .0165
SVM .4084± .0147 .4246± .0145 .4198± .0132

vehicle 846 18 4
LR .2174± .0088 .2258± .0085 .2081± .0136
SVM .2316± .0125 .2375± .0113 .2553± .0136
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prediction is a general approach that can be applied to both regression and classification
in an on-line setting. It outputs a so-called region prediction which might be a confi-
dence interval (in regression) or a set of possible values (in classification) that contains
the true value with a certain level of confidence [13]. This is different from the approach
in this paper where we try to assess the uncertainty associated with a point estimate.

In the area of multi-class classification and probability scores, the original error-
correcting output codes method is due to [4]. The least-squares method for obtaining
multi-class posterior probabilities was developed not much later by [8], but does not
appear to be widely known. Better-known is the loss-based decoding method by [1],
which takes classifier margins rather than probabilities as input and outputs classes
rather than posterior probabilities. A review on combinations of binary classifiers in a
multi-class setting is given by [9]. [16] study coding and decoding strategies in ECOC,
and also originated the synthetic 5-class data set we used in this paper. The same dataset
was used by [15] and [18] to study the behaviour of LS-ECOC.

Calibration of multi-class posterior probabilities is often studied in a cost-sensitive
setting [17,11]. The effect of calibration in classifier combination is studied by [2]. Per-
haps closest in spirit to our work in this paper is the work by [6] who propose methods
to identify and remove unreliable classifiers in a one-vs-one setting. Also related is the
work on neighborhood-based local sensitivity by [3].

7 Concluding Remarks

Assessing the reliability of probability scores in classification is clearly an important
task if we want to combine scores from different classifiers. If we want to combine two
scores of 0.5 and 0.3, say, it makes a difference if one of them is deemed much more
reliable than the other. Yet the problem of estimating this reliability in an instance-wise
manner appears not to have been widely studied in the machine learning literature. In
this paper we present a theoretically well-founded and practically feasible approach to
the problem. We demonstrate the quality of the reliability estimates both in compari-
son with the true values on synthetic data, and in obtaining well-calibrated multi-class
probability scores through the improved LS-ECOC-R method.

The paper opens many avenues for further work. We are particularly interested in
developing cost models in cost-sensitive classification that can take these reliability
estimates into account. Incorporating instance-wise confidence ratings into boosting
also appears a fruitful research direction.
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Abstract. Many social scientists are interested in inferring causal re-
lations between “latent” variables that they cannot directly measure.
One strategy commonly used to make such inferences is to use the val-
ues of variables that can be measured directly that are thought to be
“indicators” of the latent variables of interest, together with a hypoth-
esized causal graph relating the latent variables to their indicators. To
use the data on the indicators to draw inferences about the causal re-
lations between the latent variables (known as the structural model), it
is necessary to hypothesize causal relations between the indicators and
the latents that they are intended to indirectly measure, (known as the
measurement model). The problem addressed in this paper is how to
reliably infer the measurement model given measurements of the indi-
cators, without knowing anything about the structural model, which is
ultimately the question of interest. In this paper, we develop the Find-
TwoFactorClusters (FTFC ) algorithm, a search algorithm that, when
compared to existing algorithms based on vanishing tetrad constraints,
also works for a more complex class of measurement models, and does
not assume that the model describing the causal relations between the
latent variables is linear or acyclic.

1 Introduction

Social scientists are interested in inferring causal relations between “latent” vari-
ables that they cannot directly measure. For example, Bongjae Lee conducted
a study in which the question of interest was the causal relationships between
Stress, Depression, and (religious) Coping. One strategy commonly used to make
such inferences is to use the values of variables that can be measured directly
(e.g. answers to questions in surveys) that are thought to be “indicators” of the
latent variables of interest, together with a hypothesized causal graph relating
the latent variables to their indicators. A model in which each latent variable of
interest is measured by multiple indicators (which may also be caused by other
latents of interest as well as by an error variable) is called a multiple indicator
model [1]. Lee administered a questionnaire to 127 students containing questions
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whose answers were intended to be indicators of Stress, Depression, and Coping.
There were 21 questions relating to Stress (such as meeting with faculty, etc.)
which students were asked to rate on a seven point scale, and similar questions
for the other latents [2].

To use the data on the indicators to draw inferences about the causal re-
lations between the latents (known as the structural model), it is necessary to
hypothesize causal relations between the indicators and the latents that they are
intended to indirectly measure (i.e. the subgraph containing all of the vertices,
and all of the edges except for the edges between the latent variables, known as
the measurement model). Given the measurement model, there are well known
algorithms for making inferences about the structural model [2]. The problem
addressed in this paper is how to reliably infer the measurement model given
sample values of the indicators, without knowing anything about the structural
model. In [2], Silva et al. developed an algorithm that reliably finds certain kinds
of measurement models without knowing anything about the structural model
other than its linearity and acyclicity. Their method first employs a clustering
method to identify “pure” measurement sub-models (discussed below). (Note
that in this context, variables rather than individuals are being clustered.) In
this paper, we develop the FindTwoFactorClusters (FTFC ) algorithm, an al-
gorithm for reliably generating pure measurement submodels on a much wider
class of measurement models, and does not assume that the model describing
the causal relations between the latent variables is linear or acyclic.

1.1 Structural Equation Models (SEMs)

We represent causal structures as structural equation models (SEMs). In what
follows, random variables are in italics, and sets of random variables are in
boldface. Linear structural equation models are described in detail in [3]. In
a structural equation model (SEM) the random variables are divided into two
disjoint sets, the substantive variables (typically the variables of interest) and
the error variables (summarizing all other variables that have a causal influence
on the substantive variables) [3]. Corresponding to each substantive random
variable V is a unique error term εV . A fixed parameter SEM S has two parts
〈φ, θ〉, where φ is a set of equations in which each substantive random variable V
is written as a function of other substantive random variables and a unique error
variable, together with θ, the joint distributions over the error variables. Together
φ and θ determine a joint distribution over the substantive variables in S, which
will be referred to as the distribution entailed by S. A free parameter linear SEM
model replaces some of the real numbers in the equations in φ with real-valued
variables and a set of possible values for those variables, e.g. X = aX,LL + εX ,
where aX,L can take on any real value. In addition, a free parameter SEM can
replace the particular distribution over εX and εL with a parametric family of
distributions, e.g. the bi-variate Gaussian distributions with zero covariance.
The free parameter SEM also has two parts 〈Φ,Θ〉, where Φ contains the set
of equations with free parameters and the set of values the free parameters are
allowed to take, and Θ is a family of distributions over the error variables. In
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general, we will assume that there is a finite set of free parameters, and all
allowed values of the free parameters lead to fixed parameter SEMs that have
a reduced form (i.e. each substantive variable X can be expressed as a function
of the error variables of X and the error variables of its ancestors), all variances
and partial variances among the substantive variables are finite and positive,
and there are no deterministic relations among the measured variables.

The path diagram (or causal graph) of a SEM with is a directed graph, written
with the conventions that it contains an edge B → A if and only if B is a non–
trivial argument of the equation for A. The error variables are not included in
the path diagram unless they are correlated, in which case they are included
and a double-headed arrow is placed between them. A fixed-parameter acyclic
structural equation model (without double-headed arrows) is an instance of a
Bayesian Network 〈G,P (V )〉, where the path diagram is G, and P (V ) is the joint
distribution over the variables in G entailed by the set of equations and the joint
distribution over the error variables, which in this case is just the product of the
marginal distribution over the error variables [4]. A polynomial equation Q where
the variables represent covariances is entailed by a free parameter SEM when
all values of the free parameters entail covariance matrices that are solutions to
Q. For example, a vanishing tetrad difference holds among {X,W} and {Y, Z},
iff cov(X,Y )cov(Z,W ) − cov(X,Z)cov(Y,W ) = 0, and is entailed by a free
parameter linear SEM S in which X,Y, Z, and W are all children of just one
latent variable L.

1.2 Pure 2-Factor Measurement Models

In 1–factor measurement models and 2–factor measurement models each indica-
tor has the specified number of latent parents in addition to its “error” variable.
There is often no guarantee, however, that the indicators do not have unwanted
additional latent common causes, or that none of the indicators are causally in-
fluenced by any other indicators. However, pure measurement models (defined
below) have properties described below that make them easy to find, regardless
of the structural models, and for that reason the strategy we will adopt in this
paper is to search for a subset of variables that form a pure measurement model.
In what follows, we will assume that no measured variable (indicator) causes a
latent variable.

A set of variables V is minimally causally sufficient when every cause of
any two variables in V is also in V, and no proper subset of V is causally
sufficient. If O is a set of indicators, and V is a minimally causally sufficient set
of variables containing O, then an n-factor model for V is a model in which there
is a partition P of the indicators, and where each element of the partition is a
set of indicators, all of which have exactly n latent parents, and that share the
same n latent parents; if in addition there are no other edges (either directed,
or bidirected representing correlated errors) into or out of any of the indicators
the measurement model is said to be pure. We will refer to any n-factor model
whose measurement model is pure as a pure n-factor model. Figure 1 is not a
pure 2-factor measurement model. There are three reasons for this: X1 causes
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X9, X15 has three latent direct causes, L2, L3, and L4, and there is a latent
cause L5 of X8 and L1. However, note that the sub-model that does not contain
the vertices X1, X8, X9 and X15 is a 2-pure measurement model, because when
those variables are not included, there are no edges out of any indicator, and the
only edges into each indicator are from their two latent parents.

Fig. 1. Impure 2-factor model

Given a measurement model, any subset S of O for which every member of
S is a child of the same n latent parents (and has no other parents), is adjacent
to no other member of O, and has a correlated error with no other member of
V, is an n–pure subset. In Figure 1, {X2, X3, X4, X5, X6, X7} is a 2-pure sextet,
but {X10, X11, X12, X13, X14, X15} and {X2, X3, X4, X10, X11, X12} are not.

2 Trek Separation

This section describes the terminology used in this paper. A simple trek in
directed graph G from i to j is an ordered pair of directed paths (P1;P2) where
P1 has sink i, P2 has sink j, and both P1 and P2 have the same source k, and
the only common vertex among P1 and P2 is the common source k. One or both
of P1 and P2 may consist of a single vertex, i.e., a path with no edges. There is
a trek between a set of variables V1 and a set of variables V2 iff there is a trek
between any member of V1 and any member of V2. Let A, B, be two disjoint
subsets of vertices V in G, each with two vertices as members. Let S(A,B)
denote the sets of all simple treks from a member of A to a member of B.

Let A, B, CA, and CB be four (not necessarily disjoint) subsets of the set
V of vertices in G. The pair (CA;CB) t-separates A from B if for every trek
(P1;P2) from a vertex in A to a vertex in B, either P1 contains a vertex in CA

or P2 contains a vertex in CB; CA and CB are choke sets for A and B [6]. Let
#C be the number of vertices in C. For a choke set (CA;CB), #CA +#CB is
the size of the choke set. We will say that a vertex X is in a choke set (CA;CB)
if X ∈ CA ∪CB.

The exact definition of linear acyclicity (or LA for short) below a choke set
is somewhat complex and is described in detail in [6]; for the purposes of this
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paper it suffices to note that roughly speaking a directed graphical model is LA
below sets (CA; CB) for A and B respectively, if there are no directed cycles
between CA and A or CB and B, and A is a linear function with additive noise
of CA, and similarly for B and CB.

For two sets of variables A and B, and a covariance matrix over a set of vari-
ables V containing A and B, let cov(A,B) be the sub-matrix of the covariance
matrix that contains the rows in A and columns in B. In the case where A and
B both have 3 members, if the rank of the cov(A,B) is less than or equal to
2, the determinant of cov(A, B) = 0. In that case the matrix is said to satisfy
a vanishing sextad constraint since there are six members of A ∪ B if A and
B are disjoint. For any given set of six variables, there are 10 different ways of
partitioning them into two sets of three; hence for a given sextet of variables
there are 10 distinct possible vanishing sextad constraints. The following two
theorems [6] (extensions of the theorems in [5]) relate the structure of the causal
graph to the rank of the determinant of sub-matrices of the covariance matrix.

Theorem 1. (Extended Trek Separation Theorem): Suppose G is a directed
graph containing CA, A, CB, and B, and (CA;CB) t-separates A and B in
G. Then for all covariance matrices entailed by a fixed parameter structural
equation model S with path diagram G that is LA below the sets CA and CB for
A and B, rank(cov(A,B)) ≤ #CA +#CB.

Theorem 2. For all directed graphs G, if there does not exist a pair of sets C′
A,

C′
B, such that (C′

A; C′
B) t-separates A and B and #C′

A + #C′
B ≤ r, then for

any CA, CB there is a fixed parameter structural equation model S with path
diagram G that is LA below the choke sets (CA; CB) for A and B that entails
rank(cov(A,B)) > r.

Theorem 1 guarantees that trek separation entails the corresponding vanish-
ing sextad for all values of the free parameters, and Theorem 2 guarantees that
if the trek separation does not hold, it is not the case that the corresponding
vanishing sextad will hold for all values of the free parameters. It is still possible
that if the vanishing sextad does not hold for all values of the free parameters,
it will hold for some values of the free parameters. See [6].

3 Algorithm

Before stating the sample version of the algorithm (described below), we will
motivate the intuitions behind it by an example (Figure 1). Let a vanishing
sextet be a set of 6 indicators in which all ten sextads among the six variables are
entailed to vanish by the Extended Trek Separation Theorem. In general, 2-pure
sets of 5 variables (henceforth referred to as pure pentads) can be distinguished
from non-2-pure sets of 5 variables (henceforth referred to as mixed pentads)
by the following property: A pentad is 2-pure only if adding each of the other
variable in O to the pentad creates a vanishing sextet. For example, in Figure
1, S1 = {X3, X4, X5, X6, X7} is a 2-pure pentad. Adding any other variable to
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S1 creates a sextet of variables which, no matter how they are partitioned, will
have one side t-separated from the other side by a choke set ({L1, L2} : ∅). In
contrast, S2 = {X1, X4, X5, X6, X7} is not pure, and when X9 is added to S2,
the resulting sextet is not a vanishing sextet, since when X1 and X9 are on
different sides of a partition, at least 3 variables (including L1, L2, and X1 or
X9) are needed to t-separate the treks between the variables in the two sides of
the partition.

The first stage of the algorithm calls FindPureClusters, which tests each
pentad to see if it has the property that adding any other member of O creates
a vanishing sextet; if it does have the property it is added to the list PureList of
2-pure pentads. FindPureClusters tests whether a given sextet of variables is a
vanishing sextet by calling PassesTest, which takes as input a sextet of variables,
a sample covariance matrix, and the search parameter alpha that the user inputs
to FTFC. PassesTest is implemented with an asymptotically distribution-free
statistical test of sets of vanishing sextad constraints that is a modification of
a test devised by Bollen and Ting [7]. The list of 2-pure pentads at this point
of the algorithm is {X10, X11, X12, X13, X14} and every subset of X2 through
X7 of size 5. X1, X9, and X15 do not appear in any 2-pure pentad. X8 is also
not in any pure sub-cluster, but FTFC is unable to detect that it is impure.
This is the only kind of impurity FTFC cannot detect. See the explanation in
Section 4 for why this is the case, and why this kind of mistake is not important.
GrowClusters then initializes the ClusterList to PureList.

If any of the 2-pure sets of variables overlap, their union is also 2-pure. So
FTFC calls GrowClusters to see if any of the 2-pure sextets in PureClusters can
be combined into a larger 2-pure set. Theoretically, GrowClusters could simply
check whether any two subsets on PureClusters overlap, in which case they
could be combined into a larger 2-pure set. In practice, however, in order to
determine whether a given variable o can be added to a cluster C in ClusterList,
GrowClusters checks whether a given fraction (determined by the parameter
GrowParameter) of the sub-clusters of size 5 containing 4 members of C and
o are on PureList. If they are not, then GrowClusters tries another possible
expansion of clusters on ClusterList ; if they are, then GrowClusters adds o to
C in ClusterList, and deletes all subsets of the expanded cluster of size 5 from
PureList. GrowClusters continues until it runs out of possible expansions to
examine.

Finally, when GrowClusters is done, SelectClusters goes through ClusterList,
outputting the largest cluster C still on ClusterList, and deleting any other
clusters on ClusterList that intersect C (including C itself).

Algorithm 1: FindTwoFactor Clusters (FTFC)

Data: Data, V,GrowParameter, α
Result: SelectedClusters
〈Purelist,V〉 = FindPureClusters(Data, V, α)
Clusterlist = GrowClusters(Purelist,V)
SelectedClusters = SelectClusters(Clusterlist)

Causal Clustering for 2-Factor Measurement Models 39



Algorithm 2: FindPureClusters

Data: V,Data, α
Result: PureList
PureList = ∅

for S ⊆ V, |S| = 5 do
Impure = FALSE
for v ∈ V \ S do

if PassesTest(S ∪ {v},Data,α) = FALSE then
Impure = TRUE
break

if Impure = FALSE then
PureList = c(S, PureList)

V =
⋃

i∈PureList i
return(〈PureList,V〉)

Algorithm 3: GrowClusters

Data: PureList,V
Result: Clusterlist
Clusterlist = PureList
for cluster ∈ Clusterlist do

for sub ⊂ cluster, |sub| = 4 do
for o ∈ V \ cluster do

testcluster = sub ∪ {o}
if testcluster ∈ PureList then

accepted++

else
rejected++

if accepted÷ (rejected+ accepted) ≥ GrowParameter then
Clusterlist = c(Clusterlist, cluster ∪ {o}
for s ⊂ cluster ∪ {o}, s ∈ Clusterlist do

Purelist = Purelist \ {s}

The complexity of the algorithm is dominated by FindPureClusters, which
in the worst case requires testing n choose 6 sets of variables, and for each sextet
requires testing five of the ten possible vanishing sextad constraints in order to
determine if they all vanish. In practice, we have found that it can be easily ap-
plied to about 30 measured variables at a time, but not 60 measured variables.
http://www.phil.cmu.edu/projects/tetrad download/launchers/ contains an im-
plementation available by downloading tetrad-5.0.0-15-experimental.jnlp, creat-
ing a “Search” box, selecting “BPC” from the list of searches, and then setting
“Test” to “TETRAD-DELTA”, and “Algorithm” to “FIND TWO FACTORS
CLUSTER”.
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Algorithm 4: SelectClusters

Data: Clusterlist
Result: Selectedlist
Selectedlist = ∅

while Clusterlist 	= ∅ do
Choose a largest C
Selectedlist = Selectedlist ∪ {C}
for s ∈ Clusterlist, s ∩ C 	= ∅ do

Clusterlist = Clusterlist \ {s}

4 Correctness of Algorithm

In what follows, we will assume that if there is not a trek between some pair
of indicators, or if there are entailed vanishing partial correlations among the
observed indicators, or if there are rank constraints of size 1 on the relevant
sub-matrices that the relevant variables are removed in a pre-processing phase.
We will make the assumption that sextad constraints vanish only when they
are entailed to vanish for all values of the free parameters (i.e vanishing sextad
constraints that hold in the population are entailed to hold by the structure
of the graph, not the particular values of the free parameters). In the linear
case and other natural cases, the set of parameters that violates this assumption
is Lebesgue measure 0 [6]. This still leaves the question of whether there are
common“almost” violations of rank faithfulness that could only be discovered
with enormous sample sizes (i.e. the relevant determinants are very close to zero),
which we will address through simulation studies.

There is also a population version of the FTFC algorithm that differs from
the sample algorithm described above in two respects. First, in PassesTest it
takes as input a sextet of variables and a population covariance matrix, and tests
whether all ten possible vanishing sextad constraints among a sextet of variables
hold exactly. Second, in GrowClusters it sets GrowParameter to 1 (whereas in
the simulation tests GrowParameter was set to 0.5.)

In a 2-factor model, two variables belong to the same cluster if they share
the same two latent parents. A 5×1 sextad contains a sextet of variables, 5 of
which belong to one cluster, and 1 of which belongs to a different cluster. For
a given variable X, L1(X) is one of the two latent parents of X, and L2(X) is
a second latent parent of X not equal to L1(X). An indicator X is impure if
there is an edge into or out of X other than L1(X) or L2(X). Define L as the
set of latent variables L such that L = L1(X) or L2(X) for some indicator X.
(Latent variables not in L might be included in the graph if there are more than
two common causes of a pair of indicators, or common causes of an indicator or
a member of L, e.g. L5 in Figure 1.

Theorem 3 states that given a measurement model that has a large enough
pure sub-model, the output of the FTFC algorithm is correct in the sense that
the variables in the same output cluster share the same pair of latent parents,
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and that the only impure indicators X in the output are impure because there
is a latent variable not in L that is a parent of X and L1(X) or L2(X) (e.g. L5

in Figure 1 is a parent of L1 and X8). This kind of impurity is not detectible by
the algorithm, but is also not important, because it does not affect the estimate
of the value of the latent parent from the indicators. In addition, in the output,
no single latent parent in L can be on two treks between latent variables not in
L and an impure indicator; e.g. there cannot be two latent common causes of
L1 and two distinct indicators.

Theorem 3 assumes that the relationships between the indicators and their
latent parents is linear. This assumption does not in general entail the model
is LA below the choke sets for any arbitrary sextad, since in some cases the
latent variables that are in a choke set are not the parents of the indicators
in the sextad, in which case it is possible that non-linear relationships between
the latent variables will lead to a non-linear relationship between the indicators
and the latent variables in the choke set. However, for the particular kind of
sextads that the FTFC algorithm relies on (i.e. 5×1 sextads) all of the choke
sets contain parents of the indicators in the sextad. Hence, linear relationships
between the indicators and their latent parents do entail the structure is LA
below the choke sets for the sextads that the FTFC algorithm relies on for
determining the structure of the output clustering,

Theorem 3. If a SEM S is a 2-factor model that has a 2-pure measurement
sub-model in which each indicator X is a linear function of L1(X) and L2(X),
S has at least six indicators, and at least 5 indicators in each cluster, then the
population FTFC algorithm outputs a clustering in which any two variables in
the same output cluster have the same pair of latent parents. In addition, each
output cluster contains no more than two impure indicators X1 and X2, one of
which is on a trek whose source is a common cause of L1(X1) and X1, and the
other of which is on a trek whose source is a common cause of L2(X1) and X2.

Proof. First we will show that pure clusters of variables in the true causal graph
appear clustered together in the output. Suppose C = {X1, X2, X3, X4, X5}
belong to a single pure cluster with latent variables La and Lb. For any sixth
variable Y, and any partition of {X1, X2, X3, X4, X5, Y } into two sets of size 3,
{Xa, Xb, Xc} and {Xd, Xe, Y }, {Xa, Xb, Xc} is trek-separated from {Xd, Xe, Y }
by a choke set containing just {La and Lb} since there are no other edges into
or out of {Xa, Xb, Xc} except for those from La and Lb. Hence C is correctly
added to PureList.

Next we show that variables from different pure clusters in the true causal
graph are not clustered together in the output. Suppose that two of the variables
in C belong to different clusters. There are two cases. Either every member of C
belongs to a different cluster or some pair of variables in C belong to the same
cluster. Suppose first two members of C, say X1 and X2, belong to a single
cluster with latents La and Lb, and X3 belongs to a different cluster with latent
Lc. In that case, for any sixth variable Y from the same cluster as X3, the
partitions {X1, X3, X4} and {X2, X5, Y } are not trek-separated by any choke
set S of size 2, since La, and Lb would both have to be in S in order for S to
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trek-separate X1 and {X2, X5, Y }, and Lc would have to be in S in order for
S to trek-separate X3 and {X2, X5, Y }. Hence C will correctly not be added
to PureList. If, on the other hand, every member of C belongs to a different
cluster, then choose a trek T between two variables in C such that there is no
shorter trek between any two members of C than T. Suppose without loss of
generality that these two variables in C are X1 and X2. Because the clusters
are pure by assumption, every trek between X1 and X2 contains some pair of
latent parents L1 (a parent of X1) and L2 (a parent of X2). The subtrek of
T between L1 and L2 does not contain any latent parent of any member of
C \ {X1, X2} since otherwise there would be a trek between two members of C
shorter than T. By the assumption that the model has a pure 2-factor model
measurement model, there is a third variable X3 in C that is not equal to X1 or
X2, and some other variable Y that belongs to the same cluster as X3. X3 and Y
have two latent parents, L3a and L3b that do not lie on T. Consider the sextad
cov({X1, X3, X4},{X2, X5, Y }). Then in order to trek-separate X1 from the 3
variables in the side of the partition containing X2, some latent not equal to L3a

or L3b is required to be in the choke set. In order to trek-separate X3 from the
side of the partition containing Y, both L3a and L3b are required to be in the
choke set. It follows that no choke set of size 2 trek-separates {X1, X3, X4} and
{X2, X5, Y }, and C will not be added to PureList. Similarly, if two variables are
from different impure clusters, they will not both be added to C, since impurities
imply the existence of even more treks, and hence choke sets that are at least as
large as in the pure case.

Now we will show that only one kind of impure vertex can occur in an output
cluster. Suppose that X is in cluster C, but impure. By definition, there is either
an edge E into or out of X that is not from L1(X) or L2(X). If E is out of X,
then by the assumption that none of the measured indicators cause any of the
latent variables in G, E is into some indicator Y . If (S1 : S2) t-separates X
from Y , and S = S1 ∪ S2, then S contains either X or Y . Consider the sextad
cov({X,Xa, Xb}, {Xc, Xd, Y }), where Xa, Xb, Xc, Xd all belong to C. In order
to trek-separate X from Xc, L1(X) and L2(X) must be in choke set S. Hence in
order to separate both sets in the partition from each other, S must contain at
least 3 elements (L1(X), L2(X), and X or Y ), and there is a 5×1 sextad that is
not entailed to vanish, so X is not clustered with the other variables by FTFC.

Suppose E is into X. If the tail of E is a measured indicator Y , then by the
same argument as above, there is a 5×1 sextad that is not entailed to vanish, so
X is not clustered with the other variables by FTFC. If the tail of E is L1(Y )
or L2(Y ) for some Y that is a measured indicator but not in C, consider the
sextad cov({X,Xa, Xb}, {Xc, Xd, Y }), where Xa, Xb, Xc, Xd all belong to C.
In order to trek-separate X from Xc, L1(X) and L2(X) must be in choke set S.
Hence in order to separate both sets in the partition from each other, S must
contain at least 3 elements (L1(X), L2(X), and L1(Y ) or L2(Y )). So there is a
5×1 sextad that is not entailed to vanish, and X is not clustered with the other
variables by FTFC. If the tail of E is a latent variable L that is not equal to
L1(Y ) or L2(Y ) for any Y that is a measured indicator but not in C, then there
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is a shortest trek T between L and some latent parent L1(Y ) of a measured
indicator Y . If T contains a measured indicator, then this reduces to one of the
previous cases. If Y is not in C then any trek-separating set of S must contain
at least 3 elements (L1(X), L2(X), and some vertex along T that is not equal
to L1(X) or L2(X)). Hence there is a 5×1 sextad that is not entailed to vanish,
and X is not clustered with the other variables by FTFC.

Finally, consider the case where there are two indicators X1 and X2 in C
such that there is a latent common cause M1 of X1 and L1(X1) and a latent
common cause M2 of X2 and L1(X1), or there is a latent common causes M1

of X1 and L2(X1) and a latent common cause M2 of X2 and L2(X1). Suppose
without loss of generality that it is the former. If M1 = M2, then this reduces to
one of the previous cases. Otherwise, there are treks T1 and T2 between X1 and
X2 whose sources are M1 and M2 respectively. Because X1 and X2 are in the
same cluster C, in order to trek-separate X1 and X2 with a choke set (S1:S2),
S1 or S2 must contain L2(X1). In order to separate T1 and T2, L1(X1) must be
in both S1 and S2 since L1(X1) occurs on the X2 side of T1 and the X1 side of
T2. It follows that S1 ∪ S2 contains at least 3 elements. Hence there is a 5×1
sextad that is not entailed to vanish, and X1 and X2 are not both clustered with
the other variables by FTFC.

So after the first stage of the algorithm, PureList is correct, and hence Clus-
terList is correct (up to the kinds of impurities just described) before it is sub-
sequently modifed.

Now we will show that each stage of modifying ClusterList and PureList is
correct. For a given cluster C, if a variable o belongs to the same cluster, then
for every subset of C ∪{o} of size 5, a choke set that contains La(C) and Lb(C)
t-separates any two members of C ∪{o}. Hence C ∪{o} will have passed the
purity test, and be found on PureList ; hence GrowClusters will correctly add o
to C, and subsets of C ∪{o} will be correctly deleted from PureList. If on the
other hand o does not belong to the same cluster as C, then some subsets of C
∪{o} of size 5 are not pure, and will not appear in PureList. Hence C ∪{o} will
not be added to ClusterList. Finally, the same argument showing the kinds of
impurities that could occur on PureList can be applied to ClusterList. �

This theorem entails that if there is a 2-factor model with a 2-pure measure-
ment model with sufficiently many variables and a large enough sample size,
then FTFC will detect it and output the correct clustering. Unfortunately the
converse is not true — there are models that do not contain 2-pure measurement
sub-models that entail exactly the same set vanishing sextad differences over the
measured variables (i.e. are sextad-equivalent)[5]; for those alternative models,
FTFC will output clusters anyway. However, for linear models, it is possible to
perform a chi-squared test of whether the measurement model is 2-pure, using
structural equation modeling programs such as EQS, or sem in R, or the tests
in TETRAD IV. In practice, a pure 2-factor model will be rejected by a chi-
squared test given data generated by all of the known models sextad-equivalent
to a 2-factor model (because of differences between the models in inequality con-
straints). For this reason, in ideal circumstances, the FTFC algorithm would be

44 E. Kummerfeld et al.



one part of a larger generate (with FTFC ) and test (with structural equation
modeling estimating and testing) algorithm. See [6] for details.

5 Tests

We tested the FTFC algorithm on simulated and real data sets. We did not
directly compare it to other algorithms for the non-linear cases, since to our
knowledge there are no other algorithms that can handle non-linearities and/or
cyclic relations among the latent variables, impurities in the measurement model,
and multiple factors for each cluster. Factor analysis has been used to cluster
variables, but has not proved successful even in cases where each cluster has a
single latent common cause but impurities [2]. The BuildPureClusters Algorithm
uses vanishing tetrad constraints, instead of vanishing sextad constraints to clus-
ter variables, but assumes that each cluster has at most one latent common cause
[2]. In the linear, acyclic case, we did compare FTFC to a semi-automated search
for a special case of two-factor linear acyclic models, as described in the section
on Linear Acyclic models.

5.1 Simulations

The first directed graph we used to generate data has 3 clusters of 10 measured
variables each, with each cluster having two latent variables as causes of each
measured variable in the cluster, and one of each pair of latent variables for the
second cluster causing one of each pair of latent variables in the first cluster,
and one of each pair of latent variables in the third cluster. The second directed
acyclic graph we used to generate data in addition contained 7 impurities: X1

is a parent of X2 and X3, X2 is a parent of X3, L1 is a parent of X11 and X21,
X20 is a parent of X21, and L4 is a parent of X30.

For each graph, we generated data at three different sample sizes, n = 100,
500, and 1000. The FTFC algorithm was run with significance level (for the
vanishing sextad tests) of 0.1 for sample sizes 500 and 1000, and 0.4 for sample
size 100. Theoretically, non-linearity among the latent-latent connections should
not negatively affect the performance of the algorithm, as long as the sample
size is large enough that the asymptotic normality assumed by the sextad test
that we employed is a good approximation. Theoretically, non-linearity among
the latent-observed connections should negatively affect the performance of the
algorithm, since if there are non-linear latent-observed connections, the Extended
Trek Separation Theorem generally does not apply. For each graph and each
sample size we generated four kinds of models, with each possible combination
of linear or non-linear latent-latent connections and linear or non-linear latent-
observed connections. In all cases, the non-linearities replace linear relationships
with a convex combination of linear and cubic relationships. For example, in
the pure model with non-linear latent-latent connections + non-linear latent-
measured connections, each variable X was set to the sum over the parents of
0.5∗ c1 ∗P +0.5∗d1 ∗ (.5∗P )3 plus an error, where P is one of the parents of X,
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c1 and d1 were chosen randomly from a Uniform(.35,1.35) distribution, and each
error variable was a Gaussian with mean zero, and a variance chosen randomly
from a Uniform(2,3) distribution. We tested a few of the simulated data sets
with a White test in R for non-linearity, and they rejected the null hypothesis
of linearity quite strongly.

In many applications of multiple indicator models, the indicators are delib-
erately chosen so that the correlations are fairly large (greater than 0.1 in most
cases), and all positive; in addition, there are relatively few correlations greater
than 0.9. In order to produce correlation matrices with these properties, we had
to adjust some of the parameters of the various models we considered according
to the type of model (i.e. whether the latent-latent connections were linear or
not, whether the latent-measured connections were linear or not, and whether
the model was pure of not). We did not however, adjust the model parameters
according to the results of the algorithm.

We calculated the precision for each cluster output, and the sensitivity for
each cluster output. We then evaluated the output of the algorithm by the
number of clusters found, and for each run, the average of the sensitivities and
the average of the precisions over the clusters.
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Fig. 2. Average Precision of The Output

The correct number of clusters in each case is 3, and the average number
of clusters output ranged between 2.7 and 3.1 for each kind of model and sam-
ple size, except for PNN. As expected, non-linearities for the latent-observed
connections degraded the performance, and the number of clusters for PNN at
sample sizes 100, 500, and 1000 were1.05, 1.38, and 1.54 respectively.

Figure 2 shows the mean (over 50 runs) of the average precision of the cluster-
ing output for each simulation case. The error bars shows the standard deviation
of the average precision. Figure 3 shows the mean (over 50 runs) average sensi-
tivity of the clustering output for each simulation case. The error bars shows the
standard deviation of the average sensitivity. The blue, red and green bars rep-
resent cases with 100, 500, and 1000 sample size respectively. In the three-letter
lable for every group of three bars, the first letter refers to the purity of the
generative model, with “P” being ”Pure” and “I” being “Impure”. The second
letter refers to the linearity of the latent-latent connection, with “L” represent-
ing linear connections and “N” representing non-linear connections. The third
letter refers to the linearity of the latent-measured connection, the letter “L”
and “N” have the same meaning as the case of the second letter. For example,
“PNL” represent the case in which the generative model is pure, with non-linear
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latent-latent connections, and linear latent-observed connections. We generated
50 models of each kind, except that due to time limitations, the sample size 100
PNN case has 40 runs, and the sample size 500 PLN case has 10 runs. The run
times varied between 44 and 1328 seconds.

In general, as expected, the result is better as the sample size increases, and is
worse when there are impurities adding to the graphical model. The non-linear
latent-latent connections does not have an obvious effect upon the clustering
output. However, as expected, when the non-linear latent-observed connections
are added to the generative model, the mean value of the purity is lower than
the corresponding linear cases, and the standard deviation of the two measures
starts to increase. Most notably, in the case of “PNN”, the interaction of the
two kinds of non-linearities renders most of the clustering result being very large
clusters (as indicated by the small number of clusters output). That is why the
average precision becomes very small while the average sensitivity is relatively
large.
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Fig. 3. Average Sensitivity of The Output

5.2 Real Data

We applied FTFC to six data sets in R for which there are published bifactor
models (see the “Bechthold” help page in R). We ran FTFC at 5 significance
levels 0.05, 0.1, 0.2, 0.3, and 0.4 and chose the best model. In some cases where
there were multiple clusters which together did not pass a chi-squared test, we
chose the best individual cluster. In Table 1, p is the number of variables, n is the
sample size, indicators is the number of indicators in the output, clusters is the
number of clusters in the output, and p− value is the p-value of the best model.
Because we did not have access to the original raw data (just the correlation
matrices), we could not divide the data into a training set and a test set, leading
to somewhat higher p-values than we would expect if we calculated the p-value
on a separate test set.
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Data Set p n indicators clusters p− value

Thurstone 9 213 6 1 0.96

Thurstone.33 9 417 5 1 0.52

Holzinger 14 355 7 1 0.23

Holzinger.9 9 145 6 1 0.82

Bechtholdt.1 17 212 8 1 0.59

Reise 16 1000 13 2 0.32

Table 1 FTFC to R data sets

We also applied FTFC to the depression data. Lee’s model fails a chi-square
test: p = 0. Although the depression data set contained too many variables to
test how well FTFC performed overall, we did use it to test whether it could
remove impure variables from given clusters (formed from background knowl-
edge), leading to a model that would pass a chi-squared test. Using the output
of FTFC at several different significance levels, the best model that we found
contained a cluster of 9 coping variables, 8 stress variables, and 8 depression
variables (all latent variables directly connected) with a p-value of 0.28.

5.3 The Linear Acyclic Case

A bifactor model is a model in which there is a single general factor that is a cause
of all of the indicators, and a set of “specific” factors that are causes of some of
the indicators. It is a special case of a two-factor model. The schmid function
in R takes as input a correlation matrix and (at least 3 specific) factors, and
outputs a bifactor model; it first performs an ordinary factor analysis and then
transforms the output into a bifactor model (which is a proper supermodel of
one-factor models). We compare FTFC algorithm to a FTFC-schmid algorithm
hybrid on real and simulated data.

We turned the two-factor model described in the previous set of simulations
into a linear bifactor model by collapsing three of the latent variables from dif-
ferent clusters into a single variable. We did not find any functions for reliably
automatically estimating the number of factors in a bifactor model, so we com-
pared the FTFC algorithm to a FTFC-schmid hybrid, in which FTFC provided
the number of factors input to schmid. The hybrid FTFC-schmid algorithm re-
moved 1.6% of the intra-cluster impurities (e.g. X1, X2, X3), and 48% of the
inter-cluster impurities (e.g. X11, X20, X21, X30) while removing 8% of the pure
variables . In contrast, FTFC removed 61% of the intra-cluster impurities, and
58% of inter-cluster impurities, while also removing 30% of the pure variables.
While FTFC incorrectly removed many more pure variables than the hybrid
FTFC-schmid, for the purposes of finding submodels that pass chi-squared tests,
this is far less important than its superiority in removing far more of the impure
variables

. Results of Application of
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We then compared schmid to FTFC on the Reise data. The published bi-
factor model [8], the output of the schmid function in R with 5 specific factors
(as in the published model), and versions of both of these models that removed
the same variables that FTFC algorithm did, all failed chi-squared tests and
had p-values of 0. The output of FTFC removed 3 of the 16 variables, and com-
bined the five specific factors into two specific factors (with the exception of one
variable.) We turned the resulting two-factor graph into a bifactor graph, and It
passed a chi-squared test with a p-value of 0.32.

6 Future Research

Further research into making the output of FTFC more reliable and more sta-
ble is needed. It would also be useful to automate the use of chi-squared tests
of the output models and to combine the strengths of the schmid and FTFC
algorithms. The ultimate goal of the clustering is to find causal relations among
the latent variables; when clusters have multiple latent common causes, some
edges become unidentifiable (i.e. the parameters associated with the edge are
not a function of the covariance matrix among the measured variables.) Compu-
tationally feasible necessary and sufficient conditions for identifiability of linear
models are not known, and the possibility that the relations among the latents
are non-linear complicates these issues further.
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Abstract. Machine learning is continually being applied to a growing
set of fields, including the social sciences, business, and medicine. Some
fields present problems that are not easily addressed using standard ma-
chine learning approaches and, in particular, there is growing interest
in differential prediction. In this type of task we are interested in pro-
ducing a classifier that specifically characterizes a subgroup of interest
by maximizing the difference in predictive performance for some out-
come between subgroups in a population. We discuss adapting maximum
margin classifiers for differential prediction. We first introduce multiple
approaches that do not affect the key properties of maximum margin
classifiers, but which also do not directly attempt to optimize a stan-
dard measure of differential prediction. We next propose a model that
directly optimizes a standard measure in this field, the uplift measure.
We evaluate our models on real data from two medical applications and
show excellent results.

Keywords: support vector machine, uplift modeling.

1 Introduction

Recent years have seen increased interest in machine learning, with novel appli-
cations in a growing set of fields, such as social sciences, business, and medicine.
Often, these applications reduce to familiar tasks, such as classification or regres-
sion. However, there are important problems that challenge the state-of-the-art.

One such task, differential prediction, is motivated by studies where one sub-
mits two different subgroups from some population to stimuli. The goal is then
to gain insight on the different reactions by producing, or simply identifying, a
classifier that demonstrates significantly better predictive performance on one
subgroup (often called the target subgroup) over another (the control subgroup).
Examples include:

– Seminal work in sociology and psychology used regression to study the fac-
tors accounting for differences in the academic performance of students from
different backgrounds [5,15,26].
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– Uplift modeling is a popular technique in marketing studies. It measures the
impact of a campaign by comparing the purchases made by a subgroup that
was targeted by some marketing activity versus a control subgroup [16,9,20].

– Medical studies often evaluate the effect of a drug by comparing patients
who have taken the drug against patients who have not [7,4].

– Also within the medical domain, breast cancer is a major disease that often
develops slower in older patients. Insight on the differences between older
and younger patients is thus crucial in determining whether treatment is
immediately necessary [19,18].

Differential prediction has broad and important applications across a range of
domains and, as specific motivating applications, we will consider two medical
tasks. One is a task in which we want to specifically identify older patients with
breast cancer who are good candidates for “watchful waiting” as opposed to
treatment. The other is a task in which we want to specifically identify patients
who are most susceptible to adverse effects of COX-2 inhibitors, and thus not
prescribe such drugs for these patients.

The adverse drug event task alone is of major worldwide significance, and the
significance of the breast cancer task cannot be overstated. Finding a model that
is predictive of an adverse event for people on a drug versus not could help in
isolating the key causal relationship of the drug to the event, and using machine
learning to uncover causal relationships from observational data is a big topic
in current research. Similarly, finding a model that can identify patients with
breast cancer that may not be threatening enough in their lifetime to require
treatment could greatly reduce overtreatment and costs in healthcare as a whole.

Progress in differential prediction requires the ability to measure differences
in classifier performance between two subgroups. The standard measure of dif-
ferential prediction is the uplift curve [23,22], which is defined as the differ-
ence between the lift curves for the two subgroups. Several classification and
regression algorithms have been proposed and evaluated according to this mea-
sure [22,23,19,10]. These models were designed to improve uplift, but do not
directly optimize it. We show that indeed it is possible to directly optimize up-
lift and we propose and implement the SVMupl model, which does so. This
model is constructed by showing that optimizing uplift can be reduced to opti-
mizing a linear combination of a weighted combination of features, thus allowing
us to apply Joachims’ work on the optimization of multivariate measures [13].
We evaluate all models on our motivating applications and SVMupl shows the
best performance in differential prediction in most cases.

The paper is organized as follows. Section 2 presents our motivating applica-
tions in greater detail. In Section 3 we introduce uplift modeling and the uplift
measure that we will use to evaluate our models. We also present results on a
synthetic dataset in this section to give further insight in the task. We discuss
multiple possible approaches to differential prediction that do not directly opti-
mize uplift in Section 4. Section 5 discusses previous work on SVMs that optimize
for multi-variate measures, and Section 6 presents how to extend this work to
optimize uplift directly. We discuss methodology in Section 7 and evaluate all
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of the proposed models on our motivating applications in Section 8. Finally,
Section 9 presents conclusions and future work.

2 Medical Applications

To illustrate the value of differential prediction in our motivating applications
we first discuss both in further detail.

Breast cancer is the most common cancer among women [2] and has two basic
stages: an earlier in situ stage where cancer cells are still localized, and a subse-
quent invasive stage where cancer cells infiltrate surrounding tissue. Nearly all in
situ cases can be cured [1], thus current practice is to treat in situ occurrences in
order to avoid progression into invasive tumors [2]. Treatment, however, is costly
and may produce undesirable side-effects. Moreover, an in situ tumor may never
progress to invasive stage in the patient’s lifetime, increasing the possibility that
treatment may not have been necessary. In fact, younger women tend to have
more aggressive cancers that rapidly proliferate, whereas older women tend to
have more indolent cancers [8,11]. Because of this, younger women with in situ
cancer should be treated due to a greater potential time-span for progression.
Likewise, it makes sense to treat older women who have in situ cancer that is
similar in characteristics to in situ cancer in younger women since the more ag-
gressive nature of cancer in younger patients may be related to those features.
However, older women with in situ cancer that is significantly different from that
of younger women may be less likely to experience rapid proliferation, making
them good candidates for “watchful waiting” instead of treatment. For this par-
ticular problem, predicting in situ cancer that is specific to older patients is the
appropriate task.

COX-2 inhibitors are a family of non-steroidal anti-inflammatory drugs
(NSAIDs) used to treat inflammation and pain by directly targeting the COX-2
enzyme. This is a desirable property as it significantly reduces the occurrence
of various adverse gastrointestinal effects common to other NSAIDs. As such,
some early COX-2 inhibitors enjoyed rapid and widespread acceptance in the
medical community. Unfortunately, clinical trial data later showed that the use
of COX-2 inhibitors also came with a significant increase in the rate of my-
ocardial infarction (MI), or “heart attack” [14]. As a result, physicians must be
much more careful when prescribing these drugs. In particular, physicians want
to avoid prescribing COX-2 inhibitors to patients who may be more susceptible
to the adverse effects that they entail. For this problem, predicting MI that is
specific to patients who have taken COX-2 inhibitors, versus those who did not,
is the appropriate task to identify the at-risk patients.

3 Uplift Modeling

The fundamental property of differential prediction is the ability to quantify the
difference between the classification of subgroups in a population, and much of
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the reference work in this area originates from the marketing domain. Therefore,
we first give a brief overview of differential prediction as it relates to marketing.

In marketing, customers can be broken into four categories [21]:

Persuadables Customers who respond positively (e.g. buy a product) when
targeted by marketing activity.

Sure Things Customers who respond positively regardless of being targeted.
Lost Causes Customers who do not respond (e.g. not buy a product) regardless

of being targeted or not.
Sleeping Dogs Customers who do not respond as a result of being targeted.

Thus, targeting Persuadables increases the value produced by the marketing
activity, targeting Sleeping Dogs decreases it, and targeting customers in either of
the other groups has no effect, but is a waste of money. Ideally then, a marketing
team would only target the Persuadables and avoid targeting Sleeping Dogs
whenever possible. Unfortunately, the group to which a particular individual
belongs is unknown and is not readily observable. An individual cannot be both
targeted and not targeted to determine their response to marketing activity
directly. Only the customer response and whether they were in the target or
control group can be observed experimentally (see Table 1).

Table 1. Customer groups and their expected responses based on targeting. Only the
shaded region can be observed experimentally.

Target Control

Response No Response Response No Response

Persuadables, Sleeping Dogs, Sleeping Dogs, Persuadables,
Sure Things Lost Causes Sure Things Lost Causes

In this scenario, since we cannot observe customer groups beforehand, stan-
dard classifiers appear less than ideal. For example, training a standard classifier
to predict response, ignoring that the target and control subgroups exist, is likely
to result in a classifier that identifies Persuadables, Sure Things, and Sleeping
Dogs as they represent the responders when the target and control subgroups
are combined. Recall, however, that targeting Sure Things is a waste of money,
and targeting Sleeping Dogs is harmful. Even training on just the target sub-
group is likely to produce a classifier that identifies both Persuadables and Sure
Things. The point of differential prediction in this domain is then to quantify
the difference between the target and control subgroups. While it may be simple
and intuitive to simply learn two separate models and subtract the output of
the control model from the target model, recent work suggests that this is less
effective than modeling the difference directly [22]. Thus, the goal is to produce
a single classifier that maximizes predictive performance on the target subgroup
over the control subgroup. The idea is that such a classifier characterizes prop-
erties that are specific to the target subgroup, thereby making it effective at
identifying Persuadables. That is, such a classifier will produce a larger output
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for customers who are more likely to respond positively as a direct result of
targeting, and a smaller output for those who are unaffected or are more likely
to respond negatively. The classifier could then be used in subsequent marketing
campaigns to select who should be targeted and who should not.

There are many possible measures that could be used to quantify the dif-
ference in predictive performance between the target and control subgroups. In
marketing, the uplift measure is often used to quantify this difference as well
as to evaluate the performance of classifiers designed for differential prediction.
Thus, this task is often referred to as uplift modeling.

3.1 Uplift

In this work, we will consider two subgroups, which we will refer to as A and
B, representing target and control subgroups respectively, and where subgroup
A is the subgroup of most interest.

The lift curve [24] reports the total percentage examples that a classifier must
label as positive (x-axis) in order to obtain a certain recall (y-axis), expressed
as a count of true positives instead of a rate. As usual, we can compute the
corresponding area under the lift curve (AUL). Note that the definition of the
lift curve is very similar to that of an ROC curve.

Uplift is the difference in lift produced by a classifier between subgroups A
and B, at a particular threshold percentage of all examples. We can compute
the area under the uplift curve (AUU) by subtracting their respective AULs:

AUU = AULA −AULB (1)

Notice that, because uplift is simply a difference in lift at a particular threshold,
uplift curves always start at zero and end at the difference in the total number of
positive examples between subgroups. Higher AUU indicates an overall stronger
differentiation of subgroup A from B, and an uplift curve that is skewed more
to the left suggests a more pronounced ranking of positives from subgroup A
ahead of those from subgroup B.

3.2 Simulated Customer Experiments

To demonstrate that uplift modeling does help to produce classifiers that can
specifically identify Persuadables, we generated a synthetic population of cus-
tomers and simulated marketing activity to produce a dataset for which we knew
the ground truth customer groups. We present results on this synthetic dataset,
but save algorithmic details for later sections.

To generate a customer population, we first generated a random Bayesian net-
work with 20 nodes and 30 edges. We then randomly selected one node with four
possible values to be the customer group feature. Next, we drew 10,000 samples
from this network. This left us with a population of customers for which one
feature defined the group they belonged to and the rest represented observable
features.
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We then subjected this population to a simulated marketing activity. We
randomly selected roughly 50% of the entire population to be part of the tar-
get subgroup. Next, we produced a response for each customer based on their
customer group and whether or not they were chosen to be targeted. For this
demonstration, we determined each response based on the strongest stereotypical
interpretation of each customer group. That is, Persuadables always responded
when targeted and never responded when not. Sleeping Dogs never responded
when targeted and always responded when not. Sure Things and Lost Causes
always and never responded respectively.
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Fig. 1. Uplift curves (higher is better) for three different classifiers on the simulated
customer dataset

We removed the customer group feature from the training set and trained
three different classifiers to demonstrate performance. First, we trained a stan-
dard SVM classifier on the entire dataset with a positive response as the positive
class. Next, we trained a standard SVM on just the target subgroup. Finally,
we trained an SVM designed to maximize uplift, about which we will go into
greater detail later.

We evaluated the results using 10-fold cross-validation and used internal cross-
validation to select parameters in the same way that we will show later on our
medical datasets.

Figure 1 shows the uplift curves on the synthetic customer dataset. As ex-
pected, the SVM designed to maximize uplift produces the highest uplift curve,
while the standard SVM trained on the entire dataset produces the lowest. Fig-
ure 2 shows ROC curves on the synthetic customer dataset when the Persuadable
customers are considered to be the positive class. Recall that this feature was
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unobserved at training time, but identifying Persuadables is the real goal in
the marketing domain. As hoped, the SVM that maximizes uplift has the high-
est ROC curve whereas the standard SVM trained on the entire dataset hovers
around the diagonal.
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Fig. 2. ROC curves (higher is better) for three different classifiers on the simulated
customer dataset when the Persuadable customer group is treated as the positive class

3.3 Applying Uplift Modeling to Medical Tasks

In this work, we propose that the task addressed in the marketing domain can
be mapped to our motivating medical tasks, suggesting that the uplift measure
is a reasonable measure for evaluation of our models.

In the COX-2 inhibitor task, variability in response to the drug suggests that
there will be some people at increased risk of MI as a result of taking the drug,
some who are at increased risk of MI regardless of treatment, some who are at
decreased risk regardless, and perhaps even some who are at decreased risk as a
result of taking the drug. Just like in the marketing task, which group an indi-
vidual belongs to cannot be directly observed. An individual cannot both take
the drug and not take the drug to determine its effect. Only the MI outcome and
whether or not the individual took the drug can be observed experimentally. We
propose that training a classifier to identify individuals for which taking a COX-2
inhibitor increases their risk of MI is analogous to identifying Persuadables.

In the breast cancer task, the analogy is not as obvious, but we know that
younger patients often have aggressive cancers while older patients have both
aggressive and indolent cancers. Again, which type of cancer a patient has is not
directly observable and it is unreasonable to not treat patients in an attempt
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to determine which have less aggressive varieties. We propose that training a
classifier to identify less aggressive varieties of cancer (seen in older patients) is
also analogous to identifying Persuadables.

4 Uplift-Agnostic Models

There are many different possible approaches to learning a classifier that is
differentially predictive and we have reviewed how this task is approached and
evaluated in the marketing domain. We first introduce a number of possibilities
in this section that do not directly optimize the uplift measure at training time.

4.1 Standard SVM

To better understand the problem, we start from the standard maximum margin
classifier [25]. This classifier minimizes:

1

2
||w||2 + C

N∑
i=1

ξi (2)

subject to ξi ≥ 1− yi〈xi,w〉, ξi ≥ 0, and where is (x, y) feature vector and label
pair notation representing examples. The formulation tries to minimize the norm
of the weight vector, w, and hence maximize the margin, while softly allowing
a number of errors ξi whose cost depends on the parameter C.

For the sake of comparison, we evaluate the ability of a standard linear SVM
model to produce uplift in our applications of interest. In this case we simply
ignore the fact that the examples fall into two subgroups.

4.2 Subgroup-Only SVM

Another intuitive possible approach to achieving differential prediction, without
modifying the original optimization, is to only train on the subgroup of most
interest. In this way, the classifier should perform well on the subgroup used
to train it, whereas it should not perform as well on the other subgroup. In our
applications, that would mean only training on the data for the older subgroup of
breast cancer patients, or the subgroup of MI patients who have been prescribed
COX-2 inhibitors.

4.3 Flipped-Label SVM

Jaśkowski and Jaroszewicz [10] propose a general method for adapting stan-
dard models to be differentially predictive. This is accomplished by flipping the
classification labels in the secondary subgroup during training. In this way, the
classifier is trained to correctly predict the positive class on the subgroup of
interest, subgroup A, whereas it is trained to predict the negative class in the
secondary subgroup, subgroup B. The resulting classifier should then, ideally,
perform much better on subgroup A than subgroup B.
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4.4 Two-Cost SVM

Another possibility is to simply treat the errors on the different subgroups dif-
ferently. In the case of the SVM optimization, we would clearly like the cost to
be different for the two subgroups. Specifically, we would like to maximize the
cost difference between the two, but that problem is ill-defined, suggesting the
following adaptation of the standard minimization problem:

1

2
||w||2 + CA

|A|∑
i=1

ξi + CB

|B|∑
j=1

ξj (3)

subject to ξi ≥ 1− yi〈xi,w〉, ξj ≥ 1− yj〈xj,w〉, ξi ≥ 0, ξj ≥ 0. As a first step, we
assume CA ≥ 0 and CB ≥ 0, so we continue penalizing errors on subgroup B.
We call this method the two-cost model, and although this problem is similar to
addressing class weight, there is an important difference. When addressing class
skew, the ratio between C+ and C− can be estimated from the class skew in
the data. On the other hand, a natural ratio between CA and CB may not be
known beforehand: if CA ≈ CB , there will be little differential classification, but
if CA  CB the errors may be captured by set B only, leading to over-fitting.

5 Multivariate Performance Measures

Our goal is to find the parameters w that are optimal for a specific measure
of uplift performance, such as AUU. Similar to AUC [13,28,17], AUL depends
on the rankings between pairs of examples. We next, we focus on the SVMperf

approach [13]. This approach hypothesizes that we want to find the h that min-
imizes the area of a generic loss function Δ over an unseen set of examples S′:

RΔ(h) =

∫
Δ((h(x′

1), . . . , h(x
′
n′)), (y′1, . . . , y

′
n′))dPr(S′) (4)

Note that we use a (x, y) feature vector and label pair notation to represent
examples throughout. Also, in practice we cannot use equation (4), we can only
use the training data:

R̂Δ(h) = Δ((h(x1), . . . , h(xn)), (y1, . . . , yn)) (5)

Let tuples ȳ = (y1, . . . , yn) and ȳ′ be assignments over the n examples, Ȳ is
the set of all possible assignments. Ψ(x, y) is a measure-specific combination of
features of inputs and outputs in our problem, such that one wants to maximize
wTΨ :

argmax
ȳ′∈Ȳ

{wTΨ(x̄, ȳ′)} (6)

Then the problem reduces to:

min
w,ξ≥0

1

2
||w||2 + Cξ (7)
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given the constraints:

∀ȳ′ ∈ Ȳ \ ȳ : wT [Ψ(x̄, ȳ)− Ψ(x̄, ȳ′)] ≥ Δ(ȳ′, ȳ)− ξ (8)

which is a quadratic optimization problem and can be solved by a cutting plane
solver [12], even if it involves many constraints (one per element in Ȳ \ ȳ).

The formulation applies to the AUC by defining it as 1 − BadPairs
N×P , where N

is the number of negative examples, P is the number of positive examples, and
BadPairs is the number of pairs (i, j) such that yi = 1, yj = −1, and y′i < y′j .
Joachims thus addresses the optimization problem in terms of pairs y′ij , where
y′ij is 1 if y′i > y′j, and −1 otherwise. The loss is the number of swapped pairs:

ΔAUC(ȳ
′, ȳ) =

P∑
i=1

N∑
j=1

1

2
(1− y′ij) (9)

The combination of features Ψ should be symmetric to the loss, giving:

wTΨ(x̄, ȳ′) =
1

2

P∑
i=1

N∑
j=1

y′ij(w
Txi −wTxj) = wT 1

2

P∑
i=1

N∑
j=1

y′ij(xi − xj) (10)

The optimization algorithm [12] finds the most violated constraint in equation
(8). This corresponds to finding the y∗ij that minimize wT [Ψ(x̄, ȳ) − Ψ(x̄, ȳ′)]−
ΔAUC(ȳ

′, ȳ), or, given that Ψ(x̄, ȳ) is fixed, that maximize:

wTΨ(x̄, ȳ′) +ΔAUC(ȳ
′, ȳ)

Expanding this sum resumes into independently finding the y∗ij such that:

y∗ij = argmax
y′
ij∈{1,−1}

y′ij((w
Txi −

1

2
)− (wTxj +

1

2
)) (11)

Joachims’ algorithm then sorts the wTxi− 1
2 and wTxj+

1
2 , and generates labels

from this total order.

6 Maximizing Uplift

Recall from Section 3.1 the similarity between lift and ROC. The two are actually
closely related. As shown in Tufféry [24], and assuming that we are given the
skew π = P

P+N , the AUL is related to the AUC by:

AUL = P
(π
2
+ (1− π)AUC

)
(12)

Expanding equation (1) with equation (12):

AUU = PA

(πA

2
+ (1 − πA)AUCA

)
− PB

(πB

2
+ (1− πB)AUCB

)
(13)
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PA, PB , πA, and πB are properties of the two subgroups, and thus indepen-
dent of the classifier. Removing constant terms we see that maximizing uplift is
equivalent to:

max(AUU) ≡ max(PA(1− πA)AUCA − PB(1− πB)AUCB)

∝ max

(
AUCA − PB(1 − πB)

PA(1 − πA)
AUCB

)
(14)

Defining λ = PB(1−πB)
PA(1−πA) we have:

max(AUU) ≡ max(AUCA − λAUCB) (15)

Therefore, maximizing AUU is equivalent to maximizing a weighted difference
between two AUCs.

Equation (15) suggests that we can use the AUC formulation to optimize
AUU. First, we make it a double maximization problem by switching labels in
subgroup B:

max(AUU) ≡ max(AUCA − λ(1 −AUC−
B ))

≡ max(AUCA + λAUC−
B ) (16)

The new formulation reverses positives with negatives making it a sum of sepa-
rate sets.

At this point, we can encode our problem using Joachims’ formulation of the
AUC. In this case, we have two AUCs. One, as before, is obtained from the yij
where the i, j pairs range over A. The second corresponds to pairs ykl where the
k, l pairs range over B. On switching the labels, we must consider ylk where k
ranges over the positives in B, and l over the negatives in B.

After switching labels, we can expand equation (9) to obtain our new loss
ΔAUU as the weighted sum of two losses:

ΔAUU (ȳ
′, ȳ) =

PA∑
i=1

NA∑
j=1

1

2
(1 − y′ij) + λ

PB∑
k=1

NB∑
j=1

1

2
(1− y′lk) (17)

From equation (10) we construct a corresponding weighted sum as the new Ψ :

Ψ(x̄, ȳ′) =
1

2

PA∑
i=1

NA∑
j=1

y′ij(xi − xj) + λ
1

2

PB∑
k=1

NB∑
l=1

y′lk(xl − xk) (18)

The two sets are separate, so optimizing the yij does not change from equation
(11), as their maximization does not depend on the ylk. Optimizing the ylk
follows similar reasoning to the yij and gives:

y∗lk = argmax
y′
lk∈{1,−1}

y′lk((w
Txl −

1

2
)− (wTxk +

1

2
)) (19)
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Thus, we now have two independent rankings: one between the labels for the ex-
amples in A, and the other between the labels for the examples in B. We can sort
them together or separately, but we simply have to label the sets independently
to obtain the ȳ∗ of the most violated constraint. Note that the computation of
the ȳ∗ in this setting is independent of λ, but λ still affects the solutions found
by the cutting-plane solver through Δ and Ψ .

7 Experiments

We implemented our SVMUpl method using the SVMperf codebase, version
3.001. We implemented the two-cost model using the LIBSVM codebase [3],
version 3.172. All other uplift-agnostic approaches were run using LIBSVM, but
required no changes to the code.

Recall that our motivating applications are to produce a differential older-
specific classifier for in situ breast cancer, and produce a differential COX-2
specific classifier for myocardial infarction (MI). We apply all of the proposed
approaches to the breast cancer data used in Nassif et al. [19] and the MI data
used in Davis et al. [6]. Their composition is shown in Table 2.

The breast cancer data consists of two cohorts: patients younger than 50 years
old form the younger cohort, while patients aged 65 and above form the older
cohort. The older cohort has 132 in situ and 401 invasive cases, while the younger
one has 110 in situ and 264 invasive.

Table 2. Composition of the breast cancer and MI datasets for our motivating appli-
cations. In the breast cancer dataset the older subgroup is the target subgroup, and in
situ breast cancer is the positive class. In the MI dataset the COX-2 inhibitor subgroup
is the target subgroup, and MI is the positive class.

Older Younger

In Situ Invasive In Situ Invasive

132 401 110 264

COX-2 Inhibitors No COX-2 Inhibitors

MI No MI MI No MI

184 1,776 184 1,776

The MI data consists of patients separated into two equally-sized subgroups:
patients who have been prescribed COX-2 inhibitors and those who have not.
The group prescribed COX-2 inhibitors has 184 patients who had MI, and 1776
who did not. The subgroup not prescribed COX-2 inhibitors has the same num-
ber of patients for each outcome.

We use 10-fold cross-validation for evaluation. Final results were produced by
concatenating the output test results for each fold. Cost parameters were selected
for each fold using 9-fold internal cross-validation. For all approaches, the cost
parameter was selected from {10.0, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001}. For the
two-cost model, CA and CB were selected from all combinations of values from

1 http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 3. 10-fold cross-validated performance for all proposed approaches on the breast
cancer dataset (* indicates significance)

Model Older Younger AUU Per-fold Per-fold SVMUpl

AUL AUL AUU μ AUU σ p-value

SVMUpl 64.26 45.05 19.21 1.93 0.78 -

Two-Cost 74.30 60.76 13.54 1.45 1.18 0.432
Older-Only 67.70 61.85 5.85 1.03 1.15 0.037 *
Standard 75.35 64.34 11.01 1.26 0.38 0.049 *
Flipped 53.90 49.08 4.82 0.77 0.58 0.020 *
Baseline 66.00 55.00 11.00 1.10 0.21 0.004 *

Table 4. 10-fold cross-validated performance for all proposed approaches on the MI
dataset (* indicates significance)

Model COX-2 No COX-2 AUU Per-fold Per-fold SVMUpl

AUL AUL AUU μ AUU σ p-value

SVMUpl 123.38 72.70 50.68 5.07 2.04 -

Two-Cost 126.23 106.25 19.99 2.43 1.54 0.004 *
COX-2-Only 151.50 137.70 13.80 1.18 1.52 0.002 *
Standard 147.69 146.49 1.20 -0.16 1.25 0.002 *
Flipped 102.15 73.63 28.52 2.97 1.35 0.037 *
Baseline 0.00 0.00 0.00 0.00 0.00 0.002 *

the set such that CA > CB . We plot the final uplift curves for each approach
along with the uplift for a baseline random classifier in Figures 3 and 4.

Tables 3 and 4 compare SVMUpl with every other approach proposed as well
as a fixed baseline random classifier. We use the Mann-Whitney test at the 95%
confidence level to compare approaches based on per-fold AUU. We show the
per-fold mean, standard deviation, and p-value of the 10-fold AUU paired Mann-
Whitney of each method as compared to SVMUpl (* indicates significance).

8 Evaluation

The results on the breast cancer dataset in Table 3 show that SVMUpl produces
significantly greater uplift than all proposed approaches, except for the two-cost
model. This exception may be a result of the higher variance of the model on this
particular dataset. The results on the MI dataset in Table 4 show that SVMUpl

produces the greatest uplift in all cases.
Figure 3 shows SVMUpl with an uplift curve that dominates the rest of the

approaches until around the 0.7 threshold on the breast cancer dataset. Most
other approaches produce curves that sit around or below the baseline.

Figure 4 tells a similar story, with SVMUpl dominating all other methods
across the entire space on the MI dataset. In this dataset, however, only the
standard SVM approach consistently performs below the baseline, whereas all
other methods appear to produce at least modest uplift.
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Fig. 3. Uplift curves (higher is better) for all approaches on the breast cancer dataset
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Fig. 4. Uplift curves (higher is better) for all approaches on the MI dataset. Note that
the baseline uplift lies on the x-axis due to the equal number of patients with MI in
each subgroup.

9 Conclusions and Future Work

We introduced a support vector model directed toward differential prediction.
The SVMUpl approach optimizes uplift by relying on the relationship between
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AUL and AUC, and on the linearity of the multivariate function used in prior
work to optimize AUC. The results suggest that SVMUpl does indeed achieve
better uplift in unseen data than the other approaches.

Differential prediction has many important applications, particularly in the
human sciences and medicine, raising the need for future work. For example,
in some applications, it may be important to ensure some minimal performance
over subgroup B, even at the cost of uplift. It may also be important to be able to
interpret the learned model and understand what features improve uplift most.
SVMs do not lend themselves as easily to this task as some models, but feature
coefficients could be used to identify which are the most or least important.
Finally, there is some very recent additional work on SVMs for uplift modeling
[27] that does not directly optimize uplift, the main focus of this paper, but it
will be important to compare results as such new methods are developed.
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Abstract. We propose a stochastic approximation based method with randomi-
sation of samples for policy evaluation using the least squares temporal difference
(LSTD) algorithm. Our method results in an O(d) improvement in complexity in
comparison to regular LSTD, where d is the dimension of the data. We provide
convergence rate results for our proposed method, both in high probability and in
expectation. Moreover, we also establish that using our scheme in place of LSTD
does not impact the rate of convergence of the approximate value function to the
true value function. This result coupled with the low complexity of our method
makes it attractive for implementation in big data settings, where d is large. Fur-
ther, we also analyse a similar low-complexity alternative for least squares re-
gression and provide finite-time bounds there. We demonstrate the practicality of
our method for LSTD empirically by combining it with the LSPI algorithm in a
traffic signal control application.

1 Introduction

Several machine learning problems involve solving a linear system of equations from
a given set of training data. In this paper we consider the problem of policy evaluation
in reinforcement learning (RL) using the method of temporal differences (TD). Given a
fixed training data set, one popular temporal difference algorithm for policy evaluation
is LSTD [4]. However, LSTD is computationally expensive as it requires O(d2) com-
putations. We propose a stochastic approximation (SA) based algorithm that draws data
samples from a uniform distribution on the training set. From the finite time analyses
that we provide, we observe our algorithm converges at the optimal rate, in high prob-
ability as well as in expectation. Moreover, using our scheme in place of LSTD does
not impact the rate of convergence of the approximate value function to the true value
function. This finding coupled with the significant decrease in the computational cost
of our algorithm, makes it appealing in the canonical big data settings.

The problem considered here is to estimate the value function V π of a given pol-
icy π. Temporal difference (TD) methods are well-known in this context, and they are
known to converge to the fixed point V π = T π(V π), where T π is the Bellman operator
(see Section 3.1 for a precise definition). A popular approach to overcome the curse of
dimensionality associated with large state spaces is to parameterize the value function
using a linear function approximation architecture. For every s in the state space S,

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 66–81, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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we approximate V π(s) ≈ θTφ(s), where φ(·) is a d-dimensional feature vector with
d << |S|, and θ is a tunable parameter. The function approximation variant of TD [23]
is known to converge to the fixed point of Φθ = ΠT π(Φθ), where Π is the orthogonal
projection onto the space within which we approximate the value function, and Φ is the
feature matrix that characterises this space.

LSTD estimates the fixed point of ΠT π using empirical data D := {(si, ri, s′i), i =
1, . . . , T )} obtained by simulating the Markov decision process (MDP) with the un-
derlying policy π. For every i = 1, . . . , T , the 3-tuple (si, ri, s

′
i) corresponds to a

transition from state si to s′i under action π(si) and the resulting reward is denoted
by ri. The LSTD estimate is given as the solution to θ̂T = Ā−1

T b̄T , where ĀT =
1
T

∑T
i=1 φ(si)(φ(si)− βφ(s′i))

T, and b̄T = 1
T

∑T
i=1 riφ(si).

Computing the inverse of the matrix ĀT is computationally expensive, especially
when d is large. Indeed, assuming that the features φ(si) evolve in a compact subset
of Rd, the complexity of the above approach is O(d2T ), where Ā−1

T is computed itera-
tively using the Sherman-Morrison lemma. On the other hand, if we employ the Strassen
algorithm or the Coppersmith-Winograd algorithm for computing Ā−1

T , the complexity
is of the order O(d2.807) and O(d2.375), respectively, in addition to O(d2T ) complexity
for computing ĀT .

A common trick, in practice, to alleviate this problem in high dimensions, is to re-
place the inversion of the ĀT matrix by an iterative procedure that performs a fixed
point iteration. From a theoretical standpoint, this comes under the purview of stochas-
tic approximation (SA), and one requires that the samples be chosen randomly to ensure
convergence. In this paper, we analyse such an SA based scheme and show that it con-
verges to the LSTD solution. The advantage is that the SA based scheme incurs lower
computational cost in comparison to the approaches mentioned above. We also analyse
a similar low-complexity alternative for the classic least squares parameter estimation
problem.

We provide convergence rate results for our proposed method, both in high proba-
bility and in expectation. In particular, we show that, with probability 1 − δ, the SA
based scheme constructs an ε-approximation of the corresponding LSTD solution with
O(d ln(1/δ)/ε2) complexity, irrespective of the number of samples T . Moreover, we
also establish that using the SA based scheme in place of LSTD does not impact the
rate of convergence of the approximate value function to the true value function (see
Theorem 2).

The rate results coupled with the low complexity of our scheme make it more
amenable to practical implementation in the canonical big data settings, where both
d and T are large. Further, we provide explicit constants in the high probability bounds
and we believe this opens several avenues for the use of SA based low complexity al-
ternatives in higher level decision making procedures, for instance, least squares policy
iteration (LSPI) [11] and linear bandit [5] algorithms. We demonstrate the practical-
ity of our solution scheme for LSTD empirically by using it as a subroutine in the
LSPI algorithm for adaptive traffic signal control1. In particular, for the experiments we

1 See [16] for another set of experiments that combines the SA based low-complexity variant
for least squares regression with the LinUCB algorithm for contextual bandits, using the large
scale news recommendation dataset from Yahoo [24].
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employ step-sizes that were used to derive the finite-time bounds (see Corollary 1). We
demonstrate that this choice results in rapid convergence of our SA based scheme in the
experiments and also that the performance of the SA variant of LSPI is comparable to
that of LSPI.

The rest of the paper is organized as follows: In Section 2, we review relevant previ-
ous works and relevant literature. In Section 3 we present the fast LSTD algorithm based
on stochastic approximation and in Section 4 we provide the non-asymptotic bounds for
this algorithm. In Section 5, we outline the variants of our algorithm to incorporate reg-
ularization and iterate averaging, while in Section 7, we provide extensions to solve
the problem of least squares regression. Next, in Section 6, we provide outlines for the
proof and derivation of rates. In Section 8, we provide experiments on a traffic signal
control application. Finally, in Section 9 we provide the concluding remarks.

2 Literature Review

Our algorithms are based on the well-known stochastic approximation technique, orig-
inally proposed for finding zeroes of a nonlinear function in [17]. The reader is referred
to [10] for a textbook introduction to SA. Iterate averaging is a standard approach to
accelerate the convergence of SA schemes and was proposed independently in [18] and
[13]. Non asymptotic bounds for Robbins Monro schemes have been provided in [7]
and extended to incorporate iterate averaging in [6].

In the context of the problem of prediction in RL, temporal difference (TD) learn-
ing is a well-known algorithm. See [3,20] for a textbook introduction and [23] for an
asymptotic analysis. LSTD [4] is a popular batch algorithm that converges asymptoti-
cally to the TD solution. Finite time analysis of LSTD is provided in [12] and we extend
it to the case when LSTD solution is replaced by a SA iterate.

A popular line of research in RL is on improving the complexity of TD-like algo-
rithms (cf. GTD [21], GTD2 [22], iLSTD [8] and the references therein). The popular
Computer Go with dimension d = 106 [19] and several practical applications (e.g.
transportation, networks) involve high-feature dimensions. Moreover, considering that
linear function approximation is effective with a large number of features, our O(d)
improvement in complexity of LSTD by employing SA is meaningful.

In comparison to previous work, we would like to point out that there is no finite
time analysis of GTD-type algorithms. While iLSTD is an efficient approximation to
LSTD, analysis in [8] requires that the feature matrix be sparse. In contrast, we pro-
vide finite-time bounds and do not make any sparsity assumption. To the best of our
knowledge, efficient SA algorithms that approximate LSTD without impacting its rate
of convergence to true value function, have not been proposed before in the literature.
The high probability bounds that we derive for the SA based scheme do not directly
follow from earlier work on LSTD algorithms. Further, unlike [7], we provide explicit
constants in the bounds that we derive (see Corollary 1) and we employ these in our
experiments as well.

Stochastic gradient descent (SGD) is a well-known method for optimising a function
given only noisy observations. In the context of machine learning, finite time analysis
of such methods have been provided in [1]. While the bounds in [1] are given in ex-
pectation, many machine learning applications require high probability bounds, which
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we provide for our case. Regret bounds for online SGD techniques have been given iin
[25,9]: the gradient descent algorithm in [25] is in the setting of optimising the average
of convex loss functions whose gradients are available, while that in [9] is for strongly
convex loss functions.

In comparison to previous work w.r.t. least squares regression, we highlight the fol-
lowing differences: (i) Earlier works on least squares regression (cf. [9]) require the
knowledge of the strong convexity constant in deciding the step-size, while we average
the iterates to get rid of this dependency. (ii) Our analysis is much simpler (since we
work directly with least squares problems) and we make all the constants explicit for
the problems considered.

3 Fast LSTD Using Stochastic Approximation (fLSTD-SA)

We propose here a stochastic approximation variant of the least squares temporal differ-
ence (LSTD) algorithm, whose iterates converge to the same fixed point as the regular
LSTD algorithm, while incurring much smaller overall computational cost.

The algorithm, which we call fast LSTD through Stochastic Approximation (fLSTD-
SA), is a simple stochastic approximation scheme with randomised samples. The re-
sults that we present establish that fLSTD-SA computes an ε-approximation to the
LSTD solution θ̂T with probability 1 − δ, while incurring a complexity of the order
O(d ln(1/δ)/ε2), irrespective of the number of samples T . In turn, this enables us to
give a performance bound for the approximate value function computed by fLSTD-SA.
A schema of fLSTD-SA is given in Figure 1.

Although our analysis for fLSTD-SA depends on a strong convexity assumption that
may not hold in all situations, we present also a variant of fLSTD-SA employing iterate
averaging for which error bounds can be given without resorting to a strong convexity
assumption.

θn

Pick in uniformly

in {1, . . . , T }

Random Sampling

Update θn

using (sin , rin , s
′
in)

SA Update

θn+1

Fig. 1. Overall flow of the fLSTD-SA algorithm

3.1 Background for LSTD

Consider an MDP with (finite) state space S, (finite) action space A and transition
probabilities p(s, a, s′), s, s′ ∈ S, a ∈ A. For a given stationary policy π : S → A, the
value function V π is defined by

V π(s) := E

[ ∞∑
t=0

γtr(st, π(st)) | s0 = s

]
, (1)
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where st denotes the state of the MDP at time t, β ∈ (0, 1) is the discount factor, and
r(s, a) denotes the instantaneous rewards obtained in state s with action a. The value
function V π can be expressed as the fixed point of the Bellman operator T π defined by

T π(V )(s) := r(s, π(s)) + β
∑
s′

p(s, π(s), s′)V (s′), (2)

When the cardinality of S is huge and in the absence of knowledge of the transition
dynamics, a popular approach is to parameterize the value function using a linear func-
tion approximation architecture, i.e., for every s ∈ S, we approximateV π(s) ≈ φ(s)Tθ,
where φ(s) is a d-dimensional feature vector with d << |S|, and θ is a tunable param-
eter. The well-known TD learning algorithm [3] attempts to find the fixed point of the
operator ΠT π given by

Φθ = ΠT π(Φθ), (3)

where B = {Φθ | θ ∈ Rd} is the space within which we want to approximate the value
function V π, Π is the orthogonal projection onto B, and Φ is the feature matrix with
rows φ(s)T, ∀s ∈ S denoting the features corresponding to state s ∈ S. Let θ∗ denote
the solution to (3), P the transition probability matrix with components p(s, π(s), s′)
and Ψ the stationary distribution (assuming it exists) of the Markov chain for the un-
derlying policy π. Then, θ∗ can be written as the solution to the following system of
equations (cf. [2, Section 6.3])

Aθ∗ = b, where A = ΦTΨ(I − βP )Φ and b = ΦTΨr. (4)

The LSTD approach is to approximate A and b using T samples {(si, ri, s′i), i =
1, . . . , T )} obtained by simulating the MDP with the underlying policy π.

An approximate solution to (4) is constructed as follows:

θ̂T = Ā−1
T b̄T (5)

where ĀT = T−1
∑T

i=1 φ(si)(φ(si) − βφ(s′i))
T, and b̄T = T−1

∑T
i=1 riφ(si). Here

φ(si) is a d-dimensional feature vector corresponding to state si, for all i = 1, . . . , T .
By invoking the strong law of large numbers, one can show that ĀT → A and b̄T → b
as the number of samples T tends to infinity.

3.2 Update Rule for Flstd-SA

Starting with an arbitrary θ0, we update the parameter θn as follows:

θn = θn−1 + γn
(
rin + βθT

n−1φ(s
′
in)− θT

n−1φ(sin)
)
φ(sin), (6)

where each in is chosen uniformly randomly from the set {1, . . . , T }. In other words,
we pick a sample with uniform probability 1/T from the set D := {(si, ri, s′i), i =
1, . . . , T )} and use it to perform a fixed point iteration in (6). The quantities γn above
are step sizes that are chosen in advance and satisfy standard stochastic approximation
conditions (see (A1) below). Notice that the above update is the usual TD update, except
that the samples are drawn uniformly randomly from the sample set D.
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4 Main Results

4.1 Error Bounds

We make the following assumptions for the analysis fLSTD-SA:
(A1) The step sizes γn satisfy

∑
n γn = ∞, and

∑
n γ

2
n < ∞.

(A2) Bounded features: ‖φ(si)‖2 ≤ 1, for i = 1, . . . , T .

(A3) Bounded rewards: |ri| ≤ Rmax < ∞ for i = 1, . . . , T and bounded linear space,
i.e., −Vmax ≤ Φθ ≤ Vmax < ∞.

(A4) Strong Convexity: Writing ΦT


= (φ(s1)

T; . . . ;φ(sT )
T), the covariance matrix

1
T Φ

T

TΦT is positive definite and its smallest (positive) eigenvalue is at least μ.
By working in a bounded linear space along with bounded rewards and features, along
with step sizes that satisfy standard stochastic approximation conditions, we ensure that
the parameter θ remains stable, and hence that (6) converges.

To obtain high probability bounds on the error we consider separately the deviation
of zn from its mean (see (7) in Theorem 1), and the size of its mean itself (see (8)
in Theorem 1). In this way the first quantity can be directly decomposed as a sum of
martingale differences, and then a standard martingale concentration argument applied,
while the second quantity can be analyzed by directly unrolling iteration (6) (a proof
outline is provided in Section 6, while the detailed proofs are available in [16]).

Theorem 1. Under (A1)-(A4), we have ∀ε > 0,

P (‖θn − θ̂T ‖2−E‖θn − θ̂T ‖2 ≥ ε) ≤ exp

(
−ε2/(2

n∑
i=1

L2
i )

)
, (7)

E‖θn − θ̂T ‖2 ≤ exp(−(1− β)μΓn)‖θ0 − θ̂T ‖2︸ ︷︷ ︸
initial error

+

(
n−1∑
k=1

H2
βγ

2
k+1 exp(−2(1− β)μ(Γn − Γk+1)

) 1
2

︸ ︷︷ ︸
sampling error

, (8)

where Li := γi
∏n−1

j=i (1− 2γj+1μ((1− β)− β(2− β)γj+1))
1/2, Γn :=

∑n
i=1 γi and

H2
β := Rmax(Rmax + 2) + (1 + β)2V 2

max.

The initial error depends on the initial point θ0 of the algorithm. The sampling error
arises out of a martingale difference sequence that depends on the random deviation of
the stochastic update from the standard fixed point iteration, and is the dominant term
in (8). Under a suitable choice of step-sizes (see Corollary 1), it can be shown that the
initial error is forgotten faster than the sampling error.

The above theorem assumes no specific form for the step-sizes γn. Specifying the
step-size sequence, we can merge the two claims above to deduce the following bounds
on the approximation error zn with explicit constants:
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Corollary 1 (Error Bound for iterates of fLSTD-SA). Under (A2)-(A4), choosing
γn = (1−β)c

2(c+n) and c such that (1− β)2μc ∈ (1.33, 2), we have, for any δ > 0,

E‖θn − θ̂T ‖2 ≤ K1(n)√
n+ c

and P

(
‖θn − θ̂T ‖2 ≤ K2(n)√

n+ c

)
≥ 1− δ, (9)

where K1(n) and K2(n) are functions of order O(1), defined by:

K1(n) =

√
c‖θ0 − θ̂T ‖2

n((1−β)2μc−1)/2
+
(1− β)cHβ

2
, K2(n) =

(1− β)c
√

log δ−1

2
√(

4
3 (1− β)2μc− 1

)+K1(n).

Remark 1. We note that setting c such that (1 − β)2μc = η ∈ (1.33, 2) we can rewrite
the constants in Corollary 1 as:

K1(n) =
‖θ0 − θ̂T ‖2

(1− β)
√

μn(η−1)
+

Hβ

2(1− β)μ
, K2(n) =

√
log δ−1

2(1− β)μ
√(

4
3η − 1

)+K1(n).

So both the bounds in expectation and high probability have a linear dependence on the
inverse of (1− β)μ.

4.2 Performance Bound

Let ṽT := ΦθT denote the approximate value function obtained from T steps of fLSTD-
SA, and let v denote the true value function, evaluated at the states s1, . . . , sT . Then the
following lower bound on the performance of ṽT can be deduced from Corollary 1 in
conjunction with Theorem 1 of [12]:

Theorem 2. Under conditions of Corollary 1, for any δ > 0, with probability 1− δ,

‖v − ṽT ‖T ≤ ‖v −Πv‖T√
1− β2︸ ︷︷ ︸

residual error

+O

(√
d

(1− β)2μT

)
︸ ︷︷ ︸

estimation error

+O

(√
1

(1 − β)μT
ln

1

δ

)
︸ ︷︷ ︸

approximation error

,

where ‖f‖2T := T−1
∑T

i=1 f(si)
2, for any function f .

The residual and estimation errors (first and second terms in the RHS above) are
artifacts of function approximation and least squares methods, respectively. The third
term, of order O(1/

√
T ), is a consequence of using fLSTD-SA in place of the LSTD.

From the above theorem, we observe that using our scheme in place of LSTD does not
impact the rate of convergence of the approximate value function ṽT to the true value
function v. This finding coupled with the fact that our scheme is of low complexity
makes it attractive for implementation in big data settings, where the feature dimension
d is large.
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5 Variants

To obtain the best performance from fLSTD-SA we need to know the value of μ. How-
ever with minor adjustments to the analysis we can provide two variants of fLSTD-SA
for which it is not necessary to know the value of μ to obtain the (optimal) approxima-
tion error of order O(n−1/2) and explicit constants.

5.1 Regularization

A popular approach is to search not for the LSTD solution, but instead for a regularized
LSTD solution defined as follows:

θ̂regT = (ĀT + μI)−1b̄T (10)

where μ is now a constant set in advance. The update rule for this variant is

θregn =(1− γnμ)θn−1 + γn
(
rin + βθT

n−1φ(s
′
in)− θT

n−1φ(sin)
)
φ(sin). (11)

This algorithm retains all the properties of the non-regularized fLSTD-SA algorithm,
except that it converges to the solution of (10) rather than to that of (5). In particular the
conclusions of Theorem 1, and of Corollary 1 hold without requiring assumption (A4),
but measuring θn − θ̂regT , the error to the regularized fixed point θ̂regT .

5.2 Iterate Averaging

Another well-known approach is to employ the Polyak-Ruppert scheme of averaging
the iterates, together with choosing larger step-sizes. In particular, we fix the step-size

γn := (1−β)
2

(
c

c+n

)α

, and then use the averaged iterate θ̄n+1 := (θ1 + . . . + θn)/n

to approximate the LSTD solution. Here the quantities θn are just the iterates of the
fLSTD-SA presented earlier. An analogue of Corollary 1 for iterate averaging is as
follows (see [16] for a detailed proof):

Corollary 2. Under (A2)-(A3), choosing γn = (1−β)
2

(
c

c+n

)α

, with α ∈ (1/2, 1) and

c ∈ (1.33, 2), we have, for any δ > 0,

E‖θ̄n − θ̂T ‖2 ≤ KIA
1 (n)

(n+ c)α/2
and P

(
‖θ̄n − θ̂T ‖2 ≤ KIA

2 (n)

(n+ c)α/2

)
≥ 1− δ, (12)

where, writing C =
∑∞

n=1 exp(−μcn1−α)(< ∞),

KIA
1 (n) :=

C‖θ0 − θ̂T ‖2
(n+ c)

(1−α)/2
+

Hβc
α(1 − β)

(μcα(1− β)2)
α 1+2α

2(1−α)

, and

KIA
2 (n) :=

√
log δ−1

μ(1 − β)

[
3α +

[
2α

μcα(1− β)2
+

2α

α

]2]
1

(n+ c)(1−α)/2
+KIA

1 (n).

Thus, it is possible to remove the dependency on the knowledge of μ for the choice
of c through averaging of the iterates, at the cost of (1 − α)/2 in the rate. However,
choosing α close to 1 causes a sampling error blowup. As suggested by earlier works
on stochastic approximation, it is preferred to average after a few iterations since the
initial error is not forgotten exponentially faster than the sampling error with averaging.
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6 Outline of Analysis

In this section we give outline proofs of the main results concerning the fLSTD-SA
algorithm. We split these into two sections: first, we sketch the martingale analysis
that leads to the proof of Theorem 1 and which forms the template for the proof for
extension to least squares regression (see Appendix C in [16]) and the regularized and
iterate averaged variants of fLSTD-SA (see Corollary 2); second, we give the derivation
of the rates when the step sizes a chosen in specific forms.

6.1 Outline of Theorem 1 Proof

Denote the approximation error by zn := θn − θ̂T . Recall that Theorem 1 decomposes
the problem of bounding zn into bounding the deviation from its mean in high proba-
bility and then the mean of zn itself. In the following, we first provide a sketch of the
proof of high probability bound and later outline the proof for the bound in expectation.
For the former, we employ a proof technique similar to that used in [7]. However, our
analysis is much simpler and we make all the constants explicit for the problem at hand.
Moreover, in order to eliminate a possible exponential dependence of the constants in
the resulting bound on the inverse of (1− β)μ, we depart from the argument in [7].

Proof (High probability bound.). (Sketch) Recall that zn := θn − θ̂T . We rewrite
‖zn‖22 −E‖zn‖22 as a telescoping sum of martingale differences:

‖zn‖2 − E‖zn‖2 =

n∑
i=1

gi − E[gi |Fi−1 ] =

n∑
i=1

Di,

where Di := gi − E[gi |Fi−1 ], gi := E[‖zn‖2 |θi ], and Fi denotes the sigma algebra
generated by the random variables {i1, . . . , in}.

The next step is to show that the functions gi are Lipschitz continuous in the re-
wards, with Lipschitz constants Li. In order to obtain constants with no exponential
dependence on the inverse of (1 − β)μ we depart from the general scheme of [7], and
use our knowledge of the form of the update function fi to eliminate the noise due to the
rewards between time i+ 1 and time n. Specifically, letting Θi

j(θ) denote the mapping
that returns the value of the iterate θj at instant j, given that θi = θ, we show that

E
[
‖Θi

n(θ)−Θi
n(θ

′)‖22
]
= E

[
E
(
[I − γn[φ(sin)φ(sin )

T − βφ(sin)φ(s
′
in)

T]]

.(Θi
n−1(θ)−Θi

n−1(θ
′)) | Θi

n−1(θ), Θ
i
n−1(θ

′)
)]

≤ (1− γnμ(1 − β − γnβ(2− β)))E
[
‖Θi

n−1(θ)−Θi
n−1(θ

′)‖22
]
,

where we used the specific form of fi in obtaining the equality, and have applied as-
sumption (A4) to obtain the inequality. Unrolling this iteration then yields the new
Lipschitz constants.

Now we can invoke a standard martingale concentration bound: Using the Li-
Lipschitz property of the gi functions and the assumption (A3) we find that

P (‖zn‖2 − E‖zn‖2 ≥ ε) = P

(
n∑

i=1

Di ≥ ε

)
≤ exp(−λε) exp

(
αλ2

2

n∑
i=1

L2
i

)
.
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The claim follows by optimizing the above over λ. The full proof is available in [16].

Proof (Bound in expectation.). (Sketch) First we extract a martingale difference from
the update rule (6): Recall that zn := θn−θ̂T . Let fn(θ) := (θTxin−(rin+βθTx′

in))xin

and let F (θ) := Ein(fn(θ)). Then, we have

zn = θn − θ̂T = θn−1 − θ̂T − γn (F (θn−1)−ΔMn) ,

where ΔMn+1(θ) = Fn(θ) − fn(θ) is a martingale difference. Now since θ̂T is the
LSTD solution, F (θ̂T )) = 0. Moreover, F (·) is linear, and so we obtain

zn =zn−1 − γn
(
zn−1Ān −ΔMn

)
= Πnz0 −

n∑
k=1

γkΠnΠ
−1
k ΔMk,

where Ān =
1

n

n∑
i=1

xi(xi − βx′
i)

T and Πn :=
∏n

k=1

(
I − γkĀk

)
.

By Jensen’s inequality, we obtain

E(‖zn‖2) ≤ (E(〈zn, zn〉))
1
2 =

(
E‖Πnz0‖22 +

n∑
k=1

γ2
kE‖ΠnΠ

−1
k ΔMk‖22

) 1
2

(13)

The rest of the proof amounts to bounding the martingale difference ΔMn as follows:

E[‖ΔMn‖22] ≤ Eit〈fit(θt−1), fit (θt−1)〉 ≤ Rmax(Rmax + 2) + (1 + β)2‖θt−1‖22 ≤ H2
β.

6.2 Derivation of Rates

Now we give the proof of Corollary 1, which gives explicitly the rate of convergence of
the approximation error in high probability for the specific choice of step sizes:

Proof (Proof of Corollary 1:). Note that when γn = (1−β)c
2(c+n) ,

n∑
i=1

L2
i =

n∑
i=1

(1 − β)2c2

4(c+ i)2

n∏
j=i

(
1− 2μ

(1− β)c

2(c+ n)
((1− β) − β(2− β)

(1 − β)c

2(c+ n)
)

)

≤
n∑

i=1

(1− β)2c2

4(c+ i)2
exp

⎛⎝−3

4
(1 − β)2μc

n∑
j=i

1

(c+ n)

⎞⎠
≤ (1 − β)2c2

4(n+ c)
3
4 (1−β)2μc

n∑
i=1

(i + c)−(2− 3
4 (1−β)2μc).

We now find three regimes for the rate of convergence, based on the choice of c:

(i)
∑n

i=1 L
2
i = O

(
(n+ c)

3
4 (1−β)2μc

)
when 3

4 (1− β)2μc ∈ (0, 1),

(ii)
∑n

i=1 L
2
i = O

(
n−1 lnn

)
when 3

4 (1 − β)2μc = 1, and

(iii)
∑n

i=1 L
2
i = (1−β)2c2

4( 3
4 (1−β)2μc−1)

(n+ c)−1 when 3
4 (1− β)2μc ∈ (1, 2).



76 L.A. Prashanth, N. Korda, and R. Munos

(We have used comparisons with integrals to bound the summations.) Thus, setting
2/((1−β)2μ) > c > 1/((1−β)2μ), the high probability bound from Theorem 1 gives

P (‖θn − θ̂T ‖2 − E‖θn − θ̂T ‖2 ≥ ε) ≤ exp

(
− ε2(n+ c)

2Kμ,c,β

)
(14)

where Kμ,c,β := (1−β)2c2

4((1−β)2μc−1) .
Under the same choice of step-size, the bound in expectation in Theorem 1 we have:

n−1∑
k=1

H2
βγ

2
k+1 exp(−2(1− β)μ(Γn − Γk+1))

≤
(1− β)2c2H2

β

4(n+ c)(1−β)2μc

n∑
k=1

(c+ k)−(2−(1−β)2μc) ≤
(1 − β)2c2H2

β

4(n+ c)

we in the last inequality we have again compared the sum with an integral. Similarly

exp(−(1 − β)μΓn) ≤
(

c

n+ c

) (1−β)2μc
2

≤
(

c

n+ c

) 1
2

.

So we have

E‖θn − θ̂T ‖2 ≤
(√

c‖θ0 − θ∗‖2 +
(1− β)cHβ

2

)
(c+ n)−

1
2 , (15)

and the result now follows.

7 Extension to Least Squares Regression

In this section, we describe the classic parameter estimation problem using the method
of least squares, the standard approach to solve this problem and a low-complexity
alternative using stochastic approximation.

In this setting, we are given a set of samples D := {(xi, yi), i = 1, . . . , T } with the
underlying observation model yi = xT

iθ
∗ + ξi (ξi is zero mean and variance bounded

by σ < ∞, and θ∗ is an unknown parameter). The least squares estimate θ̂T minimizes∑T
i=1(yi − θTxi)

2. It can be shown that θ̂T = Ā−1
T bT , where ĀT = T−1

∑T
i=1 xix

T
i

and b̄T = T−1
∑T

i=1 xiyi.
Notice that, unlike the RL setting, θ̂T here is the minimizer of an empirical loss

function. However, as in the case of LSTD, the computational cost for a Sherman-
Morrison lemma based approach for solving the above would be of the order O(d2T ).
Similarly to the case of the fLSTD-SA algorithm, we update the iterate θn using a SA
scheme as follows (starting with an arbitrary θ0),

θn = θn−1 + γn(yin − θT

n−1xin)xin , (16)

where, as before, each in is chosen uniformly randomly from the sample set D and γn
are step-sizes.
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Unlike fLSTD-SA which is a fixed point iteration, the above is a stochastic gradient
descent procedure. Nevertheless, using the same proof template as for fLSTD-SA ear-
lier, we can derive bounds on the approximation error, i.e., the distance between θn and
least squares solution θ̂T , both in high probability as well as expectation.

Results. As in the case of fLSTD-SA, we assume that the features are bounded, the
noise is i.i.d, zero-mean and bounded and the matrix ĀT is positive definite, with small-
est eigenvalue at least μ > 0. An analogue of Corollary 1 for this setting is as follows
(See Appendix C in [16] for a detailed proof.):

Corollary 3. Choosing γn = c
2(c+n) and c such that μc ∈ (1.33, 2), for any δ > 0,

E‖θn − θ̂T ‖2 ≤ KLS
1√

n+ c
and P

(
‖θn − θ̂T ‖2 ≤ KLS

2√
n+ c

)
≥ 1− δ,

where, defining h(n) := c
[(

σ + 2‖θ0 − θ̂T ‖22
)
+ 4‖θ0 − θ̂T ‖2 lnn+ 2 ln2 n

]
,

KLS
1 (n) :=

√
c‖θ0 − θ̂T ‖2

(n+ c)(μc−1)/2
+

h(n)

2
, KLS

2 (n) :=

√
c√

((μc)/2− 1)

√
log

1

δ
+K1(n).

8 Traffic Control Application

LSPI [11] is a well-known algorithm for control based on the policy iteration procedure
for MDPs. It performs policy evaluation and policy improvement in tandem. For the
purpose of policy evaluation, LSPI uses a LSTD-like algorithm called LSTDQ, which
learns the state-action value function. In contrast, LSTD learns the state value function.

We now briefly describe LSTDQ and its fast SA variant fLSTDQ-SA: We are given
a set of samples D := {(si, ai, ri, s′i), i = 1, . . . , T )}, where each sample i denotes a
one-step transition of the MDP from state si to s′i under action ai, while resulting in a
reward ri. LSTDQ attempts to approximate the Q-value function for any policy π by
solving the linear system θ̂T = Ā−1

T b̄T , where ĀT = T−1
∑T

i=1 φ(si, ai)(φ(si, ai) −
βφ(s′i, π(s

′
i)))

T, and b̄T = T−1
∑T

i=1 riφ(si, ai). fLSTDQ-SA approximates LSTDQ
by an iterative update scheme as follows (starting with an arbitrary θ0):

θk = θk−1 + γk
(
rik + βθT

k−1φ(s
′
ik , πn(s

′
ik))− θT

k−1φ(sik , aik)
)
φ(sik , aik) (17)

From Section 3, it is evident that the claims in Theorem 1 and Corollary 1 hold for the
above scheme as well.

The idea behind the experimental setup is to study both LSPI and a variant of LSPI,
referred to as fLSPI-SA, where we use fLSTDQ-SA as a subroutine to approximate the
LSTDQ solution. Algorithm 1 provides the pseudo-code for the latter algorithm.

We consider a traffic signal control application for conducting the experiments. The
problem here is to adaptively choose the sign configurations for the signalized inter-
sections in the road network considered, in order to maximize the traffic flow in the
long run. Let L be the total number of lanes in the road network considered. Further,
let qi(t), i = 1, . . . , L denote the queue lengths and ti(t), i = 1, . . . , L the elapsed time
(since signal turned to red) on the individual lanes of the road network. Following [14],
the traffic signal control MDP is formulated as follows:
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Algorithm 1. fLSPI-SA

Input: Sample set D := {si, ai, ri, s
′
i}Ti=1, obtained from an initial (arbitrary) policy

Initialisation: ε, τ , step-sizes {γk}τk=1, initial policy π0 (given as θ0)
π ← π0, θ ← θ0
repeat

Policy Evaluation
Approximate LSTDQ(D,π) using fLSTDQ-SA(D,π) as follows:
for k = 1 . . . τ do

Get random sample index: ik ∼ U({1, . . . , T})
Update fLSTD-SA iterate θk using (17)

end for
θ′ ← θτ , Δ = ‖θ − θ′‖2
Policy Improvement

Obtain a greedy policy π′ as follows: π′(s) = argmaxa∈A θ′Tφ(s, a)

θ ← θ′, π ← π′

until Δ < ε

State st =
(
q1(t), . . . , qL(t), t1(t), . . . , tL(t)

)
,

Action at belongs to the set of feasible sign configurations,

Single-stage cost h(st) = u1

[∑
i∈Ip

u2 · qi(t) +
∑

i/∈Ip
w2 · qi(t)

]
+ w1

[∑
i∈Ip

u2 ·

ti(t) +
∑

i/∈Ip
w2 · ti(t)

]
, where ui, wi ≥ 0 such that ui + wi = 1 for i = 1, 2 and

u2 > w2. Here, the set Ip is the set of prioritized lanes.

Table 1. Feature selection

State Action Feature φi(s, a)

qi < L1 and ti < T1 RED 0.01
GREEN 0.06

qi < L1 and ti ≥ T1
RED 0.02

GREEN 0.05

L1 ≤ qi < L2 and ti < T1
RED 0.03

GREEN 0.04

L1 ≤ qi < L2 and ti ≥ T1 RED 0.04
GREEN 0.03

qi ≥ L2 and ti < T1 RED 0.05
GREEN 0.02

qi ≥ L2 and ti ≥ T1 RED 0.06
GREEN 0.01

Function approximation is a standard technique employed to handle high-dimensional
state spaces (as is the case with the traffic signal control MDP on large road networks).
We employ the feature selection scheme from [15], which is briefly described in the
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Fig. 2. Norm difference, throughput and runtime performance of LSPI and fLSPI-SA

following: The features φ(s, a) corresponding to any state-action tuple (s, a) is a L-
dimensional vector, with one bit for each line in the road network. The feature value
φi(s, a), i = 1, . . . , L corresponding to lane i is chosen as described in Table. 1, with
qi and ti denoting the queue length and elapsed times for lane i. Thus, as the size of the
network increases, the feature dimension scales in a linear fashion.

Note that the above feature selection scheme depends on certain thresholds L1 and
L2 on the queue length and T1 on the elapsed times. The motivation for using such
graded thresholds is owing to the fact that queue lengths are difficult to measure pre-
cisely in practice. We set (L1,L2, T1) = (6, 14, 130) in all our experiments and this
choice has been used, for instance, in [15].

We implement both LSPI as well as fLSPI-SA for the above problem. We collect T =
10000 samples from a exploratory policy that picks the actions in a uniformly random
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manner. For both LSPI and fLSPI-SA, we set β = 0.9 and ε = 0.1. For fLSPI-SA,
we set τ = 500 steps. This choice is motivated by an experiment where we observed
that at 500 steps, fLSTD-SA is already very close to LSTDQ and taking more steps did
not result in any significant improvements for fLSPI-SA. We implement the regularized
variant of LSTDQ, with regularization constant μ set to 1. Motivated by Corollary 1,
we set the step-size γk = (1 − β)c/(2(c+ k)), with c = 1.33(1− β)−2.

Results We report the norm differences, total arrived road users (TAR) and run-times
obtained from our experimental runs in Figs. 2a–2c. Norm difference measures the dis-
tance in �2 norm between the fLSTD-SA iterate θk, k = 1, . . . , τ and LSTDQ solution
θ̂T in iteration 1 of fLSPI-SA. TAR is a throughput metric that denotes the total number
of road users who have reached their destination. The choice 1 of the iteration in Fig
2a is arbitrary, as we observed that fLSTD-SA iterate θτ is close to the corresponding
LSTDQ solution in each iteration of fLSPI-SA. The runtime reports in Fig. 2c are for
four different road networks of increasing size and hence, increasing feature dimension.

From Fig. 2a, we observe that fLSTD-SA algorithm converges rapidly to the corre-
sponding LSTDQ solution. Further, from the runtime plots (see Fig. 2c), we notice that
fLSPI-SA is several orders of magnitude faster than regular LSPI. From a traffic appli-
cation standpoint, we observe in Fig. 2b that fLSPI-SA results in a throughput (TAR)
performance that is on par with LSPI.

9 Conclusions

We analysed a stochastic approximation based algorithm with randomised samples for
policy evaluation by the method of LSTD. We provided convergence rate results for
this algorithm, both in high probability and in expectation. Further, we also established
that using this scheme in place of LSTD does not impact the rate of convergence of the
approximate value function to the true value function. This result coupled with the fact
that the SA based scheme possesses lower computational complexity in comparison to
traditional techniques, makes it attractive for implementation in big data settings, where
the feature dimension is large. On a traffic signal control application, we demonstrated
the practicality of a low-complexity alternative to LSPI that uses our SA based scheme
in place of LSTDQ for policy evaluation.
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Abstract. Large tiles in a database are itemsets with the largest area
which is defined as the itemset frequency in the database multiplied by
its size. Mining these large tiles is an important pattern mining problem
since tiles with a large area describe a large part of the database. In
this paper, we introduce the problem of mining top-k largest tiles in a
data stream under the sliding window model. We propose a candidate-
based approach which summarizes the data stream and produces the
top-k largest tiles efficiently for moderate window size. We also propose
an approximation algorithm with theoretical bounds on the error rate
to cope with large size windows. In the experiments with two real-life
datasets, the approximation algorithm is up to hundred times faster than
the candidate-based solution and the baseline algorithms based on the
state-of-the-art solutions. We also investigate an application of large tile
mining in computer vision and in emerging search topics monitoring.

1 Introduction

Mining frequent patterns is an important research topic in data mining. However,
instead of focusing on exhaustive search to find all possible frequent patterns,
many works are now focusing on designing methods that are not only efficient
in the context of very big data but also limit, e.g. with constraints or with new
interestingness measures, the number of patterns output by these algorithms.

Area is a measure of pattern interestingness defined as a pattern’s frequency in
the database multiplied by its size. It has been shown that in some applications
such as in role mining [10,16] where the idea is, given a set of users and a set of
permissions, to find a minimum set of roles such that all users will be assigned
a role for which some permissions will be granted, mining roles is equivalent to
a variant of mining itemsets with large area in a database.

Recent applications produce a large variety of transactional data streams,
such as text stream from twitter1 or video stream in which video frames can
be converted into transactions [6]. In the context of data streams, data usually
arrive continuously with high speed, hence requiring efficient mining techniques
for summarizing the data stream and keeping track of important patterns.

1 www.twitter.com

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 82–97, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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In this paper we tackle the problem of mining the top-k largest tiles, i.e. the
k closed itemsets with the largest area in a stream of itemsets. The problem
of mining the largest tile in a database is well-known to be NP-hard and in-
approximable [7]. Therefore, the straightforward approach that recalculates the
set of top-k largest tiles from scratch every time a sliding window is updated
is not efficient. To deal with this situation, we first introduce in Section 4 a
candidate-based approach which incrementally summarizes the stream by keep-
ing the itemsets that can be the top-k largest tiles in some future windows. For
each candidate, an upper-bound and a lower-bound of the area in any future win-
dow are kept. These bounds are used to prune the candidates when they cannot
be the top-k largest tiles in any future window. In doing so, the candidate-based
algorithm is more efficient than the straightforward approach because updating
is cheaper than recalculating the top-k tiles from scratch.

However, when the widow size is large, the candidate-based algorithm is in-
efficient because the summary grows very quickly. Therefore, we introduce an
approximation algorithm with theoretical bounds on the error rate. In the ex-
periments with two real-life datasets presented in Section 6, the approximation
algorithm is two to three orders of magnitude faster and more accurate than the
candidate-based solution and the baseline algorithms created based on the state-
of-the-art solutions for the top-k largest tiles mining. We also discuss potential
applications of mining large tiles for object tracking in video and emerging search
topics monitoring problems.

2 Related Works

Recent works [12,9,17] propose approaches to solve the redundancy and trivial
patterns issues in frequent pattern mining. For instance, the first two works
focuse on finding a relevant or concise representation of sets of frequent patterns.
Meanwhile, the last work solves the aforementioned issues by proposing a MDL-
based approach that finds patterns compressing the database well. In all these
cases as well as in ours, the purpose is to limit the output of the algorithms to
a set of useful patterns.

The problem of mining large tiles has already been tackled in [10,16,13]. The
authors of the two first papers show that the problem of finding roles is equivalent
to variants of the tiling database problem. The last paper shows how tiles can be
used to understand complex proteins by identifying their subunits. The authors
of [4] also showed that the dense rectangles in a binary matrix seem to correspond
to interesting concepts. Therefore, mining large tiles may help to identify those
interesting concepts from the databases. In [15] the authors investigate how to
output the set of tiles in a tree representation which is easily interpretable by the
users. Tiles are also used to identify and characterize anomalies in a database in
[14].

In many applications, data arrives in a streaming fashion with high speed
[1]. Besides the popularity of data streams in many applications, the temporal
aspect of the patterns such as the evolution of patterns overtime [1] provides
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Fig. 1. An example of large tiles in a window with w = 8 transactions

useful insights about the data for the users. Despite the importance of data
stream paradigm, there is no work yet addressing the problem of mining large
tiles in a data stream. The algorithms introduced in this paper are, to the best
of our knowledge, the first to solve the problem of mining the top-k largest tiles
in a stream of itemsets under the sliding windows model.

3 Problem Definition

Let Σ be an alphabet of items, a transaction T is an itemset T ⊆ Σ. Let S =
T1T2 · · ·Tn be a stream of transactions where each transaction Tt is associated
with a timestamp t indicating the order of transaction generation.

In this work we consider the sliding window model in which a window of the
w most recent transactions is monitored. A sliding window of size w at time
point t denoted by Wt is a sequence of w consecutive transactions in the data
stream, i.e. Wt = Tt−w+1 · · ·Tt−1Tt.

For any given itemset I ⊆ Σ the frequency of I in a sliding window Wt,
denoted by ft(I), is defined as the number of transactions in Wt that are the
supersets of I. Let |I| be the cardinality of the set I, the area of I in the window
Wt denoted by At(I) is defined as At(I) = ft(I) ∗ |I|.

An itemset I is closed in a window Wt if there is no superset of I with the
same frequency as I in the window Wt. Such itemsets are usually called large
tiles in the literature [7]. Itemsets that are not closed correspond to sub-tiles of
large tiles and are thus not interesting for our problem. From now on we use the
term tiles to refer to closed itemsets.

Example 1 (Large tiles). Figure 1 shows a window with 8 transactions repre-
sented as rows of a binary matrix. In each row, an element is equal to 1 if the
corresponding item belongs to the transaction. In this figure, three large tiles
abc, degh and ghk with respective area 15, 12 and 15 are highlighted. Large tiles
are the maximal sub-matrices containing only 1.

The problem of stream tiling can be formulated as :

Definition 1 (Stream Tiling). Given a data stream of itemset transactions
S, a parameter k and a window size w, the stream tiling problem consists in
computing the k tiles with the largest area in every window of size w.
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4 Algorithms

It was proven that the problem of mining the largest tile in a database is NP-
Complete and is even inapproximable [7]. Therefore, recalculation of the top-
k largest tiles from scratch every time the window is updated is very time-
demanding. In this section we discuss efficient solutions for the given problem
under the streaming context.

4.1 Candidate-Based Algorithm

We first discuss an exact algorithm named cTile which maintains a summary of
the sliding window containing candidate itemsets that potentially can become
top-k largest tiles in any future window. This summary is designed such that it
can avoid expensive recalculation of the set of largest tiles from scratch when
the window is sliding.

The general idea of the algorithm is as follows: at every transaction Ti we
keep a candidate list Ci of all closed subsets of the given transaction which
can become a top-k tile in a future sliding window. In order to identify these
closed itemsets, we keep a lower-bound and an upper-bound on the area of these
itemsets in any future sliding window which contains Ti. These bounds will be
used to infer which itemsets can be top-k tiles and which sets for sure cannot be
top-k tiles in any future window (thus can be removed from the summary).

   

 

 
    

   transactions 

Given a window Ww = T1 · · ·Tw−1Tw, for every closed itemset J in the candi-
date list Ci(1 ≤ i ≤ w), the lower-bound and the upper-bound of the area of this
itemset in any future sliding window containing Ti are denoted J− and J+. The
lower-bound J− at time point w is calculated as the area of J in the transactions
Ti, Ti+1, · · · , Tw and the upper-bound J+ is calculated as

J+ = J− + (i− 1)× |J | (1)

Proposition 1. J− and J+ are the correct lower-bound and upper-bound on the
area of J in any future window Wt of size w, w ≤ t, containing the transaction Ti.

Example 2 (Bounds). Figure 2 (upper-part) shows an example of a sliding win-
dow with size w = 5. Each candidate J in a candidate list Ci is associated with
two numbers corresponding to the lower-bound and the upper-bound on the
area of the candidate. For instance, for the candidate J = ac associated with the
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Fig. 2. An example of the summary maintained by the cTile algorithm for sliding
windows with size w = 5. The summary contains candidate itemsets which can become
a top-k tile in the future. Every candidate is associated with a lower-bound and an
upper-bound on the area which are used to prune the candidate list.

candidate list C3 the lower-bound is J− = 4 because the area of ac in the set of
currently observed transactions T3, · · · , T5 is 2 ∗ 2 = 4. For any future window
in which the transaction T3 is not expired, the area of ac is at least as large as 4.
Meanwhile J+ = 8 because the area of ac in any future window that contains T3

is at most 4+2 ∗ 2 = 8. The area is equal to J+ only when the new transactions
T6 and T7 both contain ac.

Algorithm 1 incrementally maintains the candidate lists Ci in the summary.
When a new transaction is appended to the end of the window, the bounds
J+ and J− are updated accordingly (line 10-13). Then the new transaction is
intersected with every element in the summary and the intersections are added
to the corresponding candidate list (line 8-9). If there exists another candidate
B ∈ Cj kept at a younger transaction Tj (j > i), such that B− is ranked kth

in all transactions younger than Ti (including itself) and meanwhile B− > J+,
then J will never be among top-k tiles in any future sliding window, hence J is
removed from the summary. When a transaction is expired, it is removed from
the window along with the candidate list stored at the given transaction.

Example 3 (cTile). Figure 2 (bottom part) shows one update step of Algorithm
1 when a new transaction T6 = {a, c} is appended to the window and T1 together
with C1 are removed from the summary. First, T6 is intersected with all the ex-
isting candidates in C2, C3, · · · , C5 to add new closed sets to the candidate lists.
After that all the lower-bounds and the upper-bounds are updated accordingly.

Assume that we want to get top-3 largest tiles in the sliding window, i.e.
k = 3. Since (b, 3, 3) in C2 has the upper-bound equal to 3. It is removed from the
summary because the itemset ranked at the third position in the candidates lists
of younger transactions (including T2) are (a, 4, 4), (ac, 4, 10), (ab, 4, 4) whose
lower-bound is 4. The same pruning operation can be applied for (b, 2, 3) in C3.

Theorem 1. Given k, w and a stream of transactions, using the summary in
Algorithm 1 we can answer the top-k largest tiles exactly.
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Algorithm 1. cTile(St)

1: Input: A stream of transactions T1, T2, · · · , T∞, a sliding window size w and a
parameter k

2: Output: Summary C for calculating top-k largest tiles
3: C ←− {C1, C2, · · · , Cw} //candidate lists
4: for t = w→∞ do
5: C ← C \ {Ct−w+1}
6: Ct+1 ← {Tt+1}
7: C ← C ∪ {Ct+1}
8: for i = t→ t− w + 2 do
9: Ci ←− Ci

⋃
intersect(Ci, Tt+1)

10: for J ∈ Ci do
11: J− = |{i ≤ l ≤ t|J ⊆ Tl}| ∗ |J |
12: J+ = J− + (w − t+ i− 1)|J |
13: end for
14: Pruning(Ci)
15: end for
16: end for
17: Return C

Proof. Assume that there exists a top-k largest tile I in a window Wt not rec-
ognized as a top-k largest tile (false negative). The first transaction of Wt con-
taining I is denoted by Ti. False negative can only occur if at time t, I 
∈ Ci.
Therefore either I is directly pruned from Ci by pruning criteria or indirectly
pruned because its closed supersets are pruned.

Since the bounds are exact the former case cannot happen. The latter case
happens when I is not a closed itemset at the moment its closed supersets are
pruned. In such case, the upper-bound of I is always less than the upper-bound
of its closed supersets which were used to prune the supersets. Therefore, I is
not a top-k tile in Wt. Both cases lead to contradiction.

4.2 Approximation Algorithm

The size of the summary maintained by cTile grows quickly when the window
size increases making it inefficient for monitoring large windows. The main reason
is that each time a new transaction arrives, it has to be intersected with a large
amount of candidates, which is a time-consuming operation. Therefore, in this
section we discuss an approximation algorithm named aTile that approximates
the set of largest tiles efficiently.

The main process of the approximation algorithm is almost the same as Al-
gorithm 1. The only difference of these two algorithms lies in the method of
candidate pruning. Instead of using an upper-bound on the area, aTile tries to
approximate the future area of a tile. This estimate is used to prune the candi-
dates in the same way as cTile does.

Let us denote the probability of observing an itemset J as a subset of a
transaction in the data stream by μJ . Therefore, the expectation of the area of
the itemset J in a window of size w is μJ .|J |.w.
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Given a window Ww = T1 · · ·Tw−1Tw, assume that J is kept in the candidate
list Ci of transaction Ti. The lower-bound J− is calculated as in the cT ile al-
gorithm. Instead of using an upper bound J+ on the area of J , we compute an
estimate of the area of J denoted by J∗.

Since μJ is unknown, we cannot directly define J∗ as μJ .|J |.w. The probability
μJ is thus estimated in the sub-window Ti · · ·Tw. However, if this sub-window
is too small, the estimation of μJ is not accurate. Therefore, we introduced
a threshold L ≤ w: if the sub-window is smaller than L, we do not use this
estimation and fall back on using the upper bound J+ for J∗:

J∗ =

{
J− + (i − 1)× |J | if w − i+ 1 ≤ L (i.e., J∗ = J+)

J−
(w−i+1) × w if w − i+ 1 > L

(2)

All the steps of the of the aTile algorithm are very similar to the cT ile al-
gorithm except that it uses J∗ instead of J+ for candidate pruning. In the
experiment section we empirically show that the aTile algorithm is more effi-
cient than the cT ile algorithm because its candidate set is more concise. An
important property of the aT ile algorithm is that the error rate on the accuracy
of the result is bounded if we assume that the transactions are i.i.d. in a window
of size 2w.

5 Theoretical Analysis

In this section, we show theoretical bounds on the probability of errors induced
by the aT ile algorithm. We mainly show that the error rate is extremely low
when L is large enough. We consider two types of error event: False negative
(FN): in a window Wt∗ for some t∗, there is a true top-k largest tile that is not
present in the results returned by the aT ile algorithm and False positive (FP):
in a window Wt∗ for some t∗, there is a non top-k largest tile that is present in
the result returned by the aT ile algorithm.

5.1 False Negative Bound

Let us assume that I is a true top-k largest tile in the window Wt∗ and It
∗

k is
ranked at position k in the list of a true top-k largest tile of the window Wt∗ . Let
� ≥ 0 be the difference between the average area of I and It

∗
k in the windowWt∗ ,

i.e. � =
At∗ (I)−At∗ (I

t∗
k )

w . The following lemma show the relationship between the
probability of a false negative, L and �:

Lemma 1 If the transactions are independent and identically distributed (i.i.d)
in a window of size 2w, the probability that a random top-k tile is not reported,
is bounded as follows:

Pr(FN) < 4w ∗ e−
L�2

2|I|2
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Proof. A false negative happens in the window Wt∗ with respect to an itemset
I if its area is underestimated in that window. This only happens if there exists
at least one moment t < t∗ such that I is pruned from the candidate list Ci

(t− w < i ≤ t).
Given a time t, let W0 be a window containing transactions Ti, Ti+1, · · · , Tt

where |W0| = wo > L and let f0(I) be the frequency of I in the window W0.
When t is given, the event ”I is removed from Ci” (denoted by Rt) only happens
when the estimate of the upper-bound on the area of I is less than the area of
It

∗
k , i.e. fW0(I)|I| w

w0
< At∗(I

t∗
k ). Therefore, we have:

Pr(Rt) < Pr

(
f0(I)|I|

w

w0
≤ At∗(I

t∗
k )

)
< Pr

(
f0(I)|I|

w

w0
< At∗(I)− w�

)
< Pr

(
f0(I)

w0
<

ft∗(I)

w
− �

|I|

)
< Pr

(∣∣∣∣f0(I)w0
− ft∗(I)

w

∣∣∣∣ > �
|I|

)
< Pr

(∣∣∣∣f0(I)w0
− μI

∣∣∣∣+ ∣∣∣∣ft∗(I)w
− μI

∣∣∣∣ > �
|I|

)
< Pr

(∣∣∣∣f0(I)w0
− μI

∣∣∣∣ > �0

w0

)
+ Pr

(∣∣∣∣ft∗(I)w
− μI

∣∣∣∣ > �1

w

)
< Pr (|f0(I)− μIw0| > �0) + Pr (|ft∗(I)− μIw| > �1)

Where �0 = 
w0

2|I| and �1 = w

2|I| . It is important to notice that w0μI and wμI

are the expectation of the frequency of I in the window W0 and the window Wt∗

respectively. Since the transactions are independent to each other, according to
the Hoeffding inequality [11] we have:

Pr (|f0(I)− w0μI | > �0) < 2e
− 2�2

0
w0 < 2e

−w0
�2

2|I|2 < 2e
−L �2

2|I|2 (3)

A similar inequality can be obtained for bounding the second term as follows:

Pr (|ft∗(I)− wμI | > �1) < 2e−
2�2

1
w < 2e

−w �2

2|I|2 < 2e
−L �2

2|I|2 (4)

Moreover, since FN happens only when there at least one moment t such that
Rt happens, therefore:

Pr(FN) < Pr(∪t∗−w<t≤t∗Rt) <
∑

t∗−w<t≤t∗
Pr(Rt) (5)

Inequalities 3, 4 and 5 prove the lemma.

A direct corollary of Lemma 1 is shown in the following theorem:

Theorem 2. If I is strictly more important than It
∗

k , i.e. the expectation of the
area of I in a transaction is strictly greater than the expectation of the area of
It

∗
k in a transaction and L = O(w) then: lim

L−→∞
Pr(FN) = 0
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Proof. Let E(A(I)) be the expectation of the area of I in a transaction and
E(A(It

∗
k )) be the expectation of the area of It

∗
k in a transaction. Since � =

At∗ (I)−At∗ (I
t∗
k )

w we can imply that:

�
|I| =

At∗(I)−At∗(I
t∗
k )

w|I| � E(A(I)) − E(A(It
∗

k ))

|I| (6)

The last equation is the result of the law of large number when L goes to ∞.

From the last equation we can imply that lim
L−→∞

4we
−L �2

2|I|2 = 0 from which the

theorem is proved.

5.2 False Positive Bound

In this subsection we prove bound for false positive error which can be obtained
in a similar way as the bound of false negative.

Let J be an itemset that is not a true top-k largest tile in the window Wt∗

but returned by the aT ile algorithm as a false positive tile. An itemset ranked
at position k in the list of a true top-k largest tile of the window Wt∗ is denoted
by It

∗
k . Let � ≥ 0 be the difference between the area of J and It

∗
k in the window

Wt∗ , i.e. � =
At∗ (I

t∗
k )−At∗ (J)

w .
The following lemma show the relationship between the probability of a false

positive and L, � (proof is similar to Lemma 1):

Lemma 2 If the transactions are i.i.d. in a window of size 2w the probability of
false positive, i.e. the event that a random non top-k tile is reported, is bounded
as follows:

Pr(FP ) < 4w ∗ e−
L�2

2|I|2

A corollary of Lemma 2 is shown as follows (proof is similar to Theorem 2):

Theorem 3. If tile size is bounded and if J is strictly less important than It
∗

k ,
i.e. the expectation of the area of J is strictly less than the expectation of the
area of It

∗
k in a transaction and L = O(w) then: lim

L−→∞
Pr(FP ) = 0

Theorem 3 and Theorem 2 show an interesting result that the probability of
false positive and false negative decrease exponentially with L = O(w). It is
important to notice that the condition L = O(w) can be replaced by a weaker
assumption L = k logw for some constant values k. If k is large enough the
bound is also closed to zero. Although the bounds are not tight, in experiments,
we empirically show that false negative rate and false positive rate are negligible
even when L is set to a small value.
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5.3 Long Lasting Tiles

The two previous Theorems give probabilistic results. We can also show a de-
terministic one: if an itemset stays in the top-k largest tiles for more than w
consecutive windows and its area is at least twice the area of the k-th tile, then
the aTile algorithm finds it. An important point of this theorem is that it does
not depends on the value of L. Therefore, even if the probability of false negative
or false positive is higher with a small L, the algorithm is still able to mine these
tiles that we call the long lasting tiles.

Theorem 4. Let z be a time and J be an itemset. If the area of J in every
windows Wt with z ≤ t < z+w is larger than two time the area of the k-th largest
tile in this window (i.e., At(J) ≥ 2At(I

t
k)), then there is a time z−w < t∗ < z+w

such that J (or one of its supersets) is in Ct∗ and is never pruned by aTile.

Proof. We define hypothesis H as: t∗ does not exist. We will show that if H is
true, it leads to a contradiction and thus the theorem must be true. We denote
by [x, y] the subsequence of transactions Tx · · ·Ty. The occurrence times of J in
the subsequence [z−w+1, z+w−1] are denoted by z−w < t1 < . . . < tk < z+w.

If H is true, then for every ti, itemset J and its supersets must be pruned
from Cti at some time t′i no later than ti + w − 1, i.e., t′i < ti + w.

Let Si be the subsequence [ti, t
′
i] = Tti · · ·Tt′i . If for all z − w < ti ≤ z, we

have t′i ≤ z then we define W0 = Wz. Otherwise, we take W0 = Wt′max
where

t′max = max{t′i | ti ≤ z}.
We now construct a set S of these subsequences Si such that every subse-

quence of S is included in W0, every occurrence of J is in at least one of these
subsequences, and at most two of these subsequences intersect at any given time.
We start with S = ∅ if W0 = Wz or with S = {[tmax, t

′
max]} otherwise. We scan

the window W0 from left to right. If there is an occurrence of J at time ti not al-
ready in a subsequence of S, then we add Si in S. All the added subsequences are
disjoint by construction, only the last added one may intersect with (tmax, t

′
max).

For every Si ∈ S, let Ai be the area of the k-th largest tile of Si used to
prune J , i.e., J∗ < Ai. Since by Eq. 2 J∗ ≥ wASi(J)/(t

′
i − ti + 1), we have

wASi(J)/(t
′
i − ti + 1) < Ai. If we define Am = maxAi, then ASi(J) < Am(t′i −

ti + 1)/w and by summation for all Si ∈ S:
∑

iASi(J) < Am

∑
i(t

′
i − ti + 1)/w.

Since all occurrences of J are covered by at least one Si,
∑

iASi(J) > AW0(J)
and since at most two subsequences Si from S intersect at any given time,∑

i(t
′
i − ti + 1) ≤ 2w and thus AW0(J) < 2Am. Since Am is the size of the k-th

tile of one of the Si ⊆ W0, it is less than the size of the k-th tile in the whole
window W0. Finally, AW0 (J) is strictly less than two time the area of the k-th
tile in W0 which is a contradiction.

6 Experiments

In this section, we perform experiments with two real-life data streams to com-
pare the proposed algorithms to the baseline approaches with respect to the
efficiency and the accuracy of the results. The two datasets are:
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Fig. 3. Accuracy versus average update time in seconds of the aTile algorithm and the
sTile algorithm when L and the number samples increases
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Fig. 4. The average accuracy of the aTile algorithm when L is varied. In the table: the
average accuracy of the top-10 largest tiles returned by aTile when the window size is
varied and L = 0.1w

– Kosarak: 1M transactions of click log by the users of a website. Item are a
pages in the website. The largest transaction contains 500 items.

– AOL: 100K search queries by the users of the AOL search engine. Each item
is a keyword in the search query. Most queries are short and the longest
query contains only 26 keywords.

The datasets and the source codes of aTile and cTile in C++ are available
for download2. The baseline algorithms for comparison are as follows:

– Tile: the original implementation of the tiling algorithm for static database
[7]. In order to adopt this algorithm for a data stream, we use T ile to recal-
culate the top-k largest tiles from scratch whenever the window is sliding.

– sTile: a sampling based technique proposed in [2]. The sT ile algorithm sam-
ples N itemsets from the window such that each itemset is sampled with
probability proportional to the area of the itemset. The top-k largest tiles
are extracted from the samples every time the window is sliding.

2 http://www.win.tue.nl/~lamthuy/tile.htm

http://www.win.tue.nl/~lamthuy/tile.htm
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sTile aTile 

# samples Sum of area L Sum of area 
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Fig. 5. The average sum (larger is better) of the area of the top-10 tiles returned by
the aTile and the sTile algorithms
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Fig. 6. Average time per update according to the window size

6.1 Accuracy

We performed experiments to demonstrate the effectiveness of the aTile algo-
rithm in term of accuracy. In the first experiment the window size is set to
w = 5000 for the Kosarak dataset and w = 10000 for the AOL dataset. Figure
4 shows the average accuracy calculated as the precision of the top-k largest
tiles returned by the aTile algorithm when L is varied. Even for very small L,
the accuracy is very high, e.g. 99% in the Kosarak dataset and 93% in the AOL
dataset. The accuracy increases and reaches 100% accuracy when L is increased.
In the same figure, we can also see that the results are similar when k is varied.

In order to compare to the baseline algorithm sTile, we plot the accuracy
(y-axis) versus average update time (x-axis) in Figure 3. We varied both L for
the aTile algorithm and the number of samples of the sTile algorithm. Recall
that the sTile algorithm depends on the number of samples it collects from the
window. When the number of samples increases, so do the accuracy and the
update time. This fact is illustrated in Figure 3 in which the sTile algorithm is
significantly less accurate than the aTile algorithm given about the same average
update time.

The accuracy of sTile may be negatively influenced by the fact that sTile has
a very low probability to find each top-k tile. When we calculated the average
sum of the area of the top-10 tiles in the Kosarak dataset for w = 5000, we
observed that it was significantly lower for sTile than for the aTile algorithm
(Figure 5). This confirmed that sTile is not able to find the large tiles with a
reasonable number of samples.
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Fig. 7. Running time according to the database size when the algorithm is used to
mine large tiles in a database instead of a stream. The right most subplot shows the
number of candidates in the summary when the window size increases.

6.2 Efficiency

Figure 6 shows average update time of four algorithms for k = 10 and different
values of w. The number of samples in the sTile algorithm was set to N = 80000
(when N is larger, the algorithm become significantly slower). We set L = w

10 (as
shown in Sect. 6.1, the accuracy is then always above 85%). In term of update
time, aTile is up to an order of magnitude (50x) faster than the cTile algorithm
and about two to three orders of magnitude faster than the sTile (100x) and the
Tile (1000x) algorithms. The speed-up increases with the window size.

In Figure 7, the last plot shows the number of candidates kept in the summary
of the aTile and the cTile algorithm for varying values of w (the result of the
AOL dataset is omitted because it is very similar to the results of the Kosarak
dataset in this experiment). The aTile algorithm is more memory efficient than
the cTile algorithm as the number of candidates it keeps in the summary is
much lower.

Finally, in Figure 7 we show the running time when the aTile, cTile and Tile
algorithms are used to find the top-10 largest tiles in a static corpus with varying
size. The purpose of the experiment is to see whether the aTile and the cTile
algorithm can find the large tiles in a static corpus more efficiently than the Tile
algorithm. For the AOL dataset, when most of transactions are small, the Tile
algorithm is the fastest one. However, for the Kosarak dataset, when the average
transaction size is larger, aTile outperforms both Tile and cTile. Therefore, the
aTile algorithm can not only be used for mining large tiles from a data stream
but also to mine large tiles from a database efficiently.

6.3 Application to Topics Monitoring in the AOL Query Stream

In order to show a potential application of the work we created a demo video3 to
visualize the top-k largest tiles of the AOL query stream. Each snapshot of the
video corresponds to a list of the largest tiles extracted from a sliding window.

3 http://www.youtube.com/watch?v=3UCjs9d91_g

http://www.youtube.com/watch?v=3UCjs9d91_g
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Fig. 8. Top-10 largest tiles in windows (ordered by timestamps) from the AOL query
stream. Larger words correspond to tiles with bigger area. The tile “high school”
emerges in the second window related to searches for the “high school musical movies”.

Figure 8 shows example snapshots taken from the demo video. Three snapshots
of the demo (ordered by timestamps) show the evolution of the largest tiles
overtime. Each snapshot is visualized by the wordcloud tool in R. Larger words
correspond to tiles with larger area.

For example, in the first snapshot the keyword “real estate” is the most im-
portant tile. However, it becomes less important in the second and the third
snapshot. Meanwhile, new important tiles such as “high school” is emerging as
search for the “high school musical movies” increases in 2006. With this demo,
users can track the dynamic of important search topics online.

6.4 Application to Tracking in Videos

We investigate how mining top-k largest tiles in a data stream can be useful for
analysis of videos and, in particular, for tracking. A more detailed description
of this application can be found in [3]. We worked on a real video made of 5619
frames. This video is shot from a car while following another car (the main
object). The main object is present in almost all the frames of the video. If we
are able to represent the video as a data stream and use our tile mining algorithm
on it, it should discover the car as a large tile or a set of large tiles.

We used the segmentation algorithm4 [8] to generate a stream of graphs (one
graph per frame). Each graph is a Region Adjacency Graph (RAG) where each
node is a region (a set of adjacent pixels) and two nodes are connected if their
regions are adjacent. This algorithm performs a temporal segmentation, which
means that a given region (and thus, the corresponding node) is present in several
successive frames. However, a single region is not enough to track an object in
the video: due to change in the object pose or illumination, some regions will
split, or merge or disappear and so do the corresponding nodes. We then build
a transaction consisting in the set of nodes of each RAG.

Mining tiles on this data stream results in tiles containing regions spread
all over the frames. Moreover, the top-k tiles are generally very similar (only
differing by one or two regions). Indeed, by removing the information about the

4 http://www.videosegmentation.com

http://www.videosegmentation.com
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Fig. 9. Frame of the video Fig. 10. top-30 star-shaped tiles in the
segmented frame

adjacency of the regions, it was not possible to find meaningful tiles. The main
problem is that the regions composing the car (or more generally, an object to
be tracked) must be “close” to each other and this was not taken into account
in the original setting. Therefore, we added a spatial constraint to the problem.
We chose to mine tiles that are star subgraphs of the RAGs. A star subgraph
is a graph with nodes i0, i1, . . . in where i1, . . . , in are nodes adjacent to i0 in
the RAG. This formalization ensures that the items in a tile are adjacent to
a “center” item i0. Moreover, it is easy to integrate this constraint into our
algorithms: the intersection of two star graphs with the same center is just the
intersection of their set of nodes. The algorithm is otherwise unchanged.

We extracted the top-30 tiles with a window of 300 frames (see an example on
Fig 10). Then we checked if the extracted tiles could be useful to track the main
object (car). We manually drawn the bounding box containing the car in each
fifth frame. Then, we selected, for each frame, the tile with the best precision.
We end up with a set of 69 tiles with an overall precision of 0.92 and recall of
0.74 on the whole video (and even a recall of 1 on the 2000 first frames). This
means that the tiles can actually be used as a high level feature for tracking. Of
course, in a real application, the bounding box is not known. But techniques like
those described in [5] can be used to build tracks from the extracted tiles.

7 Conclusions and Future Works

In this paper, we proposed two algorithms for mining the top-k largest tiles from
a data stream with a sliding window model. The first candidate-based algorithm
cTile solves the problem exactly but the update time becomes important when
the window size increases. The second one is an approximation algorithm with
theoretical bounds on the error rate. Experiments with two real-life datasets
show that the approximation algorithm can find large tiles with high accuracy
while being an order of magnitude faster than the candidate based algorithm
and two to three order of magnitude faster than the other baseline algorithms.

We also show potential applications of large tiles mining in monitoring emerg-
ing popular topics in a search engine query log or in a tracking problem. A pos-
sible extension for future work is to consider mining different types of tiles with
constraints for meaningful applications.
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3. Calders, T., Fromont, É., Jeudy, B., Lam, H.T.: Analysis of videos using tile mining.
In: Real-World Challenges for Data Stream Mining Workshop (2013)

4. Cerf, L., Besson, J., Nguyen, K.N., Boulicaut, J.F.: Closed and noise-tolerant pat-
terns in n-ary relations. Data Min. Knowl. Discov. 26(3), 574–619 (2013)

5. Diot, F., Fromont, E., Jeudy, B., Marilly, E., Martinot, O.: Graph mining for object
tracking in videos. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD
2012, Part I. LNCS, vol. 7523, pp. 394–409. Springer, Heidelberg (2012)

6. Fernando, B., Fromont, E., Tuytelaars, T.: Effective use of frequent itemset mining
for image classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 214–227. Springer,
Heidelberg (2012)
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Abstract. Tiling is a well-known pattern mining technique. Tradition-
ally, it discovers large areas of ones in binary databases or matrices,
where an area is defined by a set of rows and a set of columns. In this
paper, we introduce the novel problem of ranked tiling, which is con-
cerned with finding interesting areas in ranked data. In this data, each
transaction defines a complete ranking of the columns. Ranked data oc-
curs naturally in applications like sports or other competitions. It is also
a useful abstraction when dealing with numeric data in which the rows
are incomparable.

We introduce a scoring function for ranked tiling, as well as an algo-
rithm using constraint programming and optimization principles. We em-
pirically evaluate the approach on both synthetic and real-life datasets,
and demonstrate the applicability of the framework in several case stud-
ies. One case study involves a heterogeneous dataset concerning the dis-
covery of biomarkers for different subtypes of breast cancer patients. An
analysis of the tiles by a domain expert shows that our approach can
lead to the discovery of novel insights.

Keywords: tiling, ranked data, numerical data, pattern mining.

1 Introduction

The problem of tiling was introduced by Geerts et al. [1]. It is a popular pattern
mining technique that searches for a set of tiles (that is, a tiling) in a 0/1 matrix.
Such matrices often represent transactional data, where each transaction spec-
ifies the presence or absence of a set of items in the transaction. A tile is then
a subset of the rows and columns of the matrix, for which the corresponding
submatrix contains all 1s. Tilings are interesting as they provide groupings of
both the rows and the columns that may give new insights in the data.

In this paper, we extend tiling towards a setting which is not binary. That
is, we introduce the problem of ranked tiling, in which each transaction in the
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data is a ranking of all available items. This type of data naturally occurs in
many situations of interest. Consider, for instance, cycling competitions where
the items could be the cyclists and each transaction would correspond to a
race, or consider a business context, where the items could be companies and
the transactions specify the rank of their quotation for a particular service.
Ranking is also a natural abstraction for purely numeric data, which often arises
in practice and may be noisy or imprecise. Numeric data is hard to analyse with
many existing pattern mining approaches.

One real-life example that we shall use is concerned with the discovery of
biomarkers to group cancer patients into subtypes. Finding a set of biomarkers
that characterise different cancer subtypes is clearly important. Thanks to ad-
vances in genome sequencing and high throughput technologies, a lot of data is
becoming available about patients. However, different types of data may be ob-
tained with different technologies, for example, data concerning mRNA, miRNA,
copy number variations, or proteins. This means that we are given a number of
data matrices, each of which corresponds to one data type or experiment, and
each of which is measured on a different scale. Still we would expect to find a
tiling in which the same set of patients is shared across the different data matri-
ces. We shall show that by using a ranked version of the data and ranked tiling,
this is feasible.

9 5 8 3 7 1 10 4 2 6

2 9 1 7 4 5 10 6 8 3

6 7 9 5 8 4 1 2 10 3

7 10 9 6 3 8 4 5 2 1

8 10 9 4 2 6 1 7 3 5

Fig. 1. Example rank matrix,
with maximal ranked tile B =
({R1, R2, R3, R5}, {C1, C2, C3})

To illustrate the problem of ranked
tiling, let us consider the toy example
in Figure 1. It depicts a rank matrix
containing five rows and ten columns.
Assuming no ties, each row contains
each of the numbers one to ten ex-
actly once. In this paper, we assume
that a desirable high rank is indicated
by a high number, i.e., in this case
the highest possible rank is ten. Now,
we are intuitively interested in rect-
angular areas in the matrix that have
relatively high values, as these corre-
spond to columns and rows which are
highly ranked. In this particular ex-
ample, the maximal ranked tile that
we would like to find consists of five
rows and three columns, i.e., the area
defined by {R1, R2, R3, R5} and {C1, C2, C3}.

The key contributions of our paper are 1) the introduction of the problem
of ranked tiling, 2) the introduction of an optimisation model for ranked tiling
and its implementation in a constraint programming solver, and 3) an empirical
evaluation on synthetic and real-life datasets that shows the ability of our ranked
tiler to discover interesting tiles, and shows the promise of the approach in
practical discovery tasks such as that concerned with breast cancer.
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2 Ranked Tiling

In this section, we formally define ranked data and introduce the problems that
we consider: maximal ranked tile mining and ranked tiling.

Definition 1 (Rank matrix). Let M be a matrix consisting of m rows and
n columns. Let R = {1, ...,m}, C = {1, ..., n} be index sets for rows and for
columns respectively. The matrix M is a rank matrix iff:

∀r ∈ R : ∪c∈CMr,c ⊆ σ, (1)

where σ = {1, 2, ..., n}.

Note that the values of a row can only be a (strict) subset of σ iff the row contains
ties, otherwise the set of values must be exactly equal to σ. Given such a rank
matrix, we would like to find a maximal ranked tile, i.e., a tile with relatively
highly ranked values. Formally, we have the following problem.

Problem 1 (Maximal ranked tile mining) Given a rank matrixM ∈ σm×n

and a threshold θ, find the ranked tile B = (R∗, C∗), with R∗ ⊆ R and C∗ ⊆ C,
such that:

B = (R∗, C∗) = argmax
R,C

∑
r∈R,c∈C

(Mr,c − θ). (2)

where θ is an absolute-valued threshold.

Example 1. Going back to the example rank matrix in Figure 1 and choosing
θ = 5, the maximal ranked tile is defined by R = {1, 2, 3, 5} and C = {1, 2, 3}.
The score obtained by this tile is 37, and no more columns or rows can be added
without decreasing the score. This result matches the desired outcome that we
described in the introduction.

In practice, we often use a relative instead of an absolute threshold. We denote
such a threshold as a percentage, i.e., θ = a% implies θ = a%× n.

The optimisation objective in Equation 2 rewards cells in a tile having values
higher than θ, and vice versa for cells having lower values. Since we look for
tiles that maximise this score, this threshold θ plays an important role. That
is, higher values for θ result in smaller tiles with larger ranks. This implies that
the threshold can be used to influence both 1) the size of the mined tiles, and
2) the extent to which the ranks deviate from the mean rank. An alternative
interpretation is that the threshold can be used by the analyst to express her
prior belief about how high the ranks should be to make a tile interesting.

In practice, it happens quite often that we have numerical data, either discrete
or continuous, that we would like to analyse. In gene expression analysis, for
example, we are given a matrix with continuous data, whose columns represent
patients and rows represent genes. A value in a cell is then the expression level
of the gene for a specific patient.

Fortunately, converting a matrix with numeric data to a rank matrix is
straightforward. Given any ranking function, i.e., a function that sorts a set
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of values and assigns ranks based on the resulting order, each row of a numeric
matrix can be transformed. In practice, ties may occur: the same value may
occur more than once within a single row. Such ties can be broken using either
average rank scores or minimum rank scores (in this paper, we use the former
unless noted otherwise).

The maximal ranked tiling problem aims to find a single tile, but we are of
course interested in finding a set of such tiles. In other words, we would like to
discover a ranked tiling.

Problem 2 (Ranked tiling) Given a rank matrix M, a number k, a threshold
θ, and a penalty term P , the ranked tiling problem is to find a set of ranked
tiles Bi = (Ri, Ci), i = 1 . . . k, such that they together maximise the following
objective function:

argmax
Ri,Ci

∑
r∈R,c∈C

�(tr,c≥1)((Mr,c − θ)− (tr,c − 1)P ) (3)

where tr,c = |{i ∈ {1, . . . , k} | r ∈ Ri, c ∈ Ci}| indicates the number of tiles that
cover a cell, and �ϕ is an indicator function that returns 1 if the test ϕ is true,
and 0 otherwise. P indicates a penalty that is assigned when tiles overlap.

For the remainder of this paper we will fix P to θ − 1, i.e., we penalise overlap
with the lowest possible rank minus the score θ.

Before we describe our approach to solving the aforementioned problems, we
introduce two variations that allow the data analyst to do query-based tiling. By
allowing the data analyst to provide queries to the system, it becomes possible
to explicitly search for interesting patterns in specific areas of the data.

Problem 3 (Maximal query-based ranked tile mining) Given a queryQ,
a rank matrix M ∈ σm×n, and a threshold θ, find the maximal ranked tile that
satisfies the following additional constraint:

∀q ∈ Q : q ∈ C (4)

In other words, a query-based tile is a maximal ranked tile whose columns con-
tains those specified in the user-defined query.

Finally, an alternative method can be used to avoid overlap between tiles.

Problem 4 (Diverse ranked tiling) Given a number k, the problem of di-
verse ranked tiling is to find a set of k ranked tiles, Bi = (Ri, Ci), i = 1 . . . k,
such that the following objective function is optimised:

argmax
Ri,Ci

∑
r∈R,c∈C

�(tr,c≥1)(Mr,c − θ), (5)

under the constraint that:

Ri ∩Rj = ∅, ∀i 
= j, i, j = 1 . . . k, (6)

i.e., no two tiles share the same row.

The diverse ranked tiling and maximal query-based ranked tile mining prob-
lems can be combined to find a diverse query-based ranked tiling.
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3 Ranked Tiling Using Constraint Programming

In this section, we present the techniques that we propose to solve the problems
introduced in the previous section. That is, we introduce a constraint-based
model equivalent to Equation 2, but add two constraints to make solving more
efficient without affecting the results.

The technique we use to solve the optimisation problem is constraint pro-
gramming (CP). We follow the approach that was originally introduced by De
Raedt et al. [2]. The idea is to formalise the problems as constraint satisfaction
problems and then use existing solvers to find solutions. There are a number of
advantages to this solving paradigm. First, it is a declarative approach, mean-
ing that the data analyst can focus on modelling the problem rather than on
complex procedural implementations. Second, CP is very flexible. As we will
demonstrate, it is easy to implement small variations of a problem by adding or
modifying constraints.

3.1 Constraint-Based Model

To speed up the search process, we add two redundant constraints to the opti-
misation problem of Equation 2. That is, we require that the average values in
rows and columns in the selected submatrix MR,C are higher than the threshold
θ. The resulting constraint-based model is as follows:

argmaxR,C

∑
r∈R,c∈C(Mr,c − θ) (7)

subject to

∀r ∈ R : r ∈ R ↔
∑

c∈C Mr,c

|C| ≥ θ (8)

∀c ∈ C : c ∈ C ↔
∑

r∈R Mr,c

|R| ≥ θ (9)

Theorem 1 (Model equivalence). The constraint-based optimisation model
in Equations 7–9 is equivalent to the optimisation model in Equation 2.

Proof. The proof is given in the Appendix.

3.2 Problem Formalisation Using CP

The formalisation in Equations 7 – 9 is defined over set variables. Unfortunately,
in earlier work it was shown [2] that set variables do not lead to good performance
in CP and a reformalization in terms of boolean variables is necessary.

We therefore introduce two Boolean decision vectors: T = (T1, T2, ..., Tm),
with Ti ∈ {0, 1}, for rows and I = (I1, I2, ..., In), with Ii ∈ {0, 1}, for columns.
An assignment to the Boolean vectors T and I corresponds to an indication of
rows and columns belonging to a tile. Given this, we have the following theorem.
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Theorem 2 (Highly ranked rows constraint). If the following constraint is
satisfied:

∀t ∈ R : Tt = 1 ↔
∑
i∈C

(Mt,i − θ) ∗ Ii ≥ 0 (10)

then rows that satisfy the inequality of Equation 8 are identified by:

{r ∈ R | Tr = 1} (11)

Proof.

∀t ∈ R : Tt = 1 ↔
∑
i∈C

(Mt,i − θ) ∗ Ii ≥ 0 ↔
∑
i∈C

Mt,i ∗ Ii ≥ θ ∗
∑
i∈C

Ii

↔
∑

i∈C Mt,i ∗ Ii∑
i∈C Ii

≥ θ ↔
∑

i∈C Mi,c

|C| ≥ θ

Here we assume that
∑

i∈C Ii ≥ 1. Overall, Tt = 1 ↔ t ∈ R, which concludes the
proof.

A similar property can be obtained for the column constraint. This leads to a
CP model which is equivalent to the constraint-based model in Equations 7 – 9:

argmax
T,I

∑
t∈R

Tt ∗ (
∑
i∈C

(Mt,i − θ) ∗ Ii) (12)

subject to

∀t ∈ R : Tt = 1 ↔
∑
i∈C

(Mt,i − θ) ∗ Ii ≥ 0 (13)

∀i ∈ C : Ii = 1 ↔
∑
t∈R

(Mt,i − θ) ∗ Tt ≥ 0 (14)

The constraints in this formalisation are similar to those used to mine frequent
itemsets in [2]. The main difference is that we also have an objective function.

3.3 Mining Maximal Ranked Tiles Using CP

Mining a single ranked tile is equivalent to finding an assignment to vectors T, I
such that T and I satisfy constraints 13 – 14 and maximise objective function 12.
We solve this constrained optimisation problem using constraint programming.

Solving a problem using CP is done in two phases: 1) modelling, and 2)
solving. Equations 12 – 14 can be written down as a model in any CP solver.
As we will see, however, the problem of ranked tiling is not easy to solve, and
finding exact solutions is difficult. To allow for finding approximate solutions, we
choose the OscaR1 solver, which is an open source CP solver written in Scala. A
distinguishing feature is that it provides good support for both exhaustive and
heuristic search methods, which we will use for our approach.

1 https://bitbucket.org/oscarlib/oscar/wiki/Home.

https://bitbucket.org/oscarlib/oscar/wiki/Home.
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When the CP solver is asked to perform exhaustive search, it essentially builds
a search tree. The key idea here is that it uses the constraints to remove in-
consistent values while searching. This removal of inconsistent values is called
propagation and can reduce the search space significantly.

Variable and value ordering heuristic. The order in which variables are
considered for branching, as well as the order in which values are assigned to the
variables, determine the shape of the search tree and the effectiveness of con-
straint propagation. We use the following heuristic. We order column variables
Ic, c = 1 . . . n, by their total sum scores,

∑
r∈R(Mr,c − θ), in ascending order.

That is, variables that have lower scores will be branched on first, and the value
zero will be assigned to a variable before the value one. Using this heuristic, CP
has a higher chance to add variables having high scores to the solution when
backtracking. Consequently, CP needs less backtracks to find a first valid as-
signment as variables having higher scores have higher probability of satisfying
constraint 14.

Large neighbourhood search. Equation 13 shows that vector T can be com-
pletely determined given a complete assignment to I. Hence, the size of the
search space is O(2n), where n is the number of columns. Even taking into ac-
count propagation, this search space is in practice often still too large to be
traversed completely and hence we use a form of local search to speed up the
search.

Large Neighbourhood Search (LNS) is a hybridization of local search and ex-
haustive search in CP. Local search refers to the idea that one solution can be
transformed into another by changing the assignment of a number of variables.
While traditional local search methods only change a limited number of variables
(e.g., one variable at a time), LNS selects a relatively large subset of the vari-
ables in a problem (e.g., a random subset of half of the variables) and performs
complete search over these variables while fixing the remaining variables. Two
main questions involved with LNS include a) which variables should be selected
to search over, and b) how to search on these variables? In our implementa-
tion, we use stochastic variable selection and an exhaustive search approach.
The stochastic variable selection uniformly selects half of the column variables
to search over.

3.4 Ranked Tiling

Ranked tiling was introduced in Problem 2. We propose to approximate the
optimal solution by using a greedy approach, as is common for this type of
pattern set mining problem. The first tile is found by solving the optimisation
problem in Equations 12–14. Next, we remove that tile by setting all cells in
the matrix that are covered to the lowest rank (or another value, depending on
parameter P ). Then, we search in the resulting matrix for the second tile. This
process is repeated until the number of desired tiles is found. The sum of the
scores of all discovered tiles will correspond to the score of Equation 3 for this
solution. However, as the search is greedy, the solution is not necessarily optimal.
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4 Experiments on Synthetic Datasets

In this section, we set up a number of experiments on synthetic data sets to
evaluate the proposed approach. The results will show: 1) the gain in runtime
by adding the redundant constraints; 2) the accuracy of the discovered tiles in
two settings: ranked tiling and query-based ranked tiling; 3) the robustness of
the algorithm with respect to noise thresholds and variations of the local search;
4) a comparison to constant-row bi-clustering algorithms.

4.1 Data Generation

By generating data in which rows are incomparable due to different scales, our
aim is to show that our technique finds the relevant patterns in such data,
whereas methods for bi-clustering cannot. Since bi-clustering methods only work
on numeric data, we use a simple generative model to generate synthetic, con-
tinuous data. This numeric data is then transformed to a rank matrix to apply
ranked tiling. For bi-clustering, we choose the constant-row setting, as there are
many bi-clustering algorithms specifically designed for this type of pattern.

To generate synthetic datasets, we first generate background data, and then
implant a number of constant-row bi-clusters with higher average values.

Background information is generated such that each row has a potentially
different scale than the others. Values within each row are sampled from two
distributions, with certain probability: one for modelling background noise, the
other for interfering with the implanted patterns. First, for each row, we uni-
formly sample μ1

r, μ
2
r from two ranges:

μ1
r ∼ U(0, 3), ∀r ∈ R (15)

μ2
r ∼ U(3, 5), ∀r ∈ R (16)

Second, for every cell in a row, we sample a latent binary variable Xr,c from a
Bernoulli distribution Bin(p, 1 − p), given some p. Depending on the value of
this latent variable, the background data is sampled either from the low-average
or high-average distribution:

Dr,c ∼
{
N(μ1

r, 1) if Xr,c = 1
N(μ2

r, 1) otherwise
(17)

To plant a constant-row bi-cluster in a submatrix DR,C , we use the following
two equations:

∀r ∈ R, μr ∼ U(3, 5) (18)

∀r ∈ R, Dr,c ∼ N(μr, 1) (19)

Equation 18 is used to sample the mean value for every row in a bi-cluster. The
mean value is uniformly sampled from the range [3 . . . 5], which is higher than
the main sampling range for the background ([0 . . . 3]).
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4.2 Evaluation
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Fig. 2. Speed up achieved by adding the
two redundant constraints. The y-axis indi-
cates the ratio between the runtime needed
with and without the constraints, and is
computed for varying threshold θ values
and matrix sizes.

Performance Gain by Adding
Constraints. To evaluate how the
redundant constraints affect the time
needed for search, we compare the
runtime of the optimisation model
in Equation 2, which does not have
any constraints, to the runtime of
the constraint-based model shown in
Equations 7–9. To make the compari-
son fair, we perform exhaustive search
in both cases.

To this aim, we generate a num-
ber of datasets with varying sizes us-
ing the procedure described in Section
4.1. All datasets have the same num-
ber of columns, i.e. 20, and a varying
number of rows: {100, 200, 300, 400,
500, 600}, with p = 0.1. They have the
same two non-overlapping tiles: one is
10 × 5 and the other is 30 × 10. We execute the mentioned models on these
datasets to find the maximal ranked tile. All experiments are executed single
threaded on a desktop computer (Intel i7-2600 CPU @ 3.40GHz, 16GB RAM).

Figure 2 shows the ratio between the time needed to solve the problem with
and without the extra constraints, for varying θ thresholds. We can see that
adding the extra constraints reduces the search time when θ > 50%. In partic-
ular for larger datasets and values of the threshold, the model with the added
constraints always outperforms the optimisation-only model. This demonstrates
that adding the constraints results in better propagation and hence more effi-
cient search. The absolute time needed to find the optimal solution on these
datasets ranges from 1ms to 4h 37m 26s.

Accuracy of the recovered tiles. We now evaluate the ability of the algo-
rithm to recover the implanted ranked tiles. We do this by measuring recall
and precision, using the implanted tiles as ground truth. Overall performance is
quantified by the F1 measure, which is the average of the two scores.

We generate seven 1000 rows× 100 columns datasets for different p, i.e., p ∈
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}, using the same procedure as before. In
each dataset, we implant five ranked tiles. Figure 3a shows a heatmap of the
numerical dataset for p = 10%. Figure 3b shows its corresponding rank matrix,
using the same color coding as in Figure 1 (blue = low rank, red = high rank).

We varied the threshold θ; for each value of θ and each dataset, we performed
ranked tiling five times, each time mining k = 5 tiles. Then, we calculated aver-
age precision, recall and F1 score over these five runs. Figure 3c summarises the
results obtained with and without using the variable ordering heuristic (see Sec-
tion 3.3). It can be seen that the heuristic contributes to improved performance.
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Fig. 3. Recovering five implanted ranked tiles from synthetic data

When the threshold θ is around 60%, the algorithm achieves high prediction
accuracy (average F1 = 86%). At lower thresholds, it has low precision, while
higher thresholds result in lower recall. This completely matches our expectation,
since higher thresholds result in smaller tiles with higher values.

Robustness of the local search. The error bars in the precision and recall
curves shown in the Figure 3c show the robustness of the large neighbourhood
search on the synthetic datasets. The variation is typically low with respect to
the number of times the local search is repeated and the different noise levels.

Comparison to bi-clustering. In this experiment, we compare to several
bi-clustering algorithms. SAMBA [3] was designed for coherent evolution bi-
clusters, in which there is coherence of the signs of values, i.e., up or down. The
other methods discover coherent-valued bi-clusters, of which a constant-row bi-
cluster is a special case. CC [4], Spectral [5], and Plaid [6] are implemented in
the R biclust2 package. FABIA3 [7] and SAMBA4 are downloaded from their
website. ISA [8] is from the R isa2 package5.

Since large noise levels may conversely affect the performance of the algo-
rithms, we use a dataset also used for the previous experiments, with p = 0.20
(average noise level). We ran all algorithms on this dataset and took the first
five tiles/bi-clusters they produced. For most of the benchmarked algorithms, we
used their default values. For CoreNode, we use msr = 1.0 and overlap = 0.5, as
preliminary experiments showed that this combination produced the best result.
For ISA, we applied its built-in normalised method before running the algorithm.

The results in Table 1 show that our algorithm achieves much higher precision
and recall on this task than the bi-clustering methods. This indicates that when
the rows in a numerical matrix are incomparable, converting the data to a ranked
matrix and applying ranked tiling is a better solution than applying bi-clustering.

2 http://cran.r-project.org/web/packages/biclust/
3 http://www.bioinf.jku.at/software/fabia/fabia.html
4 http://acgt.cs.tau.ac.il/expander/
5 http://cran.r-project.org/web/packages/isa2/

http://cran.r-project.org/web/packages/biclust/
http://www.bioinf.jku.at/software/fabia/fabia.html
http://acgt.cs.tau.ac.il/expander/
http://cran.r-project.org/web/packages/isa2/
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Table 1. Comparison to bi-clustering. Precision, recall and F1 quantify how accurately
the methods recover the five implanted tiles. k = 5.

Algorithm Data type Pattern Precision Recall F1

Our algorithm Ranks Ranked tile 88% 83% 86%
CoreNode [9] Numerical Coherent values bicluster 43% 72% 58%
FABIA [7] Numerical Coherent values bicluster 40% 24% 32%
Plaid [6] Numerical Coherent values bicluster 90% 6% 48%
SAMBA [3] Numerical Coherent evolution bicluster 67% 3% 35%
ISA [8] Numerical Coherent values bicluster 64% 44% 54%
CC [4] Numerical Coherent values bicluster 35% 22% 29%
Spectral [5] Numerical Coherent values bicluster - - -

(a) A query of 2 columns. (b) The two mined tiles.

Fig. 4. Query-based ranked tiling on a synthetic dataset; θ = 70%

Diverse query-based ranked tiling Finally, we use the same dataset, with
p = 0.2, to illustrate diverse query-based ranked tiling. Figure 4a shows a query
consisting of two columns, and Figure 4b shows the two discovered ranked tiles
given that query. The rows and columns of each tile are marked by coloured
bars (tile 1 = red, tile 2 = green). The results demonstrate the flexibility of our
approach based on constraint programming: adding a few constraints results in
ranked tiles for a given query. Both discovered tiles contain the query, but are
also clearly present in the generated data. This allows the analyst to focus the
search on specific areas of the data and still obtain high-quality results.

5 Real-world Case Studies

In this section, we present two applications of ranked tiling: 1) voting pattern dis-
covery in Eurovision Song Contest data, and 2) biomarker discovery for different
subtypes from a heterogeneous genomic dataset.
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Competitors - tile 1
Voters - tile 1

Competitors - tile 2
Voters - tile 2

Competitors - tile 3
Voters - tile 3

Fig. 5. Voting patterns in the Eurovision Song Contest data

5.1 European Song Contests

The Eurovision Song Contest (ESC) has been held annually since 1956. Each
participating country gives voting scores, which are a combination of televoting
and jury voting, to competing countries. Scores are in the range of 1 . . . 8, 10
and 12. Each country awards 12 points to their most favourite country, 10 points
to the second favourite, and 8 . . . 1 to the third. . .tenth favourites respectively.
The data can be represented by a matrix, in which rows correspond to voting
countries, columns correspond to competing countries, and values are the scores.

We collected voting data for the final rounds of the period 2010 – 2013. We
filtered out countries participating in fewer than 3 years. Data is aggregated by
calculating average scores that voting countries award to competing countries
during the period considered. After the pre-processing step, the data consists of
44 rows and 37 columns. The pre-processed data is then transformed to ranked
data, using minimum ranks in case of ties.

We ran the algorithm on the ESC dataset and obtained 10 ranked tiles with
the threshold θ set to 80%. The first tile shows that Azerbaijan and Sweden were
highly voted for by other 19 countries located in many regions in Europe. Other
tiles reveal that there are local voting patterns in the contests: countries tend to
distribute high scores to their neighbours. Figure 5 shows three representative
tiles: one for eastern countries, one for western and northern countries, and one
for (mostly) southern countries. In general, the discovered tiles confirm that
countries give high scores to their neighbours, which matches our expectations.

5.2 Biomarker Discovery for Breast Cancer Subtypes

Breast cancer is known to be a heterogeneous disease that can be categorised
in clinical and molecular subtypes. Assignment of patients to such subtypes is
crucial to give adapted treatments to patients. Currently, breast cancer patients



110 T. Le Van et al.

are categorised into 3 clinical subtypes, which receive either endocrine therapy,
targeted HER2 therapy, or chemotherapy. The study of tumour samples at mul-
tiple molecular levels helps to understand the driving events in cancer. Most
studies, however, focus on the analysis of each molecular data type separately
[10], since each data type is measured with a different technology. Although raw
data between molecular levels are incomparable, their ranked values can easily
be compared. The goal of this case study is to identify groups of genes or copy
number regions that are highly specific to a subset of patients.

Data pre-processing. A breast cancer dataset was downloaded from the Can-
cer Genome Atlas6. A subset of 94 tumour samples with measurements at four
molecular levels (mRNA, miRNA, protein levels, and copy number variation
(CNV)) was selected. Each tumour sample is associated to a molecular sub-
type according to the PAM50 gene signature [11]. The original dataset contains
measurements for 17814 genes (mRNA) and 1222 microRNAs. Genes and mi-
croRNAs were selected based on their potential subtype-specific activity and
their differential expression relative to normal (non-tumour) samples.

To capture subtype-specific expression changes, we evaluated the 5- and 95-
percentile of the tumour samples. Genes in which the p-value for these percentiles
was below 0.001 and their log-fold change relative to the mean normal expression
was at least 2.5 were selected. The final dataset contains 1761 genes and 138
microRNAs. Segmented files with copy number alterations were pre-processed
and filtered by germline aberrations as described by [10]. Significant copy number
regions were identified with GISTIC2.0 [12]. No selection was done for protein
levels and copy number regions. Each data level was converted to rank scores
and combined into a single matrix, which consists of 2211 rows and 94 columns.

Ranked tiling analysis. The ten ranked tiles discovered by the algorithm are
shown in Figure 6 (θ = 65%, 20 LNS repeats, in 3h 45m 9s). A first important
observation is that each tile contains features from all four different data types.
All PAM50 subtypes (LuminalA, LuminalB, Basal and HER2 subtypes) are cov-
ered by the tiles. Some discrepancies between the tiles and PAM50 subtypes are
expected, since PAM50 is based on a 50-genes classifier derived from expression
data only. We find that tile 1 captures the largest group of genes and samples,
but due to its large size functional annotation did not lead to interesting insights.

Tiles 2 and 3 match a known basal subtype, with tile 3 containing most basal
samples. Among the genes specific for tile 3, we observe MYC at the protein
and mRNA levels, which has been previously suggested as a basal characteristic
pattern [10]. Both tiles 2 and 3 largely overlap in terms of genes also with tile
5 (LuminalB). The genes in common to these 3 tiles are enriched for cell cycle
and cell division (Gene Ontology and Reactome enrichment), consistent with the
high proliferation present in LuminalB, Basal and Her2 subtypes.

Tile 6 only contains samples from the known HER2 subtype. The HER2
molecular subtype is known to over-express the ERBB2 gene and to contain copy
number alterations for the same gene. Tile 6 captures all the molecular levels
related to the gene, as it contains the amplified region of ERBB2, the protein

6 https://tcga-data.nci.nih.gov/tcga

https://tcga-data.nci.nih.gov/tcga
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Fig. 6. Ranked tiling on heterogeneous breast cancer data. The rows correspond to
mRNA, miRNA, protein and CNV levels, the columns correspond to breast cancer
samples. The left and upper gray bars indicate the ten tiles. PAM50 subtypes are indi-
cated at the top (LuminalA=blue, LuminalB=light blue, Basal=red and HER2=pink).

and the mRNA gene. LuminalA and LuminalB PAM50 subtypes correspond to
the estrogen positive (ER+) clinical subtype which is the most common one and
thus they are present in many tiles. Among them, tile 10 contains the estrogen
receptor (ESR1) and other genes related to the pathway, suggesting that the
pathway activity might be higher for the patients in tile 10.

Overall, we conclude that ranked tiling successfully identifies known subtypes
and includes different data types in tiles, as desired. Such an integrated analysis
of heterogeneous data has large potential for this type of application.

6 Related Work

Ranked tiling is related to bi-clustering, but is different because of the type of
regularities it aims to find. The literature describes four types of bi-clusters:
constant-valued, constant-row, constant-column and coherent [13]. In ranked
tiling, the absolute values within the specified areas matter, i.e., the values must
be higher than a given threshold. This is clearly different from the objectives of
bi-clustering, as also demonstrated by the results presented in Section 4.

Calders et al. [14] use rank measures to find interesting patterns in numeric
data. However, they rank values on individual columns and use frequent itemset
mining-based techniques to find correlated sets of columns (items). Here, we
consider ranks in rows and use optimisation-based techniques to find sets of
rows and columns (tiles) in a matrix for which the ranks are relatively high.
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Ranked tiling is also related to pattern mining in numeric data. In this di-
rection, there has been work by Kaytoue et al. [15] that uses formal concept
analysis to find interval patterns of itemsets. The recent work by Song et al. [16]
proposes to mine association rules of numeric attributes. However, they did not
consider ranked data and tilings on this type of data.

Kontonasios et al. [17] propose to use a Maximum Entropy model to iteratively
mine interesting tiles in numeric data. This approach also aims to find sets of
tiles whose content are contrasted to the background model. However, we do
not contrast a tile against expected values given some prior beliefs, but consider
absolute values relative to a given threshold. Apart from this, they do not provide
an algorithm that directly searches for high-scoring tiles, while we propose a
mining approach based on constraint programming.

7 Conclusions

We introduced the novel problem of ranked tiling, which is concerned with finding
areas in ranked data in which the ranks are relatively high. Ranked data occurs
naturally in many applications, but is also a useful abstraction when dealing
with numeric data in which the rows are incomparable.

We presented an optimisation-based approach to solving the ranked tiling
problem using constraint programming, and demonstrated the flexibility of this
approach by extending it to query-based ranked tiling. The experiments on both
synthetic and real data show that our approach finds high-quality ranked tiles
that can lead to the discovery of novel insights in heterogeneous data.
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H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS,
vol. 8189, pp. 256–271. Springer, Heidelberg (2013)

Proof Theorem 1. Let us assume that (R,C) is the optimum solution found
without additional constraints. Without loss of generality we can assume that
(R,C) is maximal in both rows and columns, i.e., there is no row nor column
that can be added to obtain the same score or a better score.

Then this optimal solution must also satisfy the constraint:

∀r ∈ R : r ∈ R ↔
∑

c∈C Mr,c

|C| ≥ θ ↔ (
∑
c∈C

Mr,c − θ) ≥ 0. (20)

Indeed, assume that r ∈ R while (R,C) is optimal, then (
∑

c∈C Mr,c − θ) ≥ 0
must hold, as otherwise the score

∑
c∈C,r∈R(Mr,c − θ) could be improved by

removing r from R while keeping C fixed. Conversely, if r 
∈ R while (R,C) is
optimal, it can only be the case that (

∑
c∈C Mr,c − θ) < 0, as otherwise the

score of the tile could be improved by adding r to R while keeping C fixed.
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Abstract. Both exact and approximate counting of the number of fre-
quent patterns for a given frequency threshold are hard problems. Still,
having even coarse prior estimates of the number of patterns is useful, as
these can be used to appropriately set the threshold and avoid waiting
endlessly for an unmanageable number of patterns. Moreover, we argue
that the number of patterns for different thresholds is an interesting
summary statistic of the data: the pattern frequency spectrum.

To enable fast estimation of the number of frequent patterns, we adapt
the classical algorithm by Knuth for estimating the size of a search tree.
Although the method is known to be theoretically suboptimal, we demon-
strate that in practice it not only produces very accurate estimates, but
is also very efficient. Moreover, we introduce a small variation that can
be used to estimate the number of patterns under constraints for which
the Apriori property does not hold. The empirical evaluation shows that
this approach obtains good estimates for closed itemsets.

Finally, we show how the method, together with isotonic regression,
can be used to quickly and accurately estimate the frequency pattern
spectrum: the curve that shows the number of patterns for every possible
value of the frequency threshold. Comparing such a spectrum to one that
was constructed using a random data model immediately reveals whether
the dataset contains any structure of interest.

1 Introduction

Pattern mining aims to enable the discovery of patterns from data. As such, it
is one of the most-studied problems in exploratory data mining. A pattern is a
description of some structure that occurs locally in the data. That is, a pattern
is an element of a given pattern language L that describes a subset of a dataset
D. The most commonly used formalisation is theory mining, where the goal is
to find the theory Th(L;D; q) = {X ∈ L | q(X,D) = true}, with q a selection
predicate that returns true iff X satisfies the imposed constraints on D.

The best-known instance of pattern mining is frequent itemset mining [1],
which discovers sets of items that frequently occur together in transactional
data. Given a minimum support threshold σ, the theory to be mined consists
of all itemsets that occur at least σ times in the data. That is, Th(L;D; q) =
{X ∈ L | freq(X,D) ≥ σ}, where freq(X,D) denotes the frequency of X in D,

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 114–129, 2014.
� Springer-Verlag Berlin Heidelberg 2014
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i.e., the number of transactions in which the pattern occurs. In general, frequent
pattern mining techniques have been developed for quite some data types and
corresponding pattern types, e.g., for sequences [2], and for graphs [18].

0 500 1000 1500 2000

1e
+0
0

1e
+0
3

1e
+0
6

1e
+0
9

1e
+1
2

σ

co
un

t (
lo

g1
0)

Fig. 1. Exact (black line) and estimated
(blue line) numbers of patterns for all possi-
ble frequency thresholds in Mammals. The
green line shows the expected number of
patterns in random data having the same
column marginals, the grey dots repre-
sent individual path sample estimates (see
Alg. 1)

A major problem in frequent pat-
tern mining is that choosing low
values for the minimum frequency
threshold results in vast amounts of
patterns – the infamous pattern ex-
plosion. One may try to avoid this
by choosing the threshold such that
the number of patterns is still man-
ageable. Parameter tuning can be a
tricky business though, because small
changes in σ often have a large impact
on the number of patterns. For that
reason, it would be beneficial to know
how many patterns to expect without
having to actually mine them.

Unfortunately, both exact and ap-
proximate counting of the number
of frequent patterns for a given fre-
quency threshold are hard problems
[11,6,19]. Nevertheless, having even
coarse prior estimates of the number
of patterns is useful, as these can be
used to appropriately set the thresh-
old σ and avoid waiting endlessly for
an unmanageable number of patterns. In this paper we introduce methods for
the fast estimation of the number of frequent patterns in a dataset, both for
individual thresholds and the complete frequency spectrum.

Figure 1 illustrates both the pattern explosion and the accuracy of our method.
Note that the counts on the y-axis are in logarithmic scale (log10). It took only 11
seconds to accurately estimate the curve for the complete frequency range,whereas
the exact curve took over 12 hours to compute and still does not go lower than
a frequency threshold of 10. A quick comparison to the expected curve, which is
computed under the assumption that all items are independent, shows that the
dataset contains quite some structure: there are many more itemsets than can be
explained by this simple model.

Using Frequent Patterns for Knowledge Discovery. In practice, frequent
pattern mining is seldom used as final step in the KDD process, because inter-
pretation of a large amount of patterns by a domain expert is impracticable.
Nevertheless, frequent pattern mining and hence estimating the number of pat-
terns are important problems.

The most important reason is that frequent patterns are often used as input for
some other algorithm, as part of the KDD process. Pattern-based approaches to
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data mining are popular, in particular for exploratory purposes. Using patterns
has clear advantages, the most obvious one being that patterns are interpretable
representations and can thus provide explanations.

Many of these techniques can be captured under the umbrella term pattern set
mining [7], a class of solutions proposed to address the pattern explosion. This
is commonly achieved by imposing constraints and/or an optimisation criterion
on the complete set of patterns being mined. Pattern set mining methods com-
monly require a large number of frequent patterns as input. Examples include
Krimp [17] and the iterative data mining framework by De Bie [4].

Another context in which frequent patterns are used is pattern-based classi-
fication: Cheng et al. [9], for example, construct a classifier from a large set of
frequent patterns. Finally, frequent patterns can serve as input for interactive
exploration, for example, using the MIME tool [10]. In all these cases, frequent
patterns have to be mined and a frequency threshold needs to be chosen. Hence,
having an estimate for the number of patterns given a certain threshold is useful.

Approach and Contributions. The first main contribution of this paper is
the FastEst algorithm, for Fast Estimation. It is a fast and accurate method
for estimating the number of frequent patterns for a given dataset and frequency
threshold. For this, we adapt the classical algorithm by Knuth [14] for estimating
the size of a search tree. We demonstrate that the method is fast and produces
very accurate estimates in practice. In particular, we focus on frequent itemsets
and rely on the Apriori property, which states that any subset of a frequent
itemset must also be frequent. Our method can be easily applied to other types
of data and patterns, as long as the Apriori, or monotonicity, property holds.

We also introduce a small variation of the method that can be used to estimate
the number of patterns under constraints for which the Apriori property does not
hold. The variation empirically adjusts the total number of estimated frequent
patterns for the considered constraints.

The second main contribution is a method for efficiently estimating the total
number of frequent patterns for all possible frequency thresholds: the pattern fre-
quency spectrum. The algorithm, dubbed Spectra, uses isotonic regression [3]
to compute a complete spectrum from point estimates obtained with FastEst.
The resulting curves are extremely accurate and provide useful summary statis-
tics of the data. To demonstrate this, we investigate spectra constructed for ran-
dom data, i.e., assuming that all items in a dataset are independent. Comparing
an actual to a randomized spectrum immediately reveals whether the dataset
contains any structure of interest (see Fig. 1).

The remainder of this paper is organised as follows. First, we discuss related
work in Section 2. Next, in Section 3 we describe the classical algorithm by Knuth
upon which we base our method. Sections 4 and 5 introduce our techniques for
estimating the number of patterns in a dataset for individual thresholds and
threshold ranges respectively. We present the empirical evaluation in Section 6,
after which we round up with discussion and conclusions in Sections 7 and 8.



Fast Estimation of the Pattern Frequency Spectrum 117

2 Related Work

We briefly discuss two categories of related work that are relevant to our work:
1) frequent pattern counting, and 2) estimating the size of a search tree.

Frequent Pattern Counting. Exactly counting the number of frequent pat-
terns is #P-complete [11], as is counting the number of maximal frequent item-
sets [19]. For that reason, methods designed specifically for this task usually
compute approximate counts. Boley and Grosskreutz [6] devised an approxi-
mate counting algorithm for frequent itemsets that is based on MCMC simu-
lation [12]. Although technically solid, the use of MCMC simulation makes the
method rather complex. One of the aims of this paper is to develop a much
simpler method that is therefore easier to implement and use. We will compare
our algorithm to the MCMC-based method in Section 6. Later, Boley et al. [5]
proposed a similar method for sampling and counting closed itemsets.

The alternative approach is to perform exact counting by adapting existing
pattern mining techniques for this purpose. Highly optimised frequent itemset
mining implementations have been available since the FIMI workshops1 in 2003
and 2004. One such very efficient implementation is AFOPT [15], which we will
use as a baseline in our experiments.

Estimating Search Tree Sizes. Knuth’s original algorithm [14] was proposed
for the problem of studying algorithm performance on a given input by estimat-
ing the size of the associated search tree. Purdom suggested a modification that
incorporates partial backtrack into the algorithm [16]. This will lead to better
estimates when the trees have some long and “thin” branches. Kilby et al. [13]
addressed the same problem using a slightly different technique, but focused on
binary trees. Chen [8] proposed a generalisation of Knuth’s method that is based
on the idea of stratified sampling. The algorithm we propose for estimating the
number of closed patterns has some similarities with this method.

3 Preliminaries

This section provides a short recap on the tree size estimation algorithm by
Knuth [14] that we will use as foundation for our algorithms.

Most combinatorial problems can be framed in terms of finding an assignment
of values to a set of variables, so that the assignment satisfies some constraints
and optimizes an objective function. This is also true for pattern mining prob-
lems, except that one aims to find all assignments that satisfy the constraints.

Backtracking algorithms perform depth-first search over feasible assignments
and can be characterised in terms of a search tree, where the root contains the
“empty” assignment, and nodes correspond to (partial or complete) assignments.
The size of the search tree is a practical measure of the hardness of the problem
instance, because a simple backtracking algorithm must enumerate all feasible
assignments. However, counting the number of nodes is a hard problem, and can

1 http://fimi.ua.ac.be/

http://fimi.ua.ac.be/
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usually be solved exactly only by an exhaustive traversal of the search tree. That
is, knowing the hardness of a problem instance requires us to solve it!

Knuth proposed an algorithm [14] that computes an estimate of the size of the
search tree without exhaustive traversal. The intuition of the algorithm is the
following: If a search tree is perfectly regular (every internal node has the same
outdegree), we can compute its exact size by summing the sizes of every level of
the tree. The size of a level is given by the product of the outdegrees observed on
a path from the root node that ends just above the level.

Example 1. Consider a complete binary tree with h levels, including the root at
level 1. The size of every level l, 2 ≤ l ≤ h, is

∏l−1
i=1 2 = 2l−1, and summing

these yields 1 +
∑h

l=2 2
l−1 =

∑h−1
l=0 2l = 2h − 1, that is, the number of nodes in

a complete binary tree.

Since search trees that arise in practice are rarely (if ever) regular, determining
the size by only considering a single path from the root to a leaf is not going to
produce the correct size. However, we can consider a number of random paths,
and compute a path estimate for each. In detail, let (v1, v2, . . . , vh) denote a
random path from the root v1 to a leaf vh in a search tree, and let d(v) denote
the outdegree of node v. The associated path estimate is given by the sum

1 +

h∑
i=2

i−1∏
l=1

d(vl), (1)

where the product
∏i−1

l=1 d(vl) is the estimate associated with the ith level of the
tree. Notice that the path estimate is a sum of such levelwise estimates.

To compute a single path estimate, the algorithm starts from the root, selects
one child at random at every level until it reaches a leaf, and then applies Eq. 1.
The final estimate is defined as the average of the path estimates from a number
of random paths. Depending on their number, this process only considers a very
small part of the search tree, but can in practice obtain an accurate and unbiased
estimate of the tree size [14].

4 Estimating the Number of Patterns

Let a database D be a bag of transactions over a set of items I, where a transac-
tion t is a subset of I, i.e., t ⊆ I. Furthermore, a pattern X is an itemset, X ⊆ I,
and pattern languageL is the set of all such possible patterns, L = 2I . An itemset
X occurs in a transaction t iff X ⊆ t, and its frequency is defined as the number
of transactions in D which it occurs, i.e., freq(X,D) = |{t ⊆ D | X ⊆ t}|. A pat-
tern X is said to be frequent iff its frequency exceeds the minimum frequency
threshold σ. The frequent itemset mining problem is to find all frequent pat-
terns, i.e., all X ∈ L for which freq(X,D) ≥ σ. Frequent itemsets can be mined
efficiently due to monotonicity of the frequency constraint with respect to set
inclusion, which is also known as the Apriori property [1]. This property states
that for any frequent itemset X , all itemsets Y ⊆ X must also be frequent.
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4.1 Frequent Patterns and the FastEst Algorithm

Next we describe a modification to Knuth’s algorithm [14] and use it to estimate
the number of frequent itemsets2. The core question we must address is how to
turn the task of counting frequent itemsets to that of estimating the size of a tree.
By constructing a tree where every node corresponds to a frequent itemset, we
can use Knuth’s method. The following discussion focuses on frequent itemsets,
but the same approach can be applied also to other patterns that are constructed
“piece-by-piece” from elements of some language.

For any itemset X , let X∪u, where u is some item not in X , denote an expan-
sion of X . Consider a tree T rooted at ∅, where each node is a frequent itemset.
The children of a node X are all of its frequent expansions. More formally,

children(X) = {X ∪ u | u ∈ {I \X} ∧ freq(X ∪ u) ≥ σ}.

That is, the root ∅ has all singleton items having a high enough frequency as
children, these have all frequent pairs as children, and so on. The leaves of
the tree correspond to maximal frequent itemsets, i.e., those that cannot be
expanded without violating the frequency constraint. Note that there cannot be
any itemset that is frequent but not in T , because of the monotonicity of the
frequency constraint: if itemset X is not frequent, no Y ⊃ X can be frequent
either.

Now we could use Knuth’s algorithm “as is” to estimate the size of T . However,
observe that T contains multiple copies of the frequent itemsets. The tree T is in
fact an “unfolded” itemset lattice. Indeed, every frequent itemset X of size |X | is
contained in T exactly |X |! times. This is because every node of T is connected
to the root ∅ by a path where the items in X are added one by one in some
particular order, and this happens in as many ways as there are permutations
of |X | items.

To obtain a proper estimate of the number of frequent itemsets, we need to
correct for this property of T . As noted earlier, Eq. 1 is in fact a sum over all
levels of the tree. In the tree T , the level i (with root ∅ on level 0) contains i!
copies of the same itemset. We must thus replace Equation 1 with

1 +

l∑
i=1

1

i!

i−1∏
j=0

d(vj), (2)

where 1
i! corrects the sizes of the levels so that each itemset is counted only once.

Pseudocode of the full FastEst algorithm is shown in Algorithm 1. In short,
this is Knuth’s algorithm applied on the frequent pattern lattice combined with
the modified path estimate equation. In practice we do not materialise the tree
T , but only sample paths through it using the SamplePath subroutine. On
every step it finds the set E of extensions to the current pattern P that are still
frequent (lines 2 and 8), and the size of E gives the outdegree of P (line 5).

2 Or any other type of pattern for which the Apriori / monotonicity property w.r.t.
pattern inclusion holds.
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Algorithm 1. The FastEst algorithm

1: Sample a number of paths using the SamplePath subroutine.
2: Use Equation 2 to compute the path-specific estimates.
3: Return the average of these as the final estimate.

1: SamplePath:
2: P ← ∅, i← 0
3: E ← {x ∈ I | freq(P ∪ x) ≥ σ}
4: while |E| > 0 do
5: i← i+ 1, di ← |E|
6: e← random element of E
7: P ← P ∪ e, E ← E \ e
8: E ← {x ∈ E | freq(P ∪ x) ≥ σ}
9: return (d1, . . . , di)

The algorithm proceeds until it hits a maximal frequent itemset, after which it
returns the sequence of encountered outdegrees.

The main bottleneck when running FastEst are the support computations in
SamplePath. These can be made very efficient by using a vertical representation
of the database where we have a list of transaction identifiers for each item.
As SamplePath proceeds deeper into the tree, we simply maintain a list of
transaction identifiers for the current node P , and intersect this with the lists
for other items when computing the support for each extension (line 8).

Remark: Algorithms for pattern mining often perform search by considering
a depth-first tree of the patterns. Applying Knuth’s method directly on this
tree is a bad idea, however. This is because the DFS tree is by construction
imbalanced, and therefore the random paths have very different lengths. Most
paths will underestimate the tree size, while few paths blow up the estimate.
This can, and will, to some extent also happen with the tree T we defined, but
since an itemset can be reached along several paths, we expect T to be less
imbalanced. Also, the DFS tree has a different structure depending on the order
in which the items are considered; T is not dependent on any such ordering.

4.2 A Non-monotonic Constraint: Closed Patterns

We conclude the section by discussing a simple approach that extends our es-
timation algorithm for non-monotonic constraints. The example that we fo-
cus on are closed patterns, i.e., patterns that are frequent and cannot be ex-
tended without decreasing the support. More formally, a pattern X is closed iff
freq(X) > freq(X ∪ u) for every possible u.

As described in [14], Knuth’s algorithm can be modified to count only those
nodes of the tree that satisfy a given property. The first idea is thus to use this
approach for closed patterns, as closedness is simply a property of the pattern
associated with a node. However, since closed patterns can be rare, this ap-
proach leads to poor estimates. The high variance of individual path estimates
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implies that a very large number of samples are needed to produce reasonable
estimates. Instead, we propose a method somewhat related to [8]. This estimates
the fractions of closed patterns on each level of the tree T , and corrects the final
estimate with these.

In more detail, when sampling a path through T , we can collect statistics on
the number of patterns we observe on every level. We maintain two vectors of
counters that have as many elements as there are levels in T . The first, denoted
qp, counts the number of all patterns found. The second, denoted qc, keeps track
of the number of closed patterns we observe. Then, we estimate the fraction of
closed patterns on level l by computing qc(l)/qp(l). Given the output of Algo-
rithm 1, we can also compute independent estimates for the sizes of every level
of T . (Recall that Eq. 2 is just the sum of these.) By multiplying these with
qc(l)/qp(l), we obtain estimates of the numbers of closed patterns on every level.
The path-estimate is simply the sum of these, and the final estimate is again the
average over a number of random paths.

5 The Pattern Frequency Spectrum

The pattern frequency spectrum shows the number of frequent patterns in data
D as a function of σ. More formally, we define the spectrum as

f(σ,D) = |{X ∈ L | freq(X,D) ≥ σ}|.

Below we write f(σ) for short, unless D is not clear from the context.

5.1 The Spectra Algorithm

A simple method to estimate f(σ) is to run the FastEst algorithm for a num-
ber of fixed values of σ, and construct f(σ) by interpolating from these point
estimates. The problem with this approach is that determining the values of σ
to use is not easy. By using a too coarse grid, we will miss some of the structure
present in the frequency spectrum. On the other hand, using many values of σ
may be very slow. Instead, we will use an approach where we obtain a number of
estimates for random values of σ using the algorithm from the previous section,
and then fit a nonlinear regression line through these.

In more detail, we propose the following algorithm called Spectra:

1. Compute the set of points S = {(σ1, g(σ1)), . . . , (σN , g(σN ))}, where every σi

is drawn uniformly at random from some predefined interval, and g(σi) is a
single path estimate given by SamplePath (Alg. 1).

2. We fit a nonlinear, nonincreasing regression line through S and use this as
our estimate of the pattern frequency spectrum.

This method has the advantage that we can simultaneously estimate f(σ) for all
values of σ, rather than interpolate from point estimates at predefined locations.

We know f(σ) must be monotonically nonincreasing as σ increases. A suitable
method for step 2 is thus isotonic regression [3]. The task is to find a strictly
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nonincreasing function that minimises the squared error to the input points in
S. More formally, we find an estimate f̂ by solving

min
∑

(σ,g(σ))∈S

(
f̂(σ)− g(σ)

)2

,

s.t. f̂(σi) ≥ f̂(σj) ∀σi ≤ σj .

In this paper we use the isoreg function of GNU R that represents f̂ by a
piecewise constant function (a step function). However, any other algorithm for
finding monotonically non-increasing functions subject to squared error can be
applied just as well. We point out that solving the regression problem is in
general orders of magnitude faster than obtaining the set S, and is thus not a
critical component from a complexity point of view.

5.2 Frequency Curves in Random Data
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Fig. 2. Expected frequency curve in
uniformly random data; n = 1000,
m = 10, and p = 0.2. The points
show observed frequencies in one in-
stance of random data

We now study what frequency spectra look
like in data that has no real structure. They
can be used as a kind of ‘null hypothe-
sis’ to compare real curves to: is there any
structure in the dataset or not? For this
we consider two types of random data: 1)
constant background, i.e., each value occurs
with fixed probability, 2) variable column
marginals, i.e., each value in each column
occurs with a given probability.

Uniformly Random Data with Con-
stant Background. We derive an analytic
expression for the expected frequency spec-
trum for data that is uniformly random.
Turns out that even under this simple model
f(σ) has non-trivial structure.

Let D denote a random binary dataset,
with n rows and m attributes, where every item appears with probability p in
every row. The expected value of f(σ,D) can be written as

ED[f(σ,D)] =

m∑
l=1

(
m

l

) n∑
k=σ

Binomial(k;n, pl). (3)

The above equation follows from taking the expected value of
∑

X⊆I I{freq(X) ≥
σ}, and observing that the probability of the indicator function is given by the
tail of a Binomial distribution with parameters n and pl.

Figure 2 shows an example of the expected frequency spectrum for uniformly
random data with parameters n = 1000, m = 100, and p = 0.2. Perhaps some-
what surprisingly, the plot shows a clear “staircase” pattern, despite there not
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being any structure in the data. The points in Fig. 2 are exact frequencies com-
puted from a single instance of random data that matches the parameters. We
can see that the expected curve closely matches the observed points.

Uniformly Random Data with Variable Column Marginals. Next, we
consider the case when the data are generated by a model where the items are
still all independent, but every item i has its own occurrence probability pi. In
this case it is no longer straightforward to derive a closed form expression for
E[f(σ)]. However, we can in fact use the Spectra algorithm to estimate the
expected frequency spectrum under this model as well. We point out that in this
case, Spectra becomes a heuristic that seems to give useful results, but it does
not necessarily converge to the correct expected pattern spectrum.

The algorithm is exactly the same as for real data, but we replace the support
computation in SamplePath with expected supports defined for itemset X as

ED[freq(X)] =
∑
D

freq(X | D) Pr[D] = n
∏
i∈X

pi,

where the expectation is taken over all possible datasets. Under the considered
model this becomes the expected value of a Binomial distribution. For a given σ,
the algorithm again starts from the empty itemset, and proceeds to sample a path
by determining whether the expected support of an extension is larger than σ. As
described in Section 5.1, we run SamplePath for a number of randomly selected
values of σ, and fit an isotonic regression line through the points obtained.

6 Experiments

In this section we empirically evaluate the FastEst and Spectra algorithms.
Datasets: For the experiments, we selected 14 moderately-sized datasets for

which exact frequent itemset counting is still possible for reasonable frequency
thresholds. The datasets were taken from the FIMI3 (Accidents, Kosarak, and
Pumsbstar) and LUCS-KDD4 dataset repositories. Table 2 lists the dataset di-
mensions: the number of transactions and the total number of items.

Evaluation criteria: Primary evaluation criteria are 1) accuracy of the esti-
mated counts, and 2) runtime. For purposes of presentation, all counts are given
in logarithmic scale, i.e., log10. An additional reason is that we are primarily in-
terested in correctly estimating the order of magnitude; in practice the difference
between mining and processing 1 million or 1.1 million itemsets is negligible.

Implementation: FastEst was implemented in C++ and is publicly avail-
able5. The implementation of the MCMC-based method was kindly provided by
the authors of [6]. For exact counting, also used by the MCMC-based method,
we use the original AFOPT implementation [15] taken from the FIMI repository.
All experiments were executed single-threaded on a regular desktop computer
(Intel i5-2500 @ 3.3GHz, 8GB RAM).

3 http://fimi.ua.ac.be/data/
4 http://cgi.csc.liv.ac.uk/~frans/KDD/Software/
5 http://patternsthatmatter.org/implementations/

http://fimi.ua.ac.be/data/
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/
http://patternsthatmatter.org/implementations/


124 M.v. Leeuwen and A. Ukkonen

Table 1. Itemset counts for a fixed frequency threshold σ: comparing exact counting,
FastEst (FE), and the MCMC-based method. Estimated counts are given with their
95% confidence intervals. The last column shows the fraction of frequency computations
required by FastEst when compared to exact counting.

Count [conf. interval] (log10) Time (sec) Frac.

Dataset σ Exact FE MCMC Exact FE MCMC FE

Adult 1 7.8 7.7 [7.5,7.9] 7.8 [7.8,7.8] 3 18 27 0.0245
Anneal 1 6.6 6.6 [6.4,6.8] 6.8 [6.7,6.8] 1 1 5 0.2291
Hepatitis 1 7.8 7.8 [7.7,7.9] 7.9 [7.8,7.9] 2 1 2 0.0146
Letrecog 1 8.8 8.7 [8.6,9.0] 8.8 [8.8,8.9] 23 12 51 0.0029
Mushroom 1 9.7 9.7 [9.6,9.9] 10.0 [9.9,10.0] 91 8 67 0.0005
Pendigits 1 8.7 8.7 [8.6,8.8] 8.7 [8.6,8.7] 21 8 39 0.0030
Waveform 1 10.1 10.1 [9.9,10.3] 10.2 [10.1,10.3] 331 5 53 0.0002

Accidents 4000 9.5 9.2 [8.5,9.7] - 496 475 - 0.0006
Chess 300 9.8 9.8 [9.5,10.1] 9.8 [9.7,9.9] 344 7 28 0.0002
Connect 7500 10.6 10.5 [10.2,10.8] 10.7 [10.5,10.7] 753 250 117 0.0000
Ionosphere 10 10.7 10.6 [10.5,10.8] 11.5 [11.4,11.5] 1231 1 146 0.0000
Kosarak 800 7.6 7.5 [6.7,7.9] - 15 206 - 0.1938
Mammals 10 12.2 12.3 [11.8,12.7] 12.1 [12.0,12.2] 43841 3 45 0.0000
Pumsbstar 7500 10.7 10.7 [10.6,10.8] 8.5 [8.4,8.5] 1042 320 554 0.0000

6.1 Estimating the Number of Frequent Itemsets

We first evaluate how well the FastEst algorithm performs when estimating the
number of frequent itemsets for a fixed threshold σ. We compare our method to
both exact counting and the existing MCMC-based approach for approximate
counting. Table 1 shows the results obtained on all 14 datasets. The results are
split into two groups, according to the used frequency threshold: σ = 1 was used
for the upper seven datasets, higher thresholds were used for the lower seven
datasets to make sure that exact counting finished in reasonable time. Note that
lower thresholds are no problem for FastEst, as we will see later.

The estimated counts are evaluated and compared using the following proce-
dure. For FastEst, we first obtain a large population of 10000 path samples.
We then compute the expected estimate and 95% confidence interval for 1000
path samples by subsampling the large pool 100 times. For MCMC we use a
similar approach: the procedure is executed 100 times, and expected estimates
and confidence intervals are based on taking a single sample from that pool. The
presented runtimes for FastEst and MCMC match this procedure, that is, they
are based on computing 1000 and 1 sample(s) respectively.

Looking at the upper half of the table first, we observe that the estimates by
our method are spot on in expectation. There is clearly some variance between
the estimates when using 1000 samples, but the 95% confidence intervals indicate
that they are always in the same order of magnitude. The expected estimates ob-
tained by MCMC are sometimes slightly off, but the variance is smaller. Except
for Adult and Anneal, FastEst is always the fastest of the three methods.
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Fig. 3. Estimation stabilisation: the running estimate is updated after each new sample.
Five independent runs of 2000 samples each, for Adult (left, σ = 1) and Mammals
(right, σ = 2). Also indicated are the expected estimates (green) and the actual counts
(red, only for Adult).

The results for the larger datasets in the lower half of the table show similar
behaviour. The results for MCMC are missing for Accidents and Kosarak due
to the implementation running out of memory. In general, the estimates by both
FE and MCMC are accurate, although those for Ionosphere and Pumbstar by
MCMC are clearly off. In terms of runtime, FastEst is the fastest in five out
of seven cases. The gain in runtime is particularly large for Chess, Ionosphere,
and Mammals, with attained speed-ups of 25-1230x.

Finally, the rightmost column of Table 1 shows the ratio of the number of
the frequency computations required by FE, relative to the number needed by
exact counting with Apriori [1]. Computing the frequency of an itemset is the
expensive part of the algorithm, and requiring fewer such computations results
in lower runtimes. The generally very low ratios confirm that FastEst needs
very few frequency computations to obtain accurate estimates.

An important question we have not addressed so far is how many samples
are needed to obtain accurate estimates. In the previous, we have shown that
1000 samples are generally enough, but it could be possible that fewer would be
sufficient as well. To investigate this, consider the stabilisation plots in Figure 3.
Although some small jumps in the estimates remain, they stabilise rather quickly.
Taking into account the scales of the y-axes, we conclude that 1000 samples is
more than enough to get at the correct order of magnitude. We observed similar
behaviour for other datasets, and Table 1 also confirms this finding.

As a side note: computing the 10000 samples required for the Mammals plot,
with σ = 2, took only 33 seconds. This demonstrates that FastEst can easily
deal with lower frequency thresholds. Unfortunately, we were not able to produce
the exact count for this threshold; we killed the process after it ran for two days.

Closed Frequent Itemsets.We now present results obtained with our adap-
tation of FastEst for estimating the number of closed frequent itemsets, here
denoted by C-FE. The results, all for σ = 0.05|D|, are shown in the ‘Count’ and
‘Time’ columns in Table 2. We do not include confidence intervals for reasons of
space, but observed similar intervals as previously. The exact results for Chess
are missing because the AFOPT miner crashed.
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Table 2. Dataset properties, closed itemset count estimation, and spectrum errors. |D|
and |I| represent the number of transactions and items in a dataset, respectively. The
next four columns contain the results for exact and FastEst (C-FE) closed itemset
counting, with σ = 0.05|D|. The rightmost columns contain curve errors obtained with
Spectra and 1000 and 10000 samples (lower error is better).

Dataset Count (log10) Time (s) Spectra curve error

Name |D| |I| Exact C-FE Exact C-FE 1000 samples 10000 samples

Accidents 340183 468 7.81 7.49 27665 1168 0.68 [0.42,1.10] 0.34 [0.24,0.48]
Adult 48842 15 4.41 4.35 0 71 0.23 [0.16,0.35] 0.12 [0.10,0.16]
Anneal 898 71 3.55 3.91 0 2 0.24 [0.15,0.36] 0.14 [0.10,0.18]
Chess 3196 37 - 8.64 - 12 0.57 [0.38,0.81] 0.30 [0.23,0.39]
Connect 67557 43 7.45 10.09 3324 1301 0.54 [0.37,0.79] 0.29 [0.22,0.42]
Hepatitis 155 20 5.18 5.17 2 1 0.28 [0.20,0.40] 0.14 [0.11,0.18]
Ionosphere 351 35 7.45 8.42 40974 4 0.74 [0.50,1.13] 0.40 [0.30,0.53]
Kosarak 990002 41270 1.52 1.52 0 51 0.11 [0.07,0.15] 0.05 [0.04,0.07]
Letrecog 20000 17 4.48 4.54 1 14 0.35 [0.22,0.58] 0.15 [0.11,0.22]
Mammals 2183 121 7.61 7.71 5722 3 0.47 [0.34,0.65] 0.23 [0.18,0.28]
Mushroom 8124 23 4.11 4.53 0 17 0.39 [0.28,0.55] 0.20 [0.15,0.26]
Pendigits 10992 17 3.76 3.74 0 8 0.25 [0.18,0.37] 0.13 [0.11,0.15]
Pumsbstar 49046 2088 6.97 10.63 1609 805 0.44 [0.30,0.64] 0.22 [0.18,0.27]
Waveform 5000 22 5.59 5.53 3 5 0.42 [0.28,0.64] 0.22 [0.16,0.27]

The estimates are pretty accurate for most datasets, but there are some ex-
ceptions. Of these, Connect is the most obvious: the estimate is three orders of
magnitude off. Investigating this in more detail, it turns out that this is due to
the extreme ratio between the number of frequent and closed itemsets: with only
1000 samples, the estimated correction coefficient cannot be reliable if it is much
lower than 0.1. If we increase the number of samples for Connect to 2000, for
example, the estimate becomes 9.2 – already one order of magnitude better.

Closed frequent itemset mining is a much harder problem than frequent item-
set mining, as is also reflected by the runtimes. The exact miner is faster in eight
cases, but those are the relatively easy datasets. The exact counting runtimes
explode for the more difficult datasets, whereas C-FE is relatively fast.

6.2 Estimating the Pattern Frequency Spectrum

We now turn our focus to the Spectra algorithm. That is, we estimate the
number of frequent itemsets for the complete frequency ranges. For each dataset,
we obtain a curve using both 1000 and 10000 samples, and compare the resulting
curves to the exact curves as far as they are available, i.e., for the frequency range
[σ, |D|] (for values of σ mentioned in Table 1).

We initially computed the mean error over the complete curve, but since the
spectra are quite accurate these were hardly informative. We therefore turned
to another measure, i.e., the curve errors presented in the rightmost columns of
Table 2. These numbers are the 95% quantiles of the errors: 95% of the curve has
an error that is at most as large as indicated. For all datasets, 1000 samples are
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Fig. 4. Frequency curves obtained with Spectra for Adult and Ionosphere: estimated
on actual data (blue) and expected in random data (green). For comparison, the exact
curve (black) is also drawn.

enough to estimate at least 95% of the full spectrum with an error of less than
one order of magnitude, and often much less. With 10000 samples, 95% of the
curve is often only 0.1 - 0.2 away from the actual counts. Of course, the estimates
are inevitably less accurate than when using the same number of samples for a
single σ, but nonetheless Spectra succeeds in obtaining accurate estimates for
the whole frequency range with a limited number of samples.

The runtimes of Spectra are not listed, but they are even shorter than when
estimating the number of itemsets for a single, low threshold. The reason is that
samples are drawn for arbitrary values of σ, and runtimes are shorter for higher
values. When 1000 samples are used, computing a curve takes only seconds for
the smaller datasets, and a few minutes for the larger ones. The longest runtime
was measured for Accidents : 401 seconds.

Figure 4 shows example frequency spectra obtained for Adult and Ionosphere.
The estimated curves (in blue) clearly match the actual curves (in black) very
well, although there is a slight tendency towards underestimation for the lower
frequency ranges. It is very easy to read out ballpark pattern counts and use
these to tune the frequency threshold. For Ionosphere, for example, choosing
σ = 80 would result in a modest 106 frequent itemsets, whereas anything lower
will quickly get you vast amounts of patterns.

Comparing Against Random Frequency Spectra. The plots in Figure 4
also show expected spectra obtained with the procedure described in Section 5.2.
That is, we consider the model where the items are independent but variable
column marginals are given. The number of transactions and item probabilities
of the random data are equal to those of the real dataset, and high-confidence
random frequency spectra are obtained by obtaining 10 samples for each possible
value of σ; this procedure is extremely fast and can be done in one or two seconds
for any dataset considered in this paper.
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Comparing the actual to the random spectra, we observe that the itemset
frequencies of Adult can be mostly explained by the marginal probabilities of the
individual items. Still, there is some structure present in the lower part of the
frequency range, where more itemsets are found than expected. For Ionosphere,
the picture is rather different: this dataset has clearly much more structure than
can be explained from the individual item probabilities.

7 Discussion

The results demonstrate that our methods for estimating the number of frequent
patterns perform very well. Still, there are many possibilities for future research.
One obvious direction is to investigate the adaptation for closed itemsets in
more detail. One task would be to make it reliable for any dataset, but more
interesting is to investigate the approach for other non-monotonic constraints.

The estimated frequency spectra can be reliably used to choose a minimum
support threshold for frequent itemset mining; the order of magnitude is always
right. Furthermore, these spectra are potentially useful as ‘fingerprints’ of the
data. For example, we witnessed rather different shapes and curves, and we can
imagine that it might be possible to cluster datasets based on their frequency
spectra. Also, more advanced models could be used for the generation of expected
curves, to see whether the actual curves match those.

We only considered frequency spectra for complete datasets, but one could
also consider subsets of the pattern language. For example, by only considering
those patterns that are supersets of a given ‘query’ pattern. This would give
query-based frequency spectra, which could inform us about the local structure
for a given query. The sampling procedure would remain almost unchanged: given
a query, each path is sampled starting from that query instead of the empty set.

Note that the FastEst algorithm provides estimates for each individual depth
in the search tree, i.e., for each itemset size. This implies that our method could
be used to estimate, e.g., the number of n-grams in a document dataset.

Finally, our approach can be easily parallelised to make it run efficiently on
very large datasets. When sampling a path, we must compute the frequency
of a pattern several times. We can easily adapt the algorithm to make it an
Apriori-style algorithm, which has the advantage of being database friendly.
Then, the database scan can be efficiently implemented on, for example, rela-
tional databases or distributed platforms for large-scale data processing.

8 Conclusions

We introduced two methods for approximate counting of the number of fre-
quent patterns in a given dataset. Based on Knuth’s classical algorithm for esti-
mating the size of a search tree, the FastEst algorithm estimates the number
of frequent itemsets for a given frequency threshold. The Spectra algorithm
combines FastEst with isotonic regression to estimate the complete pattern
frequency spectrum for a given dataset.

The experiments showed that both methods are very accurate and efficient,
when compared to exact counting and an existing MCMC-based estimator. The
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adaptation for closed itemsets gives good estimates in most cases. Finally, we
showed how pattern frequency spectra provide interesting summary statistics
that can be compared to expected curves generated for random data models.
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Abstract. In this paper, we propose a bottom-up greedy and purely discrimina-
tive syntactic parsing approach that relies only on a few simple features. The core
of the architecture is a simple neural network architecture, trained with an ob-
jective function similar to that of a Conditional Random Field. This parser lever-
ages continuous word vector representations to model the conditional distribu-
tions of context-aware syntactic rules. The learned distribution rules are naturally
smoothed, thanks to the continuous nature of the input features and the model.
Generalization accuracy compares favorably to existing generative or discrimi-
native (non-reranking) parsers (despite the greedy nature of our approach), while
the prediction speed is very fast.

Keywords: Syntactic Parsing, Natural Language Processing, Neural Networks.

1 Introduction

While discriminative methods are at the core of most state-of-the-art approaches in
Natural Language Processing (NLP), historically the task of syntactic parsing has been
mainly solved with generative approaches. A major contribution in the parsing field
is certainly probabilistic context-free grammar (PCFGs)-based parsers [1,2,3]. These
types of parsers model the syntactic grammar by computing statistics of simple gram-
mar rules occurring in a training corpus. Inference is then achieved with a simple
bottom-up chart parser. These methods face a classical learning dilemma: on one hand
PCFG rules have to be refined enough to avoid any ambiguities in the prediction. On the
other hand, too much refinement in these rules implies lower occurrences in the training
set, and thus a possible generalization issue. PCFGs-based parsers are thus judiciously
composing with carefully chosen PCFG rules and clever regularization tricks.

Given the success of discriminative methods for various NLP tasks, similar methods
have been attempted for the syntactic parsing task. One of the first successful discrimi-
native parsers [4] was based on MaxEnt classifiers (trained over a large number of dif-
ferent features) and a greedy shift-reduce strategy. However, it did not perform on par
with the best generative parsers of the time. Costa et al. [5] introduced a left-to-right
incremental parser which used a recursive neural network to re-rank possible phrase
attachments. They showed that RNN was able to capture enough information to make
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correct parsing decisions. Their system was, however, only tested on a subset of 2000
sentences. One had to wait a few more years before discriminative parsers could match
Collins’ parser performance. To this extent , Taskar et al. [6] proposed an approach
which discriminates the entire space of parse trees, with a max margin criterion applied
to Context Free Grammars. Other discriminative approaches [7,8] also outperformed
standard PCFG-based generative parsers, but only by discriminatively re-ranking the
K-best predicted trees coming from a generative parser.

Turian and Melamed [9] later proposed a bottom-up greedy algorithm to construct
the parse tree, using a feature boosting approach. The parsing is performed following
a left-to-right or a right-to left strategy. The greedy decisions regarding the tree con-
struction are made using decision tree classifiers. However, both of these parsers were
limited to sentences of less than 15 words, due to a training time growing exponentially
with the size of the input.

McClosky et al. [10] successfully leveraged unlabeled data to train a parser using a
self-training technique. In this approach, a re-ranker is trained over a generative model.
The re-ranker is used to generate “labels” over a large unlabeled corpus. These “labels”
are then used to retrain the original generative model. This work is currently considered
the state-of-the-art in syntactic parsing.

Most recent discriminative parsers [11,12] rely on Conditional Random Fields (CRFs)
with PCFG-like features. Carreras et al. [13] used a global-linear model (instead of a
CRF) with PCFGs and various new advanced features.

While PCFG-based parsers are widely used, other approaches do exist. In [14], the
proposed parser relies on continuous word vector representations, and a discriminative
model to predict “levels” of the syntactic tree. Socher et al. [15] also relies on continu-
ous word vector representations, which are “compressed” in a pairwise manner to form
higher level chunk representations. Their approach is used as a re-ranker of the Stanford
Parser [16].

Finally, it is worth noting that generative parsers are still evolving. PCFGs with
latent-variables [17] have been used in various ways to improve the performance of
classical PCFG as in [18].

In this paper, we propose a greedy and purely discriminative parsing approach. In
contrast with most existing methods, it relies on a few simple features. The core of
our architecture is a simple neural network which is fed with continuous word vector
representations (as in [19,15]). It models the conditional distributions of context-aware
syntactic rules. The learned distribution rules are naturally smoothed, thanks to the
continuous nature of the input features.

Section 2 introduces our algorithm and relates it to PCFG-based parsers. Section 3
describes the classification model at the core of our architecture. Section 4 reports ex-
perimental comparisons with existing approaches. We conclude in Section 5.

2 A Greedy Discriminative Parser

2.1 Smoothed Context Rule Learning

PCFG-based parsers rely on the statistical modeling of rules of the form A → B, C,
where A, B and C are tree nodes. The context-free grammar is always normalized in
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the Chomsky Normal Form (CNF) to make the global tree inference practical (with
a dynamic programming like CYK or similar). In general a tree node is represented
as several features, including for example its own parsing tags and head word (for
non-terminal nodes) or word and Part Of Speech (POS) tag (for terminal nodes) [2].
State-of-the-art parsers rely on a judicious blending of carefully chosen features and
regularization: adding features in PCFG rules might resolve some ambiguities, but at
the cost of sparser occurrences of those rules. In that respect, the learned distributions
must be carefully smoothed so that the model can generalize on unseen data. Some
parsers also leverage other types of features (such as bigram or trigram dependencies
between words [13]) to capture additional regularities in the data.

In contrast, our system models non-CNF rules of the form A → B1, ..., BK . The
score of each rule is determined by looking at a large context of tree nodes. More
formally, we learn a classifier of the form:

f(Cleft, B1, ..., BK , Cright) = (s1, ..., s|T |) (1)

where the Bk are either terminal or non-terminal nodes, K is the size of the right part
of the rule, Cleft and Cright are context terminals or non-terminals and st is the score
for the parsing tag t ∈ T . Each possible rule Ai → B1, ..., BK is thus assigned a score
si by the classifier (with Ai ∈ T ). These scores can be interpreted as probabilities by
performing a softmax operation. We used a Multi Layer Perceptron (MLP) as classifier.
Formal details will be given in Section 3.2.

The only tree node features considered in our system are parsing tags (or POS tags for
terminals), as well as the headword (or words for terminals). We overcome the problem
of data sparsity which occurs in most classical parsers by leveraging continuous vector
representations for all features associated to each tree node. In particular, word (or
headword) representations are derived from recent distributed representations computed
on large unlabeled corpora (such as [19,20]). Thanks to this approach, our system can
naturally generalize a rule like NP → a, clever, guy to a possibly unseen rule like
NP → a, smart, guy, as the vector representation of smart and clever are close to
each other, given that they are semantically and syntactically related.

Several works leveraging continuous vector representations have been previously
proposed for syntactic parsing. [14] introduced a neural network-based approach, itera-
tively tagging “levels” of the parse tree where the full sentence was seen at each level. A
complex pooling approach was introduced to capture long-range dependencies, and per-
formance only matched early lexicalized parsers. [21] introduced a recursive approach,
where representations are “compressed” two by two to form higher-level representa-
tions. However, the system was limited to bracketing, and did not produce parsing tags.
The authors later proposed an improved version in [15], where their approach was used
to re-rank the output of the Stanford Parser, approximately reaching state-of-the-art
performance. In contrast, our approach does not rely on CNF grammars and does not
re-rank an external generative parser.

2.2 Greedy Recurrent Algorithm

Our parser follows a bottom-up iterative approach: the tree is constructed starting from
the terminal nodes (sentence words). Assuming that a part of the tree has been already
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It ’s a real dog .

NP NP

(a)

It ’s a real dog .

NP NP

PP

(b)

It ’s a real dog .

NP NP

PP

S

(c)

Fig. 1. Illustration of our greedy algorithm: at each iteration (a)→(b)→(c), the classifier sees only
the previous tree heads (ancestors), shown here in italics. It predicts new nodes (here in bold).
New tree heads become the ancestors at the next iteration. All other previously discovered tree
nodes (shown in regular black here) will remain unchanged and ignored in subsequent iterations.

predicted (see Figure 1), the next iteration of our algorithm looks for all possible new
tree nodes which combine ancestors (i.e., heads of the trees predicted so far). New
nodes are found by maximizing the score of our context-rule classifier (1), constrained
in such a way so that two new nodes cannot overlap, thanks to a dynamic programming
approach. The system is recurrent, in the sense that new predicted parsing labels are
used in the next iteration of our algorithm.

For each iteration, assuming N ancestors

X = [X1, ..., XN ] ,

finding all possible new nodes with K ancestors would require to apply

f(Cleft, B1, ..., BK , Cright)

over all possible windows of K ancestors in X . One would also have to vary K from
1 to N , to discover new nodes of all possible sizes. Obviously, this could quickly be-
come time consuming for large sentence sizes. This problem of finding nodes with a
various number of ancestors can be viewed as the classical NLP problem of finding
“chunks” of various sizes. This problem is typically transformed into a tagging task:
finding the chunk with label A in the rule A → Xi, Xi+1, . . . , Xj can simply be
viewed as tagging the ancestors with B-A, I-A, . . .E-A, where we use the standard
BIOES label prefixing (Begin, Intermediate, Other, End, Single). See Table 1 for a con-
crete example. The classifier outputs the “Other” tag, when the considered ancestors do
not correspond to any possible rule.

In the end, our approach can be summarized as the following iterative algorithm:
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1. Apply a sliding window over the current ancestors: the neural network classifier (1)
is applied over all K consecutive ancestors X1, ..., XN , where K has to be carefully
tuned.

2. Aggregate BIOES tags into chunks: a dynamic program (based on a CRF, as detailed
in Section 3.3) finds the most likely sequence of BIOES parsing tags. The new nodes
are then constructed by simply aggregating BIES tags

B-A, I-A, . . . E-A

into A (for any label A).
3. Ancestors tagged as O, as well as newly found tree nodes are passed as ancestors to

the next iteration.

The tree construction ends when there is only one ancestor remaining, or when the
classifier did not find any new possible rule (everything is tagged as O).

Table 1. A simple example of a grammar rule extracted from the sentence “It ’s a real dog .”,
and its corresponding BIOES grammar. In both cases, we include a left and right context of size
1. The middle column shows the required classifier evaluations. The right column shows the type
of scores produced by the classifier.

GRAMMAR CLASSIFIER EVALUATIONS SCORES

NP→ ’S A REAL DOG . f(’S, A, REAL, DOG, .) sNP , ..., sV P , sO
B-NP→ ’S A REAL f(’S, A, REAL)

I-NP→ A REAL DOG f( A, REAL, DOG) sB-NP , ..., sE-V P , sO
E-NP→ REAL DOG . f( REAL, DOG, .)

3 Architecture

In this section, we formally introduce the classification architecture used to find new
tree nodes at each iteration of our greedy recurrent approach. A simple two-layer neural
network is at the core of the system. It leverages continuous vector word representa-
tions. In this respect, the network is clearly inspired by the work of [22] in the context
of language modeling, and later re-introduced in [23] for various NLP tagging tasks.

Given an input sequence of N tree node ancestors X1, ..., XN (as defined in Sec-
tion 2.2), our model outputs a BIOES-prefixed parsing tag for each ancestor Xi, by
applying a sliding window approach. These scores are then fed as input to a properly
constrained graph on which we apply the Viterbi algorithm to infer the best sequence of
parsing tags. The whole architecture (including transition scores in the graph) is trained
in an end-to-end manner by maximizing the graph likelihood. The end-to-end neural net-
work training approach was first introduced in [24]. The system can be also viewed as a
particular Graph Transformer Network [25], or a particular non-linear Conditional Ran-
dom Field (CRF) for sequences [26]. Each layer of the architecture is presented in detail
in the following paragraphs. The objective function will be introduced in Section 3.4.
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3.1 Words Embeddings

Our system relies on raw words, following the idea of [19]. Each word is mapped into
a continuous vector space. For efficiency, words are fed into our architecture as indices
taken from a finite dictionary W . Word vector representations, as other network param-
eters, are trained by back-propagation.

More formally, given a sentence of N words, w1, w2, ..., wN , each word wn ∈ W is
first embedded in a D-dimensional vector space by applying a lookup-table operation:

LTW (wn) = Wwn ,

where the matrix W ∈ RD×|W| represents the parameters to be trained in this lookup
layer. Each column Wn ∈ RD corresponds to the vector embedding of the nth word in
our dictionary W .

These types of architectures allow us to take advantage of word vector representa-
tions trained on large unlabeled corpora, by simply initializing the word lookup table
with a pre-trained representation [19]. In this paper, we chose to use the representations
from [27], obtained by a simple PCA on a matrix of word co-occurrences. As shown in
[14] for various NLP tasks, we will see that these representations can provide a great
boost in parsing performance.

In practice, it is common to give several features (for each tree node) as input to the
network. This can be easily done by adding a different lookup table for each discrete
feature. The input becomes the concatenation of the outputs of all these lookup-tables:

LTW1,...,WK (wn) =(LTW1(wn))
T ,

...,

(LTW|F|(wn))
T

where |F| is the number of features. For simplicity, we consider only one lookup-table
in the rest of the architecture description.

3.2 Sliding Window BIOES Tagger

The second module of our architecture is a simple neural network which applies a slid-
ing window over the output of the lookup tables, as shown in Figure 2. The nth window
is defined as

un = [LT (Xn−K−1
2

), ..., LT (Xn), ..., LT (Xn+K−1
2

)] ,

where K is the size of window. The module outputs a vector of scores s(un) = [s1, ...,
s|T |] (where st is the score of the BIOES-prefixed parsing tag t ∈ T for the ancestor
Xn). The ancestors with indices exceeding the input boundaries (n− (K−1)/2 < 1 or
n+(K−1)/2 > N ) are mapped to a special padding vector (which is also learned). As
any classical two-layer neural network, our architecture performs several matrix-vector
operations on its inputs, interleaved with some non-linear transfer function h(·),

s(un) = M2 h(M1 un) ,
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Fig. 2. Sliding window tagger. Given the concatenated output of lookup tables (here the ancestor
words/headwords and ancestor tags), the tagger outputs a BIOES-prefixed parsing tag for each
ancestor node. The neural network itself is a standard two-layer neural network.

where the matrices M1 ∈ RH×K|D| and M1 ∈ R|T |×H are the trained parameters of
the network. The number of hidden units H is a hyper-parameter to be tuned.

As transfer function, we chose in our experiments a (fast) “hard” version of the hy-
perbolic tangent:

h(x) =

⎧⎨⎩
−1 if x < −1
x if −1 <= x <= 1
1 if x > 1

(2)

3.3 Aggregating BIOES Predictions

The scores obtained from the previous module of our architecture are in BIOES format.
The next module in our system aggregates these tags and finds the new tree nodes at
each iteration of our greedy recurrent approach. We introduce a graph G of scores as
shown in Figure 3: each node of the graph corresponds to a BIOES score produced for
each ancestor by the neural network module. This graph is constrained in such a way
that only feasible sequences of tags are possible (e.g. B-A tags can only be followed by
I-A tags, for any parsing label A). Our graph also includes a duration model: on each
edge, we add a transition score Att′ for jumping from tag t ∈ T to t′ ∈ T .



Recurrent Greedy Parsing with Neural Networks 137

...

...

...

...

...

...

D
a
te

/
N
P

h
a
s
/
V
B
Z

’n
t
/
R
B

been
/
V
B
N

set
/
V
P

.
/
.

B-NP

I-NP

E-NP

...

S-VP

...

Fig. 3. Constrained graph for tag inference. Only feasible sequences of tags are considered. The
nodes of the graph are assigned a score from the tagger shown in Figure 2. Edges of the graph
are assigned a transition score which is learned similarly to other parameters in the architecture.

A score for a sequence of tags [t]N1 in the lattice G is obtained as the sum of scores
along [t]N1 in G:

S([t]N1 , [u]N1 , θ) =

N∑
n=1

(Atn−1tn + s(un)tn) ,

where θ represents all the trainable parameters of the complete architecture. The se-
quence of tags [t∗]N1 for the input sequence of tree node ancestors X1, . . . , XN is then
inferred by finding the path which leads to the maximal score:

[t∗]N1 = argmax
[t]N1 ∈T N

S([t]N1 , [u]N1 , θ)

The Viterbi algorithm is the natural choice for this inference. From this optimal BIOES
tag sequence, we extract sub-sequences B-A, . . . , E-A and S-A as new nodes for the
tree. O tags are simply ignored. See Section 2.2 for more details.

3.4 Training Likelihood

Our architecture sees sequences of ancestor tree nodes, and outputs new possible syn-
tactic tree nodes only from this history. Technically speaking, the training set can be
prepared by iterating over each tree in the training corpus, removing all possible leaves
in an iterative process so that all training rules are uncovered (see Figure 4).

The neural network is trained by maximizing a likelihood over the training data, us-
ing stochastic gradient ascent. The score for a path can be interpreted as a conditional
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I
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P : NP VP
L : B-S E-S

(d)

Fig. 4. Iterative procedure (a)→(b)→(c)→(d) to generate the training data, which involves cutting
out all tree leaves at each step. The data fed to our network architecture is then easily uncovered
(H: ancestor headwords/words, P: ancestor POS/parsing tags, L: parsing labels to be predicted).

probability over this path by exponentiating score (thus making it positive) and normal-
izing it with respect to all possible paths. We define P as the set of possible tag paths
in the constrained graph G, as shown in Figure 3. The log-probability of a sequence of
tags [t]N1 given the lookup table representations [u]N1 is given by:

logP ([t]N1 |[u]N1 , θ) =S([t]N1 , [u]N1 , θ) (3)

− logadd
∀[t′]N1 ∈P

S([t′]N1 , [u]N1 , θ))

where we adopt the notation logaddzn = log (
∑

i e
zi), as in [23].

Computing the log-likelihood efficiently is not straightforward, as the number of
terms in the logadd grows exponentially with the length of the sentence. Fortunately,
it can be computed in linear time with the Forward algorithm, which derives a recur-
sion similar to the Viterbi algorithm (see [28]). The complete architecture is trained by
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simply backpropagating through this recursion, up to the lookup layers (for further de-
tails, see [14]). Note that the likelihood (3) corresponds to a standard CRF model for
sequences. The only difference here is that the underlying model is non-linear, while
CRFs are often considered as linear models.

4 Experiments

4.1 Corpus

Experiments were performed using the standard English Penn Treebank data set (Mar-
cus et al., 1993). We used the classical parsing setup, with sections 02-21 used to train
our model, section 22 used as validation for choosing all our hyper-parameters, and sec-
tion 23 used for testing. We applied only a small subset of the typical pre-processing set
over the data: (1) functional labels, traces were removed, (2) the PRT label was replaced
as ADVP [1].

ADJP

SBAR

S

VP

VP

understand
VB

to
TO

easy
JJ

⇒

ADJP

SBAR#S#VP

VP

understand
VB

to
TO

easy
JJ

Fig. 5. Training corpus pre-processing. Original Penn Treebank trees containing non-terminal
nodes with only one non-terminal node (left), and after concatenating those nodes (right).

The Penn Treebank data set contains non-terminal tree nodes which only have one
non-terminal child, as shown in Figure 5. To avoid possible looping issues in our parsing
algorithm (e.g. a node being repetitively tagged with two different tags in our iterative
process), we transformed the training corpus so that non-terminal nodes having only
one non-terminal child were merged together, and take as tag the concatenation of all
merged node tags (see Figure 5). This way, the system learns that a node must contain at
least two ancestors. The iterative process is thus guaranteed to converge. We kept only
concatenated labels which occurred at least 30 times (corresponding to the lowest num-
ber of occurrences of the less common original parsing tag), leading to 11 additional
parsing tags. Added to the original 26 parsing tags, this resulted in 161 tags produced
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Table 2. Influence of different features. Results are given in terms of F1-score. POS = part-of-
speech, hw = head-word, wi = word initialization from [27].

FEATURE F1
WORD + POS 85.1
WORD + POS + HW 86.9
WORD + POS + WI 86.2
WORD + POS + HW + WI 88.3

Table 3. Results in terms of Precision (P), Recall (R), and F1 score. The reported time is the time
to parse the full WSJ test corpus.

MODEL (R) (P) F1 (R) (P) F1 TIME

MAGERMAN (1995) 84.6 84.9 84.8
GENERATIVE COLLINS (1999) 88.5 88.7 88.6 88.1 88.3 88.2 1247

CHARNIAK (2000) 90.1 90.1 90.1 89.6 89.5 89.6
GENERATIVE HENDERSON (2004) 89.8 90.4 90.1

WITH CHARNIAK AND JOHNSON (2005) 92.0 91.1
RE-RANKING SOCHER ET AL (2013) 91.1 92.1 390

MCCLOSKY ET AL (2006) 92.1
PETROV AND KLEIN (2008) 90.0 89.4

PURELY CARRERAS ET AL. (2008) 90.7 91.4 91.1
DISCRIMINATIVE OUR MODEL 88.4 89.0 88.7 88.0 88.6 88.3 110

OUR MODEL (VOTING) 90.0 90.1 90.1 89.6 89.7 89.6

by our parser. At test time, the inverse operation is performed: concatenated tag nodes
are simply expanded into their original form.

WHADVP → When
NP → the little guy

ADJP → frightened
NP → the big guys

ADVP → badly

4.2 Features

We consider the following features to train our architecture:

– Words and headwords:
• For terminal nodes, the word itself, in low caps1. As in [2], words occurring 5

times or less were mapped to an “UNKNOWN” word.
• For non-terminal nodes: headwords, following the procedure described in [2].

1 Adding a capital feature had no impact on the performance of our parser. Note that POS tags
were generated with the original caps in the sentence.
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Fig. 6. Normalized scores from the network classifier (black means high score) for the sentence
”When the little guy gets frightened, the big guys hurt badly.”. Each tag is in BIOES form (y
axis). Each ancestor in the input is on the x axis.

– POS tags (for terminals) or parsing tags of the node’s ancestors (for non-terminals).
POS tags were produced with SENNA [23].

– POS tags of headwords.

4.3 Results

We train the network using stochastic gradient descent over the available training data,
until convergence on the validation set. We chose the following hyper-parameters ac-
cording to the validation. Lookup-table sizes for the words and tags (part-of-speech and
parsing) are 100 and 20, respectively. The window size for the tagger is K = 7 (3
neighbors from each side). The size of the tagger’s hidden layer is H = 500. We used
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the word embeddings obtained from [27] to initialize the word lookup-table. These em-
beddings were then fine-tuned during the training process. Finally, we fixed the learning
rate to λ = 0.025 during the stochastic gradient procedure. The only “trick” used during
training was to divide the learning rate by the input size of each linear layer [29].

Table 2 shows the importance of the different features we used. Even though the
training procedure is non-convex, the variance of the F1 score over 20 different runs
(for the architecture Word + POS + hw + wi) was only 0.01.

Since our architecture performs the decoding very quickly, we additionally per-
formed a voting procedure using several models learned from different random ini-
tializations. We averaged all neural network classifiers (ignoring their own respective
CRF decoding part) and trained a new CRF on top of it (without fine-tuning any of the
neural network classifiers). The scores obtained with 10 classifiers are shown in Table 3.

Results in Table 3 are reported in terms of recall (R), precision (P) and F1 score.
Scores were obtained using the Evalb implementation2. We compare our system with
several other parsers. We chose to report the scores of the three main generative parsers,
as well as those of known re-ranking parsers. We also considered two major purely
discriminative parsers.

4.4 Rule Prediction Analysis

Figure 6 shows the output of the classifier (applied on every possible window of size 7)
for the sentence ”When the little guy gets frightened, the big guys hurt badly.”. For this
sentence, the expected rules are the following:

WHADVP → When
NP → the little guy

ADJP → frightened
NP → the big guys

ADVP → badly

It is interesting to see that the network alone is able to predict all the rules of the
sentence. The CRF is however essential to produce a consistent output, by aggregating
BIES prefixed chunks.

5 Conclusion

We presented a very simple model that is able to learn syntactic grammar rules sur-
prisingly well, considering the simple features employed. This parser achieves perfor-
mance very close to state-of-the-art re-ranking systems and is almost the best among the
purely generative parsers. Due to its simplicity, there are many possibilities for further
improvement. In particular, the head-word procedure from Collins could be revisited,
e.g. by learning a higher-level chunk representation in the same spirit as [15]. We could
also investigate re-ranking approaches, as well as the use of unlabeled corpora.

2 Available at http://nlp.cs.nyu.edu/evalb/

http://nlp.cs.nyu.edu/evalb/
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Abstract. Meta-clustering is a popular approach to find multiple clus-
terings in the datasest, which takes a large number of base clusterings
as input for further user navigation and refinement. However, the effec-
tiveness of meta-clustering is highly dependent on the distribution of the
base clusterings and open challenges exist with regard to its stability
and noise tolerance. In this paper we propose a simple and effective fil-
tering algorithm (FILTA) that can be flexibly used in conjunction with
any meta-clustering method. Given a (raw) set of base clusterings, FILTA
employs information theoretic criteria to remove those having poor qual-
ity or high redundancy. Then this filtered set of clusterings is highly
suitable for further exploration, particularly the use of visualization for
determining the dominant views in the dataset. We evaluate FILTA on
both synthetic and real world datasets, and see how its use can enhance
view discovery for complex scenarios.

Keywords: Clustering, Meta-Clustering, Multiple Clusterings, Cluster-
ing Visualization.

1 Introduction

Clustering is one of the most important unsupervised techniques for discovering
dataset structure. Many clustering methods focus on obtaining one single ‘best’
solution by optimizing a pre-defined criterion [11]. There are two limitations with
this: firstly, data can be multi-faceted in nature. Particularly when the datasets
are large and complex, there may be several useful clusterings that exist, not only
one. Secondly, users may be seeking different perspectives on the same dataset,
requiring multiple clustering solutions. This has stimulated considerable recent
research on the topic of multiple clustering analysis [2].

Multiple clustering analysis aims to discover a set of reasonable and distinc-
tive clustering solutions from the same dataset. Many methods have been pro-
posed on this topic and one very popular technique is meta-clustering [3],[20].
Meta-clustering generates a large number of base clusterings using different pro-
cedures: running different clustering algorithms, running a specific algorithm
several times with different initializations, or using random feature weighting in
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(a) Four views generated from the raw base
clusterings.

(b) Two views gener-
ated from the filtered
base clusterings.

Fig. 1. Two sets of views found using as input a) raw set of unfiltered base clusterings,
and b) set of filtered base clusterings. Colours indicate clusters.

the distance function. These base clusterings may then be meta-clustered into
groups. Further, clusterings within the same group can be combined using con-
sensus (ensemble) clustering to generate a consensus view of that group. This
results in one or more distinctive clusterings (views) of the dataset, each offering
a different perspective or explanation.

A major drawback and challenge with the use of meta-clustering is that its
effectiveness is highly dependent on the quality and diversity of the generated
base clusterings. Specifically, if the base clusterings have high similarity, then
further processing may generate multiple similar views. If the base clusterings
are of low quality, then naive visualization or analysis will produce low quality
views. Users may be misled by these similar or poor quality views.

We illustrate this problem with an example in Figure 1a, where the dataset
consists of four Gaussian clusters. We generate a set of raw base clusterings via k-
means (with k = 2 clusters) and random feature weighting (these base clusterings
are not shown in the figure). These base clusterings are then meta-clustered into
groups, and for each group a consensus view is extracted via consensus clustering.
The views generated on the raw base clusterings are presented in Figure 1a.
Observe that among these four views, some are rather similar (view2, view3 and
view4) and some have poor quality (view1, view2 and view4). This stimulates
the following question, which is the basis for our paper - Can we apply a filtering
step to the base clusterings and thus avoid discovering poor quality or redundant
views? Figure 1b provides intuition about the benefits of filtering. It shows the
views generated using a filtered set of base clusterings as input. These are more
natural views of the dataset, being both of high quality and non-redundant.

In more detail, we propose filtered meta-clustering (FILTA), aiming at detect-
ing multiple high quality and distinctive views by filtering and then analyzing
a given set of base clusterings. Algorithmically, we propose an information the-
oretic criterion to perform the filtering. In addition, we show how to employ a



FILTA: Better View Discovery via Filtering 147

Fig. 2. The meta-clustering framework with proposed filtering step highlighted

visual method to automatically determine the dominant meta clusters within the
filtered base clusterings. Finally, we perform consensus clustering on each meta
cluster to identify the views. Figure 2 shows the whole process. The novelty of
our approach lies in the addition of a filtering step to the existing meta-clustering
framework, which is highlighted as step 1a in Figure 2. Our focus is on investigat-
ing how to filter the given raw base clusterings to generate a set of better views,
in terms of quality and diversity, compared to the unfiltered meta-clustering.
We assume that we are given a set of base clusterings and the generation of
appropriate base clusterings (step 1) is outside the scope of this paper and is
left for future work. An important advantage of our method is that the filtering
step is independent of the other steps in this framework and thus may be easily
integrated with them.

Our contributions can be summarized as follows:

– We identify limitations with the current pipeline for meta-clustering. In par-
ticular, its reliance on the quality and diversity of a set of (raw) base clus-
terings for generating high quality and diverse views.

– We propose a novel filtering based meta-clustering approach for discovering
multiple high quality and diverse views from a given set of base clusterings.
Our filtering step can enhance any existing meta-clustering method.

– We propose a mutual information based filtering criterion which considers
the quality and diversity of base clusterings simultaneously. We provide a
parameter that allows users to flexibly control the balance between less num-
ber of views but of higher quality or more of them but of relatively lower
quality.

2 Related Work

Our research is related to several topics: meta-clustering, alternative clustering
and cluster ensemble or consensus clustering.

Meta-Clustering aims to find multiple views by generating and evaluating a
large set of base clusterings. In work [3], it first generates these base clusterings by
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either random initialization or random feature weighting. Then, it groups these
base clusterings into multiple meta clusters and then presents these meta clusters
to the users for evaluation. Based on this idea, Zhang and Li [20] proposed a
method that extend [3] with consensus clustering in order to capture multiple
views. Work in [14] proposed a sampling method for discovering a large set of
good quality base clusterings. After that, the k-center [9] clustering method is
used to select the k most dissimilar solutions as the views. The existing meta-
clustering methods are highly dependent on the quality and diversity of the base
clusterings for generating multiple high quality and diverse views.

Alternative Clustering discovers high quality and dissimilar views via
searching in the clustering space guided by criteria about what constitutes an
alternative. One may discover alternatives either iteratively or simultaneously.
See [2] for a review. Compared with meta-clustering, alternative clustering is
more efficient for discovering alternative views. However, it restricts the defini-
tion of an alternative to certain objective functions, which may cause the search
process to miss some interesting views, due to mismatches between the objec-
tive function and the underlying view structure. It can be difficult to define an
objective function characterizing what is an alternative, especially in the initial
period of data analysis, when there is little information about the data available.

Cluster Ensemble or Consensus Clustering combines a collection of
partitions of data into a single solution which aims to improve the quality and
stability of individual clusterings [16]. However, instead of combining all the
available clusterings into one single solution, it has been demonstrated that a
better clustering can often be achieved by combining only a part of all the avail-
able solutions [8], that is the cluster ensemble selection problem. It has
been shown that quality and diversity are two important factors which will in-
fluence the performance of cluster ensemble [8]. Cluster ensemble and the cluster
ensemble selection methods typically focus on discovering a single high quality
solution from a collection of clusterings, rather than multiple solutions.

Our proposed framework in Figure 2 combines all of the above clustering
paradigms. The critical difference between our work compared to the others is
that we place each clustering paradigm into its most relevant place. In particular,
we employ alternative clustering as one of the mechanisms for generating the
base clusterings. Alternative clustering employs objective functions to guide the
search process, thus it may discover alternative views faster when compared to
meta-clustering which employs a random clustering generation scheme (such as
random initialization or random feature weighting). On the other hand, meta-
clustering can cover the space of clusterings more comprehensively compared
to alternative clustering, by flexibly employing different means of generation.
Finally, we propose to group the clusterings and generate the consensus view
for each group via consensus clustering. This is a more flexible approach than
generating a single consensus view for the whole set of base clusterings, as the
base clusterings may reflect very different structures of the data and thus may
not be reasonably combined to produce a single consensus view.
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3 FILTA: An Algorithm for Filtering Base Clusterings

Let us first introduce the notations used and a formal problem definition. Let
X = {x1, . . . , xn} be a set of n objects, where xi ∈ Rd. These objects can be
grouped into clusters (sets of objects). A clustering C is a hard partition of X ,
denoted by C = {c1, . . . , ck}, where ci is a cluster and ci ∩ cj = ∅,

⋃
ci = X .

We denote the space of possible clusterings on X as PX . We use C to denote a
set of (base) clusterings, i.e., C = {C1, . . . , Cl}. Let a set of views be denoted by
V = {V1, . . . , VR}, where a view Vi is a clustering on X , Vi ∈ PX . Even though
a view is just a clustering, we use the view nomenclature to distinguish between
the initial base clusterings and the final, selected clusterings (the set of views) at
the end of the meta-clustering process. The quality of a clustering C is measured
by a function Q(C): PX → R+, and the diversity between two clusterings can
be computed according to a similarity measure Sim(Ci, Cj): PX × PX → R+.
Our problem can be formalized as follows.

Problem Definition 1 Given a set of raw base clusterings C = {C1, . . . , Cl},
we seek a set of views V={V1, . . . , VR} generated from C, such that,

∑
Vi∈VQ(Vi)

is maximized and
∑

Vi,Vj∈V,i�=jSim(Vi, Vj) is simultaneously minimized.

We solve this problem by selecting a subset of clusterings C′, which are of high
quality and diversity, from the given raw base clusterings C. Next we discuss the
quality and diversity criteria for clusterings.

3.1 Clustering Quality and Diversity Measures

We employ an information theoretic criterion, namely the mutual information
for measuring both clustering quality and diversity. As a clustering quality mea-
sure, mutual information is a well-known criterion for clustering discovery, which
can discover both linear and non-linear clusterings [5]. For measuring similarity
between clusterings, mutual information can detect any kind of linear or non-
linear relationship between random variables [17]. More specifically, the quality
of a clustering C is measured by the amount of shared information with the data
X , i.e., I(X ;C). Intuitively, the more information that is shared, the better that
a clustering models the data. The mutual information between two clusterings
I(Ci;Cj) quantifies their similarity. Thus, the less mutual information shared,
the more dissimilar they are. The average quality of the selected set of base
clusterings can be optimized as:

max
C′

{
1

|C′|
∑

Ci∈C′
I(X ;Ci)

}
≡ min

C′

{
1

|C′|
∑

Ci∈C′
H(X |Ci)

}
(1)

where the right hand side results from I(X ;C) = H(X)−H(X |C) and H(X) is
a constant (where H(·) is the Shannon entropy function). The diversity can be
optimized by minimizing the average similarity between clusterings, as:

min
C′

{
1

|C′|2
∑

Ci,Cj∈C′
I(Ci;Cj)

}
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Computation of the mutual information I(X ;C) requires the joint density func-
tion, p(X,C), which is difficult to estimate for high dimensional data. Instead
of directly estimating the joint densities, we may use the meanNN differential
entropy estimator for computing the conditional entropy H(X |C) [7], due to
its desirable properties of efficiently estimating density functions in high di-
mensional data and being parameterless. The mutual information between two
clusterings Ci and Cj is computed directly from their contingency table:

I(Ci;Cj) =
∑
u∈Ci

∑
v∈Cj

p(u, v) log
p(u, v)

p(u)p(v)
(2)

where p(v) is the fraction of data points in cluster v, and p(u, v) is the fraction
of points belonging to cluster u in Ci and v in Cj .

3.2 Filtering Criterion and Incremental Selection Strategy

We wish to select a subset of base clusterings, C′, to achieve high quality and
diversity simultaneously. Inspired by the mutual information based feature selec-
tion literature [13] which maximizes feature relevancy while minimizing feature
redundancy, we propose a clustering selection criterion which combines the qual-
ity and diversity of clusterings:

min
C′⊂C,|C′|=L

⎧⎨⎩ 1

|C′|
∑

Ci∈C′
H(X |Ci) +

ββ0

|C′|2
∑

Ci,Cj∈C′,i�=j

I(Ci;Cj)

⎫⎬⎭ (3)

where L is a user defined parameter specifying the number of base clusterings C′

to be selected, and β ∈ [0,∞) is a trade-off parameter that balances the quality
and diversity during selection. To make sure the second term is on the same scale
as the first term, we set β0 = maxH(X |Ci)/max I(Ci;Cj). Thus, our selection
method aims to select L base clusterings C′ from the given raw base clusterings
C, optimizing the dual-objective criterion in Equation (3).

A simple incremental search strategy can be used to select a good subset C′

for the criterion (3) as follows. Initially, we select the clustering solution with
the highest quality among the given clusterings C. Then, we incrementally select
the next solution from the set C \ C′ as:

argmin
Ci∈C\C′

{
H(X |Ci) +

ββ0

|C′|
∑

Cj∈C′
I(Ci;Cj)

}
(4)

with the aim of selecting the next clustering with high quality and small average
similarity with the selected ones in C′. This process repeats until we reach the
L desired number of base clusterings. The overall computational complexity of
the filtering step costs O(|C| · n2d), where n is the number of data observations
and d is the number of data features.



FILTA: Better View Discovery via Filtering 151

4 Discovering the Clustering Views

We have obtained a filtered set of base clusterings after performing the filtering
process. Next we group them into clusters at the meta level (step 2 in Figure 2)
and then perform ensemble clustering on each meta cluster for view generation
(step 3). We first explain the measure used to compute the similarity between
the base clusterings, then explain a visualization technique called VAT for de-
termining the potential number of meta clusters. We then introduce a method
that combines with VAT to automatically determine the appropriate number of
meta clusters and performs the grouping, and finally describe how to obtain the
views from the meta clusters.

Measuring the Similarity between Clusterings: In order to divide the se-
lected clusterings into groups, we need a similarity measure for pairwise clustering
comparison. Severalmeasures of clustering similarity have been proposed in the lit-
erature [11]. Here, we utilize the Adjusted Mutual Information(AMI) [18], which
is an adjusted-for-chance version of the normalized mutual information [16]. The
AMI between two clusterings Ci and Cj is defined as:

AMI(Ci;Cj) =
I(Ci;Cj)− E{I(Ci;Cj)}

max{H(Ci), H(Cj)} − E{I(Ci;Cj)}
(5)

where the E{·} is the expected value of mutual information I(Ci;Cj), and
H(Ci) is the entropy of the clustering Ci. The AMI is 1 when the two cluster-
ings are identical and 0 when any commonality between the clusterings is due
to chance. The distance between two clusterings is then 1−AMI(Ci;Cj).

Grouping the Base Clusterings into Meta Clusters: After filtering the
base clusterings to obtain C′, we compute the pairwise dissimilarity matrix be-
tween all members of C′ as a prelude to grouping them into meta clusters. There
are two challenges for this grouping step: a) determining the number of relevant
meta clusters; and b) partitioning the clusterings into meta clusters. Next, we
will describe a visualization technique for assessing the number of meta clusters
in a set of base clusterings. Then, an automatic method for determining the
number of meta clusters and partitioning the clusterings into meta clusters will
be presented.

The VAT method [19] is a visualization tool for cluster tendency assessment.
By reordering a pairwise dissimilarity matrix of a set of data objects, it can
reveal the hidden clustering structure of the data by visualizing the intensity
image of the reordered dissimilarity matrix. The number of clusters in a set of
data objects can be visually identified by the number of “dark blocks” displayed
along the diagonal of the VAT image. In our work, each clustering can be taken
as a data object, and we utilize the VAT method to visualize the number of
potential meta clusters.

For grouping the set of clusterings, existing research uses hierarchical cluster-
ing [3],[20]. Our FILTA algorithm is not restricted to any particular grouping
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method. Here, we employ an automatic clustering method-CLODD which au-
tomatically extracts the number of clusters and produces a hard partition of
the data objects based on a reordered dissimilarity matrix [10]. We obtain the
reordered dissimilarity matrix by applying the VAT method to the dissimilarity
matrix of clusterings. As mentioned above, there will be dense blocks along the
diagonal of this ordered dissimilarity matrix if clusters exist in this set of cluster-
ings. The CLODD algorithm discovers the number of meta clusters and produces
a hard partition of these clusterings by optimizing an objective function which
assesses the dense diagonal block structures of the reordered dissimilarity matrix.

Discovering the Views via Ensemble Clustering: In this final step, we use
the MCLA ensemble clustering algorithm [16] to find a consensus view for each
meta cluster. At the end of this step, we have a set of high quality and diverse
views of the data.

5 Experimental Results

In this section, we use a synthetic and two real world datasets to compare the
performance of our FILTA method against the existing meta-clustering methods,
i.e., we compare the views generated from the filtered base clusterings against
the views discovered from the raw base clusterings.

Experimental Setup: We generate 400 base clusterings for each dataset.
Then FILTA and the proposed steps in Section 4 are applied. The base cluster-
ings are generated using a combination of the following six clustering methods,
some of which have been used previously in other meta-clustering algorithms:

– k-means with random initializations.
– random feature weighting method where feature weights are drawn from the

zipf distribution[3].
– random sampling that selects {50%, 60%, 70%, 80%, 90%, 100%} of objects

and features, and then applying k-means on the sampled objects and fea-
tures. Then the objects not initially sampled are assigned to the nearest
clusters by the k-nearest neighbour method.

– spectral clustering method [15] using the similarity measure S = exp(−‖xi−
xj‖2/σ2) with the shape parameter σ =

max{‖xi−xj‖}
2k/8 , where k is randomly

chosen from k = 0, . . . , 64.
– EM-based mixture model clustering method with different initializations.
– an alternative clustering method, minCEntropy [17], with different reference

clusterings generated by one of the above methods.

5.1 Evaluation of the Resulting Views

In our experiments, we use two measures for evaluating the discovered views. The
Dunn Index is a popular internal clustering quality measure [6] and is defined
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as: DI(C) =
mini�=j{δ(ci,cj)}

max1≤w≤k{Δ(cw)} , where δ is the cluster to cluster distance and Δ

is the cluster diameter. A larger DI is better. When we seek to compare against
the ground truth labels, we use the adjusted mutual information (AMI).

Inspired by Mean Average Precision(MAP) [12], a popular measure for evalu-
ating ranked retrieval of documents in information retrieval, we propose a mean
best matching (MBM) score to test: i) (diversity) how many ground truth labels
can be recovered by the top k views? and ii) (quality) how well do the top k
views match the multiple sets of ground truth labels? Here, we select the top k
views according to their quality (measured by the DI) and then we assess the
matching between these views and the ground truth labels using AMI. In more
detail, given multiple ground truth views G = {G1, . . . , GH} and a set of ranked
views Vr = {Vr1 , . . . , Vrm}, the mean best matching score for the top k views
Vrk = {Vr1 , . . . , Vrk}, where k ≤ m, is defined as:

MBM(Vrk) =

H∑
i=1

max
Vj∈Vrk

AMI(Gi, Vj)/H (6)

5.2 Synthetic Dataset

In this section, we use a synthetic dataset to test whether our FILTA method is
able to discover high quality and diverse views by filtering out poor quality and
similar base clusterings. Our synthetic dataset consists of four Gaussian clusters.
Each of the generated 400 raw base clusterings consists of two clusters. There
are two high quality and dissimilar views within these base clusterings and we
aim to recover these.

Using the unfiltered set of base clusterings, the CLODD method produced
four meta clusters, highlighted by the green dashed line surrounding the blocks
in Figure 3a. After performing the ensemble clustering on each meta cluster,
four views are generated (see Figure 3b), with their numbers corresponding to
the numbered blocks in the VAT diagram. We can see that views 2, 3 and 4 are
similar and redundant, while views 1, 2 and 4 are of poor quality (the consensus
clusters are spread out) and only view 3 is of good quality. Note that views 1 and
3 correspond to the two ground truth views included in the raw base clusterings.
However, view 1 is of low quality, due to poor quality base clusterings included in
its meta cluster. This experiment demonstrates that the meta-clustering methods
may generate poor quality and similar views since it uses all the base clusterings,
whether they are of high quality or not.

Next, we apply our FILTA algorithm on the same set of 400 base clusterings.
We filter out 300 of the low quality and similar base clusterings setting L = 100
and β = 0.1 and the results are shown in Figure 4. The corresponding VAT
diagram is presented in Figure 4a. Observe that there are two clearly separated
blocks, indicating that there are two groups of clusterings that exist in the filtered
base clusterings. The views generated based on the discovered two groups are
presented in Figure 4b. We can see that these two views are of high quality,
dissimilar and correspond to the two ground truth views. In addition, we can



154 Y. Lei et al.

(a) VAT diagram of the
400 base clusterings.

(b) Four discovered views, numbered
according to the diagonal blocks of
Figure 3a.

Fig. 3. Four views discovered from the 400 raw base clusterings of the synthetic dataset.
Each numbered block in Figure 3a represents a view.

(a) VAT diagram of the
100 filtered base cluster-
ings.

(b) Two discovered views, each corre-
sponding to a block in Figure 4a.

Fig. 4. Two views discovered from the 100 filtered base clusterings of the synthetic
dataset. Each numbered block in Figure 4a represents a view.

also observe that view 1 generated by FILTA has better quality compared to the
view 1 generated by the unfiltered method (Figure 3b). It is because our filtering
method filtered out the poor quality base clusterings in this group.

For a quantitative comparison of both approaches, we plot the MBM scores
for the top 4 views in Figure 5a. Recall that FILTA only produced 2 views, hence
it only has 2 scores in Figure 5a. Observe that for the top 1 view, both methods
achieve the same MBM score, which means that the first view for each of these
methods is of the same quality. For the top 2 views, the MBM score for the
unfiltered method is lower than the FILTA method, because the view generated
by the unfiltered method has a relative lower quality than the one generated by
FILTA method. As we can see, with the increasing of value k, the MBM score for
the unfiltered method does not change. It is because the third and fourth views
of the unfiltered method do not perform better than the top 2 views meaning
that they are either similar views to the others (redundant) or of poor quality.
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(a) Synthetic dataset. (b) CMUFace dataset. (c) Isolet dataset.

Fig. 5. The mean best matching (MBM) scores for the top k views of three datasets.
One set of views is generated from the raw base clusterings (results represented by blue
crosses), while the other set is from filtered ones (red circles).

5.3 CMUFace Dataset

We next show how FILTA performs for two real datasets. The CMUFace dataset
from the UCI Machine Learning Repository [1] is a commonly used dataset for
the discovery of alternative clusterings [4]. It contains 624 32× 30 images of 20
persons, along with different features of these persons, e.g., pose (straight, left,
right, up). Two dominant views exist in this dataset - identity and pose. In our
experiment, we randomly select the images of three people and have 93 images
in total. Again we generated 400 base clusterings and FILTA selected L = 100
with β = 0.03.

The results generated by the unfiltered method are shown in Figure 6. From
the VAT diagram in Figure 6a, we can observe that there are a larger number
of diagonal blocks. The CLODD algorithm produces 30 meta clusters and hence
we have 30 views overall. Due to the limitation of space, we just show the top
4 views as measured by DI in Figure 6b. Each row in the figure is a view of
three clusters, and each cluster of images is illustrated by its mean image. The
number above each image is the purity score, which is the percentage of images,
of a cluster, with the majority ground truth label (this can be labels from the
identity or pose views). Higher purities are desirable. Consider Figure 6b. The
view displayed in the first row corresponds to the person ground truth view, and
the view in the second row corresponds to the pose one. However, the third and
fourth row views are a combination of the other two. Their clusters mix poses
and identities. From this experiment, we can see that the existing unfiltered
meta-clustering methods can generate many poor quality and redundant views.

The results generated by our FILTA method are shown in Figure 7. As we can
observe, the VAT diagram (Figure 7a) is less fuzzy compared with the one gen-
erated from the raw base clusterings (Figure 6a), has higher purity and includes
two relatively well separated blocks. Again our filtering method has filtered out
the poor quality and redundant base clusterings. Two views are generated ac-
cording to the discovered two groups shown in the VAT diagram, and are shown
in Figure 7b. They are the desired person and pose views. Compared with the
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(a) VAT diagram of the raw
base clusterings.

(b) Four views with highest
DI.

Fig. 6. Views generated from the 400 raw base clusterings of the CMUFace data. The
number above each image is its purity score.

(a) VAT diagram of the fil-
tered base clusterings.

(b) Two views generated from the
filtered base clusterings.

Fig. 7. Views generated from the 100 filtered base clusterings of the CMUFace data.
The number above each image in Figure 7b is its purity score.

pose view generated by the unfiltered method (Figure 6b), we get better quality
in terms of the purity score shown above the image.

The MBM scores for these two sets of views are shown in Figure 5b. As we can
see, the best MBM score for the unfiltered method is reached at the 8th view,
implying that noisy results are present in the top 7 views. This result further
demonstrates the influence of the quality and diversity of the base clusterings
on the performance of the unfiltered meta-clustering methods.

5.4 Isolet Dataset

The isolet dataset fromUCI machine learning repository [1] contains 7797 records
with 617 features, which come from 150 subjects speaking the name of each letter
of the alphabet twice. There are two views (speaker and letters) in this dataset.
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(a) VAT diagram of the 400
raw base clusterings.

(b) VAT diagram of the 100
filtered base clusterings.

Fig. 8. VAT diagrams for the raw and filtered sets of base clusterings of the Isolet
dataset

In our experiment, we randomly selected 10 persons along with 10 letters, result-
ing in a 200 records dataset. We generate 400 base clusterings that contains the
speaker and letter views, and select 100 base clusterings using FILTA (β = 0.5).

The results are shown in Figure 8. From the VAT diagram on the raw base
clusterings (Figure 8a), we can observe that there are many small, dissimilar
blocks in the right bottom corner of the VAT diagram, highlighted by the red
dashed circle (dissimilarity indicated by the light shading of the area between
the blocks). Each of them is taken as a view which results in 45 views overall.
After applying our filtering method on the raw base clusterings, we obtain the
VAT diagram in Figure 8b. As we can see, there are two explicit big blocks
without those dissimilar individual meta clusters, which have been filtered out
due to their poor quality.

The MBM scores for these two sets of views are shown in Figure 5c. It can
be observed that the top 1 view generated by our FILTA method has higher
quality than the one generated by the unfiltered method. In addition, the two
views of FILTA capture the two ground truth views well. In contrast, the existing
unfiltered method generated almost 45 views and the quality of the best matching
views for the two ground truth views among the 45 views are not comparable
with FILTA’s. This result further shows that the input base clusterings, including
low quality and redundant solutions, will lead to similar and poor quality views.

5.5 Impact of the Number of Selected Base Clusterings

The number of selected clusterings L does not have high impact on the quality of
view generation by our method. We take the CMUFace dataset as the example
to show the impact of L. In Figure 9, we show the VAT diagram constructed
for L = 50 to 400 (filtered) base clusterings (recall that there are 400 raw base
clusterings). We see that the VAT diagrams are mostly stable from L = 50 to
300, meaning that FILTA is quite robust to noise and relatively insensitive to
the choice of L. From our experiments we found L = 25%× l (l is the number
of raw base clusterings) works well.
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(a) L = 50. (b) L = 100. (c) L = 150. (d) L = 200.

(e) L = 250. (f) L = 300. (g) L = 350. (h) L = 400.

Fig. 9. VAT diagrams for different number of filtered base clusterings with β = 0.03
on the CMUFace data

5.6 Impact of the Regularization Parameter

The regularization parameter β ∈ [0,∞) balances the quality and diversity dur-
ing the clustering filtering procedure. We have found that β ∈ [0, 1] works fairly
well. Essentially within this range, we place more emphasis on clustering quality.
For example, when β = 0.5, it means we treat quality as twice as important as
diversity. When β → 1, the filtering process places equal emphasis on diversity,
which generally increases the number of potential views but at the risk of includ-
ing more poor quality solutions. In contrast, when β → 0, the filtering procedure
focuses on the quality, which will result in high quality views but some relevant
views may be filtered out. Thus, users can tune this parameter according to
their specific needs for view detection. Given that we usually do not have the
cluster labels, the VAT diagrams can be used as one of the ways to help users
for investigation. In particular, we propose to ‘slide’ β within the [0, 1] range
and inspect the VAT reordered matrix and the consensus views that emerge. We
demonstrate the effect of β on the CMUFace dataset. Figure 10 shows how the
MBM score changes as we vary β. As it can be seen, a β = 0.03 to 0.05 gives
the best matching scores. To further confirm these are effective β values for this
dataset, we illustrate a number of VAT diagrams (Figures 11) constructed from
different β values and L = 100. The diagrams show that β = 0.03 (Figure 11b)
discovers two relatively sharp dark blocks which are turned out to correspond
to the two true views. Also, we can see that as β increases, the VAT diagram
becomes more fuzzy, which means that the selected base clusterings are more
diverse but their quality is decreasing. In this respect, our proposed framework
is a useful tool to assist the discovery of novel views from the data.
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Fig. 10. The mean best matching scores(MBM) with different β on 100 filtered clus-
terings generated from CMUFace dataset

(a) β = 0 (b) β = 0.03 (c) β = 0.1 (d) β = 1

Fig. 11. VAT diagrams generated from 100 filtered base clusterings and different β
values, for the CMUFace data

6 Conclusions

Meta-clustering is an important tool for discovering multiple views from data by
analyzing a large set of raw base clusterings. It does not require any prior knowl-
edge nor pose any assumption on the data, which especially suits exploratory
data analysis. However, the generation of a large set of high-quality base cluster-
ings is a challenging problem. There may exist poor quality and similar solutions
which will affect the generation of high quality and diverse views.

In this paper we have introduced a clustering selection method for filtering out
the poor quality and redundant clusterings from a set of raw base clusterings.
This has the effect of lifting the quality of views generated by the meta-clustering
methods applied to this set of filtered clusterings. In particular, we proposed
a mutual information based filtering criterion which considers the quality and
diversity of clusterings simultaneously. By optimizing this objective function via
a simple incremental procedure, we can select a subset of good and diverse base
clusterings. Meta-clustering on this filtered set of base clusterings can then yield
multiple good and diverse views. We believe FILTA is a simple and useful tool
to incorporate within the area of multiple clustering exploration and analysis.
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Abstract. In this paper, we address the problem of fitting multivariate
Hawkes processes to potentially large-scale data in a setting where series
of events are not only mutually-exciting but can also exhibit inhibitive
patterns. We focus on nonparametric learning and propose a novel al-
gorithm called MEMIP (Markovian Estimation of Mutually Interacting
Processes) that makes use of polynomial approximation theory and self-
concordant analysis in order to learn both triggering kernels and base
intensities of events. Moreover, considering that N historical observa-
tions are available, the algorithm performs log-likelihood maximization
inO(N) operations, while the complexity of non-Markovian methods is in
O(N2). Numerical experiments on simulated data, as well as real-world
data, show that our method enjoys improved prediction performance
when compared to state-of-the art methods like MMEL and exponential
kernels.

1 Introduction

Multivariate Hawkes processes are a class of multivariate point processes which
are often used to model counting processes where physicals events rate of occur-
rence usually depend on past occurences of many other events. This is typically
the case for earthquakes aftershocks [1] and financial trade orders on marketplace
[2,3,4,5], but also in other fields such as crime prediction [6], genome analysis
[7] and more recently for modeling social interactions [8]. Multivariate Hawkes
processes are fairly well-known from a probabilistic point of view : their Pois-
son cluster representation was outlined by the seminal paper of Hawkes and
Oakes [9], stability conditions and sample path large deviations principles were
derived in a sequence of papers by Bremaud and Massoulie (see e.g [10]). In
the unidimensional case, Ogata [11] showed that the log-likelihood estimator en-
joys usual convergence properties under mild regularity conditions. However, in
practical applications, estimation of the triggering kernels guv has always been
a difficult task. First, because Hawkes log-likelihood contains the logarithm of
the weighted sum of triggering kernels, most of the aforementioned papers made
the choice of fixing triggering kernels up to a normalization factor in order to
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ensure concavity, that is guv = cuv · g. Secondly, when computational efficiency
is an issue, the dependency of the stochastic rate at a given time on all the past
occurences implies quadratic complexity in the number of occurences for tasks
like log-likelihood computation. This issue has often been tackled by choosing
memoryless exponential triggering kernels, but the actual dynamics of kernels
strongly depends on the field of application: price impacts of a given trade [12]
and process of views of Youtube videos [13] were shown to be better described
by slowly decaying power-law kernels whereas for DNA sequence modelization
[7] kernels are known to have bounded support. Thus, it is highly desirable to
estimate triggering kernels in a data-driven way instead of assuming a given
parametric form. Nonparametric estimation has been successfully addressed for
unidimensional [7,14] and symmetric bidimensional [12] Hawkes processes. In
the case where triggering kernels are known to sparsely decompose over a dictio-
nary of basis functions of bounded support (e.g for neuron spikes interactions),
a LASSO-based algorithm with provable guarantees was derived in [15].

Recently, combining majorization-minimization techniques with resolution of
a Euler-Lagrange equation, Zhou, Zha and Song [8] proposed what is to our
knowledge the first nonparametric learning algorithm for general multivariate
Hawkes processes. But although this work constitutes a significant improvement
over existing parametric methods, it still relies on several assumptions. First,
interactions between events are assumed to be ”mutually-exciting”, i.e guu′ are
non-negative for all u, u′. We nevertheless argue that in real-world settings, there
is no reason to think that interactions beween events are only mutually-exciting.
Secondly, the background rates μu are assumed to be constant. While this is
a common assumption for multivariate Hawkes processes, it was shown by [16]
that estimating μu(t) from the data could lead to significant improvement. To ad-
dress these different issues, we construct a novel algorithm MEMIP (Markovian
Estimation of Mutually Interacting Processes) based on polynomial approxima-
tion of a mapping of the triggering kernels to [0, 1]. Our method does not assume
non-negativity on triggering kernels and is able to estimate time-dependent back-
ground rate on a data-driven way. Moreover, by constructing a markovian and
linear estimator, we carry the more appealing properties of the most widely
used parametric setting, where triggering kernels are fixed to exponentials up to
a normalization factor : concavity of the log-likelihood that ensures global con-
vergence of the estimator, and O(N) log-likelihood calculation in a single pass
through the data. While giving a concave formulation of the exact log-likelihood
that can be maximized by multiple optimization techniques, we propose an algo-
rithm based on maximisation of a self-concordant approximation that is shown
to outperform state-of-the-art methods on both simulated and real-world data
sets.

The paper is organized as follows. In Section 2, we formally define multi-
variate Hawkes processes as well as the associated log-likelihood maximization
problem. In section 3, we decompose the log-likelihood on a basis of memoryless
triggering kernels. Through Section 4, we develop two novel algorithms for ex-
act as well as fast approximate maximization of the log-likelihood, analyze their



Markovian Estimation of Mutually Interacting Processes 163

complexity and show numerical convergence results based on the properties of
self-concordant functions. In section 5, we show that MEMIP significantly im-
proves over state of the art on both synthetic and real world data sets for the
tasks of predicting future events as well as estimating underlying dynamics of
the Hawkes process.

2 Setup and Notations

2.1 Model Description and Notation

We consider a multivariate Hawkes process, that is a d-dimensional counting
process N(t) = {Nu(t) : u = 1, . . . , d} for which the rate of occurence of each
component Nu(t) is defined by:

λu(t) =

⎛⎝μu(t) +
∑

v∈[1...d]

∑
tv<t

guv(t− tv)

⎞⎠
+

, ∀u = 1, . . . , d (1)

where μu(t) is the natural rate of occurence of events along dimension u. Note
that the occurence of a given event affects stochastic rates of occurence of ev-
ery dimension. With an empty history, events of type u will occur as if they
were drawn from a non-homogeneous Poisson process of rate μu(t). The kernel
function evaluation guv(t− tv) quantifies the change in the rate of occurence of
event u at time t caused by the realization of event v at time tv. Following the
intuition, we can characterize three situations depending on the values taken by
the kernel function at a given time lapse s:

– Excitation corresponds to the case where we have guv(s) > 0, i.e. an event
of type v is more likely to occur if an event of type u has occured at a time
distance of s.

– Independence is observed when guv(s) = 0, meaning that the realization of
an event of type u has no effect on the rate of occurence of an event of type
v at time distance s.

– Inhibition takes place when guv(s) < 0, i.e. an event of type v is less likely
to occur if an event of type u occured at time distance s.

Such processes can be seen as a generalization over the common definition of
multivariate Hawkes process where the kernels guv are non-negative and the
componentwise background rate μu is often taken constant.

2.2 Log-Likelihood of Multivariate Hawkes Processes

Input Observations. We define a realization h of a multivariate point process
by the triplet T−

h , T+
h , (thi , u

h
i )i∈[1...nh], where T−

h and T+
h are respectively the

beginning and the end of the observation period, and (thi , u
h
i ), for i ∈ [1...nh],

is the sequence of the nh events occuring during this period. In the rest of the
paper, we will assume we are given n i.i.d realizations of a multivariate Hawkes
process. Without loss of generality, we will assume minh(T

−
h ) = 0 and take

T = maxh(T
+
h ).



164 R. Lemonnier and N. Vayatis

Expression of the Log-Likelihood. We first set Λ = {λu : u = 1, . . . , d}.
For a general multivariate point process, the log-likelihood of the whole dataset
H is given by (e.g. [17]):

L(Λ,H) =

d∑
u=1

∑
h∈H

∫ T+
h

T−
h

ln(λu(s))dN
u
h (s)−

d∑
u=1

∑
h∈H

∫ T+
h

T−
h

λu(s)ds (2)

where
∫
f(s))dNu

h (s) =
∑nh

i=1 f(t
h
i )1

{
uh
i = u

}
. In the case of a linear Hawkes

process (1), we introduce Λ = (M,G) where M = {μu : u = 1, . . . , d} and
G = {gu,v : u, v = 1, . . . , d} and the log-likelihood can be rewritten as:

L(M,G,H) =
∑
h∈H

nh∑
i=1

ln

(
μuh

i
(thi ) +

∑
j : thj <thi

guh
j ,u

h
i
(thi − thj )

)

−
d∑

u=1

∑
h∈H

∫ T+
h

T−
h

(
μu(s) +

nh∑
j=1

1
{
uh
j = u

}
gu,uj (s− tj)

)
+

ds (3)

Depending on the parametrization of triggering kernels guv, this log-likelihood
may or may not be concave. For instance, in the widely used setting where the
background rates μu are constant and the kernels guv are non-negative and fixed
up to the normalization factor νuv, the log-likelihood is concave and can be
relatively easily maximized. However, even for the simple case of nonnegative
exponential kernels guv(t) = νuv exp(−αjt) where νuv ≥ 0 the product term
νuv exp(−αvt) makes the log-likelihood not concave with respect to αv. There-
fore, global convergence of maximization methods is not guaranteed anymore.

3 Approximations of Multivariate Hawkes Processes on a
Basis of Exponential Triggering Kernels

3.1 A K-approximation of the Multivariate Hawkes Process

For a given multivariate Hawkes process Λ = (M,G), we consider finite ap-
proximations of the components of the rates of occurence μu and guv. We first
introduce the following functions:

∀y ∈ [− ln(T )/α, 1], νu(y) = μu(− ln(y)/α) and fuv(y) = guv(− ln(y)/α)

and we use Bernstein-type polynomial approximations of order K for νu and
fuv: there exist coefficients XK

uv,k such that

∀y ∈ [− ln(T )/α, 1], ν̂K(y) =

K∑
k=0

XK
u0,ky

k and f̂K
uv(y) =

K∑
k=0

XK
uv,ky

k .

These polynomial approximations are known to converge with a polynomial rate
for smooth functions (with first r derivatives continuously differentiable) and ge-
ometric rate for analytic functions (see below). The K-aproximation considered



Markovian Estimation of Mutually Interacting Processes 165

in this paper relies on a simple change of variable in the Bernstein approxima-
tions by setting: y = exp(−αt). We can now introduce the linear approximation
of a multivariate Hawkes process with exponential kernels:

∀t ∈ [0, T ], μ̂K(t) =

K∑
k=0

XK
u0,k exp(−kαt) and ĝKuv(t) =

K∑
k=0

XK
uv,k exp(−kαt) .

Classical arguments from approximation theory [18] lead to the following
proposition.

Proposition 1. For any function Ψ defined over [0, T ], we consider the supre-
mum norm ||Ψ ||T,∞ = supt∈[0,T ] |Ψ(t)|. The K-approximations (μ̂K

u )K≥1 and

(ĝKuv)K≥1 converge in supremum norm towards true functions μu and guv at the
following rates:

1. if μu is Cr,
∣∣∣∣μu(t)− μ̂K

u (t)
∣∣∣∣T
∞ = O(1/Kr)

2. if μu is analytic,
∣∣∣∣μu(t)− μ̂K

u (t)
∣∣∣∣T
∞ = O(exp(−K))

3. if guv is Cr,
∣∣∣∣guv(t)− ĝKuv(t)

∣∣∣∣T
∞ = O(1/Kr)

4. if guv is analytic,
∣∣∣∣guv(t)− ĝKuv(t)

∣∣∣∣T
∞ = O(exp(−K)).

Another property of the approximated multivariate Hawkes process is the
Markov property of the counting process. We set N̂K(t) the d-dimensional

Hawkes process uniquely defined by λ̂K = (μ̂K
u , ĝKuv)u,v.

Proposition 2. Assume that the empirical estimate N̂K(t) of the multivariate
Hawkes process is obtained after i.i.d. realizations of N(t) over the time interval

[0, T ]. There exists (�̂0, �̂1, . . . , �̂K) such that:

∀u ∈ {1, . . . , d} , λ̂K(t) =
K∑

k=0

(
�̂k(t)

)
+

and (N̂K(t), �̂0(t), �̂1(t), . . . , �̂K(t)) is a Markov Process on Nd × Rd(K+1).

The proof results from the following decomposition of each occurrence rate in
the approximation: ∀u ≥ 1,

λ̂K
u (t) =

(
XK

u0,0+

K∑
k=1

(
XK

u0,k exp(−kαt)+
∑

v : tv<t

XK
uv,(k−1) exp(−kα(t−tv))

)

+
∑

v : tv<t

XK
uv,K exp(−(K + 1)α(t− tv))

)
+

Markov property is then a direct consequence of the dynamics of the functions
�̂ku(t) : they decay at rate exp(−kαt) and jump by XK

uv,(k−1) whenever an event
of type v occurs. As they entirely determine the stochastic rate which determines
the conditional probability distribution of N̂K(t), the conditional probability dis-

tribution of future states of the process (N̂K(t), �̂0(t), �̂1(t), ...�̂K(t)) is uniquely
determined by the present state.
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3.2 A New Decomposition of the Log-Likelihood

The algorithms proposed in this paper rely on a novel expression of the log-
likelihood over a basis of triggering kernels. We use exponential excitation func-
tions to account for nonlinearity but our algorithms benefit from the properties
of linear approximations. Based on the expression of the log-likelihood for gen-
eral linear multivariate Hawkes process (3), we introduce the following notation
to discover the specific expression for the K-approximation based on exponential
triggering functions: ∀u, v = 1, . . . , d, ∀k = 1, . . . ,K, ∀h ∈ H, ∀i = 1, . . . , nh,

AK,h,i
uv,k =

∑
j : thj <thi

1
{
uh
i = v, uh

j = u
}
exp

(
−(k + 1 {u > 0})α(thi − thj )

)
(4)

BK,h
0v,k(s) = exp(−kαs) (5)

BK,h
uv,k(s) =

∑
j : thj <s

1
{
uh
j = v

}
exp(−(k + 1)α(s− thj )) (6)

The key expression of the approximate log-likelihood can then be derived by
plugging-in the previous notations and replacing the intrinsic parameters (M,G)
by the linear coefficients XK :

LK(XK ,H) =
∑
h∈H

nh∑
i=1

ln(AK,h,iXK)−
∑
h∈H

∫ Th

0

( nh∑
i=1

BK,h(s)XK

)
+

ds (7)

Note that the dependance of LK on the history H is entirely expressed by
vectors (AK,h,i)h∈H,i∈[1...nh] and (BK,h(s))h∈H,s∈[0,T ]. An important feature of
the approximate log-likelihood expressed in the parameter space defined by lin-
ear decompositions onto bases of exponential triggering kernels is given in the
following proposition.

Proposition 3. The function X → LK(X,H) is concave.

From there, we have a complete roadmap for the design of algorithms estimat-
ing the parameters of multidimensional Hawkes processes: the last propostion
indicates that a proxy of the log-likelihood (3) can be globally maximized with
tools of convex analysis. Moreover, thanks to the approximation rates of conver-
gence (Proposition 1), triggering kernels can be accurately estimated for large
K through maximization of the new objective (7). Finally, the Markov property
is an important feature that will allow us to construct the vectors (AK,h,i) and
(BK,h) with linear complexity.

4 Markovian Algorithms for the Estimation of Triggering
Kernels

Computational tractability of algorithms on large data sets depends on the algo-
rithmic complexity in the dominating dimensions of the problem. For realizations
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of multivariate Hawkes processes, dominating dimensions are almost always the
total number of events N =

∑
h∈H nh and the time of observation T . Indeed,

it would be unrealistic to try to learn d2 nonparametric functions in an infinite
dimensional space with only N observations without the condition N  d2. In
the rest of the paper, we will therefore focus on constructing two algorithms with
no more than linear complexity in N and T .

4.1 Exact Maximization of the Approximated Log-Likelihood

Vectors (AK,h,i)h∈H,i∈[1...nh] and (BK,h(s))h∈H,s∈[0,T ] can be constructed in a
single pass through the data by Algorithm 1.

Algorithm 1. Algorithm for construction of vectors (AK,h,i) and (BK,h(s))

Initialize i = 0 and fix a time step dt
for all h do

Initialize (Ck
uv = 0)u≥1,v≥1 ; t = T−

h ; (Dk
uv(T

−
h ) = 1{u=0})u≥0,v≥1

while t < T+
h do

t← t+ δt = min(t+ dt, ti)
for all k,u,v do

Ck
uv ← Ck

uv exp(−(k + 1 {u > 0}αδt), Dk
uv ← Dk

uv exp(−(k + 1 {u > 0}αδt)
BK,h

uv,k(t)← Dk
uv

end for
if t = ti then

for all k,u do
AK,h,i

uv,k ← Ck
uui

end for
for all k,v do

Ck
uiv ← Ck

uiv + 1, Dk
uiv ← Dk

uiv + 1
end for
i← i+ 1

end if
end while

end for

Complexity of Algorithm 1. With M = T/dt the number of discretizations
steps, construction of vectors (AK,h,i) and (BK,h(s)) has thus a complexity of
O(N+M). As each log-likelihood evaluation (7) requires 2N+M scalar products
computations, various optimization techniques can be used to find the global
maximum of X → LK(X,H) in O(N + M) operations. On the contrary, a
nonmarkovian estimator, even linear, would need at each time t to compute the
values of triggering kernels between current time and all preceding occurence
times, thus leading to a O(

∑
h n

2
h) complexity. This construction is thus very

often the bottleneck of the whole maximization procedure.
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4.2 Relaxed Version of the Log-Likelihood

While the previous paragraph exposes a fully tractable method to estimate the
triggering kernels for potentially large data sets, we now develop an approxi-
mate algorithm called MEMIP, for Markovian Estimation of Mutually Interact-
ing Processes, that leads to a substantial speed-up, as well as theoretical guar-
antees in terms of efficiency. For this purpose, we approximate the log-likelihood
LK(M,G,H) by dropping the positive part in log-likelihood (3), i.e.

L̃K(M,G,H) =
∑
h∈H

(
nh∑
i=1

ln

(
μuh

i
(thi ) +

∑
j : thj <thi

guh
j ,u

h
i
(thi − thj )

)

−
d∑

u=1

∫ T+
h

T−
h

(
μu(s) +

nh∑
j=1

1
{
uh
j = u

}
gu,uj (s− tj)

)
ds

)
(8)

which can be rewritten:

L̂K(XK ,H) =
∑
h∈H

( nh∑
i=1

ln(AK,h,iXK)

)
− B̂KXK (9)

where B̂K
uv,k =

∑
h∈H

nh∑
j=1

1
{
uh
j = v

}∫ T+
h

T−
h

exp(−kα(s− thj )).

Although L̂K(X,H) is an upper bound of the actual log-likelihood and it
is not clear at first sight why its maximization should lead to large values of
LK(X,H), we point out that the difference L̂K(X,H)−LK(X,H) is only caused

by intervals where there exists u ∈ [1...d] such that λ̂K
u (t) = 0. But maximizers

of L̂K(X,H) are very unlikely to exhibit wide range of negative values in their
triggering kernels because any single event realization with a predicted nonpos-
itive stochastic rate yields L̂K(X,H) = −∞. Therefore, we assume we can rely
on this approximation in order to construct fast algorithms.

4.3 MEMIP: a Learning Algorithm for Fast Log-Likelihood
Estimation

Since the gradient and the hessian matrix of X  → L̂K(X,H) can be computed
analytically and their size does not depend on N , we derive the proposed algo-
rithm MEMIP on the base of successive Newton optimizations. In the following,
we denote by NewtonArgMax(f, x0) the result of a Newton maximization of func-
tion f with starting point x0 using a classical backtracking linesearch method.

The main idea is to construct recursively a sequence (X̂1...X̂K) of maximizers

of functions (L̂k)k∈[1...K] by using NewtonArgMax(L̂k−1, Ŵ k−1) as the starting

point Ŵ k of maximization of L̂k. From the estimated sequence (X̂1...X̂K), the
best value of k can be estimated by cross-validation or various other model selec-
tion techniques. Interestingly, Ak,h,i = (AK,h,i

•,j )j∈[1...k] and Bk = (BK
•,j)j∈[1...k]

such that only (AK,h,i)h∈H,i∈[1...nh] and BK need to be computed.
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Algorithm 2.Algorithm (MEMIP) for learning background rates and triggering
kernels of a multivariate Hawkes process

input Mapping parameter α > 0, maximal polynomial degree K, starting point Ŵ 1 ∈
Rd(d+1)

Construct (AK,h,i) and BK according to O(N) modified version of Algorithm 1

X̂1 ← NewtonArgMax(L̂1, Ŵ 1)
for k ∈ [2...K] do

Ŵ k = 0
for j ∈ [1...k − 1], u ∈ [1...d], v ∈ [0...d] do

Ŵ k
uv,j = X̂k−1

uv,j

end for
X̂k ← NewtonArgMax(L̂k, Ŵ k)

end for

Complexity of Algorithm 2.We obtain two substantial computational speed-
ups compared to exact log-likelihood maximization. First, time discretization is
no longer needed for the construction of BK . Thus, vectors (AK,h,i) and BK

can be constructed with the same procedure than Algorithm 1 except that
updates are made only on time occurence of events. Therefore, construction
complexity is O(N). Similarily, approximate log-likelihood evaluations are also
of complexity O(N). Secondly, the approximate log-likelihood is separable by

type of event u : L̂K =
∑d

u=1 L̂K
u where L̂K

u only depends on background rate
μu and triggering kernels (guv)v∈[1...d]. Maximization can thus be parallelized
across the different dimensions. Note that because of the Hessian inversion at
each Newton step, complexity in d of maximization of L̂K

u is O(d3) for any u,
which yields a O(d4) overall complexity. In cases where N  d2 but d4 > N , the
use of quasi-Newton method might therefore be preferable. For instance, BFGS
method enjoys superlinear convergence [19], and would lead to a O(d3) overall

complexity, the maximization of each L̂K
u requiring O(d2) operations.

4.4 Self-concordance Property and Numerical Convergence of
MEMIP

Problem (9) can be solved by various optimisation techniques. Algorithm 2 is
actually based on the concept of self-concordance [20] that we apply to func-

tion X  → −L̂k(X,H). Self-concordant functions are, along with strongly-convex
functions with Lipschitz-continuous Hessian matrices, a very important class of
functions for which nonasymptotic upper bounds of the number of Newton steps
necessary to reach precision ε is known. More specifically, the following property
holds:

Proposition 4. Starting from a d(d+1)-dimensional vector Ŵ 1, MEMIP con-

structs a sequence of K estimates (X̂1...X̂K) verifying for any k ∈ [1...K],

|L̂k(X̂k,H)−supX(L̂k(X,H))| ≤ ε in at most C
(
supX(L̂K(X,H))−L̂1(Ŵ

1,H)
)

+K(log2 log2(1/ε) + Cε) Newton iterations.
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Lemma 1. Using Newton method with backtracking line search from a start-
ing point x0 ∈ Rd, there exists C > 0 depending only on the line search
parameters such that the total number of Newton iterations needed to min-
imize a self-concordant function f up to a precision ε is upper bounded by
C(sup(f)− f(x0)) + log2 log2(

1
ε ).

Proof of Proposition 4. Self-concordance of functions (−L̂k)k∈[1...K] is a direct
consequence of self-concordance on R∗

+ of f : x  → − ln(x) and affine invariance
properties of self-concordant functions. By applying the aforementioned lemma
to function −L̂k and starting point Ŵ k at each Newton optimization, we get the
bound

C
∑
k

(
sup
X

(L̂k(X,H))− L̂k(Ŵ k,H)
)
+K log2 log2(1/ε) (10)

By construction of MEMIP iterates, we also have L̂k(Ŵ k,H)

= L̂(k−1)(Ŵ k,H) = L̂(k−1)(X̂k−1,H) where the first equality holds because for

any u, v, Ŵ k
uv,k = 0 and the second because for any u, v, j ≤ k−1, Ŵ k−1

uv,j = X̂k−1
uv,j .

But for any k ≥ 2, L̂k−1(X̂k−1,H) ≥ supX(L̂k−1(X,H))−ε. Therefore the bound
reformulates as

C
K∑

k=1

(
sup
X

(L̂k(X,H))− sup
X

(L̂k−1(X,H)))
)
+K(log2 log2(1/ε) + Cε) (11)

which proves Proposition 4, using the notation supX(L̂0(X,H)) = L̂1(Ŵ
1,H).

��
Remark. The previous proposition emphasizes the key role played by the start-
ing point Ŵ 1 in the speed of convergence of Newton-like methods. In our case,
a good choice is for instance to select it by classical non-negative maximiza-
tion techniques for objectives of type (9) (see e.g [21]). Because these methods
are quite fast, they can also be used for steps k ∈ [2...K] in order to pro-

vide an alternative starting point Ŵ k
+. The update X̂k is then given by either

NewtonArgMax(L̂k, Ŵ k) or NewtonArgMax(L̂k, Ŵ k
+) depending on the most

succesful maximization.

5 Experimental Results

We first evaluate MEMIP on realistic synthetic data sets. We compare it to
MMEL [8] and fixed exponential kernels and show that MEMIP performs sig-
nificantly better in terms of prediction and triggering kernels recovery.

5.1 Synthetic Data Sets: Experiment Setup and Results

Data Generation We simulate multivariate Hawkes processes by Ogata mod-
ified thinning algorithm (see e.g. [22]). Since each occurence can potentially in-
crease stochastic rates of all events, special attention has to be paid to avoid
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explosion, i.e the occurence of an infinite number of events on a finite time win-
dow. In order to avoid such behavior, our simulated data sets verify the sufficient
non-explosion condition ρ(Γ ) < 1 where ρ(Γ ) denotes the spectral radius of the
matrix Γ = (

∫∞
0

|guv(t)dt|)uv (see e.g [17]). We perform experiments on three
different simulated data sets where triggering kernels are taken as

guv(t) = νuv
sin

(
2πt
ωuv

+ π
2 ((u + v) mod 2)

)
+ 2

3(t+ 1)2
(12)

We sample the periods ωuv from an uniform distribution over [1, 10]. Absolute
values of normalization factors νuv are sampled uniformally from [0, 1/d[ and
their sign is sampled from a Bernoulli law of parameter p. Except for the toy data
set, background rates μv are taken constant and sampled in [0, 0.001]. An impor-
tant feature of this choice of triggering kernels and parameters is that resulting
Hawkes processes respect the aforementioned sufficient non-explosion condition.
For quantitative evaluation, we simulate two quite large data sets (1) d = 300,p =
1 (2) d = 300,p = 0.9. Thus, data set (1) contains realizations of purely mutually-
exciting processes whereas data set (2) has 10% of inhibitive kernels. For each
data set, we sample 10 sets of parameters (ωuv, νuv)u≥1,v≥1,(μv)v≥1 and simu-
late 400,000 i.i.d realizations of the resulting Hawkes process over [0, 20]. The
first 200,000 are taken as training set and the remaining 200,000 as test set.

Evaluation Metrics We evaluate the different algorithms by two metrics: (a)
Diff a normalized L2 distance between the true and estimated triggering kernels,
defined by

Diff =
1

d2

d∑
u=1

d∑
v=1

∫
(ĝuv − guv)

2∫
ĝ2uv +

∫
g2uv

(13)

, (b) Pred a prediction score on the test data set defined as follows. For each di-
mension u ∈ [1...d] and occurence i in the test set, probability for that occurence

to be of type u is given by P true
i (u) = λu(ti)∑d

v=1 λv(ti)
. Thus, defining AUC(d, P )

the area under ROC curve for binary task of predicting (1{ui=u})i with scores

(P true
i (d))i and (Pmodel

i (d))i the probabilities estimated by the evaluated model,
we set

Pred =

∑d
u=1 (AUC(d, Pmodel)− 0.5)∑d
u=1 (AUC(d, P true)− 0.5)

(14)

Baselines We compare MEMIP to (a) MMEL for which we try various sets
of number of base kernels, total number of iterations and smoothing hyperpa-
rameter, (b) Exp the widely used setting where guv(t) = νuv exp(−αt) and only
νuv are estimated from the data. In order to give this baseline more flexibility
and prediction power, we allow negative values of νuv. We train three different
versions with α ∈ {0.1, 1.0, 10.0}.
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Results Part 1: Visualization on a Toy Dataset In order to demonstrate
the ability of MEMIP to discover the underlying dynamics of Hawkes processes
even in presence of inhibition and varying background rates, we construct the
following toy bidimensional data set. Amongst the four triggering kernels, g11

is taken negative and background rates are defined by μ0 =
cos( 2πt

ω0
)+2

1+t and

μ1 =
sin( 2πt

ω1
)+2

1+t with parameters ω0 and ω1 sampled in [5, 15]. We sample a set
of parameters (ωuv, νuv)u≥1,v≥1,(μv)v≥1 and simulate 200,000 i.i.d realizations
of the resulting Hawkes process. From Fig. 1, we observe that both compared
methods MEMIP and MMEL accurately recover nonnegative triggering kernels
g00, g01 and g10. However, MEMIP is also able to estimate the inhibitive g11
whereas MMEL predicts g11 = 0. Varying background rates μ0 and μ1 are also
well estimated by MEMIP, whereas by construction MMEL and Exp only return
constant values μ̄0 and μ̄1.

Fig. 1. Triggering kernels and background rates for toy data set estimated by MEMIP
and MMEL algorithms vs true triggering kernels and background rate

Results Part 2: Prediction Score In order to evaluate Pred score of the
competing methods on the generated data sets, we remove for each model the
best and worst perfomance over the ten simulated processes, and average Pred
over the eight remaining one. Empirical 10% confidence intervals are also in-
dicated to assess significativity of the experimental results. From Table 1, we
observe that MEMIP significantly outperforms the competing baselines for both
data sets. Prediction rates are quite low for all methods which indicates a rather
difficult prediction problem, as 90, 000 nonparametric functions are indeed to
be estimated from the data. In Fig. 2 , we study the sensitivity of Pred score
to α and K for simulated data sets (1)(above) and (2)(below). Left plots show
MEMIP and Exp Pred score with respect to α, as well as best MMEL average
score across a broad range of hyperparameters. Empirical 10% confidence inter-
vals are also plotted in dashed line. We see that MEMIP gives good results in a
wide range of values of α, and outperforms the exponential baseline for all values
of α. Right plots show MEMIP Pred score with respect to K for α = 0.1, as
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well as best Exp and MMEL average score. We see that MEMIP achieves good
prediction results for low values of K, and that taking K > 10 is not necessary.
For very large values of α, we also note that MEMIP and Exp baseline are the
same, because the optimal choice of K for MEMIP is K = 1.

Table 1. Pred score for prediction of the type of next event on simulated data sets

Dataset MEMIP MMEL Exp

(1) d=300,p=1 0.288 ∈ [0.258, 0.310] 0.261 ∈ [0.250, 0.281] 0.255 ∈ [0.236; 0.278]
(2) d=300,p=0.9 0.287 ∈ [0.266, 0.312] 0.261 ∈ [0.241, 0.280] 0.256 ∈ [0.242, 0.280]

Fig. 2. Sensitivity to hyperparameters α (left) and K(right) for Pred score of MEMIP
algorithm, compared to Exp and MMEL baselines on non-inhibitive simulated data set
(above) and simulated data set with 10 % inhibitive kernels (below)

Results Part 3: Accuracy of Kernel Estimation Besides having a greater
prediction power, we observe in Table 2 that MEMIP is also able to estimate
the true values of triggering kernels more accurately on both data sets. In Fig.
3, we study the sensitivity of Diff score to α and K for data sets (1)(above) and
(2)(below). We see that the variance of Diff score is very low for MEMIP, and
its fitting error is significatively lower than those of the baselines at level 10%.

Comparison to Related Work The closest work to ours is the algorithm
MMEL derived in [8] by Zhou, Zha and Song. MMEL decomposes the triggering
kernels on a low-rank set of basis functions, and makes use of EM-like methods
in order to maximize the log-likelihood. Compared to MMEL, the proposed al-
gorithm MEMIP enjoy three main improvements: 1) O(N) complexity instead
of O(N2), 2) global convergence of log-likelihood maximization, 3) the ability to
learn negative projection coefficients Xuv,k as well as varying background rates.
Experimental results also suggest that MEMIP may outperform MMEL signifi-
cantly even for non-inhibitive data set. Actually, even in purely mutually-exciting
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Table 2. Diff score for triggering kernels recovery on simulated data sets

Dataset MEMIP MMEL Exp

(1) d=300,p=1 0.759 ∈ [0.755, 0.768] 0.807 ∈ [0.803, 0.814] 0.791 ∈ [0.788, 0.800]
(2) d=300,p=0.9 0.803 ∈ [0.793, 0.810] 0.839 ∈ [0.833, 0.844] 0.830 ∈ [0.818, 0.836]

Fig. 3. Sensitivity to hyperparameters α (left) and K(right) for Diff score of MEMIP
algorithm, compared to Exp and MMEL baselines on non-inhibitive simulated data set
(above) and simulated data set with 10 % inhibitive kernels (below)

settings, these two algorithms can exhibit quite different behaviors due to their
smoothing strategies. Indeed, because the log-likelihood (1) can be made arbi-
trarily high by the sequence of functions (gnuv)n∈N defined by gnuv(t) = n1{t∈Tuv}
where Tuv = {tv − tu | (tu < tv ∧ (∃h ∈ H | (tv, v) ∈ h ∧ (tu, u) ∈ h))}, smooth-
ing is mandatory when learning triggering kernels by means of log-likelihood

maximization. Using a L2 roughness norm penalization α
∫ T

0
g′2, MMEL can

face difficult dilemmas when fitting power-laws fastly decaying around 0 : ei-
ther under-estimating the rate when it is at its peak or lowering the smoothness
parameter and being vulnerable to overfitting. On the contrary, MEMIP would
face difficulties to perfectly fit periodic functions with a very small period, as
the derivative of its order K estimates can only vanish K − 1 times.

5.2 Experiment on the MemeTracker Data Set

In order to show that the ability to estimate inhibitive triggering kenels and vary-
ing background rates yields better accuracy on real-world data sets, we compare
the proposed method MEMIP to different baselines on the MemeTracker data
set, following the experience plan exposed in [8]. MemeTracker contains links
creation between some of the most popular websites between August 2008 and
April 2009. We extract link creations between the top 100 popular websites and
define the occurence of an event for the ith website as a link creation on this
website to one the 99 other websites. We then use half of the data set as training
data and the other half at test data on which each baseline is evaluated by aver-
age area under ROC curve for predicting future events. From Fig. 4, we observe
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that the proposed method MEMIP achieves a better prediction score than both
baselines. Left plot shows MEMIP and Exp prediction score with respect to α,
as well as best MMEL score across a broad range of hyperparameters. We see
that MEMIP gives good results in a very broad range of values of α, and signifi-
cantly outperforms the exponential baseline for all values of α. Right plot shows
MEMIP prediction score with respect to K for α = 0.01, as well as best Exp and
MMEL score. For K = 10, MEMIP achieves a prediction score of 0.8021 whereas
best MMEL and Exp score are respectively 0.6928 and 0.7716. We note that,
even for K as low as 3, MEMIP performs the prediction task quite accurately.

Fig. 4. Sensitivity to hyperparameters α (left) and K(right) for prediction score of
MEMIP algorithm, compared to Exp and MMEL baselines on MemeTracker data set

6 Conclusions

In this paper, we propose MEMIP, which is to our knowledge the first method
to learn nonparametrically triggering kernels of multivariate Hawkes processes
in presence of inhibition and varying background rates. By relying on results
of approximation theory, the triggering kernels are decomposed on a basis on
memoryless exponential kernels. This maximization of the log-likelihood is then
shown to reformulate as a concave maximization problem, that can be solved in
linear complexity thanks to the Markov property verified by the proposed esti-
mates. Experimental results on both synthetic and real-world data sets show that
the proposed model is able to learn more accurately the underlying dynamics of
Hawkes processes and therefore has a greater prediction power.
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Abstract. For the eigendecomposition based hashing approaches, the informa-
tion caught in different dimensions is unbalanced and most of them is typically
contained in the top eigenvectors. This often leads to an unexpected phenomenon
that longer code does not necessarily yield better performance. This paper at-
tempts to leverage the bootstrap sampling idea and integrate it with PCA, result-
ing in a new projection method called Bagging PCA, in order to learn effective
binary codes. Specifically, a small fraction of the training data is randomly sam-
pled to learn the PCA directions each time and only the top eigenvectors are kept
to generate one piece of short code. This process is repeated several times and
the obtained short codes are concatenated into one piece of long code. By con-
sidering each piece of short code as a “super-bit”, the whole process is closely
connected with the core idea of LSH. Both theoretical and experimental analyses
demonstrate the effectiveness of the proposed method.

Keywords: Bootstrap, random, bagging, PCA, binary codes, Hamming ranking.

1 Introduction

Hashing based approximate nearest neighbor (ANN) search is crucial for many large
scale machine learning and computer vision tasks, such as image retrieval [24], object
detection [5] and 3D reconstruction [23]. In these tasks, one is often required to find
the nearest neighbor for one point in a huge database. Nearest neighbor (NN) search
is unfeasible in these scenarios because its high time complexity. In the hashing based
approaches, binary codes will be generated for points in the database and similar points
will have close codes. Searching will be very fast because the Hamming distance be-
tween binary codes can be efficiently calculated with XOR instruction in modern CPU.
Furthermore, the binary code can be very compact for memory storage.

The most well-known hashing method is Locality Sensitive Hashing (LSH)
[13,4,3,20], which generates a batch of random projections to embed the data into Ham-
ming space. Owing to the inner randomness, LSH based methods are data-independent
and have nice theoretical properties. Indyk et al. [13] proved that two similar samples
would be embedded to close codes with high probability, as long as the hash func-
tions are of locality-sensitive function family. Moreover, they proved that the collision
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Fig. 1. Mean Average Precision of LSH, AGH and PCAH with various bits on toy data

probability would be higher as the code size increases [13]. However, in practice LSH
typically needs very long codes and multiple tables to guarantee reasonable recall rate,
which would degrade the search efficiency. By comparison, many recent hashing ap-
proaches attempt to learn data-aware hash functions by utilizing machine learning tech-
niques. Several methods such as Spectral Hashing (SH) [26], Anchor Graph Hashing
(AGH) [18], Iterative Quantization (ITQ) [7], Spherical Hashing (SpH) [11] and Kernel
Supervised Hashing (KSH) [17] have been developed. These data-dependent methods
aim to learn a set of projections, which are usually demonstrated to be more effective
than the data-independent LSH.

From the mathematical perspective, lots of existing data-dependent hashing methods
are based on eigendecomposition of matrix. Motivated by spectral clustering, SH [26]
calculates the bits by thresholding a subset of eigenvectors of a Laplacian matrix of the
similarity graph. AGH [18] follows the same idea of SH but utilizes anchor graph to
overcome the computation problem in graph construction. Self-taught Hashing (STH)
[29] first binarizes the eigenvectors of a normalized Laplacian and then learns SVMs
as hash functions to overcome the out-of-sample extension problem. Other represen-
tative works include PCA Hashing (PCAH) [7], Semi-supervised Hashing (SSH) [24],
Optimized Kernel Hashing (OKH) [8], etc.

For eigendecomposition based hashing algorithms, the information caught by differ-
ent eigenvectors is unbalanced, that is, most of the information is typically contained
in the top eigenvectors while the remainders are usually less informative or even noisy.
Since each eigenvector is encoded into the same number of bits, the bits generated
with the noisy eigenvectors will be noisy too, which will degrade the performance. As
demonstrated in Fig.1, increasing number of bits leads to poorer mean average preci-
sion (MAP) performance on the toy data1 with both PCAH and AGH. This is because
more noise will be introduced while more eigenvectors are used. However, by intu-

1 The used toy data is MNIST, which is available at http://yann.lecun.com/
exdb/mnist/. 1,000 images are randomly selected as queries. The ground truth is defined
as semantic neighbors based on digit labels.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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ition, longer codes should catch more information than the shorter ones and give better
retrieval performance, like that in LSH. On the other hand, although the short code
generated with the top eigenvectors achieves decent performance, the data representa-
tion capability of short code is limited, and the most recently proposed hashing meth-
ods such as SpH [11] often use relatively longer code to get much better performance.
Therefore, for eigendecomposition based methods, there exists a dilemma between the
code length and performance.

Since most of information is contained in the top eigenvectors, one natural idea is to
just use the top eigenvectors to generate a piece of short but strong code and repeat this
process several times, and then concatenate these pieces of short codes into one piece of
long code. However, it is obvious that if these pieces of short codes are identical, the ob-
tained long code won’t catch any more information. Thus, to get stronger long code, the
short codes should be strong but also diverse. Inspired by the work of bagging strategy
[2], in this paper, we adopt the widely used bootstrap technique [6] to generate diverse
short codes. A new projection method, named Bagging PCA, is proposed and applied to
learn effective binary codes. More specifically, each time we randomly sample a small
subset of the training data to learn PCA directions, and only the top eigenvectors are
kept to generate one piece of short code for all the data. This process will be repeated
several times and afterwards the obtained many pieces of short codes will be concate-
nated into one piece of long code. The proposed hashing method, dubbed Bagging PCA
Hashing (BPCAH), enjoys the following three appealing advantages:

– Since only the top eigenvectors are used every time, we can expect that the obtained
binary codes would be more effective. Extensive experiments on three large scale
datasets demonstrate that the proposed method outperforms several state-of-the-art
hashing methods.

– It can be theoretically guaranteed that the longer codes tend to yield better results
than the shorter ones under such a strategy. In addition, due to the randomness
introduced by bagging, our method shares some common attributes with the well-
known LSH, which is of nice theoretical properties.

– Because only PCA is used in the whole process, the proposed method is very suit-
able for large scale dataset. An important benefit of bagging scheme is that it is in-
herently favorable to parallel computing. Therefore, although the learning process
has to be repeated several times, it can be completed in parallel with independent
computation units.

2 Related Work

In this section, we give some backgrounds about hashing and introduce some related
works which attempt to handle the unbalance problem in eigendecomposition based
hashing methods. First of all, some notations are defined. Let X = {x1, x2, · · · , xn}
denote a set of n data points, where xi ∈ Rd is the ith data point. We denote X =
[x1, x2, · · · , xn] ∈ Rd×n as the data matrix. The binary code matrix of these points is
H = [h1, h2, · · · , hr] ∈ {−1, 1}n×r, where r is the code length. Hashing code for one
point is a row of H and denoted as code(xi).
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As one of the most popular hashing methods, LSH randomly samples hash functions
from a locality sensitive function family [1]. SimHash [4,13] and MinHash [3,20] are
two widely adopted LSH schemes. MinHash is a technique for quickly calculating the
Jaccard coefficient of two sets by estimating the resemblance similarity defined over
binary vercotrs [3]. In contrast, SimHash is an LSH for the similarities (e.g., cosine
similarity) which work on general real-valued data. As indicated in [21], when the data
are high-dimensional and binary, MinHash tends to work better than SimHash. On the
other hand, SimHash achieves better performance than MinHash on real-valued data.
Specifically, to approximate the cosine similarity, Charikar [4] defined a hash function
h as:

h(q) =

{
1, if w · q > 0
0, if w · q < 0

(1)

where w is a random vector from the d-dimensional Gaussian distribution N(0, Id).
Although with abundant nice theoretical properties, these random projection based data-
independent hashing methods are less discriminative over data and typically need very
long codes to achieve satisfactory search performance.

Recently, many data-dependent hashing methods [26,18,15,11,24,29,16,7,9] have
been proposed to learn data aware hash functions. As we have mentioned, many of
them [26,18,24,29,8,7] are based on eigendecomposition of a matrix (e.g. Laplacian
matrix). This brings the unbalance problem because the information caught in differ-
ent eigenvectors is unbalanced. A few recent works have been proposed to address this
problem.

In [25], instead of learning all the eigenvectors at once, Wang et al. proposed a se-
quential learning framework (USPLH) to learn hash function which tends to minimize
the errors made by the previous one. Inspired by multiclass spectral clustering [28],
in Iterative Quantization (ITQ) [7], Gong et al. proposed an alternating minimization
scheme to learn an orthogonal transformation to the PCA projected data so as to min-
imize the quantization error of mapping the data to their corresponding binary codes
(the vertices of binary hypercube). In Isotropic Hashing (IsoH) [15], Kong et al. pro-
posed to learn projection functions which can produce projected dimensions with equal
variances. Same as in ITQ, they tried to learn an orthogonal transformation to the PCA
projected data by iteratively minimizing the reconstruction error of the covariance ma-
trix and a diagonal matrix. Similar idea was adopted in [27], but in which the PCA
projection was replaced with locality preserving projection (LPP) [10]. In these meth-
ods, longer codes often catch much more information and thus give better experimental
results than the shorter ones. However, to the best of our knowledge, there still lack
enough theoretical guarantee that the performance will be better as the size of codes
increases, like in LSH.

The differences between our method and the previous works are obvious. Instead of
minimizing the quantization error or toughly requiring each dimension to have equal
variance, we leverage the bootstrap sampling scheme and integrate it with PCA. Every
time only the informative top eigenvectors are used to learn short binary code. Owing to
the sophisticated theories established in ensemble learning, our method enjoys several
advantages which are lacking from previous works.
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3 The Proposed Approach

Assuming the data X is zero-centered, for a projection W = (w1, w2, · · · , wr) ∈
Rd×r, code matrix can be written as H = sgn(XTW ), where sgn(·) is the sign func-
tion. In general, for a code to be efficient, two requirements should be satisfied [26]: (1)
each bit has a 50% chance of being +1 or -1, i.e.

∑
i hk(xi) = 0, k = 1, 2, · · · , r; (2)

different bits are independent of each other.
For the first requirement, Wang et al. [24] have proved that constraint

∑
i hk(xi) = 0

is equivalent to maximizing the variance for the k-th bit. The second “independent”
requirement is often relaxed into the pairwise decorrelation of bits [26], i.e. 1

nH
TH =

I . In [24], it was further relaxed into the orthogonality constraints on the projection
directions, i.e. WTW = I . By dropping the non-differentiable sgn(·) function and
trivially using tr(AB) = tr(BA), overall, the objective can be formally written as
[24,7,15]:

max
W∈Rd×r

1

n
tr(WTXXTW )

s.t. WTW = Ir (2)

This objective function is exactly the same as that of Principal Component Analysis
(PCA). The optimized projection W can be obtained by solving the top r eigenvectors
corresponding to the r biggest eigenvalues of the data covariance matrix XXT .

3.1 Hashing with Bagging PCA

For the eigendecomposition based hashing method, e.g. PCAH, on the one hand, the
amount of information caught in different dimensions differs significantly, but each
dimension is encoded into the same bits of code. This brings the unbalance problem in
the obtained binary codes. On the other hand, the most discriminative information is
typically contained in the top eigenvectors so that the short code generated with only
the top eigenvectors often yield better retrieval performance than longer ones in these
methods. In spite of this, the data representation capability of short codes is limited, and
the most recently proposed hashing methods often use relatively longer code to achieve
better performance.

We notice that the bagging strategy can enhance advantages and avoid disadvan-
tages of the eigendecomposition based method. Bagging [2] is a classical and efficient
combining technique for improving weak classifiers, and is extensively applied to clas-
sification problems [22]. Bagging is based on bootstrap [6] and aggregating concepts,
and incorporates the benefits of both approaches. Bootstrap is based on random sam-
pling in all the training data with replacement. Taking a bootstrap replicate of p samples
X(i) = [x

(i)
1 , x

(i)
2 , · · · , x(i)

p ] from the whole training set X = {x1, x2, · · · , xn}, one
can sometimes avoid or get less misleading training samples in the bootstrap training
set. Aggregating actually means combining the base weak learners, and the combined
learner typically gives better results than individual base learner. In general, bagging is
helpful to build a better learner on training sets with misleading samples.
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Fig. 2. The flowchart of Bagging PCA. At first, K bootstrap training set are randomly sampled
from the whole training set. For each bootstrap, PCA is applied and only the top t eigenvectors
(directions) are kept. Afterwards, the K diverse blocks of PCA directions are combined.

The motivation is clear: since most of the information is caught in the top eigenvec-
tors, why not repeat using them to generate short codes and then concatenate them into
long code. However, it is obvious that if the many pieces of short codes are identical, the
obtained long code will not get any more information. Based on this idea, we propose
a new projection method, named as Bagging PCA, and apply it to learn discriminative
binary codes.

In the first step, a small subset of p samples X(i) = [x
(i)
1 , x

(i)
2 , · · · , x(i)

p ] is randomly
sampled from the training set X . With this bootstrap training set, we can learn the
corresponding PCA projections and only the top t eigenvectors are kept. In other words,
we optimize the following objective and get the optimized W (i) ∈ Rd×t.

max
W (i)∈Rd×t

1

p
tr(W (i)TX(i)X(i)TW (i))

s.t. W (i)TW (i) = It (3)

With the sampling and learning process repeated K times, we can obtain K diverse
blocks of PCA directions, i.e. {W (i)}Ki=1. The final projection matrix is generated by
combining the K blocks:

W =
[
W (1),W (2), · · · ,W (K)

]
∈ Rd×Kt (4)

The binary code for each data x can be written as code(x) = sgn(xTW ). Note that this
equals to concatenate many pieces of short codes into one piece of long code because
sgn(xTW ) = [sgn(xTW (1)), sgn(xTW (2)), · · · , sgn(xTW (K))].

In some extreme cases, there exists heavy unbalance even between the top eigen-
vectors. In these circumstances, a random rotation can be applied to the learned W (i).
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Algorithm 1. Hashing with Bagging PCA

Input: Training set X = {x1, x2, · · · , xn}, the number of piece of short codes K, the number
of samples in each bootstrap replicate p, the code size of short code t.

Output: Hashing codes of K × t bits as well as K × t hash functions.

1: Generate K bootstrap replicates {X(i)}Ki=1. Each replicate X(i) contains p training samples
randomly selected from the whole training set X with n samples.

2: for i = 1, · · · , K do
3: Calculate the covariance matrix C(i) = X(i)X(i)T .
4: Get the t top eigenvectors {e(i)k }

t
k=1 of C(i), denoted as W (i) = [e

(i)
1 , e

(i)
2 , · · · , e(i)t ].

5: Optional: Apply a random rotation to W (i): W (i) ←−W (i)R.
6: Coding: for j = 1, · · · , n, do
7: code(i)(xj)←− sgn(xT

j W
(i))

8: end for
9: Concatenate the K pieces of short codes {code(i)}Ki=1 of each sample into one piece of

(K × t) bits binary code [code(1), code(2), · · · , code(K)].

Obviously, if W (i) is an optimal solution of Eq.(3), then so is W (i)R for any t × t or-
thogonal matrix R. As indicated in [14], a random rotation is helpful for balancing the
information in top eigenvectors. The flowchart of Bagging PCA is shown in Fig.2, and
the proposed strategy for binary codes learning can be summarized as in Algorithm 1.

3.2 Theoretical Analysis

In the last decades, mature theory frame has been established in ensemble learning to
guarantee correctness of the algorithms such as bagging, random forest and boosting.
In this subsection, we generalize the discussion to our bagging PCA hashing. In spe-
cific, we intend to theoretically guarantee that longer hashing codes tend to give better
retrieval performance in our method.

Let f : X × X → [0, 1] be a ground truth similarity function over a set of objects
X , where we can interpret f(x, y) to mean that x and y are “similar” or “dissimilar”.
The essence of hashing is constructing codes such that the Hamming distance between
code(x) and code(y) corresponds to the ground truth similarity f(x, y), i.e. two similar
items have a small Hamming distance, while two dissimilar items have a large Ham-
ming distance. Although discussing the Hamming distance, as indicated in [17], the
Hamming distance d(x, y) between code(x) and code(y) can be directly converted to a
similarity measure S(x, y) in Hamming space:

S(x, y) =
r − d(x, y)

r
(5)

where r is the code length. Obviously, d(x, y) ∈ [0, r], S(x, y) ∈ [0, 1], and smaller
Hamming distance corresponds to larger similarity. From this perspective, we can con-
sider that the essence of hashing is constructing codes for the data whose similarities
match the ground truth as better as possible.
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Lemma 1: Concatenating K pieces of short codes of t bits into one piece of K × t bits
long code, then the similarity between two samples evaluated with the long code is the
mean of those evaluated with the K pieces of short codes.

Proof: Denote the Hamming distance and similarity between two samples evaluated
with the short codes as di(x, y) and Si(x, y), where i = 1, 2, · · · ,K . Similarly, denote
that evaluated with the long code (obtained by concatenating short ones) as dl(x, y) and
Sl(x, y), respectively. It is obvious that dl(x, y) =

∑K
i=1 di(x, y). Then we have

Sl(x, y) =
K × t− dl(x, y)

K × t

=
1

K

(
K × t−

∑K
i=1 di(x, y)

t

)

=
1

K

(
K∑
i=1

(
t− di(x, y)

t

))

=
1

K

K∑
i=1

Si(x, y)

Theorem 1: Under the bootstrap sampling framework, the similarity between two sam-
ples evaluated with the long code (obtained by concatenating short codes) tend to be
closer to the ground truth than that evaluated with the short code.

Proof: As shown in Lemma 1, the aggregated similarity evaluated with long code is:

Sl(x, y) = E[Si(x, y)] (6)

It is easy to find that:

E[(f(x, y)− Si(x, y))
2] = f2(x, y)− 2f(x, y)E[Si(x, y)]

+ E[S2
i (x, y)]

(7)

Since E[Z2] ≥ (E[Z])2, we have

E[S2
i (x, y)] ≥ (E[Si(x, y)])

2 (8)

Eq.(7) can derive

E[(f(x, y)− Si(x, y))
2] ≥ (f(x, y)− E[Si(x, y)])

2 (9)

Plugging in Eq.(6), we have

(f(x, y)− Sl(x, y))
2 ≤ E[(f(x, y)− Si(x, y))

2] (10)

From Eq.(10) we can get some insights on how the longer code improve the ranking
performance. The deviation of Sl(x, y) to the true similarity f(x, y) is smaller than that
of Si(x, y) averaged over the bootstrap sampling distribution. As we have mentioned,
the essence of hashing is constructing codes whose similarity can match the ground
truth as better as possible. Therefore, we can draw the conclusion that longer codes
tend to give better retrieval performance under such a strategy.
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How much improvement we can get depends on how unequal the Eq.(8) is. The
effect of diversity is clear. If Si(x, y) does not change too much with different i the two
sides will be nearly equal, and bagging will not help. As an extreme example, if every
time all the samples are used to train the model, Si(x, y) will be identical for different
i, so the left side and right side of Eq.8 (so Eq.10) will be the same. But Sl is always
not inferior to Si in theory.

Bagging strategy has been proved to be an efficient way to reduce generalization
error by combining results from multiple base classifiers. According to Hoeffding in-
equality [12], when the base classifiers are mutually independent, the generalization
error of the ensemble reduces exponentially to the ensemble size, and ultimately ap-
proaches to zero as the ensemble size approaches to infinity. Similar theory can be
applied in our approach, but here the generalization error is the deviation to the true
similarity and the ensemble size is the length of code.

3.3 Connection with LSH

For LSH, Indyk et al. [13] have proved that two similar samples will be embedded
into close codes with high probability and this probability will increase as the code
size increases [13]. Actually, as pointed out in [7], LSH is guaranteed to yield exact
Euclidean neighbors in the limit of infinitely many bits. As we have proved in Theorem
1, the obtained long code by concatenating short codes will result in smaller deviation
to the true similarity, which is the same as in LSH.

On the other hand, if we treat one piece of short code in our method as a “super-
bit”, our method can be seen as a special case of LSH. The difference is that in LSH
the hash functions are randomly generated but in our method we introduce random-
ness via randomly sampling the training data and every “super-bit” here is learned with
consideration of the data. Our method enjoys the benefits of both data-independent and
data-dependent methods.

3.4 Computation Complexity Analysis

There exists a straightforward question for Bagging PCA hashing, i.e. whether the bag-
ging strategy will increase the computational complexity. The time complexity of PCA
is O(nd2 + d3), which is linear to the size of dataset. For the proposed BPCAH, each
time the size of training set is p, which is much smaller than n. In addition, an important
benefit of bagging scheme for hashing is that it is inherently favorable to parallel com-
puting. With this benefit, although we have to repeat the learning process K times, it
can be completed in parallel with K computation units. This characteristic is important
for large scale dataset in real applications.

4 Experiments

To be consistent with the motivation and theoretical analysis given above, what we want
to verify in experiments is threefold: (1) The proposed solution addressing the unbal-
ance problem of eigendecomposition based methods outperforms other existing solu-
tions. (2) Longer codes, as indicated in the previous section, do give better performance
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Table 1. Description of Datasets

CIFAR10 Tiny100K GIST1M

Dimensionality 512 384 960
Size 60,000 100,000 1,000,000

than the shorter ones in the proposed method. (3) The proposed method outperforms
other state-of-the-art hashing methods.

4.1 Experimental Setting

Datasets: Three large scale datasets are employed to evaluate the proposed method:
CIFAR10, Tiny100K and GIST1M. CIFAR102 consists of 60K 32 × 32 color images
in 10 classes, with 6000 images per class. We extract 512 dimensional GIST descrip-
tor [19] to represent each image. Tiny100K consists of 100K tiny images randomly
sampled from the original 80 million tiny images3. Each image is represented by 384
dimensional GIST descriptor. GIST1M contains one million 960 dimensional GIST de-
scriptors extracted from random images. It is directly downloaded from the website4.
We summarize the size and dimensionality of the datasets in Table 1. For each dataset,
we randomly select 1,000 data points as queries and use the rest as gallery database
and training set. Following [24,25], the top 2 percentile nearest neighbors in Euclidean
space are taken as ground truth.

Compared Methods: We compare the proposed BPCAH with several state-of-the-
arts hashing methods, including Locality Sensitive Hashing (LSH) [4], PCA Hashing
(PCAH) [24], Anchor Graph Hashing (AGH) [18], Unsupervised Sequential Projection
Learning Hashing (USPLH) [25], Iterative Quantization (ITQ) [7], Isotropic Hashing
(IsoH) [15] and Spherical Hashing (SpH) [11]. As we have pointed out above, there are
many versions of LSH. Here we adopt the algorithm proposed in [4] because the exper-
imental data is dense and real-valued here. AGH is a popular eigendecomposition based
hashing method. USPLH, ITQ, IsoH and our BPCAH are all based on PCA and aim to
handle the unbalance problem in PCAH. SpH is a recently proposed hashing method
which achieves promising retrieval performance on many datasets. We implement LSH
and our method by ourselves, and use the source codes provided by the authors for all
the other methods. In our method, there are two parameters to be set, the size of each
bootstrap training set p and code length of each short code t. We set p = 30%× n and
t = 16 for all the comparisons.

Evaluation Criterions: To perform fair evaluation, we adopt the Hamming Ranking
search commonly used in the literature. All points in the database are ranked according

2 http://www.cs.toronto.edu/˜kriz/cifar.html
3 http://groups.csail.mit.edu/vision/TinyImages/
4 http://corpus-texmex.irisa.fr/

http://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/
http://corpus-texmex.irisa.fr/
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to their Hamming distance to the query and the top K samples will be returned. The re-
trieval performance is measured with three widely used metrics: mean average precision
(MAP), precision of the top K returned examples (Precision@K) and precision-recall
curves. The MAP score is calculated by

MAP =
1

|Q|

|Q|∑
i=1

1

ni

ni∑
k=1

precision(Rik)

where qi ∈ Q is a query, ni is the number of points relevant to qi in the dataset. Sup-
pose the relevant points are ordered as {r1, r2, · · · , rni}, then Rik is the set of ranked
retrieval results from the top result until you get to point rk .

4.2 Experimental Results and Analysis

MAP Scores: MAP is one of the most comprehensive criterions to evaluate the retrieval
performance in the literature [25,7,15,11]. Table 2-4 show the MAP scores for all the
algorithms on the three datasets. We observe that BPCAH achieves the highest MAP
scores with different code lengths on all the datasets. Comparing the data dependent
methods with the data-independent LSH, it can be observed that the data dependent
methods like ITQ and SpH are generally better than LSH, especially with small code
size. However, LSH results in higher MAP score as the code size increasing, for ex-
ample, from 0.0946 (32 bits) to 0.2997 (256 bits) on CIFAR10. This behavior is due to
the theoretical convergence guarantee of LSH that when enough bits are assigned, two
similar samples will be embedded into close codes with high probability. By compar-
ison, as the code size increases, the MAP scores of PCAH and AGH decrease. When
the code size exceeds 64, the MAP score of AGH is even lower than LSH on all the
datasets.

By comparing the MAP scores of our BPCAH with those of three other methods
which also aim to address the unbalance problem of eigendecomposition based method,
i.e. USPLH, ITQ and IsoH, we find that our method outperforms them with a large mar-
gin. This improvement is mainly due to that we only use the informative top eigenvec-
tors and drop the noisy eigenvectors in learning each piece of short code in our method.
These results imply that the proposed strategy of concatenating short codes generated
with only the top eigenvectors into long code is very effective to handle the unbalance
problem.

Considering the MAP scores of BPCAH with different code sizes, it is easy to find
that our method yields to higher MAP score as the code size increases on all the datasets.
The improvement from 32 bits to 64 bits is prominent, and becomes stable when the
code size exceeds 128. This phenomenon is natural and easy to understand since in
our method as the code size increases more useful information is integrated. From this
perspective, our method is very similar to LSH. This verifies the claims made in the
previous section, and it is an important characteristic of our method. Furthermore, our
BPCAH consistently performs better than SpH, although the advantage is not so signif-
icant when the code size exceeds 256. SpH achieves promising performance on these
datasets in the literature [11] and is the best competitor under most settings in our exper-
iments. Given a MAP of 0.32 in Table 2, BPCAH needs to use about 48 bits to encode
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Table 2. Mean Average Precision (MAP) scores for CIFAR10 dataset

Methods
Mean Average Precision

32-bits 48-bits 64-bits 96-bits 128-bits 256-bits

LSH 0.0946 0.1349 0.1591 0.2046 0.2344 0.2997
PCAH 0.0593 0.0596 0.0587 0.0567 0.0539 0.0464
AGH 0.1488 0.1528 0.1544 0.1511 0.1461 0.1290

USPLH 0.1048 0.1215 0.1213 0.1199 0.1196 0.1192
ITQ 0.2345 0.2604 0.2781 0.2999 0.3131 0.3450
IsoH 0.2138 0.2426 0.2612 0.2876 0.3058 0.3414
SpH 0.1745 0.2131 0.2422 0.2853 0.3198 0.3823

BPCAH 0.2614 0.3170 0.3469 0.3679 0.3819 0.3926

Table 3. Mean Average Precision (MAP) scores for Tiny100K dataset

Methods
Mean Average Precision

32-bits 48-bits 64-bits 96-bits 128-bits 256-bits

LSH 0.1280 0.1467 0.1746 0.2100 0.2401 0.2825
PCAH 0.0822 0.0770 0.0712 0.0635 0.0582 0.0460
AGH 0.1582 0.1621 0.1617 0.1547 0.1473 0.1292

USPLH 0.1240 0.1230 0.1229 0.1225 0.1222 0.1218
ITQ 0.2076 0.2294 0.2426 0.2593 0.2627 0.2821
IsoH 0.2008 0.2307 0.2428 0.2627 0.2726 0.2941
SpH 0.1872 0.2256 0.2463 0.2805 0.3066 0.3501

BPCAH 0.2239 0.3040 0.3413 0.3669 0.3810 0.3930

Table 4. Mean Average Precision (MAP) scores for GIST1M dataset

Methods
Mean Average Precision

32-bits 48-bits 64-bits 96-bits 128-bits 256-bits

LSH 0.0994 0.1242 0.1381 0.1697 0.1952 0.2453
PCAH 0.1088 0.0998 0.0914 0.0791 0.0718 0.0523
AGH 0.1346 0.1415 0.1455 0.1464 0.1460 0.1655

USPLH 0.1014 0.1006 0.1005 0.0999 0.0995 0.0990
ITQ 0.1878 0.2070 0.2188 0.2307 0.2383 0.2514
IsoH 0.1821 0.1999 0.2180 0.2334 0.2406 0.2592
SpH 0.1544 0.1946 0.2137 0.2447 0.2635 0.3082

BPCAH 0.1961 0.2341 0.2517 0.2788 0.2951 0.3187

each image while the best competitor SpH needs about 128 bits. In consequence, our
method typically provides about three times more compact binary representation than
other methods. Similar trends can be found in Table 3 and Table 4.
Precision@K: In some applications, what we really concern is the precision of the
top K returned samples. For example, in real image retrieval system, most of the users
only care about the returned images in the first page. Fig.3(a)-(c) show the precision of
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Fig. 3. Precision of top K returned of different methods on three datasets. (a) Preci-
sion@100,200,500 with various code sizes on CIFAR10. (b) Precision@100,200,500 with vari-
ous code sizes on Tiny100K. (c) Precision@1K,2K,5K with various code sizes on GIST1M.

top K returned with different bits on the three datasets. For CIFAR10 and Tiny100K,
precision on top 100, 200 and 500 is reported. For GIST1M, since the relevant samples
for each query are more (top 2 percentile nearest neighbors are defined to be relevant),
we report the precision on the top 1K, 2K and 5K. The performance of PCAH is not
even comparable with other competitors as the code size exceeds 32. To avoid clutter,
these curves and the subsequent results reported in this section omit the baseline method
PCAH.

Our BPCAH consistently outperforms its competitors almost on all the cases. Once
again, we gain remarkable improvement over USPLH, ITQ and IsoH. For instance,
when the top 100 samples are returned in CIFAR10, our method achieves a precision
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Fig. 4. (a) Precision-Recall curves with 64 bits on three datasets. (b) Precision-Recall curves with
64 bits on three datasets.

of 62% and the best competitor ITQ only arrives at 54%. We can also make some
interesting observations about the performance of the other methods. In Fig.3(a)(c), ITQ
and IsoH work relatively well for small code size and are better than SpH. However,

Fig. 5. Retrieval results on CIFAR10 using original gist descriptor, and binary codes build with
different hashing methods. Top 25 returned are shown. We used 64-bit hashing codes, and show
the false positives in red rectangle.
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as the code size increases to 64, the performance of SpH rises rapidly and outperforms
ITQ and IsoH (even ours in the left subfig of Fig.3(c)). As indicated in [11], this may
be because the closed regions created by the hyperspheres is tighter than those created
by the hyperplanes when multiple hyperspheres are used.
Precision-Recall Curves: Fig.4(a)(b) show the complete precision-recall curves on the
three datasets with 64 bits and 128 bits. These detailed results are consistent with the
trends that we discovered in the Table 2-4. Actually, MAP score is the area under the
precision-recall curve. Fig.4 clearly shows the superiority of our BPCAH over other
hashing methods.

In order to give an intuitive understanding about how these hashing methods work,
Fig.5 shows an example with CIFAR10. An input query image on the left with 25
nearest neighbors using the original gist descriptor and binary codes built with different
hashing methods are shown.

5 Conclusion and Future Work

In this paper, we proposed a new projection method named Bagging PCA for binary
codes learning. The key idea is concatenating many pieces of diverse short codes into
one piece of long code. In order to obtain diverse short codes, we adopted the bootstrap
technique to learn PCA directions. Theoretical analysis and the connection with LSH
were given. Extensive experiments on three large scale datasets demonstrated that our
approach can outperform other state-of-the-arts hashing methods. Future work will ex-
plore the effectiveness of the proposed BPCAH on high-dimensional binary data such
as text.

Acknowledgements. This work was supported in part by 973 Program (Grant No.
2010CB327905), National Natural Science Foundation of China (Grant No. 61170127,
61332016).
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Abstract. Traditionally, Multi-task Learning (MTL) models optimize
the average of task-related objective functions, which is an intuitive ap-
proach and which we will be referring to as Average MTL. However, a
more general framework, referred to as Conic MTL, can be formulated
by considering conic combinations of the objective functions instead; in
this framework, Average MTL arises as a special case, when all combi-
nation coefficients equal 1. Although the advantage of Conic MTL over
Average MTL has been shown experimentally in previous works, no the-
oretical justification has been provided to date. In this paper, we derive a
generalization bound for the Conic MTL method, and demonstrate that
the tightest bound is not necessarily achieved, when all combination co-
efficients equal 1; hence, Average MTL may not always be the optimal
choice, and it is important to consider Conic MTL. As a byproduct of
the generalization bound, it also theoretically explains the good exper-
imental results of previous relevant works. Finally, we propose a new
Conic MTL model, whose conic combination coefficients minimize the
generalization bound, instead of choosing them heuristically as has been
done in previous methods. The rationale and advantage of our model is
demonstrated and verified via a series of experiments by comparing with
several other methods.

Keywords: Multi-task Learning, Kernel Methods, Generalization Bound,
Support Vector Machines.

1 Introduction

Multi-Task Learning (MTL) has been an active research field for over a decade,
since its inception in [1]. By training multiple tasks simultaneously with shared
information, it is expected that the generalization performance of each task
can be improved, compared to training each task separately. Previously, various
MTL schemes have been considered, many of which model the t-th task by a
linear function with weight wt, t = 1, · · ·T , and assume a certain, underlying
relationship between tasks. For example, the authors in [2] assumed all wt’s to
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be part of a cluster centered at w̄, the latter one being learned jointly with
wt. This assumption was further extended to the case, where the weights wt’s
can be grouped into different clusters instead of a single global cluster [3,4].
Furthermore, a widely held MTL assumption is that tasks share a common,
potentially sparse, feature representation, as done in [5,6,7,8,9,10,11], to name a
few. It is worth mentioning that many of these works allow features to be shared
among only a subset of tasks, which are considered “similar” or “related” to
each other, where the relevance between tasks is discovered during training.
This approach reduces and, sometimes, completely avoids the effect of “negative
transfer”, i.e., knowledge transferred between irrelevant tasks, which leads to
degraded generalization performance. Several other recent works that focused
on the discovery of task relatedness include [12,13,14,15]. Additionally, some
kernel-based MTL models assume that the data from all tasks are pre-processed
by a (partially) common feature mapping, thus (partially) sharing the same
kernel function; see [16,17,18], again, to name a few.

Most of these previous MTL formulations consider the following classic set-
ting: A set of training data {xi

t, y
i
t} ∈ X × Y, i = 1, · · · , Nt is provided for the

t-th task (t = 1, · · · , T ), where X , Y are the input and output spaces correspond-
ingly. Each datum from the t-th task is assumed to be drawn from an underlying
probability distribution Pt(Xt, Yt), where Xt and Yt are random variables in the
input and output space respectively. Then, a MTL problem is formulated as
follows

min
w∈Ω(w)

T∑
t=1

f(wt,xt,yt) (1)

where w � (w1, · · · ,wT ) is the collection of all wt’s, and, similarly, xt �
(x1

t , · · · ,xNt
t ), yt � (y1t , · · · , yNt

t ). f is a function common to all tasks. It is
important to observe that, without the constraint w ∈ Ω(w), Problem (1) de-
grades to T independent learning problems. Therefore, in most scenarios, the
set Ω(w) is designed to capture the inter-task relationships. For example, in
[16], the model combines MTL with Multiple Kernel Learning (MKL), which is
formulated as follows

f(wt,xt,yt) �
1

2
‖wt‖2 + C

Nt∑
i=1

l(wt, φt(x
i
t),y

i
t)

Ω(w) � {w = (w1, · · · ,wT ) : wt ∈ Hθ,γt
, θ ∈ Ω(θ),γ ∈ Ω(γ)}

(2)

Here, l is a specified loss function, φt : X → Hθ,γt
is the feature mapping

for the t-th task, Hθ,γt
is the Reproducing Kernel Hilbert Space (RKHS) with

reproducing kernel function kt �
∑M

m=1(θm + γm
t )km, where km : X × X →

R,m = 1, · · · ,M are pre-selected kernel functions. ‖wt‖ �
√
〈wt,wt〉 is the

norm defined in Hθ,γt
. Also, Ω(θ) is the feasible set of θ � (θ1, · · · , θM ), and,

similarly, Ω(γ) is the feasible set of γ � (γ1, · · · ,γT ). It is not hard to see that,
in this setting, Ω(w) is designed such that all tasks partially share the same
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kernel function in a MKL manner, parameterized by the common coefficient θ
and task-specific coefficient γt, t = 1, · · · , T .

Another example, Sparse MTL [17], has the following formulation:

f(wt,xt,yt) �
Nt∑
i=1

l(wt, φt(x
i
t),y

i
t)

Ω(w) � {w = (w1, · · · ,wT ) : wt � (w1
t , · · · ,wM

t ),

M∑
m=1

(

T∑
t=1

‖wm
t ‖q)p/q ≤ R}

(3)
where wm

t ∈ Hm, ∀m = 1, · · · ,M, t = 1, · · · , T , wt ∈ H1 × · · · ×HM , 0 < p ≤ 1,
1 ≤ q ≤ 2. Note that although the original Sparse MTL is formulated as follows

min
w

M∑
m=1

(

T∑
t=1

‖wm
t ‖q)p/q + C

T∑
t=1

Nt∑
i=1

l(wt, φt(x
i
t),y

i
t) (4)

due to the first part of Proposition 12 in [19], which we restate as Proposition 1
below1, it is obvious that, for any C > 0, there exists a R > 0, such that
Problem (1) and Problem (4) are equivalent.

Proposition 1. Let D ⊆ X , and let f, g : D  → R be two functions. For any
σ > 0, there must exist a τ > 0, such that the following two problems are
equivalent

min
x∈D

f(x) + σg(x) (5)

min
x∈D,g(x)≤τ

f(x) (6)

The formulation given in Problem (1), which we refer to as Average MTL, is
intuitively appealing: It is reasonable to expect the average generalization per-
formance of the T tasks to be improved, by optimizing the average of the T
objective functions. However, as argued in [20], solving Problem (1) yields only
a particular solution on the Pareto Front of the following Multi-Objective Opti-
mization (MOO) problem

min
w∈Ω(w)

f(w,x,y) (7)

where f (w,x,y) � [f(w1,x1,y1), · · · , f(wT ,xT ,yT )]
′. This is true, because

scalarizing a MOO problem by optimizing different conic combinations of the
objective functions, leads to the discovery of solutions that correspond to points
on the convex part of the problem’s Pareto Front [21, p. 178]. In other words, by

1 Note that the difference between Proposition 1 here and Proposition 12 in [19] is
that, Proposition 1 does not require convexity of f , g and D; these are requirements
necessary for the second part of Proposition 12 in [19], which we do not utilize here.
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conically scalarizing Problem (7) using different λ � [λ1, · · · , λT ]
′, λt > 0, ∀t =

1, · · · , T , the optimization problem

min
w∈Ω(w)

T∑
t=1

λtf(wt,xt,yt) (8)

yields different points on the Pareto Front of Problem (7). Therefore, there is
little reason to believe that the solution of Problem (8) for the special case of
λt = 1, ∀t = 1, · · · , T , i.e., the Average MTL’s solution, is the best achievable. In
fact, there might be other points on the Pareto Front that result in better gener-
alization performance for each task, hence, yielding better average performance
of the T tasks. Therefore, instead of solving Problem (1), one can accomplish
this by optimizing Problem (8).

A previous work along these lines was performed in [20]. The authors consid-
ered the following MTL formulation, named Pareto-Path MTL

min
w∈Ω(w)

[

T∑
t=1

(f(wt,xt,yt))
p]1/p (9)

which, assuming all objective functions are positive, minimizes the Lp-norm of
the objectives when p ≥ 1, and the Lp-pseudo-norm when 0 < p < 1. It was
proven that, for any p > 0, Problem (9) is equivalent to Problem (8) with

λt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(wt,xt,yt)

p−1

∑
T
t=1(f(wt,xt,yt))

p if p > 1

1 if p = 1
∑T

t=1(f(wt,xt,yt))
1−p
p

f(wt,xt,yt)
1−p if 0 < p < 1

, ∀t = 1, · · · , T (10)

Thus by varying p > 0, the solutions of Problem (9) trace a path on the Pareto
Front of Problem (7). While Average MTL is equivalent to Problem (9), when
p = 1, it was demonstrated that the experimental results are usually better
when p < 1, compared to p = 1, in a Support Vector Machine (SVM)-based
MKL setting. Regardless of the close correlation of the superior obtained results
to our previous argument, the authors did not provide a rigorous basis of the
advantage of considering an objective function other than the average of the T
task objectives. Therefore, use of the Lp-(pseudo-)norm in the paper’s objective
function remains so far largely a heuristic element of their approach.

In light of the just-mentioned potential drawbacks of Average MTL and the
lack of supporting theory in the case of Pareto-Path MTL, in this paper, we
analytically justify why it is worth considering Problem (8), which we refer to
as Conic MTL, and why it is advantageous. Specifically, a major contribution
of this paper is the derivation of a generalization bound for Conic MTL, which
illustrates that, indeed, the tightest bound is not necessarily achieved, when
all λt’s equal to 1. Therefore, it answers the previous question, and justifies the
importance of considering Conic MTL. Also, as a byproduct of the generalization
bound, in Section 2, we theoretically show the benefit of Pareto-Path MTL: the
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generalization bound of Problem (9) is usually tighter when p < 1, compared to
the case, when p = 1. Therefore, it explains Pareto-Path MTL’s superiority over
Average MTL.

Regarding Conic MTL, a natural question is how to choose the coefficients
λt’s. Instead of setting them heuristically, such as what Pareto-Path MTL does,
we propose a new Conic MTL model that learns the λt’s by minimizing the
generalization bound. It ensures that our new model achieves the tightest gen-
eralization bound compared to any other settings of the λt values and, poten-
tially, leads to superior performance. The new model is described in Section 3
and experimentally evaluated in Section 4. The experimental results verified our
theoretical conclusions: Conic MTL can indeed outperform Average MTL and
Pareto-Path MTL in many scenarios and, therefore, learning the coefficients λt’s
by minimizing the generalization bound is reasonable and advantageous. Finally,
we summarize our work in Section 5.

In the sequel, we’ll be using the following notational conventions: vector and
matrices are denoted in boldface. Vectors are assumed to be columns vectors. If
v is a vector, then v′ denotes the transposition of v. Vectors 0 and 1 are the all-
zero and all-one vectors respectively. Also, ", #, $ and ≺ between vectors will
stand for the component-wise ≥, >, ≤ and < relations respectively. Similarly,
for any v, vp represents the component-wise exponentiation of v.

2 Generalization Bound

Similar to previous theoretical analyses of MTL methods [22,23,24,25,26,27], in
this section, we derive the Rademacher complexity-based generalization bound
for Conic MTL, i.e., Problem (8). Specifically, we assume the following form of
f and Ω(w) for classification problems:

f(wt,xt,yt) �
1

2
‖wt‖2 + C

N∑
i=1

l(yit〈wt, φ(x
i
t)〉)

Ω(w) � {w = (w1, · · · ,wT ) : wt ∈ Hθ, θ ∈ Ω(θ)}
(11)

where l is the margin loss:

l(x) =

⎧⎪⎨⎪⎩
0 if ρ ≤ x

1− x/ρ if 0 ≤ x ≤ ρ

1 if x ≤ 0

(12)

φ : X → Hθ is the common feature mapping for all tasks. Hθ is the RKHS de-
fined by the kernel function k �

∑M
m=1 θmkm, where km : X × X → R,m =

1, · · · ,M are the pre-selected kernel functions. Furthermore, we assume the
training data {xi

t, y
i
t} ∈ X × Y, t = 1, · · · , T, i = 1, · · · , N are drawn from

the probability distribution Pt(Xt, Yt), where Xt and Yt are random variables
in the input and output space respectively. Note that, here, we assumed all
tasks have equal number of training data and share a common kernel function.
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These two assumptions were made to simplify notation and exposition, and they
do not affect extending our results to a more general case, where an arbitrary
number of training samples is available for each task and partially shared kernel
functions are used; in the latter case, only relevant tasks may share the common
kernel function, hence, reducing the effect of “negative transfer”.

Substituting (11) into Problem (8) and based on Proposition 1, it is not hard
to see that for any C in Eq. (11), there exist a R > 0 such that Problem (8) is
equivalent to the following problem

min
w∈Ω(w)

T∑
t=1

Nt∑
i=1

λtl(y
i
t〈wt, φ(x

i
t)〉)

s.t.

T∑
t=1

λt‖wt‖2 ≤ R

(13)

Obviously, solving Problem (13) is the process of choosing the w in the hy-
pothesis space Fλ, such that the empirical loss, i.e., the objective function of
Problem (13), is minimized. The relevant hypothesis space is defined below:

Fλ � {w = (w1, · · · ,wT ) :

T∑
t=1

λt‖wt‖2 ≤ R,wt ∈ Hθ, θ ∈ Ω(θ)} (14)

By defining the Conic MTL expected error er(w) and empirical loss êrλ(w)
as follows

er(w) =
1

T

T∑
t=1

E[1(−∞,0](Yt〈wt, φ(Xt)〉)] (15)

êrλ(w) =
1

TN

T∑
t=1

N∑
i=1

λtl(y
i
t〈wt, φ(x

i
t)〉) (16)

one of our major contribution is the following theorem, which gives the general-
ization bound of Problem (13) in the context of MKL-based Conic MTL for any
λt ∈ (1, rλ), ∀t = 1, · · · , T , where rλ is a pre-specified upper-bound for the λt’s.

Theorem 1. For fixed ρ > 0, rλ ∈ N with rλ > 1, and for any λ = [λ1, · · · , λT ]
′,

λt ∈ (1, rλ), ∀t = 1, · · · , T , w ∈ Fλ, 0 < δ < 1, the following generalization
bound holds with probability at least 1− δ:

er(w) ≤ êrλ(w) +

√
2rλ
ρ

R(Fλ) +

√√√√ 9

TN
ln

(
2rλ
T

T∑
t=1

1

λt

)
+

√
9 ln 1

δ

2TN
(17)
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where R(Fλ) is the empirical Rademacher complexity of the hypothesis space Fλ,
which is defined as

R(Fλ) �
2

TN
E[ sup

w∈Fλ

T∑
t=1

N∑
i=1

σi
t〈wt, φ(x

i
t)〉] (18)

and the σi
t’s are i.i.d. Rademacher-distributed (i.e., Bernoulli(1/2)-distributed

random variables with sample space {−1,+1}).

Based on Theorem 1, one is motivated to choose λ that minimizes the gen-
eralization bound, instead of heuristically selecting λ as in Eq. (10), which was
suggested in [20]. Indeed, doing so does not guarantee obtaining the tightest
generalization bound.

However, prior to proposing our new Conic MTL model that minimizes the
generalization bound, it is still of interest to theoretically analyze why Pareto-
Path MTL, i.e., Problem (9), usually enjoys better generalization performance
when 0 < p < 1, rather than when p = 1, as described in Section 1. While the
analysis is not given in [20], fortunately, we can provide some insights of the
good performance of the model, when 0 < p < 1, by utilizing Theorem 1 and
with the help of the following two theorems.

Theorem 2. For λ # 0, the empirical Rademacher complexity R(Fλ) is mono-
tonically decreasing with respect to each λt, t = 1, · · · , T .

Theorem 3. Assume f(wt,xt,yt) > 0, ∀t = 1, · · · , T . For λ that is defined in
Eq. (10), when 0 < p < 1, we have λt > 1 and λt is monotonically decreasing
with respect to p, ∀t = 1, · · · , T .

Based on Eq. (10), if f(wt,xt,yt) > 0, ∀t = 1, · · · , T , there must exist a
fixed rλ > 0, such that λt ∈ (1, rλ), ∀t = 1, · · · , T . Therefore we can analyze the
generalization bound of Pareto-Path MTL based on Theorem 1, when 0 < p < 1.
Although Theorem 1 is not suitable for the case when p = 1, we can approximate
its bound by letting p to be infinitely close to 1.

The above two theorems indicate that the empirical Rademacher complexity
for the hypothesis space of Pareto-Path MTL monotonically increases with re-
spect to p, when 0 < p < 1. Therefore, the second term in the generalization
bound decreases as p decreases. This is also true for the third term in the bound,
based on Theorem 3. Thus, it is not a surprise that the generalization perfor-
mance is usually better when 0 < p < 1 than when p = 1, and it is reasonable
to expect the performance to get improved when p decreases. In fact, such a
monotonicity is reported in the experiments of [20]: the classification accuracy is
usually monotonically increasing, when p decreases. It is worth mentioning that,
although rarely observed, we may not have such monotonicity in performance, if
the first term in the generalization bound, i.e., the empirical loss, grows quickly
as p decreases. However, the monotonic behavior of the generalization bound
(except the empirical loss) is still sufficient for explaining the experimental re-
sults of Problem (9), which justifies the rationale of employing an arbitrarily
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weighted conic combination of objective functions instead of using the average
of these functions.

Finally, we provide two theorems that not only are used in the proof of The-
orem 1, but also may be of interest on their own accord. Subsequently, in the
next section, we describe our new MTL model.

Theorem 4. Given γ � [γ1, · · · , γT ]′ with γ # 0, define

R(Fλ,γ) =
2

TN
E[ sup

w∈Fλ

T∑
t=1

N∑
i=1

γtσ
i
t〈wt, φ(x

i
t)〉] (19)

For fixed λ # 0, R(Fλ,γ) is monotonically increasing with respect to each γt.

Theorem 5. For fixed rλ ≥ 1, ρ > 0, λ = [λ1, · · · , λT ]
′, λt ∈ [1, rλ], ∀t =

1, · · · , T , and for any w ∈ Fλ, 0 < δ < 1, the following generalization bound
holds with probability at least 1− δ:

er(w) ≤ êrλ(w) +
rλ
ρ
R(Fλ) +

√
9 ln 1

δ

2TN
(20)

Note that the difference between Theorem 5 and Theorem 1 is that, Theorem 1
is valid for any λt ∈ (1, rλ), while Theorem 5 is only valid for fixed λt ∈ [1, rλ].
While the bound given in Theorem 1 is more general, it is looser due to the
additional third term in (17) and due to the factor

√
2 multiplying the empirical

Rademacher complexity.

3 A New MTL Model

In this section, we propose our new MTL model. Motivated by the generalization
bound in Theorem 1, our model is formulated to select w and λ by minimizing
the bound

êrλ(w) +

√
2rλ
ρ

R(Fλ) +

√√√√ 9

TN
ln

(
2rλ
T

T∑
t=1

1

λt

)
+

√
9 ln 1

δ

2TN
(21)

instead of choosing the coefficients λ heuristically, such as via Eq. (10) in [20].
Note that the bound’s last term does not depend on any model parameters,
while the third term has only a minor effect on the bound, when λt ∈ (1, rλ).
Therefore, we omit these two terms, and propose the following model:

min
w,λ

êrλ(w) +

√
2rλ
ρ

R(Fλ)

s.t. w ∈ Fλ,1 ≺ λ ≺ rλ1.

(22)

Furthermore, due to the complicated nature ofR(Fλ), it is difficult to optimize
Problem (22) directly. Therefore, in the following theorem, we prove an upper
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bound for R(Fλ), which yields a simpler expression. We remind the readers that
the hypothesis space Fλ is defined as

Fλ � {w = (w1, · · · ,wT ) :

T∑
t=1

λt‖wt‖2 ≤ R,wt ∈ Hθ, θ ∈ Ω(θ)} (23)

where Hθ is the RKHS defined by the kernel function k �
∑M

m=1 θmkm.

Theorem 6. Given the hypothesis space Fλ, the empirical Rademacher com-
plexity can be upper-bounded as follows:

R(Fλ) ≤
2

TN

√√√√ T∑
t=1

1

λt
E

⎡⎢⎣
√√√√ sup

w∈F1

T∑
t=1

(
N∑
i=1

σi
t〈wt, φ(xi

t)〉
)2

⎤⎥⎦ (24)

where the feasible region of w, i.e., F1, is the same as Fλ but with λ = 1.

Note that, for a given Ω(θ), the expectation term in (24) is a constant. If we
define

s � E

⎡⎢⎣
√√√√ sup

w∈F1

T∑
t=1

(
N∑
i=1

σi
t〈wt, φ(xi

t)〉
)2

⎤⎥⎦ (25)

we arrive at our proposed MTL model:

min
w,λ

T∑
t=1

N∑
i=1

λtl(y
i
t〈wt, φ(x

i
t)〉) +

2
√
2srλ
ρ

√√√√ T∑
t=1

1

λt

s.t. wt ∈ Hθ, ∀t = 1, · · · , T

θ ∈ Ω(θ),

T∑
t=1

λt‖wt‖2 ≤ R,1 ≺ λ ≺ rλ1.

(26)

The next proposition provides an equivalent optimization problem, which is
easier to solve.

Proposition 2. For any fixed C > 0, s > 0 and rλ > 0, there exist R > 0
and a > 0 such that Problem (26) and the following optimization problem are
equivalent

min
w,λ,θ

T∑
t=1

λt(

M∑
m=1

‖wm
t ‖2

2θm
+ C

N∑
i=1

M∑
m=1

l(yit〈wm
t , φm(xi

t)〉))

s.t. wm
t ∈ Hm, ∀t = 1, · · · , T,m = 1, · · · ,M,

θ ∈ Ω(θ),

T∑
t=1

1

λt
≤ a,1 ≺ λ ≺ rλ1.

(27)



202 C. Li, M. Georgiopoulos, and G.C. Anagnostopoulos

where Hm is the RKHS defined by the kernel function km, and φm : X → Hm.

It is worth pointing out that, Problem (27) minimizes the generalization bound
(21) for any Ω(θ). A typical setting is to adapt the Lp-normMKL method by let-

ting Ω(θ) � {θ = [θ1, · · · , θM ]′ : θ " 0, ‖θ‖p ≤ 1}, where p ≥ 1. Alternatively,
one may want to employ the optimal neighborhood kernel method [28] by letting

Ω(θ) � {θ = [θ1, · · · , θM ]′ :
∑T

t=1 ‖Kt − K̂t‖F ≤ Rk,Kt �
∑M

m=1 θmKm
t },

where Km
t ∈ RN×N is the kernel matrix whose (i, j)-th element is calculated as

km(xi
t,x

j
t ), and K̂t’s are the kernel matrices evaluated by a pre-defined kernel

function on the training data of the t-th task.
By assuming Ω(θ) to be a convex set and electing the loss function l to be

convex in the model parameters (such as the hinge loss function), Problem (27)
is jointly convex with respect to both w and θ. Also, it is separately convex
with respect to λ. Therefore, it is straightforward to employ a block-coordinate
descent method to optimize Problem (27). Finally, it is worth mentioning that,
by choosing to employ the hinge loss function, the generalization bound in The-
orem 1 still holds, since the hinge loss upper-bounds the margin loss for ρ = 1.
Therefore, our model still minimizes the generalization bound.

3.1 Incorporating Lp-Norm MKL

In this paper, we specifically consider endowing our MTL model with Lp-norm
MKL, since it can be better analyzed theoretically, is usually easy to optimize
and, often, yields good performance outcomes.

Although the upper bound in Theorem 6 is suitable for any Ω(θ), it might be
loose due to its generality. Another issue is that the expectation present in the
bound is still hard to calculate. Therefore, as we consider Lp-norm MKL, it is
of interest to derive a bound specifically for it, which is easier to calculate and
is potentially tighter.

Theorem 7. Let Ω(θ) � {θ = [θ1, · · · , θM ]′ : θ " 0, ‖θ‖p ≤ 1}, p ≥ 1, and
Km

t ∈ RN×N , t = 1, · · · , T,m = 1, · · · ,M be the kernel matrix, whose (i, j)-th
element is defined as km(xi

t,x
j
t ). Also, define vt � [tr(K1

t ), · · · , tr(KM
t )]′ ∈

RM . Then, we have

R(Fλ) ≤
2
√
2Rp∗

TN

√√√√ T∑
t=1

1

λt
‖vt‖p∗ (28)

where p∗ � p
p−1 .
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Following a similar procedure to formulating our general model Problem (27),
we arrive at the following Lp-norm MKL-based MTL problem

min
w,λ,θ

T∑
t=1

λt(

M∑
m=1

‖wm
t ‖2

2θm
+ C

N∑
i=1

M∑
m=1

l(yit〈wm
t , φ(xi

t)〉))

s.t. wm
t ∈ Hm, ∀t = 1, · · · , T,m = 1, · · · ,M,

θ " 0, ‖θ‖p ≤ 1,

T∑
t=1

‖vt‖p∗

λt
≤ a,1 ≺ λ ≺ rλ1.

(29)

which, based on (21) and (28), minimizes the generalization bound. Note that,
due to the bound that is specifically derived for Lp-norm MKL, the constraint∑T

t=1
1
λt

≤ a in Problem (27) is changed to
∑T

t=1
‖vt‖p∗

λt
≤ a in the previous

problem. However, when all kernel matrices Km
t ’s have the same trace (as is the

case, when all kernel functions are normalized, such that km(x,x) = 1, ∀m =
1, · · · ,M,x ∈ X ), for a given p ≥ 1, ‖vt‖p∗ has the same value for all t =
1, · · · , T . In this case, Problem (29) is equivalent to Problem (27).

4 Experiments

In this section, we conduct a series of experiments with several data sets, in
order to show the merit of our proposed MTL model by comparing it to a few
other related methods.

4.1 Experimental Settings

In our experiments, we specifically evaluate the Lp-norm MKL-based MTL
model, i.e., Problem (29), on classification problems using the hinge loss func-
tion. To solve Problem (29), we employed a block-coordinate descent algorithm,
which optimizes each of the three variables w, λ and θ in succession by holding
the remaining two variables fixed. Specifically, in each iteration, three optimiza-
tion problems are solved. First, for fixed λ and θ, the optimization with respect
tow can be split into T independent SVM problems, which are solved via LIBSVM
[29]. Next, for fixed w and θ, the optimization with respect to λ is convex and
is solved using CVX [30][31]. Finally, minimizing with respect to θ, while w and
λ are held fixed, has a closed-form solution:

θ∗ =

(
v

‖v‖ p
p+1

) 1
p+1

(30)

where v � [v1, · · · , vM ]′ and vm �
∑T

t=1 ‖wm
t ‖, ∀m = 1, · · · ,M . Although more

efficient algorithms may exist, we opted to use this simple and easy-to-implement
algorithm, since the optimization strategy is not the focus of our paper2.

2 Our MATLAB implementation is located at http://github.com/congliucf/ECML2014

http://github.com/congliucf/ECML2014
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For all experiments, 11 kernels were selected for use: a Linear kernel, a 2nd-
order Polynomial kernel and Gaussian kernels with spread parameter values{
2−7, 2−5, 2−3, 2−1, 20, 21, 23, 25, 27

}
. Parameters C, p and a were selected via

cross-validation. Our model is evaluated on 6 data sets: 2 real-world data sets
from the UCI repository [32], 2 handwritten digits data sets, and 2 multi-task
data sets, which we detail below.

The Wall-Following Robot Navigation (Robot) and Vehicle Silhouettes (Vehi-
cle) data sets were obtained from the UCI repository. The Robot data, consisting
of 4 features per sample, describe the position of the robot, while it navigates
through a room following the wall in a clockwise direction. Each sample is to be
classified according to one of the following four classes: “Move-Forward”, “Slight-
Right-Turn”, “Sharp-Right-Turn” and “Slight-Left-Turn”. On the other hand,
the Vehicle data set is a collection of 18-dimensional feature vectors extracted
from images. Each datum should be classified into one of four classes: “4 Opel”,
“SAAB”, “Bus” and “Van”.

The two handwritten digit data sets, namely MNIST 3 and USPS 4, consist
of grayscale images of handwritten digits from 0 to 9 with 784 and 256 features
respectively. Each datum is labeled as one of ten classes, each of which represents
a single digit. For these four multi-class data sets, an equal number of samples
from each class were chosen for training. Also, we approached these multi-class
problems as MTL problems using a one-vs.-one strategy and the averaged clas-
sification accuracy is calculated for each data set.

The last two data sets, namely Letter5 and Landmine6, correspond to pure
multi-task problems. Specifically, the Letter data set involves 8 tasks: “C” vs.
“E”, “G” vs. “Y”, “M” vs. “N”, “A” vs. “G”, “I” vs. “J”, “A” vs. “O”, “F” vs.
“T” and “H” vs. “N”. Each letter is represented by a 8× 16 pixel image, which
forms a 128-dimensional feature vector. The goal for this problem is to correctly
recognize the letters in each task. On the other hand, the Landmine data set
consists of 29 binary classification tasks. Each datum is a 9-dimensional feature
vector extracted from radar images that capture a single region of landmine
fields. The goal for each task is to detect landmines in specific regions. For the
experiments involving these two data sets, we re-sampled the data such that, for
each task, the two classes contain equal number of samples.

In all our experiments, we considered training set sizes of 10%, 20% and 50%
of the original data set. As an exception, for the Landmine data set, we did not
use the 10% of the original set for training due to its small size; instead, we used
20%, 30% and 50%.

We compared our method with five different Multi-Task MKL (MT-MKL)
methods. The first one is Pareto-Path MTL, i.e., Problem (9), which was origi-
nally proposed in [20]. One can expect our new method to outperform it in most
cases, since our method selects λ by minimizing the generalization bound, while

3 Available at: http://yann.lecun.com/exdb/mnist/
4 Available at: http://www.cs.nyu.edu/~roweis/data.html
5 Available at: http://multitask.cs.berkeley.edu/
6 Available at: http://people.ee.duke.edu/~lcarin/LandmineData.zip

http://yann.lecun.com/exdb/mnist/
http://www.cs.nyu.edu/~roweis/data.html
http://multitask.cs.berkeley.edu/
http://people.ee.duke.edu/~lcarin/LandmineData.zip
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Pareto-Path MTL selects its value heuristically via Eq. (10). The second method
we compared with is the Lp-norm MKL-based Average MTL, which is the same
as our method for λ = 1. As we argued earlier in the introduction, minimizing
the averaged objective does not necessarily guarantee the best generalization
performance. By comparing with Average MTL, we expect to verify our claim
experimentally. Moreover, we compared with two other popular MT-MKL meth-
ods, namely Tang’s Method [16] and Sparse MTL [17]. These two methods were
outlined in Section 1. Finally, we considered the baseline approach, which trains
each task individually via a traditional single-task Lp-norm MKL strategy.

4.2 Experimental Results

Table 1 provides the obtained experimental results based on the settings that
were described in the previous sub-section. More specifically, in Table 1, we

Table 1. Comparison of Multi-task Classification Accuracy between Our Method and
Five Other Methods. Averaged performances of 20 runs over randomly sampled training
set are reported.

Robot Our Method Pareto Average Tang Sparse Baseline

10% 95.83 95.07 95.16 93.93 94.69 95.54
20% 97.11 96.11 95.90 96.36 96.56 95.75
50% 98.41 96.80 96.59 97.21 98.09 96.31

Vehicle Our Method Pareto Average Tang Sparse Baseline

10% 80.10 80.05 79.77 78.47 79.28 78.01
20% 84.69 85.33 85.22 83.98 84.44 84.37
50% 89.90 88.04 87.93 88.13 88.57 87.64

Letter Our Method Pareto Average Tang Sparse Baseline

10% 83.00 83.95 81.45 80.86 83.00 81.33
20% 87.13 87.51 86.42 82.95 87.09 86.39
50% 90.47 90.61 90.01 84.87 90.65 89.80

Landmine Our Method Pareto Average Tang Sparse Baseline

20% 70.18 69.59 67.24 66.60 58.89 66.64
30% 74.52 74.15 71.62 70.89 65.83 71.14
50% 78.26 77.42 76.96 76.08 75.82 76.29

MNIST Our Method Pareto Average Tang Sparse Baseline

10% 93.59 89.30 88.81 92.37 93.48 88.71
20% 96.08 95.02 94.95 95.94 95.96 94.81
50% 97.44 96.92 96.98 97.47 97.53 97.04

USPS Our Method Pareto Average Tang Sparse Baseline

10% 94.61 90.22 90.11 93.20 94.52 89.02
20% 97.44 96.26 96.25 97.37 97.53 96.17
50% 98.98 98.51 98.59 98.96 98.98 98.49
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report the average classification accuracy of 20 runs over a randomly sampled
training set. Moreover, the best performance among the 6 competing methods
is highlighted in boldface. To test the statistical significance of the differences
between our method and the 5 other methods, we employed a t-test to compare
mean accuracies using a significance level of α = 0.05. In the table, underlined
numbers indicate the results that are statistically significantly worse than the
ones produced by our method.

When analyzing the results in Table 1, first of all, we observe that the opti-
mal result is almost always achieved by the two Conic MTL methods, namely
our method and Pareto-Path MTL. This result not only shows the advantage of
Conic MTL over Average MTL, but also demonstrates the benefit compared to
other MTL methods, such as Tang’s MTL and Sparse MTL. Secondly, it is ob-
vious that our method can usually achieve better result than Pareto-Path MTL;
as a matter of fact, in many cases the advantage is statistically significant. This
observation validates the underlying rationale of our method, which chooses the
coefficient λ by minimizing the generalization bound instead of using Eq. (10).
Finally, when comparing our method against the five alternative methods, our
results are statistically better most of the time, which further emphasizes the
benefit of our method.

5 Conclusions

In this paper, we considered the MTL problem that minimizes the conic combi-
nation of objectives with coefficients λ, which we refer to as Conic MTL. The
traditional MTL method, which minimizes the average of the task objectives
(Average MTL), is only a special case of Conic MTL with λ = 1. Intuitively,
such a specific choice of λ should not necessarily lead to optimal generalization
performance.

This intuition motivated the derivation of a Rademacher complexity-based
generalization bound for Conic MTL in a MKL-based classification setting. The
properties of the bound, as we have shown in Section 2, indicate that the opti-
mal choice of λ is indeed not necessarily equal to 1. Therefore, it is important
to consider different values for λ for Conic MTL, which may yield tighter gener-
alization bounds and, hence, better performance. As a byproduct, our analysis
also explains the reported superiority of Pareto-Path MTL [20] over Average
MTL.

Moreover, we proposed a new Conic MTL model, which aims to directly min-
imize the derived generalization bound. Via a series of experiments on six widely
utilized data sets, our new model demonstrated a statistically significant advan-
tage over Pareto-Path MTL, Average MTL, and two other popular MT-MKL
methods.
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Abstract. Multi-label classification is a central problem in many appli-
cation domains. In this paper, we present a novel supervised bi-directional
model that learns a low-dimensional mid-level representation for multi-
label classification. Unlike traditional multi-label learning methods which
identify intermediate representations from either the input space or the
output space but not both, the mid-level representation in our model has
two complementary parts that capture intrinsic information of the input
data and the output labels respectively under the autoencoder principle
while augmenting each other for the target output label prediction. The
resulting optimization problem can be solved efficiently using an itera-
tive procedure with alternating steps, while closed-form solutions exist
for one major step. Our experiments conducted on a variety of multi-
label data sets demonstrate the efficacy of the proposed bi-directional
representation learning model for multi-label classification.

1 Introduction

Multi-label classification is a central problem in many areas of data analysis,
where each data instance can simultaneously have multiple class labels. For ex-
ample, in image labelling [3,13], an image can contain multiple objects of interest
and thus have multiple annotation tags; in text categorization [20], a webpage
can be assigned into multiple related topic categories; similarly, in gene or protein
function prediction [4], a gene or protein can exhibit multiple functions. More-
over, in these multi-label classification problems, strong label co-occurrences
and label dependencies usually exist. For example, an object “computer” often
appears together with the object “desk”, but is rarely seen together with the
object “cooking pan”. Hence different from the standard multi-class problems
where each instance is mapped to a single class label, multi-label classification
needs to map each instance to typically a few interdependent class labels in a
relatively large output space.

One straightforward approach for multi-label classification is to decompose
the multi-label learning problem into a set of independent binary classification
problems [16], which however has the obvious drawback of ignoring the interde-
pendencies among multiple binary prediction tasks. Exploiting label prediction
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dependence is critical for multi-label learning, especially when the label infor-
mation is sparse. A group of methods in the literature explore label prediction
dependencies or correlations by identifying mid-level low-dimensional represen-
tations shared across labels from the input data [8,21,26,22,14,23]. Many other
methods exploit the label dependency information directly in the output space
[4,6,12,24,25]. Moreover, a number of recent works perform label space reduc-
tion to produce a low-dimensional intermediate label representation to facilitate
multi-label classification with many labels [1,11,19,25]. They demonstrate that
even simple label space reduction can capture intrinsic information in the output
space for multi-label classification tasks while reducing the computational cost.

In this paper, we propose a novel bi-directional model for multi-label classi-
fication, which introduces a compact mid-level representation layer between the
input features and the output labels to capture the common prediction repre-
sentations shared across multiple labels. The mid-level representation layer is
constructed from both input and output spaces, and it has two complementary
parts, one of which captures the predictive low-dimensional semantic representa-
tion of the input features and the other captures the predictable low-dimensional
intrinsic representation of the output labels. These two parts augment each other
to integrate information encoded in both the feature and label spaces and en-
hance the overall multi-label classification.

This bi-directional model exploits the autoencoder principle [9] to generate
the mid-level representation from two directions, while extending this principle
by promoting the discriminability of the mid-level representation for predicting
the target output labels. We formalize this model as a joint optimization prob-
lem over all the encoding/decoding/prediction parameters. We show that this
optimization problem can be solved using an iterative optimization algorithm
with alternating steps, in which one major step has efficient closed-form solu-
tion. We conduct experiments on a variety of multi-label classification data sets.
The results show the proposed model outperforms its one-directional component
models, and a number of multi-label classification methods.

The remainder of the paper is organized as follows. We review related works
in Section 2 and present the proposed model in Section 3. The experiments are
reported in Section 4. We finally conclude the paper in Section 5.

2 Related Work

Multi-label classification has received significant attention from machine learning
community in recent years. There is a rich body of work on multi-label learning
in the literature. In this section, we present a brief review over existing methods
that are closely related to the proposed work.

One direction of multi-label learning research exploits bottom-up learning
schemes that induce intermediate layers from the inputs to bridge the gap be-
tween the input features and output labels. For example, [10] trained multiple
base models on randomly selected subsets of the input features and then com-
bined the multiple models. This method however ignores label dependencies.
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To amend this drawback, [26] proposed a multi-label dimensionality reduction
method, which induces a low-dimensional feature space by maximizing the de-
pendence between the original feature description and the class labels. [5] first
augmented the original input features with the output of base binary classi-
fiers and then performed multi-label learning on the augmented representation.
A few other methods perform feature selection for multi-label learning [23,15].
[23] used a combination of PCA and genetic algorithms to search for the best
feature subset. [15] proposed a feature selection algorithm that takes feature-
label correlation into account based on a symmetrical uncertainty measure. A
more advanced method [8] performs sparse feature learning with sparsity induc-
ing norms to capture common predictive model structures across labels. The
methods in [21,22,14] explore common subspaces shared among multiple labels.

Another set of methods exploit top-down learning schemes and induce alter-
native label representations from the original label space to facilitate multi-label
learning. [24] applied canonical correlation analysis to extract error-correcting
code words as intermediate prediction outputs between the input features and
the original output labels. The work in [25] further enhanced this output cod-
ing learning scheme with a maximum margin output coding (MMOC) method,
which formulates the output coding problem in a max-margin form to capture
both discriminability and predictability of the output codes. [7] extended the ker-
nel techniques widely used in the input feature space into the output label space
to induce kernelized outputs in a large margin multi-label learning framework.

Moreover, a number of works pursue label space dimensionality reduction
to produce intermediate low-dimensional label representations. An early work
in [11] employs random label projection to address multi-label classification with
a large number of labels. It first projects the high-dimensional label vectors to
a low-dimensional space using a random transformation matrix, and then learns
a multi-dimension regression model with the transformed labels. For a test in-
stance, the estimated label vector from the regression models is then projected
from the low-dimensional space back to the original high-dimensional label space.
Following this work, a number of improvements have been proposed. [19] pro-
posed a principal label space transformation method, which employs the princi-
pal component analysis to reduce the original label matrix to a low-dimensional
space. Unlike random projections, the PCA dimensionality reduction minimizes
the encoding error between the projected label matrix and the original label
matrix. Subsequently, [1] proposed a conditional principal label space transfor-
mation method. It is a feature-aware method, which simultaneously minimizes
both the label encoding error and the least squares linear regression error in the
reduced label space. [27] proposed a Gaussian random projection method for la-
bel space transformation. Though these label space transformation methods have
demonstrated that the intrinsic information of output labels can be captured in a
low-dimensional output space, they mainly focus on reducing the computational
cost without much loss of the multi-label classification performance.

Different from these existing methods, the proposed bi-directional model in
this paper integrates the strengths of both bottom-up and top-down intermediate
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Fig. 1. The proposed bi-directional model. X denotes the input features and Y de-
notes the output labels. The mid-level latent layer has two parts, S and Z. S is the
low-dimensional representation of the input features, and Z is the low-dimensional rep-
resentation of the output labels. Both S and Z contribute to the decoding of the target
output labels.

representation learning schemes in a complementary structure, aiming to improve
multi-label classification performance. Our learning framework is not about pro-
ducing any ad-hoc latent representations from the inputs and outputs, but aims
to augment each other from two directions. Our model extends the generative au-
toencoder principle [9] in a discriminative way, sharing some similarity with the
multi-class zero-shot learning approach in [18]. The work in [18] nevertheless is
still a one-directional method that learns low-dimensional semantic representa-
tions from the inputs.

3 A Bi-directional Model for Multi-label Classification

Traditional multi-label models typically learn a mapping function from the input
space to the output space directly. Recent studies show that an intermediate
representation can be very useful for bridging the original inputs and outputs,
as we discussed in Section 2. Nevertheless, all these previous works have focused
on one-directional representation learning using either bottom-up or top-down
schemes. In this section, we present a novel bi-directional representation learning
model for multi-label classification, which has a hybrid mid-level representation
layer that captures both feature-sourced and label-sourced intrinsic information
of the data in a complementary way, aiming to boost the learning performance.

Figure 1 shows the proposed bi-directional model. In this model, X and Y de-
note the input features and the output labels respectively. The latent mid-level
layer has two parts, S and Z, which encode information from two directions
in a low-dimensional space. The low-dimensional representation code S is con-
structed from the input X using the autoencoder principle such that S can be
produced from X with an encoding function and X can be reconstructed from S
with a decoding function. This mechanism ensures that S captures the intrinsic
information stored in the input features. The latent representation code Z is
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produced from the output Y with an encoding function, while its predictability
from the input X is simultaneously promoted with a prediction function. To
ensure the informativeness of the latent layer for the target output prediction,
both S and Z are used to predict the output Y with a joint decoding function.
With such a learning structure, we expect S and Z can contribute complemen-
tary information for accurate identification of Y. Moreover, in the test phase,
multi-label classification can be naturally achieved by first following the dou-
ble line information flow from X to S and Z, and then decoding Y from the
concatenation of S and Z.

Below we will introduce the components of the proposed model and the train-
ing algorithm in detail. The following notations will be used. We assume a set of
t training instances, (X,Y ), is given, where X ∈ Rt×d is the input data matrix
and Y ∈ {0, 1}t×k is the label indicator matrix. The low-dimensional represen-
tation matrix of X is denoted as S ∈ Rt×m for m < d, and the low-dimensional
representation matrix of Y is denoted as Z ∈ Rt×n for n < k. We use 1 to de-
note any column vector with all 1 values, assuming its length can be determined
from the context; use It to denote an identity matrix with size t; and use “◦” to
denote the Hadamard product operator between two matrices.

3.1 Framework: Encoding, Prediction and Decoding

The learning framework on the proposed model involves three major compo-
nents: encoding, prediction and decoding, which follows but extends the standard
autoencoder models. We will introduce each of them below.

Encoding. We propose to use typical sigmoid based functions to perform non-
linear encoding over the input data matrix X and the output label matrix Y ,
which map X to the low-dimensional latent representation matrix S and map
Y to the low-dimensional latent representation matrix Z respectively. The two
encoder functions are compositions of the standard sigmoid function and linear
functions:

S = σ(XWx + 1b�
x ), (1)

Z = σ(YWy + 1b�
y ) (2)

where (Wx ∈ Rd×m,bx ∈ Rm) and (Wy ∈ Rk×n,by ∈ Rn) are the linear model
parameters for the two encoder functions respectively; σ(x) = 1/(1 + exp(−x))
is a sigmoid function that encodes entry-wise nonlinear transformation of the
input. Moreover the sigmoid functions in the two encoder functions also put the
values of S and Z in a comparable range.

A linear version of the encoder functions can be obtained by simply dropping
the outer sigmoid functions.

Prediction. The encoder function over Y produces a low-dimensional mid-level
prediction target Z for the input data. To ensure the information flow from the
input data to the output labels, we consider a prediction function, f : X → Z,
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that maps X to the low-dimensional representation code Z. In particular, we
consider the following linear regression function:

Ẑ = f(X) = XΩ + 1q� (3)

where Ω ∈ Rd×n and q ∈ Rn are the prediction model parameters, and Ẑ
denotes the prediction value matrix. This prediction function will be learned by
minimizing a prediction loss �p(Z, Ẑ) between the low-dimensional matrix Z and

the prediction value matrix Ẑ produced by the predictor over the input data.
It thus enforces the predictability of Z from the inputs. This component is also
necessary for exploiting the latent representation part Z in the test phase. In the
test phase, where Y is unknown, one can produce Z from the input data using
this prediction function and then use Z and S to reconstruct Y .

Decoding. There are two decoder functions, g(·) and h(·), in our model to
reconstruct the observed data X and Y from the latent low-dimensional code
matrices S and Z. The decoder function g : S → X reconstructs the input data
X in its original space from its low-dimensional representation S. We consider
a linear decoder function:

X̂ = g(S) = SU + 1d� (4)

where U ∈ Rm×d and d ∈ Rd are decoding parameters, and X̂ is the recon-
structed data matrix in the original input space. This decoder function and the
encoder function from X to S in Eq. (1) together form an autoencoder model.
An autoencoder in general is a two-layered construction, in which a first layer en-
codes the input data into the latent low-dimensional representation and a second
layer decodes this representation back into the original data space. The autoen-
coder is trained to minimize the reconstruction error in the original data space.
In our model, the two-layered constructions of the autoencoder correspond to
the encoding from X to S and the decoding from S to X̂ respectively. We will
minimize a decoding loss �d(X, X̂) between the original input data X and the
reconstructed data X̂ in the training process.

The reconstruction of Y however is not a standard decoding problem in an
autoencoder, since it is the key step for the overall multi-label classification and
information from the input data should be taken into account. Hence instead
of reconstructing it from its low-dimensional representation Z, we consider a
decoder function h : S × Z → Y that reconstructs Y from a concatenated low-
dimensional space of the latent representation codes S and Z. Specifically, we
use the following linear decoding function:

Ŷ = h(S,Z) = SAs + ZAz + 1a� (5)

where As ∈ Rm×k, Az ∈ Rn×k and a ∈ Rk are the decoder parameters, and
Ŷ is the reconstructed data matrix in the original output label space. We will
minimize a decoding loss �d(Y, Ŷ ) between the original Y and the reconstructed
Ŷ in the training process. Since the latent representation matrices, S and Z,
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will be simultaneously induced in the training process, we expect the latent S
and Z identified will complement each other in this final decoder function to
accurately reconstruct the output label matrix Y . The encoding and decoding
process between the output layer and the mid-level representation layer can be
viewed as an augmented autoencoder.

3.2 Optimization Formulation

Given the framework introduced above, we formulate the bi-directional model
training as a joint optimization problem over all the model parameters that
minimizes a regularized linear combination of the prediction loss and the two
decoding losses:

min
Wx,bx,Wy,by,As,Az,a,U,d,Ω,q

L(X,Y ) (6)

such that

L(X,Y ) = �p(Z, Ẑ) + η�d(Y, Ŷ ) + ρ�d(X, X̂)+ (7)

αxR(Wx) + αyR(Wy) + αuR(U) + αsR(As) + αzR(Az) + αoR(Ω)

where the trade-off parameters η and ρ are used to adjust the relative degrees
of focus on the three different loss terms; all the other α∗ trade-off parameters
adjust the degrees of regularization over the model parameter matrices; R(·) de-
notes the regularization function. Note with the encoding parameters, (Wx,bx)
and (Wy ,by), the latent representation matrices S and Z are directly avail-
able through the nonlinear functions in Eq. (1) and Eq. (2) respectively. This
objective function expresses the following properties we expect from the latent
representations: 1) S and Z should be low-dimensional (enforced by the encod-
ing model parameters); 2) S should preserve as much information as possible
from X (enforced by �d(X, X̂)); 3) Z should preserve information from Y that
is complementary to S for the reconstruction of Y (enforced by �d(Y, Ŷ )), while
being predictable from X (enforced by �p(Z, Ẑ)); and 4) the concatenation of S
and Z should be discriminative for the target output label matrix Y (enforced
by �d(Y, Ŷ )).

To produce a concrete training problem, we use least squares loss functions
for both the prediction loss and the two decoding losses, such that

�p(Z, Ẑ) = ‖Z − Ẑ‖2F = ‖Z − f(X)‖2F (8)

�d(X, X̂) = ‖X − X̂‖2F = ‖X − g(S)‖2F (9)

�d(Y, Ŷ ) = ‖Y − Ŷ ‖2F = ‖Y − h(S,Z)‖2F (10)

where ‖ · ‖F denotes the Frobenius norm of a matrix. We use the square of
Frobenius norm as the regularization function R over the parameter matrices,
such that R(·) = ‖ · ‖2F .

Moreover, among the three loss terms in the objective function (7), the de-
coding loss �d(X, X̂) in (9) is used to ensure the input data can be reconstructed
from its low-dimensional representation S with a small error by using the decoder
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function g(·). The decoder function g(·) is not directly involved in the overall
target label prediction process, since S can be produced from the original input
matrixX with the encoding function. The necessity of having this decoding com-
ponent in the framework, hence the decoding loss �d(X, X̂) in the optimization
objective, can be questioned. In our empirical study later, we investigated this
issue by dropping g(·), hence �d(X, X̂) and R(U), from the optimization prob-
lem. Our results suggest the decoder component g(·) is useful and the decoding
loss �d(X, X̂) should be included in the learning process.

3.3 Optimization Algorithm

The minimization problem in (6) involves two sets of parameters, the encoder pa-
rameters, {Wx,bx,Wy,by}, and the decoder and prediction model parameters,
{As, Az , a, U,d, Ω,q}. We develop an iterative optimization algorithm that con-
ducts optimization over these two groups of model parameters in an alternating
way in each iteration.

We first randomly initialize the model parameters. Then in each iteration, we
perform the following two steps.

Step I. In this step, given the current encoder parameters, {Wx,bx,Wy,by},
to be fixed, we optimize the decoder and prediction model parameters to mini-
mize the objective function in (7). We first compute the latent matrices S and
Z according to Eq. (1) and Eq. (2) respectively. Given S and Z, the joint mini-
mization problem in (6) can be decomposed into the following sub-optimization
problems over the decoder and prediction model parameters:

min
As,Az,a

η‖Y − h(S,Z)‖2F + αs‖As‖2F + αz‖Az‖2F (11)

min
Ω,q

‖Z − f(X)‖2F + αo‖Ω‖2F (12)

min
U,d

ρ‖X − g(S)‖2F + αu‖U‖2F (13)

which have the following three sets of closed-form solutions respectively:

As = (S�HS + αs

η Im)−1S�H(Y − ZAz)

Az = (Z�HZ + αz

η In)
−1Z�H(Y − SAs)

a = 1
t (Y − SAs − ZAz)

�1

⎫⎬⎭ (14)

Ω = (X�HX + αoId)
−1X�HZ

q = 1
t (Z −XΩ)�1

}
(15)

U = (S�HS + αu

ρ Im)−1S�HX

d = 1
t (X − SU)�1

}
(16)

where H = It − 1
t11

� is a centering matrix of size t.
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Algorithm 1. The Bi-Directional Learning Algorithm

1: Initialize all the model parameters.
2: repeat
3: Step I: given current encoder parameters {Wx,bx,Wy,by}, update the decoder

and prediction model parameters, {As, Az, a, U,d, Ω,q}, with closed-form solu-
tions in Eq. (14)–(16).

4: Step II: given current {As, Az, a, U,d, Ω,q}, perform optimization over encoder
parameters {Wx,bx,Wy,by} to minimize the objective J in (18) using gradient
descent with line search.

5: until Convergence or maximum number of iterations is reached

Step II. In this step, given the current decoder and prediction model param-
eters, {As, Az, a, U,d, Ω,q}, to be fixed, we optimize the encoder parameters,
{Wx,bx,Wy ,by}, to minimize the objective function in (7). This leads to the
following minimization problem:

min
Wx,bx,Wy,by

�p(Z, Ẑ) + η�d(Y, h(S,Z)) + ρ�d(X, g(S)) + αxR(Wx) + αyR(Wy)

(17)

where Ẑ is pre-computed with the fixed parameters via Eq. (3). By expressing
S and Z in terms of the encoder functions in Eq. (1) and Eq. (2), the objective
function in (17) can be written as

J = ‖Ẑ − σ(YWy + 1b�
y )‖2F

+ η‖σ(XWx + 1b�
x )As + σ(YWy + 1b�

y )Az + Ỹ ‖2F
+ ρ‖σ(XWx + 1b�

x )U + X̃‖2F + αx‖Wx‖2F + αy‖Wy‖2F (18)

where Ỹ and X̃ are defined as

Ỹ = 1a� − Y, X̃ = 1d� −X. (19)

We use a gradient descent algorithm with line search [17] to solve the minimiza-
tion problem in (17), which requires computing the gradients of the objective
function J regarding the decoder parameters {Wx,bx,Wy,by}.

The overall optimization algorithm for training the bi-directional model is
summarized in Algorithm 1.

Test Phase: In the test phase, given a new instance x, we first produce the latent
representations, s = σ(xWx + 1b�

x ) and z = f(x). Then the final output can be
computed by y = h(s, z). The labels of x can be determined by simply rounding
the entries of y to 0s or 1s.

4 Experimental Results

Data Sets. To evaluate the proposed bi-directional model for multi-label clas-
sification, we conducted experiments on 5 different types of real-world data sets:
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Table 1. The statistic information of the data sets used in the experiments

Data set corel5k delicious yeast genbase mirflickr

Num. of Instances 4999 5000 2417 662 5000

Num. of Features 512 500 103 1186 512

Num. of Labels 209 918 14 15 38

Label Cardinality 3.32 18.72 4.24 1.16 4.71

two image data sets (corel5k [3] and mirflickr [13]), one text set (delicious [20]),
and two biology data sets (yeast [4] and genbase [2]). For each big data set with
more than 10k instances, we randomly sampled a 5000-instance subset to use.
We conducted experiments with 5-fold cross-validation and dropped the labels
that do not appear in at least one of the five fold partitions. The statistic infor-
mation of all 5 data sets used is summarized in Table 1, where label cardinality
denotes the average number of labels assigned to each instance.

Methods. We compared the proposed bi-directional multi-label learning method
with the following multi-label learning methods:
– Binary relevance (BR). This baseline method decomposes multi-label clas-

sification into a set of independent binary classification problems via the
one-vs-all scheme. We used linear SVM classifiers for the binary problems.

– Multi-label Output Codes using CCA (MOC-CCA) [24]. This method per-
forms error-correcting coding for the labels based on canonical correlation
analysis (CCA).

– Multi-Label Learning using Local Correlation (ML-LOC) [12]. Instead of as-
suming global label correlations, this method separates instances into differ-
ent groups and allows label correlations to be exploited locally.

– Calibrated Separation Ranking Loss (CSRL) [6]. This method performs large
margin multi-label learning based on a novel loss function.

Experimental Setting. In each iteration of the 5-fold cross-validation, the
training set is further randomly divided into two parts for parameter selection:
80% for model training and 20% for parameter evaluation. For the proposed
method, there are a number of parameters need to be determined. We fixed
the regularization parameters as relatively small values, such as αx = αy =
αo = 0.05, αs =αz = 0.05η, and αu = 0.05ρ. The trade-off parameters, ρ and
η, and the dimensions of latent representations, m and n, are automatically
selected in the learning phase. The values of ρ and η are both selected from
{0.1, 1, 10, 100}. The candidate values for m and n however vary across data sets
since the feature and label dimensions are different for different data sets. We
used m ∈ {20, 50, 100} and n ∈ {20, 60, 80} on corel5k ; used m, n ∈ {20, 50, 100}
on delicious ; used m ∈ {20, 50} and n ∈ {5, 10} on yeast ; used m ∈ {20, 50, 100}
and n ∈ {5, 10} on genbase; and used m ∈ {20, 50, 100} and n ∈ {5, 15, 25}
on mirflickr. For the comparison methods, we performed parameter selection
using the same scheme. For BR, the trade-off parameter C is selected from
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Table 2. The average and standard deviation results in terms of Hamming Loss(%).
Lower values indicate better performance.

Data set BR MOC-CCA ML-LOC CSRL Proposed

corel5k 0.9 ± 0.03 0.6 ± 0.02 0.6 ± 0.01 0.4 ± 0.02 0.4 ± 0.02
delicious 7.2 ± 0.04 10.3 ± 0.06 17.5 ± 0.07 4.5 ± 0.03 3.9 ± 0.03
yeast 8.6 ± 0.03 4.1 ± 0.03 14.2 ± 0.05 6.7 ± 0.04 4.1 ± 0.04
genbase 0.6 ± 0.01 0.5 ± 0.02 1.2 ± 0.01 0.5 ± 0.03 0.3 ± 0.01
mirflickr 3.2 ± 0.02 3.1 ± 0.04 8.1 ± 0.05 2.3 ± 0.03 2.5 ± 0.02

Table 3. The average and standard deviation results in terms of Macro-F1 measure(%).
Larger values indicate better performance.

Data set BR MOC-CCA ML-LOC CSRL Proposed

corel5k 2.1 ± 0.02 5.6 ± 0.01 3.9 ± 0.02 5.3 ± 0.05 8.0 ± 0.02
delicious 6.5 ± 0.04 13.9 ± 0.04 10.0 ± 0.09 14.1 ± 0.03 15.3 ± 0.02
yeast 30.1 ± 0.14 38.1 ± 0.17 39.7 ± 0.18 39.3 ± 0.12 40.6 ± 0.15
genbase 46.4 ± 0.08 61.3 ± 0.05 55.1 ± 0.07 61.5 ± 0.12 63.8 ± 0.05
mirflickr 18.1 ± 0.14 22.5 ± 0.19 21.2 ± 0.16 24.9 ± 0.20 25.6 ± 0.13

{0.1, 1, 10, 50, 100}; for MOC-CCA, the number of canonical components d is se-
lected from [1,min(#features, #labels)] and the trade-off parameter λ is selected
from {0.25, 1, 4}; for ML-LOC, the parameters are selected as λ1 ∈ {0.1, 1, 10},
λ2 ∈ {1, 10, 100}, and m ∈ {10, 15, 20}; for CSRL, the trade-off parameter C is
selected from {0.1, 1, 10}.

4.1 Multi-label Classification Results

We evaluated the performance of each comparison method with three criteria:
Hamming Loss,Macro-F1, andMicro-F1. These three criteria measure the multi-
label classification performance from different aspects. The 5-fold cross validation
results for all comparison methods over the five data sets are reported in Table 2
– Table 4 in terms of the three evaluation criteria respectively. Both the average
result values and their standard deviations are reported.

From the results in Table 2, we can see that the multi-label comparisonmethod
MOC-CCA does not show consistent advantages over the baseline BR in terms
of hamming loss, ML-LOC even has inferior performance on most data sets com-
paring to BR, while CSRL and the proposed approach outperform BR across
all data sets. Moreover, the proposed approach produces the best results among
all the comparison methods on four out of the total five data sets. Hamming
loss however may prefer extreme prediction results without balancing the pre-
diction recall and precision. Table 3 presents the comparison results in terms of
Macro-F1 score which takes both prediction recall and precision into account.
In terms of Macro-F1, the proposed approach consistently outperforms all the
other methods across all the five data sets. In particular, on corel5k, the proposed
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Table 4. The average and standard deviation results in terms of Micro-F1 measure(%).
Larger values indicate better performance.

Data set BR MOC-CCA ML-LOC CSRL Proposed

corel5k 7.6 ± 0.09 11.1 ± 0.10 9.3 ± 0.14 10.6 ± 0.10 11.1 ± 0.08
delicious 16.5 ± 0.07 23.8 ± 0.07 16.1 ± 0.08 22.9 ± 0.03 23.2 ± 0.03
yeast 52.4 ± 0.22 64.8 ± 0.20 67.7 ± 0.25 60.1 ± 0.16 68.2 ± 0.17
genbase 54.8 ± 0.12 71.4 ± 0.17 71.1 ± 0.21 65.3 ± 0.17 70.9 ± 0.18
mirflickr 24.1 ± 0.45 32.1 ± 0.49 36.7 ± 0.69 31.5 ± 0.32 36.8 ± 0.25

method produces incredible improvement over the other comparison methods. It
improves the performance ofMOC-CCA by more than 40%, improves the perfor-
mance of CSRL by more than 50%, and improves the performance of ML-LOC
by more than 100%. Moreover, all the four multi-label learning methods greatly
outperform the baseline BR across all the data sets in terms of Macro-F1. Table
4 presents the comparison results in terms of Micro-F1 score. We can see that
the four multi-label learning methods again outperform the baseline BR across
all the data sets, except on delicious where ML-LOC has slightly inferior re-
sult. Among the multi-label learning methods, the proposed approach produces
the best results on three data sets, while presenting results very close to the
best ones on the remaining two data sets. It demonstrates more consistent good
performance across different types of data sets. All these results suggest our pro-
posed bi-directional model is effective for multi-label classification by capturing
complementary information from both inputs and outputs.

4.2 Study of the Bi-directional Model

To gain a deeper understanding over the novel bi-directional learning scheme, we
have also conducted experiments to investigate the influence of different compo-
nents in the proposed bi-directional model.

First, we investigated the capacity of the bi-directional model by comparing
the full model to its two essential one-directional components, the bottom-up
component and the top-down component. The mid-level representation of the
bi-directional full model has two complementary parts, S and Z. The bottom-
up component and the top-down component consider solely the feature-sourced
mid-level representation S and the label-sourced mid-level representation Z re-
spectively, by deactivating the other component. We denote the full model with
S + Z and denote the two component models with S and Z respectively. Pa-
rameter selection for the two component models is conducted using the same
procedure introduced before. The comparison results for these three models are
reported in Table 5. We can see that the two one-directional component models
have strengths on different data sets. The label-sourced one-directional model Z
performs better than the feature-sourced one-directional model S on corel5k and
delicious where the label space is large, while model S performs better on the
other three data sets. Nevertheless, the proposed bi-directional model greatly
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Table 5. Comparison results over the bi-directional model and its two one-directional
components. S+Z denotes the proposed bi-directional model, S denotes the bottom-up
one-directional model and Z denotes the top-down one-directional model.

Measure Method corel5k delicious yeast genbase mirflickr

Hamming
Loss

S + Z 0.4 ± 0.02 3.9 ± 0.03 4.1 ± 0.04 0.3 ± 0.01 2.5 ± 0.02
S 0.7 ± 0.03 5.0 ± 0.05 5.8 ± 0.03 0.5 ± 0.04 2.9 ± 0.05
Z 0.6 ± 0.05 4.4 ± 0.02 7.2 ± 0.02 2.4 ± 0.05 2.6 ± 0.05

Macro-F1
S + Z 8.0 ± 0.02 15.3 ± 0.02 40.6 ± 0.15 63.8 ± 0.05 25.6 ± 0.13

S 4.1 ± 0.05 8.8 ± 0.04 34.2 ± 0.12 48.4 ± 0.17 18.2 ± 0.18
Z 6.2 ± 0.05 11.8 ± 0.03 26.6 ± 0.12 44.1 ± 0.10 19.1 ± 0.13

Micro-F1
S + Z 11.1 ± 0.08 23.2 ± 0.03 68.2 ± 0.17 70.9 ± 0.18 36.8 ± 0.25

S 8.5 ± 0.12 17.1 ± 0.05 60.2 ± 0.11 58.3 ± 0.14 28.7 ± 0.21
Z 9.8 ± 0.10 21.8 ± 0.06 55.6 ± 0.14 50.5 ± 0.17 28.4 ± 0.44

outperforms both one-directional component models across all the five data sets
in terms of all the three measures. This suggests that the proposed bi-directional
model can successfully integrate the strengths of its one-directional components
in a complementary way and has capacity of capturing useful information from
both the input and output spaces.

Next, we have also compared the proposed approach with two of its alternative
versions: one drops the decoder component g(·) and is denoted as “Proposed w/o
g”; the other removes the nonlinear σ(·) function from encoding and uses linear
encoder functions, which is denoted as “Proposed w/o σ”. We conducted the
comparison experiment using varying latent dimension sizes, m and n, on the
corel5k data set. We first set n = 20 and studied the performance of the three
methods by varying the m value within the set {20, 50, 100, 300}. Then we set
m = 50 and vary the n value within the set {20, 60, 100, 140}. The experimental
results are presented in Figure 2, in terms of the logarithm of the three evaluation
criteria. We can see that the proposed full model clearly outperforms the other
two variants across all learning scenarios, which suggests that both the decoder
component g(·) and the nonlinear encoders are important in our bi-directional
model. From Figure 2 (a)-(c), we can see that with fixed n value, the performance
of all the three methods becomes stable when the m value reaches 50. This
suggests that with even a reasonably small m value such as m = 50, our model
can already capture the intrinsic information from the input data. On the other
hand, from Figure 2 (d)-(f), we can see that the performance of all the three
methods deteriorates when the n value becomes larger than 60. This suggests
that if the latent representation size of the output labels is too large, noise may
be introduced in augmenting the latent component produced from the input
data and hence harm the performance.

In summary, all these experimental results demonstrated the compactness and
effectiveness of the novel bi-directional model for multi-label classification.
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Fig. 2. Impact of the latent dimension sizes m and n over the model performance on
corel5k. In the top row, n is fixed to 20, and m varies from 20 to 300. In the bottom
row, m is fixed to 50, and n varies from 20 to 140. The first column shows the results
in terms of log hamming loss, the middle column shows the results in terms of log
Macro-F1, and the right column shows the results in terms of log Micro-F1.

5 Conclusion

In this paper, we proposed a novel bi-directional representation learning model
for multi-label classification, which has a two-part latent representation layer
constructed from both the input data and the output labels. The two latent parts
augment each other by integrating information from both the feature and label
spaces to enhance the overall multi-label classification. We formulated multi-
label learning over this model as a joint minimization problem over all parameters
of the component functions, and developed an iterative optimization algorithm
with alternating steps to perform optimization. We conducted experiments on
five real world multi-label data sets by comparing the proposed method to a
number of previously developed multi-label classification methods and a few
variant models. Our experimental results suggest that our proposed model is
compact and showed that it outperformed all the other comparison methods.
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LNCS, vol. 8189, pp. 417–432. Springer, Heidelberg (2013)

8. Guo, Y., Xue, W.: Probablistic mult-label classification with sparse feature learn-
ing. In: Proceedings of IJCAI (2013)

9. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313, 504–507 (2006)

10. Ho, T.: The random subspace method for constructing decision forests. IEEE
TPAMI 20(8) (August 1998)

11. Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed
sensing. In: Proceedings of NIPS (2009)

12. Huang, S., Zhou, Z.: Multi-label learning by exploiting label correlations locally.
In: Proceedings of AAAI (2012)

13. Huiskes, M., Lew, M.: The MIR Flickr retrieval evaluation. In: Proceedings of ACM
MIR (2008)

14. Ji, S., Tang, L., Yu, S., Ye, J.: Extracting shared subspace for multi-label classifi-
cation. In: Proceedings of KDD (2008)

15. Lastra, G., Luaces, O., Quevedo, J.R., Bahamonde, A.: Graphical feature selection
for multilabel classification tasks. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA
2011. LNCS, vol. 7014, pp. 246–257. Springer, Heidelberg (2011)

16. Lewis, D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for text
categorization research. JMLR 5, 361–397 (2004)

17. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)
18. Sharmanska, V., Quadrianto, N., Lampert, C.H.: Augmented attribute represen-

tations. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.)
ECCV 2012, Part V. LNCS, vol. 7576, pp. 242–255. Springer, Heidelberg (2012)

19. Tai, F., Lin, H.: Multilabel classification with principal label space transformation.
In: Proceedings of Inter. Workshop on Learning from Multi-Label Data (2010)

20. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classi-
fication in domains with large number of labels. In: ECML/PKDD Workshop on
Mining Multidimensional Data (2008)

21. Yan, R., Tesic, J., Smith, J.: Model-shared subspace boosting for multi-label clas-
sification. In: Proceedings of KDD (2007)

22. Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: Pro-
ceedings of the Annual ACM SIGIR Conference (2005)

23. Zhang, M., Peña, J., Robles, V.: Feature selection for multi-label naive bayes clas-
sification. Inf. Sci. 179(19) (September 2009)

24. Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation anal-
ysis. In: Proceedings of AISTATS (2011)



224 X. Li and Y. Guo

25. Zhang, Y., Schneider, J.: Maximummargin output coding. In: Proceedings of ICML
(2012)

26. Zhang, Y., Zhou, Z.: Multilabel dimensionality reduction via dependence maxi-
mization. In: Proceedings of AAAI (2008)

27. Zhou, T., Tao, D., Wu, X.: Compressed labeling on distilled lablsets for multi-label
learning. Machine Learning 88, 69–126 (2012)



Optimal Thresholding of Classifiers

to Maximize F1 Measure

Zachary C. Lipton, Charles Elkan, and Balakrishnan Naryanaswamy

University of California, San Diego
La Jolla, California 92093-0404, USA

{zlipton,celkan,muralib}@cs.ucsd.edu

Abstract. This paper provides new insight into maximizing F1 mea-
sures in the context of binary classification and also in the context of
multilabel classification. The harmonic mean of precision and recall, the
F1 measure is widely used to evaluate the success of a binary classifier
when one class is rare. Micro average, macro average, and per instance
average F1 measures are used in multilabel classification. For any clas-
sifier that produces a real-valued output, we derive the relationship be-
tween the best achievable F1 value and the decision-making threshold
that achieves this optimum. As a special case, if the classifier outputs
are well-calibrated conditional probabilities, then the optimal threshold
is half the optimal F1 value. As another special case, if the classifier is
completely uninformative, then the optimal behavior is to classify all ex-
amples as positive. When the actual prevalence of positive examples is
low, this behavior can be undesirable. As a case study, we discuss the re-
sults, which can be surprising, of maximizing F1 when predicting 26,853
labels for Medline documents.

Keywords: supervised learning · text classification · evaluation method-
ology · F score · F1 measure · multilabel learning · binary classification.

1 Introduction

Performance measures are useful for comparing the quality of predictions across
systems. Some commonly used measures for binary classification are accuracy,
precision, recall, F1 measure, and Jaccard index [15]. Multilabel classification is
an extension of binary classification that is currently an area of active research
in supervised machine learning [18]. Micro averaging, macro averaging, and per
instance averaging are three commonly used variations of F1 measure used in
the multilabel setting. In general, macro averaging increases the impact on final
score of performance on rare labels, while per instance averaging increases the
importance of performing well on each example [17]. In this paper, we present
theoretical and experimental results on the properties of the F1 measure. For
concreteness, the results are given specifically for the F1 measure and its multi-
label variants. However, the results can be generalized to Fβ measures for β 
= 1.
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Actual Positive Actual Negative

Predicted Positive tp fp
Predicted Negative fn tn

Fig. 1. Confusion Matrix

Two approaches exist for optimizing performance on the F1 measure. Struc-
tured loss minimization incorporates the performance measure into the loss func-
tion and then optimizes during training. In contrast, plug-in rules convert the
numerical outputs of classifiers into optimal predictions [5]. In this paper, we
highlight the latter scenario, and we differentiate between the beliefs of a sys-
tem and predictions selected to optimize alternative measures. In the multilabel
case, we show that the same beliefs can produce markedly dissimilar optimally
thresholded predictions depending upon the choice of averaging method.

It is well-known that F1 is asymmetric in the positive and negative class.
Given complemented predictions and complemented true labels, the F1 measure
is in general different. It also generally known that micro F1 is affected less by
performance on rare labels, while macro F1 weighs the F1 achieved on each label
equally [11]. In this paper, we show how these properties are manifest in the opti-
mal threshold for making decisions, and we present results that characterize that
threshold. Additionally, we demonstrate that given an uninformative classifier,
optimal thresholding to maximize F1 predicts all instances positive regardless of
the base rate.

While F1 measures are widely used, some of their properties are not widely
recognized. In particular, when choosing predictions to maximize the expected
F1 measure for a set of examples, each prediction depends not only on the
conditional probability that the label applies to that example, but also on the
distribution of these probabilities for all other examples in the set. We quantify
this dependence in Theorem 1, where we derive an expression for optimal thresh-
olds. The dependence makes it difficult to relate predictions that are optimally
thresholded for F1 to a system’s predicted conditional probabilities.

We show that the difference in F1 measure between perfect predictions and
optimally thresholded random guesses depends strongly on the base rate. As a
consequence, macro average F1 can be argued not to treat labels equally, but to
give greater emphasis to performance on rare labels. In a case study, we consider
learning to tag articles in the biomedical literature with MeSH terms, a controlled
vocabulary of 26,853 labels. These labels have heterogeneously distributed base
rates. Our results imply that if the predictive features for rare labels are lost
(because of feature selection or from another cause) then the optimal thresholds
to maximize macro F1 lead to predicting these rare labels frequently. For the
case study application, and likely for similar ones, this behavior is undesirable.

2 Definitions of Performance Measures

Consider binary class prediction in the single or multilabel setting. Given training
data of the form {〈x1,y1〉, . . . , 〈xn,yn〉} where each xi is a feature vector of
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dimension d and each yi is a binary vector of true labels of dimension m, a
probabilistic classifier outputs a model that specifies the conditional probability
of each label applying to each instance given the feature vector. For a batch of
data of dimension n× d, the model outputs an n×m matrix C of probabilities.
In the single-label setting, m = 1 and C is an n× 1 matrix, i.e. a column vector.

A decision rule D(C) : Rn×m → {0, 1}n×m converts a matrix of probabilities
C to binary predictions P . The gold standard G ∈ {0, 1}n×m represents the true
values of all labels for all instances in a given batch. A performance measure M
assigns a score to a prediction given a gold standard:

M(P,G) : {0, 1}n×m × {0, 1}n×m → R ∈ [0, 1].

The counts of true positives tp, false positives fp, false negatives fn, and true
negatives tn are represented via a confusion matrix (Figure 1).

Precision p = tp/(tp + fp) is the fraction of all positive predictions that
are actual positives, while recall r = tp/(tp + fn) is the fraction of all actual
positives that are predicted to be positive. By definition, the F1 measure is the
harmonic mean of precision and recall: F1 = 2/(1/r+1/p). By substitution, F1
can be expressed as a function of counts of true positives, false positives and
false negatives:

F1 =
2tp

2tp+ fp+ fn
. (1)

The harmonic mean expression for F1 is undefined when tp = 0, but the alterna-
tive expression is undefined only when tn = n. This difference does not impact
the results below.

Before explaining optimal thresholding to maximize F1, we first discuss some
properties of F1. For any fixed number of actual positives in the gold standard,
only two of the four entries in the confusion matrix (Figure 1) vary independently.
This is because the number of actual positives is equal to the sum tp+ fn while
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the number of actual negatives is equal to the sum tn + fp. A second basic
property of F1 is that it is nonlinear in its inputs. Specifically, fixing the number
fp, F1 is concave as a function of tp (Figure 2). By contrast, accuracy is a linear
function of tp and tn (Figure 3).

As mentioned in the introduction, F1 is asymmetric. By this, we mean that
the score assigned to a prediction P given gold standard G can be arbitrarily
different from the score assigned to a complementary prediction P c given com-
plementary gold standard Gc. This can be seen by comparing Figure 2 with
Figure 5. The asymmetry is problematic when both false positives and false neg-
atives are costly. For example, F1 has been used to evaluate the classification of
tumors as benign or malignant [1], a domain where both false positives and false
negatives have considerable costs.

While F1 was developed for single-label information retrieval, as mentioned
there are variants of F1 for the multilabel setting. Micro F1 treats all predictions
on all labels as one vector and then calculates the F1 measure. Specifically,

tp = 2

n∑
i=1

m∑
j=1

�(Pij = 1)�(Gij = 1).

We define fp and fn analogously and calculate the final score using (1). Macro
F1, which can also be called per label F1, calculates the F1 for each of the m
labels and averages them:

F1M (P,G) =
1

m

m∑
j=1

F1(P:j , G:j).

The per instance F1 measure is similar, but averages F1 over all n examples:

F1I(P,G) =
1

n

n∑
i=1

F1(Pi:, Gi:).
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Accuracy is the fraction of all instances that are predicted correctly:

A =
tp+ tn

tp+ tn+ fp+ fn
.

Accuracy is adapted to the multilabel setting by summing tp and tn for all labels
and then dividing by the total number of predictions:

A(P,G) =
1

nm

n∑
i=1

m∑
j=1

�(Pij = Gij).

The Jaccard index, a monotonically increasing function of F1, is the cardinality
of the intersection of the predicted positive set and the actual positive set divided
by the cardinality of their union:

J =
tp

tp+ fn+ fp
.

3 Prior Work

Motivated by the widespread use of the F1 measure in information retrieval and
in single and multilabel binary classification, researchers have published exten-
sively on its optimization. The paper [8] proposes an outer-inner maximization
technique for F1 maximization, while [4] studies extensions to the multilabel
setting, showing that simple threshold search strategies are sufficient when indi-
vidual probabilistic classifiers are independent. Finally, the paper [6] describes
how the method of [8] can be extended to efficiently label data points even when
classifier outputs are dependent. More recent work in this direction can be found
in [19]. However, none of this work directly identifies the relationship of the op-
timal threshold to the maximum achievable F1 measure over all thresholds, as
we do here.

While there has been work on applying general constrained optimization tech-
niques to related measures [13], research often focuses on specific classification
methods. In particular, the paper [16] studies F1 optimization for conditional
random fields and [14] discusses similar optimization for SVMs. In our work, we
study the consequences of maximizing F1 for the general case of any classifier
that outputs real-valued scores.

A result similar to a special case below, Corollary 1, was recently derived
in [20]. However, the derivation there is complex and does not prove the more
general Theorem 1, which describes the optimal decision-making threshold even
when the scores output by a classifier are not probabilities.

The batch observation is related to the note in [9] that given a fixed classifier,
a specific example may or may not cross the decision threshold, depending on the
other examples present in the test data. However, the previous paper does not
characterize what this threshold is, nor does it explain the differences between
predictions made to optimize micro and macro average F1.
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4 Optimal Decision Rule for F1 Maximization

In this section, we provide a characterization of the decision rule that maximizes
the F1 measure, and, for a special case, we present a relationship between the
optimal threshold and the maximum achievable F1 value.

We assume that the classifier outputs real-valued scores s and that there exist
two distributions p(s|t = 1) and p(s|t = 0) that are the conditional probability
of seeing the score s when the true label t is 1 or 0, respectively. We assume
that these distributions are known in this section; the next section discusses an
empirical version of the result. Note also that in this section tp etc. are fractions
that sum to one, not counts.

Given p(s|t = 1) and p(s|t = 0), we seek a decision rule D : s → {0, 1}
mapping scores to class labels such that the resulting classifier maximizes F1.
We start with a lemma that is valid for any D.

Lemma 1. The true positive rate tp = b
∫
s:D(s)=1

p(s|t = 1)ds where the base

rate is b = p(t = 1).

Proof. Clearly tp =
∫
s:D(s)=1

p(t = 1|s)p(s)ds. Bayes rule says that p(t = 1|s) =
p(s|t = 1)p(t = 1)/p(s). Hence tp = b

∫
s:D(s)=1 p(s|t = 1)ds.

Using three similar lemmas, the entries of the confusion matrix are

tp = b

∫
s:D(s)=1

p(s|t = 1)ds

fn = b

∫
s:D(s)=0

p(s|t = 1)ds
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fp = (1 − b)

∫
s:D(s)=1

p(s|t = 0)ds

tn = (1 − b)

∫
s:D(s)=0

p(s|t = 0)ds.

The following theorem describes the optimal decision rule that maximizes F1.

Theorem 1. An example with score s is assigned to the positive class, that is
D(s) = 1, by a classifier that maximizes F1 if and only if

b · p(s|t = 1)

(1− b) · p(s|t = 0)
≥ J (2)

where J = tp/(fn+ tp+ fp) is the Jaccard index of the optimal classifier, with
ambiguity given equality in (2).

Before we provide the proof of this theorem, we note the difference between
the rule in (2) and conventional cost-sensitive decision making [7] or Neyman-
Pearson detection. In both the latter approaches, the right hand side J is replaced
by a constant λ that depends only on the costs of 0− 1 and 1− 0 classification
errors, and not on the performance of the classifier on the entire batch. We will
later describe how the relationship can lead to undesirable thresholding behavior
for applications in the multilabel setting.

Proof. Divide the domain of s into regions of fixed size. Suppose that the decision
rule D(·) has been fixed for all regions except a particular region denoted Δ
around a point s. Write P1(Δ) =

∫
Δ p(s|t = 1)ds and define P0(Δ) similarly.

Suppose that the F1 achieved with decision rule D for all scores besides those
in Δ is F1 = 2tp/(2tp+ fn+ fp). Now, if we add Δ to the positive region of
the decision rule, D(Δ) = 1, then the new F1 measure is

F1′ =
2tp+ 2bP1(Δ)

2tp+ 2bP1(Δ) + fn+ fp+ (1 − b)P0(Δ)
.

On the other hand, if we add Δ to the negative region of the decision rule,
D(Δ) = 0, then the new F1 measure is

F1′′ =
2tp

2tp+ fn+ bP1(Δ) + fp
.

We add Δ to the positive region only if F1′ ≥ F1′′. With some algebraic sim-
plification, this condition becomes

bP1(Δ)

(1 − b)P0(Δ)
≥ tp

tp+ fn+ fp
.

Taking the limit |Δ| → 0 gives the claimed result.
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If, as a special case, the model outputs calibrated probabilities, that is p(t =
1|s) = s and p(t = 0|s) = 1− s, then we have the following corollary.

Corollary 1. An instance with predicted probability s is assigned to the positive
class by the decision rule that maximizes F1 if and only if s ≥ F/2 where the
F1 measure achieved by this optimal decision rule is F = 2tp/(2tp+ fn+ fp).

Proof. Using the definition of calibration and then Bayes rule, for the optimal
decision surface for assigning a score s to the positive class

p(t = 1|s)
p(t = 0|s) =

s

1− s
=

p(s|t = 1)b

p(s|t = 0)(1− b)
. (3)

Incorporating (3) in Theorem 1 gives

s

1− s
≥ tp

fn+ tp+ fp

and simplifying results in

s ≥ tp

2tp+ fn+ fp
= F/2.

Thus, the optimal threshold in the calibrated case is half the maximum F1 value.

5 Consequences of the Optimal Decision Rule

We demonstrate two consequences of designing classifiers that maximize the F1
measure, which we call the batch observation and the uninformative classifier
observation. We will later show with a case study that these can combine to
produce surprising and potentially undesirable predictions when macro F1 is
optimized in practice.

The batch observation is that a label may or may not be predicted for an
instance depending on the distribution of conditional probabilities (or scores) for
other instances in the same batch. Earlier, we observed a relationship between
the optimal threshold and the maximum achievable F1 value, and demonstrated
that this maximum depends on the distribution of conditional probabilities for all
instances. Therefore, depending upon the set in which an instance is placed, its
conditional probability may or may not exceed the optimal threshold. Note that
because an F1 value cannot exceed 1, the optimal threshold cannot exceed 0.5.

Consider for example an instance with conditional probability 0.1. It will be
classified as positive if it has the highest probability of all instances in a batch.
However, in a different batch, where the probabilities predicted for all other
instances are 0.5 and n is large, the maximum achievable F1 measure is close to
2/3. According to the results above, we will then classify this last instance as
negative because it has a conditional probability less than 1/3.

An uninformative classifier is one that predicts the same score for all examples.
If these scores are calibrated conditional probabilities, then the base rate is
predicted for every example.
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Theorem 2. Given an uninformative classifier for a label, optimal thresholding
to maximize expected F1 results in classifying all examples as positive.

Proof. Given an uninformative classifier, we seek the threshold that maximizes
E(F1). The only choice is how many labels to predict. By symmetry between
the instances, it does not matter which instances are labeled positive.

Let a = tp + fn be the number of actual positives and let c = tp + fp be a
fixed number of positive predictions. The denominator of the expression for F1
in Equation (1), that is 2tp+ fp+ fn = a+ c, is then constant. The number of
true positives, however, is a random variable. Its expected value is equal to the
sum of the probabilities that each example predicted positive actually is positive:

E(F1) =
2
∑c

i=1 b

a+ c
=

2c · b
a+ c

where b = a/n is the base rate. To maximize this expectation as a function of c,
we calculate the partial derivative with respect to c, applying the product rule:

∂

∂c
E(F1) =

∂

∂c

2c · b
a+ c

=
2b

a+ c
− 2c · b

(a+ c)2
.

Both terms in the difference are always positive, so we can show that the deriva-
tive is always positive by showing that

2b

a+ c
>

2c · b
(a+ c)2

.

Simplification gives the condition 1 > c/(a+ c). As this condition always holds,
the derivative is always positive. Therefore, whenever the frequency of actual
positives in the test set is nonzero, and the predictive model is uninformative,
then expected F1 is maximized by predicting that all examples are positive.

Figure 6 shows that for small base rates, an optimally thresholded uninfor-
mative classifier achieves �(F1) close to 0, while for high base rates �(F1) is
close to 1. We revisit this point in the next section in the context of maximizing
macro F1.

6 Multilabel Setting

Different measures are used to measure different aspects of a system’s perfor-
mance. However, changing the measure that is optimized can change the optimal
predictions. We relate the batch observation to discrepancies between predictions
that are optimal for micro versus macro averaged F1. We show that while per-
formance on rare labels is unimportant for micro F1, macro F1 is dominated by
performance on these labels. Additionally, we show that macro averaging F1 can
conceal the occurrence of uninformative classifier thresholding.

Consider the equation for micro averaged F1, for m labels with base rates bi.
Suppose that tp, fp, and fn are fixed for the first m−1 labels, and suppose that
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bm is small compared to the other bi. Consider (i) a perfect classifier for label
m, (ii) a trivial classifier that never predicts label m, and (iii) a trivial classifier
that predicts label m for every example. The perfect classifier increases tp by a
small amount bm · n, the number of actual positives for the rare label m, while
contributing nothing to the counts fp and fn:

F1′ =
2(tp+ bm · n)

2(tp+ bm · n) + fp+ fn
.

The trivial classifier that never predicts label m increases fn by the same small
amount:

F1′′ =
2tp

2tp+ fp+ (fn+ bm · n) .

Finally, the trivial classifier that predicts label m for every example increases fp
by a large amount n(1−bm). Clearly this last classifier leads to micro average F1
that is much worse than that of the perfect classifier for label m. However, F1′

and F1′′ both tend to the same value, namely 2tp/(2tp+ fp+ fn), as bm tends
to zero. Hence, for a label with very small base rate, a perfect classifier does not
improve micro F1 noticeably compared to a trivial all-negative classifier. It is
fair to say that performance on rare labels is unimportant for micro F1.

Now consider the context of macro F1, where separately calculated F1 mea-
sures over all labels are averaged. Consider the two label case where one label
has a base rate of 0.5 and the other has a base rate of 0.1. The corresponding F1
measures for trivial all-positive classifiers are 0.67 and 0.18 respectively. Thus
the macro F1 for trivial classifiers is 0.42. An improvement to perfect predictions
on the rare label increases macro F1 to 0.83, while the same improvement on the
common label only increases macro F1 of 0.59. Hence it is fair to say that macro
F1 emphasizes performance on rare labels, even though it weights performance
on every label equally.

For a rare label with an uninformative predictive model, micro F1 is optimized
by classifying all examples as negative, while macro F1 is optimized by classify-
ing all examples as positive. Optimizing micro F1 as compared to macro F1 can
be thought of as choosing optimal thresholds given very different batches. If the
base rates and distributions of conditional probabilities predicted for instances
vary from label to label, so will the optimal binary predictions. Generally, la-
bels with small base rates and less informative classifiers will be over-predicted
when maximizing macro F1, and under-predicted when maximizing micro F1.
We present empirical evidence of this phenomenon in the following case study.

7 Case Study

This section discusses a case study that demonstrates how in practice, threshold-
ing to maximize macro F1 can produce undesirable predictions. To our knowl-
edge, a similar real-world case of pathological behavior has not been previously
described in the literature, even though macro averaging F1 is a common ap-
proach.
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MeSH term count maximum F1 threshold

Humans 2346 0.9160 0.458
Male 1472 0.8055 0.403
Female 1439 0.8131 0.407
Phosphinic Acids 1401 1.544 · 10−4 7.71 · 10−5

Penicillanic Acid 1064 8.534 · 10−4 4.27 · 10−4

Adult 1063 0.7004 0.350
Middle Aged 1028 0.7513 0.376
Platypus 980 4.676 · 10−4 2.34 · 10−4

Fig. 7. Selected frequently predicted MeSH terms. Columns show the term, the num-
ber of times it is predicted for a given test set, the empirical maximum achieved F1
measure, and the empirical threshold that achieves this maximum. When F1 is opti-
mized separately for each term, low thresholds are chosen for rare labels (bold) with
uninformative classifiers.

We consider the task of assigning tags from a controlled vocabulary of 26,853
MeSH terms to articles in the biomedical literature based on their titles and
abstracts. We represent each abstract as a sparse bag-of-words vector over a
vocabulary of 188,923 words. The training data consists of a matrix A with n
rows and d columns, where n is the number of abstracts and d is the number of
features in the bag of words representation. We apply a tf-idf text preprocessing
step to the bag of words representation to account for word burstiness [10] and
to elevate the impact of rare words.

Because linear regression models can be trained for multiple labels efficiently,
we choose linear regression as a predictive model. Note that square loss is a
proper loss function and yields calibrated probabilistic predictions [12]. Further,
to increase the speed of training and prevent overfitting, we approximate the
training matrix A by a rank restricted Ak using singular value decomposition.
One potential consequence of this rank restriction is that the signal of extremely
rare words can be lost. This can be problematic when rare terms are the only
features of predictive value for a label.

Given the probabilistic output of each classifier and the results relating opti-
mal thresholds to maximum attainable F1, we designed three different plug-in
rules to maximize micro, macro and per instance average F1. Inspection of the
predictions to maximize micro F1 revealed no irregularities. However, inspecting
the predictions thresholded to maximize performance on macro F1 showed that
several terms with very low base rates were predicted for more than a third of
all test documents. Among these terms were “Platypus”, “Penicillanic Acids”
and “Phosphinic Acids” (Figure 7).

In multilabel classification, a label can have low base rate and an uninforma-
tive classifier. In this case, optimal thresholding requires the system to predict
all examples positive for this label. In the single-label case, such a system would
achieve a low F1 and not be used. But in the macro averaging multilabel case,
the extreme thresholding behavior can take place on a subset of labels, while the
system manages to perform well overall.
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8 A Winner’s Curse

In practice, decision rules that maximize F1 are often set empirically, rather than
analytically. That is, given a set of validation examples with predicted scores and
true labels, rules for mapping scores to labels are selected that maximize F1 on
the validation set. In such situations, the optimal threshold can be subject to a
winner’s curse [2] where a sub-optimal threshold is chosen because of sampling
effects or limited training data. As a result, the future performance of a classifier
using this threshold is worse than the anticipated performance. We show that
threshold optimization for F1 is particularly susceptible to this phenomenon.

In particular, different thresholds have different rates of convergence of em-
pirical F1 with number of samples n. As a result, for a given n, comparing the
empirical performance of low and high thresholds can result in suboptimal perfor-
mance. This is because, for a fixed number of samples, some thresholds converge
to their true error rates fast, while others have higher variance and may be set
erroneously. We demonstrate these ideas for a scenario with an uninformative
model, though they hold more generally.

Consider an uninformative model, for a label with base rate b. The model is
uninformative in the sense that output scores are si = b + ni for examples i,
where ni = N (0, σ2). Thus, scores are uncorrelated with and independent of the
true labels. The empirical accuracy for a threshold t is

A(t) =
1

n

∑
i∈+

1[si ≥ t] +
1

n

∑
i∈−

1[si ≤ t] (4)

where + and − index the positive and negative class respectively. Each term
in Equation (4) is the sum of O(n) i.i.d random variables and has exponential
(in n) rate of convergence to the mean irrespective of the base rate b and the
threshold t. Thus, for a fixed number T of threshold choices, the probability of
choosing the wrong threshold is less than T 2−εn where ε depends on the distance
between the optimal and next nearest threshold. Even if errors occur, the most
likely errors are thresholds close to the true optimal threshold, a consequence of
Sanov’s theorem [3].

Consider how to select an F1-maximizing threshold empirically, given a val-
idation set of ground truth labels and scores from an uninformative classifier.
The scores si can be sorted in decreasing order (w.l.o.g.) since they are inde-
pendent of the true labels for an uninformative classifier. Based on the sorted
scores, we empirically select the threshold that maximizes the F1 measure F on
the validation set. The optimal empirical threshold will lie between two scores
that include the value F/2, when the scores are calibrated, in accordance with
Theorem 1.

The threshold s that classifies all examples positive (and maximizes F1 an-
alytically by Theorem 2) has an empirical F1 value close to its expectation of
2b
1+b = 2

1+1/b since tp, fp and fn are all estimated from the entire data. Con-

sider a threshold s that classifies only the first example positive and all others
negative. With probability b, this threshold has F1 value 2/(2 + b · n), which is
worse than that of the optimal threshold only when
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b ≥
√
1 + 8/n− 1

2
.

Despite the threshold s being far from optimal, it has a constant probability of
having a better F1 value on validation data, a probability that does not decrease
with n, for n < (1− b)/b2. Therefore, optimizing F1 has a sharp threshold behav-
ior, where for n < (1− b)/b2 the algorithm incorrectly selects large thresholds
with constant probability, whereas for larger n it correctly selects small thresh-
olds. Note that identifying optimal thresholds for F1 is still problematic since it
then leads to issues identified in the previous section. While these issues are dis-
tinct, they both arise from the nonlinearity of the F1 measure and its asymmetric
treatment of positive and negative labels.

Figure 8 shows the result of simulating this phenomenon, executing 10,000
runs for each setting of the base rate, with n = 106 samples for each run used
to set the threshold. Scores are chosen using variance σ2 = 1. True labels are
assigned at the base rate, independent of the scores. The threshold that maxi-
mizes F1 on the validation set is selected. We plot a histogram of the fraction
predicted positive as a function of the empirically chosen threshold. There is a
shift from predicting almost all positives to almost all negatives as the base rate
is decreased. In particular, for low base rate, even with a large number of sam-
ples, a small fraction of examples are predicted positive. The analytically derived
optimal decision in all cases is to predict all positive, i.e. to use a threshold of 0.

9 Discussion

In this paper, we present theoretical and empirical results describing properties
of the F1 performance measure for binary and multilabel classification. We relate
the best achievable F1 measure to the optimal decision-making threshold and
show that when a classifier is uninformative, classifying all instances as positive
maximizes F1. In the multilabel setting, this behavior is problematic when the
measure to maximize is macro F1 and for some labels their predictive model is
uninformative. In contrast, we demonstrate that given the same scenario, micro
F1 is maximized by predicting those labels for all examples to be negative. This
knowledge can be useful as such scenarios are likely to occur in settings with a
large number of labels. We also demonstrate that micro F1 has the potentially
undesirable property of washing out performance on rare labels.

No single performance measure can capture every desirable property. For ex-
ample, for a single binary label, separately reporting precision and recall is more
informative than reporting F1 alone. Sometimes, however, it is practically neces-
sary to define a single performance measure to optimize. Evaluating competing
systems and objectively choosing a winner presents such a scenario. In these
cases, it is important to understand that a change of performance measure can
have the consequence of dramatically altering optimal thresholding behavior.
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Fig. 8. The distribution of experimentally chosen thresholds changes with varying base
rate b. For small b, a small fraction of examples are predicted positive even though the
optimal thresholding is to predict all positive.
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Abstract. Security systems for email spam filtering, network intrusion
detection, steganalysis, and watermarking, frequently use classifiers to
separate malicious behavior from legitimate. Typically, they use a fixed
operating point minimizing the expected cost / error. This allows a
rational attacker to deliver invisible attacks just below the detection
threshold. We model this situation as a non-zero sum normal form game
capturing attacker’s expected payoffs for detected and undetected at-
tacks, and detector’s costs for false positives and false negatives com-
puted based on the Receiver Operating Characteristic (ROC) curve of
the classifier. The analysis of Nash and Stackelberg equilibria reveals that
using a randomized strategy over multiple operating points forces the ra-
tional attacker to design less efficient attacks and substantially lowers the
expected cost of the detector. We present the equilibrium strategies for
sample ROC curves from network intrusion detection system and evalu-
ate the corresponding benefits.

Keywords: Game theory, operating point selection, receiver operating
characteristic, adversarial machine learning, misclassification cost.

1 Introduction

Receiver operating characteristics (ROC) graph is a curve showing dependency of
true positive rate (y-axis) and false positive rate (x-axis) of a classifier. The most
attractive property of ROC curves is their insensitivity to changes in class distri-
butions and costs of wrong decisions on different classes. Both these properties
are almost certainly user specific and often non-stationary in security applica-
tions. For example, in spam detection the proportion of spam volume changes
from month to month, and the cost of receiving spam can be different for differ-
ent users. It is therefore important to determine operating points of classifiers
(e.g., thresholds) systematically based on the costs in a specific deployment. A
well-established result [20] shows that the threshold minimizing the (Bayesian)
cost corresponds to the tangent of the ROC curve of slope defined by the ratio
of mis-classification costs weighted by class probabilities. This method for se-
lecting thresholds is routinely used in many domains, including steganalysis[11],
watermarking [13,6], and fraud detection[17].
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Similarly to [3], we argue that the method is optimal only in non-adversarial
setting without a rational attacker actively avoiding the detection. If knowledge-
able attackers are present, such as in network intrusion detection, spam filtering,
steganalysis, watermarking, etc., this standard operating point is sub-optimal.

Our approach is to model the canonical machine learning problem of setting
the optimal operating point based on ROC in scenarios with a rational attacker
as a two-player normal-form game. The goal of the defender is to detect a pres-
ence of an attack, for which she uses a publicly known classifier. The goal of the
attacker is to design data samples (an attack) maximizing his benefit yet having
a good chance of being undetected. The set of thresholds (or other parameters
of the classifier) is the set of strategies for both players, as it is assumed the
attacker can design data-samples not detected at a given threshold [4,1].

We present, compute, and analyze two different solution concepts in this game.
The first is the Nash equilibrium, which is the most standard solution concept
for situations where players interact only once and decide about their strategies
simultaneously. The second is the Stackelberg equilibrium, which has been re-
cently very popular in security domains [21]. The latter assumes that one player,
typically defender, computes its strategy and discloses it to the other player be-
fore the game is played. The other player (attacker) can then play optimally with
respect to this strategy. This better describes the situation, when the classifier
(detection system) is publicly known, as the attacker may even run his own copy
of the classifier to verify undetectability of his attacks.

The main results of our analysis are that in adversarial setting, the defender
can substantially reduce its expected cost by randomizing over a larger set of
thresholds. We formally prove that in some games, no finite number of thresholds
is sufficient for the optimal randomization, but a reasonably sparse discretization
is often sufficient to guarantee strategies with performance close to the optimum.

Throughout the paper, we use a simple running example from the network
security domain: The attacker tries to gain remote access to a server using a
brute force password attack. The attacker knows that the defender deploys an
intrusion detection system (IDS) and if she detects the attack, she will block
attacker’s IP address. The detector needs to decide how many passwords per
second he will try. The defender has to decide how many login attempts per
second is enough to manually inspect the incident. If she sets the threshold too
high, the attacker has a good chance of succeeding in the attack. On the other
hand, too low thresholds force her to inspect many false alarms caused by users
who forgot their password.

2 Related Work

Only a few papers addressed operating point selection in game theoretic frame-
work. Cavusoglu et al. [3] is one of the first papers advocating the importance of
game theoretic models in configuration of detectors of malicious behavior. As in
multiple similar papers, e.g.,[2], their models assume that the players can possi-
bly make randomized decisions about whether to attack or whether to manually
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check a specific incident, but still allow choosing only a single fixed operating
point as the optimal configuration based on an ROC curve. The main differ-
ence of our approach is that we propose randomization over multiple operating
points, which determines strategies with respect to whole ROC curve resulting
into lower defender’s costs.

A game theoretic model of randomized threshold selection is presented in [8].
The rational attacker tries to hide its preferences by distributing his attacks be-
tween the preferred and nonpreferred target, while the defender sets a threshold
for the number of attack attempts on the more valuable target. In contrast to
our paper, this model is not connected to machine learning theory and general
classifier characteristics, such as ROC. Furthermore, is requires a discrete set of
thresholds and it analyses only Nash equilibria.

The use of Stackelberg equilibrium in our work has been inspired mainly by
the recent progress in research and practical applications of resource allocation
security games [21]. While there are several parallels, the class of games we
study here is substantially different. The resource allocation games assume a
specific utility structure, which causes the Nash and Stackelberg equilibria to
prescribe the same strategies [12]. As we show in experiments, this is not always
the case in our model. Also, there is no connection between these models and
machine learning and all the studied models of resource allocation games are
fundamentally discrete.

Recent works [4,1,10] from different domains show that for a fixed detector
an attacker can devise an invisible attack just below the detection threshold.
This paper uses the following generalization: against every detector from a set
of detectors, an attacker can plant an invisible attack, providing he knows the
detector. Since every detector has certain false positive and false negative rate,
the set can be described by ROC curve, which can be parameterized by a single
parameter – threshold (more on this in the next section). Hence, thresholds used
in discussions of operating point selection serve here as an abstraction linking a
single parameter to a particular classifiers from a possibly rich set. With respect
to cited works on evasion attack, this simplification does not decrease generality
of the presented approach.

3 Background

A two player normal form game is defined by a set of players I; set of actions for
each playerAi, i ∈ I; and utility functions ui : A → R for each player and action
profile from A = Πi∈IAi. A (mixed) strategy of a player σi ∈ Σi is a probability
distribution over her actions and a pure strategy is a strategy playing only one of
the actions. The utility functions can be extended to mixed strategies by taking
expectation over players’ randomization. For a strategy profile σ ∈ Σ = Πi∈IΣi,
we denote σi the strategy of player i and σ−i the strategy of the other player.
A strategy profile σ∗ is an ε-Nash Equilibrium

if ui(σi, σ
∗
−i)− ui(σ

∗) ≤ ε ∀i ∈ I, σi ∈ Σi.
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A strategy profile is an exact Nash equilibrium (NE) if ε = 0.
A Stackelberg Equilibrium (SE) assumes that one of the players is a leader

who commits to a strategy and discloses it to the other player (termed follower).
The other player then plays the action that maximizes her utility. For a two
player game with leader i is (σ∗

i , a
∗
−i) a SE if

ui(σ
∗
i , a

∗
−i) ≥ ui(σi, a

∗
−i) ∀σi ∈ Σi

& u−i(σ
∗
i , a

∗
−i) ≥ u−i(σ

∗
i , a−i) ∀a−i ∈ A−i.

The first line says that the leader does not have an incentive to change the strat-
egy and the second line says the follower plays the best response to the leader’s
strategy. The value of the equilibrium for player i is vi = ui(σ

∗
i , a

∗
−i). If the

follower breaks ties in favor of the leader, it is a Strong Stackelberg Equilibrium
(SSE). Breaking ties in favor of the leader is generally not a restrictive assump-
tion, because minimal perturbation of any SE can ensure this choice is the only
optimal for the follower [22].

Receiver Operating Characteristic (ROC) of a classifier is a parametric curve
describing dependency of true positive rate (rate of successfully detected attacks)
on the false positive rate (rate of benign events flagged as alarms). Each value
of the parameter corresponds to a single point on the curve with specific true
and false positive rates, which is also called operating point. Without loss of
generality we assume the curve to be parameterized by a detection threshold t ∈
T, but other parameterizations such as different penalties on error on different
classes during training of the classifier are indeed possible. ROC curve is non-
decreasing in the false positives rate, but we do not assume it to be necessarily
concave.

In reality the operating point of a classifier can be controlled by more than
one parameter, for example by varying costs of errors on different classes during
training. Nevertheless, for every false positive rate the rational defender always
chooses a classifier with the highest detection accuracy. Consequently a partic-
ular false positive rate is linked to a particular classifier which is in this paper
abstracted by a threshold. By similar reasoning it can be assumed that the ROC
curve is non-decreasing, because in the defender does not have any incentive to
use classifier with higher false positive rate and smaller detection accuracy.

With respect to the above arguments it is assumed that there is a bijective
decreasing mapping between false positive rate and the threshold, which means
that the higher threshold implies smaller false positive rate. RFP : T → 〈0, 1〉
maps thresholds to false positive rate.

4 Game Model

We formalize the operating point selection in presence of adversary as a two-
player non-zero-sum normal form game with continuous strategy spaces.

Players: The two players in the game are the defender (denoted d) and the
attacker (denoted a). In reality the game will be played between one defender
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and many different attackers, but since at this point we assume all attackers to
share the same costs and penalties, they can be represented as a single player.
We plan to generalize the model to the Bayesian game setting [18] in future
work.

Actions: The action sets of the players are identical. Each player selects a
threshold from a set T, which can be mapped to 〈0, 1〉 without loss of generality.
If the defender selects a threshold td ∈ T, all attacks stronger than this threshold
are detected. If the attacker selects a threshold ta ∈ T, he plays an attack of
maximal intensity undetected by the detector with threshold ta. The attacker is
detected if ta > td.

Utility functions: The utility functions of the players depend on ROC curves,
defender’s costs for processing false positives and cost of missed detection, and
attackers reward for successful attack and penalty for the attack being detected.
Formal definitions of all quantities are following: ROC : 〈0, 1〉 → 〈0, 1〉 is the re-
ceiver operation characteristic of the classifier; CFP ∈ R+

0 is the defender’s cost
of processing a false positive and CFN : T → R is a non-decreasing defender’s
cost of missing an attack of certain intensity; ra : T → R+

0 is the non-decreasing
attacker’s reward for performing an undetected attack and pa ∈ R+

0 is the at-
tacker’s penalty for being detected while performing an attack. We allow the
attacker to choose not to attack for zero reward and penalty. We further as-
sume not all attackers being rational, as there is Ar ∈ R+

0 times more rational
attackers than non-rational, who attack with the same intensity regardless of
the classifier’s setting. Strategies of irrational attackers are reflected in the true
positives of the ROC.

In our running example, the attacker’s reward ra(t) can be the number of
passwords he tries per second without being detected; CFN (t) can be c · ra(t)
for some scaling factor c and pa being the penalty the attacker suffers if his
attack IP address is blocked. The notion of attack intensity in other domains
could represent the entropy of attack sources in a DDoS attack, the amount of
information injected to a media file in steganalysis, or the negative of distortion
caused to the media file in watermarking.

Based on the inputs above, we define the defender’s background cost for irra-
tional attackers as the standard classification cost used in non-adversarial setting:

cbd(t) = RFP (t) · CFP + (1−ROC(t)) · CFN (t) (1)

For rational attackers playing a threshold t the defender suffers an additional
penalty for the undetected attacks:

crd(t) = Ar · CFN (t). (2)

The utility function of the defender is the negative of the sum of the background
cost and the cost for rational attacks if undetected:

ud(td, ta) =

{
−cbd(td)− crd(ta) if td ≥ ta
−cbd(td) otherwise.
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The utility of the attacker is his reward in case of being undetected and the
negative penalty when he is detected:

ua(td, ta) =

{
ra(ta) if td ≥ ta
−pa otherwise.

5 Game Model Properties

The ROC curves from real problems are usually estimated from data samples
without clear analytical formulations. For this reason we base our study on a
discretized version of the game, which means that optimal strategies are only
approximated. We therefore first derive approximation bounds of Nash (NE) and
Stackelberg equilibria (SSE) between discretized and continuous version of the
problem. Then we show that even if we can get arbitrarily good approximations
with finite sets of thresholds, creating the exact optimal randomized strategy
may require using infinitely many thresholds. Finally, we show that some subsets
of thresholds will never be used by a rational defender and can be disregarded
in the strategy computation.

Proposition 1. Let vd be the value of SSE of the continous game for the de-
fender; (ti) = t0 < t1 < · · · < tn; ti ∈ T; t0 = min(T); tn = max(T) be a
discretization of the set of applicable thresholds and

Δ = max
i∈{0,...,n−1}

{max{crd(ti+1)− crd(ti), max
t∈(ti,ti+1〉

cbd(t)− min
t∈(ti,ti+1〉

cbd(t)}},

be the maximal difference between the highest and the lowest point in the de-
fender’s cost functions within one interval. Then there is a mixed strategy select-
ing only the thresholds from (ti), such that its expected value for the defender is
at least vd − 2Δ.

Proof. Assume (D, ta) are the cumulative distribution function1 (CDF) of the
defender’s strategy and threshold selection of the attacker in a SSE of the con-
tinuous game. Let tj ∈ (ti) be a threshold in the discretization, such that
ta ∈ (tj , tj+1〉. We construct a CDF D′ lower than D in the interval (tj , tj+1〉
and higher then D outside, so that the attacker still plays in (tj , tj+1〉 and the
cost of the defender is not increased substantially.

D′(t) =

{
D(ti+1) ∀t ∈ (ti, ti+1〉 i 
= j
D(tj) ∀t ∈ (tj , tj+1〉

(3)

The expected utility of the attacker for playing threshold t in response to distri-
bution D is

ua(D, t) = (1−D(t))ra(t)−D(t)pa (4)

1 Probability that randomly selected threshold is below the input parameter, i.e.,
D(td) = P (t ≤ td).
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While CDFs and ra are non-decreasing, the attacker’s expected utility with D′

cannot increase outside (tj , tj+1〉 and cannot decrease in the interval. Hence,
he will keep playing to interval (tj , tj+1〉 and even if he modifies his strategy
within this interval, it will not increase the costs of the defender by more than
Δ in the crd component of her utility by definition of Δ. Furthermore, any time
the defender would play t ∈ (ti, ti+1〉 with distribution D, she plays one of the
bounds instead with D′. For each of these bounds, she has the cost cbd at most Δ
more than with t. In the worst case, the defender will suffer the increased cost
in both components. ��

Proposition 2. Let (D,A) be CDFs of strategies in NE of the operating point
selection game discretized to (ti) ⊆ T and Δ defined as in Proposition 1, then
(D,A) is a 2Δ-NE of the continuous game.

Proof. Attacker: The attacker’s expected utility cannot be increased by playing
thresholds not included in the discretization. For any t ∈ (ti, ti+1) the attacker
might consider, he can only improve his payoff by playing ti+1 instead. Recall
that playing the same threshold as the defender results to an undetected attack.
The probability of detection by D is the same on the whole interval and ra(t) is
non-decreasing.

Defender: The best response to any mixed strategy can always be found in
pure strategies. Assume that td ∈ (ti, ti+1) is the best response of the defender
to the attacker’s strategy A. From definition of Δ, ud(td, A) ≤ ud(ti, A) + 2Δ,
because it can differ by Δ in each component of the utility function. The de-
fender has no incentive to deviate to ti from a discrete NE strategy, because
this threshold was considered in its computation; hence, ud(ti, A) ≤ ud(D,A).
Combining the two inequalities gives us ud(td, A) ≤ ud(D,A) + 2Δ. ��

It is important to realize that Δ is not a parameter of the problem, but rather
a guide for creating a suitable discretization. The goal is to select a discretiza-
tion, such that Δ is small. Δ can even be selected in advance and then the
algorithm to compute a matching discretization could just swipe through the
interval of possible thresholds and add a new threshold to the discretization
always when one of the relevant functions changes its value by more than Δ.
For a function with range [0,1] and Δ = 1

n , a monotonic function will require at
most n thresholds; convex/concave function at most 2n thresholds. If we want to
guarantee less than 5% error from the optimum in the worst case, we can always
choose 40 thresholds for the monotonous crd function to keep Δ = 2.5% for this
component of its definition. If the cbd function is convex (which seems to be the
case in the real world examples presented in our experiments), we will need at
most additional 80 thresholds to guarantee even this component of definition of
Δ to be 2.5%. Moreover, as we explain later, we can remove some portions of
the thresholds completely form consideration.

The above discussion shows that the error in the quality of the produced solu-
tions caused by discretization is bounded and we can always choose a relatively
small discretization of set T that guarantees a low error. We further show that
there are instances of the game, in which the optimal solution of the discretized
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version of the game is always worse than the optimal solution of the continuous
game.

Proposition 3. There are continuous operating point selection games, in which
the optimal strategy requires the defender to use infinitely many thresholds.

Proof. Let the mapping from thresholds 〈0, 1〉 to false positive rate be RFP (t) =
(1−t); ROC(t) = min(2(1−t), 1); the misclassification costs CFN (t) = CFP = 1;
and twice as much rational as background attackers (Ar = 2). Then

cbd(t) = 1− t on 〈0, 12 〉 and t on 〈12 , 1〉 (5)

and crd(t) = 2 for t ∈ (0, 1〉. (6)

In this case, the rational defender prefers to prevent the rational attacker from
attacking at all, even if it meant setting detection threshold to 0. crd(ta) is always
larger than cbd(td) for any ta > 0.

Assume the rational attacker’s penalty pa = 1 and reward ra(t) = 1 + t. The
attacker will not attack if ua(D, t) ≤ 0 for all t ∈ T, because it can always get
zero utility by not attacking. If we assume this is an equality, we can derive

D(t) =
t+ 1

t+ 2
⇒ D(0) = 1

2 , D(12 ) =
3
5 . (7)

If the rational attacker does not attack at all, the defender prefers to play t = 1
2 ,

as it minimizes cbd. Therefore, the optimal continuous strategy for this situation
is to play D on 〈0, 1

2 〉 and set D(t) = 1 for all larger thresholds. D is strictly
increasing and cbd strictly decreasing on 〈0, 1

2 〉. If the defender wants to prevent
the rational attack with a discrete distribution, her CDF has to be larger or
equal to D for each threshold. If it is lower, the attacker has positive utility for
attacking. Hence, she plays D′(tj) = D(tj+1); ∀tj ∈ (ti); i.e., threshold tj with
probability π(tj) = D(tj+1) − D(tj). Her cost ud(D

′, 0) =
∑

i π(ti)c
b
d(ti) can

always be decreased by adding any new threshold in 〈0, 1
2 〉. The monotonicity of

the involved functions implies that for any new threshold tm ∈ (ti, ti+1) holds

(D(tj+1)−D(tj)) c
b
d(tj) > (D(tj+1)−D(tm)) cbd(tj) + (D(tm)−D(tj)) c

b
d(tm).

��
Besides proving that it might not be possible to play optimally with a finite
number of thresholds, the previous proposition also demonstrates how the model
motivates the attacker to perform weaker attacks. The mechanism is the same
even if it is beneficial only to reduce the attack strength and not to prevent it
completely.

Based on the previous propositions, we can choose a discretization of set T
that guarantees a low error. Below we show that considering only a subset of T
for discretization is sufficient.

Proposition 4. If t∗d = argmin{cbd(t) + crd(t)}, then a rational defender will
never play a threshold t for which

cbd(t) > cbd(t
∗
d) + crd(t

∗
d)
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Proof. Threshold t∗d is the best pure strategy for the Stackelberg setting and the
maximin strategy for the defender. The defender can always guarantee payoff at
least cbd(t

∗
d) + crd(t

∗
d) for any strategy of the attacker. Hence, she will not play a

threshold that certainly induces a higher cost. ��

5.1 Concavity of ROC Curves

The machine learning literature often assumes that the ROC curves are con-
cave [9]. If an ROC curve is not concave then there is a false positive rate b so
that

ROC(b) <
b− a

c− a
ROC(c) +

c− b

c− a
ROC(a) (8)

for some a < b < c. If we use, instead of the threshold corresponding to b (tb),
the threshold for c (tc) with probability b−a

c−a and the threshold for a (ta) with

probability c−b
c−a , then the expected false positive rate is still b, but the true

positive rate is the right hand side in equation 8. This randomization creates a
classifier with strictly better expected performance than the classifier described
by the original ROC; therefore, all ROC curves are assumed to be concave.

We argue that this well-known procedure is correct only for the traditional
settings without rational attackers. In their presence, playing the probability
distribution on ta and tc is not strategically equivalent to playing tb. Recall that
playing tb motivates the rational attacker to play tb as well; however, playing the
randomization over ta and tc will motivate the attacker to play either ta or tc
(depending on his costs), but generally not to play tb. The attacker playing one
of ta or tc may induce a substantially different cost to the defender compared
to playing tb. Consequently the widely adopted procedure to make ROC curves
convex is not applicable in presence of rational attackers, as it results into mis-
representing the actual costs for the defender. We are not aware of any existing
work presenting a similar observation.

6 Experimental Evaluation

This section experimentally demonstrates that the proposed game-theoretic ap-
proach randomizing among multiple detector’s operating points forces rational
attackers to attack with lower intensity than with a single threshold optimized
against non-rational attackers. Consequently, the expected cost of the classifier
is reduced. The use-case is an intrusion detection system (IDS) where results
of this paper can be readily applied. We show three kinds of experiments: (i)
experiments with multiple thresholds showing the strategies computed for spe-
cific ROC curves and the cost reduction they provide; (ii) experiments with only
two thresholds which provide better insight into the rationale behind the model;
and (iii) an experiments varying attacker’s penalty showing the effect of this
parameter on computed strategies.

In our experiments, we use ROC curves of a real world IDS from [19]. Each
ROC curve has 100 points representing thresholds used by the detector. As ex-
plained in the previous section, we do not assume ROC curves to be concave,



Randomized Operating Point Selection in Adversarial Classification 249

because the stochastic concave envelope changes the solution space. We have
chosen the cost of false positives to be CFP = 15, to represent that typical IDS
faces much more benign traffic than actual attacks; and the amount of ratio-
nal attackers to be the same as the background attackers Ar = 1. We set the
attacker’s penalty pa = 2, as the cost for having the IP address blocked. The
attacker’s reward is a linear function in terms of attack intensity, i.e., ith point
on the ROC curve, in the order of increasing false positive rate, is assigned the

reward (100−i)
100 · 10. Choosing lower attack strength is equivalent to choosing a

lower threshold to attack. Note that if the defender lowers the detection thresh-
old, then it increases its false positive rate. The graphs in this section show false
positive rate increasing on x-axis from left to right to have the ROC curves in
their standard form. In all these graphs, the threshold grows on the same axes
from right to left.

6.1 Computing the Equilibria and Scalability

Computing a NE may be computationally expensive as it belongs to the PPAD
complexity class [7]. However, we do not reach the scalability limits of the stan-
dard equilibrium computation tools with our model. In our experiments, we use
the Gambit [16] implementation of an algorithm for computing all Nash equilib-
ria [15]. On standard Intel i5 2.3GHz laptop computer, the computation takes
up to 1 minute for 12 thresholds, up to 5 minutes for 13 and up to an hour for
14 thresholds. Even though the algorithm computes all NE, it always found only
a single NE in our experiments. It indicates that these games generally have a
unique NE. We intend to formally study this property in our future research. In
practical application, a more scalable algorithm computing only one NE can be
used [14]. The gambit implementation of this algorithm is able to compute the
strategy for 100 thresholds in less than one minute. Since the calculation of NE
can be done off-line on a computer cluster, we do not consider the computational
complexity here to be an issue.

Computing the SSE is a polynomial problem and we used the multiple linear
programs (LP) method described in [5] with IBM CPLEX 12.4 as the LP solver.
Computation of SEE even for 100 thresholds takes up to 10 seconds.

6.2 Multiple Thresholds

Figure 1 presents the results of the games defined based on ROCs of detectors
of Secure Shell (SSH) password cracking and Skype supernodes. The games are
discretized to contain 11 thresholds. Ten thresholds are chosen to be equidistant
on the range of false positive values [0, 1.0] and the last one is the optimal fixed
threshold t∗d defined in Proposition 4. This threshold is marked by the vertical
lines in the graphs. White / black bars in Figures 1(a,b,d,e) correspond to the
defender’s / attacker’s probability of selecting the threshold at their position.
The curve in these figures is the ROC. In Figures 1(b,e) we can see that the
attacker is forced to pick the lowest threshold played by the defender in the case
of Stackelberg equilibria (SSE). Although the defender plays most often the high



250 V. Lisý, R. Kessl, and T. Pevný
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Fig. 1. The top two rows show the main results for ROC curves corresponding to
detection of SSH pasword cracking and Skype supernodes. Figures (a-b) and (d-e)
show the probability distributions of using thresholds for the defender (white bars)
and the attacker (black bars) in the Nash and Stackelberg equilibria of the game.
Figures (c) and (f) show the expected utility of these strategies in comparison to the
optimal fixed thresholds selection considering the rational opponent (Single) and the
standard Bayesian threshold disregarding the rational opponent (NonGT). Figures (g)
and (h) show the relevant cost functions and the optimal fixed thresholds for reference.
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threshold optimizing her background cost (54% of time), she plays the lower
thresholds sufficiently often to force rational attackers to use weaker attacks.
The threshold corresponding to the false positive rate just below 0.8 is played
13.5% of time. In these cases, the rational attacker uses less than half the attack
intensity it would use without the randomization, i.e., the threshold marked by
the vertical line. In the Nash equilibria presented in Figures 1(a,d), the attacker
uses all the thresholds played by the defender with almost uniform probability.
If the defender does not commit to a strategy in advance, the attacker also needs
to randomize to prevent exploitation of his strategy by the defender. This is the
main source of the defender’s higher cost with NE compared to SSE.

Figures 1(c,f) present the expected costs of the Nash (NE) and Stackelberg
(SSE) equilibrium strategies compared to the single threshold maximizing the
utility defined as t∗d in Proposition 4 (Single), and the standard Bayesian cost
minimizing threshold disregarding the rational attackers (NonGT). The value
of the SSE is better than the value of the NE. In both graphs, it is more than
10% better than the fixed operation point selection (t∗d). The difference between
the expected utility for fixed threshold selection considering and disregarding
the rational attacker is quite low. Figures 1(g,h) present the utility function
components computed based on the ROCs. The vertical line marks the optimal
fixed game theoretic threshold (t∗d) and the optimal threshold disregarding the
rational opponents would be the minimum of cbd(t).

Besides the results presented in this figure, we computed the expected utility
values for 34 other ROC curves from [19]. The improvements of using multiple
thresholds against the optimal fixed threshold (t∗d) is between 5% and 20% (av-
erage 15%) for the Stackelberg equilibria and between 0.5% and 14% (average
9%) for the Nash equilibria.

6.3 Two Thresholds

Figure 2(a) shows the ROC curve of the horizontal scan detector we used for ex-
periments with two thresholds. The first threshold is fixed in the optimal static
thresholds selection t∗d from Proposition 4 and the second varies over the x-axis
of the graphs. Figure 2(b) presents the expected value of both equilibria and the
probability of playing the threshold other than t∗d if we optimally randomize only
among these two thresholds. The vertical lines denote the position of the optimal
fixed threshold and the horizontal line denotes its utility. The graph shows that
substantial reduction of cost is possible already with two thresholds (top), and
that even though values differ, the different equilibria suggest playing the same
threshold with the same probability on large portion of possible thresholds (bot-
tom). Furthermore, the probability of playing a low threshold (high false positive
rate) quickly drops to zero at a point when it would no longer increase the de-
fender’s utility. Recall that the NE and SSE strategies overlap completely in well
studied resource allocation security games [12]. Better understanding of when
this happens in our model could enable reuse of many interesting results, such
as efficient computation of strategies for Bayesian games with different player
types.
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Fig. 2. Randomizing over two thresholds: first fixed at the optimal static threshold and
the second varying on the x-axis. The graphs show (a) ROC curve; (b) upper: defender
solution values, lower: second threshold probability; (c) the defender’s SSE values for
penalty for detected attack varying in the range [0.1, 20] – curves from bottom to top;
and (d) are the probabilities corresponding to (c) – curves from top to bottom.

6.4 Varying Penalty

Figures 2(c,d) present the effect of attacker’s penalty set to 0.1, 0.5, 1, 3, 5, 7,
9, 11, 15, 20 on the defender’s payoff and probabilities in the scenario with two
thresholds. We use the same setting as in the previous subsection, i.e., using
one fixed thresholds t∗d and changing the other threshold. Figure 2(c) shows that
increasing the penalty increases the defender’s payoff: the lines (from bottom
up) represents the defender’s utility with increasing penalty. Figure 2(d) with
the probabilities of the alternative threshold selection shows that increasing the
penalty decreases the probability of playing the second threshold: the lines (from
top down) correspond to increasing attacker’s penalty. At pa = 5, detecting
the IP address by the defender has so high penalty for the attacker that if
the defender chooses the lowest threshold sufficiently often, the attacker stops
attacking at all.
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7 Conclusions

We analyze the problem of classifier operation point selection in presence of
rational adversaries, applicable in various real world domains, such as network
intrusion detection, spam filtering, steganalysis, or watermarking. We formalize
it in game theoretic framework and focus on two well-known solution concepts:
the more standard Nash equilibrium and the Stackelberg equilibrium commonly
used in security domains. While it is not clear how to find these solutions ex-
actly for the exact (continuous) games, we formally prove that we can create a
discretized version of the game, which is solvable by standard techniques and its
solution is a good approximation of the optimal solution of the original game.

We have experimentally evaluated the benefits of the model on a set of ROC
curves originating from a real-world intrusion detection system. Using game the-
oretic randomization over multiple thresholds improves the defender’s expected
cost by up to 20% for some types of attacks, compared to using just single op-
timal threshold. This cost reduction is caused by the rational attacker selecting
more than two times smaller attack strength in response to the randomization.
While randomizing among larger number of thresholds is generally better, we
show that substantial improvements can be achieved also by using only two dif-
ferent thresholds. We analyze this simplified case showing the main mechanisms
by which the randomized strategies operate. Furthermore, we show that the
Nash and Strong Stackelberg equilibrium strategies overlap on some subsets of
threshold selections as in the resource allocation security games, but it is not
true in general. This motivates more detailed study of the relation of these two
models.

The future work on the proposed model may include generalization of the
model to allow optimizing the thresholds against multiple different types of ad-
versaries with different reward and cost functions. We would also like to gener-
alize the model to allow multiple classifiers with correlated outputs and further
analyze the relation to resource allocation games and other formal properties of
the proposed model.
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254 V. Lisý, R. Kessl, and T. Pevný
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Abstract. In the LDA approach to topic detection, a topic is determined by
identifying the words that are used with high frequency when writing about the
topic. However, high frequency words in one topic may be also used with high
frequency in other topics. Thus they may not be the best words to characterize
the topic. In this paper, we propose a new method for topic detection, where a
topic is determined by identifying words that appear with high frequency in the
topic and low frequency in other topics. We model patterns of word co-
occurrence and co-occurrences of those patterns using a hierarchy of discrete
latent variables. The states of the latent variables represent clusters of documents
and they are interpreted as topics. The words that best distinguish a cluster from
other clusters are selected to characterize the topic. Empirical results show that
the new method yields topics with clearer thematic characterizations than the
alternative approaches.

1 Introduction

Topic models have been the focus of much research in the past decade. The
predominant methods are latent Dirichlet allocation (LDA) [3] and its variants [2,11].
These methods assume a generating process for the documents. For example, to
generate one document, LDA first samples a multinomial distribution over topics, then
it repeatedly samples a topic according to this distribution and samples a word from
the topic. In this setting, a topic is defined as a multinomial distribution over the entire
vocabulary. Each document is viewed as a probabilistic mixture of all the topics. The
topics and the topic composition of each document are inferred by inverting the
generating process using statistical techniques such as variational inference [3] and
Gibbs sampling [2].

The topic definition in LDA or its variants models how frequent an author would
use each word in the vocabulary when writing about a topic. A few words with high
frequency are usually selected to interpret the topic [3]. However, this does not consider
the differences in word usage between the documents about the topic and the documents
not about the topic. High frequency words in one topic might also appear with high
frequency in other topics. They may be common words for multiple topics and contain
little content information to the specific topic. Thus the high frequency words are not
necessarily the best words to describe the topic. To better characterize a topic, it would
be advisable to consider the words that appear with high probability in the documents
about the topic, while appear with low probability in the documents not on the topic.
We call such words the characteristic words of the topic.

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 256–272, 2014.
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When writing an article on a topic, an author is likely to use the characteristic words
along with other non-characteristic words. When describing a topic, however, it would
be better to focus on the characteristic words. For example, if we try to describe the
topic military, we may use only a few words such as troop, army, soldier, weapon, gun,
bomb, tank, missile and so on. To write an article on military, on the other hand, we
might use many other words. The characteristic words of the topic consist of only a
small fraction of all the words in an article on the topic.

In this paper, we propose a new method for topic detection that determines topics
by identifying their characteristic words. The key idea is to model patterns of word
co-occurrence and co-occurrence of those patterns using a hierarchy of discrete latent
variables. Each latent variable represents a soft partition of the documents based on
some word co-occurrence patterns. The states of the latent variable correspond to
document clusters in the partition. They are interpreted as topics. Each document may
belong to multiple clusters in different partitions. In other words, a document might
belong to two or more topics 100% simultaneously. For each topic, the words that best
distinguish the topic from other topics are selected to describe the topic. These words
are usually the words appear with high probability in the documents belonging to the
topic, while appear with low probability in the documents belonging to other topics.

This paper builds upon previous work on latent tree models (LTMs) by Zhang [19],
which are tree-structured probabilistic graphical models where leaf nodes represent
observed variables and internal nodes represent latent variables. When applied to text
data, LTMs are effective in systematically discovering patterns of word co-occurrence
[13,12]. In this work, we introduce semantically higher level latent variables to model
co-occurrence of those patterns, resulting in hierarchical latent tree models (HLTMs).
The latent variables at higher levels of the hierarchy correspond to more general
topics, while the latent variables at lower levels correspond to more specific topics.
The proposed method for topic detection is therefore called hierarchical latent tree
analysis (HLTA).

The remainder of this paper is organized as follows. In Section 2 we briefly introduce
the concepts of LTMs. In Section 3 we present the HLTA algorithm. We will explain
how to find the patterns of word co-occurrence and then how to aggregate these patterns
for better topic detection. In Section 4, we present empirical results and compare HLTA
with alternative methods. Finally, conclusions are drawn in Section 6.

2 Basics of Latent Tree Models

A latent tree model (LTM) is a Markov random field over an undirected tree where leaf
nodes represent observed variables and internal nodes represent latent variables. LTMs
were originally called hierarchical latent class models [19] to underline the fact that
they are a generalization of latent class model (LCM) [1]. Figure 1 shows an example
LTM that was learned from a collection of documents. The words at the bottom are
binary variables that indicate the presence or absence of the words in a document. The
Zi’s are the latent variables. They are discrete and their cardinalities, i.e., the number
of states, are given in parentheses.

For technical convenience, we often root an LTM at one of its latent nodes and
regard it as a directed graphical model, i.e., a Bayesian network [16]. Then all the
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Fig. 1. A latent tree model for a toy text data set. The edge widths visually show the strength of
correlation between variables. They are computed from the probability distributions of the model.

edges are directed away from the root. The numerical information of the model
includes a marginal distribution for the root and one conditional distribution for each
edge. For example, for edge Z15 → hockey, it is associated with probability
P (hockey | Z15). The conditional distribution associated with each edge
characterizes the probabilistic dependence between the two nodes that the edge
connects. The product of all those distributions defines a joint distribution over all the
latent and observed variables.

In general, suppose there are n observed variables X = {X1, . . . , Xn} and m latent
variablesZ = {Z1, . . . , Zm}. Denote the parent of a variable Y as pa(Y ) and let pa(Y )
be a empty set when Y is the root. Then the LTM defines a joint distribution over all
observed and latent variables as follows:

P (X1, . . . , Xn, Z1, . . . , Zm) =
∏

Y ∈X∪Z

P (Y | pa(Y )) (1)

3 Topic Detection with Hierarchical Latent Tree Models

In this section, we describe the new method HLTA. Conceptually, the method has three
steps: (1) Discover patterns of word co-occurrences; (2) Build a hierarchy by recursively
discovering co-occurrence patterns of patterns; and (3) Extract topics from the resulting
hierarchy. The pseudo code of the algorithm is given in Algorithm 1. We describe the
steps in details in the following subsections.

3.1 Discovering Co-occurrence of Words

In HLTA, words are regarded as binary variables which indicate the presence or
absence of the words in the documents. Documents are represented as binary vectors.
The first step of HLTA is to identify the patterns of word co-occurrence. This is done
by partitioning the word variables into clusters such that variables in each cluster are
closely correlated and the correlations among variables in each cluster can be properly
modeled with only one latent variable. The Bridged-Islands algorithm (BI) [12] is used
for this purpose (Line 3).

Figure 1 shows the latent tree model that BI obtained on a toy data set. We see that
the word variables are partitioned into 9 clusters. One example cluster is {baseball,
games, hockey, league, nhl}. The five word variables are connected to the same latent
variable Z15 and are hence called siblings. The cluster is then called a sibling cluster. It
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Algorithm 1. HLTA(Din, δ, k)

Inputs: Din: input dataset; δ: Bayes factor threshold, k: maximum level of latent variables.
Output: An HLTM and the topics.

1: D ← Din, Level← 0, Mwhole ← ∅ .
2: while Level < k or D contains more than two variables do
3: M ← Bridged-Islands(D, δ)
4: if Mwhole = ∅ then
5: Mwhole ← M
6: else
7: Mwhole ←MergeModel(Mwhole , M)
8: end if
9: D′ ← ProjectData(Mwhole, Din)

10: D ← D′, Level← Level + 1
11: end while
12: Output topics in different levels and return Mwhole.

is apparent that the words in each sibling cluster are semantically correlated and tend to
co-occur. The correlations among the word variables in each sibling cluster are modeled
by a latent variable. In fact, every latent variable in the model is connected to at least
one word variable. Because of this, the model is called a flat latent tree model.

In the following, we briefly describe how BI works. The reader is referred to [12] for
the details. In general, BI is a greedy algorithm that aims at finding the flat latent tree
model with the highest Bayesian Information Criterion (BIC) score [17]. It proceeds in
four steps: (1) partition the set of variables into sibling clusters; (2) introduce a latent
variable for each sibling cluster; (3) connect the latent variables to form a tree; (4) refine
the model based on global considerations.

To identify potential siblings, BI considers how closely correlated each pair of
variables are in terms of mutual information. The mutual information (MI) I(X ;Y )
[8] between the two variables X and Y is defined as follows:

I(X ;Y ) =
∑
X,Y

P (X,Y ) log
P (X,Y )

P (X)P (Y )
, (2)

where the summation is taken over all possible states of X and Y . The distributions
P (X,Y ), P (X) and P (Y ) are estimated from data.

To determine the first sibling cluster, BI maintains a working set S of variables that
initially consists of the pair of variables with the highest MI. Other variables are added
to the set one by one. At each step, BI chooses to add the variable X that maximizes
the quantity maxZ∈S I(X ;Z). After each step of expansion, BI performs a Bayesian
statistical test to determine whether correlations among the variables in S can be
properly modeled using one single latent variable. The test is called uni-dimensionality
test or simply UD-test. The expansion stops when the UD-test fails.

To perform the UD-test, BI first projects the original data set D onto the working
set S to get a smaller data set D′ . Then it obtains from D′ the best LTMs m1 and m2

that contains only 1 latent variable or no more than 2 latent variables respectively. BI
concludes that the UD-test passes if and only if one of the two conditions is satisfied :
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(1) m2 contains only one latent variable, or (2) m2 contains two latent variables and

BIC (m2 | D′)− BIC (m1 | D′) ≤ δ, (3)

where δ is a threshold parameter. The left hand side of this inequation is an
approximation to the natural logarithm of the Bayes factor [10] for comparing model
m2 with model m1.

To illustrate the process, suppose that the working set S={X1, X2} initially. Then
X3 and X4 were subsequently added to S and the UD-test passed on both cases. Now
consider adding X5. Assume the models m1 and m2 for the set S={X1, X2, X3, X4,
X5} are as shown in Figure 2, and suppose the BIC score of m2 exceeds that of m1 by
threshold δ. Then UD-test fails and BI stops growing the set S.

X2X1 X3 X4 X5 X2X1 X4 X3 X5

m1 m2

Y1 Y1 Y2

Fig. 2. The two models m1 and m2 considered in the UD-test

When the UD-test fails, model m2 gives us two potential sibling clusters. If one of
the two potential sibling clusters contains both the two initial variables, it is picked.
Otherwise, BI picks the one with more variables and breaks ties arbitrarily. In the
example, the two potential sibling clusters are {X1, X2, X4} and {X3, X5}. BI picks
{X1, X2, X4} because it contains both the two initial variables X1 and X2.

After the first sibling cluster is determined, BI removes the variables in the cluster
from the data set, and repeats the process to find other sibling clusters. This continues
until all variables are grouped into sibling clusters.

After the sibling clusters are determined, BI introduces a latent variable for each
sibling cluster. The cardinality of latent variable is automatically determined during the
learning process. All the latent variables are further connected to form a tree structure by
using Chow-Liu’s algorithm [7]. At the end, BI carries out adjustments to the structure
based on global considerations.

3.2 Discovering Co-occurrence of Patterns

As illustrated in Figure 1, BI yields flat latent tree models where the latent variables
capture patterns of word co-occurrences. The patterns themselves may co-occur. Such
higher level co-occurrence patterns can be discovered by recursively applying BI. This
is what the HLTA algorithm is designed to do.

For reasons that will become clear later, we call the latent variables for word
co-occurrence patterns level-1 latent variables. To discover higher level co-occurrence
patterns, we first project the data onto the latent space spanned by the level-1 latent
variables (Line 9). This is done by carrying out inference in the current model Mwhole.
For each data case di and each level-1 latent variable Z1j , we compute the posterior
probability P (Z1j|di,Mwhole), and assign the data case to the state with the
maximum probability. In other words, we set the value of Z1j to the state with highest
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Fig. 3. The hierarchical latent tree model obtained by HLTA. The level-1 latent variables are
found by running BI on the original data (cf. Figure 1) , and the level-2 latent variables are found
by running BI on the data projected to the space spanned by the level-1 latent variables.

posterior probability. The values of the level-1 latent variables make up the projected
data set D′ (Line 9).

Next, we run BI algorithm on the projected data (Line 3). The resulting model is
denoted as M in Algorithm 1. In this model, the level-1 latent variables are partitioned
into sibling clusters and a level-2 latent variable is introduced for each cluster. The
level-1 latent variables capture patterns of word co-occurrence, while level-2 variables
capture the co-occurrence patterns of those patterns.

Now we have two flat LTMs, Mwhole and M . Mwhole consists of word variables
and level-1 latent variables, and M consists of level-1 latent variables (viewed as
observed variables) and level-2 latent variables. At the third step (Line 7), the two
models are merged into a new LTM that consists of two levels of latent variables. Let
us illustrate this using Figure 1. Assume the level-1 latent variables are partitioned into
three clusters {Z11, Z12, Z13}, {Z14, Z15, Z16} and {Z17, Z18, Z19}, and suppose
the corresponding level-2 latent variables are Z21, Z22 and Z23 respectively. Then,
after merging Mwhole and M at Line 7, we get the model shown in Figure 3. Basically,
we stack M on top of Mwhole, and then remove the connections among the level-1
latent variables. In the merged model Mwhole, the parameters that involve the top level
latent variables are estimated using Expectation-Maximization (EM) algorithm [9],
and the values for other parameters are copied from the previous Mwhole model.

After the level-2 latent variables are added to the model, we repeat the process to add
more levels of latent variables until a predetermined number of levels k is reached, or
when there are no more than two latent variables at the top level.

3.3 Topic Extraction

At the end of the while-loop (Line 11), HLTA has built a model with multiple levels
of latent variables. The top level consists of either a single latent variable or multiple
latent variables connected up in a tree structure. The other levels consist of multiple
latent variables, each of which is connected to one latent variable at the level above and
several variables at the level below. The bottom level consists of the word variables.
We call the model a hierarchical latent tree model (HLTM). Each latent variable in the
model represents a soft partition of the documents and its states can be interpreted as
topics. In the last step (Line 12), HLTA computes descriptions of topics.

To see how the topics should be described, first consider the level-1 latent variable
Z15 in Figure 3. It is directly connected to baseball, games, hockey, league, and nhl.
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Table 1. Topics given by latent variable Z22 in Figure 3. The font sizes for probability values
indicate their magnitude, while the font sizes of words indicate the discerning index.

Z22
S0 (87%) team 0.01 players 0.01 baseball 0 season 0 hockey 0 games 0.02 league 0 nhl 0

S1 (13%) team 0.42 players 0.29 baseball 0.28 season 0.26 hockey 0.26 games 0.31 league 0.22 nhl 0.18

During data analysis, Z15 was introduced to model the correlations among those five
word variables. Hence those words form the base for interpretingZ15. For level-2 latent
variableZ22, it was introduced during data analysis to model the correlations among the
level-1 latent variables Z14, Z15 and Z16. Hence all the words in the subtree rooted
at Z22 form the base for its interpretation. We call the collection of those words the
semantic base of Z22.

For a latent variable at a high level of the hierarchy, the semantic base can be large.
To deal with the issue, we introduce the concept of effective semantic base. Sort all the
word variables in the semantic base of a latent variable Z as X1, X2, · · ·, Xm in
descending order of their mutual information I(Z;Xi) with Z . Consider the mutual
information I(Z;X1 · · ·Xi) between Z and the first i word variables. It
monotonically increases with i, and reaches the maximum when i = m. The ratio
I(Z;X1 · · ·Xi)/I(Z;X1 · · ·Xm) is called the information coverage of the first i
variables [4]. We define the effective semantic base of Z to be the collection of first i
word variables for which the information coverage exceeds 0.95. Intuitively,
I(Z;X1 · · ·Xm) is the amount of information about Z that is contained in its
semantic base. The effective semantic base covers 95% of that information, hence is
sufficient to determine the meaning of Z . The effective semantic bases for the level-2
latent variables in Figure 3 are shown in the following.

Z21 windows dos computer card graphics video image
Z22 team baseball players hockey season games league nhl
Z23 space nasa orbit shuttle mission earth moon solar

The meaning of a state of a latent variable is determined by the conditional
distributions of the word variables from the effective semantic base. For example, the
latent variable Z22 in Figure 3 has two states S0 and S1. The conditional probabilities
(i.e., P(word=1|Z22=Si)) are given in Table 1. We see that in the cluster Z22=S1, the
words team, players, baseball etc. occur with relatively high probabilities. It can be
interpreted as the topic sports. On the other hand, the words seldom occur in cluster
Z22=S0 which can be considered as a background topic. Those two topics consist of
13% (P(Z22=S1)=0.13) and 87% (P(Z22=S0)=0.87) of the documents respectively.

To highlight the importance of words in characterizing a topic, we introduce the
concept of discerning index. Let Z be a latent variable that has two or more states,
and W be a word variable. For a given state s of Z , let Zs be another variable that
takes two possible values 0 and 1, with Zs=1 meaning Z=s and Zs=0 meaning Z 
=s.
The discerning index of W for Z=s is the mutual information I(W,Zs) between W
and Zs. The higher the index, the more important W is for distinguishing the cluster
Z=s from other clusters in the partition given by Z . Usually, the words that occur with
high probabilities in Z=s and low probabilities when Z 
=s have high discerning index
values. In Table 1, the order and font sizes of the words are determined according to the
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discerning index. The font sizes for the probability values are determined by their own
magnitude. This visualization scheme is proposed so that the thematic meaning of each
topic is readily visible to the reader.

At line 12, HLTA computes the effective semantic base of each latent variable and,
for each topic, the discerning index and occurrence probability of each word from the
base. The probability of each topic in the entire corpus and the probability of each
document belonging to each topic are also computed. All the computations need to
perform inference in the resulting model, which can be done in HLTM by applying
standard algorithms, e.g. clique tree propagation [18].

4 Empirical Results

In this section, we demonstrate the characteristics of HLTA topics and the topic
hierarchy. We also compare the predictive performance of HLTA on several data sets
which include: (1) NIPS1 data: 1,740 NIPS articles published from 1988 to 1999; (2)
JACM2 data: 536 abstracts from the Journal of the ACM; (3) Newsgroup3 data: about
20,000 newsgroup documents. For JACM data, all 1,809 words were used in the
experiments. For Newsgroup and NIPS data, the vocabulary was restricted to 1,000.
The stop words and words appear in less than ten papers were removed. Then we
computed the TF-IDF value of each word in each document. The top 1,000 words with
highest average TF-IDF value were selected. The code and data sets used in the
experiment are available at: http://www.cse.ust.hk/˜lzhang/ltm/index.htm.

4.1 Results on the NIPS Data

We first show the results of HLTA on NIPS data.

Model Structure. The analysis resulted in a hierarchical LTM with 382 latent variables
arranged in 5 levels. There are 279, 72, 21, 8 and 2 latent variables on levels 1, 2, 3, 4
and 5 respectively. Table 2 shows part of the hierarchical structure. Table representation
is used instead of the tree structure to save space. We see that, for example, the word
variables bayesian, posterior, prior, bayes, priors, framework, gamma and normal are
connected to the level-1 latent variable Z106; the level-1 latent variables Z106-Z112 are
connected to the level-2 latent variable Z203; the level-2 latent variables Z201-Z205 are
connected to the level-3 latent variable Z301; the level-3 latent variables Z301-Z302 are
connected to a latent variable at level 4 (which is not shown); and so on.

The words are displayed in different font sizes to indicate their mutual information
with the level-1 latent variables to which they are connected. For example, Z106 is
more strongly correlated with bayesian than normal. The names of the latent variables
are also displayed in different font sizes to indicate their mutual information with the
parent latent variables at the next higher level.

1 http://www.cs.nyu.edu/˜roweis/data.html
2 http://www.cs.princeton.edu/˜blei/downloads/
3 http://qwone.com/˜jason/20Newsgroups/

http://www.cse.ust.hk/~lzhang/ltm/index.htm
http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.princeton.edu/~blei/downloads/
http://qwone.com/~jason/20Newsgroups/
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Table 2. Part of the hierarchical latent tree model obtained by HLTA on the NIPS data

Z301(2)

Z201(2)
Z101(2): likelihood conditional log em maximum ix derived mi ; Z102(2): statistical
statistics ; Z103(2): density densities

Z202(2) Z104(2): entropy divergence mutual ; Z105(2): variables variable

Z203(3)

Z106(3): bayesian posterior prior priors bayes framework gamma normal ; Z107(2):
probabilistic distributions probabilities ; Z108(2): inference gibbs sampling
generative uncertainty ; Z109(2): mackay independent averaging ensemble uniform ; Z110(2):
belief graphical variational ; Z111(2): monte carlo ; Z112(2): uk ac generalisation

Z204(3)

Z113(2): mixture mixtures latent fit ; Z114(3): multiple hierarchical individual
sparse missing multi significant index represent hme ; Z115(2): experts expert gating ; Z116(2):
weighted sum weighting ; Z117(2): scale scales scaling

Z205(3)

Z118(3): estimate estimation estimated estimates estimating measure deviation ; Z119(2):
estimator true unknown ; Z120(2): sample samples ; Z121(2): assumption
assume assumptions assumed ; Z122(2): observations observation observed ; Z123(2):
computed compute

Z302(3)

Z206(4)

Z124(2): gaussian covariance variance gaussians program provided ; Z125(2): subspace
dimensionality orthogonal reduction ; Z126(3): component components principal
pca decomposition ; Z127(2): dimension dimensional dimensions vectors ; Z128(2): matrix
matrices diagonal ; Z129(2): exp cr exponential ; Z130(2): noise noisy robust ; Z131(2):
projection projections pursuit operator ; Z132(2): radial basis rbf ; Z133(2): column
row ; Z134(2): eq fig proc

Z207(2)
Z135(2): eigenvalues eigenvalue eigenvectors identical ; Z136(2): ij product wij bi ;
Z137(2): modes mode

Z208(2)
Z138(2): mixing coefficients inverse joint smooth smoothing ; Z139(2): blind ica
separation sejnowski natural concept ; Z140(2): sources source

Z303(2)
Z209(2) Z141(2): classification classifier classifiers nn ; Z142(2): class classes
Z210(2) Z143(2): discriminant discrimination fisher ; Z144(2): labels label labeled
Z211(2) Z145(2): handwritten digit digits le ; Z146(2): character characters handwriting

Z304(3)

Z212(3)
Z147(2): regression regularization generalization risk ; Z148(3): vapnik svm
margin support vc dual fraction ; Z149(2): kernel kernels ; Z150(2): empirical drawn
theoretical ; Z151(2): xi yi xj zi xl gi

Z213(2)
Z152(2): validation cross bias ; Z153(2): stopping pruning criterion obs ; Z154(2):
prediction predictions predict predicted predictive

Z214(2) Z155(2): machines machine boltzmann ; Z156(2): boosting adaboost weak

We can see from Table 2 that many level-1 latent variables represent thematically
meaningful patterns. Examples include Z101 (likelihood conditional log etc.), Z106
(Bayesian posterior prior etc.), Z108 (inference gibbs sampling etc.), Z111 (monte
carlo), Z124 (gaussian covariance variance etc.), Z125 (subspace dimensionality
orthogonal reduction), Z139 (blind ica separation), Z145 (handwritten digit), Z148
(vapnik svm margin support etc.), Z155 (machines Boltzmann), Z156 (boosting
adaboost).

For latent variables at level 2 and level 3, their effective semantic bases are given in
Table 3. For latent variables at different levels, a higher level latent variable represents
a partition of documents based on a wider selection of words than its children. It is
usually about a general concept that has several aspects. We see in Table 3 that Z301 is
about probabilistic method, while its children cover likelihood (Z201), entropy (Z202),
Bayesian (Z203), mixture (Z204) and estimate (Z205). Z302 is about the use of
Gaussian covariance matrix, while its children cover PCA (Z206), eigenvalue/vector
(Z207), and blind source separation (Z208); Z303 is about classification, while its
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Table 3. Effective semantic bases of level-2 and level-3 latent variables

Z301 likelihood bayesian statistical conditional posterior probabilistic density log mixture prior bayes

distributions estimate priors

Z201 likelihood statistical conditional density log em statistics

Z202 entropy variables variable divergence

Z203 bayesian posterior probabilistic prior bayes distributions priors inference monte carlo probabilities

Z204 mixture mixtures experts hierarchical latent expert weighted sparse

Z205 estimate estimation estimated estimates estimating estimator sample true samples observations

Z302 gaussian covariance matrix variance eigenvalues eigenvalue exp gaussians pca principal matrices

eigenvectors component noise

Z206 gaussian matrix covariance pca variance principal subspace dimensionality projection exp gaussians

Z207 eigenvalues eigenvalue eigenvectors

Z208 blind mixing ica coefficients inverse separation sources joint

Z303 classification classifier classifiers class classes handwritten discriminant digit

Z209 classification classifier classifiers class

Z210 discriminant label labels discrimination

Z211 handwritten digit character digits characters

Z304 regression validation vapnik svm machines regularization margin generalization boosting kernel

kernels risk empirical

Z212 regression vapnik svm margin kernel regularization generalization kernels support xi risk

Z213 validation cross stopping pruning prediction predictions

Z214 machines boosting machine boltzmann

children cover discriminant and handwritten digit/character recognition. Z304 is about
regression, while its children cover SVM, cross validation, and boosting.

Topics. Each latent variable in the model represents a soft partition of the documents.
Each state of the latent variables corresponds to a cluster in the partition and can be
interpreted as a topic. As discussed in Section 3.3, we characterize the topic using words
from its effective semantic base with the highest discerning indices, that is, the words
that best distinguish the documents in the cluster from documents not in the cluster. For
non-background topics, those usually are the words that appear with high probability in
the cluster and low probability in other clusters.

Take Z301 as an example. It has two states and hence partitions the documents into
two clusters. The characterizations of the two clusters are given in Table 4. We see that,
for Z301=S1, the words likelihood, Bayesian and statistical are placed at the beginning
of the list. They have the highest discerning indices. Their probabilities of occurring
in Z301=S1 are 0.58, 0.45 and 0.73 respectively, which are significantly larger than
those for Z301=S0, which are 0.06, 0.03, and 0.24 respectively. On the other hand, the
word estimate also occurs with high probability (0.64) in Z301=S1. However, it has low
discerning index for Z301=S1 because its probability in the other cluster Z301=S0 is
also relatively high (0.25). It is clear from the characterization that the topic Z301=S1 is
about general probabilistic method, while Z301=S0 is a background topic. They consist
of 34% and 66% of the documents respectively.

Table 4 shows characterizations of topics given by ten latent variables. The three
level-3 latent variables (i.e., Z301, Z303 and Z304) are chosen because they are about
the basic topics covered in a typical machine learning course, namely probabilistic
methods, classification and regression. The others are selected level-2 and level-1
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Table 4. Example topics found by HLTA on NIPS data. For each topic, only the words in
the effective semantic base are shown. The order and font sizes of words in each topic are
determined by discerning index. The font sizes of word occurrence probabilities simply reflect
their magnitude.

Z301
S0 (66%)

likelihood 0.06 bayesian 0.03 statistical 0.24 conditional 0.05 posterior 0.04 density 0.13

probabilistic 0.06 log 0.18 bayes 0.02 mixture 0.06 prior 0.15 estimate 0.25 distributions 0.15 priors 0.01

S1 (34%)
likelihood 0.58 bayesian 0.45 statistical 0.73 conditional 0.4 posterior 0.37 density 0.52
probabilistic 0.42 log 0.58 bayes 0.29 mixture 0.4 prior 0.54 estimate 0.64 distributions 0.52 priors 0.22

Z203
S1 (19%)

probabilistic 0.48 distributions 0.58 probabilities 0.49 bayesian 0.4 prior 0.52
posterior 0.32 bayes 0.26 priors 0.17 inference 0.22 carlo 0.05 monte 0.05

S2 (11%)
bayesian 0.75 monte 0.54 carlo 0.53 posterior 0.64 inference 0.58 prior 0.79 priors

0.41 bayes 0.47 probabilistic 0.54 distributions 0.63 probabilities 0.54
Z113 S1 (19%) mixture 0.76 mixtures 0.53 latent 0.17 fit 0.34

Z303 S1 (30%)
classification 0.81 classifier 0.48 classifiers 0.38 class 0.69 classes 0.53 handwritten 0.22

discriminant 0.15 digit 0.2

Z211 S1 (13%) handwritten 0.58 digit 0.52 character 0.54 digits 0.42 characters 0.31

Z145 S1 (12%) handwritten 0.72 digit 0.64 digits 0.52
Z146 S1 (9%) character 0.84 characters 0.49 handwriting 0.24

Z304
S1 (25%)

regression 0.36 validation 0.33 regularization 0.21 generalization 0.5 risk 0.15 empirical

0.31 svm 0 boosting 0 machines 0.1 vapnik 0.09 margin 0.04 kernels 0.07 kernel 0.11

S2 (7%)
machines 0.76 svm 0.42 vapnik 0.53 margin 0.44 boosting 0.3 kernel 0.55 kernels 0.4

regression 0.49 validation 0.42 generalization 0.62 regularization 0.29 empirical 0.44 risk 0.21

Z213 S1 (19%) validation 0.57 cross 0.55 stopping 0.24 pruning 0.18 prediction 0.48 predictions 0.35

Z156 S1 (3%) boosting 0.9 adaboost 0.35 weak 0.39

latent variables under the level-3 latent variables. The background topics are not
shown except Z301=S0. These topics show clear thematic meaning. We can see that
Z301=S1 is about probabilistic method in general, while its subtopics Z203=S2 is
about Bayesian-monte-carlo, Z203=S1 is about probabilistic method not involving
monte-carlo, Z113=S1 is about mixture models. Topic Z303=S1 is about classification,
while its subtopics Z211=S1 is about digit/character classification, Z145=S1 is about
handwritten digit classification, Z146=S1 is about handwritten character classification.
Z304=S1 is about regression in general, while its subtopics Z304=S2 is about SVM,
Z213=S1 is about cross validation and Z156=S1 is about boosting.

Comparisons with LDA. To better appreciate the topics found by HLTA, it is
necessary to compare them with those detected by the LDA approach [3]. In this
section, we run LDA on the NIPS data to find 150 topics. The documents are
represented as bags-of-words in LDA, while as binary vectors in HLTA.

Table 5 shows the LDA topics that are the closest in meaning to the HLTA topics
shown in Table 4. They are selected using the top three words of the HLTA topics. The
LDA topic that best matches the HLTA topic is selected manually. The LDA approach
produces flat topics. It does not organize the topics in a hierarchical structure as in
HLTA. Thus in this section, we focus on the topics. Compared the HLTA topics with
the LDA topics, we can find that they differ in two fundamental ways. First, an HLTA
topic corresponds to a collection of documents. As such, we can talk about the size of a
topic, which is the fraction of documents belonging to the topic among all documents.
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Table 5. LDA topics that correspond to the HLTA topics in Table 4. Only the top eight words are
shown for each topic.

HLTA topic LDA topic
Z301=S1 T-25: bayesian .16 prior .13 posterior .10 evidence .04 bayes .04 priors .03 log .03 likelihood .03

Z203=S2 T-97: gaussian .23 monte .07 carlo .07 covariance .05 variance .05 processes .04 williams .03 exp .02

Z113=S1 T-78: mixture .13 em .12 likelihood .11 gaussian .05 log .04 maximum .04 mixtures .04 latent .03

Z303=S1 T-139: classification .20 class .19 classifier .15 classifiers .09 classes .09 decision .03 bayes .02 labels .01

Z211=S1 T-120: recognition .18 character .09 digit .06 characters .06 digits .05 handwritten .05 segmentation .04 le .02

Z304=S1 T-84: regression .15 risk .08 variance .08 bias .08 confidence .04 empirical .03 smoothing .03 squared .03

Z304=S2 T-141: kernel .16 support .09 svm .05 kernels .05 machines .04 margin .03 vapnik .02 feature .02

Z213=S1 T-146: cross .21 validation .19 stopping .07 generalization .05 selection .04 early .04 fit .02 statistics .02

Z156=S1 T-45: margin .09 hypothesis .08 weak .07 boosting .06 generalization .05 adaboost .04 algorithms .03 base .02

In Table 4, the numbers shown in parenthesis indicate the size of each HLTA topic.
On the other hand, LDA treats each document as a mixture of topics. It is possible
to aggregate the topic proportions of all documents. However, the aggregated quantity
would be the fraction of words belonging to that topic, not the fraction of documents.

A more important difference lies in the way topics are characterized. When picking
words to characterize a topic, HLTA uses discerning index which considers two factors:
(1) the word occurrence probability in documents belonging to the topic, and (2) the
word occurrence probability in documents not on the topic. This results in clear and
clean topic characterizations. The consideration of the second factor implies that HLTA
is unlikely to pick polysemous words when characterizing a topic, because such words
are used in multiple topics. This should not affect topic identification as long as there
are words peculiar to each topic. In contrast, LDA considers only the first factor, and
the resulting topic characterizations are sometimes not clear.

For example, we first look at Z113 which has two states. According to Table 4, the
words mixture, mixtures and latent have the highest discerning indices in Z113=S1,
which indicate they occur with high probability in Z113=S1 and low probability in
background topic (i.e., Z113=S0). Z113=S1 is clearly about mixture models. The
closest LDA topic is Topic T-78. As shown in Table 5, the leadings words in the topic
are mixture, em and likelihood. The words em and likelihood are not characteristic of
mixture models because they are used more often in other situations such as the
handling of missing data. The HLTA characterization seems cleaner.

For Z156 in Table 4, the words with highest discerning indices in Z156=S1 are
boosting, adaboost and weak, which occur with high probability in Z156=S1 and low
probability in background topic (i.e., Z156=S0). Z156=S1 is clearly about boosting.
The closest LDA topic is Topic T-45. As shown in Table 5, the leadings words in the
topic are margin, hypothesis, weak, generalization and boosting. It is not clear to us at
the first sight what this topic is about.

Comparisons with HLDA. The HLDA [2] approach, which is an extension of LDA,
can also learn topic hierarchies from data. To compare HLTA with HLDA, we trained a
three-level HLDA4 on NIPS data. The hyperparameters of HLDA are set according to

4 The code of HLDA is obtained from: http://www.cs.princeton.edu/˜blei/
topicmodeling.html

http://www.cs.princeton.edu/~blei/topicmodeling.html
http://www.cs.princeton.edu/~blei/topicmodeling.html
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Table 6. Part of the topic hierarchy produced by HLDA on NIPS data. Only the top ten words are
shown for each topic.

[Topic L3] units hidden layer unit weight test noise inputs trained patterns

[Topic L2-0] gaussian likelihood density log mixture em prior posterior estimate estimation

[Topic L1-0] kernel xi pca kernels feature regression matrix support svm principal

[Topic L1-1] evidence bayesian gaussian posterior prior approximation field mackay variational exp

[Topic L1-2] validation cross generalization stopping variance examples early prediction estimator penalty

[Topic L1-3] sampling carlo bayesian monte prior predictive posterior inputs priors loss

[Topic L1-4] class bayes matrix coding learned max nearest classes classifier classifiers

[Topic L1-5] propagation belief inference jordan nodes tree variational variables product graphical

[Topic L2-1] recognition image feature block le images address features handwritten digit

[Topic L1-6] characters character recognition net field segmentation fields word digits window

[Topic L1-7] image images digits digit transformation convex pixel generative object control

[Topic L2-2] regression image classification representation mixture prediction capacity selection weight classifier

[Topic L1-8] adaboost cost boosting margin potential algorithms ct hypothesis base weak

[Topic L1-9] transform pca dimension coding reduction mixture image images reconstruction grid

the settings used in [2]. Table 6 shows part of the topic hierarchy. Only the root topic
(i.e., Topic-L3) and the topics that match the HLTA topics in Table 4 are presented.

A comparison of Tables 4 and 6 suggests that the thematic meaning of the topic
hierarchy given by HLDA is not as clear as that given by HLTA. For example, we can
first look at Topic L2-0 in Table 6. The top words of Topic L2-0 are gaussian,
likelihood, density and log. It can be interpreted as a topic about probabilistic methods.
Most subtopics of Topic L2-0 are about probabilistic methods, e.g., Topic L1-1
(evidence-bayesian-gaussian-posterior) and Topic L1-3 (sampling-carlo-bayesian
-monte). However, there are also subtopics that are not about probabilistic methods. In
particular, Topic L1-2 (validation-cross-generalization-stopping) is about cross
validation. It can hardly be viewed as a subtopic of probabilistic methods. In contrast,
all the subtopics of the HLTA topic Z301=S1 are about probabilistic methods.

As another example, consider the HLDA topics Topic L1-6 (characters-character
-recognition-net) and Topic L1-7 (image-images-digits-digits). They can be interpreted
as “character recognition” and “digit recognition” respectively. However, the meaning
of their parent topic, i.e., Topic L2-1 (recognition-image-feature-block), is not clear to
us. The HLTA topics Z145=S1 (handwritten-digit-digits) and Z146=S1 (character
-characters-handwriting), as shown in Table 4, are about the same topics as Topic L1-7
and Topic L1-6. They seem to give better characterizations of the topics. More
importantly, they are subtopics of Z303=S1 (classification-classifier-classifiers-class)
and Z211=S1 (handwritten-digit-character-digits), which is clearly reasonable.

In summary, in HLTA, the topics at higher level are more general topics since they
are defined on a larger semantic base. A subtopic, on the other hand, is defined on a
subset of the semantic base of its parent topic. Thus the subtopics in HLTA are more
specific topics. They are semantically close to their parent topics since they share part
of the semantic base. Compared to HLDA topics in Table 6, the parent topic and child
topics in HLTA, as shown in Table 4, show higher semantic closeness.
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Topic Semantic Coherence. To quantitatively compare the quality of topics found by
LDA, HLDA and HLTA on NIPS data, we compute their topic coherence scores [14].
The topic coherence score for topic t is defined as

C(t,W (t)) =
M∑

m=2

m−1∑
l=1

log
D(w

(t)
m , w

(t)
l ) + 1

D(w
(t)
l )

, (4)

where W (t) = {w(t)
1 , ..., w

(t)
M } are the top M words used to characterize topic t, D(wi)

is the document frequency of word wi and D(wi, wj) is the co-document frequency
of words wi and wj . Document frequency is the number of documents containing the
words. Given two collections of topics, the one with higher average topic coherence is
regarded as better. For comparability, all topics from the two collections should be of
the same length, that is, characterized by the same number (i.e., M ) of words.

For HLTA, it produced 140 non-background topics by latent variables from levels 2,
3 and 4. We consider two scenarios in terms of the number of words we use to
characterize the topics. In the first scenario, we set M=10. The level-2 topics are
excluded in this scenario because the semantic bases of some level-2 latent variables
consist of fewer than 10 words. As a result, there are only 47 topics. In the second
scenario, we set M=4. Here all the 140 topics are included. LDA was instructed to find
47 and 140 topics for the two scenarios respectively. HLDA produced 179 topics. For
comparability, 47 and 140 topics were sampled for the two scenarios respectively.

The average coherence of the topics produced by the three methods are given in Table
7. we see that the value for HLTA is significantly higher than those for LDA and HLDA
in both scenarios. The statistics suggest that HLTA has found, on average, thematically
more coherent topics than LDA and HLDA.

Table 7. Average topic coherence for topics found by LDA, HLDA and HLTA on NIPS data

M NUMBER OF TOPICS AVG. COHERENCE

HLTA(L3-L4) 10 47 -47.26
LDA 10 47 -55.38

HLDA-S 10 47 -62.83
HLDA 10 179 -63.32

HLTA(L2-L3-L4) 4 140 -5.89
LDA 4 140 -7.81

HLDA-S 4 140 -7.97
HLDA 4 179 -7.98

4.2 Likelihood Comparison

Having compared HLTA, LDA and HLDA in terms of the topics they produce, we
next compare them as methods for text modeling. The comparison is in terms of per-
document held-out log likelihood. For compatibility, LDA was run on both the count
data and the binary version data. The results on the count data are denoted as LDA-
C-100. For the binary data, several possibilities were tried for the number of topics,
namely 20, 40, 60 and 80. For HLDA, the hyperparameters are set according to the
settings used in [2]. For HLTA, three possibilities were tried for the UD-test threshold
δ, namely 1, 3 and 5, which are suggested by [10].
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Table 8. Per-document held-out log likelihood for HLTA, HLDA and LDA on test data. Results
are averaged over five-fold cross validation.

JACM NIPS NEWSGROUP

HLTA-1 -226±6 -394± 3 -113±1
HLTA-3 -226±6 -394± 3 -113±1
HLTA-5 -226±6 -394± 3 -113±1
HLDA -220±39 -529±23 -98±8

LDA-20 -489±20 -1229±18 -197±2
LDA-40 -498±20 -1240±17 -199±2
LDA-60 -505±20 -1250±18 -199±2
LDA-80 -510±21 -1257±18 -199±2

LDA-C-100 -819±37 -3413± 35 -289±6

The results are given in Table 8. They show that HTLA and HLDA performed much
better than LDA on all the data sets in the sense that the models they produced are
much better in predicting unseen data than those obtained by LDA. The differences
become larger when LDA was run on count data (last row of Table 8) rather than
binary data. HLTA is better than HLDA on the NIPS data. However, HLDA is slightly
better than HLTA on the other two data sets. In terms of running time, HLDA and
HLTA are significantly slower than LDA. For example, for the binary version NIPS
data, LDA took about 3.5 hours, while HLTA and HLDA took about 17 hours and 68
hours respectively.

5 Related Work

There are some other methods for learning latent tree models. We refer the readers to
[15] for a detailed survey. Most of the methods are designed for density estimation [6],
latent structure discovery [5] and multi-dimensional clustering [4]. None of these
methods are designed for topic detection. More importantly, these methods do not
provide a principled way to extract the topics from the model when they are applied on
text data.

HLTM also resembles hierarchical clustering. However, there are fundamental
differences between the two models. First, an HLTM is a probabilistic graphical model
which allows inference among variables, while the structure given by traditional
hierarchical clustering is not. Second, an HLTM can be also seen as a clustering tool
which clusters the data points and variables simultaneously, while hierarchical
clustering can only be used to cluster either data points or variables.

6 Conclusions and Future Directions

We propose a new method called HLTA for topic detection. The idea is to model
patterns of word co-occurrence and co-occurrence of those patterns using a
hierarchical latent tree model. Each latent variable in HLTM represents a soft partition
of documents. The document clusters in each partition are interpreted as topics. Each
topic is characterized using the words that occur with high probability in documents
belonging to the topic and occur with low probability in documents not belonging to
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the topic. Empirical results indicate that HLTA can identify rich and thematically
meaningful topics of various generality. In addition, HLTA can determine the number
of topics automatically and organize topics into a hierarchy. Currently, HLTA treats
words as binary variables. One future direction is to extend it so that it can handle
count data. A second direction is to develop faster algorithms for learning hierarchical
latent tree models.
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Abstract. A number of priors have been recently developed for Bayesian esti-
mation of sparse models. In many applications the variables are simultaneously
relevant or irrelevant in groups, and appropriately modeling this correlation is
important for improved sample efficiency. Although group sparse priors are also
available, most of them are either limited to disjoint groups, or do not infer spar-
sity at group level, or fail to induce appropriate patterns of support in the poste-
rior. In this paper we tackle this problem by proposing a new framework of prior
for overlapped group sparsity. It follows a hierarchical generation from group
to variable, allowing group-driven shrinkage and relevance inference. It is also
connected with set cover complexity in its maximum a posterior. Analysis on
shrinkage profile and conditional dependency unravels favorable statistical be-
havior compared with existing priors. Experimental results also demonstrate its
superior performance in sparse recovery and compressive sensing.

1 Introduction

Sparsity is an important concept in high-dimensional statistics [1] and signal processing
[2] that has led to important application successes. It reduces model complexity and
improves interpretability of the result, which is critical when the number of explanatory
variables p in the problem is much higher than the number of training instances n.

From a Bayesian perspective, the sparsity of a variable βi is generally achieved by
shrinkage priors, which often take the form of scale mixture of Gaussians: βi|zi ∼
N (0, zi). zi indicates the relevance of βi, and a broad range of priors on zi has been
proposed. For example, the spike and slab prior [3, 4] uses a Bernoulli variable for zi,
which allows βi to be exactly zero with a positive probability. Absolutely continuous
alternatives also abound [5], e.g., the horseshoe prior [6, 7] which uses half-Cauchy on
zi and offers robust shrinkage in the posterior. Interestingly, the maximum a posterior
(MAP) inference often corresponds to deterministic models based on sparsity-inducing
regularizers, e.g. Lasso [8] when zi has a gamma distribution [9, 10]. In general, the
log-posterior can be non-concave [11, 12].

However, many applications often exhibit additional structures (correlations) in vari-
ables rather than being independent. Groups may exist such that variables of each group
are known a priori to be jointly relevant or irrelevant for data generation. Encoding this

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 273–289, 2014.
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knowledge in the prior proves crucial for improved accuracy of estimation. The sim-
plest case is when the groups are disjoint, and they form a partition of the variable set.
This allows the relevance indicator zi of all variables in each group to be tied, form-
ing a group indicator which is endowed with a zero-centered prior as above [13, 14].
In particular, a gamma prior now yields the Bayesian group Lasso [15], and its MAP
is the group Lasso [16] which allows group information to provably improve sample
efficiency [17]. More refined modeling on the sparsity within each group has also been
explored [18, 19]. We overview the related background in Section 2.

However, groups do overlap in many practical applications, e.g. gene regulatory net-
work in gene expression data [20], and spatial consistency in images [21]. Techniques
that deal with this scenario start to diverge. A commonly used class of method employs
a Markov random field (MRF) to enforce smoothness over the relevance indicator of all
variables within each group [22–24]. However, this approach does not infer relevance
at the group level, and does not induce group-driven shrinkage.

Another popular method is to directly use the Bayesian group Lasso, despite the loss
of hierarchical generative interpretation due to the overlap. Its MAP inference has also
led to a rich variety of regularizers that promote structured sparsity [21, 25], although
statistical justification for the benefit of using groups is no longer rich and solid. More-
over, Bayesian group Lasso tends to shrink a whole group based on a complexity score
computed from its constituent variables. So the support of the posterior β tends to be
the complement of the union of groups, rather than the union of groups as preferred by
many applications.

To address these issues, we propose in Section 3 a hierarchical model by placing
relevance priors on groups only, while the variable relevance is derived (probabilisti-
cally) from the set of groups that involve it. This allows direct inference of group rel-
evance, and is amenable to the further incorporation of hierarchies among groups. All
previously studied sparsity-inducing priors on relevance variables can also be adopted
naturally, leading to a rich family of structured sparse prior. The MAP of our model
turns out exactly the set cover complexity, which provably reduces sample complexity
for overlapped groups [26].

Although in appearance our model simply reverses the implication of relevance in
Bayesian group Lasso, it amounts to considerably more desirable shrinkage profile [7].
In Section 4, detailed analysis based on horseshoe prior reveals that set cover priors
retain the horseshoe property in its posterior, shrinking reasonably for small response
and diminishing when response grows. Surprisingly, these properties are not preserved
by the other structured alternatives. Also observed in set cover prior is the favorable
conditional dependency between relevance variables, which allows them to “explain-
away” each other through the overlap of two groups they each belong to. Experimental
results in Section 5 confirm that compared with state-of-the-art structured priors, the
proposed set cover prior outperforms in sparse recovery and compressive sensing on
both synthetic data and real image processing datasets.

Note different from [27] and [28], we do not introduce regression variables that ac-
count for interactions between features, i.e. βij for xixj .
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2 Preliminaries on Sparse Priors

In a typical setting of machine learning, we are given n training examples {xi, yi}ni=1,
where xi ∈ Rp represents a vector of p features/variables, and yi is the response that
takes value in R for regression, and in {−1, 1} for classification. Our goal is to learn a
linear model β ∈ Rp, or a distribution of β, such that x′

iβ agrees with yi. This problem
is usually ill-posed, especially when p  n as considered in this work. Therefore prior
assumptions are required and here we consider a popular prior that presumesβ is sparse.
In Bayesian methods, the compatibility between yi and x′

iβ is enforced by a likeli-
hood function, which is typically normal for regression (i.e., y|x,β∼N (x′β, σ2)), and
Bernoulli for classification. σ is a pre-specified constant.

The simplest form of sparsity is enforced on each element ofβ independently through
priors on βi. Most existing models use a scalar mixture of normals that correspond to
the graphical model zi → βi [27, 29, 30]:

π(βi) =

∫
N (βi; 0, σ

2
0zi)f(zi)dzi. (1)

Here σ2
0 can be a constant, or endowed with a prior. Key to the model is the latent

conditional variance zi, which is often interpreted as relevance of the variable βi. Larger
zi allows βi to take larger absolute value, and by varying the mixing distribution f of
zi we obtain a range of priors on β, differing in shrinkage profile and tail behavior. For
example, the spike and slab prior [3, 4] adopts

fSS(zi) = p0δ(zi − 1) + (1 − p0)δ(zi), (2)

where δ is the Dirac impulse function and p0 is the prior probability that βi is included.
Absolutely continuous distributions of zi are also commonly used. An inverse gamma
distribution on zi leads to the Student-t prior, and automatic relevance determination
[ARD, 9] employs f(zi) ∝ z−1

i . Indeed, a number of sparsity-inducing priors can be
unified using the generalized beta mixture [5, 31]:

zi|λi ∼ Ga(a, λi), and λi ∼ Ga(b, d). (3)

Here Ga stands for the gamma distribution with shape and rate (inverse scale) parame-
ters. In fact, zi follows the generalized beta distribution of the second kind:

GB2(zi; 1, d, a, b) = za−1
i (1 + zi/d)

−a−bd−a/B(a, b), (4)

where B(a, b) is the beta function. When a = b = 1
2 , it yields the horseshoe prior

on β [6]. The normal-exponential-gamma prior and normal-gamma prior [32] can be
recovered by setting a = 1 and b = d → ∞ respectively. In the intersection of these two
settings is the Bayesian Lasso: π(β)∼ exp(−‖β‖1) [10], where ‖β‖p := (

∑
i |βi|p)

1
p

for p ≥ 1.
To lighten notation, in the case of spike and slab we will also use zi to represent

Bernoulli variables valued in {0, 1}. So integrating over zi ≥ 0 with respect to the
density in (2) can be interpreted as weighted sum over zi ∈ {0, 1}.
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Fig. 1. Group spike and
slab

Fig. 2. Nested spike
and slab

Fig. 3. Group counting
prior for spike and slab

2.1 Disjoint Groups

In many applications, prior knowledge is available that the variables can be partitioned
into disjoint groups gi ⊆ [p] := {1, . . . , p}, and all variables in a group tend to be pos-
itively correlated, i.e. relevant or irrelevant simultaneously. Denote G = {g1, g2, . . .}.
[13] generalized the spike and slab prior to this scenario by introducing a scalar param-
eter of relevance for each group: ug ∼ fSS, and extending (1) into a scalar mixture of
multivariate normal

π(βg) =

∫
N (βg;0,Λgug)f(ug)dug ∀ g ∈ G. (5)

Here βg encompasses all variables in the group g, and Λg is a diagonal matrix of vari-
ance. See Figure 1 for the factor graph representation that will facilitate a unified treat-
ment of other models below. As a result, correlation is introduced among all variables
in each group. Using exactly the same density f as above (but on ug here), one may
recover the group horseshoe, group ARD [14], and Bayesian group Lasso [15]:

π(β) ∝ exp(−‖β‖G), where ‖β‖G =
∑

g
‖βg‖p . (6)

Common choices of p are 2 and ∞. To further model the sparsity of different variables
within a group, [18] proposed a nested spike and slab model as shown in Figure 2. The
key idea is to employ both Bernoulli variables zi and ug that encode the relevance of
variables and groups respectively, and to define the spike and slab distribution of βi

conditional on ug = 1. In particular, zi must be 0 if ug = 0, i.e. group g is excluded.
This relation is encoded by a factor between zi and ug:

h(zi, ug) =

⎧⎨⎩pzi0 (1− p0)
1−zi if ug = 1

I(zi = 0) if ug = 0
, ∀i ∈ g. (7)

Here I(·) = 1 if · is true, and 0 otherwise.
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3 Structured Prior with Overlapped Groups

In many applications, groups may overlap and fully Bayesian treatments for this setting
have become diverse.

Group Counting Prior (GCP). A straightforward approach is to ignore the fact of
overlapping, and simply use the group Lasso prior in (6). This idea is also used in
deterministic overlapped group Lasso [16]. When p = ∞, the norm in (6) is the Lovász
extension of the group counting penalty [33] which, in the case of spike and slab prior
on βi, can be written in terms of the binary relevance indicator z := {zi} ∈ {0, 1}p

Ω(z) =
∏
g∈G

p
ug

0 (1− p0)
1−ug , where ug = max

i:i∈g
zi. (8)

So a group is deemed as relevant (ug = 1) if, and only if, any variable in the group
is relevant (zi = 1). The factor graph is given in Figure 3, with a Bernoulli potential
on ug. However, since this prior promotes ug to be 0 (i.e. zero out all variables in the
group g), the support of β in the posterior tends to be the complement of a union of
groups. Although this may be appropriate for some applications, the support is often
more likely to be the union of groups.

MRF Prior. Instead of excluding groups based on its norm, the MRF prior still places
sparsity-inducing priors on each variable βi, but further enforces consistency of rele-
vance within each group via zi. For example, assuming the variables are connected via
an undirected graph where each edge (i, j) ∈ E constitutes a group, [22, 34] extended
the spike and slab prior by incorporating a pairwise MRF over the relevance indicators
zi: exp(−

∑
(i,j)∈E RijI(zi 
= zj)).

As a key drawback of the above two priors, they do not admit a generative hierarchy
and perform no inference at the group level. To address these issues, we next construct
a hierarchical generative model which explicitly characterizes the relevance of both
groups and variables, as well as their conditional correlations.

3.1 Set Cover Prior (SCP)

To better clarify the idea, we first focus on spike and slab prior where sparsity can be
easily modeled by Bernoulli variables zi and ug. Recall the nested model in Figure 2,
where each group has a Bernoulli prior, and each variable zi depends on the unique
group that it belongs to. Now since multiple groups may be associated with each node,
it will be natural to change the dependency into some arithmetics of these group indi-
cators. In Figure 4, we show an example with1

h(zi, {ug : i ∈ g}) = I(zi ≤ max{ug : i ∈ g}). (9)

This means a variable can be relevant only if any group including it is also relevant.
Although this appears simply reversing the implication relations between group and
variable in the group counting prior, it does lead to a hierarchical model and enjoys
much more desirable statistical properties as will be shown in Section 4.

1 This defines a potential in an MRF; there is no explicit prior on zi.
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Fig. 4. Set cover prior for
spike and slab

group 
hierarchy 

Fig. 5. Set cover prior for spike
and slab with tree hierarchy. uj

corresponds to gj . h = I(u4 ≥
max{u2, u3}).

Fig. 6. Set cover
prior using horseshoe.
r2 = Ga(u2;

1
2
, 1
2
). h2 =

Ga(z2;
1
2
,max{u1, u2}).

By endowing a Bernoulli prior on all ug with Pr(ug = 1) = p0 < 0.5 (i.e. favoring
sparsity), we complete a generative prior of β in a spike and slab fashion. Given an
assignment of z, it is interesting to study the mode of {ug}, which is the solution to

min
{ug}

∑
g

ug, s.t. ug ∈ {0, 1},
∑
g:i∈g

ug ≥ zi, ∀ i. (10)

This turns out to have exactly the same complexity as set cover [26]. It seeks the
smallest number of groups such that their union covers the set of variables. Hence we
will call this prior as “set cover prior”. This optimization problem is NP-hard in general,
and some benefit in sample complexity is established by [26].

A number of extensions follow directly. Additional priors (e.g. MRF) can be placed
on variables zi. The max in (9) can be replaced by min, meaning that a variable can be
selected only if all groups involving it are selected. Other restrictions such as limiting
the number of selected variables in each (selected) group can also be easily incorporated
[35]. Moreover, groups can assume a hierarchical structure such as tree, i.e. g ∩ g′ ∈
{g, g′, ∅} for all g and g′. Here the assumption is that if a node g′ is included, then all
its ancestors g ⊃ g′ must be included as well [21, 36]. This can be effectively enforced
by adding a factor h that involves each group g and its children ch(g) (see Figure 5):

h(g, ch(g)) = I(ug ≥ maxg′∈ch(g) ug′). (11)

When the groups are disjoint, both set cover and group counting priors are equivalent
to group spike and slab.

3.2 Extension to Generalized Beta Mixture

The whole framework is readily extensible to the continuous sparse priors such as horse-
shoe and ARD. Using the interpretation of zi and ug as relevance measures, we could
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simply replace the function I that tests equality by the Dirac impulse function δ, and
apply various types of continuous valued priors on zi and ug. This is indeed feasible for
GCP, e.g. encode the continuous variant of (8) using the generalized beta mixture in (3)

h(ug, {zi : i ∈ g}) = δ(ug −max{zi : i ∈ g}), h(ug) = GB2(ug; 1, d, a, b). (12)

Here more flexibility is available when zi is continuous valued, because the max can
be replaced by multiplication or summation, which promotes or suppresses sparsity
respectively [27, Theorem 1, 2].

However problems arise in SCP if we directly use

zi = max
g:i∈g

ug or min
g:i∈g

ug, where ug ∼ GB2(ug; 1, d, a, b), (13)

because it leads to singularities in the prior distribution on z. To smooth the prior, we
resort to arithmetic combinations of the intermediate variables in the generative process
of the prior on ug . Note that in (3), d is a scale parameter, while a and b control the
behavior of the distribution of zi close to zero and on the tail, respectively. A smaller
value of λi places more probability around 0 in zi, encouraging a sparser βi. So a natural
way to combine the group prior is:

zi|{ug} ∼ Ga(a,maxg:i∈g ug), and ug ∼ Ga(b, d), (14)

where max allows zi to pick up the most sparse tendency encoded in all ug of the asso-
ciated groups2. Changing it to min leads to adopting the least sparse one. The resulting
graphical model is given in Figure 6. Here ug has a gamma distribution, playing the
same role of relevance measure as in the normal-gamma prior on βi [32]. The SCP con-
structed in (14) is no longer equivalent to the group priors in Section 2.1, even when the
groups are disjoint.

In fact, the arithmetics that combine multiple groups can be carried out at an even
higher level of the generative hierarchy. For example, in the horseshoe prior where
a = b = 1/2, one may introduce an additional layer of mixing over the scale parameter
d, making it an arithmetic combination of ug of the associated groups. We leave this
possibility for future exploration.

Notice [38] used a partial least squares approach based on an MRF of binary selectors
of groups and variables. However their method is confined to spike and slab, because
these two groups of indicators are not coupled by the potential function, but by imposing
external restrictions on the admissible joint assignment that is valued in {0, 1}. It also
brings much challenge in MCMC inference.

4 Analysis of Structured Sparse Prior

Although the above three types of priors for structured sparsity appear plausible, their
statistical properties differ significantly as we study in this section. Here in addition to
the robust shrinkage profile studied by [6], we also compare the conditional correlation
among variables when the groups overlap.

2 See more detailed discussions in Appendix A of the full paper [37] on how a greater value of
the second argument (rate, i.e. inverse scale) of a Gamma distribution induces higher sparsity
in βi.
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Consider p = 3 variables, and there are two groups {1, 2} and {2, 3} which overlap
on variable 2. The design matrix X is the 3 × 3 identity matrix I (n = 3), and the
observation y|β ∼ N (Xβ, I) = N (β, I). Let σ0 = 1. Then the expected posterior
value of β given z has a closed form E[βi|zi, yi] = (1−κi)yi where κi = 1/(1+zi) is a
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random shrinkage coefficient. The distribution of κi is determined entirely by the prior
on zi, and a larger value of κi means a greater amount of shrinkage towards the origin.

As a concrete example, we study the horseshoe prior with a = b = d = 1/2.
GCP and SCP use the formulae (12) and (14), respectively. The MRF prior attaches a
horseshoe potential on each βi, and in addition employs a smooth MRF exp(−α(z1 −
z2)

2 − α(z2 − z3)
2) with α = 0.01. We use a Gaussian MRF because there is no need

of shrinking the difference.

4.1 Conditional Dependency (Explain-Away Effect)

We first consider the conditional distribution of κ3 given κ1 and κ2. Since it is hard to
visualize a function of three variables, we show in panel (a) of Figures 7 to 9 the mean
E[κ3|κ2, κ1] under the three priors. Clearly the mean of κ3 does not change with κ1 in
GCP and MRF prior, because z3 is simply independent of z1 given z2. The mean of κ3

grows monotonically with κ2, as MRF favors small difference between z2 and z3 (hence
between κ2 and κ3), and in SCP smaller κ2 clamps a larger value of max{z2, z3},
shifting more probability mass towards greater z3 which results in a lower mean of κ3.

Interestingly when κ2 is large, the SCP allows the mean of κ3 to decrease when κ1

grows. See, e.g., the horizonal line at κ2 = 0.8 in Figure 7a. To interpret this “explain-
away” effect, first note a greater value of κ2 means z2 has a higher inverse scale. Due
to the max in (14), it implies that either u1 or u2 is large, which means κ1 or κ3 is
large since variables 1 and 3 belong to a single group only. Thus when κ1 is small,
κ3 receives more incentive to be large, while this pressure is mitigated when κ1 itself
increases. On the other hand when κ2 is small, κ1 and κ3 must be both small, leading
to the flat contour lines.

4.2 Joint Shrinkage

Next we study the joint density of κ1 and κ2 plotted in panel (b). SCP exhibits a 2-D
horseshoe shaped joint density in Figure 7b, which is desirable as it prefers either large
shrinkage or little shrinkage. In GCP, however, the joint density of (κ1, κ2) concen-
trates around the origin in Figure 8b. Indeed, this issue arises even when there are only
two variables, making a single group. Fixing κ2 and hence z2, max{z1, z2} does not
approach 0 even when z1 approaches 0 (i.e. κ1 approaches 1). So it is unable to exploit
the sparsity-inducing property of horseshoe prior which places a sharply growing den-
sity towards the origin. The joint density of MRF is low when κ1 and κ2 are both around
the origin, although the marginal density of each of them seems still high around zero.

4.3 Robust Marginal Shrinkage

Finally we investigate the shrinkage profile via the posterior mean E[β|y], with z inte-
grated out. Let q(z) be proportional to the prior density on z (note the group counting



282 X. Liu, X. Zhang, and T. Caetano

and MRF priors need a normalizer). Then E[βi|y] = γ
(1)
i /γ

(0)
i , where for k ∈ {0, 1}

γ
(k)
i =

∫
βk
i q(z)

∏
j

N (βj ; 0, zj)N (yj ;βj, 1)dβjdz, (15)

and
∫

βk
jN (βj ; 0, zj)N (yj ;βj , 1)dβj =

√
1

8π

zkj

(1 + zj)k+
1
2

exp

(
−y2j

2 + 2zj

)
. (16)

Panel (c) of Figures 7 to 9 shows yi−E[βi|yi] (the amount of shrinkage) as a function
of yi, for variables i ∈ {1, 2}. All yj (j 
= i) are fixed to 1. In Figure 7c, Both SCP and
GCP provide valuable robust shrinkage, with reasonable shrinkage when yi is small in
magnitude, and diminishes as yi grows. And as expected, variable 2 shrinks more than
variable 1. In SCP, variable 2 takes the sparser state between variables 1 and 3 via the
max in (14), while in GCP variable 2 contributes to both sparsity-inducing priors of u1

and u2 in (12). Notice that for small y1, GCP is not able to yield as much shrinkage
as SCP. This is because for small y1, z1 is believed to be small, and hence the value of
max{z1, z2} is dominated by the belief of z2 (which is larger). This prevents z1 from
utilizing the horseshoe prior around zero. The case for y2 is similar.

In fact, we can theoretically establish the robust shrinkage of SCP for any group
structure under the current likelihood y|β ∼ N (β, I).

Theorem 1. Suppose SCP uses horseshoe prior in (14) with a = b = 1/2. Then for
any group structure, limyi→∞(yi − E[βi|y]) = 0 with fixed values of {yj : j 
= i}.

Proof. (sketch) The key observation based on (15) and (16) is that E[βi|y] − yi =
∂

∂yi
logF (y) where F (y) is given by∫

z

∏
j

(1 + zj)
−1
2 exp

( −y2
j

2 + 2zj

)
q(z)dz (17)

=

∫
u

∏
j

(∫
zj

(1 + zj)
−1
2 exp

( −y2
j

2 + 2zj

)
Ga(zj ; a,max

g:j∈g
ug)dzj

)∏
g

Ga(ug ; b, d)du

The rest of the proof is analogous to [6, Theorem 3]. The detailed proof is provided in
Appendix B of the longer version of the paper [37]. ��

By contrast, MRF is unable to drive down the amount of shrinkage when the response
yi is large. To see the reason (e.g. for variable 1), note we fix y2 to 1. Since MRF
enforces smoothness between z1 and z2, the fixed value of y2 (hence its associated
belief of z2) will prevent z1 to follow the increment of y1, disallowing z1 to utilize the
heavy tail of horseshoe prior. The amount of shrinkage gets larger when α increases.

To summarize, among the three priors only the set cover prior enjoys all the three
desirable properties namely conditional dependency, significant shrinkage for small ob-
servation, and vanishing shrinkage for large observations.

5 Experimental Results

We next study the empirical performance of SCP, compared with GCP, and MRF priors
[34]. Since the MRF prior therein is restricted to spike and slab, to simplify comparison
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Fig. 10. Recovery rate for sparse signal Fig. 11. Sequential experimental design for
sparse recovery

we also base SCP and GCP on spike and slab. This allows convenient application of ex-
pectation propagation for posterior inference [EP, 39, 40], where all discrete factors are
approximated by Bernoulli messages [34]. At each iteration, messages are passed from
top to the bottom in Figure 4, and back up. Other inference algorithms are also possible,
such as MCMC [e.g., 38], and variational Bayes [41]. Since the Bayesian models used
here are typically multi-modal and the mean of the posterior is generally more impor-
tant, we choose to use EP in our experiment, although it will also be interesting to try
other methods.

Empirically EP always converged within 10 iterations, with change of message fallen
below 1e-4. The loops make it hard to analyze the local or global optimality of EP result.
But in practice, we did observe that with different initializations, EP always converged
to the same result on all experiments, being highly reliable. To give an example of
computational efficiency, in image denoising (Section 5.5, p = n = 4096), it took
only 0.5 seconds per image and per iteration to compute messages related to the prior,
while common techniques for Gaussian likelihood allowed its related messages to be
computed in 1-2 seconds.

As a baseline, we also tried spike and slab prior with non-overlapping groups (GSS)
if reasonable non-overlapping group approximation is available, or even without groups
(SS). Furthermore we consider three state-of-the-art frequentist methods, including
Lasso, group Lasso (GLasso), and coding complexity regularization [CCR, 26]. Groups
are assumed available as prior knowledge.

5.1 Sparse Signal Recovery

We first consider a synthetic dataset for sparse signal reconstruction with p = 82 vari-
ables [42]. {βi} was covered by 10 groups of 10 variables, with an overlap of two
variables between two successive groups: {1, . . . , 10}, {9, . . . , 18}, . . . , {73, . . . , 82}.
The support of β was chosen to be the union of group 4 and 5, with the non-zero entries
generated from i.i.d. Gaussian N (0, 1). We used n = 50 samples, with the elements of
the design matrix X ∈ Rn×p and the noisy measurements y drawn by

Xij
i.i.d.∼ N (0, 1), y = Xβ + ε, εi

i.i.d.∼ N (0, 1). (18)
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Table 1. Recovery error for network sparsity. GSS is not included as disjoint group approximation
is not clear for general graph structure. CCR is also not included since its implementation in [26]
does not allow flexible specification of groups.

SCP GCP MRF SS Lasso GLasso

Jazz 0.264 ± 0.083 0.312 ± 0.068 0.338 ± 0.149 0.398 ± 0.188 0.489 ± 0.101 0.456 ± 0.107

NetScience 0.067 ± 0.005 0.093 ± 0.058 0.167 ± 0.110 0.188 ± 0.113 0.394 ± 0.045 0.383 ± 0.048

Email 0.106 ± 0.025 0.104 ± 0.054 0.243 ± 0.105 0.310 ± 0.130 0.432 ± 0.049 0.420 ± 0.057

C.elegans 0.158 ± 0.034 0.163 ± 0.025 0.184 ± 0.057 0.225 ± 0.101 0.408 ± 0.068 0.394 ± 0.068

We used recovery error as the performance measure, which is defined as ||β̂ −
β||2/||β||2 for the posterior mean β̂. X and β were randomly generated for 100 times,
and we report the mean and standard deviation of recovery error. An extra 10 runs were
taken to allow all models to select the hyper-parameters that optimize the performance
on the 10 runs. This scheme is also used in subsequent experiments.

In Figure 10, SCP clearly achieves significantly lower recovery error than all other
methods. MRF is the second best, followed by GCP. This suggests that when β is gen-
erated over the union of some groups, SCP is indeed most effective in harnessing this
knowledge. Bayesian models for structured sparse estimation also outperform vanilla
Bayesian models for independent variables (SS), as well as frequentist methods (CCR,
Lasso, GLasso),

5.2 Sequential Experimental Design

A key advantage of Bayesian model is the availability of uncertainty estimation which
facilitates efficient sequential experimental design [13]. We randomly generated a data
pool of 10,000 examples based on (18), and initialized the training set with n = 50
randomly selected examples (i.e. revealing their response yi). Then we gradually in-
creased the size of training set up to n = 100. At each iteration, one example was
selected and its response yi was revealed for training. In the random setting examples
were selected uniformly at random, while in sequential experimental design, typically
the example with the highest uncertainty was selected. For each candidate example x,
we used x′V x as the uncertainty measure, where V is the current approximated pos-
terior covariance matrix. The whole experiment was again repeated for 100 times, and
the average recovery error is shown.

In Figure 11, for all models sequential experimental design is significantly more
efficient in reducing the recovery error compared with random design. In particular,
SCP achieves the steepest descent in error with respect to the number of measurements.
This again confirms the superiority of SCP in modeling group structured sparsity in
comparison to GCP and MRF. SS performs worst as it completely ignores the structure.

5.3 Network Sparsity

Following [34] and [43], we next investigate the network sparsity where each node is
a variable and each edge constitutes a group (i.e. all groups have size 2). We tried on
four network structures: Email (p = 1, 133, #edge=5,451), C.elegans (453, 2,015),
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Fig. 12. Recovery error for background subtraction

Jazz (198, 2,742), NetScience (1,589, 2,742).3 See network properties in Table 1. We
picked a subset of edges uniformly at random, and added their two incident nodes to the
support of β. By adjusting the number of selected edges, the size of the support of β is
0.25p, and the nonzero elements in β were sampled from N (0, 1). The design matrix
X and the response y were drawn from (18). We used n = 'p/2( examples as in [43].

The average recovery error of 100 runs is shown in Table 1. Again SCP yields signif-
icantly lower error than all other algorithms, except for a tie with GCP on Email. GCP
outperforms MRF, which in turn defeats all other methods that do not faithfully model
the group structure.

5.4 Background Subtraction

We next consider real-world applications in compressive sensing with overlapped group
sparsity. Here the data generating process is beyond our control. In video surveillance,
the typical configuration of the images are the sparse foreground objects on the static
backgrounds. Our task here is to recover the sparse background subtracted images via
compressive sensing.

Our experimental setting follows [26]4. The spatial consistency is an important prior
knowledge on 2D image signals which has been successfully leveraged in various ap-
plications. Specifically pixels in a spatial neighborhood are likely to be background or
foreground at the same time. Edges connecting pixels to its four neighbors are used in
the MRF prior to encourage the consistency between adjacent pixels. For GSS which
requires no overlap between groups, we simply defined the groups as non-overlapped
3× 3 patches. For the rest structured priors, we defined groups as the overlapped 3× 3
patches. Singleton groups were also added to deal with isolated foreground pixels. Each
image is sized 80 × 80 (p = 6, 400). We varied the number of image (n) from 600 to
2400.

3 Downloaded from http://www-personal.umich.edu/˜mejn/netdata
4 Video from http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

http://www-personal.umich.edu/~mejn/netdata
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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Table 2. PSNR in image denoising. MRF and GSS are not included because in the case of hier-
archical structure, it is not clear how to enforce MRF, or approximate a tree by disjoint groups.

SCP GCP SS Lasso GLasso CCR

House 28.77 ± 0.04 28.13 ± 0.06 27.72 ± 0.06 27.22 ± 0.02 27.24 ± 0.03 27.79 ± 0.04

Lenna 28.27 ± 0.03 27.65 ± 0.02 27.28 ± 0.02 26.95 ± 0.03 27.15 ± 0.01 27.11 ± 0.02

pepperr 26.57 ± 0.03 25.87 ± 0.01 25.75 ± 0.03 25.06 ± 0.05 25.39 ± 0.06 25.51 ± 0.04

Boat 26.80 ± 0.01 26.24 ± 0.01 26.09 ± 0.01 25.65 ± 0.01 26.05 ± 0.02 25.65 ± 0.01

Barbara 24.93 ± 0.02 24.56 ± 0.02 24.43 ± 0.02 24.23 ± 0.01 24.77 ± 0.02 24.34 ± 0.01

Figure 12 shows SCP and GCP achieve significantly lower recovery error than other
methods on any number of measurement. The prior of spatial consistency does help
improve the recovery accuracy, especially when the size of the training set is small.
With sufficient training samples, both structured and non-structured methods can have
accurate recovery. This can be seen by comparing Lasso with GLasso, as well as SCP
with GCP, GSS, and SS. The superiority of SCP and GCP over GSS corroborates the
importance of accommodating more flexible group definitions.

5.5 Image Denoising with Tree-Structured Wavelets

Our last set of experiment examines the effectiveness of structured sparse priors for
modeling hierarchical sparsity. The task is to restore 2D images which are contaminated
by noise via compressive sensing on 2D wavelet basis. The setting is similar to [26]
and [21]. 2D wavelet basis at different resolution levels is used as dictionary to get
sparse representation of images. There is a natural hierarchical structure in the wavelet
coefficients: a basis b can be defined as the parent of all such basis at finer resolution
and whose support is covered by the support of b. Such tree-structured dependency
corresponds to the nature of multi-resolution wavelet analysis and have been proven
empirically effective in sparse representation of signals.

We choose the orthogonal Haar wavelet basis and the classical quad-tree structure
on the 2D wavelet coefficients. We use PSNR := log10(

2552

MSE ) to measure the quality of
recovery. The benchmark set consists of five standard testing images: house, Lenna,
boat, Barbara and pepper. We added Gaussian white noise N (0, 252) to the original
images. The PSNR of the resulting noisy image is around 20. The images were divided
into non-overlapped patches sized 64× 64. Each patch is recovered independently with
six levels of 2D Haar wavelet basis. For each method, we selected the parameters with
the highest PSNR.

The recovery result is shown in Table 2. SCP delivers the highest PSNR in denoising
on all test images, demonstrating the power of hierarchical structure prior to improve
the recovery accuracy. Figure 15 in Appendix C of [37] shows a visual comparison of
the denoising results, and it can be observed that SCP outperforms other methods in
removing noise and preserving details in the image.

6 Conclusion and Discussion

We proposed a framework of set cover prior for modeling structured sparsity with over-
lapped groups. Its behavior is analyzed and empirically it outperforms existing competent
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structured priors. For future work, it will be interesting to further model sparsity within
each group [18, 44]. Extension to other learning tasks is also useful, e.g. multi-task learn-
ing [45, 46].
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Abstract. Kernel selection is critical to kernel methods. Cross-validation
(CV) is a widely accepted kernel selection method. However, the CV
based estimates generally exhibit a relatively high variance and are there-
fore prone to over-fitting. In order to prevent the high variance, we first
propose a novel version of stability, called kernel stability. This stabil-
ity quantifies the perturbation of the kernel matrix with respect to the
changes in the training set. Then we establish the connection between
the kernel stability and variance of CV. By restricting the derived upper
bound of the variance, we present a kernel selection criterion, which can
prevent the high variance of CV and hence guarantee good generaliza-
tion performance. Furthermore, we derive a closed form for the estimate
of the kernel stability, making the criterion based on the kernel stability
computationally efficient. Theoretical analysis and experimental results
demonstrate that our criterion is sound and effective.

1 Introduction

Kernel methods, such as support vector machine (SVM) [36], kernel ridge re-
gression (KRR) [32] and least squares support vector machine (LSSVM) [35],
have been widely used in machine learning and data mining. The performance
of these algorithms greatly depends on the choice of kernel function, hence kernel
selection becomes one of the key issues both in recent research and application
of kernel methods [9].

It is common to select the kernel selection for kernel methods based on the
generalization error of learning algorithms. However, the generalization error is
not directly computable, as the probability distribution generating the data is
unknown. Therefore, it is necessary to resort to estimates of the generalization
error, either via testing on some data unused for learning (hold-out testing or
cross-validation techniques) or via a bound given by theoretical analysis. To de-
rive the theoretical upper bounds of the generalization error, some measures are
introduced: such as VC dimension [36], Rademacher complexity [2], regularized
risk [33], radius-margin bound [36], compression coefficient [26], Bayesian reg-
ularisation [7], influence function [14], local Rademacher complexity [11], and
eigenvalues perturbation [23], etc.
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While there have been many interesting attempts to use the theoretical
bounds of generalization error or other techniques to select kernel functions,
the most commonly used and widely accepted kernel selection method is still
cross-validation. However, the cross-validation based estimates of performance
generally exhibit a relatively high variance and are therefore prone to over-
fitting [19,27,7,8]. To overcome this limitation, we introduce a notion of kernel
stability, which quantifies the perturbation of the kernel matrix when remov-
ing an arbitrary example from the training set. We illuminate that the variance
of cross-validation for KRR, LSSVM and SVM can be bounded based on the
kernel stability. To prevent the high variance of cross-validation, we propose a
novel kernel selection criterion by restricting the derived upper bound of the
variance. Therefore, the kernel chosen by this criterion can avoid over-fitting
of cross-validation. Furthermore, the closed form of the estimate of the kernel
stability is derived, making the kernel stability computationally efficient. Exper-
imental results demonstrate that our criterion based on kernel stability is a good
choice for kernel selection. To our knowledge, this is the first attempt to use the
notion of stability to entirely quantify the variance of cross-validation for kernel
selection.

The rest of the paper is organized as follows. Related work and preliminaries
are respectively introduced in Section 2 and Section 3. In Section 4, we present
the notion of kernel stability, and use this stability to derive the upper bounds
of the variance of cross-validation for KRR, LSSVM and SVM. In Section 5,
we propose a kernel selection criterion by restricting these bounds. In Section
6, we analyze the performance of our proposed criterion compared with other
state-of-the-art kernel selection criteria. Finally, we conclude in the last section.

2 Related Work

Cross-validation has been studied [27,19,3,15] and used in practice for many
years. However, analyzing the variance of cross-validation is tricky. Bengio and
Grandvalet [3] asserted that there exists no universal unbiased estimator of the
variance of cross-validation. Blum et al. [4] showed that the variance of the cross-
validation estimate is never larger than that of a single holdout estimate. Kumar
et al. [20] generalized the result of [4] considerably, quantifying the variance
reduction as a function of the algorithm’s stability. Unlike the above work which
considers the link between the variance of the cross-validation estimate and that
of the single holdout estimate, in this paper we consider bounding the variance
of cross-validation for some kernel methods, such as KRR, LSSVM and SVM,
based on an appropriately defined notion of stability for kernel selection.

The notion of stability has been studied in various contexts over the past years.
Rogers and Wagner [31] presented the definition of weak hypothesis stability.
Kearns and Ron [16] defined the weak-error stability in the context of proving
sanity check bounds. Kutin and Niyogi [21] defined the uniform stability notion;
see also the work of Bousquet and Elisseeff [5]. The notions of mean square
stability and the loss stability were introduced by Kumar et al. [20], which are
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closely related to the leave-one-out cross-validation. Unfortunately, for most of
these notions of stability, proposed to derive the theoretical generalization error
bounds, it is difficult to compute their specific values [28]. Thus, these notions of
stability are hard to be used in practical kernel selection. To address this issue,
we propose a new version of stability, which is defined on a kernel function, are
computationally efficient and practical for kernel selection.

3 Preliminaries and Notations

Let S = {zi = (xi, yi)}ni=1 be a sample set of size n drawn i.i.d from a fixed,
but unknown probability distribution P on Z = X × Y, where X is the input
space and Y is the output space. Let K : X × X → R be a kernel. The repro-
ducing kernel Hilbert space (RKHS) HK associated with K is defined to be the
completion of the linear span of the set of functions {K(x, ·) : x ∈ X} with the
inner product denoted as 〈·, ·〉K satisfying〈

n∑
i=1

αiK(xi, ·),
n∑

i=1

βiK(x′
i, ·)

〉
K

=
n∑

i,j=1

αiβjK(xi,x
′
j).

We assume that |y| ≤ M for all y ∈ Y and K(x, x) ≤ κ for all x ∈ X .
The learning algorithms we study here are the regularized algorithms:

fS := argmin
f∈HK ,b∈R

{
1

|S|
∑
z∈S

�(yi, f(xi) + b) + λ‖f‖2K

}
,

where �(·, ·) is a loss function, λ is the regularization parameter and |S| is the size
of S. KRR, LSSVM, and SVM are the special cases of the regularized algorithms.
For KRR,

b = 0 and �(f(x), y) = (y − f(x))2,

for LSSVM

�(f(x) + b, y) = (y − f(x)− b)2,

and for SVM

�(f(x) + b, y) = max (0, 1− y (f(x) + b)) .

The (empirical) loss of the hypothesis fS on a set Q is defined as

�fS (Q) =
1

|Q|
∑
z∈Q

�(fS(x), y).

Let S1, . . . , Sk be a random equipartition of S into k parts, called folds, with
|Si| =

⌊
n
k

⌋
. We learn k different hypotheses with fS\Si

being the hypothesis
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learned on all of the data except for the ith fold; Let m = (k− 1)k/n be the size
of the training set for each of these k hypotheses. The k-fold cross-validation
hypothesis, fkcv, which picks one of the {fS\Si

}ki=1 uniformly at random. The
(empirical) loss of fkcv is defined as

�fkcv
(S) =

1

k

k∑
i=1

1

|Si|
∑
z∈Si

�(fS\Si
(x), y).

4 Variance Bounds of Cross-Validation

k-fold cross-validation (k-CV) is the most widely accepted method for kernel se-
lection. However, it is known to exhibit a relatively high variance varS (�fkcv

(S)),

var
S

(�fkcv
(S)) = E

S∼Zn

[
�fkcv

(S)− E
S∼Zn

[�fkcv
(S)]

]2
.

Therefore, k-CV is prone to over-fitting [19,27,7,8]. Obviously, varS (�fkcv
(S)) is

not directly computable, as the probability distribution is unknown. In the next
subsection, we will define a new notion of stability to bound varS (�fkcv

(S)).

4.1 Kernel Stability

The way of making the definition of kernel stability is to start from the goal: to
get bounds on the variance of CV and want these bounds to be tight when the
kernel function satisfies the kernel stability.

It is well known that the kernel matrix contains most of the information
needed by kernel methods. Therefore, we introduce a new notion of stability to
quantify the perturbation of the kernel matrix with respect to the changes in
the training set for kernel selection.

To this end, let T = {xi}mi=1 and the ith removed set T i be

T i = {x1, . . . ,xi−1,xi+1, . . . ,xm}.

Denote the kernel matrix K as [K(xi,xj)]
m
i,j=1, and let Ki be the m ×m ith

removed kernel matrix with{
[Ki]jk = K(xj,xk) if j 
= i and k 
= i,

[Ki]jk = 0 if j = i or k = i.

One can see that Ki can be considered as the kernel matrix with respect to the
removed set T i.

Definition 1 (Kernel Stability). A kernel function K is of β kernel stability
if the following holds: ∀xi ∈ X , i = 1, . . . ,m,

∀i ∈ {1, . . . ,m}, ‖K −Ki‖2 ≤ β,

where K and Ki are the kernel matrices with respect to T and T i, respectively.
‖K−Ki‖2 is the 2-norm of [K−Ki], that is, the largest eigenvalue of [K−Ki].
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According to the above definition, the kernel stability is used to quantify the
perturbation of the kernel matrix when an arbitrary example is removed. Differ-
ent from the existing notions of stability, see, e.g., [31,16,5,21,29,12,34] and the
references therein, our proposed stability is defined on the kernel matrix. There-
fore, we can estimate its value from empirical data, which makes this stability
usable for kernel selection in practice.

4.2 Upper Bounds via Kernel Stability

We will show that the kernel stability can yield the upper bounds of the variance
of CV for KRR, LSSVM and SVM.

Kernel Ridge Regression. KRR has been successfully applied to solve re-
gression problems, which is a special case of the regularized algorithms when the
loss function

b = 0 and �(f(x), y) = (f(x)− y)2.

Theorem 1. If the kernel function K is of β kernel stability, then for KRR,

var
S
(�fkcv

(S)) ≤ C1β
2,

where C1 = 8
(
κ2M2

λ3m + κM2

λ2m

)2

.

Proof. The proof is given in Appendix A.

This theorem shows that small β can restrict the value of varS(�fkcv
(S)).

Thus, we can select the kernel which has small β to prevent the over-fitting of
CV caused by the high variance.

Least Squares Support Vector Machine. LSSVM is a popular learning
machine for solving classification problems, its loss function is the square loss

�(f(x) + b, y) = (y − f(x)− b)2.

Theorem 2. If the kernel function K is of β kernel stability, then for LSSVM,

var
S
(�fkcv

(S)) ≤ C2β
2,

where C2 =
(

2(κ+1)2

λ3m + 2(κ+1)
λ2m

)2

.

Proof. The proof is given in Appendix B.

Similar with KRR, this theorem also show that we can choose the kernel
function which has small β to prevent the high variance for LSSVM.
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Support Vector Machine. The loss function of SVM is the hinge loss

�(f(x) + b, y) = max (0, 1− y (f(x) + b)) .

Theorem 3. If the kernel function K is of β kernel stability, then for SVM,

var
S
(�fkcv

(S)) ≤ C3β
1
2

(
1 + C4β

1
4

)2

,

where C3 = 8λ2κ
3
2 and C4 =

[
1
4κ

] 1
4 .

Proof. The proof is given in Appendix C.

The bound we obtain for SVM is different from our bounds for KRR and
LSSVM. This is mainly due to the difference between the hinge loss and the
squared loss.

5 Kernel Selection Criterion

Theorem 1, 2 and 3 show that the variance of CV can be bounded via the
kernel stability. Thus, to prevent over-fitting caused by the high variance, it is
reasonable to use the following criterion for kernel selection:

argmin
K∈K

�fkcv
(S) +

η

n
β,

where η is a trade-off parameter and K is an candidate set of kernel functions.
However, by the definition of the kernel stability, we need to try all the possibil-
ities of the training set to compute β, which is infeasible in practice. We should
estimate it from the available empirical data. Therefore, we consider using the
following kernel stability criterion in practice:

argmin
K∈K

k-KS(K) = �fkcv
(S) +

η

n
· max
i∈{1,...,n}

‖K −Ki‖2.

This criterion consists of two parts: bias and variance. �fkcv
(S) can be considered

as the bias, and maxi∈{1,...,n} ‖K −Ki‖2 is the variance.
To apply this criterion, we should compute ‖K − Ki‖2, which requires the

calculation of the eigenvalues of [K − Ki], i = 1, . . . , n. It is computationally
expensive. Fortunately, this problem can be effectively solved by using the closed
form of ‖K −Ki‖2 given by the following theorem.

Theorem 4. ∀ S ∈ Zn and i ∈ {1, . . . , n},

‖K −Ki‖2 =
Kii +

√
K2

ii + 4
∑n

j=1,j �=i K
2
ji

2
.
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Proof. By the definitions of K and Ki, it is easy to verify that the characteristic
polynomial of [K −Ki] is

det(tI − (K −Ki)) = tn−2(t2 −Kiit−
n∑

j=1,j �=i

K2
ji).

Thus, the eigenvalues of K −Ki is

σ(K −Ki) =

⎧⎨⎩Kii ±
√

K2
ii + 4

∑n
j=1,j �=i K

2
ji

2
,

n−2︷ ︸︸ ︷
0, . . . , 0

⎫⎬⎭ .

So, the largest eigenvalue is

Kii +
√
K2

ii + 4
∑n

j=1,j �=i K
2
ji

2
.

Hence we complete the proof of Theorem 4.

This theorem shows that only O(n2) is needed to compute

max
i∈{1,...,n}

‖K −Ki‖2,

making the criterion based on kernel stability computationally efficient.

Remark 1. Instead of choosing a single kernel, several authors consider combin-
ing multiple kernels by some criteria, called multiple kernel learning (MKL), see,
e.g., [22,1,30,18,25], etc. Our criterion k-KS(K) can also be applied to MKL:

argmin
μ=(μ1,...,μk)

k-KS(Kμ), s.t.‖μ‖p = 1,μ ≥ 0,

where Kμ =
∑k

i=1 μiKi, which can be efficiently solved using gradient-based
algorithms [17]. However, in this paper we mainly want to verify the effective-
ness of our kernel stability criterion. Therefore, in our experiments, we focus on
comparing our criterion with other popular kernel selection criteria.

5.1 Time Complexity Analysis

To compute our kernel stability criterion k-KS(K), we need kF to calculate
�fkcv

(S), where F is the time complexity of training on the data set of size
(k − 1)k/n, n is the size of the training set. We also need O(n2) to compute

max
i∈{1,...,n}

‖K −Ki‖2.

Thus, the overall time complexity of k-KS(K) is

O(kF + n2).
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Remark 2. In our previous work [24], we presented a strategy for approximating
the k-fold CV based on the Bouligand influence function [10]. This approximate
method requires the solution of the algorithm only once, which can dramatically
improve the efficiency. Thus, the time complexity of the approximate k-KS(K)
can reduce to O(F + n2).

6 Experiments

In this section, we will compare our proposed kernel selection criteria (k-KS,
k = 5, 10) with 5 popular kernel selection criteria: 5-fold cross-validation (5-
CV), 10-fold cross-validation (10-CV), the efficient leave-one-out cross-validation
(ELOO) [6], Bayesian regularisation (BR) [7], and the latest eigenvalues per-
turbation criterion (EP) [23]. The evaluation is made on 9 popular data sets
from LIBSVM Data. All data sets are normalized to have zero-means and unit-
variances on every attribute to avoid numerical problems. We use the popular
Gaussian kernels

K(x,x′) = exp

(
−‖x− x′‖22

2τ

)
as our candidate kernels,

τ ∈ {2i, i = −10,−9, . . . , 10}.

For each data set, we have run all the methods 10 times with randomly selected
70% of all data for training and the other 30% for test. The learning machine
we considered is LSSVM.

6.1 Accuracy

In this subsection, we will compare the performance of 5-KS (ours), 10-KS (ours),
5-CV, 10-CV, ELOO, BR and EP. In the first experiment, we set η = 1 (the
parameter of the 5-KS and 10-KS criterion, we will explore the effect of this
parameter in the next experiment). The average test errors are reported in Table
1. The elements in this table are obtained as follows: For each training set and
each regularization parameter1 λ, λ ∈ {10i, i = −4, . . . ,−1}, we choose the
kernel by each kernel selection criterion on the training set, and evaluate the
test error for the chosen parameters on the test set. The results in Table 1 can
be summarized as follows: (a) k-KS gives better results than k-CV on most data
sets, k = 5, 10. In particular, for each λ, k-KS outperforms k-CV on 8 (or more)
out of 9 sets, and also give results closed to results of k-CV on the remaining
set. Thus, it indicates that using the kernel stability to restrict the high variance

1 the value of λ we set seems too small at first sight, but in fact, the regularized
algorithm we considered in this paper is 1

n

∑n
i=1 �(f(xi), yi) + λ‖f‖2K , while other

authors usually ignore 1/n. Therefore, the value of λ in our paper is 1/n time of
that of regularized algorithms other authors considered.
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Table 1. The test errors (%) with standard deviations of 5-KS (ours), 10-KS (ours),
5-CV,10-CV, ELOO, BR and EP. For each training set, each regularization parameter
λ (λ ∈ {10−i, i = −4, . . . ,−1}), we choose the kernel by each kernel selection criterion
on the training set, and evaluate the test error for the chosen kernel on test set.

λ = 0.0001

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.78 ± 2.4 13.23 ± 2.0 15.46 ± 1.6 15.27 ± 1.4 14.30 ± 2.6 14.30 ± 2.6 14.15 ± 2.9
heart 19.01 ± 3.9 18.52 ± 3.1 18.27 ± 3.7 18.17 ± 2.3 18.52 ± 3.4 18.52 ± 3.3 17.83 ± 6.1
ionosphere 4.76 ± 1.5 4.38 ± 1.5 4.67 ± 1.7 4.35 ± 1.9 5.33 ± 2.2 5.13 ± 2.1 6.76 ± 3.9
breast 3.61 ± 0.8 3.41 ± 0.7 3.51 ± 0.6 3.45 ± 0.6 3.41 ± 0.9 3.41 ± 0.9 5.27 ± 1.4
diabetes 23.65 ± 3.7 23.65 ± 3.7 23.83 ± 3.3 23.91 ± 2.9 23.04 ± 2.5 22.96 ± 2.7 30.26 ± 2.3
german 24.60 ± 1.3 24.17 ± 1.2 25.80 ± 1.1 24.67 ± 1.3 24.67 ± 1.4 24.60 ± 1.3 29.67 ± 3.1
liver 26.92 ± 2.5 27.12 ± 2.0 27.50 ± 2.6 26.15 ± 1.0 26.55 ± 1.3 26.73 ± 2.0 30.08 ± 4.7
sonar 14.19 ± 4.0 13.23 ± 3.5 13.87 ± 2.9 12.58 ± 2.4 12.90 ± 4.9 12.90 ± 4.9 17.74 ± 6.7
a2a 18.44 ± 1.0 17.14 ± 0.9 17.94 ± 1.0 15.20 ± 0.6 17.91 ± 1.0 17.34 ± 1.0 18.92 ± 1.5

λ = 0.001

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.30 ± 1.2 12.19 ± 1.3 13.30 ± 0.7 12.30 ± 0.4 14.43 ± 0.9 13.43 ± 0.9 16.29 ± 3.4
heart 18.27 ± 6.7 15.80 ± 4.0 17.80 ± 4.3 15.31 ± 4.2 14.83 ± 4.8 14.07 ± 4.9 20.77 ± 6.3
ionosphere 5.33 ± 1.9 3.81 ± 1.9 5.33 ± 1.9 4.38 ± 1.0 6.48 ± 2.2 6.48 ± 2.2 5.38 ± 4.6
breast 3.61 ± 0.8 3.42 ± 0.8 3.51 ± 0.8 3.22 ± 0.6 3.32 ± 0.8 3.32 ± 0.8 5.56 ± 1.1
diabetes 23.65 ± 2.4 23.48 ± 1.8 23.83 ± 2.3 23.45 ± 2.2 24.22 ± 1.9 23.22 ± 1.9 26.52 ± 0.4
german 25.07 ± 2.4 24.60 ± 2.4 23.93 ± 1.1 23.87 ± 0.9 24.60 ± 2.4 24.67 ± 2.4 25.13 ± 2.1
liver 29.04 ± 3.5 28.46 ± 3.3 27.12 ± 4.6 26.54 ± 1.8 27.12 ± 2.7 26.82 ± 2.6 28.46 ± 3.3
sonar 14.84 ± 6.7 13.87 ± 4.5 11.61 ± 5.9 11.55 ± 5.7 13.55 ± 6.7 13.83 ± 6.8 13.90 ± 7.3
a2a 17.23 ± 1.1 15.51 ± 0.9 17.35 ± 1.0 16.11 ± 1.0 16.91 ± 0.9 16.94 ± 0.9 19.71 ± 1.1

λ = 0.01

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.59 ± 2.0 13.82 ± 1.9 14.98 ± 2.0 13.72 ± 2.0 14.01 ± 2.1 14.01 ± 2.1 16.54 ± 3.4
heart 18.27 ± 2.3 17.78 ± 2.2 18.27 ± 1.6 18.02 ± 0.6 17.28 ± 1.5 17.78 ± 2.0 19.74 ± 6.6
ionosphere 4.95 ± 1.5 4.38 ± 1.2 4.95 ± 1.5 5.14 ± 1.2 5.14 ± 2.1 5.14 ± 2.1 9.52 ± 3.3
breast 3.51 ± 0.7 3.46 ± 0.6 3.80 ± 0.6 3.80 ± 0.6 3.75 ± 1.3 3.41 ± 1.0 7.02 ± 0.8
diabetes 24.00 ± 1.4 22.30 ± 1.3 23.48 ± 1.4 23.83 ± 1.3 23.83 ± 1.7 23.83 ± 1.7 25.83 ± 1.8
german 26.40 ± 0.9 26.33 ± 0.7 26.47 ± 0.9 24.93 ± 0.4 26.87 ± 1.1 26.25 ± 1.5 28.67 ± 1.3
liver 28.85 ± 1.8 25.27 ± 1.2 30.00 ± 2.6 28.65 ± 2.4 28.46 ± 2.3 28.65 ± 2.3 29.42 ± 3.0
sonar 14.52 ± 5.4 13.55 ± 2.9 13.23 ± 4.4 12.23 ± 3.5 12.58 ± 3.8 11.94 ± 4.0 14.74 ± 4.0
a2a 18.88 ± 2.0 17.76 ± 1.1 18.97 ± 1.9 17.82 ± 1.7 18.76 ± 2.1 18.41 ± 2.5 20.15 ± 2.5

λ = 0.1

Method 5-CV 5-KS 10-CV 10-KS ELOO BR EP

australian 14.30 ± 2.1 13.53 ± 1.8 14.30 ± 2.1 14.20 ± 0.7 13.91 ± 1.4 13.41 ± 1.7 14.54 ± 2.9
heart 19.51 ± 3.2 19.26 ± 2.9 19.26 ± 3.4 18.26 ± 2.9 19.51 ± 3.2 19.26 ± 3.4 22.65 ± 4.0
ionosphere 12.76 ± 10.5 8.38 ± 3.7 9.14 ± 4.2 8.28 ± 3.5 9.33 ± 4.3 9.14 ± 4.6 12.95 ± 3.9
breast 3.92 ± 1.4 3.22 ± 1.3 3.62 ± 1.3 3.12 ± 1.4 3.41 ± 1.1 3.21 ± 1.6 4.98 ± 1.0
diabetes 29.65 ± 1.8 29.83 ± 2.0 29.74 ± 2.1 29.48 ± 1.8 29.57 ± 1.7 29.57 ± 1.7 35.65 ± 1.4
german 31.21 ± 1.7 27.40 ± 1.5 27.40 ± 1.4 26.51 ± 1.2 25.40 ± 1.1 29.40 ± 1.6 31.40 ± 1.4
liver 33.46 ± 7.4 31.08 ± 7.0 33.08 ± 8.0 32.42 ± 6.3 31.85 ± 8.6 38.65 ± 5.8 33.08 ± 8.0
sonar 27.81 ± 9.6 26.06 ± 9.3 27.42 ± 9.3 27.10 ± 8.7 26.77 ± 9.3 26.77 ± 9.3 27.10 ± 5.0
a2a 24.68 ± 1.7 22.18 ± 1.5 25.68 ± 1.9 22.68 ± 1.8 24.68 ± 1.7 24.31 ± 0.8 23.21 ± 1.7
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Fig. 1. The average test errors using 5-KS and 10-KS on different η. The regularization
parameter λ is set as 0.001 (in Table 1, one can see that for most data sets, λ = 0.001
can achieve good results. Thus, we only consider setting λ = 0.001). For each training
set, each η, we choose the kernel by 5-KS and 10-KS kernel selection criteria on the
training set, and evaluate the test errors for the chosen parameters on test set.

of cross-validation can guarantee good generalization performance; (b) k-KS is
better than BR on most data sets. In particular, for each λ, k-KS outperforms
k-CV on 6 (or more) out of 9 sets; (c) BR is comparable or better than ELOO
on most data sets; (d) The performances of the 5-KS and 10-KS are comparable.

6.2 Effect of the Parameter η

In this experiments, we will explore the effect of the η. The average test errors
on different η are given in Figure 1. For each training set, each η, we choose
the kernel by 5-KS and 10-KS kernel selection criteria on the training set, and
evaluate the test errors for the chosen parameters on test set. It turns out that
η is robust, and the test errors are not very sensitive w.r.t η ∈ [2−2, 25] on most
data sets. Moreover, we find that η ∈ [2−2, 25] is a good choice for k-KS. Thus,
we can select η ∈ [2−2, 25] in practice.
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7 Conclusion

We propose a novel kernel selection criterion via a newly defined concept of kernel
stability, which can prevent over-fitting of cross-validation (CV) caused by high
variance. We illuminate that the variance of CV for KRR, LSSVM and SVM can
be bounded with the kernel stability, so we can use this stability to control the
variance of CV to avoid over-fitting. Moreover, we derive a closed form of the
estimate of the kernel stability, making the kernel selection criterion based on
the kernel stability computationally efficient and practically useful. Finally, our
kernel selection criterion is theoretically justified and experimentally validated.
To our knowledge, this is the first attempt to use the notion of stability to control
the variance of CV for kernel selection in kernel methods.

Future work includes extending our method to other kernel based methods
and multiple kernel learning, and using the notion of the kernel stability to derive
the generalization error bounds for kernel methods.

Acknowledgments. The work is supported in part by the National Natural
Science Foundation of China under grant No. 61170019.

Appendix A: Proof of Theorem 1

Lemma 1 (Proposition 1 in [13]). Let h′ denote the hypothesis returned
by KRR when using the approximate kernel matrix K ′. Then, the following
inequality holds for all x ∈ X :

|h′(x)− h(x)| ≤ κM

λ2m
‖K ′ −K‖2.

Definition 2 (Loss stability [20]). The loss stability of a learning algorithm
A trained on m examples and with respect to a loss � is defined as

lsm,�(A) = ET :|T |=m,z′,z

[(
�′A(T )(z)− �′

A(T z′)(z)
)2
]
,

where T z′
denote the set of examples obtained by replacing an example chosen

uniformly at random from T by z′. A learning algorithm A is γ-loss stable if
lsm,�(A) ≤ γ.

Lemma 2 (Theorem 1 in [20]). Consider any learning algorithm A that is
γ-loss stable with respect to �. Then

var
S
(�fkcv

(S)) ≤ 1

k
var
S
(�fS\S1

(S1)) +

(
1− 1

k

)
γ.

Proof (of Theorem 1). Note that fT i(x) is the hypothesis returned by KRR using
Ki. According to the definition of β kernel stability, we have ‖K −Ki‖2 ≤ β.
By Lemma 1,

|fT (x)− fT i(x)| ≤ κM

λ2m
‖Ki −K‖2 ≤ βκM

λ2m
. (1)
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Since fT (x) =
∑m

i=1 αiK(x,xi) = kxα, where α = [K +mλI]−1y and kx =
(K(x,x1), . . . ,K(x,xm))T. Thus, we have

|fT (x)| = |kT
xα| = |kx[K +mλI]−1y|

≤ ‖kx‖‖y‖‖[K +mλI]−1‖2

≤ κ
√
mM

√
m

mλ

=
κM

λ
.

(2)

Thus, ∀z ∈ Z, ∀ T ∈ Zm and ∀i ∈ {1, . . . ,m},

|�fT (z)− �f
Ti
(z)|

= |(fT (x)− y)2 − (fT i(x)− y)2|
= |(fT (x)− fT i(x))(fT (x) + fT i(x)− 2y)|

≤
(
βκM

λ2m

)
·
(
2κM

λ
+ 2M

)
.

(3)

According to Lemma 2 in [20], we have

lsm,�(A) ≤ ET,z′,z

[(
�A(T )(z)− �A(T z′)(z)

)2
]
. (4)

So, from (3), ∀T, ∀z, ∀z′,
(
�fT (z)− �f

Tz′ (z)
)2

≤

≤
(∣∣�fT (z)− �fTi (z)

∣∣+ ∣∣∣�fTi (z)− �A(T z′)(z)
∣∣∣)2

≤
(
2β

(
2κ2M

λ3m
+

2κM2

λ2m

))2

= C1β
2.

Thus, according to (4), we have

lsm,�(A) ≤ C1β
2 = γ. (5)

According to Lemma 5 in [20], we have

var
S
(�fS\S1

(S1)) = cov(�fS\S1
(S1), �fS\S1

(S1))

= ES\S1,z′
1,z2

[(
�′fS\S1

(z2)− �′f
(S\S1)

z′
1

(z2)

)2
]

= lsm,�(A)

≤ C1β
2 = γ (According to (5)).

(6)

Substituting (5) and (6) into Lemma 2, we complete the proof of Theorem 1.
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Appendix B: Proof of Theorem 2

Proof (of Theorem 2). For LSSVM,

fT (x) = kT
xα+ b = k̃xM

−1ỹ,

where

k̃x = (K(x,x1), . . . ,K(x,xm), 1), ỹ = [y1, . . . , ym, 0]T

and

M =

[
K +mλI 1

1T 0

]
,

Thus, it is easy to verify that

|fT (x)− fT i(x)| = |k̃x(M
−1ỹ −M−1

i ỹ)|,

where

Mi =

[
Ki +mλI 1

1T 0

]
.

Thus,

|fT (x)− fT i(x)| ≤ ‖k̃x‖‖M−1 −M−1
i ‖2‖ỹ‖

≤
√
mκ2 + 1‖M−1 −M−1

i ‖
√
m

≤ m(κ+ 1)‖M−1(M −Mi)M
−1
i ‖2

≤ m(κ+ 1)‖M−1‖2‖M −Mi‖2‖M−1
i ‖2

≤ m(κ+ 1)
‖M −Mi‖2

m2λ2

≤ κ+ 1

mλ2
β.

Similar with the proof of Eq (2), we can obtain fT (x) ≤ κ+1
λ . Thus, we have

|�fT (z)− �fTi (z)| = |(fT (x)− y)2 − (fT i(x)− y)2|
= |(fT (x)− fT i(x))(fT (x) + fT i(x)− 2y)|

≤
(
κ+ 1

mλ2
β

)(
2κ+ 2

λ
+ 2

)
.

Similar with the proof of (5) and (6), it is easy to verify that

lsm,�(A) ≤ C2β
2 = γ

and

var
S
(�fS\S1

(S1)) ≤ C2β
2 = γ.

From Lemma 2, we prove Theorem 2.
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Appendix C: Proof of Theorem3

Lemma 3 (Proposition 2 in [13]). Let h′ denote the hypothesis returned
by SVMs when using the approximate kernel matrix K ′. Then, the following
inequality holds for all x ∈ X :

|h′(x)− h(x)| ≤
√
2λκ

3
4 ‖K ′ −K‖

1
4
2

[
1 +

[
‖K ′ −K‖2

4κ

] 1
4

]
.

Proof (of Theorem 3). Note that fT i(x) is the hypothesis returned by SVM
using the ith removed kernel matrix Ki. By Lemma 3 and the definition of β
kernel stability,

|fT (x)− fT i(x)| ≤
√
2λκ

3
4β

1
4

[
1 +

[
β

4κ

] 1
4

]
.

Since the hinge loss � is 1-Lipschitz, so ∀z, T, z′

|�fT (z)− �fTi (z)| ≤
√
2λκ

3
4β

1
4

[
1 +

[
β

4κ

] 1
4

]
.

Similar with the proof of (5) and (6), we can obtain that

lsm,�(A) ≤ C3β
1
2

(
1 + C3β

1
4

)2

= γ

and

var
S
(�fS\S1

(S1)) ≤ C3β
1
2

(
1 + C3β

1
4

)2

= γ.

Thus, Theorem 3 follows from substituting the above two equations to Lemma 2.

References

1. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the
SMO algorithm. In: Proceedings of the 21st International Conference on Machine
Learning (ICML 2004), pp. 41–48 (2004)

2. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research 3, 463–482 (2002)

3. Bengio, Y., Grandvalet, Y.: No unbiased estimator of the variance of k-fold cross-
validation. Journal of Machine Learning Research 5, 1089–1105 (2004)

4. Blum, A., Kalai, A., Langford, J.: Beating the hold-out: Bounds for k-fold and
progressive cross-validation. In: Proceedings of the 12nd Annual Conference on
Computational Learning Theory (COLT 1999), pp. 203–208 (1999)

5. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learn-
ing Research 2, 499–526 (2002)

6. Cawley, G.C.: Leave-one-out cross-validation based model selection criteria for
weighted LS-SVMs. In: Proceeding of the International Joint Conference on Neural
Networks (IJCNN 2006), pp. 1661–1668 (2006)



304 Y. Liu and S. Liao

7. Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selection via
Bayesian regularisation of the hyper-parameters. Journal of Machine Learning Re-
search 8, 841–861 (2007)

8. Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent
selection bias in performance evaluation. Journal of Machine Learning Research 11,
2079–2107 (2010)

9. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-
eters for support vector machines. Machine Learning 46(1-3), 131–159 (2002)

10. Christmann, A., Messem, A.V.: Bouligand derivatives and robustness of support
vector machines for regression. Journal of Machine Learning Research 9, 915–936
(2008)

11. Cortes, C., Kloft, M., Mohri, M.: Learning kernels using local Rademacher com-
plexity. In: Advances in Neural Information Processing Systems 25 (NIPS 2013),
pp. 2760–2768. MIT Press (2013)

12. Cortes, C., Mohri, M., Pechyony, D., Rastogi, A.: Stability of transductive regres-
sion algorithms. In: Proceedings of the 25th International Conference on Machine
Learning (ICML 2008), pp. 176–183 (2008)

13. Cortes, C., Mohri, M., Talwalkar, A.: On the impact of kernel approximation on
learning accuracy. In: Proceedings of the 13rd International Conference on Artificial
Intelligence and Statistics (AISTATS 2010), pp. 113–120 (2010)

14. Debruyne, M., Hubert, M., Suykens, J.A.: Model selection in kernel based re-
gression using the influence function. Journal of Machine Learning Research 9,
2377–2400 (2008)

15. Geras, K.J., Sutton, C.: Multiple-source cross-validation. In: Proceedings of the
30th International Conference on Machine Learning (ICML 2013), pp. 1292–1300
(2013)

16. Kearns, M.J., Ron, D.: Algorithmic stability and sanity-check bounds for leave-
one-out cross-validation. Neural Computation 11(6), 1427–1453 (1999)

17. Keerthi, S.S., Sindhwani, V., Chapelle, O.: An efficient method for gradient-based
adaptation of hyperparameters in SVMmodels. In: Advances in Neural Information
Processing Systems 19 (NIPS 2007), pp. 673–680. MIT Press (2007)

18. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: lp-norm multiple kernel learning.
Journal of Machine Learning Research 12, 953–997 (2011)

19. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: Proceedings of the 14th International Conference on Artificial
Intelligence (IJCAI 1995), pp. 1137–1143 (1995)

20. Kumar, R., Lokshtanov, D., Vassilvitskii, S., Vattani, A.: Near-optimal bounds
for cross-validation via loss stability. In: Proceedings of the 30th International
Conference on Machine Learning (ICML 2013), pp. 27–35 (2013)

21. Kutin, S., Niyogi, P.: Almost-everywhere algorithmic stability and generalization
error. In: Proceedings of the 18th Conference in Uncertainty in Artificial Intelli-
gence (UAI 2002), pp. 275–282 (2002)

22. Lanckriet, G.R.G., Cristianini, N., Bartlett, P.L., Ghaoui, L.E., Jordan, M.I.:
Learning the kernel matrix with semidefinite programming. Journal of Machine
Learning Research 5, 27–72 (2004)

23. Liu, Y., Jiang, S., Liao, S.: Eigenvalues perturbation of integral operator for kernel
selection. In: Proceedings of the 22nd ACM International Conference on Informa-
tion and Knowledge Management (CIKM 2013), pp. 2189–2198 (2013)

24. Liu, Y., Jiang, S., Liao, S.: Efficient approximation of cross-validation for kernel
methods using Bouligand influence function. In: Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML 2014 (1)), pp. 324–332 (2014)



Preventing Over-Fitting of Cross-Validation with Kernel Stability 305

25. Liu, Y., Liao, S., Hou, Y.: Learning kernels with upper bounds of leave-one-out
error. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management (CIKM 2011), pp. 2205–2208 (2011)

26. Luxburg, U.V., Bousquet, O., Schölkopf, B.: A compression approach to support
vector model selection. Journal of Machine Learning Research 5, 293–323 (2004)

27. Ng, A.Y.: Preventing “overfitting” of cross-validation data. In: Proceeding of the
14th International Conference on Machine Learning (ICML 1997), pp. 245–253
(1997)

28. Nguyen, C.H., Ho, T.B.: Kernel matrix evaluation. In: Proceedings of the 20th In-
ternational Joint Conference on Artifficial Intelligence (IJCAI 2007), pp. 987–992
(2007)

29. Poggio, T., Rifkin, R.M., Mukherjee, S., Niyogi, P.: General conditions for predic-
tivity in learning theory. Nature 428(6981), 419–422 (2004)

30. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of
Machine Learning Research 9, 2491–2521 (2008)

31. Rogers, W.H., Wagner, T.J.: A finite sample distribution-free performance bound
for local discrimination rules. The Annals of Statistics 6, 506–514 (1978)

32. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in
dual variables. In: Proceedings of the 15th International Conference on Machine
Learning (ICML 1998), pp. 515–521 (1998)

33. Schölkopf, B., Smola, A.J.: Learning with kernels. MIT Press, Cambridge (2002)
34. Shalev-Shwartz, S., Shamir, O., Srebro, N., Sridharan, K.: Learnability, stability

and uniform convergence. Journal of Machine Learning Research 11, 2635–2670
(2010)

35. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers.
Neural Processing Letters 9(3), 293–300 (1999)

36. Vapnik, V.: The nature of statistical learning theory. Springer (2000)



Experimental Design in Dynamical System

Identification: A Bandit-Based Active Learning
Approach

Artémis Llamosi1,4, Adel Mezine1, Florence d’Alché-Buc1,3, Véronique Letort2,
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Abstract. This study focuses on dynamical system identification, with
the reverse modeling of a gene regulatory network as motivating appli-
cation. An active learning approach is used to iteratively select the most
informative experiments needed to improve the parameters and hidden
variables estimates in a dynamical model given a budget for experiments.
The design of experiments under these budgeted resources is formalized
in terms of sequential optimization. A local optimization criterion (re-
ward) is designed to assess each experiment in the sequence, and the
global optimization of the sequence is tackled in a game-inspired setting,
within the Upper Confidence Tree framework combining Monte-Carlo
tree-search and multi-armed bandits.

The approach, called EDEN for Experimental Design for parameter
Estimation in a Network, shows very good performances on several re-
alistic simulated problems of gene regulatory network reverse-modeling,
inspired from the international challenge DREAM7.

Keywords: Active learning, experimental design, parameter estima-
tion, Monte-Carlo tree search, Upper Confidence Tree, ordinary differ-
ential equations, e-science, gene regulatory network.

1 Introduction

A rising application field of Machine Learning, e-science is concerned with mod-
eling phenomena in e.g. biology, chemistry, physics or economics. The main goals
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of e-science include the prediction, the control and/or the better understanding
of the phenomenon under study. While black-box models can achieve prediction
and control goals, models consistent with the domain knowledge are most de-
sirable in some cases, particularly so in domains where data is scarce and/or
expensive.

This paper focuses on the identification of dynamical systems from data, with
gene regulatory network reverse modeling as motivating application [26]. We
chose the framework of parametric ordinary differential equations (ODE) [18,11]
whose definition is based on the domain knowledge of the studied field. Our
goal is restricted to parametric identification. Formally, it is assumed that the
structure of the ODE model is known; the modeling task thus boils down to
finding its m-dimensional parameter vector θ. Setting the ODE parameter val-
ues, also referred to as reverse-modeling, proceeds by solving an optimization
problem on IRm, with two interdependent subtasks. The first one is to define
the target optimization criterion; the second one is to define the experimental
setting, providing evidence involved in the optimization process.

Regarding the first subtask, it must be noticed that parametric ODE iden-
tification faces several difficulties: i) the behavior described by the ODE model
is hardly available in closed form when the ODE is nonlinear and numerical
integration is required to identify the parameters, ii) the experimental evidence
is noisy, iii) the data is scarce due to the high costs of experiments, iv) in some
cases the phenomenon is partially observed and therefore depends on hidden
state variables. To overcome at least partially these difficulties, several estima-
tion methods have been employed using either frequentist [11] or Bayesian in-
ference [27]. In case of hidden variables, Expectation-Maximization approaches
and filtering approaches with variants devoted to nonlinear systems such as the
Unscented Kalman Filter (UKF) [31] and the Extended Kalman Filter [37] have
been applied to ODE estimation.

Overall, the main bottleneck for parameter estimation in complex dynami-
cal systems is the non-identifiability issue, when different parameter vectors θ
might lead to the same response under some experimental stimuli1. The non-
identifiability issue is even more critical when models involving a high-dimensional
parameter vector θ must be estimated using limited evidence, which is a very
common situation. To mitigate the non-identifiability of parameters and hid-
den states in practice, the e-scientist runs complementary experiments and gets
additional observations. Ideally, these observations show some new aspects of
the dynamical behavior (e.g. the knock-out of a gene in an organism), thereby
breaking the non-identifiability of parameters. The selection of such (expensive)
complementary experiments is referred to as design of experiments (DOE). The
point is to define the optimal experiments in the sense of some utility function,
usually measuring the uncertainties on θ (including the non-identiabilities), and
depending on the experiment, the data observed from it and the quality of esti-
mates produced by some chosen estimation procedure. For instance, the utility

1 See [32] for a presentation of non-identifiability issues, beyond the scope of this
paper.
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function can refer to the (trace of) the covariance matrix of the parameter es-
timate. DOE has been thoroughly studied from a statistical point of view for
various parameter estimation problems (see [36,16,25]), within a frequentist or
a Bayesian framework [10,28]. Usual definitions of utility include functions of
Fisher information in the frequentist case [35] or of the variance of the esti-
mated posterior distribution in the Bayesian case [5]. In this work, we focus
on the case of sequential experimental design [33,6], which is the most realistic
situation for experimentations in a wet laboratory.

The limitations of current standard sequential DOE is twofold. Firstly, it
seldom accounts for the cost of the experiments and the limited budget constraint
on the overall experiment campaign. Secondly and most importantly, it proceeds
along a myopic strategy, iteratively selecting the most informative experiment
until the budget is exhausted.

The contribution of the present paper is to address both above limitations,
formulating DOE as an active learning problem. Active learning [12,13,14,3]
allows the learner to ask for data that can be useful to improve its performance
on the task at hand. In this work, we consider active learning as a one-player
game similarly to the work of [34] devoted to supervised learning and propose a
strategy to determine an optimal set of experiments complying with the limited
budget constraint. The proposed approach is inspired by the Upper Confidence
Tree (UCT) [24,34], combining Monte-Carlo tree search (MCTS) [7] and multi-
armed bandits [9]. Formally, a reward function measuring the utility of a set
of experiments is designed, and UCT is extended to yield the optimal set of
experiments (in the sense of the defined reward function) aimed at the estimation
of parameters and hidden variables in a multivariate dynamical system.

The approach is suitable for any problem of parameter estimation in ODE
where various experiments can be defined: those experiments can correspond to
the choice of the sampling time of observation, the initial condition in which the
system is primary observed or some intervention on the system itself. In this
work, the approach is illustrated considering the reverse modeling of gene regu-
latory networks (GRN) in systems biology [11,26]. GRN are dynamical systems
able to adapt to various input signals (e.g. hormones, drugs, stress, damage to
the cell). GRN identification is a key step toward biomarkers identification [4]
and therapeutical targeting [23].

After an introduction of the problem formalization, the paper gives an overview
of the proposed approach, based on an original reward function and extending
the UCT approach. A proof of concept of the presented approach on three re-
alistic reverse-modeling problems, inspired by the international DREAM7 [15]
challenge, is then presented in the application section.

2 Problem Setup

We consider a dynamical system whose state at time t is the d-dimensional vector
x(t)T = [x1(t) . . . xd(t)] and whose dynamics are modeled by the following first-
order ODE:

ẋ(t) = f(x(t),u(t); θ) , (1)
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where ẋ(t) = dx(t)
dt denotes the first order derivative of x(t) with respect to time,

function f is a non linear mapping, θ is the m-dimensional parameter vector, u(t)
is an exogenous input to the system. Let us first assume that we partially observe
its behavior given some initial condition x(0) = x0 and with some neutral input
u(t) = g0(t), e.g. without any intervention (as defined below). Let H be the
observation model, typically a projection of IRd in a lower dimensional space
IRp (p < d), Y0 = (y0

tk
)k=0,...,n−1, a time series of n p-dimensional observations

and (εtk)k=0,...,n−1, n i.i.d realizations of a p-dimensional noise. For sake of
simplicity, ytk (resp. εtk) will be noted yk (resp. εk). Given these assumptions,
the observations and the states of the system [31] can now be expressed as
follows: given k = 0, . . . , n− 1:

x(0) = x0

x(tk+1) = x(tk) +

∫ tk+1

tk

f(x(τ),u(τ), θ)dτ

yk = H(x(tk),u(t), θ) + εk . (2)

This model can be seen as a special state-space model where the hidden process is
deterministic and computed using a numerical integration. Different tools such
as nonlinear filtering approaches such as Unscented Kalman Filtering (UKF)
[31] and extended Kalman Filtering (EKF) [37] can be applied. However it is
well known that nonlinearity and limited amount of data can lead to practical
non-identifiability of parameters. Namely, two different parameter solutions can
provide the same likelihood value. A well known way to address this issue is to
intervene on the dynamical system to perform additional experiments producing
observations that exhibit different kinetics. It can consist either in perturbing
the system, e.g. forcing the level of a state variable to be zero, or in changing
the observation model by allowing to observe different state variables. To benefit
from these new data during the estimation phase, the ODE model must account
for all the available experiments defined by a finite set of size E: E = E0 =
{e1, . . . , eE}. This can be done by defining adequately the exogenous input u(t)
among a set of intervention functions ge(t), e ∈ E as shown in the application
section.
Choosing the appropriate interventions (experiments) to apply to the system in
order to produce better estimates of parameter and hidden states is the purpose
of this work. We are especially interested in an active learning algorithm that
sequentially selects at each step �, the next experiment e∗� among the candidate
experiments of the set E� = E�−1 − {e∗�−1}, that will produce the most useful
dataset for the estimation task. Contrary to the purely statistical approaches of
experimental design, ours aims at offering the possibility to anticipate on the fact
that one given experiment will be followed by others. The search for an optimal
e∗� ∈ E� thus depends on the potential subsequent sequences of experiments, their
total number being limited by a finite affordable budget to account for the cost
of real experiments.
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Algorithm 1. EDEN or real game

Initialization (section 3.2)
while (budget not exhausted) and (estimates not accurate) do

Design a new experiment using Upper Confidence Tree (UCT) as in Algorithm 2
(section 3.3)
Perform the proposed experiment and re-estimate parameters with the augmented
dataset (section 3.4)
Evaluate the estimates (section 3.5)

end while

3 Game-Based Active Learning for DOE

Please note that in the following, to simplify the description of the approach, we
will only talk about parameter estimates, implying hidden state and parameter
estimates.

3.1 Complete Algorithm

Active learning of parameters and hidden states in differential equations is con-
sidered as a one-player game. The goal of the game is to provide the most accu-
rate estimates of parameters and hidden states. Before the game begins, a first
estimate of the hidden states and parameters is obtained using an initial dataset
(here unperturbed, termed wild type). Then, at each turn, the player chooses and
buys an experiment and receives the corresponding dataset. This new dataset
is incorporated into the previous dataset and parameters are re-estimated. This
procedure, described in Algorithm 1, is repeated until the quality of estimates
is sufficiently high or the player has exhausted the budget.

3.2 Initialization

At the beginning of the game, the player is given:

– An initial dataset, here a time series Y0 : {y0
0, . . . ,y

0
n−1}, corresponding to

the partial observation of the wild type system measured at time t0, . . . , tn−1

with given initial condition.
– A system of parametric ordinary differential equations, f , of the form of Eq.

(1) and an observation model H.
– A set of experiments E = E0 = {1, . . . , E} along with their cost (for simplicity

and without loss of generality, the cost is assumed in this work to be equal
to 1 for all experiments).

– A total budget: B ∈ IR (here the total number of experiments we can con-
duct) and an optimizing horizon T which states how many experiments we
optimize jointly at each iteration of Algorithm 1.

– A version space, Θ, which represents all the probable parametrization of our
system, compatible with the observed initial set. More precisely, it consists
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of a candidate set of hypotheses Θ(Y0) = {θ∗(0)
1 , θ

∗(0)
2 , . . . , θ∗(0)

m }: a param-
eter vector can be considered as a hypothesis, i.e. included in the version
space, if the simulated trajectories of the observed state variables it gener-
ates are consistent with the available dataset. The initial version space is
built from the means of the posterior distributions of parameters estimated
from the initial dataset Y0. Building up on previous works [31], we learn
m Unscented Kalman Filter (UKF), as described in 3.4, starting with m
different initializations and flat priors.

– A reward (or utility) function used in the design procedure, described in 3.3.

3.3 Design of Experiment Using Upper Confidence Tree

The �th move of the real game, i.e. the EDEN protocol, consists of running a
Monte-Carlo Tree Search (MCTS) in order to find the best first experiment to
perform given it is followed by T − 1 experiments (or less if we have a remaining
budget that does not allow for T − 1 experiments).

The utility of a sequence of experiments is inherently a random variable be-
cause of the uncertainty on the true system (the true parameter vector θtrue is
not known), but also because of the particular realization of the measurement
noise (note that for stochastic models, additional uncertainty would come from
the process noise). In addition, the utility of a sequence of experiments is not
additive in the single experiments’ utilities. Therefore we optimize a tuple of
experiments (with size of the horizon, i.e. according to the available budget),
even though only the first experiment of the sequence will be performed at a
given iteration of EDEN. This problem is addressed by seeing the sequence of
experiments as arms in a multi armed bandit (MAB) problem.

Upper Confidence Tree (UCT). UCT, extending the multi-armed bandit
setting to tree-structured search space [24], is one of the most popular algorithm
in the MCTS family and was also proposed to solve the problem of active learning
in a supervised framework by [34]. Its application to sequential design under
budgeted resources is to our knowledge an original proposal. A sketch is given
in Algorithm 2.

UCT simultaneously explores and builds a search tree, initially restricted to
its root node, along N tree-walks. Each tree-walk involves several phases:
The bandit phase starts from the root node (where all available experiments are
represented by accessible nodes) and iteratively select experiments until arriving
at an unknown node or a leaf (distance T from the root). Experiment selection
is handled as a MAB problem. The selected experiment ẽ� in E�,known maximizes
the Upper Confidence Bound [1]:

ẽ� = arg max
nodei∈E�,known

⎛⎝μ̂i + C ×

√
log(

∑
j nj)

ni

⎞⎠ . (3)

where :
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– E�,known is the set of known nodes (already visited) which are accessible from
the current position (�th experiment in the Path).

– μ̂i is the mean utility of node i
– ni is the number of time node i has been visited before
– C is a tuning constant that favors exploration when high and exploitation

when low. Its value is problem specific and must be compared to both the
number of possible experiments and the overall mean utility of a sequence
of experiments. In the illustration, we used C =

√
10.

The bandit phase stops upon arriving at an unknown node (or leaf). Then in the
tree building phase, a new experiment is selected at random and added as a
child node of this current leaf node. This is repeated until arriving in a terminal
state as determined by the size of the horizon. Overall, we can summarize this
procedure as going from root to a leaf following a path of length T . When children
nodes are known, the UCB criterion is applied, when they are not known, a
random choice is performed and the node is created. At this point the reward
R of the whole sequence of experiments is computed and used to update the
cumulative reward estimates in all nodes visited during the tree-walk.

One of the great features of the proposed method is to perform a biased
Monte Carlo tree search thanks to the UCB criterion which preserves optimality
asymptotically and ensures we build an UCT. After some pure random explo-
ration of the tree, this criterion makes a rational trade-off between exploration
(valuation of untested sequences of experiments) and exploitation (improving
the estimation of mean utility for an already tested sequence).

When a sufficient number of tree walks has been performed, we select the next
experiment to make among the nodes (experiments) directly connected to the
root. This choice is based on the best mean score (but could have been selected
by taking the most visited node: when the number of tree walks is sufficiently
high, these two options give the same results).

Surrogate Hypothesis. A reward function is thus required that measures
how informative a sequence of experiment is. The tricky issue is that the true
parameter vector θtrue is not known and therefore cannot be used as a reference
for evaluating the obtained estimates. As in [34], we proceed by associating to
each tree-walk a surrogate hypothesis θ∗, drawn from the version space Θ�−1,
that will represent the true parameter θtrue in the current tree walk. The reward
R attached to this tree walk is computed by i) estimating the parameters θ̂ from

the obtained dataset; ii) evaluating the estimate θ̂.
Here we present two different approaches to evaluate this estimate and thus

to calculate the reward. The reward R1 calculates a quantity related to the (log)
empirical bias of the parameter estimate. The average reward associated to a
node of the tree, i.e. to a sequence of experiments, thus estimates the expectation
over Θ�−1 of the estimation error yielded by the choice of this sequence, e.g. the
(log) bias of the parameter estimate. The reward R2 calculates the empirical
variance of the parameter estimate and thus does not use the current surrogate
hypothesis θ∗.
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Algorithm 2. UCT pseudo-code

1: Input:
2: Hypothesis Space: Θ
3: Budget: B
4: Max Horizon: T
5: Maximal number of tree-walks: N
6: Initialize :
7: walk = 1
8: while walk ≤ N do
9: current node = root
10: Sample a surrogate hypothesis: θ ∼ Θ
11: Path = {current node}
12: Init virtual budget: b = min(B, T )
13: while b ≥ mini∈E(cost(ei)) do
14: e = UCB(current node)
15: current node = e
16: Path = {Path ∪ current node}
17: b = b− cost(e)
18: end while
19: Reward = R(Path,θ∗)
20: Update path score: Update(Path,Reward)
21: walk = walk + 1
22: end while
23: e∗ = MaxReward(root)

Reward 1. The concept of this utility function is to quantify how well the
selected experiments allow the parameters’ estimation to converge towards the
true parameters. At each turn �, the uncertainty on the true parameters of the
system is captured by the distribution of likely parameter candidates θ∗ ∈ Θ�−1.
The utility function for R1 does not require any specific assumption on the model
itself and only requires an estimation method and a way to value the quality of
that estimation. It is computed using the following procedure: Let θ∗ ∈ Θ be
the current surrogate hypothesis, and Estimation : (prior π, Ỹ1:k(θ

∗))  → θ̂ be
an estimation procedure, here bayesian, where π is some prior distribution on θ ,
Ỹ1:k(θ

∗) is the set of simulated data according to the observation model given in
the problem setting and corresponding to a sequence of k experiments, ẽ1:k, when
considering the surrogate hypothesis θ∗ as the true parameters. We can evaluate
this estimation by comparing the estimated parameters, θ̂ = E[θ|Ỹ1:k(θ

∗))] to
the current θ∗. In this work we use the following metric to measure the quality
of estimate θ̂, based on the DREAM 7 challenge [30]:

d(θ∗, θ̂) =
m∑
i=1

ln

(
θ∗i

θ̂i

)2

. (4)

Where θ∗i is the ith component of θ∗i and we sum over all components. Overall,
this defines a semi-metric (lacking triangular inequality) on the space of param-
eters. This semi-metric is proportional to the mean squared logarithmic ratio
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of the parameters, and so penalizes fold changes in parameters’ values. This is
especially relevant in estimating biological parameter values that can span sev-
eral orders of magnitude and where observables may be very insensitive to some
parameter values [17]. With all these notations, the utility function returned at
each iteration of the MCTS is:

r1(Ỹ1:k(θ
∗), π, θ∗) = −d(θ∗, θ̂) . (5)

In this work, we chose the prior π as a Gaussian distribution whose mean
is a randomly perturbed θ∗ (mean of π= θ∗.ε) with ε ∼ N (1, 0.1). The prior
covariance is set to the identity matrix. Because of the prior π, we only perform
an estimation around the target value θ∗, which explains why this reward is
called local. The rationale behind this being that, assuming our representation
of the version space is fine enough, we will always find a sample not too far away
from the true value (here, further than 10% on average for each dimension). In
the end, since this function is called within a MCTS framework, the relevant
utility for the selection of experiments is the average over different calls to the
function. Given Path = (ẽ1:k) the sequence of chosen experiments, we have:

R1(ẽ1:k, θ
∗) = Eε[r1(Ỹ1:k(θ

∗), πε, θ
∗)] . (6)

Thus R1 compares the expectation of the posterior probability defined from
data Ỹ1:k(θ

∗) produced by experiments ẽ1:k to the parameter θ∗, coordinate by
coordinate. The main interest of this reward function is that it can be straight-
forwardly applied to any estimation method and that its only significant as-
sumption is that the version space is fine-grained enough. In this respect, it is
said to be agnostic. On the other hand, its main drawback is that it is usually
computationally expensive (depending on the estimation scheme used).

Reward 2. In the second reward, we also solve an estimation problem using a
joint UKF starting from a Gaussian prior centered on the surrogate θ∗ and with
an identity covariance matrix. The reward is classically defined in relation to the
evolution of the trace of the covariance of the posterior :

R2(ẽ1:k, θ
∗) = −

m∑
i=1

V AR[θi|Ỹ1:k(θ
∗)] . (7)

3.4 Performing Experiments and Re-estimation of Parameters and
Hidden Variables

Having estimated an optimal sequence of experiments, we will perform (or simu-
late noisy data for the in-silico illustration) one experiment only. This allows us
to subsequently choose the next experiment benefiting from the new information
brought by the genuine acquired data.

An estimation procedure is required in the virtual games (MCTS iterations)
each time a reward of a sequence of experiments has to be calculated, as well
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as in the real game, when the real data are acquired. In the case of the virtual
game, each experiment ẽ in a sequence to be evaluated corresponds to the basal
model perturbed with some specific exogenous input u(t) = gẽ(t). Therefore, the
learning problem turns to the joint estimation of different models sharing some
parameters (and some states). To achieve this joint learning task, we propose an
original strategy that consists of aggregating the different models corresponding
to different interventions into a single fused model. Then, we apply a Bayesian
filtering approach devoted to nonlinear state-space models, the UKF, to the
new system. Parameters are estimated together with hidden states using an
augmented state approach. UKF provides an approximation of the posterior
probability of θ given the multiple time series corresponding to the multiple
experiments, allowing to calculate the different rewards, the bias-like reward R1

or the variance reward R2.
In the case of the real game, at each turn, different models have to be jointly
learnt from the previous datasets and the new one, just acquired after a purchase
of an experiment. This can be performed exactly the same way using UKF on a
single fused model.

3.5 Evaluation of the Quality of Estimates in the Real Game

During the real game, the quality of the estimate is measured by the trace of
the covariance of the UKF estimate.

4 Application to Reverse-Modeling of Gene Regulatory
Networks

4.1 Model Setting

Let us consider a simple gene regulatory network that implements the tran-
scriptional regulatory mechanisms at work in the cell [26]. We denote by d the
number of genes and assume, for the sake of simplicity, that one gene codes for
one protein. In contrast, a gene can be regulated by several genes, including self-
regulation, with interactions of several possible types, additive or multiplicative:
a gene j is said to regulate a gene i if the level of expression of gene j influences
the level of expression of gene i. The vector r(t) ∈ IRd denotes the expression
levels (mRNA concentration) of the d genes at time t and the vector p(t) ∈ IRd

, the concentration of the encoded proteins. Similarly to one of the challenges
[30,15] in DREAM6 (2011) and DREAM7 (2012), we consider a problem of pa-
rameter and hidden variable estimation in a Hill kinetics model. In the numerical
simulations, we apply EDEN on 3 different reverse-modeling problems of GRN
of increasing size (3, 5, 7) whose graphs are represented in Fig. 1.

In the following, we introduce the ODE system and the set of experiments
on the second target dynamical system composed of 5 genes. The dynamics of
this network can be represented by the following system of differential equations
associated to the regulation graph represented in Fig. 1B:
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Fig. 1. Regulation graph of the 3 models. Blue arrows represent activations and red
bars represent inhibitions.

ṙ1(t) = γ1 − kr1 · r1(t)
ṙ2(t) = γ2 ·

(
h+
21(t) + h+

22(t)
)
− kr2 · r2(t)

ṙ3(t) = γ3 · h+
31(t) · h−

32(t)− kr3 · r3(t)
ṙ4(t) = γ4 − kr4 · r4(t)
ṙ5(t) = γ5 ·

(
h+
53(t) + h+

54(t)
)
− kr5 · r5(t)

ṗi(t) = ρi · ri(t)− kpi · pi(t), ∀i = {1, . . . , 5} . (8)

where h+
ji is the Hill function for activation defined as: h+

ji(t) =
pj(t)

2

K2
ji+pj(t)2

and h−
ij

is the Hill function for inhibition defined as: h−
ji(t) =

K2
ji

K2
ji+pj(t)2

. The parameters

Kji is called dissociation constant of the regulation of gene i by the protein
pj . The set of parameter to estimate is then θ = [(γi)i={1,...,5} , (Kji){(i,j), j→i}]

and the state vector: x(t)T = [r(t) p(t)]T . As in the DREAM7 challenge, the
initial conditions are chosen as: x0 = [0.4 0.7 0.5 0.1 0.9 0.4 0.3 1.0 1.0 0.8]T

and are used to simulate as well the wild-type as the perturbation experiments.
As for the observations, only one type of state variable, protein concentrations
or mRNA concentrations, can be measured at a time, the other one being then
considered as hidden state.

Two kinds of perturbations are considered: the knock-out (ko) that fully re-
presses the expression of the targeted gene, and the over-expression (oe) that
accelerates the translation of the targeted protein. In our problem, only one
perturbation can be applied at a time. In order to simulate the behavior of the
perturbed system, we introduce in the model two types of intervention func-
tions, goe and gko, for each gene. The wildtype system corresponds to the case
of these two control variables being equal to 1. Taking giko(t) = 0, ∀t ≥ 0, for
gene i, simulates a knock-out on this gene by removing the production term of
mRNA and protein. For instance, under a knock-out on gene 1, the equations
for mRNA 1 write as:

ṙ1(t) = gko1(t) · γ1
Taking gioe(t) = 2, ∀t ≥ 0, for protein i, simulates the corresponding over-
expression since the production term of the protein concentration pi is then
doubled. Applying this perturbation on gene 1 gives:
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ṗ1(t) = goe1(t) · ρ1 · r1(t)− kp1 · p1(t) . (9)

Overall, 11 perturbations are considered including the wild-type, with two pos-
sible observation models (either protein or mRNA concentrations for each of
them), giving in total 22 potential experiments to perform for the 5-genes net-
work. For the 3- (resp. 7) genes network, 14 (resp. 30) experiments are considered.

4.2 Numerical Results

In this section, we describe the results we obtained on the systems described
in the previous section. These simulations of an experimental design problem
were performed using the two reward functions R1 and R2 described in (6)
and (7) with an hypothesis space Θ represented by samples (1000 if not stated
otherwise). A convergence criterion was used in order to limit the number of tree
walks performed in the MCTS phase of the algorithm. This criterion allowed to
stop tree walks as soon as the mean utility associated to all experiments did
not change by more than 10% over the last 20 walks. For all details, you are
encouraged to request our Matlab c© code (based on the pymaBandits framework
[20,8,19]).

Figure 4.2 shows that some well chosen experiments provide a significant (more
than 100 folds) reduction of the uncertainty on parameters’ value. But some of
the additional experiments can lead to only marginally decreasing the quality of
estimation. The experiments chosen with R1 or R2 are not the same. We also see
in Figure 4.2 B that the number of samples forming the version space can change
significantly the performance as the algorithm takes into account uncertainty on
the system which is related to the number of samples. Although the results after
5 experiment purchases are similar, the same performance can be achieved with
only 3 experiments if uncertainty is properly accounted for.

Figure 3 A reports the scores obtained by applying the reward R1 for 3 sizes
of network. All were using an horizon of T = 3 experiments and a version space
represented by 1000 samples. Concerning the scores, the more complex problem
leads nearly only to a reduction on the uncertainty but could not improve sig-
nificantly the estimations. This is because increasing complexity implies usually
more non-identifiability and requires a larger budget. These results also illus-
trate the complexity of experimental design: since less genes means less means
to acquire data indirectly on a gene’s parameters, the 3-gene network is not
significantly better estimated than the 5 genes network with the same learning
horizon. Concerning the computation scaling, networks of 3, 5 and 7 genes have
respectively required 6, 14 and 24 hours on a quad-core Intel i7 processor at 4,5
GHz.

Current methods for sequential experimental design generally optimize one
experiment at a time. Even if we only acquire one experiment per iteration of
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Fig. 2. A. Impact of the reward function: evolution of the (log10) scores for the 5-gene
network, d(θtrue, θ) for θ ∈ Θ (1000 samples) using either R1 or R2. Are plotted the
minimum, the maximum and the average over all Θ. Starting from a large Θ which
only included information from the unperturbed (wildtype) observations, a well chosen
sequence of experiments can lead to very significant improvement of the estimation
of the parameters. B. Effect of the version space representation: We compare the per-
formance on the 5- gene model, with an horizon T=3 for EDEN run starting from
either the typical 1000 samples Θ which contains the information from the wildtype
observation, the same but using 1000 uniformly distributed samples (non-informative)
or an 100 sample version space (taking the best 100 samples in terms of mean squared
deviation from the prior information) from the informative version space.

EDEN, we optimize sequences of experiments up to a given learning horizon,
T . This obviously implies sampling in a much bigger space of possible designs
(O(|E|T )) but allows at the same time to consider experimental strategies that
mitigate the risk of individual experiments when the outcome is uncertain. As
we can see on figure 3 B, a different learning horizon can change importantly
the speed of reduction of uncertainty and estimation quality. Interestingly for
that particular problem, an horizon of 3 lead the algorithm to take some risk
(given the uncertainty on the system) that did not pay-off as a greedy version
(T=1) performs better. But with a larger horizon (T=5), the risk mitigation is
differently considered by the algorithm and an excellent performance is achieved
in 2 experiments only.

5 Conclusion

We developed an active learning approach, EDEN, based on a one-player game
paradigm to improve parameters and hidden states estimates of a dynamical
system. This setting is identical with that of active learning [34] for supervised
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Fig. 3. A. Performance on problems of increasing complexity: evolution of the (log10)
scores d(θtrue, θ) for the 3,5 and 7-gene networks, for θ ∈ Θ (1000 samples) using R1.
Are plotted the minimum, the maximum and the average over all Θ. B. Performance
for various learning horizon T=1, 3 and 5 for the 3 genes model, using R1 and a 1000
samples version space.

learning, where theoretical guarantees have been given along the following lines.
The active learning (here experimental design) problem is equivalent to a rein-
forcement learning problem that can be expressed formally in terms of a Markov
Decision Process; this problem is intractable but approximation with asymp-
totic guarantees are provided by the UCT algorithm [24,29,34]. Future work
will focus on lightening these guarantees in the framework of dynamical system
identification.

Furthermore, to our knowledge, this is the first application of UCT-based
approaches to sequential experimental design for dynamical nonlinear systems,
opening the door to a very large number of potential applications in scientific
fields where experiments are expensive. The versatility of the proposed frame-
work allows to extend it in various ways. Different dynamical models including
stochastic ones can be in principle used with this strategy while other rewards
can be designed. An interesting perspective is also to link the theoretical guar-
antee brought by UCT with the framework of Bayesian experimental design [28].
Finally, considering the scalability issue, we notice that the learning horizon (the
number of experiments we jointly optimize) does not need to scale with the size
of the model. In fact, the relevant horizon is the number of experiments allowing
to eliminate the non-identifiability for the set of parameters of a given model.
This means that the approach can be in principle extended to larger systems.
Although automated experimental design approaches are still an exception in wet
laboratories, some pioneering works on the robot scientist Adam [21,22] show
the immense potential offered by realistic and practice-oriented active learning
in biology and other experimental sciences.
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Abstract. Precision recall curves (pr-curves) and the associated area
under (AUPRC) are commonly used to assess the accuracy of informa-
tion retrieval (IR) algorithms. An informative baseline is random selec-
tion. The associated probability distribution makes it possible to assess
pr-curve significancy (as a p-value relative to the null of random). To our
knowledge, no analytical expression of the null distribution of empirical
pr-curves is available, and the only measure of significancy used in the
literature relies on non-parametric Monte Carlo simulations. In this pa-
per, we derive analytically the expected null pr-curve and AUPRC, for
different interpolation strategies. The AUPRC variance is also derived,
and we use it to propose a continuous approximation to the null AUPRC
distribution, based on the beta distribution. Properties of the empirical
pr-curve and common interpolation strategies are also discussed.

Keywords: Information retrieval, precision-recall curves, statistical sig-
nificancy assessment.

1 Introduction

Information retrieval (IR) aims to identify relevant instances out of a larger pool
of relevant and non relevant items [12]. Common applications include web search,
fraud detection, text mining, identification and recommendation in multimedia,
and network inference in bioinformatics [10]. The outcome of an IR algorithm
is typically a rank of instances according to a relevance score, from which it is
easy to derive a selection of relevant items by fixing a certain threshold. Such
selection is equivalent to a binary classification, where the relevant and non rele-
vant instances are termed positives and negatives. In the remainder of the paper,
positive/negative instances are equivalent to relevant/non relevant instances.

Precision-recall curves (pr-curves) plot precision vs. recall values and are com-
monly used to assess the performance of information retrieval systems and binary
classifiers. Instances are ranked according to a confidence score that they are of
the positive class, are incrementally selected and at each selection step, values
of precision and recall are computed.

Often a single number is preferred for comparative purposes, and the area
under the pr-curve (0 ≤ AUPRC ≤ 1) is typically used (a higher area corre-
sponding to a higher retrieval accuracy). Its maximum value of 1 corresponds to

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 322–337, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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the optimal configuration where all the positive instances are ranked before all
negative ones.

Alternative performance measures to pr-curves are F-scores and receiving op-
erating characteristic (ROC) curves. The first combine a given recall and re-
spective precision into a single value, and therefore are not as informative as
pr-curves, as performance is only measured in one point in the curve. ROC
curves plot the true positive rate vs the false positive rate. One advantage of
ROC analysis is that the expected ROC curve, in the null hypothesis of random
selection, is invariant with the positive/negative class distribution and takes the
form of a diagonal from 0 to 1 (with a respective area under the curve 0.5). Re-
garding pr-curves, on the contrary, the expected null curve depends on the class
distribution and on the number of positive and negative instances. Pr-curves
can be considered to be a more informative indicator of performance than ROC
curves, on class imbalanced problems [6]. This is due to the fact that ROC
analysis is less sensitive to variations in the number of false positives in highly
unbalanced situations where the positive class is minoritary (ie. ”a large change
in the number of false positives can lead to a small change in the false positive
rate used in ROC analysis” [6]).

Due to the discrete nature of pr-curves, the plotting of the obtained empirical
precision and recall values requires the adoption of an interpolation strategy.
An alternative is the estimation of smooth pr-curves. In the literature, non-
parametric (eg. boostrap-based [5]) and parametric approaches [4] can be found
- the latter assuming an intrinsic continuous (eg. normal) probability distribution
describing the class decision, for the two classes (of negatives and positives).

This paper only deals with the first case, of the empirical pr-curve. The anal-
ysis of the pr-curve from this perspective is useful as the empirical AUPRC
is closely related to average precision measures, commonly used in IR. In this
paper, the interpolation of discrete points is done for all possible points (ie.
precision and recall is computed for each ranked element). The interpolation of
points corresponding to distant values of recall is also considered in the literature
[6, 8].

The significancy assessment of obtained curves is an important issue, and,
contrary to ROC analysis, with established techniques to infer the standard
error of the AUC [3], the significancy analysis of pr-curves (and area under)
is relatively less developed. A common approach is the estimation of confidence
intervals for pr-curves and AUPRC. As with smoothing pr-curve estimates, these
can rely on bootstrap or continuous probability distributions assumptions [2].

The null pr-curve is the curve resultant from random ranking, and can be a
useful baseline in problems of low precision (eg. network inference in bioinformat-
ics). The distribution of the null pr-curve (and of the respective AUPRC) allows
to infer statistical significancy, and also makes it possible to compare AUPRC
values independently of their class distribution (by comparing the associated
p-values/z-scores). To our knowledge, the only used approach to estimate em-
pirical AUPRC significancy is non-parametric [10, 13], based on the estimation
of an empirical null distribution by Monte Carlo. This approach may require a
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high number of simulations for a good approximation, and the sampling error is
also subject to uncertainty.

The main contribution of this paper is an analytical derivation of the expected
null pr-curve and of the mean and variance of the respective AUPRC. On their
own, these parameters can be used to assess the approximation error of Monte
Carlo results. We also suggest a continuous approximation to the null AUPRC
distribution, based on the beta distribution, which can be used as an alternative
to possibly lengthy Monte Carlo simulations (particularly when the number of
instances is high, as illustrated in section 5).

The outline of the paper is the following. Section 2 describes different strate-
gies to interpolate pr-curves and compute the respective AUPRC. Section 3
contains the analytical derivation of the expected (maximum and minimum)
precision for a given recall value, as they are sufficient for the expected null pr-
curve. Section 4 uses the previous results to derive the mean and the variance
of the AUPRC distribution, and suggests the beta distribution as a continuous
approximation of the discrete AUPRC probability distribution.

Section 5 describes how to use the proposed method to assess AUPRC signifi-
cancy, and presents an experimental comparison with Monte Carlo. The expected
error of Monte Carlo simulations, regarding the mean and variance of the null
AUPRC, is also investigated.

2 Interpolation of the Discrete Pr-curve

Consider an IR problem with a finite number of items, among which P are
relevant. From the ranking of these items a set of precision and recall values is
obtained (a precision and a recall to each ranked item). Assume the adoption
of an empirical pr-curve (as discussed in the section 1). The interpolation of
the points in the curve is not straightforward since several values of precision
can be associated to the same recall (i.e. if a selected instance in the ranking
is not positive, precision falls and recall remains constant). A pr-curve is then
characterized by a saw-tooth shape, which is the more accentuated the lower is
the value of P . There are different approaches to interpolate the points in the
curve. A common approach (named interpolated average precision) assigns to
each recall the value of the maximum precision at that recall, or at higher recall
values [9]. An alternative consists in considering that the precision between two
consecutive recall values is constant and equal to the maximal precision value
associated to the higher recall (an approach named average precision). A more
precise way to interpolate pr-curves is to connect the minimum precision at a
given recall and the maximum precision at the subsequent recall [13]. Consider a
scenario with P positive instances. At a point A, after a selection of N instances,
there are TP true positives and FP false positives (precision is TP

TP+FP and

recall is TP
P ). If the next selected instance is positive, the precision moves to

TP+1
TP+FP and the recall moves to TP+1

P . Let this be point B. Point A corresponds

to the minimum precision at the recall TP
P , and point B corresponds to the

maximum precision at the recall TP+1
P . In these two points, the precision p as
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Fig. 1. Different ways to interpolate an empirical pr-curve, P = 4. The first selected
instance is positive, the next six are negatives, and the last three are positives.

a function of the recall r takes the following hyperbolic form: p = rP
rP+FP . The

simpler linear interpolation between points A and B is a close approximation
of the hyperbolic function, particularly between close recall points. It returns
area values necessarily lower, making this approximation a close lower bound.
The estimation of the AUPRC is straightforward in all interpolation strategies
(except in the hyperbolic interpolation), reducing to a sum of trapezoid areas.
Regarding the hyperbolic interpolation, a way to estimate the AUPRC is to
incrementally increase it every time there is a recall increase. If we integrate p
from point A to point B, we have the area below p, between these points. The
integration of p for values of r between TP

P and TP+1
P (the area between these

points) is easily derived1 [13]. Figure 1 illustrates the differences in the different
interpolation approaches described, for a number of positive instances of 4 (and
same number of different recall values). The first selected instance is positive,
the next six are negatives, and the last are positives.

3 The Expected Null Pr-curve

This section derives analytically the expected maximum and minimum (and
average) precision for a given recall in the case of random ranking. A value of
recall can be associated with multiple values of precision, but only the maximum

1 ΔA = 1
P

(
1− FP ln(FP+TP+1

FP+TP
)
)
.
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and minimum determine the pr-curve (as discussed in 2). In this section we also
investigate the difference between the maximum and minimum null precision, as
a function of P and N .

3.1 Expected Maximum Precision for a Given Recall

Let N be the total number of instances, and P the number of positive instances.
Suppose we have a random ranking where n denotes the position of the k-th
positive instance. This implies that for the recall r = k

P we obtain the preci-

sion, p = k
n . This precision p is the maximum precision that can be obtained

for the recall r, since further selections will either cause the precision at recall
r to go down (false positive) or the recall to increase to k+1

P (true positive).
The probability that the k-th positive selected instance is the n-th selected can
be obtained with the hypergeometric distribution (returning the probability of
selecting k positive instances in n draws, without replacement, on a population
of size N , with P positive instances (and N − P negative instances). The prob-
ability that the k-th positive instance is the n-th selected instance is equal to
the probability of selecting k − 1 positive instances in n − 1 draws (without
replacement), multiplied by the probability of selecting a positive instance in

the next draw (which is P−(k−1)
N−(n−1) ). The first multiplicand is returned by the

hypergeometric distribution:

Ph(k − 1, n− 1, N, P ) =

(
N−n+1
P−k+1

)(
n−1
k−1

)(
N
P

) (1)

We will denote the probability that the k-th positive selected instance is the
n-th selected instance by Psel(k, n,N, P ). This probability is also known as the
negative (or inverse) hypergeometric probability [7]. We define it as:

Psel(k, n, N, P ) =

(
N−n+1
P−k+1

)(
n−1
k−1

)(
N
P

) (
P − k + 1

N − n+ 1

)
=

(
N−n
P−k

)(
n−1
k−1

)(
N
P

) (2)

Note that the probability that the first randomly ranked instance is a positive
one (i.e. n = 1 and k = 1) is P

N while the maximum precision at the recall level
k
P is pmax(k) =

k
n . Therefore, the expected maximum precision for a recall k

P of
a random selection, is:

〈pmax〉(k) =
n=N∑
n=k

k

n
Psel(k, n,N, P ) (3)

3.2 Expected Minimum Precision for a Given Recall

The probability that the k-th positive instance has the n-th position in the
ranking equals the probability that the minimum precision at the recall k−1

P
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is k−1
n−1 . Therefore, the expected minimum precision at recall k−1

P , of a random
ranking, is:

〈pmin(k − 1)〉 =
n=N∑
n=k

{
k−1
n−1
Psel(k, n,N, P ), n > 1

Psel(k, n,N, P ) n = 1
(4)

Note that if n = k = 1 the first selected instance is a positive one and the
value of precision is not defined when the recall is zero. In this case we set the
value of such zero-recall precision equal to one (as in figure 1). Otherwise, the
precision at recall zero is also zero. Equation (4) can be simplified as it follows.
If k = n = 1, Psel(k, n,N, P ) is equal to P

N . If k > 1 (i.e. the recall is k−1
P ),

equation (4) becomes:

〈pmin(k − 1)〉 =
n=N∑
n=k

(
k − 1

n− 1

)
Psel(k, n, N, P ) =

=

n=N∑
n=k

(
k − 1

n− 1

) (
N−n
P−k

)(
n−1
k−1

)(
N
P

) =
1(
N
P

) n=N∑
n=k

(
n− 2

k − 2

)(
N − n

P − k

)
(5)

Since according to the Chu-Vandermonde identity [1],

c∑
a=0

(
a

b

)(
c− a

d− b

)
=

(
c+ 1

d+ 1

)
(6)

if we set a = n− 2, b = k− 2, c = N − 2 and d = P − 2, 〈pmin(k− 1)〉 becomes:

〈pmin(k − 1)〉 = 1(
N
P

)(N − 1

P − 1

)
=

P

N
(7)

This implies that the expected minimum precision for any value of recall is
constant and equal to P

N . An horizontal approximation of the null pr-curve of

value P
N necessarily underestimates the true null pr-curve (for any interpolation

strategy that takes into account not only the minimum precision, but also the
maximum precision). A discussion of this dissimilarity, and its dependence with
P and N , is presented in 3.4.

3.3 Expected Average Precision for a Given Recall

For a comparative purpose we also derive the expected average precision for a
given recall k

P , of a random selection. It is estimated as follows:

〈pavg(k)〉 =
N∑

n=k

(
Psel(n, k, N, P )

N−n∑
n∗=0

P∗
selp

∗
avg

)
(8)

where

P∗
sel = Psel(1, n

∗ + 1, N − n, P − k) (9)
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Fig. 2. Expected maximum, average and minimum precision for different values of
recall, and for different combinations of P and N

and

p∗avg(n
∗, n) =

{
k
n

n∗ = 0
1

n∗+1

(
k
n
+
∑n∗

n∗∗=1
k

n∗∗

)
n∗ > 0

(10)

For a given recall k
P we estimate the probability that the n-th selected instance

is the k-th positive, and that the (n+n∗+1)-th selected instance is the (k+1)-th
positive. This probability is multiplied by the average of the precision k

n∗∗ for all
values of n∗∗ between n and n+ n∗ (for k positive selected instances). The sum
of this product, for all possible values of n and n∗ gives the expected average
precision for a given recall.

3.4 Difference between Expected Maximum Precision and Expected
Minimum Precision

On the basis of previous results we can bound the gap between the expected
maximum precision and expected minimum precision for a given recall k

P . The

expected minimum precision, for any recall, is P
N . Since 〈pmin(k)〉 = 〈pmin(k −

1)〉, as 〈pmin(k)〉 is constant and does not depend on k, we obtain

〈pmax(k)〉 − 〈pmin(k)〉 = 〈pmax(k)〉 − 〈pmin(k − 1)〉 =

=

n=N∑
n=k

Psel(k, n,N, P )

(
k

n
− k − 1

n− 1

)
=

n=N∑
n=k

(
N−n
P−k

)(
n−1
k−1

)(
N
P

) (
n− k

n(n− 1)

)
=
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=
n=N∑
n=k

(
N−n
P−k

)(
n−2
k−1

)(
N
P

) (
1

n

)
(11)

By replacing the term
(
1
n

)
with

(
1

n−2

)
we obtain an upper bound of the

difference 〈pmax(k)〉 − 〈pmin(k)〉. This upper bound is:

n=N∑
n=k

(
N−n
P−k

)(
n−2
k−1

)(
N
P

) (
1

n− 2

)
=

n=N∑
n=k

(
N−n
P−k

)(
n−3
k−2

)(
N
P

)
(k − 1)

= (12)

(and using again the Chu-Vandermonde identity (6))

=

(
N−2
P−1

)
(k − 1)

(
N
P

) =

(
N
P

) (N−P )P
(N−2)N

(k − 1)
(
N
P

) =
(N − P )P

(k − 1)(N − 2)N
(13)

Equation (13) represents the difference between the expected maximum preci-
sion at recall k

P and the expected minimum precision P
N . Let us consider also

the relative difference (divided by P
N ). For a given recall, if P is fixed, this differ-

ence decreases with N (but the relative difference increases). If N is fixed, the
difference (and relative) difference decreases with P . If P

N is fixed, the difference
increases with the number of instances.

This behavior is illustrated in the figure 2, which illustrates the expected
maximum, average and minimum precision as a function of recall, for different
combinations of P and N . Note that there is an uptick in the average precision
curve when it reaches the last recall value. This is due to the fact that when the
last positive instance is selected, the curve is completed and there are no more
selections - at recall 1, the maximum and average precision are the same.

The fact that the null pr-curve tends to P
N in the asymptotic case (i.e. P → ∞

and finite P/N) becomes clear. If a value of recall k
P is finite and if P → ∞, then

k must also tend to infinite (and equation (13), representing an upper bound
between the expected maximum and minimum null precision, tends to 0).

4 The Null Distribution of the AUPRC

In this section, and using the previous results, we derive the expected value and
variance of the AUPRC. In section 2) we presented the common interpolation
strategies average precision, hyperbolic interpolation and linear interpolation. In
what follows we will consider the AUPRC when these three strategies are used.

4.1 Expected Value of the AUPRC of a Random Selection

Let us denote by AUPRCpmax the AUPRC returned by average precision (av-
erage of the maximum precision for all recall values), by AUPRChyp the one
returned by hyperbolic interpolation and by AUPRClin the one computed with
linear interpolation. From equations (4-7) we can estimate the average maximum
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precision and the average minimum precision of a random ranking for all recall
values. The average maximum precision for non-zero recall is:

〈pmax〉 =
1

P

P∑
k=1

〈pmax(k)〉 (14)

and the average minimum precision is:

〈pmin〉 =
1

P

P−1∑
k=0

P

N
=

P

N
(15)

It follows that the expected AUPRCpmax and AUPRClin of a random ranking
of instances are:

〈AUPRCpmax
random〉 = 〈pmax〉 (16)

〈AUPRClin
random〉 =

〈pmax〉+ 〈pmin〉
2

(17)

The expected AUPRChyp
random is estimated as follows: each time there is an in-

crease in recall, there is an increase in the AUPRC. This increase is equal to:

ΔA(k, n) =

{
1
P

(
1− (n− k)ln( n

n−1

)
n > 1

1
P

n = 1
(18)

where k = TP + 1 and n = TP + FP + 1 (see section 2). The value in (18) is
the area that is added to the AUPRC when the k-th selected positive instance
is the n-th selected. We can estimate the expected added area for any value of
k:

〈ΔA(k)〉 =
N∑

n=k

ΔA(k, n)Psel(k, n,N, P ) (19)

The expected AUPRC of a random ranking, using the hyperbolic interpolation,
is given by:

〈AUPRChyp
random〉 =

P∑
k=1

〈ΔA(k)〉 (20)

Finally, the expected AUPRC of a random ranking in the asymptotic case (i.e.
assuming that the number of instances is infinite, and P

N is finite, see section
3.4) is:

〈AUPRClim
random〉 =

P

N
(21)

Figure 3 shows the expected AUPRC for the different interpolation methods,
and for the asymptotic continuous case, as a function of P

N . In the right plots,
P is fixed (equal to 10), and in the left plots N is fixed (equal to 100). The
plots on the top show the absolute expected AUPRC, whereas the bottom plots
show the relative difference, the difference between the expected AUPRC and
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Fig. 3. estimated expected AUPRC of a random ranking as a function of P
N

when
P=10, and N=100

the asymptotic AUPRC ( PN ), divided by the latter. An increase in N leads to a
decrease in the absolute difference between the AUPRC estimations (top-right
plot), but leads to an increase in the relative difference (bottom-right plot). An
increase in P leads to a decrease in both absolute and relative differences (in
line with the results of section 3.4).

4.2 Variance of the AUPRC of a Random Selection

For the sake of simplicity we will consider here only the average precision ap-
proach, though the obtained results can be easily extended to the linear interpo-
lation approach, and with some more difficulty, to the hyperbolic interpolation.
The expected AUPRC of a random selection, using the average precision inter-
polation, is given in (16): the AUPRC is the average of the expected maximum
precision for the different recall values. This is equivalent to the sum of the ex-
pected maximum precision for the different values of recall, divided by P . The
variance of a sum of random variables is equal to the sum of the values of their
covariance matrix. In our case, we have:

Var(AUPRCpmax
random) =

P∑
k=1

P∑
j=k

Cov

(
1

P
pmax(k),

1

P
pmax(j)

)
(22)
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For simplicity, let us define Xk = 1
P pmax(k) andXj =

1
P pmax(j). The covariance

between two random variables Xk and Xj is:

Cov(Xk, Xj) = E(XkXj)− E(Xk)E(Xj) (23)

The term E(Xk)E(Xj) is straightforward to estimate, given that we already
have E(Xk) and E(Xj) (they are given by 1

P 〈pmax(k)〉 and 1
P 〈pmax(j)〉, in the

equation 3). The term E(XkXj) is given by the sum of the product between
all the possible values of Xk and Xj , multiplied by the probability of observing
them:

E(XkXj) =
∑
x

∑
y

P(Xk = x,Xj = y)xy (24)

The probability P(Xk = x,Xj = y) can be stated as:

P(Xk = x,Xj = y) = P(Xk = x)P(Xj = y|Xk = x) (25)

P(Xk = x) is the probability that the maximum precision at the recall k
P is xP .

P(Xk = x) is therefore equal to P(pmax(k) = xP ). The probability mass func-
tion of pmax(k) is defined by Psel(k, nk, N, P ) (equation 2). This equation gives
the probability that the maximum precision at recall k

P is k
nk

, assuming N total

instances and P positive instances. Concluding, P(Xk = x) = Psel(k, nk, N, P ),
given that x = k

Pnk
and Xk = 1

P pmax(k).

The conditional probability P(Xj = y|Xk = x) is the probability that the
maximum precision at the recall j

P is yP , given that the maximum precision at

the recall k
P is xP . If we define yP = j

nj
and xP = k

nk
, and on the condition

that j > k, P(Xj = y|Xk = x) is the probability that the (j − k)-th positive
selected instance is the (nj −nk)-th selected instance, in a population of N −nk

instances, and P − k positive instances. This probability is given by Psel(j −
k, nj−nk, N−nk, P −k) (2). Let’s denote it simply by Pk

sel. We can now rewrite
equation (24) as:

E(XkXj) =
N∑

nk=1

N∑
nj=nk+j−k

Psel(k, nk, N, P )Pk
sel

k

nkP

j

njP
(26)

If j < k, E(XkXj) = E(XjXk). If j = k, E(XkXk) is given by equation (3):
E(Xk) =

1
P 〈pmax(k)〉, and Psel(k, n,N, P ) describes the probability mass func-

tion of pmax(k). Xk takes values in k
Pn , n = k, k + 1, ...N . Therefore, we have:

E(XkXk) =
n=N∑
n=k

(
k

Pn

2
)
Psel(k, n,N, P ) (27)

Cov(Xk, Xj) can now be estimated as in (23), and the variance of the AUPRC
of a random selection, if the pr-curve is interpolated using the average precision
interpolation, is given in (22).
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4.3 Distribution of the AUPRC

Knowing the mean and variance of the AUPRC, and the fact that it is contained
in a finite interval (between a minimum and 1) suggests the beta distribution as
a candidate for a parametric approximation to the AUPRC probability distribu-
tion. The beta is a continuous distribution with finite support, fully described
with two parameters characterizing the mean and variance, and two parame-
ters defining the support interval. Note that being a continuous distribution, it
can only be an approximation of the true (discrete) distribution. The two shape
parameters of the beta distribution, α and β, can be estimated through the
methods of moments approach:

α = x∗
(
x∗(1− x∗)

v∗
− 1

)
(28)

and

β = (1− x∗)
(
x∗(1− x∗)

v∗
− 1

)
(29)

where x∗ and v∗ are the normalized mean and variance [11]:

x∗ =
〈AUPRCpmax

random〉 −min(AUPRCpmax
random)

1−min(AUPRCpmax
random)

(30)

and

v∗ =
Var(AUPRCpmax

random)

(1−min(AUPRCpmax
random))2

(31)

In the equations above, the value 1 in the denominator corresponds to the
maximum AUPRCpmax

random. The minimum is attained when the last P ranked
instances are all positive. Since precision is non-zero only in the last k recall
points the minimum is returned by:

min(AUPRCpmax
random) =

1

P

P∑
k

k

N − P + k
(32)

The support of the resulting standard beta distribution should be re-
transformed: multiplying by the range (1 − min(AUPRCpmax

random), and addition
of min(AUPRCpmax

random).

5 Empirical Assessment

This section illustrates the usefulness of the analytical derivation of the pre-
vious sections, by considering a common retrieval task in bioinformatics: the
identification of pairwise gene interactions, among all the possible interactions
between the genes composing a network. We assess the quality of the inference
with AUPRCpmax

random (in the following, simply referred to as AUPRC), the area
under the pr-curve returned by the average precision approach. Consider a net-
work of 10 genes and 15 effective interactions. The number of total instances N
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Fig. 4. AUPRC probability and cumulative distribution, empirical and estimated,
when N = 90 and P = 15

is 90 (the number of different ordered pairs of different genes) and the number
of positive instances P is 15.

The performance of a network inference algorithm is assessed by the AUPRC
and an associated p-value.We compare our analytical result with a non-parametric
Monte Carlo approach, based on an empirical probability distribution obtained by
a large number of assessments of random selections (number of simulations equal
to 100000).

The empirical mean and variance estimations as well as the analytical ex-
pected values computed with equations (16) and (22) are shown in table II. Both
the expected value and variance are very close in both estimations (a relative
difference of less than 0.001).

Table 1. Expected and empirical values for the AUPRC of a random ranking, with
N = 90 and P = 15 (R = 100000 samples generated)

mean variance

expected 0.2049 0.002990

empirical 0.2051 0.002991
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Fig. 5. Relative difference of the mean and variance of the empirical AUPRC distribu-
tion, relative to the expected values, as a function of the number of random AUPRC
generations

Figure 4 illustrates both the empirical and the beta probability densities (top)
and distributions (bottom). The parameters of the beta distribution are com-
puted as discussed in Section 4.3. It can be seen that the beta distribution
reasonably approximates the distribution of AUPRC. The AUPRC value cor-
responding to a 0.05 p-value is drawn vertically. The empirical and estimated
values are 0.311 and 0.307. The green vertical line represents an illustrative
AUPRC, obtained using a network inference algorithm. The obtained AUPRC
is considered statistically significant (0.05 cutoff), using either Monte Carlo, or
the beta distribution approximation. This approach can be extended to any IR
problem.

A second experiment concerns the study of the impact of the number of sim-
ulations on the accuracy of the empirical AUPRC distribution. Figure 5 shows
the relative difference between the empirical and expected AUPRC mean and
variance (relative to the expected values), as a function of the number of sim-
ulated AUPRC. We performed this experiment for N = 90, 180, 900, keeping
P fixed. The values shown are the average of 1000 simulations (the variance is
also plotted for N = 90 and N = 900, for simplicity for a couple of simulation
numbers only). The number of simulated AUPRC is shown in a logarithmic scale
of base 2, and goes from 2 to 131072 (217). The relative difference is shown in a
logarithmic scale of base 10. A threshold for the relative difference corresponding
to 0.01 (10−2) is drawn. As expected, the empirical mean and variance tend to
the respective expected values, as the number of simulated AUPRC increases.
WhenN = 90, the relative difference of both the mean and variance is below 0.01
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when the number of simulations is higher than 32768 (215). When N = 900 this
number increases to 131072 simulations (217). The number of needed simulations
to approximate the true distribution increases with the number of instances. As
described, the expected value and variance of the null AUPRC can be used to
control the sampling error of empirical estimations.

6 Conclusion

The null pr-curve and AUPRC is a useful baseline in the assessment of chal-
lenging IR tasks, when outperforming random is not guaranteed. Monte Carlo
methods are typically used to estimate the probability distribution of the null
AUPRC, and to assess statistical significancy. However, these methods can be
computationally intensive, requiring a high number of simulations to accurately
approximate the true distribution of the null AUPRC, particularly when the
number of instances is high. In this paper, we deduced analytically expressions
for the expected null pr-curve, and AUPRC mean and variance. These can be
used to assess the quality of empirical Monte Carlo null distributions. Comple-
mentary, and as an alternative to Monte Carlo, they can be used to estimate a
parametric approximation to the null AUPRC probability distribution - a con-
tinuous approximation based on the beta distribution is suggested.
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10. Marbach, D., Costello, J.C., Küffner, R., Vega, N.M., Prill, R.J., Camacho, D.M.,
Allison, K.R., Kellis, M., Collins, J.J., Stolovitzky, G., the DREAM5 Consortium,
Saeys, Y.: Wisdom of crowds for robust gene network inference. Nature Methods
9(8), 796–804 (2012)

11. Natrella, M.: NIST/SEMATECH e-Handbook of Statistical Methods.
NIST/SEMATECH (July 2010)

12. Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth-Heinemann,
Newton (1979)

13. Gustavo Stolovitzky, Robert J. Prill, and Andrea Califano



Linear State-Space Model

with Time-Varying Dynamics
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Abstract. This paper introduces a linear state-space model with time-
varying dynamics. The time dependency is obtained by forming the state
dynamics matrix as a time-varying linear combination of a set of ma-
trices. The time dependency of the weights in the linear combination
is modelled by another linear Gaussian dynamical model allowing the
model to learn how the dynamics of the process changes. Previous ap-
proaches have used switching models which have a small set of possible
state dynamics matrices and the model selects one of those matrices at
each time, thus jumping between them. Our model forms the dynamics
as a linear combination and the changes can be smooth and more contin-
uous. The model is motivated by physical processes which are described
by linear partial differential equations whose parameters vary in time.
An example of such a process could be a temperature field whose evo-
lution is driven by a varying wind direction. The posterior inference is
performed using variational Bayesian approximation. The experiments
on stochastic advection-diffusion processes and real-world weather pro-
cesses show that the model with time-varying dynamics can outperform
previously introduced approaches.

1 Introduction

Linear state-space models (LSSM) are widely used in time-series analysis and
modelling of dynamical systems [1,2]. They assume that the observations are
generated linearly from hidden states with a linear dynamical model that does
not change with time. The assumptions of linearity and constant dynamics make
the model easy to analyze and efficient to learn.

Most real-world processes cannot be accurately described by linear Gaussian
models, which motivates more complex nonlinear state-space models (see, e.g.,
[3,4]). However, in many cases processes behave approximately linearly in a local
regime. For instance, an industrial process may have a set of regimes with very
distinct but linear dynamics. Such processes can be modelled by switching linear
state-space models [5,6] in which the transition between a set of linear dynamical
models is described with hidden Markov models. Thus, these models have a small
number of states defining their dynamics.

Instead of having a small number of possible states of the process dynamics,
some processes may have linear dynamics that change continuously in time. For
instance, physical processes may be characterized by linear stochastic partial
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differential equations but the parameters of the equations may vary in time.
Simple climate models may use the advection-diffusion equation in which the
diffusion and the velocity field parameters define how the modelled quantity
mixes and moves in space and time. In a realistic scenario, these parameters are
time-dependent because, for instance, the wind modelled by the velocity field
changes with time.

This paper presents a Bayesian linear state-space model with time-varying
dynamics. The dynamics at each time is formed as a linear combination of a
set of state dynamics matrices, and the weights of the linear combination follow
a linear Gaussian dynamical model. The main difference to switching LSSMs
is that instead of having a small number of dynamical regimes, the proposed
model allows for an infinite number of them with a smooth transition between
them. Thus, the model can adapt to small changes in the system. This work is an
extension of an abstract [7] which presented the basic idea without the Bayesian
treatment. The model bears some similarity to relational feature learning in
modelling sequential data [8].

Posterior inference for the model is performed using variational Bayesian (VB)
approximation because the exact Bayesian inference is intractable [9]. In order for
the VB learning algorithm to converge fast, the method uses a similar parameter
expansion that was introduced in [10]. This parameter expansion is based on
finding the optimal rotation in the latent subspace and it may improve the
speed of the convergence by several orders of magnitude.

The experimental section shows that the proposed LSSM with time-varying
dynamics is able to learn the varying dynamics of complex physical processes.
The model predicts the processes better than the classical LSSM and the LSSM
with switching dynamics. It finds latent processes that describe the changes
in the dynamics and is thus able to learn the dynamics at each time point
accurately. These experimental results are promising and suggest that the time-
varying dynamics may be a useful tool for statistical modelling of complex dy-
namical and physical processes.

2 Model

Linear state-space models assume that a sequence of M -dimensional observa-
tions (y1, . . . ,yN ) is generated from latent D-dimensional states (x1, . . . ,xN )
following a first-order Gaussian Markov process:

yn = Cxn + noise, (1)

xn = Wxn−1 + noise, (2)

where noise is Gaussian, W is the D ×D state dynamics matrix and C is the
M ×D loading matrix. Usually, the latent space dimensionality D is assumed to
be much smaller than the observation space dimensionality M in order to model
the dependencies of high-dimensional observations efficiently. Because the state
dynamics matrix is constant, the model can perform badly if the dynamics of
the modelled process changes in time.
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In order to model changing dynamics, the constant dynamics in (2) can be
replaced with a state dynamics matrix Wn which is time-dependent. Thus, (2)
is replaced with

xn = Wnxn−1 + noise. (3)

However, modelling the unknown time dependency of Wn is a challenging task
because for each Wn there is only one transition xn−1 → xn which gives infor-
mation about each Wn.

Previous work modelled the time-dependency using switching state dynamics
[6]. It means having a small set of matrices B1, . . . ,BK and using one of them
at each time step:

Wn = Bzn , (4)

where zn ∈ {1, . . . ,K} is a time-dependent index. The indices zn then follow a
first-order Markov chain with an unknown state-transition matrix. The model
can be motivated by dynamical processes which have a few states with different
dynamics and the process jumps between these states.

This paper presents an approach for continuously changing time-dependent
dynamics. The state dynamics matrix is constructed as a linear combination of
K matrices:

Wn =
K∑

k=1

sknBk. (5)

The mixing weight vector sn =
[
s1n . . . sKn

]T
varies in time and follows a first-

order Gaussian Markov process:

sn = Asn−1 + noise, (6)

whereA is theK×K state dynamics matrix of this latent mixing-weight process.
The model with switching dynamics in (4) can be interpreted as a special case
of (5) by restricting the weight vector sn to be a binary vector with only one
non-zero element. However, in the switching model, sn would follow a first-order
Markov chain, which is different from the first-order Gaussian Markov process
used in the proposed model. Compared to models with switching dynamics, the
model with time-varying dynamics allows the state dynamics matrix to change
continuously and smoothly.

The model is motivated by physical processes which roughly follow stochas-
tic partial differential equations but the parameters of the equations change
in time. For instance, a temperature field may be modelled with a stochastic
advection-diffusion equation but the direction of the wind may change in time,
thus changing the velocity field parameter of the equation.

2.1 Prior Probability Distributions

We give the proposed model a Bayesian formulation by setting prior probability
distributions for the variables. It roughly follows the linear state-space model
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formulation in [9,10] and the principal component analysis formulation in [11].
The likelihood function is

p(Y|C,X, τ) =

N∏
n=1

N (yn|Cxn, diag(τ )
−1), (7)

where N (y|m, v) is the Gaussian probability density function of y with mean m
and covariance v, and diag(τ ) is a diagonal matrix with elements τ1, . . . , τM on
the diagonal. For simplicity, we used isotropic noise (τm = τ) in our experiments.

The loading matrix C has the following prior, which is also known as an
automatic relevance determination (ARD) prior [11]:

p(C|γ) =
D∏

d=1

N (cd|0, diag(γ)−1), p(γ) =

D∏
d=1

G(γd|aγ , bγ), (8)

where cd is the d-th row vector of C, the vector γ =
[
γ1 . . . γD

]T
contains the

ARD parameters, and G(γ|a, b) is the gamma probability density function of γ
with shape a and rate b.

The latent states X =
[
x0 . . . xN

]
follow a first-order Gaussian Markov pro-

cess, which can be written as

p(X|Wn) = N (x0|μ(x)
0 ,Λ−1

0 )
N∏

n=1

N (xn|Wnxn−1, I), (9)

where μ
(x)
0 and Λ0 are the mean and precision of the auxiliary initial state x0.

The process noise covariance matrix can be an identity matrix without loss of
generality because any rotation can be compensated in xn and Wn. The initial

state x0 can be given a broad prior by setting, for instance, μ
(x)
0 = 0 and

Λ0 = 10−6 · I.
The state dynamics matrices Wn are a linear combination of matrices Bk

which have the following ARD prior:

p(Bk|βk) =

D∏
c=1

D∏
d=1

N (bkcd|0, β−1
kd ), p(βdk) = G(βkd|aβ, bβ), k = 1, . . . ,K, (10)

where bkcd = [Bk]cd is the element on the c-th row and d-th column of Bk. The
ARD parameter βkd helps in pruning out irrelevant components in each matrix.

In order to keep the formulas less cluttered, we use the following notation: B
is a K×D×D tensor. When using subscripts, the first index corresponds to the
index of the state dynamics matrix, the second index to the rows of the matrices
and the third index to the columns of the matrices. A colon is used to denote
that all elements along that axis are taken. Thus, for instance, Bk:: is Bk and
B:d: is a K ×D matrix obtained by stacking the d-th row vectors of Bk for each
k.
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Fig. 1. The graphical model of the linear state-space model with time-varying dynamics

The mixing weights S =
[
s0 . . . sN

]
have first-order Gaussian Markov process

prior

p(S|A) = N (s0|μ(s)
0 ,V−1

0 )

N∏
n=1

N (sn|Asn−1, I), (11)

where, similarly to the prior of X, the parameters μ
(s)
0 and V0 are the mean

and precision of the auxiliary initial state s0, and the noise covariance can be
an identity matrix without loss of generality. The initial state s0 can be given a

broad prior by setting, for instance, μ
(s)
0 = 0 and V0 = 10−6 · I.

The state dynamics matrix A of the latent mixing weights sn is given an ARD
prior

p(A|α) =

K∏
k=1

N
(
ak|0, diag(α)−1

)
, p(α) =

K∏
k=1

G(αk|aα, bα) (12)

where ak is the k-th row of A, and α =
[
α1 . . . αK

]T
contains the ARD param-

eters.
Finally, the noise parameter is given a gamma prior

p(τ ) =
M∏

m=1

G(τm|aτ , bτ ). (13)

The hyperparameters of the model can be set, for instance, as aα = bα = aβ =
bβ = aγ = bγ = aτ = bτ = 10−6 to obtain broad priors for the variables. Small
values result in approximately non-informative priors which are usually a good
choice in a wide range of problems.

For the experimental section, we constructed the LSSM with switching dy-
namics by using a hidden Markov model (HMM) for the state dynamics matrix
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Wn. The HMM had an unknown initial state and a state transition matrix with
broad conjugate priors. We used similar prior probability distributions in the
classical LSSM with constant dynamics, the proposed LSSM with time-varying
dynamics, and the LSSM with switching dynamics for the similar parts of the
models.

3 Variational Bayesian Inference

As the posterior distribution is analytically intractable, it is approximated using
variational Bayesian (VB) framework, which scales well to large applications
compared to Markov chain Monte Carlo (MCMC) methods [12]. The posterior
approximation is assumed to factorize with respect to the variables:

p(X,C,γ,B,β,S,A,α, τ |Y)≈q(X)q(C)q(γ)q(B)q(β)q(S)q(A)q(α)q(τ ). (14)

This approximation is optimized by minimizing the Kullback-Leibler divergence
fromthe trueposterior byusing thevariationalBayesian expectation-maximization
(VB-EM) algorithm [13]. In VB-EM, the posterior approximation is updated for
the variables one at a time and iterated until convergence.

3.1 Update Equations

The approximate posterior distributions have the following forms:

q(X) = N ([X]:|μx,Σx), q(τ ) =

M∏
m=1

G(τm|ā(m)
τ , b̄(m)

τ ), (15)

q(C) =
M∏

m=1

N (cm|μ(m)
c ,Σ(m)

c ), q(γ) =
D∏

d=1

G(γd|ā(d)γ , b̄(d)γ ), (16)

q(B) =

D∏
d=1

N ([B:d:]:|μ(d)
b ,Σ

(d)
b ), q(β) =

K∏
k=1

D∏
d=1

G(βkd|ā(kd)β , b̄
(kd)
β ), (17)

q(S) = N ([S]:|μs,Σs), (18)

q(A) =

K∏
k=1

N (ak|μ(k)
a ,Σ(k)

a ), q(α) =

K∏
k=1

G(αk|ā(k)α , b̄(k)α ), (19)

where [X]: is a vector obtained by stacking the column vectors xn. It is straight-
forward to derive the following update equations of the variational parameters:

ā(m)
τ = aτ +

Nm

2
, b̄(m)

τ = bτ +
1

2

∑
n∈Om:

ξmn, (20)

Σ(m)
c =

(
〈diag(γ)〉+

∑
n∈Om:

〈τm〉〈xnx
T
n 〉
)−1

, μ(m)
c = Σ(m)

c

∑
n∈Om:

ymn〈τm〉〈xn〉, (21)

ā(d)γ = aγ +
M

2
, b̄(d)γ = bγ +

1

2

M∑
m=1

〈c2md〉, (22)
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Σ
(d)
b =

(
〈diag(β)〉+

N∑
n=1

Ωn

)−1

, μ
(d)
b = Σ

(d)
b

N∑
n=1

[
〈sn〉〈xdnx

T
n−1〉

]
:
, (23)

Σ(k)
a =

(
〈diag(α)〉+

N∑
n=1

〈sn−1s
T
n−1〉

)−1

, μ(k)
a = Σ(k)

a

N∑
n=1

〈sknsn−1〉, (24)

ā(k)α = aα +
K

2
, b̄(k)α = bα +

1

2

K∑
i=1

〈a2ik〉, (25)

where Om: is the set of time instances n for which the observation ymn is
not missing, Nm is the size of the set Om:, ξmn =

〈
(ymn − cTmxn)

2
〉
, Ωn =

〈xn−1x
T
n−1〉 ⊗ 〈snsTn 〉, and ⊗ denotes the Kronecker product. The computation

of the posterior distribution ofX and S is more complicated and will be discussed
next.

The time-series variables X and S can be updated using algorithms simi-
lar to the Kalman filter and the Rauch-Tung-Striebel smoother. The classical
formulations of those algorithms do not work for VB learning because of the
uncertainty in the dynamics matrix [9,14]. Thus, we used a modified version
of these algorithms as presented for the classical LSSM in [10]. The algorithm
performs a forward and a backward pass in order to find the required posterior
expectations.

The explicit update equations for q(X) can be written as:

Σ−1
x =

⎡⎢⎢⎢⎢⎢⎢⎣
Λ0 + 〈WT

1 W1〉 −〈W1〉T

−〈W1〉 I+ 〈WT
2 W2〉+Ψ1

. . .

. . .
. . . −〈WN〉T

−〈WN 〉 I+ΨN

⎤⎥⎥⎥⎥⎥⎥⎦ , (26)

μx = Σx

⎡⎢⎢⎢⎢⎢⎢⎣
Λ0μ

(x)
0∑

m∈O:1
ym1〈τm〉〈cm〉
...∑

m∈O:N
ymN 〈τm〉〈cm〉

⎤⎥⎥⎥⎥⎥⎥⎦ , (27)

where O:n is the set of indices m for which the observation ymn is not miss-
ing, Ψn =

∑
m∈O:n

〈τm〉〈cmcTm〉, 〈Wn〉 =
∑K

k=1〈skn〉〈Bk〉, and 〈WT
nWn〉 =∑K

k=1

∑K
l=1[〈snsTn 〉]kl〈BT

kBl〉. Instead of using standard matrix inversion, one
can utilize the block-banded structure of Σ−1

x to compute the required expecta-
tions 〈xn〉, 〈xnx

T
n 〉 and 〈xnx

T
n−1〉 efficiently. The algorithm for the computations

is presented in [10].
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Similarly for S, the explicit update equations are

Σ−1
s =

⎡⎢⎢⎢⎢⎢⎢⎣
V0 + 〈ATA〉 −〈A〉T

−〈A〉 I+ 〈ATA〉+Θ1
. . .

. . .
. . . −〈A〉T

−〈A〉 I+ΘN

⎤⎥⎥⎥⎥⎥⎥⎦ , (28)

μs = Σs

⎡⎢⎢⎢⎢⎢⎢⎣
V0μ

(s)
0∑D

d=1〈B:d:〉〈xd1x
T
0 〉

...∑D
d=1〈B:d:〉〈xdNxT

N−1〉

⎤⎥⎥⎥⎥⎥⎥⎦ , (29)

where Θn =
∑D

i=1

∑D
j=1[〈xn−1x

T
n−1〉]ij · 〈B::iB

T
::j〉. The required expectations

〈sn〉, 〈snsn〉 and 〈snsn−1〉 can be computed efficiently by using the same algo-
rithm as for X [10].

The VB learning of the LSSM with switching dynamics is quite similar to the
equations presented above. The main difference is that the posterior distribution
of the discrete state variable zn is computed by using alpha-beta recursion [12].
The update equations for the state transition probability matrix and the initial
state probabilities are straightforward because of the conjugacy. The expecta-
tions 〈Wn〉 and 〈WT

nWn〉 are computed by averaging 〈Bk〉 and 〈BT
kBk〉 over

the state probabilities E[zn = k].

3.2 Practical Issues

The main practical issue with the proposed model is that the VB learning algo-
rithm may converge to bad local minima. As a solution, we found two ways of
improving the robustness of the method. The first improvement is related to the
updating of the posterior approximation and the second improvement is related
to the initialization of the approximate posterior distributions.

The first practical tip is that one may want to run the VB updates for the lower
layers of the model hierarchy first for a few times before starting to update the
upper layers. Otherwise, the hyperparameters may learn very bad values because
the child variables have not yet been well estimated. Thus, we updated X, C,
B and τ 5–10 times before updating the hyperparameters and the upper layers.
However, this procedure requires a reasonable initialization.

We initialized X and C randomly but for S and B we used a bit more compli-
cated approach. One goal of the initialization was that the model would be close
to a model with constant dynamics. Thus, the first component in S was set to
a constant value and the corresponding matrix Bk was initialized as an identity
matrix. The other components in S and B were random but their scale was a
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bit smaller so that the time variation in the resulting state dynamics matrix
Wn was small initially. Obviously, this initialization leads to a bias towards a
constant component in S but this is often realistic as the system probably has
some average dynamics and deviations from it.

3.3 Rotations for Faster Convergence

One issue with the VB-EM algorithm for state-space models is that the algo-
rithm may converge extremely slowly. This happens if the variables are strongly
correlated because they are updated only one at a time causing zigzagging and
small updates. This effect can be reduced by the parameter expansion approach,
which finds a suitable auxiliary parameter connecting several variables and then
optimizes this auxiliary parameter [15,16]. This corresponds to a parameterized
joint optimization of several variables.

A suitable parameter expansion for state-space models is related to the ro-
tation of the latent sub-space [17,10]. It can be motivated by noting that the
latent variable X can be rotated arbitrarily by compensating it in C:

yn = Cxn = CR−1Rxn =
(
CR−1

)(
Rxn

)
for all non-singular R . (30)

The rotation of X must also be compensated in the dynamics Wn as

Rxn = RWnR
−1Rxn−1 =

(
RWnR

−1
)(
Rxn−1

)
. (31)

The rotation R can be used to parameterize the posterior distributions q(X),
q(C) and q(B). Optionally, the distributions of the hyperparameters q(γ) and
q(β) can also be parameterized. Optimizing the posterior approximation with
respect to R is efficient and leads to significant improvement in the speed of the
VB learning. Details for the procedure in the context of the classical LSSM can
be found in [10].

Similarly to X, the latent mixing weights S can also be rotated as

[Wn]d: = BT
:d:sn = BT

:d:R
−1Rsn =

(
BT

:d:R
−1
)(

Rsn

)
, (32)

where [Wn]d: is the d-th row vector of Wn. The rotation must also be compen-
sated in the dynamics of S as

Rsn = RAR−1Rsn−1 =
(
RAR−1

)(
Rsn−1

)
. (33)

Thus, the rotation corresponds to a parameterized joint optimization of q(S),
q(A), q(B), and optionally also q(α) and q(β). Note that the optimal rotation
of S can be computed separately from the optimal rotation for X.

The extra computational cost by the rotation speed up is small compared to
the computational cost of one VB update of all variables. Thus, the rotation
can be computed at each iteration after the variables have been updated. If for
some reason the computation of the optimal rotation is slow, one can use the
rotations less frequently, for instance, after every ten updates of all variables, and
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still gain similar performance improvements. However, as was shown in [10], the
rotation transformation is essential even for the classical LSSM, thus ignoring
it may lead to extremely slow convergence and poor results. Thus, we used the
rotation transformation for all methods in the next section.

4 Experiments

We compare the proposed linear state-space model with time-varying dynamics
(LSSM-TVD) to the classical linear-state space model (LSSM) and the linear
state-space model with switching dynamics (LSSM-SD) using three datasets: a
one-dimensional signal with changing frequency, a simulated physical process
with time-varying parameters, and real-world daily temperature measurements
in Europe. The methods are evaluated by their ability to predict missing values
and gaps in the observed processes.

4.1 Signal with Changing Frequency

We demonstrate the LSSM with time-varying dynamics using an artificial signal
with changing frequency. The signal is defined as

f(n) = sin(a · (n+ c sin(b · 2π)) · 2π), n = 0, . . . , 999 (34)

where a = 0.1, b = 0.01 and c = 8. The resulting signal is shown in Fig. 2(a).
The signal was corrupted with Gaussian noise having zero mean and standard
deviation 0.1 to simulate noisy observations. In order to see how well the dif-
ferent methods can learn the dynamics, we created seven gaps in the signal by
removing 15 consecutive observations to produce each gap. In addition, 20%
of the remaining observations were randomly removed. Each method (LSSM,
LSSM-SD and LSSM-TVD) used D = 5 dimensions for the latent states xn.
The LSSM-SD and LSSM-TVD used K = 4 state dynamics matrices Bk.

Figures 2(b)-(d) show the posterior distribution of the latent noiseless function
f for each method. The classical LSSM is not able to capture the dynamics and
the reconstructions over the gaps are bad and have high variance. The LSSM-
SD learns two different states for the dynamics corresponding to a lower and
a higher frequency. The reconstructions over the gaps are better than with the
LSSM, but it still has quite a large variance and the fifth gap is reconstructed
using a wrong frequency. The gap reconstructions have large variance because
the two state dynamics matrices learned by the model do not fit the process
very well so the model assumes a larger innovation noise in the latent process
X. In contrast to that, the LSSM-TVD learns the dynamics practically perfectly
and even learns the dynamics of the process which changes the frequency. Thus,
the LSSM-TVD is able to make nearly perfect predictions over the gaps and
the variance is small. It also prunes out one state dynamics matrix, thus using
effectively only three dimensions for the latent mixing-weight process.



348 J. Luttinen, T. Raiko, and A. Ilin

(a) True signal

(b) LSSM

(c) LSSM-SD

(d) LSSM-TVD

Fig. 2. Results for the signal with changing frequency: (a) the true signal, (b) the
classical LSSM, (c) the LSSM with switching dynamics, (d) the LSSM with time-
varying dynamics. In (b)-(d), the posterior mean is shown as solid black line, two
standard deviations are shown as a gray area, and the true signal is shown in red for
comparison. Vertical lines mark the seven gaps that contain no observations.

4.2 Stochastic Advection-Diffusion Process

We simulated a physical process with time-dependent parameters in order to com-
pare the considered approaches. The physical process is a stochastic advection-
diffusion process, which is defined by the following partial differential equation:

∂f

∂t
= δ∇2f − v · ∇f +R, (35)

where f is the variable of interest, δ is the diffusivity, v is the velocity field and
R is a stochastic source. We have assumed that the diffusivity is a constant and
the velocity field describes an incompressible flow. The velocity field v changes in
time. This equation could describe, for instance, air temperature and the velocity
field corresponds to winds with changing directions. The spatial domain was a
torus, a two-dimensional manifold with periodic boundary conditions.

The partial differential equation (35) is discretized using the finite difference
method. This is used to generate a discretized realization of the stochastic process
by iterating over the time domain. The stochastic source R is a realization from
a spatial Gaussian process at each time step. The two velocity field components
are modelled as follows:

v(t+ 1) =
√
ρ · v(t) +

√
1− ρ · ξ(t+ 1), (36)

where ρ ∈ (0, 1) controls how fast the velocity changes and ξ(t+ 1) is Gaussian
noise with zero mean and variance which was chosen appropriately. Thus, there
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Fig. 3. One of the simulated processes at one time instance. Crosses denote the loca-
tions that were used to collect the observations. Note that the domain is a torus, that
is, a 2-dimensional manifold with periodic boundaries.

are actually two sources of randomness in the stochastic process: the random
source R and the randomly changing velocity field v.

The data were generated from the simulated process as follows: Every 20-th
sample was kept in the time domain, which resulted in N = 2000 time instances.
From the spatial discretization grid, M = 100 locations were selected randomly
as the measurement locations (corresponding to weather stations). The simulated
values were corrupted with Gaussian noise to obtain noisy observations.

We used four methods in this comparison: LSSM, LSSM-SD and LSSM-TVD
with D = 30 dimensions for the latent states xn, and LSSM with D = 60 to
see if adding more dimensions improves the performance of the classical LSSM.
Both the LSSM-SD and LSSM-TVD used K = 5 state dynamics matrices Bk.

For measuring the performance of the methods, we generated two test sets.
First, we created 18 gaps of 15 consecutive time points, that is, the observations
from all the spatial locations were removed over the gaps and the corresponding
values of the noiseless process f formed the first test set. Second, we randomly
removed 20% of the remaining observations and used the corresponding values of
the process f as the second test set. The tests were performed for five simulated
processes. Figure 3 shows one process at one time instance as an example.1

Table 1 shows the root-mean-square errors (RMSE) of the mean reconstruc-
tions for both the generated gaps and the randomly removed values. The results
for each of the five process realizations are shown separately. It appears that
using D = 60 components does not significantly change the performance of the
LSSM compared to using D = 30 components. Also, the LSSM-SD performs
practically identically to the LSSM. The LSSM-SD used effectively two or three
state dynamics matrices. However, this does not seem to help in modelling the
variations in the dynamics and the learned model performs similarly to the
LSSM. In contrast to that, the proposed LSSM-TVD has the best performance

1 http://users.ics.aalto.fi/jluttine/ecml2014/ contains a video visualization of
each of the simulated processes.

http://users.ics.aalto.fi/jluttine/ecml2014/
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(a) q(S) in LSSM-TVD (b) q(Z) in LSSM-SD

Fig. 4. Results for the advection-diffusion experiments. (a) The posterior mean and two
standard deviations of the latent mixing weights by the LSSM-TVD. (b) The posterior
probability of each state transition matrix as a function of time in the LSSM-SD.

in each experiment. For the test set of random values, the difference is not large
because the reconstruction is mainly based on the correlations between the loca-
tions rather than the dynamics. However, in order to accurately reconstruct the
gaps, the model needs to learn the changes in the dynamics. The LSSM-TVD
reconstructs the gaps more accurately than the other methods, because it finds
latent mixing weights sn which model the changes in the dynamics.

Figure 4(a) shows the the posterior distribution of the K = 5 mixing-weight
signals S in one experiment: the first signal is practically constant corresponding
to the average dynamics, the third and the fourth signals correspond to the
changes in the two-dimensional velocity field, and the second and the fifth signals
have been pruned out as they are not needed. Thus, the method was able to learn
the effective dimensionality of the latent mixing-weight process, which suggests
that the method is not very sensitive to the choice of K as long as it is large
enough. The results look similar in all the experiments with the LSSM-TVD
and in every experiment the LSSM-TVD found one constant and two varying
components. Thus, the posterior distribution of S might give insight on some
latent processes that affect the dynamics of the observed process.

Table 1. Results for five stochastic advection-diffusion experiments. The root-mean-
square errors (RMSE) have been multiplied by a factor of 1000 for clarity.

RMSE for gaps RMSE for random
Method 1 2 3 4 5 1 2 3 4 5

LSSM D = 30 104 107 102 94 104 34 38 39 34 34
LSSM D = 60 105 107 110 98 108 35 39 40 35 35

LSSM-SD D = 30 106 117 113 94 102 35 37 39 34 34
LSSM-TVD D = 30 73 81 75 67 82 30 34 35 31 30
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Table 2. GSOD reconstruction errors of the test sets in degrees Celsius for five runs

RMSE for gaps RMSE for randomly missing
Method 1 2 3 4 5 1 2 3 4 5

LSSM 1.748 1.753 1.758 1.744 1.751 0.935 0.937 0.935 0.933 0.934
LSSM-SD 1.800 1.801 1.796 1.777 1.788 0.936 0.938 0.936 0.934 0.935
LSSM-TVD 1.661 1.650 1.659 1.653 1.660 0.935 0.937 0.935 0.932 0.934

This experiment showed that the LSSM-SD is not good at modelling lin-
ear combinations of the state dynamics matrices. Interestingly, although the
VB update formulas average the state dynamics matrices by their probabilities
resulting in a convex combination, this mixing is not very prominent in the ap-
proximate posterior distribution as seen in Fig. 4(b). Most of the time, only one
state dynamics matrix is active with probability one. This happens because the
prior penalizes switching between the matrices and one of the matrices is usually
much better than the others on average over several time steps.

4.3 Daily Mean Temperature

The third experiment used real-world temperature measurements in Europe.
The data were taken from the global surface summary of day product produced
by the National Climatic Data Center (NCDC) [18]. We studied daily mean
temperature measurements roughly from the European area2 in 2000–2009. Sta-
tions that had more than 20% of the measurements missing were discarded. This
resulted in N = 3653 time instances and M = 1669 stations for the analysis.

The three models were learned from the data. They used D = 80 dimensions
for the latent states. The LSSM-SD and the LSSM-TVD used K = 6 state
dynamics matrices. We formed two test sets similarly to the previous experiment.
First, we generated randomly 300 2-day gaps in the data, which means that
measurements from all the stations were removed during those periods of time.
Second, 20% of the remaining data was used randomly to form another test set.

Table 2 shows the results for five experiments using different test sets. The
methods reconstructed the randomly formed test sets equally well suggesting
that learning more complex dynamics did not help and the learned correlations
between the stations was sufficient. However, the reconstruction of gaps is more
interesting because it measures how well the method learns the dynamical struc-
ture. This reconstruction shows consistent performance differences between the
methods: The LSSM-SD is slightly worse than the LSSM, and the LSSM-TVD
outperforms the other two. Because climate is a chaotic process, the modelling
is extremely challenging and predictions tend to be far from perfect. However,
these results suggest that the time-varying dynamics might offer a promising im-
provement to the classical LSSM in statistical modelling of physical processes.

2 The longitude of the studied region was in range (−13, 33) and the latitude in range
(35, 72).
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5 Conclusions

This paper introduced a linear state-space model with time-varying dynamics.
It forms the state dynamics matrix as a time-varying linear combination of a set
of matrices. It uses another linear state-space model for the mixing weights in
the linear combination. This is different from previous time-dependent LSSMs
which use switching models to jump between a small set of states defining the
model dynamics.

Both the LSSM with switching dynamics and the proposed LSSM are useful
but they are suitable for slightly different problems. The switching dynamics
is realistic for processes which have a few possible states that can be quite
different from each other but each of them has approximately linear dynamics.
The proposed model, on the other hand, is realistic when the dynamics vary
more freely and continuously. It was largely motivated by physical processes
based on stochastic partial differential equations with time-varying parameters.

The experiments showed that the proposed LSSM with time-varying dynam-
ics can capture changes in the underlying dynamics of complex processes and
significantly improve over the classical LSSM. If these changes are continuous
rather than discrete jumps between a few states, it may achieve better mod-
elling performance than the LSSM with switching dynamics. The experiment on
a stochastic advection-diffusion process showed how the proposed model adapts
to the current dynamics at each time and finds the current velocity field which
defines the dynamics.

The proposed model could be further improved for challenging real-world
spatio-temporal modelling problems. First, the spatial structure could be taken
into account in the prior of the loading matrix using, for instance, Gaussian
processes [19]. Second, outliers and badly corrupted measurements could be
modelled by replacing the Gaussian observation noise distribution with a more
heavy-tailed distribution, such as the Student-t distribution [20].

The method was implemented in Python as a module for an open-source
variational Bayesian package called BayesPy [21]. It is distributed under an open
license, thus making it easy for others to apply the method. In addition, the
scripts for reproducing all the experimental results are also available.3
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Abstract. We consider the learning problem under an online Markov
decision process (MDP), which is aimed at learning the time-dependent
decision-making policy of an agent that minimizes the regret — the dif-
ference from the best fixed policy. The difficulty of online MDP learning
is that the reward function changes over time. In this paper, we show
that a simple online policy gradient algorithm achieves regret O(

√
T )

for T steps under a certain concavity assumption and O(log T ) under a
strong concavity assumption. To the best of our knowledge, this is the
first work to give an online MDP algorithm that can handle continuous
state, action, and parameter spaces with guarantee. We also illustrate
the behavior of the online policy gradient method through experiments.

Keywords: Markov decision process, Online learning.

1 Introduction

The Markov decision process (MDP) is a popular framework of reinforcement
learning for sequential decision making [6], where an agent takes an action de-
pending on the current state, moves to the next state, receives a reward based
on the last transition, and this process is repeated T times. The goal is to find an
optimal decision-making policy (i.e., a conditional probability density of action
given state) that maximizes the expected sum of rewards over T steps.

In the standard MDP formulation, the reward function is fixed over iterations.
On the other hand, in this paper, we consider an online MDP scenario where
the reward function changes over time — it can be altered even adversarially.
The goal is to find the best time-dependent policy that minimizes the regret, the
difference from the best fixed policy. We expect the regret to be o(T ), by which
the difference from the best fixed policy vanishes as T goes to infinity.

The MDP expert algorithm (MDP-E), which chooses the current best ac-
tion at each state, was shown to achieve regret O(

√
T log |A|) [1,2], where |A|

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 354–369, 2014.
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denotes the cardinality of the action space. Although this bound does not ex-
plicitly depend on the cardinality of the state space, the algorithm itself needs
an expert algorithm for each state. Another algorithm called the lazy follow-the-
perturbed-leader (lazy-FPL) divides the time steps into short periods and policies
are updated only at the end of each period using the average reward function
[8]. This lazy-FPL algorithm was shown to have regret O(T 3/4+ε logT (|S| +
|A|)|A|2) for ε ∈ (0, 1/3). The online MDP algorithm called the online rela-
tive entropy policy search is considered in [9], which was shown to have regret
O(L2

√
T log(|S||A|/L)) for state space with L-layered structure. However, the

regret bounds of these algorithms explicitly depend on |S| and |A|, and the algo-
rithms cannot be directly implemented for problems with continuous state and
action spaces. The online algorithm for Markov decision processes was shown to
have regret O(

√
T log |Π |+ log |Π |) with changing transition probability distri-

butions, where |Π | it the cardinality of the policy set [11]. Although sub-linear
bounds still hold for continuous policy spaces, the algorithm cannot be used with
infinite policy candidates directly.

In this paper, we propose a simple online policy gradient (OPG) algorithm
that can be implemented in a straightforward manner for problems with contin-
uous state and action spaces1. Under the assumption that the expected average
reward function is concave, we prove that the regret of our OPG algorithm is
O(

√
T (F 2 +N)), which is independent of the cardinality of the state and action

spaces, but is dependent on the diameter F and dimension N of the parameter
space. Furthermore, regret O(N2 logT ) is also proved under a strongly concavity
assumption on the expected average reward function. We numerically illustrate
the superior behavior of the proposed OPG in continuous problems over MDP-E
with different discretization schemes.

2 Online Markov Decision Process

In this section, we formulate the problem of online MDP learning.
An online MDP is specified by

– State space s ∈ S, which could be either continuous or discrete.
– Action space a ∈ A, which could be either continuous or discrete.
– Transition density p(s′|s,a), which represents the conditional probability

density of next state s′ given current state s and action a to be taken.
– Reward function sequence r1, r2, . . . , rT , which are fixed in advance and will

not change no matter what action is taken.

An online MDP algorithm produces a stochastic policy π(a|s, t)2, which is a
conditional probability density of action a to be taken given current state s at

1 Our OPG algorithm can also be seen as an extension of the online gradient descent
algorithm [10] to online MDPs problems, by decomposing the objective function.

2 The stochastic policy incorporates exploratory actions, and exploration is usually
required for getting a better policy in the learning process.
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time step t. In other words, an online MDP algorithm A outputs parameter
θ = [θ(1), . . . , θ(N)]� ∈ Θ ⊂ RN of stochastic policy π(a|s; θ).

Thus, algorithm A gives a sequence of policies:

π(a|s; θ1), π(a|s; θ2), . . . , π(a|s; θT ).

We denote the expected cumulative rewards over T time steps of algorithm A
by

RA(T ) = E

[
T∑

t=1

rt(st,at)
∣∣∣A] .

Suppose that there exists θ∗ such that policy π(a|s; θ∗) maximizes the expected
cumulative rewards:

Rθ∗(T ) =E

[
T∑

t=1

rt(st,at)
∣∣∣θ∗

]
= sup

θ∈Θ
E

[
T∑

t=1

rt(st,at)
∣∣∣θ] ,

where E denotes the expectation. Our goal is to design algorithm A that mini-
mizes the regret against the best offline policy defined by

LA(T ) = Rθ∗(T )−RA(T ).

If the regret is bounded by a sub-linear function with respect to T , the algorithm
A is shown to be asymptotically as powerful as the best offline policy.

3 Online Policy Gradient (OPG) Algorithm

In this section, we introduce an online policy gradient algorithm for solving the
online MDP problem.

Different from the previous works, we do not use the expert algorithm in
our method, because it is not suitable to handling continuous state and action
problems. Instead, we consider a gradient-based algorithm which updates the
parameter of policy θ along the gradient direction of the expected average reward
function at time step t.

More specifically, we assume that the target MDP {S,A, p, π, r} is ergodic.
Then it has the unique stationary state distribution dθ(s):

dθ(s) = lim
T→∞

p(sT = s|θ).

Note that the stationary state distribution satisfies

dθ(s
′) =

∫
s∈S

dθ(s)

∫
a∈A

π(a|s; θ)p(s′|s,a)dads.

Let ρt(θ) be the expected average reward function of policy π(a|s; θ) at time
step t:

ρt(θ) =

∫
s∈S

dθ(s)

∫
a∈A

rt(s,a)π(a|s; θ)dads. (1)

Then our online policy gradient (OPG) algorithm is given as follows:



An Online Policy Gradient Algorithm for Continuous MDPs 357

– Initialize policy parameter θ1.

– for t = 1 to ∞
1. Observe current state st = s.

2. Take action at = a according to current policy π(a|s; θt).

3. Observe reward rt from the environment.

4. Move to next state st+1.

5. Update the policy parameter as

θt+1 = P (θt + ηt∇θρt(θt)) , (2)

where P (ϑ) = argminθ∈Θ ‖ϑ− θ‖ is the projection function, ηt =
1√
t
is

the step size, and ∇θρt(θ) is the gradient of ρt(θ):

∇θρt(θ) ≡
[
∂ρt(θ)

∂θ(1)
, . . . ,

∂ρt(θ)

∂θ(N)

]�
=

∫
s∈S

∫
a∈A

dθ(s)π(a|s; θ)(∇θ ln dθ(s) +∇θ ln π(a|s; θ))

× rt(s,a)dads.

If it is time-consuming to obtain the exact stationary state distribution, gra-
dients estimated by a reinforcement learning algorithm may be used instead in
practice.

When the reward function does not changed over time, the OPG algorithm is
reduced to the ordinary policy gradient algorithm [7], which is an efficient and
natural algorithm for continuous state and action MDPs. The OPG algorithm
can also be regarded as an extension of the online gradient descend algorithm

[10], which maximizes
∑T

t=1 ρt(θt), not E
[∑T

t=1 rt(st,at)|A
]
. As we will prove

in Section 4, the regret bound of the OPG algorithm is O(
√
T ) under a certain

concavity assumption and O(log T ) under a strong concavity assumption. Unlike
previous works, this bound does not depend on the cardinality of state and action
spaces. Therefore, the OPG algorithm would be suitable to handling continuous
state and action online MDPs.

4 Regret Analysis under Concavity

In this section, we provide a regret bound for the OPG algorithm.

4.1 Assumptions

First, we introduce the assumptions required in the proofs. Some assumptions
have already been used in related works for discrete state and action MDPs, and
we extend them to continuous state and action MDPs.
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Assumption 1. For two arbitrary distributions d and d′ over S and for every
policy parameter θ, there exists a positive number τ such that∫

s∈S

∫
s′∈S

|d(s)− d′(s)|p(s′|s; θ)ds′ds ≤e−1/τ

∫
s∈S

|d(s) − d′(s)|ds,

where

p(s′|s; θ) =
∫
a∈A

π(a|s; θ)p(s′|s,a)da,

and τ is called the mixing time [1,2].

Assumption 2. For two arbitrary policy parameters θ and θ′ and for every
s ∈ S, there exists a constant C1 > 0 depending on the specific policy model π
such that ∫

a∈A

|π(a|s; θ)− π(a|s; θ′)|da ≤ C1‖θ − θ′‖1.

The Gaussian policy is a common choice in continuous state and action MDPs.
Below, we consider the Gaussian policy with mean μ(s) = θ�φ(s) and standard
deviation σ, where θ is the policy parameter and φ(s) : S → RN is the basis
function. The KL-divergence between these two policies is

D(p(·|s; θ)||p(·|s; θ′)) =
∫
a∈A

Nθ,σ(a) {logNθ,σ(a)− logNθ′,σ(a)} da

=

∫
a∈A

Nθ,σ(a)

{
1

2σ2

(
−(a− θ)2 + (a− θ′)2

)}
da

=
‖φ(s)‖∞

2σ
‖θ − θ′‖2.

By Pinsker’s inequality, the following inequality holds:

‖p(·|s, θ)− p(·|s, θ′)‖1 ≤ ‖φ(s)‖∞
σ

‖θ − θ′‖1. (3)

This implies that the Gaussian policy model satisfies Assumption 2 with C1 =
‖φ(s)‖∞

σ . Note that we do not specify any policy model in the analysis, and
therefore other stochastic policy models could also be used in our algorithm.

Assumption 3. All the reward functions in online MDPs are bounded. For sim-
plicity, we assume that the reward functions satisfy

rt(s,a) ∈ [0, 1], ∀s ∈ S, ∀a ∈ A, ∀t = 1, . . . , T.

Assumption 4. For all t = 1, . . . , T , the second derivative of the expected av-
erage reward function satisfies

∇2
θρt(θ) ≤ 0. (4)

This assumption means that the expected average reward function is concave,
which is currently our sufficient condition to guarantee the O(

√
T )-regret bound

for the OPG algorithm.
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4.2 Regret Bound

We have the following theorem.

Theorem 1. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T ) ≤
√
T
F 2

2
+
√
TC2N + 2

√
Tτ2C1C2N + 4τ,

where F is the diameter of Θ and C2 = 2C1−C1e
−1/τ

1−e−1/τ .

To prove the above theorem, we decompose the regret in the same way as the
previous work [1,2,3,4]:

LA(T ) =Rθ∗(T )−RA(T )

≤
(
Rθ∗(T )−

T∑
t=1

ρt(θ
∗)

)
+

(
T∑

t=1

ρt(θ
∗)−

T∑
t=1

ρt(θt)

)

+

(
T∑

t=1

ρt(θt)−RA(T )

)
. (5)

In the OPG method, ρt(θ) is used for optimization, and the expected average
reward is calculated by the stationary state distribution dθ(s) of the policy
parameterized by θ. However, the expected reward at time step t is calculated
by dθ,t, which is the state distribution at time step t following policy π(a|s; θ).
This difference affects the first and third terms of the decomposed regret (5).

Below, we bound each of the three terms in Lemma 1, Lemma 2, and Lemma 3,
which are proved later.

Lemma 1. ∣∣∣∣∣Rθ∗(T )−
T∑

t=1

ρt(θ
∗)

∣∣∣∣∣ ≤ 2τ.

The first term has already been analyzed for discrete state and action online
MDPs in [1,2], and we extended it to continuous state and action spaces in
Lemma 1.

Lemma 2. The expected average reward function satisfies∣∣∣∣∣
T∑

t=1

(ρt(θ
∗)− ρt(θt))

∣∣∣∣∣ ≤ √
T
F 2

2
+
√
TC2N.

Lemma 2 is obtained by using the result of [10].

Lemma 3. ∣∣∣∣∣RA(T )−
T∑

t=1

ρt(θt)

∣∣∣∣∣ ≤ 2τ2C1C2N
√
T + 2τ.
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Lemma 3 is similar to Lemma 5.2 in [2], but our bound does not depend on the
cardinality of state and action spaces.

Combining Lemma 1, Lemma 2, and Lemma 3, we can immediately obtain
Theorem 1.

If the reward function is strongly concave for all t = 1, . . . , T , the bound of
the OPG algorithm is O(log T ) which is proved in Section 5.

4.3 Proof of Lemma 1

The following proposition holds, which can be obtained by recursively using
Assumption 1:

Proposition 1. For any policy parameter θ, the state distribution dθ,t at time
t and stationary state distribution dθ satisfy∫

s∈S

|dθ,t(s)− dθ(s)|ds ≤ 2e−t/τ .

The first part of the regret bound in Theorem 1 is caused by the difference
between the state distribution at time t and the stationary state distribution
following the best offline policy parameter θ∗.∣∣∣∣∣Rθ∗(T )−

T∑
t=1

ρt(θ
∗)

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

[∫
s∈S

dθ∗,t(s)

∫
a∈A

rt(s,a)π(a|s; θ∗)dsda

−
∫
s∈S

dθ∗(s)

∫
a∈A

rt(s,a)π(a|s; θ∗)dsda

]∣∣∣∣
≤

T∑
t=1

∫
s∈S

|dθ∗,t(s)− dθ∗(s)| ds

≤ 2

T∑
t=1

e−t/τ

≤ 2τ,

which concludes the proof.

4.4 Proof of Lemma 2

The following proposition is a continuous extension of Lemma 6.3 in [2]:

Proposition 2. For two policies with different parameters θ and θ′, an arbi-
trary distribution d over S, and the constant C1 > 0 given in Assumption 2, it
holds that∫

s∈S

d(s)

∫
s′∈S

|p(s′|s; θ)− p(s′|s; θ′)|ds′ds ≤ C1‖θ − θ′‖1,
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where

p(s′|s; θ) =
∫
a∈A

π(a|s; θ)p(s′|s,a)da.

Then we have the following proposition, which is proved in Section 4.6:

Proposition 3. For all t = 1, . . . , T , the expected average reward function ρt(θ)
for two different parameters θ and θ′ satisfies

|ρt(θ)− ρt(θ
′)| ≤ C2‖θ − θ′‖1.

From Proposition 3, we have the following proposition:

Proposition 4. Let

θ = [θ(1), . . . , θ(i), . . . , θ(N)],

θ′ = [θ(1), . . . , θ(i)
′
, . . . , θ(N)],

and suppose that the expected average reward ρt(θ) for all t = 1, . . . , T is Lips-
chitz continuous with respect to each dimension θ(i). Then we have

|ρt(θ)− ρt(θ
′)| ≤ C2|θ(i) − θ(i)

′
|, ∀i = 1, . . . , N.

Form Proposition 4, we have the following proposition:

Proposition 5. For all t = 1, . . . , T , the partial derivative of expected average
reward function ρt(θ) with respect to θ(i) is bounded as∣∣∣∣∂ρt(θ)∂θ(i)

∣∣∣∣ ≤ C2, ∀i = 1, . . . , N,

and ‖∇θρt(θ)‖1 ≤ NC2.

From Proposition 5, the result of online convex optimization [10] is applicable
to the current setup. More specifically we have

T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

F 2

2

√
T + C2N

√
T ,

which concludes the proof.

4.5 Proof of Lemma 3

The following proposition holds, which can be obtained from Assumption 2 and

‖θt − θt+1‖1 ≤ ηt‖∇θρt(θt)‖1 ≤ C2Nηt.
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Proposition 6. Consecutive policy parameters θt and θt+1 given by the OPG
algorithm satisfy∫

a∈A

|π(a|s; θt)− π(a|s; θt+1)|da ≤ C1C2Nηt.

From Proposition 2 and Proposition 6, we have the following proposition:

Proposition 7. For consecutive policy parameters θt and θt+1 given by the
OPG algorithm and arbitrary transition probability density p(s′|s,a), it holds
that ∫

s∈S

d(s)

∫
s′∈S

∫
a∈A

p(s′|s,a)

× |π(a|s; θt)− π(a|s; θt+1)|dads′ds ≤ C1C2Nηt.

Then the following proposition holds, which is proved in Section 4.6 following
the same line as Lemma 5.1 in [2]:

Proposition 8. The state distribution dA,t given by algorithm A and the sta-
tionary state distribution dθt of policy π(a|s; θt) satisfy∫

s∈S

|dθt(s)− dA,t(s)|ds ≤ 2τ2ηt−1C1C2N + 2e−t/τ .

Although the original bound given in [1,2] depends on the cardinality of the
action space, it is not the case in the current setup.

Then the third term of the decomposed regret (5) is expressed as

∣∣∣∣∣RA(T )−
T∑

t=1

ρt(θt)

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫
s∈S

dA,t(s)

∫
a∈A

rt(s,a)π(a|s; θt)dads

−
T∑

t=1

∫
s∈S

dθt(s)

∫
a∈A

rt(s,a)π(a|s; θt)dads

∣∣∣∣∣
≤

T∑
t=1

∫
s∈S

|dA,t(s)− dπt(s)|ds

≤ 2τ2C1C2N

T∑
t=1

ηt + 2

T∑
t=1

e−t/τ

≤ 2τ2C1C2N
√
T + 2τ,

which concludes the proof.
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4.6 Proof of Proposition 3

For two different parameters θ and θ′, we have

|ρt(θ)− ρt(θ
′)| =

∣∣∣∣∫
s∈S

dθ(s)

∫
a∈A

π(a|s; θ)rt(s,a)dads

−
∫
s∈S

dθ′(s)

∫
a∈A

π(a|s; θ′)rt(s,a)dads

∣∣∣∣
≤
∫
s∈S

|dθ(s)− dθ′(s)|
∫
a∈A

π(a|s; θ)rt(s,a)dads

+

∫
s∈S

dθ′(s)

∫
a∈A

|π(a|s; θ)− π(a|s; θ′)| rt(s,a)dads.

(6)

The first equation comes from Eq.(1), and the second inequality is obtained from
the triangle inequality. Since Assumption 2 and Assumption 3 imply∫

s∈S

dθ′(s)

∫
a∈A

|π(a|s; θ)− π(a|s; θ′)|rt(s,a)dads ≤ C1‖θ − θ′‖1,

and also ∫
a∈A

π(a|s; θ)rt(s,a)da ≤ 1,

Eq.(6) can be written as

|ρt(θ)− ρt(θ
′)| ≤

∫
s∈S

|dθ(s)− dθ′(s)|ds + C1‖θ − θ′‖1

=

∫
s∈S

∫
s′∈S

|dθ(s′)p(s|s′; θ)− dθ′(s′)p(s|s′; θ′)|ds′ds

+ C1‖θ − θ′‖1

≤
∫
s∈S

∫
s′∈S

|dθ(s′)p(s|s′; θ)− dθ′(s′)p(s|s′; θ)|ds′ds

+

∫
s∈S

∫
s′∈S

dθ′(s′)|p(s|s′; θ)− p(s|s′; θ′)|ds′ds

+ C1‖θ − θ′‖1

≤ e−1/τ

∫
s∈S

|dθ(s)− dθ′(s)|ds + 2C1‖θ − θ′‖1.

The second equality comes from the definition of the stationary state distribu-
tion, and the third inequality can be obtained from the triangle inequality. The
last inequality follows from Assumption 1 and Proposition 2. Thus, we have

|ρt(θ)− ρt(θ
′)| ≤ 2C1 − C1e

−1/τ

1− e−1/τ
‖θ − θ′‖1,

which concludes the proof.
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4.7 Proof of Proposition 8

This proof is following the same line as Lemma 5.1 in [2].∫
s∈S

|dA,k(s)− dθt(s)|ds

=

∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′; θk)− dθt(s

′)p(s|s′; θt)| ds′ds

≤
∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′; θt)− dθt(s

′)p(s|s′; θt)| ds′ds

+

∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′; θk)− dA,k−1(s

′)p(s|s′; θt)| ds′ds

≤ e−1/τ

∫
s∈S

|dA,k−1(s)− dθt(s)| ds+ 2(t− k)C1C2Nηt−1. (7)

The first equation comes from the definition of the stationary state distribution,
and the second inequality can be obtained by the triangle inequality. The third
inequality holds from Assumption 1 and∫

s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′; θk)− dA,k−1(s

′)p(s|s′; θt)| ds

≤ C1‖θt − θk‖1

≤ C1

t−1∑
i=k

ηi‖∇θρi(θi)‖1

≤ 2(t− k)C1C2Nηt−1.

Recursively using Eq.(7), we have∫
s∈S

|dA,t(s)− dπt(s)|ds ≤ 2

t∑
k=2

e−(t−k)/τ (t− k)C1C2Nηt−1 + 2e−t/τ

≤ 2τ2C1C2Nηt−1 + 2e−t/τ ,

which concludes the proof.

5 Regret Analysis under Strong Concavity

In this section, we derive a shaper regret bound for the OPG algorithm under a
strong concavity assumption.

Theorem 1 shows the theoretical guarantee of the OPG algorithm with the
concave assumption. If the expected reward function is strongly concave, i.e.,

∇2
θρt ≤ −HIN ,

where H is a positive constant and IN is the N × N identity matrix, we have
following theorem.
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Theorem 2. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T ) ≤
C2

2N
2

2H
(1 + logT ) +

2τ2C1C2N

H
logT + 4τ,

with step size ηt =
1
Ht .

We again consider the same decomposition as Eq.(5), the first term of the regret
bound is exactly the same as Lemma 1. The second and third parts are given by
the following propositions.

Given the strongly concavity assumption and step size ηt =
1
Ht , the following

proposition holds:

Proposition 9.

T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

C2
2N

2

2H
(1 + logT ).

The proof is following the same line as [12], i.e., by the Taylor approximation,
the expected average reward function can be decomposed as

ρt(θ
∗)− ρt(θt)

= ∇θρt(θt)
�(θ∗ − θt) +

1

2
(θt)

�(θ∗ − θt)
�∇2

θρt(ξt)(θt)
�(θ∗ − θt)

≤ ∇θρt(θt)
�(θ∗ − θt)−

H

2
‖θ∗ − θt‖2. (8)

Given the parameter updating rule,

∇θρt(θ
∗ − θt) =

1

2ηt

(
(θ∗ − θt)

2 − (θ∗ − θt+1)
2
)
+ ηt‖∇θρt(θt)‖2,

summing up all T terms of (8) and setting ηt =
1
Ht yield

T∑
t=1

(ρt(θ
∗ − θt)) ≤

T∑
t=1

(
1

ηt+1
− 1

ηt
−H

)
‖θ∗ − θt‖2 + ‖∇tρt(θt)‖2

T∑
t=1

ηt

≤ C2
2N

2

2H
(1 + logT ).

From the proof of Lemma 3, the bound of the third part with the strongly
concavity assumption is given by following proposition.

Proposition 10.

T∑
t=1

ρt(θt)−RA(T ) ≤
2τ2C1C2N

H
logT + 2τ. (9)
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The result of Proposition 10 is obtained by following the same line as the
proof of Lemma 3 with different step sizes. Combining Lemma 1, Proposition 9,
and Proposition 10, we can obtain Theorem 2.

6 Experiments

In this section, we illustrate the behavior of the OPG algorithm.

6.1 Target Tracking

The task is to let an agent track an abruptly moving target located in one-
dimensional real space S = R. The action space is also one-dimensional real
space A = R, and we can change the position of the agent as s′ = s + a. The
reward function is given by evaluating the distance between the agent and target
as

rt(s, a) = e−|s+a−tar(t)|,

where tar(t) denotes the position of the target at time step t. Because the target
is moving abruptly, the reward function is also changing abruptly. As a baseline
method for comparison, we consider the MDP-E algorithm [1,2], where the ex-
ponential weighted average algorithm is used as the best expert. Since MDP-E
can handle only discrete states and actions, we discretize the state and action
space. More specifically, the state space is discretized as

(−∞,−6], (−6,−6+ c], (−6 + c,−6 + 2c], . . . , (6,+∞),

and the action space is discretized as

−6,−6 + c,−6 + 2c, . . . , 6.

We consider the following 5 setups for c:

c = 6, 2, 1, 0.5, 0.1.

In the experiment, the stationary state distribution and the gradient are esti-
mated by policy gradient theorem estimator[5]. I = 20 independent experiments
are run with T = 100 time steps, and the average return J(T ) is used for evalu-
ating the performance:

J(T ) =
1

I

I∑
i=1

[
T∑

t=1

rt(st, at)

]
.

The results are plotted in Figure 1, showing that the OPG algorithm works
better than the MDP-E algorithm with the best discretization resolution. This
illustrates the advantage of directly handling continuous state and action spaces
without discretization.
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6.2 Linear-Quadratic Regulator

The linear-quadratic regulator (LQR) is a simple system, where the transition
dynamics is linear and the reward function is quadratic. A notable advantage of
LQR is that we can compute the best offline parameter [5]. Here, an online LQR
system is simulated to illustrate the parameter update trajectory of the OPG
algorithm.

Let state and action spaces be one-dimensional real: S = R and A = R.
Transition is deterministically performed as

s′ = s+ a.

The reward function is defined as

rt(s, a) = −1

2
Qts

2 − 1

2
Rta

2,

where Qt ∈ R and Rt ∈ R are chosen from {1, . . . , 10} uniformly for each t.
Thus, the reward function is changing abruptly.

We use the Gaussian policy with mean parameter μ ·s and standard deviation
parameter σ = 0.1, i.e., θ = μ. The best offline parameter is given by θ∗ = −0.98,
and the initial parameter for the OPG algorithm is set at θ1 = −0.5.

In the top graph of Figure 2, a parameter update trajectory of OPG in an
online LQR problem is plotted by the red line, and the best offline parameter is
denoted by the black line. This shows that the OPG solution quickly approaches
the best offline parameter.

Next, we also include the Gaussian standard deviation σ in the policy pa-
rameter, i.e., θ = (μ, σ)�. When σ takes a value less than 0.001 during gradient
update iterations, we project it back to 0.001. A parameter update trajectory is
plotted in the bottom graph of Figure 2, showing again that the OPG solution
smoothly approaches the best offline parameter along μ.

7 Conclusion

In this paper, we proposed an online policy gradient method for continuous state
and action online MDPs, and showed that the regret of the proposed method
is O(

√
T ) under a certain concavity assumption. A notable fact is that the re-

gret bound does not depend on the cardinality of state and action spaces, which
makes the proposed algorithm suitable in handling continuous states and actions.
Furthermore, we also established the O(log T ) regret bound under a strongly con-
cavity assumption. Through experiments, we illustrated that directly handling
continuous state and action spaces by the proposed method is more advantageous
than discretizing them.

Our future work will extend the current theoretical analysis to non-concave
expected average reward functions, where gradient-based algorithms suffer from
the local optimal problem. Another important challenge is to develop an effective
method to estimate the stationary state distribution which is required in our
algorithm.
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Abstract. We investigate the problem of Gaussian Markov random field
selection under a non-analytic constraint: the estimated models must be
compatible with a fast inference algorithm, namely the Gaussian be-
lief propagation algorithm. To address this question, we introduce the
�-IPS framework, based on iterative proportional scaling, which incre-
mentally selects candidate links in a greedy manner. Besides its intrinsic
sparsity-inducing ability, this algorithm is flexible enough to incorpo-
rate various spectral constraints, like e.g. walk summability, and topo-
logical constraints, like short loops avoidance. Experimental tests on
various datasets, including traffic data from San Francisco Bay Area,
indicate that this approach can deliver, with reasonable computational
cost, a broad range of efficient inference models, which are not accessible
through penalization with traditional sparsity-inducing norms.

Keywords: Iterative proportional scaling, Gaussian belief propagation,
walk-summability, Gaussian Markov Random Field.

1 Introduction

The Gaussian belief propagation algorithm [2] (GaBP) is an efficient distributed
inference algorithm, well adapted to online inference on large scale Gaussian
Markov random fields (GMRF). However, since it may encounter convergence
problems, especially with non-sparse structures, it can be of practical interest to
construct off-line a GMRF which is compatible with GaBP. When selecting such
a model from observations, we potentially face a difficult constrained problem.
In the present work, we propose to solve it in an approximate but satisfactory
manner, with good accuracy and limited computational cost. To achieve this,
we combine various methods, which have been discussed in the context of sparse
inverse covariance matrix estimation [1,7,15].

The GMRF distribution is naturally characterized by a mean vector μ ∈ R

and a positive definite precision (or concentration) matrix A, which is simply
the inverse of the covariance matrix C. Zero entries in the precision matrix
A indicate conditionally independent pairs of variables. This gives a graphical
representation of dependencies: two random variables are conditionally indepen-
dent if, and only if, there is no direct edge between them. Observations are

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 370–385, 2014.
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summarized in an empirical covariance matrix Ĉ ∈ RN×N of a random vector
X = (Xi)i∈{1,...,N}, and we look for a GMRF model with sparse precision matrix
A. The model estimation problem can be expressed as the maximization of the
log-likelihood:

A = argmax
M∈Sbp

++

L(M), L(M)
def
= log det(M)− Tr(MĈ),

where Sbp

++ formally represents the set of positive definite matrices corresponding
to some GaBP-compatible GMRF.

Without any constraint on M, the maximum likelihood estimate is trivially
A = Ĉ−1. However, enforcing sparsity with simple thresholding of small mag-
nitude entries may easily ruin the positive definiteness of the estimated preci-
sion matrix. In the context of structure learning, where meaningful interactions
have to be determined, for instance among genes in genetic networks, the max-
imization is classically performed on the set of positive definite matrices, after
adding to the log-likelihood a continuous penalty function P that imitates the
L0 norm. The Lasso penalty, a convex relaxation of the problem, uses the L1

norm, measuring the amplitudes of off-diagonal entries in A [7,9]. Various opti-
mization schemes have been proposed to solve it efficiently [1,7]. However, the L1

norm penalty suffers from a modeling bias, due to excessive penalization of truly
large magnitudes entries of A. To overcome this issue, concave functions, that
perform constant penalization to the large magnitudes, have been proposed. Ex-
perimental results indicate promising improvements compared to Lasso penalty
by reducing bias, while conserving the sparsity-introducing capability [6,11].

In our context, where compatibility with GaBP has to be imposed, sparsity is a
desirable feature, albeit without much guarantee: specific topological properties,
like the presence of short loops, are likely to damage the GaBP compatibility,
even on a sparse graph. Some spectral properties, e.g. walk-summability [12],
which guarantee the compatibility with GaBP based inference, might be rele-
vant too. In order to incorporate these explicitly, we propose an efficient con-
strained model selection framework called  -IPS, where  stands for the imposed
constraints. Approaches based on the iterative proportional scaling (IPS) pro-
cedure [17] have already been discussed for tackling the original sparse inverse
covariance matrix problem [10,15]. A first contribution of this paper is to im-
prove its performance by combining it with block update techniques used in [1,7],
along with providing some precision guarantee based on duality. Our second and
main contribution is to exploit the incremental nature of the method to impose,
for a reasonable cost, both topological and/or spectral constraints, to generate
GMRF models compatible with GaBP, achieving a very good trade-off between
computational cost and precision in inference tasks, as shown experimentally.

The paper is organized as follows. The principles of IPS are described in
Section 2. Our method includes a likelihood maximization step at fixed graph
structure, for which we give a stopping criterion based on duality. In Section 3,
we propose several constraints improving GaBP compatibility of the estimated
models, and show how to introduce them in our framework. In Section 4, we
describe  -IPS as a whole, discuss its complexity and provide some implemen-
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tation details. Finally Section 5 is devoted to numerical experiments, both on
synthetic data and on real traffic data coming from ≈ 103 fixed sensors in the San
Francisco Bay Area, to illustrate the use of the method for traffic applications.

2 IPS-Based GMRF Selection

Iterative proportional scaling has been proposed for contingency table estima-
tion [4] and extended further to MRF maximum likelihood estimation [17]. As-
suming the structure of the graph is known, it appears to be less efficient than
other gradient based methods [13]. Conversely, local changes based on single
row-column updates have been shown to be very efficient, even in the first order
setting [7]. In our work, we combine the benefits of the incremental character-
istics of IPS to identify links (Section 2.1), with the efficiency of row-column
update to optimize their parameters at fixed structure (Section 2.2).

2.1 Optimal 1-Link Perturbation

Suppose that we are given a set of single and pairwise empirical marginals p̂i
and p̂ij from a real-valued random vector X = (Xi)i∈{1...N}, and a candidate
distribution P (n), based on the dependency graph G(n). Let us first describe op-
timal link addition in terms of likelihood. Let P (n) be the reference distribution,
to which we want to add one factor ψij to produce the distribution

P(n+1)(x) = P (n)(x) × ψij(xi, xj).

This is a special case of IPS and the optimal perturbation is

ψij(xi, xj) =
p̂ij(xi, xj)

p(n)

ij (xi, xj)
, (1)

where p(n)

ij is the (i, j) pairwise marginal of P (n). The correction to the log-
likelihood can then be written as a Kullback-Leibler divergence:

ΔL = DKL(p̂ij‖p(n)

ij ) =

∫∫
p̂ij(u, v) log

p̂ij(u, v)

p(n)

ij (u, v)
dudv.

Sorting all the links w.r.t. this quantity yields the optimal 1-link correction to
be made. Hence, the best candidate is the one for which the current model yields
the joint marginal p(n)

ij that is most divergent from p̂ij . Note that the update
mechanism can in fact also be applied if the link is already present.

In the general case, computing the pairwise marginals {pij, (ij) /∈ G(n)} is
expensive. However, in the GMRF family, these marginals depend only on the
covariance matrix associated to P (n). The correction factor (1) reads in that case

ψij(xi, xj) = exp
[
−1

2
(xi, xj)

T
(
Ĉ−1

{ij} −C−1
{ij}

)
(xi, xj)

]
,
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where C{ij} (resp. Ĉ{ij}) represents the restricted 2 × 2 covariance matrix cor-
responding to the pair (Xi, Xj) of the current model P (n) (resp. of the empirical

distribution P̂) specified by precision matrix A = C−1 (resp. Â = Ĉ−1). Let
[C{ij}] denote the N × N matrix formed by completing C{ij} with zeros. The
new model obtained after adding or changing link (i, j) reads

A′ = A+ [Ĉ−1
{ij}]− [C−1

{ij}]
def
= A+ [V], (2)

with a log-likelihood variation given by:

ΔL =
CiiĈjj + Cjj Ĉii − 2CijĈij

det(C{ij})
− 2− log

det(Ĉ{ij})

det(C{ij})
. (3)

For a 2 × 2 perturbation matrix V = V{ij}, the Sherman–Morrison–Woodbury
(SMW) formula allows us to efficiently compute the new covariance matrix as

C′ = A′−1 = A−1 −A−1[C−1
{ij}]

(
I− [Ĉ{ij}][C

−1
{ij}]

)
A−1. (4)

The number of operations needed to maintain the covariance matrix – and to
keep track of all pairwise marginals – after each addition is thereforeO(N2). This
technical point is determinant to the usefulness of our approach. The identity
det(A′) = det(A)×det(Ĉ{ij})/ det(C{ij}) ensures that the new precision matrix

remains definite positive when both C{ij} and Ĉ{ij} are non-degenerate.
It is also possible to remove links, so that, with help of a penalty coefficient per

link, the model can be optimized with a desired connectivity level. For a GMRF
with precision matrix A, removing the link (i, j) amounts to setting the entry
Aij to zero, and thus ψij(xi, xj) = exp

(
Aijxixj

)
. The corresponding change of

log-likelihood is then

ΔL = log
(
1− 2AijCij −A2

ij det(C{ij})
)
+ 2AijĈij ,

and, using again the SMW formula, we get the new covariance matrix

C′ = C− Aij

1− 2AijCij −A2
ij det(C{ij})

C[B{ij}]C,

with

B{ij}
def
=

�
AijCjj 1−AijCij

1−AijCij AijCii

�
.

In this case, the positive-definiteness of A′ needs to be checked and we have

det(A′) = det(A)
[
1− α

(
Cij −

√
CiiCjj

)][
1− α

(
Cij +

√
CiiCjj

)]
,

so that A′ is definite positive if the following condition is verified:

1

Cij −
√
CiiCjj

< Aij <
1√

CiiCjj + Cij

.
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2.2 Block Updates

When a new link is added, existing links become detuned by a slight amount.
As pointed out, the optimal update given in Section 2.1 is actually indifferent
to whether the considered link exists or not. This means that, after a while,
detuned links may be automatically updated if the likelihood gain exceeds the
one obtained by adding a new link. We observe in practice that, when many links
have been added, all the existing links are slightly detuned, which eventually
causes suboptimal or bad decisions for the next links, resulting in a significant
departure of the learning curve from the optimal one (see Fig. 2-left in Section 5).
However, correcting existing links can become very time consuming, the update
of one single link having the same computational cost O(N2) as the addition
of one link. There are various options to address this problem. To keep the
algorithm fast, robust and simple, we choose to stay with the logic of coordinate
descent, by remarking that local updates are still possible via a single row-
column update of the precision matrix, as originally proposed in [1] and refined
in [7]. In our context, the method is based on the following expression of the log
determinant of the precision matrix A:

log det(A) = log det(A\i\i) + log(Aii −AT
i A

−1
\i\iAi),

where A\i\i is the block matrix obtained after taking aside the ith row and

column andAi is the i
th column vector ofA without Aii. The direct optimization

of the log-likelihood w.r.t. Ai and Aii yields the following updated values:

A′
ii =

1

Ĉii

+AT
i A

−1
\i\iAi and A′

i =
[
IV (i)A

−1
\i\iIV (i)

]−1
IV (i)

Ĉi

Ĉii

, (5)

where Ĉi represents the ith column vector of Ĉ, V (i) the set of neighbors of i
in the current graph, and IV (i) the identity restricted to entries j ∈ {i} ∪ V (i).

Note that this solution involve the inverse A−1
\i\i of a matrix of size N − 1. It is

related to C = A−1 as follows:

A−1
\i\i = C\i\i −

CiC
T
i

Cii
.

The overall cost for updating column (and row) i is thus O(|V (i)|3) for the
inversion of

[
IV (i)A\i\iIV (i)

]
and O(N2) to update the covariance matrix C

after this change. The log-likelihood gain ΔL reads

− log
�
Ĉii(Aii −AT

i A
−1
\i\iAi)

�
−2(A′

i−Ai)
T Ĉi−

�
1

Ĉii

+A′
i
TA−1

\i\iA
′
i −Aii

�
Ĉii.

2.3 Stopping Criterion

If the set of links to be optimized is given by some graph G, the likelihood
optimization is a convex problem. Let us investigate its dual properties. Let A
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denote the precision matrix, and Π a Lagrange matrix multiplier, that imposes
the structure given by G. The support of Π is the complementary graph of G:
∀(i, j) ∈ G, Πij = 0, ∀i,Πii = 0 and Π is symmetric. Then, given Π, we want to
optimize

AΠ = argmin
M

Tr(MΠ) + f(M),

with f(M)
def
= Tr(MĈ) − log det(M) being convex for given support G. The

explicit solution is

AΠ = (Ĉ+Π)−1. (6)

We assume thatΠ is such that Ĉ+Π is positive definite, so the dual optimization

problem reads Y = argmaxΠ g(Π), with g(Π)
def
= N + log det(Ĉ + Π). The

problem is now concave and, because of the barrier resulting from the log term,
we are certain to have a positive definite solution. Thus, for any matrix Π, such
that Ĉ+Π is definite positive, g(Π) is a lower bound of the log-likelihood. The
support of Π represents the set of links to be removed from the precision matrix.
Once optimality is reached forΠ, all non-zero entriesΠij correspond to vanishing
coefficients Aij in (6). We may proceed as before, by computing the potential
log-likelihood gain ΔL for such local transformations of the covariance matrix.
Local moves in the dual formulation deal with the covariance matrix instead of
the precision matrix in the primal one. Let C and C′ be two covariance matrices
differing by a single modification on Π with A = C−1 and A′ = C′−1. We have

det(C′) = det(C)
(
1 + 2ΠijAij −Π2

ij det(A{ij})
)
,

with det(A{ij}) > 0, since A is definite positive. Maximizing the log-likelihood
variation yields the optimal values

Πij =
Aij

det(A{ij})
and ΔL = log

�
1 +

A2
ij

det(A{ij})

�
.

In practice, we will not use this backward scheme: its computational cost is
prohibitive, since the complementary graph, composed of links to be removed, is
dense. However, this dual formulation will help us to build a confidence interval.
During the greedy procedure, we always have to maintain C = A−1 but C
cannot be used directly to get a dual cost because, except at convergence, it
does not fulfill the dual constraints Cij = Ĉij , ∀(i, j) ∈ G.

Let Π‖ be the correction matrix with coefficients Π
‖
ij

def
= (Ĉij −Cij)11{(i,j)∈G}.

Provided that C̃
def
= A−1 + Π‖ is definite positive, which happens when A is

close enough to the optimum A�, it satisfies the dual constraints yielding the
confidence bound

log det(C̃) +N ≤ −L(A�) ≤ Tr(AĈ)− log det(A).

We have

log det(C̃) = − log det(A) + log det
	
I+AΠ‖



,
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with both A and Π‖ sparse matrices, so the determinant can be estimated in
O(N2K) operations by expanding the logarithm at order 2 in AΠ‖. It leads to
the following bound

ΔL ≤ 1

2
Tr
(
AΠ‖AΠ‖),

which will be used in practice as a stopping criterion for the link updates.

3 Introducing Constraints for GaBP Compatibility

Usually, GMRF estimation intends to describe a dependency structure. We pur-
sue here another aim: finding a model suitable for fast inference. While inference
in GMRF models can always be performed exactly in O(N3) through matrix
inversion, this may not be fast enough for some “real-time” applications on
large networks. The GaBP algorithm [2] is a fast alternative to matrix inversion
for sparse GMRF, which uses message passing along links in the graph G, and
thus, assuming it converges, will perform the inference in O(mKN), where K
is the mean connectivity of G and m the maximum number of iterations before
convergence. An important property of the GaBP algorithm is that, whenever
it converges, it provides the exact mean values for all variables [18]. Variances
are however generally incorrect [12]. Having a sparse GMRF gives no guarantee
about its compatibility with GaBP, so we need to impose more precise con-
straints on the precision matrix and to the graph structure. In this section, we
make such constraints explicit and show how to impose them in the framework
of Section 2.

3.1 Spectral Constraints

The most precise condition known for convergence of GaBP is walk-summability

(WS) [12]. Let R(A)
def
= A− diag(A) contain the off-diagonal terms of A, and

let ρ(·) denote the spectral radius of a matrix, that is, the maximal modulus of
its eigenvalues. The two equivalent necessary and sufficient conditions for WS
that we will use are:

(i) The matrix W(A)
def
= diag(A)− |R(A)| is definite positive;

(ii) ρ(|R′(A)|) < 1, with R′(A)ij
def
=

R(A)ij√
AiiAjj

.

Let us consider a GMRF with WS precision matrix A and investigate under
which conditions the model remains WS after a perturbation of a link (i, j). The
following proposition gives a sufficient condition:

Proposition 1. Let A be a WS precision matrix and denote W
def
= W(A). The

matrix A′ = A+ [V{ij}] is WS if

Θ(α) > 0, ∀α ∈ [0, 1], (7)
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where Θ is the following function

Θ(α)
def
= det(W−1

{ij})
(
α2ViiVjj − (|Aij | − |αVij +Aij |)2

)
+ α

	
W−1

ii Vii +W−1
jj Vjj



+ 2 (|Aij | − |αVij +Aij |)Wij . (8)

In order to check condition (7), it is necessary to solve two quadratic equations.
Note however that knowledge of the matrix W(A)−1 is also mandatory. We will
discuss this point at the end of this section.

Proof. The sufficient condition is obtained as follows: for α ∈ [0, 1] we have

W(A+ αV) = W(A) + [φ(αV,A)],

with

φ(V,A)
def
=

�
Vii |Aij | − |Vij +Aij |

|Aij | − |Vji +Aji| Vjj

�
.

W(A) being invertible, the determinant of W(A+ αV) is expressed as

det(W(A + αV)) = det (W(A)) det
(
I+W(A)−1[φ(αV,A)]

)
,

and we can check that Θ(α) = det(I + W(A)−1[φ(αV,A)]), with Θ defined
in (8). The spectrum of W(A + αV) being a continuous function of α, as the
roots of a polynomial, the condition (7) follows.

Note that the special case of removing one link of the graph always pre-
serves the WS property. Indeed, it will change the matrix A in A′ such as
|R′(A′)| ≤ |R′(A)| where ≤ denotes element-wise comparison. Then, using el-
ementary results on positive matrices [16, p. 22], ρ(|R′(A′)|) ≤ ρ(|R′(A)|) and
thus A′ is WS whenever A is WS.

As we shall see in the numerical experiments, imposing WS is generally too
restrictive. It is easy to find non WS models which are still GaBP compatible.
The above principle allows us however to impose a weaker spectral constraint:
imposing that the matrix diag(A) − R(A) remains definite positive. This is
equivalent to constrain the spectral radius ρ(R′(A)) to be strictly lower than 1
and it is a necessary condition for GaBP convergence [12]. We call that condi-
tion “weak walk-summability” (WWS) as a relaxation of the WS condition. We
obtain the following condition

Proposition 2. Let A be a WWS precision matrix, i.e. such as ρ(R′(A)) < 1,

and S(A)
def
= diag(A)−R(A). The matrix A′ = A+ [Vij ] is WWS if

Γ (α) > 0, ∀α ∈ [0, 1], (9)

with Γ the following degree 2 polynomial and S
def
= S(A)

Γ (α)
def
= α2 det(VS−1

{i,j}) + α(ViiS
−1
ii + VjjS

−1
jj − 2VijS

−1
ij ) + 1.



378 V. Martin et al.

In order to check condition (9), we have to solve a quadratic equation. As in
Proposition 1, we need to keep track of an inverse matrix, in this case S(A)−1.

Proof. Mimicking the proof of Proposition 2, we define, for α ∈ [0, 1],

M(α)
def
= diag(A+ α[V]) −R(A+ α[V]) = S(A) + α diag([V])−R([V]),

and we have

det(M(α)) = det(S(A)) det
(
I+ αS−1 [diag(V) −R(V)]

)
= det(S(A))Γ (α).

The spectrum of M(α) being a continuous function of α, condition (9) follows.

Both (7) and (9) are only sufficient conditions for spectral constraint conser-
vation after a pairwise perturbation. However, there are only a few cases where
they lead to rejection of a valid perturbation. Indeed, it means that at least one
eigenvalue goes to zero for some α ∈]0, 1[ and is positive again for α = 1.

We have pointed out that checking sufficient condition (7) (resp. (9)) imposes
to keep track of the inverse matrixW(A)−1 (resp. S(A)−1). This will not impact
the overall complexity of the algorithm since, using the SMW formula, it can be
done in O(N2) operations, like for keeping track of the covariance matrix.

Note that, if we want to maintain these spectral constraints, we will not be
able in practice to use the column updates described in Section 2.2. Indeed,
computing the optimal perturbation is in this case costly, and we have no easy
way to check whether it leads to a new admissible model, since our method
would involve higher order characteristic polynomials.

3.2 Topological Constraints

We present in this section another approach, based mainly on empirical knowl-
edge about the belief propagation algorithm. Belief propagation has been de-
signed as an exact procedure on trees [14] and short loops are usually believed
to cause convergence troubles. In the extreme case, where we forbid the addition
of any loop, the best precision matrix estimate based on likelihood is known to
be the max-spanning tree w.r.t. mutual information [3]. Since this is usually not
enough, we propose here that the estimated precision matrix contains no loops
of size smaller than �. This is quite easy to impose: when adding a link (i, j), we
have to search if i is in the neighborhood of j of depth �− 1. The computational
cost is O(K�), with K the connectivity of G.

We can impose a more precise condition using the fact that, in the absence of
frustrated loops, the GaBP algorithm is always convergent [12]. A frustrated loop
is a loop along which the product of partial correlations is negative. Preventing
the formation of frustrated loops is very similar to the previous loop constraint;
the search cost is the same, the only difference is that we will avoid only this
kind of loops. This last constraint cannot be imposed with guarantees during
the block updates since the sign of partial correlations along edges may change.
Prohibiting frustrated loops would require to store all the loops in the graph,
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which is by far too costly. However, experimental results show that a change of
sign usually corresponds to small partial correlations, which are less likely to
cause convergence issues.

4 Algorithm Description and Complexity

In this section, we give an overview of  -IPS, leaving aside the backtracking
option. A formal implementation1 is given in Algorithm 1. Note that we suppose
that the initial point of the algorithm corresponds to an empty graph. We may
as well start from any precision matrix A, provided that we have computed
C = A−1 and W(A)−1 or S(A)−1 if we want to impose spectral constraints.

Algorithm 1.  -constrained Iterative Proportional Scaling ( -IPS). The func-
tion Check constraint returns true if the perturbation of �ıj leads to a model
compatible with the given constraint  .

Inputs: �: constraint type (∅, WS, WWS, �-LOOP, �-FLOOP);
Ĉ: empirical covariance matrix.

Parameters: ε and εu: stopping criteria on the log-likelihood and for the update step;
δK: connectivity increment after which an update step is performed.

1: A = C = W−1 = S−1 = diag(1).
2: while ΔLmax > ε and niter < nmax do
3: ΔLmax ← 0, niter ← niter + 1
4: for all pairs of nodes �ıj do
5: compute ΔLij using (3)
6: if ΔLij > ΔLmax then
7: if Check constraint(�, �ıj,A) then
8: ΔLmax ← ΔLij and V← [V{i,j}] defined in (2)
9: A← A+V, update C using (4).
10: if � = WS or WWS then
11: update W−1 or S−1 using the SMW formula.
12: if connectivity has increased by δK then
13: while Tr

(
AΠ‖AΠ‖) > εu do

14: for �ıj | Aij �= 0 do
15: ΔLmax ← 0, compute ΔLij using (3)
16: if ΔLij > ΔLmax then
17: if Check constraint(�, �ıj,A) then
18: ΔLmax ← ΔLij and V← [V{i,j}] defined in (2)
19: if � = WS or WWS then
20: A← A+V, update C and W−1 or S−1 using the SMW formula.
21: else
22: Block updates (5) of i and j corresponding to ΔLmax. Update C using

the SMW formula.

Let us clarify the complexity of this algorithm. Each link addition or update
has a cost O(N2) to update the covariance matrix. If spectral constraints are

1 The source code is available at http://www.rocq.inria.fr/~lasgoutt/star-ips/

http://www.rocq.inria.fr/~lasgoutt/star-ips/
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imposed, it is necessary to keep track of another inverse matrix, which requires as
well O(N2) operations and does not change the complexity. Adding M links will
therefore require at least O(MN2) operations. This means that our algorithm
complexity is in O(N3) in the sparse regions, whereas it becomes O(N4) in
the dense ones. Note that this complexity does not take into account the time
spent in link updates. As pointed out in Section 2.2, this update step is useful
to avoid departing from the optimal learning curve. For a given bound εu, we
observe numerically that the number of updates is O(N), regardless of the mean
connectivity in the sparse regime, so this adds up another O(N3) computational
cost. Note that the critical parts of the algorithm, which are the update of the
covariance matrix and the search for the perturbation that maximizes likelihood
increase, can easily be parallelized.

Let us anticipate on the application to emphasize the usefulness of our algo-
rithm, which complexity is comparable to a direct covariance matrix inversion.
Suppose that the workflow is:

1. select off-line a GMRF model based on an empirical covariance matrix;
2. use the above model to perform inference for a “real-time” application (which

here means at most a few minutes).

We may allow the first task to take a few hours, and thus matrix inversion
is acceptable for quite large networks. However, the resultant model will not be
suited to GaBP in the inference task and we will have to resort to exact inference,
through a matrix inversion of complexity O((N −no)

3), where no is the number
of observed variables. Using our sparse GaBP-compatible model instead, with
a mean connectivity K, the approximate inference complexity O(mK(N − no))
will then typically scale down from a few hours to a few seconds or a few minutes
depending on the needed precision.

5 Experimental Results

To have some elements of comparison, let us first quickly describe traditional
ways to tackle the maximum likelihood estimation problem with penalty-induced
sparsity constraints. It involves a maximization of the form

A = argmax
M∈S++

log det(M)− Tr(MĈ) + λP (M),

where S++ is the set of positive definite matrices. A classical penalization func-
tion P is a continuous approximation to the discrete L0 norm like the “seamless
L0 penalty” (SELO) proposed in [11]

P (x) = log

�
2|x|+ τ

|x|+ τ


.

In the following, we set τ = 5.10−3, which is empirically good enough. We pro-
pose to use the Doubly Augmented Lagrange method [5] to solve this penalized
log-determinant programming.
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The second method used for comparison is QUIC [9], which uses the L1 norm
as penalty. This is a second order optimization method, leading to superlinear
convergence rates. We perform it directly on the empirical covariance matrix with
different values for the regularization coefficient λ. Once the structure has been
found, it is necessary to maximize the likelihood. According to our experiments,
L1 norm penalty leads to poor precision matrices in terms of likelihood, even if
it may be very efficient to find an existing sparse graph structure.

We can now compare the performance of  -IPS and sparsity penalized like-
lihood optimization. For generating one single GMRF with a given designed
sparsity level, both methods are comparable in terms of computational cost,
while  -IPS is faster in very sparse regime. Due to its incremental nature, it also
has the advantage of generating a full Pareto set of approximate solutions. To
assess the quality of the  -IPS model selection, we first look into data fitting ac-
curacy through log-likelihood, and then investigate its compatibility with GaBP
inference.

-90

-70

5 10 15

L
o
g
-l
ik
el
ih
o
o
d
L

Mean connectivity K

E
x
a
ct

co
n
n
ec
ti
v
it
y
κ
0

Lmax

IPS
WS-IPS

WWS-IPS
3-LOOP-IPS

3-FLOOP-IPS
SELO (L0)
QUIC (L1)

0

10

20

5 10 15 20

D
K
L
(A

(K
)||
C
)

Mean connectivity K

E
x
a
ct

co
n
n
ec
ti
v
it
y
κ
0

IPS
WS-IPS

WWS-IPS
3-LOOP-IPS

3-FLOOP-IPS
SELO (L0)
QUIC (L1)

Fig. 1. Left: Log-likelihood L as a function of mean connectivity K for �-IPS with
different constraints, SELO and QUIC, all computed from the exact covariance matrix
C. Right: Kullback-Leibler divergence to the actual distribution as a function of mean
connectivity (estimations based on an empirical covariance matrix Ĉ, generated with
1000 samples). The end of GaBP compatibility for each algorithm is indicated by ×’s.

Likelihood and GaBP Compatibility Trade-off. The first test is performed on a
randomly generated GMRF of 100 variables. The structure of its precision matrix
is an Erdős-Rényi random graph, where each link is assigned a value with random
sign and magnitude (between 0.1 and 0.8). A diagonal term is added to make
it definite positive. The results of the different algorithms are shown in Fig. 1.
Both SELO and IPS algorithm are able to find the true graph with the exact
covariance matrix. As expected, WS is a very strict constraint and yields low
connectivity models. Using WWS instead yields better GaBP compatibility, but
provides no guarantee about it. However, this constraint can be enough to get
a GaBP-compatible model with (almost) maximal likelihood (Fig. 1-right). For
both models, QUIC is clearly sub-optimal regarding sparsity/likelihood trade-off.
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Fig. 1-right illustrates  -IPS performance in terms of overfitting. This overfitting
starts after the Kullback-Leibler divergence reaches a minimum. This can happen
as well as before as after the end of GaBP compatibility. Detecting this point is a
classical but difficult statistical problem and further investigations are needed to
find the best criterion adapted to our case. The second test (Fig. 2) is performed
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Fig. 2. Left: log-likelihood L as a function of mean connectivityK. Right: mean relative
L1 reconstruction error as a function of the fraction of observed stations on the San
Francisco Bay Area network for various methods; results are averaged over 100 sample
test experiments and normalized by the score obtained with daytime moving average
predictor.

on traffic data from the San Francisco Bay Area2. Each sample data is a N -
dimensional vector of observed speeds {V̂i, i = 1 . . .N}, giving a snapshot of
the network at a given time of the day, as measured by a set of fixed sensors.
After filtering out inactive sensors, we finally kept 1020 variables, for which we
had data from January to June 2013. The travel time distribution at each link,
being bounded with heavy tail, is far from being Gaussian. In order to work with
normal variables, we make the following transformation

Yi = Φ−1
(1 + F̂i(Vi)

2

)
, ∀i = 1 . . .N, (10)

which maps the speed Vi to the positive domain of a standard Gaussian variable
Yi, where F̂i and Φ are respectively the cumulative distribution functions of
the speeds and of a normal distribution. The input of the algorithms we are
comparing is the covariance matrix of the vector Y. This mapping is important
to use the selected GMRF for the inference tasks in the next section.

Fig. 2-left compares the performance of some  -IPS variants with methods
based on penalized norms. IPS with update but no constraint is comparable to
SELO optimization, albeit much faster to generate the Pareto set, while QUIC
is by far the weakest contender. In fact, QUIC is not performing well because,
in this case, there is no true underlying sparse dependency graph. Both IPS

2 Available at the Caltrans PeMS website: http://pems.dot.ca.gov/

http://pems.dot.ca.gov/
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and SELO loose the compatibility with GaBP at low likelihood and mean con-
nectivity (respectively at K < 6.5 and K < 4). By contrast, imposing the “no
frustrated loops of size 3” constraint (3-FLOOP-IPS) yields a nearly optimal
L(K) path, up to some flat regime, which endpoint is still GaBP compatible.
This is the best trade-off which can be found among all constraints that we have
tested. While the WS constraint is again too restrictive, we notice that WWS
yields models which are all the way compatible, but with a suboptimal L(K)
path. This is partly due to the absence of block updates, replaced by less efficient
local updates. Actually, we see that the WWS L(K) roughly follows the one ob-
tained with ∅-IPS (no update at all), which also delivers only GaBP-compatible
models. Our interpretation is that updating the links has the effect of reducing
some uncorrelated noise otherwise present in the approximate model. At some
point, it may spoil the GaBP compatibility because of stronger correlations being
taken into account.

Inverse Models for GaBP Inference. Our original motivation for this work is to
provide models for travel time inference for large scale traffic network in real
time [8]. In this application, from an historical data set, we have to build a
GMRF reflecting the mutual information between traffic levels among different
segments of the traffic network. Then, in real time, GaBP runs on this GMRF
to propagate the information given by observed segments to the other ones.

In our experiment with PeMS data, both the historical and test data sets con-
tain samples of a N -dimensional vector of 5-minutes averaged speeds, obtained
from fixed sensors. Given a sample, for which a proportion ρ of the variables is
observed, we want to infer the states of the (1 − ρ)N unobserved variables. In
practice, we proceed gradually on each test sample, by revealing the variables in
a random order, and plot the relative L1 error |v̂ − v|/v made by the inference
model on the unobserved variables as a function of ρ, aggregated over 100 dif-
ferent test samples. The error is measured on the speed, after inference has been
done in the space defined by (10).

In principle,  -IPS does not require complete samples and even knowledge of
the whole covariance matrix is actually not mandatory. But, for this highway
dataset, the samples have no missing values, which allows us to use a brute
force k-NN predictor for the sake of comparison. The setting for k-NN is as
follows: k samples out of the whole training set are selected according to their
mean L1 distance on the observed variables. Then, for each unobserved variable,
the median value is extracted from the k selected samples as a predictor. In
the experiments, the value k = 70 has been determined to yield the best k-NN
predictions.

Fig. 2-right compares the prediction made by  -IPS with the respective results
of SELO, full inverse covariance matrix model and k-NN. GMRF models and
k-NN behave very differently. k-NN seems to capture rapidly (ρ ≤ 0.1) the global
network behavior, but remains flat after that, despite the additional information.
By contrast, GMRF models performance always improves with new information,
because of their local nature. Moreover, while constraints applied to IPS offer
us more precise models, the role of L as proxy is not completely respected.
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Fig. 3. Mean relative L1 reconstruction error as a function of log-likelihood (left) and
of computational time cumulated over 100 experiments (right). The different results
for k-NN are obtained with historical datasets of sizes 103, 2.103, 5.103, 104 and 3.104.

This is due to overfitting problems: as we can see, the full inverse covariance
matrix model behaves worse than the K = 6.5 model obtained by simple IPS.
This appears clearly in Fig. 3-left, where the prediction error reaches a minimum
before increasing again with L. Finally, Fig. 3-right shows various trade-offs
between precision and efficiency of the models. We clearly see that  -IPS extracts
more precise and less time-consuming models for traffic states reconstruction. For
instance, the highest precision is obtained with WWS-IPS for K ≈ 50, leading
to a 10-fold time reduction of the computational time w.r.t. the full inverse
covariance model, with a gain of 5% in precision.

6 Conclusion

In this paper, we revisit IPS and show that it provides an efficient framework to
find GMRF models with constraints more specific than sparsity. Comparisons
show the merits of the proposed  -IPS in terms of flexibility, likelihood values
reached and diversity of solutions, since a Pareto set can be delivered for the
computational cost of one estimation.

In terms of trade-off between sparsity and likelihood,  -IPS is comparable to
the SELO approach, with less computational cost. In contrast, L1 based methods
do not provide satisfying results in our problem setting.

In addition, the flexibility of  -IPS allows one to embed additional and rather
exotic but useful constraints for GaBP compatibility, which is not simple to do
with traditional penalized likelihood approaches. Experiments show that both
topological and spectral constraints are useful. While the walk-summability
constraint seems too strict to be useful in practice, relaxing it to weak walk-
summability leads to very good models. At the same time, avoiding only frus-
trated triangles give very satisfactory results in our experiments.

Still in this context, the overfitting problem seems completely open to us. Clas-
sical information-theoretic criteria failed in our tests to locate properly where
to stop in the incremental link addition process. In fact, we observe that both
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the link-addition and the link-update procedure can lead to overfitting, and the
design of a specific criterion able to avoid this deserves further investigation.
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Abstract. Ranking tasks, where instances are ranked by a predicted
score, are common in machine learning. Often only a proportion of the in-
stances in the ranking can be processed, and this quantity, the predicted
positive rate (PPR), may not be known precisely. In this situation, the
evaluation of a model’s performance needs to account for these impre-
cise constraints on the PPR, but existing metrics such as the area under
the ROC curve (AUC) and early retrieval metrics such as normalised
discounted cumulative gain (NDCG) cannot do this. In this paper we
introduce a novel metric, the rate-weighted AUC (rAUC), to evaluate
ranking models when constraints across the PPR exist, and provide an
efficient algorithm to estimate the rAUC using an empirical ROC curve.
Our experiments show that rAUC, AUC and NDCG often select dif-
ferent models. We demonstrate the usefulness of rAUC on a practical
application: ranking articles for rapid reviews in epidemiology.

1 Introduction and Motivation

The work reported in this paper was motivated by the task of undertaking rapid
reviews of clinical trials. A rapid review should follow the broad principles of a
systematic review, where a medical research question is asked (such as the effect
of a drug on a disease) and the evidence from all relevant research articles is
compiled to give a better estimate of the drugs effect than each individual study
provides. However, a rapid review needs to be performed under strict time and
resource constraints, so it may not be possible to review all relevant articles.
Currently, a rapid review is performed by human reviewers who search online
medical research databases for articles reporting clinical trials of a particular
research question [7]. In order to retrieve a set of articles that can be reviewed
in the allotted time, the reviewer may iteratively refine the search query until
the number of articles is deemed manageable.

An important consideration when performing a rapid review is the quality of
each study. Low-quality studies are more likely to give a biased estimate of the
research question and may need to be excluded from the review or considered
with caution [9]. Therefore, the aim of a rapid review can be described as max-
imising the number of high-quality articles assessed, given the particular time
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Fig. 1. Two hypothetical ROC curves (x-axis: false positive rate, y-axis: true positive
rate), example PPR isometrics (diagonal lines with PPR � 0.5 (top) and PPR � 0.3
(bottom); the slope of �1 indicates a uniform class distribution) and example partial
AUC bounds (vertical lines)

constraints of the review. The iterative search method described above is a rather
crude approach that does not consider article quality, and can be thought of as
a classification of articles as included or excluded from the review. We suggest
that this can be greatly improved by instead learning a model for estimating the
article’s study quality, and using the model’s scores to rank the studies under
review, such that the most reliable research is assessed first. The reviewers can
then simply review the articles in decreasing order of estimated quality until
they run out of time. There is no need to specify a classification threshold.

This approach suggests that a good model is one that exhibits good ranking
behaviour with respect to study quality, with particular emphasis on the pro-
portion of articles that can reasonably be processed. The total amount of time
available for a review and the number of articles returned from the initial search
query is typically known. Given an estimate of the time it will take a reviewer
to assess a single article, the proportion of articles in the search results that is
expected to be processed can be inferred. In terms of binary classification this
proportion is the predicted positive rate (PPR). If the PPR is known precisely,
finding the best model is straight-forward. Figure 1 illustrates this with two hy-
pothetical ROC curves where neither curve dominates the other. The two dashed
lines show two example PPR values that could be inferred for a rapid review.
We can see that the PPR value affects which model is chosen. The (solid) green
model is chosen when PPR � 0.5 and the (dashed) blue model is chosen when
PPR � 0.3, as these models have the highest recall at these respective points
on the ROC curves.

However, the PPR inferred depends on the time needed to review a single
article, and this is not known precisely. Articles vary in length and difficulty
and hence it is only possible to estimate a probability distribution across the
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PPR, rather than specify a single value. Therefore, an appropriate measure of
rate-constrained ranking would average the true positive rate across each value
of PPR, weighted by its probability. In this paper we develop such a measure.
In addition to our motivating example, there are many other tasks that are
rate constrained, with uncertainty across the rates. In general, these tasks are
restricted to a fixed budget of a resource such as time or money, where the
exact expenditure for each instance is not known precisely. Another example is
telephone sales, which is restricted by the allocated number of person hours,
such that when ranking a database of customers to determine those most likely
to show interest, it is not known exactly how many customers will be contacted
as the time per phone call is variable.

There are, of course, several existing metrics often used to evaluate ranking
tasks. The area under the ROC curve (AUC), which estimates the probabil-
ity that a random positive is ranked higher than a random negative, measures
ranking performance across the entire ROC curve, treating all regions as equally
important [5]. An alternative to the AUC, the partial AUC (pAUC), has previ-
ously been suggested [4]. This metric also weights uniformly, but restricts to a
range of false positive rate (or true positive rate) values. For instance, the two
solid vertical lines of Figure 1 show example pAUC bounds, constrained to false
positive rates between 0.2 and 0.4. We require a metric that weights the area
under the ROC curve with respect to the PPR, but the AUC weights the area
uniformly and the pAUC can only weight across true positive or false positive
rates, components of the PPR, and not the PPR itself.

Early retrieval tasks are those where examples near the top of the ranking
are more important, as these examples are more likely to be processed. Several
metrics in several fields have been proposed to address this problem, such as nor-
malised discounted cumulative gain (NDCG) [10]. However, as we demonstrate
later this metric and related ones assume that the likelihood of stopping at a
particular position in the ranking is always higher nearer the top which is not
necessarily the case when rates are constrained.

A key contribution of this paper is the derivation of a new metric, the rate-
weighted AUC (rAUC), to evaluate models for rate-constrained ranking tasks
(Section 3). We prove that the rAUC and rate-weighted expected recall are
linearly related given a fixed class distribution. Furthermore, we provide an effi-
cient algorithm to estimate the rAUC using an empirical ROC curve (Section 4).
Finally, we demonstrate that given rate constraints the rAUC chooses the opti-
mal model while the AUC and NDCG metrics often choose a suboptimal model
(Section 5).

2 Notation and Basic Definitions

We follow the notation of [8]. We assume a two-class classification problem with
instance space X . The positive and negative classes are denoted by 0 and 1,
respectively. The learner outputs a score s�x� � �0, 1� for each instance x �
X , such that higher scores express a stronger belief that x belongs to class 1.



Rate-Constrained Ranking and the Rate-Weighted AUC 389

The score densities and cumulative distributions are denoted by fk and Fk for
class k � �0, 1�. Given a threshold at score t the true positive rate (also called
sensitivity or positive recall) is P �s�x� 	 t
k � 0� � F0�t� and the false positive
rate is P �s�x� 	 t
k � 1� � F1�t�. The true negative rate, also called specificity
or negative recall, is 1� F1�t�.

The proportions of positives and negatives are denoted by π0 and π1 respec-
tively. Accuracy acc at threshold t is a weighted average of positive and negative
recall:

acc�t� � π0F0�t� � π1�1� F1�t�� (1)

Similarly, the proportion of positive predictions at threshold t (the predicted
positive rate) is a weighted average of the true and false positive rates:

r�t� � π0F0�t� � π1F1�t� (2)

This is the predicted positive rate, which we abbreviate to the rate.
A ROC curve is a plot of true positive rate on the y-axis against false positive

rate on the x-axis. The area under the ROC curve (AUC) is the true positive
rate averaged over all false positive rates:

AUC �

� 1

0

F0dF1 �

� ��
��

F0�t�f1�t�dt (3)

Alternative parameterisations are possible; in this paper we are particularly in-
terested in a parametrisation by rate.

Metrics such as predicted positive rate can be depicted in ROC space using
isometrics – points on ROC space that have the same value for a given metric [6].
For instance, several combinations of false and true positive values result in the
same rate (Equation 2), and this can be shown as a straight line drawn in ROC
space.

3 The Rate-Weighted AUC

The aim of a rate-constrained ranking task is to maximise the expected true
positive rate given a probability distribution across the rates. Common formula-
tions of the AUC are given as an expectation of the true positive rate across all
false positive rates or the thresholds (Equation 3). It is not possible to apply a
weight across rates using these formulations, because they are given in terms of
expectations over F1 and t, rather than the rate. The following section derives
the AUC as an expectation across rates, such that the derived formula can be
altered to weight the AUC with respect to the rate.

Accuracy isometrics in ROC space are lines of constant accuracy with slope
π1π0 [6]. Similarly, rate isometrics are lines of constant rate with slope �π1π0.
Examples are shown in Figures 2a and Figure 2c for uniform and non-uniform
class distributions, respectively.
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Definition 1. Rate-accuracy space is a plot of rate on the x-axis and accuracy
on the y-axis. Rate-recall space is a plot of rate on the x-axis and recall on
the y-axis. Where positive recall is used, rate-recall space is denoted rate-F0�r�
space. Where negative recall is used, rate-recall space is denoted rate-�1�F1�r��
space.

We translate the ROC curve to rate-accuracy and rate-recall spaces using a
linear transformation, such that the AUC can be calculated in this space instead.
The ROC curve of Figure 2a is transformed into the rate-accuracy curve shown
in Figure 2b, and the rate-recall curves shown in Figures 2e and 2f, for positive
and negative recall respectively. We can see that the transformations into rate-
accuracy and rate-recall spaces result in unreachable areas. The upper bounds
of the rate-accuracy and rate-recall curves correspond to the ROC curve of a
perfect classifier, and the lower bounds to that of a pessimal classifier.

Definition 2. The lower bounds in x-y space are given by a function fmin�x�
specifying the minimum possible value of y at each value of x. The upper bounds
in x-y space are given by a function fmax�x� specifying the maximum possible
value of y at each value of x.

We now focus on rate-accuracy space, but a similar derivation can be given
for rate-recall space (given in Theorem 5). In rate-accuracy space, the lower and
upper bounds of accuracy at rate r are given by:

accmin�r� � 
π1 � r
 accmax�r� � 1� 
π0 � r
 (4)

These are derived from Equation 1 and the fact that accmin corresponds to
points with F0 � 0 when r 	 π1 and points with F1 � 1 when r � π1, and
accmax corresponds to points with F1 � 0 when r 	 π0 and points with F0 � 1
when r � π0.

Clearly, a ROC curve can only cross each rate isometric at a single point,
which allows us to reformulate the AUC in terms of accuracy and rates in order
to apply a weight across rates. Accuracy difference accdif is the difference in the
accuracy value of the ROC curve with the minimum possible accuracy value for
a given rate:

accdif �r� � acc�r� � accmin�r� (5)

Theorem 3. The AUC is equal to the normalised accuracy difference across all
rates r � �0, 1�:

AUC �
1

Kacc

� 1

0

accdif �r�dr (6)

where Kacc is constant for a fixed class distribution:

Kacc �

� 1

0

�accmax�r� � accmin�r�� dr (7)
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(b) Rate-accuracy curve correspond-
ing to ROC curve shown in Figure 2a.
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(d) Rate-accuracy curve correspond-
ing to ROC curve shown in Figure 2c.
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Fig. 2. Example ROC curves, rate-accuracy curves and rate-recall curves

Theorem 3 holds as transforming a ROC curve from ROC to rate-accuracy
space requires only linear transformations such that the relative areas under
and above the curve within the transformed bounds of the original ROC space
remains the same. This reformulation of AUC in terms of rates allows us to
introduce a rate-constrained generalisation.
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Definition 4. The rate-weighted AUC of a ROC curve is the AUC weighted
across the rates:

rAUC �
1

Kacc,w�r�

� 1

0

w�r�accdif �r�dr (8)

where w�r� is a density over the rate and Kacc,w�r� is given by:

Kacc,w�r� �

� 1

0

w�r� �accmax�r� � accmin�r�� dr (9)

Theorem 5. The rAUC is equal to the normalised F0 difference weighted across
all rates. With a slight abuse of notation we use Fk�r� to mean Fk�F

�1�r��.

rAUC �
1

KF0,w�r�

� 1

0

w�r� �F0�r� � F0,min�r�� dr (10)

where

KF0,w�r� �

� 1

0

w�r� �F0,max�r� � F0,min�r�� dr (11)

and F0,min�r� � max
�
0, r�π1

π0

�
, F0,max�r� � min

�
1, r

π0

�
.

Clearly, we can derive an analogous result using negative recall (1 � F1�r�)
instead of positive recall (F0�r�). The area under the rate-recall curve is the
expected recall (positive or negative) given a uniform distribution across the
rates. This makes the formulation of the rAUC in rate-recall space particularly
interesting, as we can infer the relationship between E�F0� – the quantity we
intend to maximise in rate-constrained ranking – and the rAUC.

Rate-recall space, as shown in Figures 2e and 2f can be divided into 4 distinct
regions, for both positive and negative recall (labelled A-D and E-H respectively).
We use A both to label the area A and as the mass of this area.

Theorem 6. The rate-weighted expected true positive rate is related to the rAUC,
given a distribution over the rates, by:

E�F0� � �1�B � C�rAUC �B (12)

where C �
�π0

0
w�r�

�
π0�r
π0

�
dr and B �

�1
π1

w�r� r�π1

π0
dr.

Proof. Rate-F0 space is bounded by r � 0, r � 1, F0 � 0 and F0 � 1, such that

the total weighted mass of this area
�1
0
w�r�dr � 1, hence A � B � C �D � 1.

As rAUC � A
A�D , it follows that:

E�F0� �
A�B

A�B � C �D
� A�B � rAUC�A�D��B � �1�B�C�rAUC�B

(13)
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Fig. 3. NDCG discrete weights (using log base 2) assuming 20 instances and rAUC con-
tinuous weights using beta distribution (α � 6.23, β � 32.80). Weights across instances
in left figure are equivalent to weights across thresholds in right figure, respectively.

Area C is the triangular region bounded by the lines r � 0, F0 � 1 and F0 �
r
π0
.

The weighted mass of C is given by:

C �

� π0

0

w�r�
π0 � r

π0
dr (14)

Area B is the triangular region bounded by the lines r � 1, F0 � 1 and r�π1

π0
.

The weighted mass of B is given by:

B �

� 1

π1

w�r�
r � π1

π0
dr (15)

This completes the proof.
B and C depend only on the class and weight distributions, which implies that

the relationship between E�F0� and rAUC depends only on these and not the
shape of the ROC curve. Therefore, maximising E�F0� is equivalent to maximis-
ing E�rAUC�, which means that rAUC is a suitable metric to evaluate models
for rate-constrained ranking.

3.1 Comparing the Weights of NDCG and rAUC

Normalised discounted cumulative gain (NDCG) is given by:

NDCG �
1

K
�

n�
i�1

1

logb�i� 1�
reli (16)
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where reli � �0, 1� is the label of example at rank i, which can be continuous or
binary and denotes the relevance of the example. K is the maximum possible
DCG for a ranking of size n: K �

�n
i�1 1logb�i� 1�.

NDCG weights each point in the ranking according to the probability that
this instance will be processed. In contrast, the rAUC weights each point in the
ranking according to the probability this point will be the threshold index, such
that processing will terminate at this point in the ranking. These formulations
are closely related, since the probability that an instance at position i is processed
is the probability that an instance at a position after i is the threshold index.
For example, if a person is processing 20 articles, the probability they will review
the article at rank position 10 equals the probability they will stop processing
articles at a position between articles 10 and 20. Hence, the relationship between
the two weighting methods is given by:

winstance�i� � 1� CDFwthreshold
�i� (17)

where i is the position in the ranking and CDF denotes the cumulative distri-
bution function.

The instance weights of NDCG are shown in Figure 3a, and the equivalent
threshold weights are shown in Figure 3b. Here we use reli � 1� ki, where ki �
�0, 1�. We can see that the weight of each threshold index decreases as we move
further down the ranking. This is a key restriction of the NDCG (and related
metrics), as it is not always the case that a ranking is more likely to be processed
up to the rank positions nearer the top, as in our motivating example. Figure 3b
also shows an example density across thresholds, using a beta distribution, where
processing is most likely to stop at a rate of 14%. The corresponding instance
weights are shown in Figure 3a. Note that by shifting the beta distribution to
the right we will create a situation where a number of top-ranked instances will
receive the highest weight, something which is not possible with NDCG.

4 Algorithm to Calculate the rAUC of an Empirical ROC
Curve

We now use rate-accuracy space to compute the rAUC. A similar algorithm
could be implemented in rate-recall space (of either positive or negative recall).
Algorithm 1 estimates the rAUC from an empirical ROC curve, where the num-
ber of positive N� and negative N� instances is known (N � N� �N�). This
algorithm is similar to the standard AUC O�N� algorithm [5] where the ROC
space is processed one vertical (or horizontal) slice at a time. As can be seen
in Figure 4, the area under the ROC curve in rate-accuracy space is composed
of a series of vertical slices of width 1

N , each corresponding to an instance. Ties
triangles may also exist, each of which corresponds to a set of instances with
the same score. The rAUC is calculated as a summation of the weighted mass
of all vertical slices and ties triangles, normalised by the weighted mass of the
whole rate-accuracy space. The algorithm we propose has four functions: rAUC,
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SAUC, V AUC and TAUC. The rAUC function is the main function that it-
erates through the ranking of instances counting the number of positive and
negative instances with the same score (which we call a ties section), and calling
the SAUC function when a new score is reached.

The SAUC, V AUC and TAUC functions calculate the mass of each ties
section (which may consist of only one instance if it has a unique score). The
SAUC function simply calls the VAUC and TAUC functions. The negative in-
stances are processed before the positives as when there is a ties triangle the
shape of the area under this triangle in rate-accuracy space is given by the area
of the negative instances, followed by the positive instances in this ties section.
The V AUC function computes the mass of a vertical slice of the area under the
curve, using two equations depending whether the current instance is positive or
negative. The accuracy difference equation is used, which is computed in terms
of r and either F0 or F1 depending if the instance is negative or positive respec-
tively (as for instance, if the instance is positive the value of F1 stays constant).
The TAUC function computes the mass of the ties triangle (which is not shown

Algorithm 1. The rAUC algorithm. scores: list of scores of instances, in de-
creasing magnitude. x: list of class labels corresponding to the instances of score.
N�: number of positive instances. N�: number of negative instances.

procedure rauc(scores,x,N�, N�)
π0 � N���N� �N��; π1 � N���N� �N��; N � N� �N�

au � 0; TP � 0; FP � 0

N�ties � 0; N�ties � 0; scoreties � �1

for i � 1 to N do

if scoreties � scores�i� then

if xi is POSITIVE then

N�ties � N�ties � 1

else

N�ties � N�ties � 1

end if

else

�FP, TP, au	 � SAUC�au, N
�

ties, N
�

ties, FP, TP,N�, N��

if xi is POSITIVE then

N�ties � 1; N�ties � 0

else

N�ties � 0; N�ties � 1

end if

scoreties � score�i�

end if

end for

�FP, TP, au	 � SAUC�au, N
�

ties, N
�

ties, FP,TP,N�, N��

a � K�w, π0, π1�

rAUC � au
a

Return rAUC

end procedure
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Algorithm 1. (continued)

procedure sauc(au, N�ties, N
�

ties, FP ,TP , N�, N�)
if N�ties 
 1 then

FPprev � FP ; FP � FP �N�ties
au � au � V AUC�FPprev, TP,FP, TP,N, 0�

end if

if N�ties 
 1 then

TPprev � TP ; TP � TP �N�ties
au � au � V AUC�FP, TPprev, FP, TP,N, 1�

end if

if N�ties 
 1 & N�ties 
 1 then

au � au � TAUC�FP, TP,N�ties, N
�

ties, N
�, N��

end if

Return �FP, TP, au	

end procedure

procedure vauc(FPprev, TPprev, FP, TP,N, label)
start � FPprev � TPprev, end � FP � TP

f1 �
FPprev

nTotalMinus
; f0 �

TPprev ,

nTotalP lus

for i � start to end do

if label � 0 then

FPprev � FPprev � 1; f1 �
FPprev

nTotalMinus

au � au �
� i�1
nTotal

i
nTotal

�w�r��2π1f0 � π1 � r � �r � π1��dr

else

TPprev,� TPprev,�1; f0 �
TPprev ,

nTotalP lus

au � au �
� i�1
nTotal

i
nTotal

�w�r� �2 �r � π1 f1� � π1 � r � � r � π1 � � dr

end if

end for

Return au
end procedure

in Algorithm 1 due to space constraints). A ties triangle T is composed of 2
sub-triangles TA and TB where T � TA � TB. TA and TB adjoin on line H ,
where H is fixed along the rate isometric that passes through the right angled
corner of T (see Figure 4).

We calculate the mass of a ties triangle by first finding the length H and the
rate at each corner of T , labelled P1, P2 and P3 in Figure 4. The weighted mass
of the ties triangle is then the summation of TA and TB, which are given by:

TA �

� r2

r1

w�r� �H �
r � r1
r2 � r1

dr TB �

� r3

r2

w�r� �H �
1� �r � r2�

r3 � r2
dr (18)

where r1, r2 and r3 are the rates at P1, P2 and P3 respectively. The rAUC of
a ROC curve is computed in O�N� time. Algorithm 4 appears more lengthy
compared to the standard AUC algorithm that is calculated in ROC space be-
cause each step across rate-accuracy space corresponds to a negative or positive
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Fig. 4. Example rate-accuracy curve with a ties section (set of instances with the same
score). Lengths and angles used to calculate rAUC are labelled.

instance and the height of the curve changes within this step.The standard AUC
algorithm makes a step only when the instance is (for example) positive and
(given this instance is not tied with another) the height of the ROC curve is
constant within this step. The change in height at each step in rate-accuracy
space means that the mass of the positive and negative vertical sections (and
ties triangle) can only be calculated after the ties section has ended, hence the
SAUC function is needed to do this.

5 Experimental Evaluation

We used 5 UCI datasets (vote, autos, credit-g, breast-w and colic) to generate
a set of models using 3 learning algorithms (naive Bayes, decision trees and
one-rule). We chose a binary variable for each dataset as the label, and learnt
10 models with each dataset/model pair using bootstrap samples of 54% of the
data, resulting in 150 generated models. We computed the AUC and NDCG
metrics, and rAUC for each of these models, for 5 beta distributions with alpha
and beta �α, β� values: �3, 19�, �7, 15�, �11, 11�, �15, 7�, and �19, 3�, shown in
Figure 5. We use NDCG with log base 10.

Figure 6 shows the AUC and NDCG values, compared with the rAUC values,
for each model. Each model is shown by 5 points with a single AUC / NDCG
value and variable rAUC value (for each of the 5 rate distributions of Figure 5).
The variance of the rAUC for each ROC curve across the 5 beta distributions
ranges from 0 to 0.260 for these datasets. Spearman’s rank correlations between
the model rankings using each rate distribution are given in Table 1. The corre-
lation of the rAUC with the AUC varied between 0.872 and 0.975, depending on
the rate distribution. We should note that a proportion of the generated mod-
els have very high AUC values, and therefore very high rAUC values for most
rate distributions (see Figure 6a). To correct for this inflation of the correla-
tion values, Table 1 also shows reduced correlations when restricted to models



398 L.A.C. Millard, P.A. Flach, and J.P.T. Higgins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Rate

P
D

F

  a=3, b=19

  a=7, b=15

  a=11, b=11

  a=15, b=7

  a=19, b=3

Fig. 5. Beta distributions across the rate

with AUC 	 0.95. Correlations between the NDCG and rAUC metrics decrease
dramatically when the mode of the beta distribution increases as expected.

The correlation between rAUC metrics using rate distributions that weight
different portions of ROC space is low in general. For instance, the rAUC values
using rate distributions with α � 3, β � 19 and α � 19, β � 3 have a Spear-
man’s rank correlation of 0.610. This highlights the importance of using a rate
distribution with an appropriate degree of uncertainty, as if it is incongruous
with the true probability distribution a suboptimal model may be chosen.

5.1 Application to Screening for Rapid Reviews

We demonstrate the rAUC using our motivating example described in the in-
troduction: ranking research articles for rapid reviews in epidemiology. We for-
mulate this task in terms of a rate-constrained ranking problem. To reiterate,

Table 1. Spearman’s rank correlations comparing the rankings of the 150 models,
ranked using the rAUC (with rate distributions of Figure 5), NDCG and AUC

α � 3 α � 7 α � 11 α � 15 α � 19
β � 19 β � 15 β � 11 β � 7 β � 3

NDCG 0.565 0.438 0.235 0.092 0.018
AUC 0.872 0.951 0.975 0.927 0.886

AUC � 0.95 0.725 0.902 0.961 0.829 0.703

α � 3 β �
19

0.923 0.791 0.676 0.610

α � 7 β �
15

0.931 0.823 0.764

α � 11 β �
11

0.964 0.925

α � 15 β �
7

0.982
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Fig. 6. Comparison of metrics for 150 models generated with various learners, datasets
and distributions over rates

the articles are ranked by estimated study quality, and the objective is to max-
imise the number of high-quality articles the reviewer assesses given the rate
constraints. In this setting, the rate is the proportion of articles that the team
reviews, which is not known precisely. The search will return M articles and
the reviewers are allotted T hours to complete the review. We use elicitation to
determine appropriate parameters for the rate distribution, a method commonly
used in epidemiology to establish feasible parameters for a distribution where
there is no data from which to infer this. For simplicity, we consider the case of
only one reviewer, who estimated the minimum (t0) and maximum (t1) time per
article, t, the number of minutes they will on average expect to take to assess a
single article.

We model t as a inverse beta distribution (with bounds � T
M ,��), having 0.95

probability of being in the range �t0, t1�. The rate (the proportion of articles
that are reviewed) is given by: r � T

M �t . This relationship with t infers a beta
distribution across the rates.

We suppose a hypothetical and realistic rapid review where the search returns
M � 2, 500 articles and a reviewer is given 120 person hours (T � 7, 200 minutes)
in which to perform the review. We imagine that the reviewer states they will
take between 10 and 45 minutes to assess a single article, which we use to
specify two quantiles of t (0.025 � CDFt�0, 10� and 0.975 � CDFt�0, 45�) which
we convert to equivalent quantiles of r (0.975 � CDFr�0, 0.288� and 0.025 �
CDFr�0, 0.064�). We use the beta.select function of the LearnBayes R package
[1] to find the α and β parameters with these quantiles, giving α � 6.23 and
β � 32.80 (shown in Figure 3 (right)).

We use a dataset consisting of 315 full-text articles reporting the results from
randomised controlled trials, each labelled with a binary value denoting whether
blinding – an indicator of study quality – has been adequately carried out (as
described in the article). There were an approximately equal number of articles
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Fig. 7. Consensus ROC curves (using rate-averaging) predicting the blinding risk of
bias value of research articles

of each class. We created a set of preliminary models using a bag of words
representation, and evaluate these using 10 fold cross validation.

We generated consensus ROC curves for 3 learning algorithms: naive Bayes,
decision tree and support vector machine (SVM), shown in Figure 7. A con-
sensus curve represents an average across the ROC curves of all folds [13]. We
used rate-averaging to generate our consensus curves, previously referred to as
pooling [2], where the average of the true and false positive rates at each rate
are calculated and then used to generate a single curve. This is appropriate for
our rate-constrained task as the points of the consensus curves are the average
performance given a particular rate constraint.

The random forest, naive Bayes and SVM models gave a mean rAUC (AUC)
of 0.689 (0.636), 0.781 (0.639), and 0.639 (0.570), respectively, across the 10 folds.
A two-tailed paired t-test of the AUC values of each model across the 10 cross
validation folds, found no difference between the random forest and naive Bayes
models (p = 0.884). A t-test using the rAUC values found the naive Bayes model
is better than the random forest model for this rate distribution (p � 0.021). The
random forest and naive Bayes models clearly dominate the SVM model such
that the SVM model would be inferior for any rate distribution. However, we
have shown that while the random forest and naive Bayes models are similar in
terms of ranking performance across the entire ranking, the naive Bayes model
is much better than the random forest when considering which rate values are
more likely for this particular rapid review.

We thus clearly see that the weight distribution for rate-weighted AUC can
be derived directly from the parameters of the rapid review task, in a way that
could not be achieved with metrics such as the pAUC.

6 Related Work

The AUC is a popular choice to assess the performance of ranking models, es-
timating the probability that a randomly chosen positive instance is ranked
higher than a randomly chosen negative instance, thus representing ranking per-
formance across the entire dataset. Historically, the AUC has often been used
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as a measure of ranking performance without consideration for the particular
task at hand. However, when the performance of a learner in particular regions
of ROC space has more importance than other areas for a particular task, the
AUC is not an appropriate choice.

Alternatives to the AUC have previously been suggested to allow differential
importance across true positive or true negative rates, for empirical [4, 12] and
analytical [14] ROC curves. As mentioned in the introduction, [4] propose a
partial AUC metric (pAUC) to restrict the evaluation of the AUC to a range
of false positive or true positive rate values. The pAUC measure is appropriate
when it is required that either the true positive or false positive rates fall in
a particular range. This metric could be generalised using weights rather than
bounds (as we have used for the rAUC), which may be more appropriate where
there is a non-uniform probability distribution across either the true or false
positive rate. Furthermore, a recent variant of the AUC called the half-AUC was
proposed by [3], and evaluates the AUC in only half of the ROC space, either
where true positive rate is less than true negative rate or true positive rate is
greater than true negative rate, giving two distinct regions that can be assessed.

Several metrics have been suggested for early retrieval tasks, where evaluation
focuses on the top of the rankings. Precision@k gives the precision at the top k
results of a ranking, thus weighting each example uniformly within this section of
the ranking. NDCG [10,11], is one of several metrics that give decreasing weights
to examples along the ranking, as discussed in Section 3.1. Others include; ro-
bust initial enhancement (RIE) [15], the Boltzmann-enhanced Discrimination of
ROC (BEDROC) [17], concentrated ROC (CROC) [16] and sum of the log ranks
(SLR) [18]. The instance weights used by these approaches all share the charac-
teristic that they translate into monotonically decreasing rate weights, which as
demonstrated before is inappropriate for rate-constrained ranking tasks.

7 Conclusions

In this paper we have introduced a new ranking measure, the rate-weighted
AUC (rAUC), to better reflect model performance when the task is constrained
by a probability distribution across the predicted positive rate, which we refer
to as the rate. The AUC is equivalent to the rAUC given a uniform distribution
across the rates. Furthermore, if the rate is fixed then models can be compared
by simply comparing the recall at the point on the ROC curve with this rate. We
have derived the rAUC from both rate-recall and rate-accuracy space, and in-
troduced rate-recall space as a visualisation of model performance. Furthermore,
the rAUC is a linear transformation of rate-weighted expected recall (both the
positive and negative respectively), given fixed class and rate distributions. We
have described an O�N� algorithm to calculate an estimate of the true rAUC
using a data sample.

Our experiments have shown large variability of the rAUC as the rate distri-
bution varies. A comparison with NDCG found low correlations indicating that
when the likelihood that the processing will stop at a particular position in the
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ranking is lower nearer the top of the ranking than elsewhere, NDCG may be
inappropriate. Furthermore, a comparison with the AUC shows that often the
rAUC prefers different models. Finally, we have also demonstrated how this ap-
proach can be usefully applied to real world tasks, using the example of ranking
research articles for rapid reviews in epidemiology.
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Abstract. Common approaches to generating confidence bounds
around ROC curves have several shortcomings. We resolve these weak-
nesses with a new ‘rate-oriented’ approach. We generate confidence
bounds composed of a series of confidence intervals for a consensus curve,
each at a particular predicted positive rate (PPR), with the aim that
each confidence interval contains new samples of this consensus curve
with probability 95%. We propose two approaches; a parametric and a
bootstrapping approach, which we base on a derivation from first prin-
ciples. Our method is particularly appropriate with models used for a
common type of task that we call rate-constrained, where a certain pro-
portion of examples needs to be classified as positive by the model, such
that the operating point will be set at a particular PPR value.

Keywords: Confidence bounds, rate-averaging, ROC curves, rate-
constrained.

1 Introduction

ROC curves are informative visualisations of model performance that show the
ranking performance at different regions of a ranking, or the performance of a
scoring classifier at each possible choice of operating point. ROC curves are of-
ten used to determine if one model is better than other, and confidence bounds
provide a measure of the uncertainty such that this can be determined, for a spec-
ified confidence level. In general when several independent sample ROC curves
are generated, such as with m-fold cross validation, the variation between them
can be used to estimate a confidence around the average (consensus) ROC curve.
Several methods have been proposed to generate confidence bounds, mainly para-
metric approaches such as vertical [13] or threshold [5] averaging.

Vertical averaging is the most common approach, where the false positive
rate is fixed and the mean and confidence interval across the true positive rate
is calculated at each false positive rate value. Horizontal averaging is a similar
approach that instead fixes the true positive rate and calculates the confidence
interval across false positive rate values. However, these approaches have several
shortcomings. Firstly, the false and true positive rates are metrics over which
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we have little control, such that it is difficult to set a threshold at a particular
value. It is therefore preferable to evaluate a ROC curve with respect to a metric
with which setting the threshold is simple in practice. Furthermore, vertical
and horizontal averaging are not invariant to swapping the classes, such that
if the x-axis and y-axis of ROC space become the false and true negative rate
respectively, equivalent points will have different confidence bounds. Finally,
depending on the distributional assumptions of points at each false (or true)
positive rate value, the confidence bounds may not be constrained to the bounds
of ROC space, such that tpr � �0, 1� and fpr � �0, 1� (where tpr and fpr are the
true and false positive rates respectively).

Threshold-averaging is similar to vertical (and horizontal) averaging but in-
stead fixes the score and averages over each cloud of points in ROC space with
the same score. This has the advantage that we can easily use thresholds set at a
particular score, classifying each example by whether its score is below or above
this threshold value. However, how best to generate confidence bounds for a set
points that are not constrained to a single dimension is not obvious. Fawcett
et al [5] suggest averaging separately across false and true positive rates, but
this creates a rectangular shaped bound for each score where a smoother bound
would seem more natural.

To address these shortcomings of existing methods, we specify a set of prop-
erties we would like our confidence bounds to satisfy. Firstly, the generated con-
fidence bounds should be invariant to swapping the classes, by which we mean
that if the positive and negative classes are swapped such that the x-axis and
y-axis of ROC space refer to the false and true negative rate respectively, of
the original class labels, then the confidence bounds of these two ROC curves
should be symmetrical about the line tpr � 1� fpr (the descending diagonal).
Secondly, the confidence bounds should be constrained to sit within the bounds
of ROC space at all points along the lower and upper confidence bounds.

Furthermore, there is a specific type of task in which we are particularly
interested. A task may be constrained to a certain proportion of examples that
should be classified as positive by the model, the predicted positive rate (PPR).
We call these tasks rate-constrained, and these are common in many fields. For
example, screening a database of customers to decide who should be targeted
in a direct sales campaign, where time and monetary budgets mean it is only
possible to approach a proportion of the potential customers. Furthermore, the
PPR value, hence also the operating point it infers, may not be known precisely,
such as the task described by Millard et al. [12], of ranking research articles for
rapid reviews in epidemiology.

We suggest that when a task is rate-constrained, the consensus curve should be
generated by averaging a set of sample ROC curves while fixing the rate, which
we call rate-averaging. Furthermore, the comparison of several models should
use confidence intervals also created at each PPR value, which we call a rate-
oriented approach, such that they can be compared with respect to the PPR. We
illustrate this with Figure 1, which shows two ROC curves and their consensus
curve, created by vertical- (left) and rate-averaging (right). Each point on the
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Fig. 1. Illustration of generating consensus curves (broken green curves) from two ROC
curves. Left: vertical-averaging, right: rate-averaging. Dotted lines show false positive
rate and PPR isometrics, in the left and right figures, respectively.

rate-averaged consensus curve gives the average performance of all sample ROC
curves at a particular PPR value. In order for the confidence interval to give the
uncertainty of a rate-averaged consensus curve, this should also be generated for
each PPR value.

Our aim is to generate confidence intervals for a consensus curve at each PPR
value, such that at significance level σ new samples generated from this consensus
curve pass between the lower and upper confidence limits at a given PPR value,
with probability 1 � σ. The series of confidence intervals creates a confidence
bound around the consensus curve. We call these point-wise confidence bounds
in line with [10] in order to differentiate from the common meaning of ROC
confidence bands, where the confidence refers to the proportion of whole curves
sitting entirely inside the confidence band. Where we discuss methods that are
solely used to generate a bound around the whole curve, we explicitly refer to
these as bands.

Our main contribution is an approach to generate rate-oriented point-wise
confidence bounds. We derive our approach from first principles and demonstrate
its effectiveness experimentally.

2 Notation and Basic Definitions

We follow the notation of [7]. We assume a two-class classification problem with
instance space X . The positive and negative classes are denoted by 0 and 1, re-
spectively. The learner outputs a score s�x� � �0, 1� for each instance x � X . The
score densities (lower scores suggest positive class) and cumulative distributions
are denoted by fy and Fy for class y � �0, 1	. Given a threshold at score t the
true positive rate (also called sensitivity or positive recall) is P �s�x� 
 t�y �
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0� � F0�t� and the false positive rate is P �s�x� 
 t�y � 1� � F1�t�. The true
negative rate, also called specificity or negative recall, is 1� F1�t�.

The proportions of positives and negatives are denoted by π0 and π1 respec-
tively. The score density of the mixed distribution is denoted by f and given by:

f�t� � π0 � f0�t�  π1 � f1�t� (1)

The probability of a positive at score t is given by:

π0,t �
π0 � f0�t�

π0 � f0�t�  π1 � f1�t�
(2)

The cumulative distribution of the mixed density distribution is denoted by F
and given by:

F �t� � π0 � F0�t�  π1 � F1�t� (3)

This is also the proportion of positive predictions at threshold t known as the
predicted positive rate (PPR), which we abbreviate to the rate.

A ROC curve is a plot of true positive rate on the y-axis against false positive
rate on the x-axis. A ROC table, such as that shown in Table 1, is a matrix
with m rows and n columns, containing the results of independent tests using
m samples, such as m-fold cross-validation.

Table 1. Example ROC table, with
m � 4 samples and n columns, num-
bers of positive examples in each col-
umn posk

k
yi,k 1 2 3 . . . n-1 n
Sample 1 0 0 1 . . . 1 1
Sample 2 0 1 1 . . . 0 1
Sample 3 0 0 0 . . . 0 1
Sample 4 0 1 0 . . . 1 1
posk 4 2 2 . . . 2 0

Table 2. Example Si,k values (number
of positive examples up to column k in
a sample) for example ROC table(left)

Si,k Si,1 Si,2 Si,3

Sample 1 1 2 2
Sample 2 1 1 1
Sample 3 1 2 3
Sample 4 1 1 2

Each cell contains the label yi,k � �0, 1� of the example at position k along the
ranking of sample i, where the examples of each sample are ranked by increasing
score. A segment of consecutive positions in a ranking having the same score
are assigned a fractional label to account for this – the average of the labels in

this segment, calculated as 1
1�q��q

�q�

j�q yj where q and q� are, respectively, the
start and end of the position range with equal score. The number of positives
and negatives in a ranking are denoted by n0 and n1 respectively, such that
n � n0  n1.

The number of positives across samples at column k in the ROC table, denoted
posk, is given in Equation 4 (and examples are given in Table 1). The number
of positives up to position k of row i in the ROC table, which we refer to as the
true positive value (as opposed to the true positive rate) and denote by Si,k, is
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given in Equation 5 (and examples are given in Table 2 for the ROC table shown
in Table 1).

posk �
m�
i�1

�1� yi,k� (4) si,k �
k�

j�1

�1� yi,j� (5)

The number of positives up to position k across all samples in the ROC table,
denoted sk, is given by:

sk �
k�

j�1

posj �
m�
i�1

si,k (6)

Recall (of the positive class) is the proportion of positive examples, correctly
classified as positive, at a given point on the ROC curve (also known as the true
positive rate). We specify this in terms of rates. The recall tpri,k of sample i
with operating point at position k is given by:

tpri,k �
si,k
n0

(7)

We denote an unsorted list of n items as a1, a2 . . . an and a sorted list as
a�1�, a�2� . . . a�n�.

3 Generating Confidence Bounds

In this section we give our approach to generating rate-oriented point-wise con-
fidence bounds. This includes a new approach to generating samples that uses
the ROC curve, rather than the common approach of sampling from the score
probability density function of each class (Section 3.2). We begin by describ-
ing a simple approach of inferring confidence bounds, used as a baseline in our
experiments (Section 4).

3.1 Baseline Method

We use a simple parametric approach as a baseline method. This method is sim-
ilar to previous approaches such as vertical-averaging, but we fix the rate rather
than the false positive rate, in line with our aims. We calculate the mean and
variance of recall across samples and, after making an assumption of the under-
lying distribution across the ROC points of each sample at each rate, calculate
the 95% confidence intervals. Here we use positive recall as a distance measure
along rate isometrics in ROC space, but any metric that varies linearly along
rate isometrics could also be used (such as negative recall or accuracy).

The variance of mean sample recall at each position k along the ranking is
given by:

σ2
k �

1

m � �m� 1�

m�
i�1

�tpri,k � �tprk�2 (8)

where m is the number of samples, tpri,k is the recall for sample i at position k
and �tprk is the mean recall across the samples, at position k. The additional m
in the denominator is because we need the variance of the sample mean.
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In order to infer a confidence interval we need to assume a particular distri-
bution across the recall at each position k. Assuming a normal distribution the
confidence intervals are given by �tprk � 1.96 � σk.

We also test this method using a beta distribution, which is bounded by �0, 1�
such that we can constrain our confidence intervals to the bounds of ROC space.
To use the beta distribution we rescale, at each position k, each sample recall

value from the range max
�
0, r�π1

π0

�
. . .min

�
1, r

π0

�
, where r � k

n is the rate at

k, to the range 0 . . . 1. We calculate the mean and standard deviation of these
scaled recall values at each position k and use these to calculate the α and β
parameters of the beta distribution. We find the lower and upper limits of the
95% confidence interval of this distribution, and then rescale this back to the
original range.

3.2 Generating Sample ROC Curves

Given the score densities of each class, sample rankings can be generated using
this distribution. For instance, for each example in the new ranking we can
sample a score from the mixed distribution and then sample a label using the
probabilities of each class at this score (shown in Table 3 left).

However, the score distribution is not determined by the ROC curve and hence
may not be known. In this case we can sample using the ROC curve instead of
the score densities, by sampling across the rate. The gradient on the ROC curve
is the class likelihood ratio, from which we can calculate the class probabilities
at this point on the curve, and then sample the label using this.

We do not need to know the scores because the rate also determines the
order of the examples in the ranking, and the ROC curve determines the class
probabilities at each rate. We call this the ‘rate-first’ approach, given in Table 3
(right).

Table 3. Two sampling approaches. Left. Score-first approach. Right: Rate-first ap-
proach.

Score-first: Rate-first

Repeat n times:
Sample score sj � f

Sample label yj �
bernoulli�π0,sj �
Rank labels by score sj

Repeat n times:
Sample rate rj � uniform�0, 1�
π0,rj � calculated from gradient at rj on ROC

curve
Sample label yj � bernoulli�π0,rj �

Rank labels by rate rj

3.3 Overview of Our Approaches

We assume a random process that generates ROC tables of size n �m from the
usually unknown score densities. Let us denote by Si,k the random variable of



410 L.A.C. Millard, M. Kull, and P.A. Flach

the sum of the number of positives at position k. Formally, for any fixed true
positive value s at this position, with n0 and n1 all fixed, we want to estimate:

p �Si,k � s �Si,n � n0� �
p �Si,k � s, Si,n � n0��
s� p �Si,k � s�, Si,n � n0�

(9)

We condition on the class distribution to reflect the fact that a data sample
has a finite number of examples with a certain number of each class. This also
corresponds to the fact that ROC curves must pass through the points �0, 0�
and �1, 1�. We present two alternative methods, a parametric and a bootstrap
approach. We derive the probability distribution across the number of positives
up to a position, k, in a sample, and use this to infer these two approaches. We
develop bootstrap approaches for cases where the distributional assumptions of
the parametric approach are invalid.

Importantly, our approach is naturally invariant to swapping the classes. In
ROC space, swapping the classes means that the x-axis becomes the false nega-
tive rate (1� tpr), and the y-axis becomes the true negative rate (1� fpr). The
corresponding ROC curve in this ‘swapped’ ROC space is simply a line mirror-
ing of the original ROC curve along the descending diagonal (tpr � 1 � fpr).
Furthermore, the rates are given by r��t� � π0�1� tpr� π1�1� fpr�. Therefore
it follows that r��t� � 1�r�t�. Hence, for each set of points along a rate isometric
in the original space, there is a corresponding rate isometric in the ‘swapped’
space along which this set of points also lie. The confidence bands along these
corresponding rate isometrics will have equivalent confidence intervals.

3.4 Parametric Approach

We find the probability distribution across the number of positives from the
first position to a position k in the ranking, Si,k. We first derive an analytical
solution (Theorem 1), and then provide an empirical version that can be used
when only the ROC curve (and not the score densities) is available, as is usually
the case. At this point we fix i as we refer only to a single sample, such that Si,k

is denoted Sk and Si,n is denoted Sn.

Theorem 1. Let the score densities, F0 and F1, and the number of examples of
each class in the sample, n0 and n1, be fixed. Then:

p�Si,k � s, Si,n � n0�

�

� 1

0

�binom�s, k � 1, π�r
0 � � �1� π�r

0 �  binom�s� 1, k � 1, π�r
0 � � �π�r

0 ��

� binom�n0 � s, n� k, π�r
0 � � p�Rk � r�dr

(10)

where
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π�r
0 �

π0F0�t�

π0F0�t�  π1F1�t�
(11)

π�r
0 �

π0�1� F0�t��

π0�1� F0�t��  π1�1� F1�t��
(12)

π�r
0 �

π0f0�t�

π0f0�t�  π1f1�t�
(13)

t � F�1�r�, p�Rk � r� � beta�r, k, n � k  1�, Rk is the rate from which the
example at position k was sampled and binom�kb, nb, pb� is the binomial distribu-
tion for kb successes in nb trials, with probability of success pb, and beta�x, a, b�
is the probability of value x for beta distribution with α � a and β � b.

Proof. To compute the left hand side of Equation 9 it is sufficient to compute:

p �Sk � s, Sn � n0� (14)

The probability of S � s and Sn � n0 in the new sample depends on which rate
it was sampled from, such that:

p �Sk � s, Sn � n0� �

� 1

0

p �Sk � s, Sn � n0 � Rk � r� � p�Rk � r�dr (15)

The order statistic states that when sampling n values uniformly within
the range 0..1 and sorting these examples, the probability that an example
at position k was sampled from a rate r is beta distributed with α � k and
β � n� k  1 [1]. Therefore, p�Rk � r� of Equation 15 is the beta density.

The other component of Equation 15 is the probability of s positives up to a
position k, given the example at this position is sampled from a particular rate
r. There are two cases where value s is the number of positives up to a position
k: 1) s�1 positives occur before position k and the example at k is a positive, or
2) s positives occur before position k and the example at position k is a negative.
In either case there must also be n0 � s positives after position k to ensure that
the class distribution is correct.

The examples before position k can be sampled independently, with proba-
bility of a positive given by Equation 11. The examples after position k can also
be sampled independently, with probability of a positive given by Equation 12.
The independence between samples is valid because we are sampling a set of
unordered examples, and this means that the probabilities of the set of exam-
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ples before and after position k are binomially distributed, which infers:

p �Sk � s, Sn � n0�Rk � r�

�

�
p

�
k�1�
i�1

�1� yi� � s

�
p�yk � 1� 	 p

�
k�1�
i�1

�1� yi� � s� 1

�
p�yk � 0�

�

� p

�
n�

i�k�1

�1� yi� � n0 � s

�

�
�
binom�s, k � 1, π�r

0 � � �1� π�r
0 � 	 binom�s� 1, k � 1, π�r

0 � � �π�r
0 �

�
� binom�n0 � s, n� k, π�r

0 �

(16)

Using Equation 16 in Equation 15 concludes the proof.

To reiterate, a key point - while an example at position k has rate r � k
n

for this ROC table, we can imagine this table is sampled from a ROC curve
of all possible examples. The rate from which it is sampled from this ‘true’
ROC curve is probabilistic, corresponding to p�Rk � r� in Equation 10. The
class probabilities used to generate this example are determined by the class
distribution at the rate from which this example was sampled.

An important aspect of Theorem 1 is that the sampling probabilities before,
at and after rate r (Equations 11 - 13) can be computed solely using the ROC
curve. Recall from Section 3.2 that Equation 13 can be calculated from the
gradient at r on the ROC curve. We can also infer the values of Equations 11
and 12 from the ROC curve. Equation 11 is equivalent to the average probability
of sampling a positive across all rates before r, and this can be inferred from
the gradient of the straight line from point �0, 0� to the point at r on the ROC
curve. Similarly, Equation 12 can be inferred from the gradient of the straight
line from the ROC curve point at r to the point �1, 1�.

Theorem 1 gives the analytical calculation but we cannot use this directly
in practice, as we have empirical ROC curves / ROC tables rather than the
score densities. Firstly, our empirical ROC tables have discrete rates such that
in the discrete case the integral of Equation 15 is changed to a summation. We
implement this as an average of the joint probability, for a set of rates of the
CDF of the beta distribution (the sampling distribution for this k) at each 0.01
interval:

p �Sk � s, Sn � n0� �
99�
t�1

p
�
Sk � s, Sn � n0 � Rk � F�1

beta�0.01 � t�
�

(17)

such that we sample the rates at each 0.01 interval of the CDF of the beta
distribution (with α � k and β � n� k  1). This CDF models the probability
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that an example at position k is sampled by each rate (according to the order
statistic).

We also require discrete versions of Equations 11- 13 that can also be used
with an empirical ROC table, and these are given in Equations 18- 20:

π�r
0 �

1

r � n �m

	
Si,�r	n�  d � pos�r	n�



(18)

π�r
0 �

1

m
pos�r	n� (19)

π�r
0 �

1

�1� r� � n �m

	
n0 � Si,�r	n�  �1� d� � pos�r	n�



(20)

where d � r � n � �r � n� is the relative distance of the rate between positions
�r � n� and �r � n�.

The probabilities of each Sk value computed in Theorem 1, correspond to only
a single row of the ROC table. We need the distribution across the number of
positives up to position k of all samples in the ROC table. For each Sk value we
need:

p

�
Sk � s ��i � 1 . . .m :

n�
j�1

�1� yi,j� � n0

�
(21)

Computing this exactly is computationally intractable, as for each possible
s at a position k the probability is given as the summation of the probabilities
of all possible combinations of values at position k that sum to this value. We
instead approximate the confidence intervals using the estimated variance of
this distribution. The mean and variance of the distribution of one sample up to
position k are given by:

μ1,k �
�
s

p �Sk � s �Sn � n0� � s (22)

σ2
1,k �

�
s

p �Sk � s �Sn � n0� � �s� μ1,k�
2 (23)

where 1 denotes that these functions correspond to a single sample. We assume
each row is identically distributed such that the mean and variance of s at
position k of the ROC table are given by:

μk �
m�
i�1

μi,k � m � μ1,k (24) σ2
k �

m�
i�1

σ2
i,k � m � σ2

1,k (25)

At each k we restrict to only the possible values of Sk, rescale these to between
zero and one, and use a scaled beta distribution to model this distribution and
estimate the confidence intervals. We calculate the mean and variance across Sk
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values at each position k, where the Sk values have been rescaled to the range
�0, 1�:

μk,β �
μk �minSk

maxSk �minSk
(26)

σ2
k,β �

σ2
k

�maxSk �minSk�2
(27)

where maxSk � m �maxS1,k and minSk � m �minS1,k and:

minS1,k � max�0, n0�nk� (28)
maxS1,k � min�k, n0�

(29)

We use these to parameterise a beta distribution and infer a confidence interval,
which we then rescale to the original scale.

3.5 Bootstrap Approach

We generate 2,000 bootstrapped ROC tables each with m samples. Each sample
is generated independently using the rate-first sampling approach, as follows.

The rates are sampled uniformly and sorted:

r1, r2 . . . rn
sort
��� r�1�, r�2� . . . r�n� (30)

The probability distribution at each rate is found by:

π0,r �
1

m
pos�r	n� (31)

We then use this probability to generate a label at k:

lk � binom�π0,r� (32)

In this way we generate a set of 2,000 bootstrap ROC tables (generating 2, 000�m
samples in total).

This sampling procedure does not ensure that each sample has the correct
class distribution. This is needed so that the confidence intervals generated from
these samples reflect that at rates 0 and 1 we are certain the curve passes through
the points �0, 0� and �1, 1� in ROC space, respectively. A simple approach to re-
strict to a fixed class distribution discards all samples where the class distribution
is not correct. However, this approach is only feasible when the number of ex-
amples is low, as otherwise samples are rarely generated with the correct class
distribution and this method becomes too slow.

We propose another approach that can be used with a larger number of exam-
ples, where we adjust the rate and the number of true and false positives at each
position in order to correct the class distribution. The rates of the bootstrap
ROC tables are equally distributed along the ranking, as shown in Figure 2.
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For each sample individually we adjust these rates and the true positive values
at each position, by scaling each position according to a correction factor, a value
for each sample and class that rescales the ‘width’ of each example in the ranking
to correct the class distribution. This adjustment is illustrated in Figure 2, and
shows how the effect is to stretch or narrow the examples along the ranking.

Fig. 2. Illustration of rate adjustment to correct class distribution

We use the bootstrapped ROC tables with the corrected true positive values,
to estimate the confidence bound of the true ROC curve. For each ROC table,
and at each position k along the ranking, we calculate the average recall across
the samples: �tprk � 1

m � n0

m�
i�1

si,k (33)

Each position k in the ranking has a set of average recall values, one for each
sample ROC table. This now corresponds to the probability density function we
stated in Equation 9. The proportion of bootstrap ROC tables with recall value
between �tprk and tpr�k gives an estimate of the probability that the recall at
this position is between these values, given this sample has a particular class
distribution.

The confidence interval for position k is obtained from the mean recall values,�tprk, of the bootstrapped ROC tables as follows. For each position k we take the�tprk value of each ROC table, sort these values in ascending order, and select
the 2.5% and 97.5% percentiles as the lower and upper endpoints of the 95%
confidence interval. This gives a series of recall-rate pairs for the lower and upper
limits of the confidence interval at each position k. A confidence bound can be
created by interpolating between these points.

4 Experiments

Our experiments use a known ROC curve to generate samples for which we create
confidence bounds, specified by normally distributed score density functions with
mean 0 and 1 for the positive and negative class respectively, and a variance
of 1. These score distributions, and the corresponding ROC curve are shown in
Figure 3. Our tests use ROC tables with 10 samples and 50 examples per sample.

We evaluate whether the generated confidence intervals meet our aims, where
at significance level σ new samples generated from this consensus curve pass
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between the lower and upper confidence limits at a given PPR value, with prob-
ability 1 � σ. Given a single sample ROC table and its confidence bounds, we
generate 1,000 new sample ROC tables from this sample. We count, at each
rate, the number of consensus curves (of these samples) the confidence inter-
val contains. A true 95% confidence interval at a given rate, should contain the
consensus curve of new samples 95% of the time.

The results are shown in Figure 4. The results of the basic parametric ap-
proaches (Figures 4a and 4b) are highly variable. Our parametric approach (Fig-
ure 4c) reliably generates confidence bounds with close to 95% confidence, except
at the extremes. This indicates that the assumption that the number of positives
up to a particular position in the ranking is beta distributed is not valid in these
regions.

Our bootstrap approaches are also much more effective compared to the base-
line results. They are a little conservative, particularly at the extremes of the
distribution, due to the nature of bootstrap sampling, where the variation be-
tween bootstraps may be too low to calculate strict confidence intervals (for
instance, where the lower and upper bounds of the 95% limits are the same as
those for the 94 or 96% limits). For example if a bootstrap sample contained only
one value then the values at the 95% bounds would also be the same values as
for the 1% or 100% limits. This also justifies the shape of the graph in Figure 4f,
as where rates have a probability of a positive near to 1, there is little variation
across samples.

Figure 5a shows an example ROC curve generated using our analytical ap-
proach, and the equivalent rate-recall curve is shown in Figure 5b.
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Fig. 3. Score probability densities for two classes (positive class: μ � 0, σ2 � 1; negative
class: μ � 1, σ2 � 1), and corresponding ROC curve
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(a) Results of baseline with normal as-
sumption
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(b) Results of baseline with beta assump-
tion
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(c) Results of parametric approach
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(d) Results of bootstrap approach (with
discarding)
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(e) Results of bootstrap approach (with
adjustment)
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(f) Results of bootstrap approach (with dis-
carding) for score distributions with: μ0 �
0, σ2

0 � 1, μ1 � 1, σ2
1 � 0.2

Fig. 4. Mean (variance) of the proportion of 1000 new samples (sampled from ROC
table) within confidence interval at each rate, across 100 tests
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(a) Example ROC curve and confi-
dence bounds (confidence intervals
at a selection of rates shown for il-
lustration)
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(b) Equivalent rate-recall curve
[12] and confidence bounds for ROC
curve shown in Figure 5a. Grey lines
indicate bounds of rate-recall space.

Fig. 5. Example confidence bounds generated with our parametric approach, and the
equivalent rate-recall curve. Also shown are two curves: 1) The smooth true curve
specified by the score distributions and 2) The consensus curve from the original sample
(also shown in Figure 3 (right)).

5 Related Work

In the introduction we discussed two parametric approaches to generating con-
fidence bounds; vertical (horizontal) and threshold averaging. A non-parametric
approach, called fixed width bands [4, 11] works by displacing the whole ROC
curve up and left, and down and right, to create an upper and lower confidence
band respectively. The curve is displaced along the gradient �

�
�N��N�� (cho-

sen as an approximation of the standard deviation ratios of the two classes). Rate
isometrics have a gradient �N��N� such that if we changed the displacement
gradient to the gradient of the rate isometric this could be used as a rate-oriented
approach. However, the size of displacement is constant along the ROC curve
which does not constrain the confidence bounds to ROC space. Furthermore,
this is an approach for calculating the confidence around the whole curve, but
in this paper we are interested in point-wise confidence bounds instead.

Other approaches include a non-parametric approach by Tilbury et al., which
they derived from first principles [16], and the use of kernel estimation to esti-
mate the continuous probability density functions of the scores of each class [6].
We also refer the reader to comparisons of various approaches, performed by
Macskassy et al. [9, 10].

Early retrieval tasks are those where the top ranked examples are of most
interest [2], and metrics used for this task weight the importance of an example
by its position in the ranking. For instance, the rate-weighted AUC (rAUC)
[12] is a general measure where the distribution of weights along the ranking
can be chosen for the specific task at hand. Other metrics that are restricted
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to particular weight distributions include; discounted cumulative gain (DCG)
and normalised discounted cumulative gain (NDCG) [8] in information retrieval,
robust initial enhancement (RIE) [14], the Boltzmann-enhanced Discrimination
of ROC (BEDROC) [17], concentrated ROC (CROC) [15] and sum of the log
ranks (SLR) [18]. These metric all evaluate rankings with respect to the rate, such
that when assessing tasks that use these metrics in ROC space, we suggest it is
most appropriate to generate rate-averaged consensus curves with rate-oriented
point-wise confidence bounds.

Rate-averaging has been previously used [3,12] to generate consensus curves,
referred to as pooling in [3]. To our knowledge there is no approach in the
literature to infer rate-oriented confidence bounds. [9] claims that rate-averaging
makes the strong assumption that the rates are estimating the same point in
ROC space, and this is not appropriate. However, other approaches make this
similar assumptions across a different metric, such as the false positive rate in
vertical-averaging.

6 Conclusions

We have described a new approach to generate confidence bounds, which we call
rate-oriented point-wise confidence bounds. Our main aim was to address some
important weaknesses of other existing methods. Calculating the consensus and
confidences bounds at each rate is practical as rate is a measure over which we
have control in practice. On the other hand, vertical (or horizontal) averaging
fix the false positive rate (true positive rate) and average across the true positive
rate (false positive rate), but these metrics are not under our control so are of
little use in practice. Score-averaging creates confidence bounds around clouds
of points, and how best to do this is an open problem. Rate-averaging does not
have this problem because it constrains to a single dimension.

Our approach is also invariant to swapping the classes, and we suggest that
this property is sensible when generating confidence bounds. The confidence of a
point on the ROC curve should not depend on which class is labelled as positive.
Furthermore, our bounds have the advantage that they are smooth, due to the
sampling across rates we perform as part of our method.

Our secondary aim was to find appropriate bounds for assessing models used
specifically for rate-constrained tasks. Using a rate-oriented approach ensured
that the performance (and confidence interval) shown at a rate is an estimate
for this particular rate.

In this paper we analytically derived the probability distribution of the num-
ber of positives up to each position in the ranking, and then used this to develop
two methods, a parametric and a bootstrap approach. The parametric approach
gave confidence bounds having very close to the 95% confidence, except at the
extremes. The bootstrap approach did generate satisfactory bounds at the ex-
treme but also had greater variance around the 95% confidence level. Therefore,
we suggest that when the performance at the extremes of the ROC curve are of
little importance, the parametric approach should be used, but where this is not
the case the bootstrap approach can be used instead.
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Abstract. In many scientific communities using experiment databases,
one of the crucial problems is how to assess the statistical significance (p-
value) of a discovered hypothesis. Especially, combinatorial hypothesis
assessment is a hard problem because it requires a multiple-testing proce-
dure with a very large factor of the p-value correction. Recently, Terada
et al. proposed a novel method of the p-value correction, called “Limit-
less Arity Multiple-testing Procedure” (LAMP), which is based on fre-
quent itemset enumeration to exclude meaninglessly infrequent itemsets
which will never be significant. The LAMP makes much more accurate
p-value correction than previous method, and it empowers the scientific
discovery. However, the original LAMP implementation is sometimes too
time-consuming for practical databases. We propose a new LAMP algo-
rithm that essentially executes itemset mining algorithm once, while the
previous one executes many times. Our experimental results show that
the proposed method is much (10 to 100 times) faster than the original
LAMP. This algorithm enables us to discover significant p-value patterns
in quite short time even for very large-scale databases.

1 Introduction

Discovering useful knowledge from large-scale databases has attracted consider-
able attention during the last decade. Such knowledge discovery techniques are
widely utilized in many areas of experimental sciences, such as biochemistry,
material science, medical science, etc. In those scientific communities using ex-
periment databases, one of the crucial problems is how to assess the statistical
significance (p-value) of a discovered hypothesis.The p-value-based assessment is
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one of the most important factors in the paper review process of academic jour-
nals in experimental sciences [11]. (Here are some related studies [8,26,18,15] on
data mining algorithms considering p-values.)

For those scientific applications, detecting a combinatorial regulation of mul-
tiple factors is sometimes a very important issue. For example, it is well known
that a key to generate iPS cells consists of the four factors of genes [16]. However,
statistical assessment of a hypothesis for detected combinatorial effect is a hard
problem because it requires a multiple-testing procedure with a very large factor
of the p-value correction. This correction is necessary to avoid a false discovery
caused by repetition of statistical tests. When we consider the combinations of j
out of n hypotheses, the number of tested combinations increases exponentially
as O(nj), and if we use a naive correction method in j = 4 or more, it is too
conservative since almost all discoveries becomes extremely unlikely.

Recently, Terada et al. developed a novel p-value correction procedure, called
“Limitless Arity Multiple-testing Procedure” (LAMP). Their paper [20] was pub-
lished in PNAS, a leading journal in scientific community. This new procedure ex-
cludes meaninglessly infrequent hypotheses which will never be significant. The
p-value correction factor calculated byLAMP ismuchmore accurate than previous
method, and it empowers the scientific discovery from the experiment databases.
However, the original LAMP implementation is sometimes too time-consuming for
practical databases, and a state-of-the-art algorithm has been desired.

The LAMP is based on the techniques of frequent itemset mining, to enu-
merate all frequent itemsets included in at least σ transactions of the database
for a given threshold σ. Since the pioneering work by Agrawal et al. [1], vari-
ous algorithms have been proposed to solve this problem [9,13,27]. Among those
state-of-the-art algorithms, LCM (Linear time Closed itemset Miner)[24,22,23]
by Uno et al. is known as one of the fastest algorithm, which is based on a
depth-first traversal of a search tree for the combinatorial space.

In this paper, we propose a fast itemset enumeration algorithm to find the
minimum support for satisfying the LAMP condition. Our new algorithm essen-
tially executes itemset mining algorithm once, while the previous one executes
many times. We show that LAMP condition is a kind of threshold function
which is monotonically decreasing or increasing. We developed a general scheme
to explore the maximum frequency satisfying a given threshold function. We suc-
cessfully applied this new scheme to the LAMP condition. Those new procedures
are implemented into the newest version of the LCM program. Our experimental
results show that the proposed method is much (10 to 100 times) faster than
the original LAMP. This algorithm enables us to discover significant p-value
patterns in quite short time even for very large-scale databases.

In the rest of this paper, we first explain the preliminaries on frequent itemset
mining algorithms. In Section 3, we then present the problem of statistical assess-
ment for combinatorial hypotheses and the idea of LAMP. Section 4 describes our
proposedmethods for finding theminimum frequency for satisfying threshold func-
tion and the LAMP condition. Section 5 discusses efficient implementation, and
Section 6 shows our experimental results, followed by the conclusion in Section 7.
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2 Preliminary

Here we start with some basic definitions of itemset databases and frequent
itemset mining.

Let E = {1, . . . , n} be a set of items. A subset of E is called an itemset. A
transaction database is a database composed of transactions where a transaction
is an itemset. A transaction database can include two or more identical transac-
tions. For a transaction database D, |D| denotes the number of transactions in
D, and ||D|| denotes the size of D, that is the sum of the size of the transactions
in D, i.e., ||D|| =

∑
T∈D |T |.

For an itemset X and a transaction database D, an occurrence of X in D is a
transaction including X . The occurrence set of X , denoted by Occ(X) is the set
of all occurrences of X in D. The frequency of X is the number of occurrences of
X , and is denoted by frq(X). For a given constant number σ called minimum
support, an itemset X is called frequent. The frequent itemset mining problem
is to enumerate all frequent itemsets for given database D and threshold σ.

Without confusions, an item e also represents the itemset {e}, hence frq(e),
X ∪ e and X \ e denote frq({e}), X ∪ {e} and X \ {e}, respectively. Let κ(σ)
be the number of frequent patterns whose frequencies are no less than σ.

2.1 Frequent Itemset Mining Algorithm

The set system given by the set of frequent itemsets is anti-monotone, i.e., any
subset Y of a frequent itemset X is always frequent. Thus, enumeration of fre-
quent itemsets is done efficiently by hill-climbing algorithms, that start from the
emptyset and recursively add items unless the itemset is infrequent. In particu-
lar, depth-first search type algorithms (backtracking) are known to be efficient
[9]. In the backtracking way, we add an item e to the current itemset X , and ex-
plore all itemsets generated from X ∪e before processing X ∪e′, e′ 
= e. To avoid
duplicated solutions such that an itemset is output twice, backtracking adds only
item e > tail(X) where tail(X) is the maximum item in X . Through this enu-
meration technique, any item Y is generated from the itemset Y \ tail(X), thus
no duplication occurs. The pseudo code of backtracking is written as follows.

ALGORITHM BackTracking Basic (X)
1. output X
2. for each item e > tail(X),

if frq(X ∪ e) ≥ σ then call BackTracking Basic (X ∪ e)

The most heavy computation in this algorithm is the computation of frq(X∪
e) on Step 2 of the algorithm. There are several techniques for reducing this
computation. Especially, recursive database reduction techniques, such as FP-
tree representation of the database [12] and anytime database reduction [22],
are quite efficient. These techniques can be applied only to depth-first type
algorithm, this explains why BFS algorithms are slow compared to backtracking
on real-world data [10]. There is one more important technique so called equi-
support (see for example [24] written as hypercube decomposition). For an itemset
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X , we call an item e 
∈ X addible if frq(X ∪ e) = frq(X). Eq(X) denotes the
set of addible items e of X that satisfy e > tail(X). We can see that any itemset
X ∪ S, S ⊆ Eq(X) satisfies frq(X) = frq(X ∪ S), thus we output all these
itemsets without the computation of their frequency. Using this observation, a
more efficient algorithm can be written as follows. Duplications can be avoided
by not generating recursive calls for X ∪ e with e ∈ Eq(X).

ALGORITHM BackTracking (X)
1. output X ∪ S for all S ⊆ Eq(X)
2. for each item e > tail(X), e 
∈ Eq(X),

if frq(X ∪ e) ≥ σ then call BackTracking (X ∪ e)

Fast implementations of backtracking find up to one million solutions in a
second [10].

3 Statistical Assessment for Combinatorial Hypotheses

In this paper, we discuss a fast method of statistical assessment using the tech-
niques of frequent itemset mining. First we assume the following experimental
scenario.

Consider a scientific database including experimental results for a number of
human gene samples, and each sample shows a set of expressions of targeted
factors. Here we assume only one expression level (exist or not) for each factor.
We also have another classification result for each sample whether it is positive
or negative, for example, the gene sample is given by a patient of breast cancer
or a normal person. Then we want to discover a combination of factors which is
highly correlated to incidence of a breast cancer. This is a quite simple scenario
and many similar cases may commonly appear in various areas of experimental
sciences. Since we assume only binary values in the database, we can represent it
as a transaction database D as shown in Fig. 1. Here we also assume a classifier
C : D → {pos, neg}, which classify each transaction into a positive or a negative
one. Suppose that the database has n items for the expressions of factors, m
transactions in total, and mp positive transactions.

Now we consider the assessment whether a given itemset has a strong corre-
lation to appear in the positive transactions. Figure 2 shows a contingency table
between the occurrence of the itemset X and the positive class of transactions.
Here we note σ = frq(X) and σp is a number of positive transactions in Occ(X).
We also show the value of each cell when X = {2, 3} for the database shown in
Fig. 1.

If the distribution of the contingency table is very biased, we may consider
this is a kind of knowledge discovery because it is unlikely that it happened inci-
dentally. The p-value represents the probability that such a biased distribution
incidentally happens. In other words, it is the probability of a false discovery,
and we can accept the statistical significance if the p-value is smaller than an
arbitrary threshold α. (α = 0.05 is often used.) The p-value is quite important
in the paper review process of academic journals in experimental sciences.
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T ∈ D C(T )
2 3 4 5 neg

1 3 5 pos

2 3 4 pos

1 2 4 5 neg

1 2 3 pos

2 4 neg

1 2 3 5 pos

2 4 5 neg

1 3 4 neg

Fig. 1. An example of trans-
action database with positive-
negative class

pos neg all
Occ(X) (σp) (σ − σp) (σ)

3 1 4

Occ(X) (mp − σp) (m−mp − σ + σp) (m− σ)
1 4 5

all (mp) (m−mp) (m)
4 5 9

Fig. 2. Contingency table (X = {2, 3})

Fisher’s exact test is one of the major methods for calculating the p-value for
a given contingency table. This testing method assumes that each experimental
result is independent and has an equal weight. Then, the p-value is calculated by
counting all combinatorial cases to generate equally or more biased distributions.
More exactly, the probability of generating a contingency table of Fig. 2 can be
written as:

P (σp) =

((
mp

σp

)
·
(
m−mp

σ − σp

))
/

(
m
σ

)
, (1)

and the p-value is defined as

min(σ, mp)∑
σ′
p=σp

P (σ′
p), which is the total probabilities of

all equally or more biased distributions.

3.1 P-value Correction in Multiple Tests

If we repeatedly calculate p-values for many different factors in a same database,
we may more likely find a factor with an incidentally low p-value. For example,
if we explore a family of hundred hypotheses each of which might be a false
discovery in p = 0.05, then at least one false discovery can be found in p = 0.994.
It is well known that such multiple tests may cause serious false positive problems
[17]. Hence, a multiple testing correction must be used in order to avoid a false
discovery. The family-wise error rate (FWER) indicates the probability that at
least one false discovery happens in multiple tests. This rate increases at most
linearly as the number of tests, which motivates the Bonferroni correction [7]
that multiplies the raw p-value by the number of tests. In other words, we must
compare the raw p-values with the adjusted threshold δ = α/k, where k is
number of tests. The Bonferroni correction is a very conservative method, which
likely causes false negative but hardly causes false positive, and often used in
academic articles in experimental sciences.
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When we consider the combinations of j out of n items, the number of tested
combinations increases exponentially as O(nj), and if we naively use Bonferroni
correction in j = 4 or more, most of the discoveries of combinatorial hypotheses
becomes extremely unlikely. However, in many practical cases, not all the com-
binations occur in the databases, so the ideal size of hypothesis family would be
much smaller than the naive combinatorial number. This is a motivation of the
LAMP.

3.2 Idea of LAMP

Recently, Terada et al. developed a novel p-value correction procedure, called
“Limitless Arity Multiple-testing Procedure” (LAMP) [20]. This new procedure
is based on frequent itemset enumeration for checking the two principles:

(1) Meaninglessly infrequent itemsets which never be significant can be excluded
from the number of hypotheses to be counted.

(2) Any different itemsets having completely the same occurrence set can be
counted as one hypothesis in the family.

The principle (2) means that we may enumerate only the closed itemsets, and
we can just use existing state-of-the-art algorithms of closed itemset mining
[24,22,23]. Here we explain in detail how to check the principle (1).

Suppose an itemset X with a very low frequency σ (< mp). Using Fisher’s
exact test, the raw p-value cannot be smaller than

f(σ) =

(
mp

σ

)
/

(
m
σ

)
, (2)

which means the most biased case of equation (1) that all Occ(X) are classified
into the positive class. Note that f(σ) is monotonically decreasing, namely, the
less frequent itemsets has the larger f(σ). This observation means that all the
infrequent itemsets satisfying f(σ) > δ can never be significant, regardless of
the classification result. Thus, we can exclude such itemsets from the number of
hypotheses to be counted. This is the key idea of the LAMP.

Let κc(σ) be the number of all closed itemsets not less frequent than σ. Then,
the adjusted threshold of Bonferroni correction can be written as δ = α/κc(σ).
Now our subject is to find the maximum frequency σmax which satisfies:

f(σmax − 1) >
α

κc(σmax)
and f(σmax) ≤

α

κc(σmax + 1)
. (3)

3.3 Current Implementation of LAMP

In the above inequation of the LAMP condition, the left side f(σ − 1) is mono-
tonically decreasing and the right side α/κc(σ) is monotonically increasing in
the range 1 ≤ σ ≤ mp. Thus, a naive idea is to enumerate all the itemsets in an
order from the highest σ to the lowest one, and we may stop the enumeration
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Fig. 3. An example of a breadth-first search

procedure when the current σ first satisfies the condition. This is well known as
the breadth-first search approach used in the “Apriori-type” [1] frequent item-
set mining algorithms. Figure 3 illustrates the execution steps of a breadth-first
search on the same database in Fig. 1. This approach requires a large size of
memories to store all the itemsets at the current frontier for each step, and in
general, it is not very efficient for practical size of databases.

The current implementation of the original LAMP [19] is not using a breadth-
first search due to memory limitation, but just calls the LCM algorithm repeat-
edly, as follows.

ALGORITHM Original LAMP (α)
1. σ := maxe∈E(frq(e))
2. if σ < mp then σ := mp // mp: number of positive transactions.
3. k := κc(σ) // call LCM algorithm to compute κc(σ).
4. if f(σ − 1) ≤ α/k then σ := σ − 1; goto 3
5. output (σ, k)

This method requires less memory, but sometimes very time-consuming since
the LCM may be called more than thousand times for practical cases, and it
may take a day or more. The current LAMP has a bottleneck in computation
time, and some efficient algorithms are desired.

One may consider that we can apply a sampling technique [6] to quickly esti-
mate the number of frequent itemsets satisfying the LAMP condition. However,
the result is used for statistical assessment, thus we must ensure the worst-case
upper bound, but it is difficult to find a feasible bound by sampling-based meth-
ods. Here we propose a fast and exact method of enumerating itemsets for the
LAMP condition.

4 Proposed Algorithms

4.1 A Threshold Function for the LAMP Condition

Let θ(x, y) : (N ×N) → {true, false} be a given threshold function such that
θ(x, y) = true implies θ(x′, y) = true for any x′ < x, and that θ(x, y) = true
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implies θ(x, y′) = true for any y′ > y. In other words, θ(x, y) is monotonically
decreasing for x and increasing for y. Now we consider a general scheme of the
itemset mining problems, to find the largest σ satisfying θ(σ, κ(σ)). Note that
κ(σ) is monotonically decreasing for 1 ≤ σ ≤ m, thus θ(σ, κ(σ)) is monotonically
decreasing for the same 1 ≤ σ ≤ m. We call the largest σ maximum frequency
for the threshold function, and denote it by σmax.

For examples of such threshold functions, the function for top-k mining can
be defined as θ(x, y) = true iff y ≥ k. We then explore the maximum frequency
σmax for satisfying θ(σ, κ(σ)). It means that the k-th most frequent itemsets
have the frequency σmax.

Here we define a threshold function for the LAMP condition as follows.

θ(x, y) = true iff f(x− 1) >
α

y
(4)

As discussed in Section 3, we can confirm that this threshold function is decreas-
ing for x and increasing for y. We then explore the maximum frequency σmax

for satisfying θ(σ, κ(σ))1. Hereafter we assume that θ(x, y) satisfies the above
condition.

4.2 Support Increase Algorithm

For the computation of the maximum frequency for θ(σ, κ(σ)), a natural way
is to compute κ(σ) by frequent itemset mining with the minimum support σ,
for all possible candidates σ, one by one. This computation takes long time
when σ is small since κ(σ) is huge, thus we should compute θ(σ, κ(σ)) in the
decreasing order of σ. This is the basic scheme of the original LAMP [20] shown
in the previous section. However, this needs long computation time since many
frequent itemset mining processes are executed. In this paper, we propose a new
algorithm that basically executes mining algorithm just once.

Suppose that we are given a function θ(σ, κ(σ)). For a frequency σ, if we
found some k and confirmed both k ≤ κ(σ) and θ(σ, k) = true, then we get
θ(σ, κ(σ)) = true, since θ(x, y) is increasing for y. In such a case, we can see
σmax ≥ σ, and in particular, σmax = σ if θ(σ + 1, κ(σ + 1)) = false.

Suppose that we execute a backtracking algorithm for minimum support σ
to check θ(σ, κ(σ)), and during the mining process we found k frequent item-
sets satisfying θ(σ, k). From the assumption of the function θ(x, y), we can then
confirm that θ(σ, κ(σ)) = true. We are then motivated to re-execute the back-
tracking with σ := σ + 1 to check θ(σ + 1, κ(σ + 1)). However, in the current
execution, we already found possibly many itemsets of frequency σ + 1, and in
the past search process, we never missed such itemsets. This implies that the
execution until the current iteration can be skipped. We just need to remove all
itemsets of frequency σ from the set of past solutions that have already been

1 Our implementation uses κc(σ) instead of κ(σ) for the LAMP condition in equa-
tion (2). The number of closed itemsets are also monotonically decreasing for the
frequency, so we can use κc(σ) as well. This is discussed in Section 5.2.
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Fig. 4. The scheme of support increase algorithm

found, and can re-start the backtracking algorithm with σ := σ+1. This implies
that even if we start from very small σ having huge κ(σ), we can increase it
during the mining process for reducing the computation time.

A backtracking algorithm with this idea can be written as follows. Figure 4
illustrates the scheme of this algorithm. The algorithm start with σ = 1 and
S = ∅ where S is a program variable for storing a set of frequent itemsets we
already found. Let S[σ] be the subset of itemsets in S whose frequency is σ.

ALGORITHM SupportIncrease (X)
global variable: σ,S (initialized σ = 1, S = ∅)
1. S := S ∪ {X}
2. if θ(σ, |S|) = true then S := S \ S[σ], σ := σ + 1; go to 2
3. for each item e > tail(X),

if frq(X ∪ e) ≥ σ then call SupportIncrease (X ∪ e)

Theorem 1. Let σ∗ and S∗ denote the resulting values of σ and S after the
execution of the algorithm SupportIncrease. Then it holds that σ∗ = σmax+1
and |S∗| = κ(σmax + 1).

Proof. Since the algorithm never decreases σ, the itemsets of frequencies no less
than σ∗ cannot be missed, and are included in S∗. Since no itemset of frequency
less than σ∗ is in S, we have |S∗| = κ(σ∗). We then prove σ∗ = σmax + 1 by
contradiction.

Suppose that θ(σ∗, κ(σ∗)) = true holds. Let us consider the iteration in which
the last itemset is inserted to S. Since θ(σ∗, κ(σ∗)) = true holds, the latter
part of step 2 is not executed in this iteration, otherwise σ is increased so that
θ(σ∗, κ(σ∗)) = false holds. Thus, we have σ = σ∗ in the iteration. After step 1,
there is no more itemset of frequency no less than σ∗ that has not been found,
thus we have |S| = κ(σ). This leads that θ(σ∗, κ(σ∗)) = false, and contradicts
to the assumption.
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We next suppose that θ(σ∗ − 1, κ(σ∗ − 1)) = false holds. Let us consider the
iteration in which σ is increased to σ∗. In the iteration, the latter part of step 2
is executed, and thus we have θ(σ∗−1, |S|) = true. Since |S| is always no greater
than κ(σ), it implies that θ(σ∗ − 1, k) = true holds for some k ≤ κ(σ∗ − 1). This
contradicts to the assumption. ��

The algorithm terminates in short time if |S[σ]| is relatively small compared
to |S| on average. Particularly, if |S[σ]| ≤ q always holds, we can bound the
number of iterations by q · σmax + |S∗|, since the algorithm removes at most
q · σmax itemsets from S. In the real-world data, we can naturally expect that
|S[σ]| is much smaller than |S|. In fact, we could confirm it in our computational
experiments.

The computation of |S[σ]| is done efficiently by using a heap that extracts the
minimum frequency itemset from S. The computation then takesO(|S[σ]| log |S|)
time. This computation time should be short than the computation time of an
iteration, thus the total computation is expected not to increase much. However,
if |S| is large on average, or κ(σ∗) is very large, the algorithm may take very
long time. In the next section, we focus on such cases, and propose an efficient
method for reducing the computation time.

5 Fast Implementation

The bottleneck of the computation of the algorithm in the previous section comes
from the large size of the heap for S. This effects not only the computation
time but also the memory usage. We here propose to use histogram counters
instead of the heap. The histogram counters s[σ] are prepared for keeping |S[σ]|,
and an integer variable s is used for accumulating |S|. By using the histogram
counters, we do not have to use the heap for storing the itemsets. The point is
that we can compute |S \ S[σ]| by just one subtract operation s− s[σ]. Another
important point is the memory usage. The number of the histogram counters
can be bounded by the number of transactions, thus it is only a linear factor to
the input data size.

The use of histogram counters gives us one more advantage; we can use the
equi-support technique. In each iteration with equi-support, we find many fre-
quent itemsets, 2|Eq| itemsets in exact, with the same frequency, at once. We
can increase the counter for these in one step by adding 2|Eq| to the counter.
This saves the computation time of 2|Eq| − 1 iterations, thus the equi-support
technique drastically shortens the total computation time. The algorithm is then
written as follows.

ALGORITHM EquiSupportIncrease (X)
global variable: σ, s, s[ ] (initialized σ = 1, s = 0, s[i] = 0 for each i)

1. s := s+ 2|Eq(X)|, s[frq(X)] := s[frq(X)] + 2|Eq(X)|

2. if θ(σ, s) = true then s := s− s[σ], σ := σ + 1; go to 2
3. for each item e > tail(X), e 
∈ Eq(X),

if frq(X ∪ e) ≥ σ then call EquiSupportIncrease (X ∪ e)
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Theorem 2. Let σ∗ and s∗ denote the resulting values of σ and s after the
execution of the algorithm EquiSupportIncrease. Then it holds that σ∗ =
σmax + 1 and s∗ = κ(σmax + 1).

Proof. We assume that the variable S is simultaneously computed as algo-
rithm SupportIncrease during the execution of EquiSupportIncrease. In-
stead of insertion of itemsets X into S, EquiSupportIncrease increases s and
s[frq(X)]. Thus, in any iteration, s = |S| and s[σ] = |S[σ]| holds. This implies
that the computation of σ in EquiSupportIncrease is the same as Support-
Increase, thus the statement holds. ��

Theorem 3. Let P be the itemset enumerated by EquiSupportIncrease. The
number of iterations needed to enumerate P by EquiSupportIncrease is equal
to that by backtracking algorithms with equi-support technique. ��

5.1 Calculating Family Size of the LAMP

Theorem 1 states that |S∗| = κ(σmax + 1), namely, the histogram counters
holds κ(σmax + 1) after the execution of the proposed algorithm. However, our
final purpose of the LAMP is to know κ(σmax), which is the hypothesis family
size for the p-value correction. An easy way to know κ(σmax) is calling LCM
algorithm once again with σmax. This is not so bad since calculating κ(σmax)
is not more time-consuming than finding σmax, however, we can avoid such
two-pass executions if we maintain not only s[σ] but also s[σ − 1] during the
backtracking procedure. This can be done by a very small modification as shown
below.

ALGORITHM EquiSupportIncreaseLAMP (X)
global variable: σ, s, s[ ] (initialized σ = 1, s = 0, s[i] = 0 for each i)
1. s := s+ 2|Eq(X)|, s[frq(X)] := s[frq(X)] + 2|Eq(X)|

2. if θ(σ, s− s[σ − 1]) = true then s := s− s[σ − 1], σ := σ + 1; go to 2
3. for each item e > tail(X), e 
∈ Eq(X),

if frq(X ∪ e) ≥ σ − 1 then call EquiSupportIncreaseLAMP (X ∪ e)

In this modification, the total number of backtracking will be a little increase
because the condition of the recursive call in Step 3 is relaxed to one smaller
frequency. This overhead is relatively small in the total computation time, and
it is a reasonable cost for computing κ(σmax) correctly.

5.2 Generalization to Other Patterns

Many patterns have been considered in the past researches of pattern mining.
Our algorithm works on many of these patterns. The requirement is that the
backtracking algorithm does work, i.e., the set of frequent patterns satisfies some
monotone properties. For example, closed itemset mining accepts our algorithm,
and also maximal frequent itemset mining also does. Closed itemsets have the
anti-monotone property, and maximal frequent itemsets can be enumerated by
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backtracking. They can be solved by our implementation. Sequence pattern min-
ing [25], frequent tree mining [4,5], frequent geograph mining [3], maximal motif
mining [2], frequent graph mining [14], and other basic patterns also satisfy
monotone property, so that we can construct a search tree in which parents have
frequencies no smaller than their children, thereby backtracking works. They ac-
cept the counter implementation when the maximum possible frequency is not
huge, and also Equi-support technique when it works. Our basic scheme of the
algorithm is quite strong so that we can use it in many kinds of pattern mining
problems.

6 Computational Experiments

We implemented our new LAMP algorithm by modifying LCM ver. 5 that is
available on the author’s website [21]. This is the latest version of LCM algorithm
that won in FIMI04 competition of fast pattern mining implementations [10].
The fundamental issues of the implementation is described in [22]. We note that
the modification is quite small such that we added/modified only up to 30 lines of
C codes. We could not observe any relatively large difference of computational
performance after the modification of the LCM. For the comparison, we also
evaluated the original version of LAMP [19]. The original LAMP repeatedly
calls the same LCM ver. 5, as shown in Section 3 of this paper.

Table 1 presents the specifications of the database instances used in our ex-
periments. “yeast” and “breast cancer” are the real gene databases, which are
also used in the original LAMP paper [20]. The others are well known bench-
mark datasets of FIMI competition and KDD CUP 2000, available from the
FIMI repository [10]. The columns n and m show the numbers of items and
transactions, respectively. Here we show the hypothesis family sizes of tradi-
tional Bonferroni correction if we limit the maximum arity (the number of items
in a combination) up to 2, 3, and 4. We can see that the family size grows ex-
ponentially to the arity, and that it seems too large for meaningful knowledge
discovery in practical size of databases.

Table 2 shows our experimental results of the new and original versions of
LAMP. The columns mp, σmax and κc(σmax) indicate the number of positive
transactions, the maximum frequency for the LAMP condition, and the number
of frequent closed itemsets (hypothesis family size by LAMP), respectively. Here
we used the significance threshold α = 0.05. Note that the datasets “yeast”
and “breast cancer” have a positive-negative classification for each transaction.
“mushroom” does not have such information but it has the two specific items
which mean poisonous or edible mushroom, so we define the poisonous one as
positive, and the rest of 117 items are assessed as the combinatorial hypotheses.
For the other datasets, we did not specify a particular classification item, but we
assumed the two cases that the positive transactions share 50% and 10% in the
whole data. The experimental results show that the new LAMP is much faster
than the original LAMP, as much as 10 to 100 times in many cases, and it can
work well for practical size of databases with hundreds of items and thousands
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Table 1. Specifications of databases

database n m Bonferroni (family size)
max-arity: 2 max-arity: 3 max-arity: 4

yeast 102 6074 5253 176953 4426528
breast cancer 397 12773 79003 10428793 1029883108
mushroom(3-119) 117 8124 6903 267033 7680738
T10I4D100K 870 100000 378885 109751225 23816205920
BMS-WebView-1 497 59602 123753 20460993 2532110133
BMS-WebView-2 3340 77512 5579470 6209953450 5.182 × 1012

BMS-POS 1657 515597 1373653 758258113 3.137 × 1011

Table 2. Experimental Results of new and original LAMP

database mp σmax κc(σmax) new LAMP orig. LAMP
(family size) time(sec) time(sec)

yeast 530 4 303 0.005 0.463
breast cancer 1129 8 3750336 36.538 86.315
mushroom(3-119) 3916 20 98723 0.740 141.327
T10I4D100K(mp:50%) 50000 21 107080 3.092 799.738
T10I4D100K(mp:10%) 10000 7 483300 5.714 820.756
BMS-WebView-1(mp:50%) 29801 22 170660 12.349 122.303
BMS-WebView-1(mp:10%) 5960 8 959435 33.351 248.055
BMS-WebView-2(mp:50%) 38756 22 209016 1.813 229.406
BMS-WebView-2(mp:10%) 7751 8 665411 5.655 246.278
BMS-POS(mp:50%) 257799 31 74373743 580.321 78801.858
BMS-POS(mp:10%) 51560 11 702878145 4513.052 50883.609

Intel Core i7-3930K 3.2GHz, 64GB Mem, 12MB Cache, OpenSuSE 12.1

of transactions. We can also see that the family sizes given by LAMP are often
smaller than ones by the traditional Bonferroni with the max-arity up to only
3. This is very powerful in practical applications because the LAMP has no
arity limit up to n, and this correction still guarantees the family-wise error rate
bounded by α.

7 Conclusion

In this paper, we proposed a fast itemset enumeration algorithm to find the fre-
quency threshold satisfying the LAMP condition. We developed a general scheme
to explore the maximum frequency satisfying a monotonic threshold function.
We successfully applied this new scheme to the LAMP condition. The procedure
is implemented into the newest LCM program. Our experimental results show
that the proposed method is much (10 to 100 times) faster than the original
LAMP and that it can work well for practical size of experiment databases. The
new enumeration algorithm solved the bottleneck of the LAMP for practical
applications, and useful for various areas of experimental sciences.

We may have several kinds of future work. As well as multiple-testing correc-
tion, computing the p-values for a particular hypothesis is also time-consuming
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procedure. It will be useful if we can efficiently compute the p-values for many
combinatorial hypotheses and can discover the best or top-k significant one. In
this paper, we considered Fisher’s exact test, however, there are some other types
of the p-value calculation, such as χ-squared test and Mann-Whitney test, and
we may consider different statistical models. In addition, here we assumed only
the binary-valued databases, but extension to non binary-valued databases is
also interesting problem. As described in Section 5.2, our basic scheme of the
algorithm is quite strong so that we can use it in many kinds of pattern mining
problems. Anyway, our result demonstrated that the state-of-the-art enumer-
ation techniques of pattern mining can be a useful means to many kinds of
statistical problems.
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Abstract. Neural networks have recently been proposed for multi-label classi-
fication because they are able to capture and model label dependencies in the
output layer. In this work, we investigate limitations of BP-MLL, a neural net-
work (NN) architecture that aims at minimizing pairwise ranking error. Instead,
we propose to use a comparably simple NN approach with recently proposed
learning techniques for large-scale multi-label text classification tasks. In partic-
ular, we show that BP-MLL’s ranking loss minimization can be efficiently and
effectively replaced with the commonly used cross entropy error function, and
demonstrate that several advances in neural network training that have been de-
veloped in the realm of deep learning can be effectively employed in this setting.
Our experimental results show that simple NN models equipped with advanced
techniques such as rectified linear units, dropout, and AdaGrad perform as well as
or even outperform state-of-the-art approaches on six large-scale textual datasets
with diverse characteristics.

1 Introduction

As the amount of textual data on the web and in digital libraries is increasing rapidly, the
need for augmenting unstructured data with metadata is also increasing. Time- and cost-
wise, a manual extraction of such information from ever-growing document collections
is impractical.

Multi-label classification is an automatic approach for addressing such problems by
learning to assign a suitable subset of categories from an established classification sys-
tem to a given text. In the literature, one can find a number of multi-label classification
approaches for a variety of tasks in different domains such as bioinformatics [1], music
[28], and text [9]. In the simplest case, multi-label classification may be viewed as a set
of binary classification tasks that decides for each label independently whether it should
be assigned to the document or not. However, this so-called binary relevance approach
ignores dependencies between the labels, so that current research in multi-label classifi-
cation concentrates on the question of how such dependencies can be exploited [23, 3].
One such approach is BP-MLL [32], which formulates multi-label classification prob-
lems as a neural network with multiple output nodes, one for each label. The output
layer is able to model dependencies between the individual labels.
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In this work, we directly build upon BP-MLL and show how a simple, single hidden
layer NN may achieve a state-of-the-art performance in large-scale multi-label text clas-
sification tasks. The key modifications that we suggest are (i) more efficient and more
effective training by replacing BP-MLL’s pairwise ranking loss with cross entropy and
(ii) the use of recent developments in the area of deep learning such as rectified linear
units (ReLUs), Dropout, and AdaGrad.

Even though we employ techniques that have been developed in the realm of deep
learning, we nevertheless stick to single-layer NNs. The motivation behind this is two-
fold: first, a simple network configuration allows better scalability of the model and is
more suitable for large-scale tasks on textual data1. Second, as it has been shown in the
literature [15], popular feature representation schemes for textual data such as variants
of tf-idf term weighting already incorporate a certain degree of higher dimensional fea-
tures, and we speculate that even a single-layer NN model can work well with text data.
This paper provides an empirical evidence to support that a simple NN model equipped
with recent advanced techniques for training NN performs as well as or even outper-
forms state-of-the-art approaches on large-scale datasets with diverse characteristics.

2 Multi-label Classification

Formally, multi-label classification may be defined as follows: X ⊂ RD is a set of M
instances, each being a D-dimensional feature vector, and L is a set of labels. Each
instance x is associated with a subset of the L labels, the so-called relevant labels;
all other labels are irrelevant for this example. The task of the learner is to learn a
mapping function f : RD → 2L that assigns a subset of labels to a given instance. An
alternative view is that we have to predict an L-dimensional target vector y ∈ {0, 1}L,
where yi = 1 indicates that the i-th label is relevant, whereas yi = 0 indicates that it is
irrelevant for the given instance.

Many algorithms have been developed for tackling this type of problem. The most
straightforward way is binary relevance (BR) learning; it constructsL binary classifiers,
which are trained on the L labels independently. Thus, the prediction of the label set is
composed of independent predictions for individual labels. However, labels often occur
together, that is, the presence of a specific label may suppress or exhibit the likelihood
of other labels.

To address this limitation of BR, pairwise decomposition (PW) and label powerset
(LP) approaches consider label dependencies during the transformation by either gen-
erating pairwise subproblems [9, 20] or the powerset of possible label combinations
[29]. Classifier chains [23, 3] are another popular approach that extend BR by includ-
ing previous predictions into the predictions of subsequent labels. [7] present a large-
margin classifier, RankSVM, that minimizes a ranking loss by penalizing incorrectly
ordered pairs of labels. This setting can be used for multi-label classification by assum-
ing that the ranking algorithm has to rank each relevant label before each irrelevant label.

1 Deep NNs, in fact, scale well and work effectively by learning features from raw inputs which
are usually smaller than hand-crafted features extracted from the raw inputs. However, in our
case, the dimensions of raw inputs are relatively large where training deep NNs is costly.
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Fig. 1. (a) a neural network with a single hidden layer of two units and multiple output units,
one for each possible label. (b) shows how threshold for a training example is estimated based
on prediction output o of the network. Consider nine possible labels, of which o1, o4 and o6 are
relevant labels (blue) and the rest are irrelevant (red). The figure shows three exemplary threshold
candidates (dashed lines), of which the middle one is the best choice because it gives the highest
F1 score. See Section 3.3 for more details.

In order to make a prediction, the ranking has to be calibrated [9], i.e., a threshold has
to be found that splits the ranking into relevant and irrelevant labels.

2.1 State-of-the-art Multi-label Classifiers and Limitations

The most prominent learning method for multi-label text classification is to use a BR
approach with strong binary classifiers such as SVMs [24, 30] despite its simplicity. It is
known that characteristics of high-dimensional and sparse data, such as text data, make
decision problems linearly separable [15], and this characteristic suits the strengths of
SVM classifiers well. Unlike benchmark datasets, real-world text collections consist of
a large number of training examples represented in a high-dimensional space with a
large amount of labels. To handle such datasets, researchers have derived efficient lin-
ear SVMs [16, 8] that can handle large-scale problems. However, their performance
decreases as the number of labels grows and the label frequency distribution becomes
skewed [19, 24]. In such cases, it is intractable to employ methods that minimize rank-
ing errors among labels [7, 32] or that learn probability distributions of labels [11, 3].

3 Neural Networks for Multi-label Classification

In this section, we propose a neural network-based multi-label classification framework
that is composed of a single hidden layer and operates with recent developments in neu-
ral network and optimization techniques, which allow the model to converge into good
regions of the error surface in a few steps of parameter updates. Our approach consists
of two modules (Fig. 1): a neural network that produces label scores (Sections 3.2–3.5),
and a label predictor that converts label scores into binary (Section 3.3).

3.1 Rank Loss

The most intuitive objective for multi-label learning is to minimize the number of mis-
ordering between a pair of relevant label and irrelevant label, which is called rank loss:
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L(y, f(x)) = w(y)
∑

yi<yj

I (fi(x) > fj(x)) +
1

2
I (fi = fj) (1)

where w(y) is a normalization factor, I (·) is the indicator function, and fi (·) is a pre-
diction score for a label i. Unfortunately, it is hard to minimize due to non-convex
property of the loss function. Therefore, convex surrogate losses have been proposed as
alternatives to rank loss [26, 7, 32].

3.2 Pairwise Ranking Loss Minimization in Neural Networks

Let us assume that we would like to make a prediction on L labels from D dimensional
input features. Consider the neural network model with a single hidden layer in which
F hidden units are defined and input units x ∈ RD×1 are connected to hidden units
h ∈ RF×1 with weights W(1) ∈ RF×D and biases b(1) ∈ RF×1. The hidden units
are connected to output units o ∈ RL×1 through weights W(2) ∈ RL×F and biases
b(2) ∈ RL×1. The network, then, can be written in a matrix-vector form, and we can
construct a feed-forward network fΘ : x→ o as a composite of non-linear functions in
the range [0, 1]:

fΘ(x) = fo
(
W(2)fh

(
W(1)x+ b(1)

)
+ b(2)

)
(2)

where Θ = {W(1),b(1),W(2),b(2)}, and fo and fh are element-wise activation func-
tions in the output layer and the hidden layer, respectively. Specifically, the function
fΘ (x) can be re-written as follows:

z(1) = W(1)x+ b(1), h = fh
(
z(1)

)
z(2) = W(2)h+ b(2), o = fo

(
z(2)

)
where z(1) and z(2) denote the weighted sum of inputs and hidden activations, respec-
tively. Our aim is to find a parameter vectorΘ that minimizes a cost function J(Θ;x,y).
The cost function measures discrepancy between predictions of the network and given
targets y.

BP-MLL [32] minimizes errors induced by incorrectly ordered pairs of labels, in
order to exploit dependencies among labels. To this end, it introduces a pairwise error
function (PWE), which is defined as follows:

JPWE(Θ;x,y) =
1

|y||ȳ|
∑

(p,n)∈y×ȳ

exp(−(op − on)) (3)

where p and n are positive and negative label index associated with training example
x. ȳ represents a set of negative labels and | · | stands for the cardinality. The PWE is
the relaxation of the loss function in Equation 1 that we want to minimize.

As no closed-form solution exists to minimize the cost function, we use a gradient-
based optimization method.

Θ(τ+1) = Θ(τ) − η∇Θ(τ)J(Θ
(τ);x,y) (4)
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The parameter Θ is updated by adding a small step of negative gradients of the cost
function J(Θ(τ);x,y) with respect to the parameter Θ at step τ . The parameter η, called
the learning rate, determines the step size of updates.

3.3 Thresholding

Once training of the neural network is finished, its output can be used to rank labels, but
additional measures are needed in order to split the ranking into relevant and irrelevant
labels. For transforming the ranked list of labels into a set of binary predictions, we train
a multi-label threshold predictor from training data. This sort of thresholding methods
are also used in [7, 32]

For each document xm, labels are sorted by the probabilities in decreasing order.
Ideally, if NNs successfully learn a mapping function fΘ , all correct (positive) labels
will be placed on top of the sorted list and there should be a large margin between the set
of positive labels and the set of negative labels. Using F1 score as a reference measure,
we calculate classification performances at every pair of successive positive labels and
choose a threshold value tm that produces the best performance (Figure 1 (b)).

Afterwards, we can train a multi-label thresholding predictor t̂ = T (x; θ) to learn t
as target values from input pattern x. We use linear regression with �2-regularization to
learn θ

J (θ) =
1

2M

M∑
m=1

(T (xm; θ)− ti)
2 +

λ

2
‖θ‖22 (5)

where xm is m-th document in the train data, T (xm; θ) = θTxm , and λ is a parameter
which controls the magnitude of the �2 penalty.

At test time, these learned thresholds are used to predict a binary output ŷkl for label l
of a test document xk given label probabilities okl; ŷkl = 1 if okl > T (xk; θ), otherwise
0. Due to the fact that the resulting parameter θ might get biased to the training data,
the control parameter λ needs to be tuned via cross-validation.

3.4 Ranking Loss vs. Cross Entropy

BP-MLL is supposed to perform better in multi-label problems since it takes label cor-
relations into consideration than the standard form of NN that does not. However, we
have found that BP-MLL does not perform as expected in our preliminary experiments,
particularly, on datasets in textual domain.

Consistency w.r.t Rank Loss. Recently, it has been claimed that none of convex loss
functions including BP-MLL’s loss function (Equation 3) is consistent with respect to
rank loss which is non-convex and has discontinuity [2, 10]. Furthermore, univariate
surrogate loss functions such as log loss are rather consistent with rank loss [4].

Jlog(Θ;x,y) = w (y)
∑
l

log
(
1 + e−ẏlzl

)
where w (y) is a weighting function that normalizes loss in terms of y and zl indi-
cates prediction for label l. Please note that the log loss is often used for logistic re-
gression in which ẏ ∈ {−1, 1} is the target and zl is the output of a linear function
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zl =
∑

k Wlkxk + bl where Wlk is a weight from input xk to output zl and bl is bias for
label l. A typical choice is, for instance,w(y) = (|y||ȳ|)−1 as in BP-MLL. In this work,
we set w(y) = 1, then the log loss above is equivalent to cross entropy (CE), which is
commonly used to train neural networks for classification tasks if we use sigmoid trans-
fer function in the output layer, i.e. fo(z) = 1/ (1 + exp(−z)), or simply fo(z) = σ (z):

JCE(Θ;x,y) = −
∑
l

(yl log ol) + (1− yl) log(1− ol)) (6)

where ol and yl are the prediction and the target for label l, respectively. Let us verify
the equivalence between the log loss and the CE. Consider the log loss function for only
label l.

Jlog(Θ;x, yl) = log(1 + e−ẏlzl) = − log

(
1

1 + e−ẏlzl

)
(7)

As noted, ẏ in the log loss takes either −1 or 1, which allows us to split the above
equation as follows:

− log

(
1

1 + e−ẏlzl

)
=

{
− log (σ (zl)) if ẏ = 1
− log (σ (−zl)) if ẏ = −1

(8)

Then, we have the corresponding CE by using a property of the sigmoid function
σ (−z) = 1− σ (z)

JCE (Θ;x, yl) = − (yl log ol + (1− yl) log (1− ol)) (9)

where y ∈ {0, 1} and ol = σ (zl).

Computational Expenses. In addition to consistency with rank loss, CE has an advan-
tage in terms of computational efficiency; computational cost for computing gradients
of parameters with respect to PWE is getting more expensive as the number of la-
bels grows. The error term δ

(2)
l for label l which is propagated to the hidden layer is

defined as

δ
(2)
l =

⎧⎪⎪⎨⎪⎪⎩
− 1

|y||ȳ|
∑
n∈ȳ

exp(−(ol − on))f
′
o(z

(2)
l ), if l ∈ y

1
|y||ȳ|

∑
p∈y

exp(−(op − ol))f
′
o(z

(2)
l ), if l ∈ ȳ

(10)

Whereas the computation of δ(2)l = −yl/ol + (1− yl)/(1− ol)f
′
o(z

(2)
l ) for the CE can be

performed efficiently, obtaining error terms δ(2)l for the PWE is L times more expensive
than one in ordinary NN utilizing the cross entropy error function. This also shows that
BP-MLL scales poorly w.r.t. the number of unique labels.

Plateaus. To get an idea of how differently both objective functions behave as a func-
tion of parameters to be optimized, let us draw graphs containing cost function values.
Note that it has been pointed out that the slope of the cost function as a function of the
parameters plays an important role in learning parameters of neural networks [27, 12].

Consider two-layer neural networks consisting of W (1) ∈ R for the first layer,
W(2) ∈ R4×1 for the second, that is, the output layer. Since we are interested in func-
tion values with respect to two parameters W (1) and W

(2)
1 out of 5 parameters, W(2)

{2,3,4}
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Fig. 2. Landscape of cost functions and a type of hidden units.W (1) represents a weight connecting
an input unit to a hidden unit. Likewise,W (2)

1 denotes a weight from the hidden unit to output unit 1.
The z-axis stands for a value for the cost function J(W (1),W

(2)
1 ;x,y,W

(2)
2 ,W

(2)
3 ,W

(2)
4 ) where

instances x, targets y and weights W (2)
2 ,W

(2)
3 ,W

(2)
4 are fixed.

is set to a fixed value c. In this paper we use c = 0.2 Figure 2 (a) shows different shapes
of the functions and slope steepness. In figure 2 (a) both curves have similar shapes, but
the curve for PWE has plateaus in which gradient descent can be very slow in compar-
ison with the CE. Figure 2 (b) shows that CE with ReLUs, which is explained the next
Section, has a very steep slope compared to CE with tanh. Such a slope can accelerate
convergence speed in learning parameters using gradient descent. We conjecture that
these properties might explain why our set-up converges faster than the other configu-
rations, and BP-MLL performs poorly in most cases in our experiments.

3.5 Recent Advances in Deep Learning

In recent neural network and deep learning literature, a number of techniques were
proposed to overcome the difficulty of learning neural networks efficiently. In particular,
we make use of ReLUs, AdaGrad, and Dropout training, which are briefly discussed in
the following.

Rectified Linear Units. Rectified linear units (ReLUs) have been proposed as acti-
vation units on the hidden layer and shown to yield better generalization performance
[22, 13, 31]. A ReLU disables negative activation (ReLU(x) = max(0, x)) so that the
number of parameters to be learned decreases during the training. This sparsity charac-
teristic makes ReLUs advantageous over the traditional activation units such as sigmoid
and tanh in terms of the generalization performance.

2 The shape of the functions is not changed even if we set c to arbitrary value since it is drawn
by function values in z-axis with respect to only W (1) and W

(2)
1 .
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Learning Rate Adaptation with AdaGrad. Stochastic gradient descent (SGD) is a
simple but effective technique for minimizing the objective functions of NNs (Equation
4). When SGD is considered as an optimization tool, one of the problems is the choice of
the learning rate. A common approach is to estimate the learning rate which gives lower
training errors on subsamples of training examples [17] and then decrease it over time.
Furthermore, to accelerate learning speed of SGD, one can utilize momentum [25].

Instead of a fixed or scheduled learning rate, an adaptive learning rate method,
namely AdaGrad, was proposed [6]. The method determines the learning rate at it-
eration τ by keeping previous gradients Δ1:τ to compute the learning rate for each
dimension of parameters ηi,τ = η0/

√∑τ
t=1 Δ

2
i,t where i stands for an index of each di-

mension of parameters and η0 is the initial learning rate and shared by all parameters.
For multi-label learning, it is often the case that a few labels occur frequently, whereas
the majority only occurs rarely, so that the rare ones need to be updated with larger
steps in the direction of the gradient. If we use AdaGrad, the learning rates for the fre-
quent labels decreases because the gradient of the parameter for the frequent labels will
get smaller as the updates proceed. On the other hand, the learning rates for rare labels
remain comparatively large.

Regularization using Dropout Training. In principle, as the number of hidden layers
and hidden units in a network increases, its expressive power also increases. If one is
given a large number of training examples, training a larger networks will result in better
performance than using a smaller one. The problem when training such a large network
is that the model is more prone to getting stuck in local minima due to the huge number
of parameters to learn. Dropout training [14] is a technique for preventing overfitting
in a huge parameter space. Its key idea is to decouple hidden units that activate the
same output together, by randomly dropping some hidden units’ activations. Essentially,
this corresponds to training an ensemble of networks with smaller hidden layers, and
combining their predictions. However, the individual predictions of all possible hidden
layers need not be computed and combined explicitly, but the output of the ensemble
can be approximately reconstructed from the full network. Thus, dropout training has a
similar regularization effect as ensemble techniques.

4 Experimental Setup

We have shown the reason why the structure of NNs needs to be reconsidered in the
previous Sections. In this Section, we describe evaluation measures to show how ef-
fectively NNs perform by combining recent development in learning neural networks
based on the fact that the univariate loss is consistent with respect to rank loss on large-
scale textual datasets.

Evaluation Measures. Multi-label classifiers can be evaluated in two groups of mea-
sures: bipartition and ranking. Bipartition measures operate on classification results,
i.e. a set of labels assigned by classifiers to each document, while ranking measures
operate on the ranked list of labels. In order to evaluate the quality of a ranked list,
we consider several ranking measures [26]. Given a document x and associated label
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information y, consider a multi-label learner fθ(x) that is able to produce scores for
each label. These scores, then, can be sorted in descending order. Let r(l) be the rank
of a label l in the sorted list of labels. We already introduced Rank loss, which is con-
cerned primarily in this work, in Section 3.1. One-Error evaluates whether the topmost
ranked label with the highest score is a positive label or not: I

(
r−1(1)(fθ(x)) /∈ y

)
where r−1(1) indicates the index of a label positioning on the first place in the sorted
list. Coverage measures on average how far one needs to go down the ranked list of
labels to achieve recall of 100%: maxli∈y r(li) − 1. Average Precision or AP mea-
sures the average fraction of labels preceding relevant labels in the ranked list of labels:
1
|y|

∑
li∈y

|{lj∈y|r(lj)≤r(li)}|
r(li)

.
For bipartition measures, Precision, Recall, and F1 score are conventional methods to

evaluate effectiveness of information retrieval systems. There are two ways of comput-
ing such performance measures: Micro-averaged measures and Macro-averaged mea-
sures3[21].

Pmicro =

∑L
l=1 tpl∑L

l=1 tpl + fpl

, Rmicro =

∑L
l=1 tpl∑L

l=1 tpl + fnl

, F1−micro =

∑L
l=1 2tpl∑L

l=1 2tpl + fpl + fnl

Pmacro =
1

L

L∑

l=1

tpl

tpl + fpl

, Rmacro =
1

L

L∑

l=1

tpl

tpl + fnl

, F1−macro =
1

L

L∑

l=1

2tpl

2tpl + fpl + fnl

Datasets. Our main interest is in large-scale text classification, for which we se-
lected six representative domains, whose characteristics are summarized in Table 1.
For Reuters21578, we used the same training/test split as previous works [30]. Training
and test data were switched for RCV1-v2 [18] which originally consists of 23,149 train
and 781,265 test documents. The EUR-Lex, Delicious and Bookmarks datasets were
taken from the MULAN repository.4 Except for Delicious and Bookmarks, all docu-
ments are represented with tf-idf features with cosine normalization such that length of
the document vector is 1 in order to account for the different document lengths.

In addition to these standard benchmark datasets, we prepared a large-scale dataset
from documents of the German Education Index (GEI).5 The GEI is a database of links
to more than 800,000 scientific articles with metadata, e.g. title, authorship, language
of an article and index terms. We consider a subset of the dataset consisting of ap-
proximately 300,000 documents which have an abstract as well as the metadata. Each
document has multiple index terms which are carefully hand-labeled by human experts
with respect to the content of the articles. We processed plain text by removing stop-
words and stemming each token. To avoid the computational bottleneck from a large
number of labels, we chose the 1,000 most common labels out of about 50,000. We
then randomly split the dataset into 90% for training and 10% for test.

3 Note that scores computed by micro-averaged measures might be much higher than that by
macro-averaged measures if there are many rarely-occurring labels for which the classification
system does not perform well. This is because macro-averaging weighs each label equally,
whereas micro-averaged measures are dominated by the results of frequent labels.

4 http://mulan.sourceforge.net/datasets.html
5 http://www.dipf.de/en/portals/portals-educational-information/
german-education-index

http://www.dipf.de/en/portals/portals-educational-information/german-education-index
http://www.dipf.de/en/portals/portals-educational-information/german-education-index
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Table 1. Number of documents (D), size of vocabulary (D), total number of labels (L) and
average number of labels per instance (C) for the six datasets used in our study

Dataset M D L C

Reuters-21578 10789 18637 90 1.13
RCV1-v2 804414 47236 103 3.24
EUR-Lex 19348 5000 3993 5.31
Delicious 16105 500 983 19.02

Bookmarks 87856 2150 208 2.03
German Education Index 316061 20000 1000 7.16

Algorithms. Our main goal is to compare our NN-based approach to BP-MLL. NNA

stands for the single hidden layer neural networks which have ReLUs for its hidden layer
and which are trained with SGD where each parameter of the neural networks has their
own learning rate using AdaGrad. NNAD additionally employs Dropout based on the
same settings as NNA. T and R following BP-MLL indicate tanh and ReLU as a transfer
function in the hidden layer. For both NN and BP-MLL, we used 1000 units in the
hidden layer over all datasets. 6 As Dropout works well as a regularizer, no additional
regularization to prevent overfitting was incorporated. The base learning rate η0 was
also determined among [0.001, 0.01, 0.1] using validation data.

We also compared the NN-based algorithms to binary relevance (BR) using SVMs
(Liblinear) as a base learner, as a representative of the state-of-the-art. The penalty
parameter C was optimized in the range of [10−3, 10−2, . . . , 102, 103] based on either
average of micro- and macro-average F1 or rankloss on validation set. BRB refers to
linear SVMs where C is optimized with bipartition measures on the validation dataset.
BR models whose penalty parameter is optimized on ranking measures are indicated as
BRR. In addition, we apply the same thresholding technique which we utilize in our
NN approach (Section 3.3) on a ranked list produced by BR models (BRR). Given a
document, the distance of each predicted label to the hyperplane is used to determine
the position of the label in the ranked list.

5 Results

We evaluate our proposed models and other baseline systems on datasets with varying
statistics and characteristics. We first show experimental results that confirm that the
techniques discussed in Section 3.5 actually contribute to an increased performance of
NN-based multi-label classification, and then compare all algorithms on the six above-
mentioned datasets in order to get an overall impression of their performance.

Better Local Minima and Acceleration of Convergence Speed. First we intend to
show the effect of ReLUs and AdaGrad in terms of convergence speed and rank loss.
The left part of Figure 3 shows that all three results of AdaGrad (red lines) show a lower

6 The optimal number of hidden units of BP-MLL and NN was tested among 20, 50, 100, 500,
1000 and 4000 on validation datasets. Usually, the more units are in the hidden layer, the better
performance of networks is. We chose it in terms of computational efficiency.
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ReLU w/ AdaGrad
tanh w/ AdaGrad
sigm w/ AdaGrad
ReLU w/ momentum
tanh w/ momentum
sigm w/ momentum

w/  Dropout (1000)
w/  Dropout (4000)
w/o Dropout (1000)
w/o Dropout (4000)

Fig. 3. (left) effects of AdaGrad and momentum on three types of transfer functions in the hid-
den layers in terms of rank loss on Reuters-21578. The number of parameter updates in x-axis
corresponds to the number of evaluations of Eq. (4). (right) effects of dropout with two different
numbers of hidden units in terms of rank loss on EUR-Lex.

rank loss than all three versions of momentum. Moreover, within each group, ReLUs
outperform the versions using tanh or sigmoid activation functions. That NNs with
ReLUs at the hidden layer converge faster into a better weight space has been previously
observed for the speech domain [31].7 This faster convergence is a major advantage of
combining recently proposed learning components such as ReLUs and AdaGrad, which
facilitates a quicker learning of the parameters of NNs. This is particularly important
for the large-scale text classification problems that are the main focus of this work.

Decorrelating Hidden Units While Output Units Remain Correlated. One major
goal of multi-label learners is to minimize rank loss by leveraging inherent correlations
in a label space. However, we conjecture that these correlations also may cause overfit-
ting because if groups of hidden units specialize in predicting particular label subsets
that occur frequently in the training data, it will become harder to predict novel label
combinations that only occur in the test set. Dropout effectively fights this by randomly
dropping individual hidden units, so that it becomes harder for groups of hidden units to
specialize in the prediction of particular output combinations, i.e., they decorrelate the
hidden units, whereas the correlation of output units still remains. Particularly, a subset
of output activations o and hidden activations h would be correlated through W(2).

We observed overfitting across all datasets except for Reuters-21578 and RCV1-v2
under our experimental settings. The right part of Figure 3 shows how well Dropout pre-
vents NNs from overfitting on the test data of EUR-Lex. In particular, we can see that
with increasing numbers of parameter updates, the performance of regular NNs even-
tually got worse in terms of rank loss. On the other hand, when dropout is employed,
convergence is initially slower, but eventually effectively prevents overfitting.

7 However, unlike the results of [31], in our preliminary experiments adding more hidden layers
did not further improve generalization performance.
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PWE =0.01

PWE =0.01 D

PWE =0.1

PWE =0.1  D

CE  =0.01

CE  =0.01 D

CE  =0.1

CE  =0.1  D

Fig. 4. Rankloss (left) and mean average precision (right) on the German Education Index test
data for the different cost functions. η denotes the base learning rate and D indicates that Dropout
is applied. Note that x-axis is in log scale.

Limiting Small Learning Rates in BP-MLL. The learning rate strongly influences
convergence and learning speed [17]. As we have already seen in the Figure 2, the
slope of PWE is less steep than CE, which implies that smaller learning rates should
be used. Specifically, we observed PWE allows only smaller learning rate 0.01 (blue
markers) in contrast with CE that works well a relatively larger learning rate 0.1 (red
markers) in Figure 4. In the case of PWE with the larger learning rate (green markers),
interestingly, dropout (rectangle markers in green) makes it converge towards much
better local minima, yet it is still worse than the other configurations. It seems that the
weights of BP-MLL oscillates in the vicinity of local minima and, indeed, converges
worse local minima. However, it makes learning procedure of BP-MLL slow compared
to NNs with CE making bigger steps for parameter updates.

With respect to Dropout, Figure 4 also shows that for the same learning rates, net-
works without Dropout converge much faster than ones working with Dropout in terms
of both rank loss and MAP. Regardless of the cost functions, overfitting arises over
the networks without Dropout and it is likely that overfitting is avoided effectively as
discussed earlier.8

Comparison of Algorithms. Table 3 shows detailed results of all experiments with
all algorithms on all six datasets, except that we could not obtain results of BP-MLL
on EUR-Lex within a reasonable time frame. In an attempt to summarize the results,
Table 2 shows the average rank of each algorithm in these six datasets according to all
ranking an bipartition measures discussed in Section 4 9.

We can see that although BP-MLL focuses on minimizing pairwise ranking errors,
thereby capturing label dependencies, the single hidden layer NNs with cross-entropy

8 A trajectory for PWE η = 0.1 is missing in the figure because it got 0.2 on the rankloss
measure which is much worse than the other configurations.

9 The Friedman test is passed for α = 1% except for micro and macro recall (α = 10%) [5].
Nemenyi’s critical distance between the average ranks, for which a statistical difference can
be detected, is 4.7 for α = 5% (4.3 for α = 10%).
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Table 2. Average ranks of the algorithms on ranking and bipartition measures

Eval. measures
Ranking Bipartition

rankloss oneError Coverage MAP miP miR miF maP maR maF

Average Ranks
NNA 2.2 2.4 2.6 2.2 2.0 6.0 2.4 1.8 5.6 2.0
NNAD 1.2 1.4 1.2 1.6 2.0 5.8 1.8 2.0 5.6 2.2
BP-MLLTA 5.2 7.2 6.0 6.4 7.0 3.2 7.0 6.2 2.0 5.6
BP-MLLTAD 4.1 6.0 4.4 5.9 7.4 2.8 7.4 7.2 3.2 7.0
BP-MLLRA 5.9 6.7 5.6 6.4 5.2 3.2 4.6 5.6 3.8 4.8
BP-MLLRAD 4.0 6.0 3.6 5.6 5.6 3.6 5.4 5.4 4.4 5.8
BRB 7.4 3.3 6.9 4.3 3.2 6.8 4.6 4.4 6.8 5.6
BRR 6.0 3.0 5.7 3.6 3.6 4.6 2.8 3.4 4.6 3.0

minimization (i.e., NNA and NNAD) work much better not only on rank loss but also
on other ranking measures. The binary relevance (BR) approaches show acceptable
performance on ranking measures even though label dependency was ignored during
the training phase. In addition, NNA and NNAD perform as good as or better than other
methods on bipartition measures as well as on ranking measures.

We did not observe significant improvements by replacing hidden units of BP-MLL
from tanh to ReLU. However, if we change the cost function in the previous setup from
PWE to CE, significant improvements were obtained. Because BP-MLLRAD is the
same architecture asNNAD except for its cost function,10 we can say that the differences
in the effectiveness of NNs and BP-MLL are due to the use of different cost functions.
This also implies that the main source of improvements for NNs against BP-MLL is
replacement of the cost function. Again, Figure 4 shows the difference between two
cost functions more explicitly.

6 Conclusion

This paper presents a multi-label classification framework based on a neural network and
a simple threshold label predictor. We found that our approach outperforms BP-MLL,
both in predictive performance as well as in computational complexity and convergence
speed. We have explored why BP-MLL as a multi-label text classifier does not perform
well, and provided an empirical confirmation of a recent theoretical result that univari-
ate losses might be more useful than bivariate losses for optimizing rank performance.
Our experimental results showed the proposed framework is an effective method for the
multi-label text classification task. Also, we have conducted extensive analysis to char-
acterize the effectiveness of combining ReLUs with AdaGrad for fast convergence rate,
and utilizing Dropout to prevent overfitting which results in better generalization.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments. This work has been supported by the German Institute for
Educational Research (DIPF) under the Knowledge Discovery in Scientific Literature

10 For PWE we use tanh in the output layer, but sigmoid is used for CE because predictions o for
computing CE with targets y needs to be between 0 and 1.
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Table 3. Results on ranking and bipartition measures. Results for BP-MLL on EUR-Lex are
missing because the runs could not be completed in a reasonably short time.

Eval. measures
Ranking Bipartition

rankloss oneError Coverage MAP miP miR miF maP maR maF

Reuters-21578
NNA 0.0037 0.0706 0.7473 0.9484 0.8986 0.8357 0.8660 0.6439 0.4424 0.4996
NNAD 0.0031 0.0689 0.6611 0.9499 0.9042 0.8344 0.8679 0.6150 0.4420 0.4956
BP-MLLTA 0.0039 0.0868 0.8238 0.9400 0.7876 0.8616 0.8230 0.5609 0.4761 0.4939
BP-MLLTAD 0.0039 0.0808 0.8119 0.9434 0.7945 0.8654 0.8284 0.5459 0.4685 0.4831
BP-MLLRA 0.0054 0.0808 1.0987 0.9431 0.8205 0.8582 0.8389 0.5303 0.4364 0.4624
BP-MLLRAD 0.0063 0.0719 1.2037 0.9476 0.8421 0.8416 0.8418 0.5510 0.4292 0.4629
BRB 0.0040 0.0613 0.8092 0.9550 0.9300 0.8096 0.8656 0.6050 0.3806 0.4455
BRR 0.0040 0.0613 0.8092 0.9550 0.8982 0.8603 0.8789 0.6396 0.4744 0.5213

RCV1-v2
NNA 0.0040 0.0218 3.1564 0.9491 0.9017 0.7836 0.8385 0.7671 0.5760 0.6457
NNAD 0.0038 0.0212 3.1108 0.9500 0.9075 0.7813 0.8397 0.7842 0.5626 0.6404
BP-MLLTA 0.0058 0.0349 3.7570 0.9373 0.6685 0.7695 0.7154 0.4385 0.5803 0.4855
BP-MLLTAD 0.0057 0.0332 3.6917 0.9375 0.6347 0.7497 0.6874 0.3961 0.5676 0.4483
BP-MLLRA 0.0058 0.0393 3.6730 0.9330 0.7712 0.8074 0.7889 0.5741 0.6007 0.5823
BP-MLLRAD 0.0056 0.0378 3.6032 0.9345 0.7612 0.8016 0.7809 0.5755 0.5748 0.5694
BRB 0.0061 0.0301 3.8073 0.9375 0.8857 0.8232 0.8533 0.7654 0.6342 0.6842
BRR 0.0051 0.0287 3.4998 0.9420 0.8156 0.8822 0.8476 0.6961 0.7112 0.6923

EUR-Lex
NNA 0.0195 0.2016 310.6202 0.5975 0.6346 0.4722 0.5415 0.3847 0.3115 0.3256
NNAD 0.0164 0.1681 269.4534 0.6433 0.7124 0.4823 0.5752 0.4470 0.3427 0.3687
BRB 0.0642 0.1918 976.2550 0.6114 0.6124 0.4945 0.5471 0.4260 0.3643 0.3752
BRR 0.0204 0.2088 334.6172 0.5922 0.0329 0.5134 0.0619 0.2323 0.3063 0.2331

German Education Index
NNA 0.0350 0.2968 138.5423 0.4828 0.4499 0.4200 0.4345 0.4110 0.3132 0.3427
NNAD 0.0352 0.2963 138.3590 0.4797 0.4155 0.4472 0.4308 0.3822 0.3216 0.3305
BP-MLLTA 0.0386 0.8309 150.8065 0.3432 0.1502 0.6758 0.2458 0.1507 0.5562 0.2229
BP-MLLTAD 0.0371 0.7591 139.1062 0.3281 0.1192 0.5056 0.1930 0.1079 0.4276 0.1632
BP-MLLRA 0.0369 0.4221 143.4541 0.4133 0.2618 0.4909 0.3415 0.3032 0.3425 0.2878
BP-MLLRAD 0.0353 0.4522 135.1398 0.3953 0.2400 0.5026 0.3248 0.2793 0.3520 0.2767
BRB 0.0572 0.3052 221.0968 0.4533 0.5141 0.2318 0.3195 0.3913 0.1716 0.2319
BRR 0.0434 0.3021 176.6349 0.4755 0.4421 0.3997 0.4199 0.4361 0.2706 0.3097

Delicious
NNA 0.0860 0.3149 396.4659 0.4015 0.3637 0.4099 0.3854 0.2488 0.1721 0.1772
NNAD 0.0836 0.3127 389.9422 0.4075 0.3617 0.4399 0.3970 0.2821 0.1777 0.1824
BP-MLLTA 0.0953 0.4967 434.8601 0.3288 0.1829 0.5857 0.2787 0.1220 0.2728 0.1572
BP-MLLTAD 0.0898 0.4358 418.3618 0.3359 0.1874 0.5884 0.2806 0.1315 0.2427 0.1518
BP-MLLRA 0.0964 0.6157 427.0468 0.2793 0.2070 0.5894 0.3064 0.1479 0.2609 0.1699
BP-MLLRAD 0.0894 0.6060 411.5633 0.2854 0.2113 0.5495 0.3052 0.1650 0.2245 0.1567
BRB 0.1184 0.4355 496.7444 0.3371 0.1752 0.2692 0.2123 0.0749 0.1336 0.0901
BRR 0.1184 0.4358 496.8180 0.3371 0.2559 0.3561 0.2978 0.1000 0.1485 0.1152

Bookmarks
NNA 0.0663 0.4924 22.1183 0.5323 0.3919 0.3907 0.3913 0.3564 0.3069 0.3149
NNAD 0.0629 0.4828 20.9938 0.5423 0.3929 0.3996 0.3962 0.3664 0.3149 0.3222
BP-MLLTA 0.0684 0.5598 23.0362 0.4922 0.0943 0.5682 0.1617 0.1115 0.4743 0.1677
BP-MLLTAD 0.0647 0.5574 21.7949 0.4911 0.0775 0.6096 0.1375 0.0874 0.5144 0.1414
BP-MLLRA 0.0707 0.5428 23.6088 0.5049 0.1153 0.5389 0.1899 0.1235 0.4373 0.1808
BP-MLLRAD 0.0638 0.5322 21.5108 0.5131 0.0938 0.5779 0.1615 0.1061 0.4785 0.1631
BRB 0.0913 0.5318 29.6537 0.4868 0.2821 0.2546 0.2676 0.1950 0.1880 0.1877
BRR 0.0895 0.5305 28.7233 0.4889 0.2525 0.4049 0.3110 0.2259 0.3126 0.2569
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Abstract. Multi-label classification (MLC) is a predictive problem in
which an object may be associated with multiple labels. One of the most
prominent MLC methods is the classifier chains (CC). This method in-
duces q binary classifiers, where q represents the number of labels. Each
one is responsible for predicting a specific label. These q classifiers are
linked in a chain, such that at classification time each classifier considers
the labels predicted by the previous ones as additional information. Al-
though the performance of CC is largely influenced by the chain ordering,
the original method uses a random ordering. To cope with this problem,
in this paper we propose a novel method which is capable of finding a
specific and more effective chain for each new instance to be classified.
Experiments have shown that the proposed method obtained, overall,
higher predictive accuracies than the well-established binary relevance,
CC and CC ensemble methods.

Keywords: Multi-Label Classification, Classifier Chains, Classification.

1 Introduction

Multi-label classification (MLC) is the supervised learning problem of automat-
ically assigning multiple labels to objects based on the features of these objects.
An example of practical application is semantic scene classification [1], where
the goal is to assign concepts to images. For instance, a photograph of the sun
rising taken from a beach can be classified as belonging to the concepts “sky”,
“sunrise”, and “ocean” at the same time. Other examples of important applica-
tions of MLC include text classification [16] (associating documents to various
subjects), music categorization [17] (labeling songs with music genres or con-
cepts) and functional genomics [3] (predicting the multiple biological functions
of genes and proteins), just to name a few.

The multi-label classification problem can be formally defined as follows. Let
L = {l1, ..., lq} be a set of q class labels, where q ≥ 2. Given a training set
D = {(x1, Y1), (x2, Y2), ..., (xN , YN )} where each instance i is associated with a
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feature vector xi = {(x1, ..., xd)} and a subset of labels Yi ⊆ L, the goal in the
multi-label classification task is to learn a classifier h(X) → Y from D that,
given an unlabeled instance E = (x, ?), is capable of predicting its labelset Y .

MLC problems tend to be more challenging than traditional single-label clas-
sification problems (SLC), where objects can be associated with only a single
target class label. This mainly occurs due to the existence of label correlations
in most MLC problems. For instance, in scene classification, an image labeled as
“ocean” is more likely to also be associated to labels such as “ship” or “beach”,
since these concepts are positively correlated. Similarly, an image associated to
the label “desert” is less likely to also be associated to the label “snow”, as these
concepts are negatively correlated. Therefore, intuitively, it is expected that
MLC methods which are able to identify and model label correlations should be
more accurate. A large body of recent work [2,9,14,15,20,24,26,27] has primarily
concentrated efforts to tackle this problem by using a wide range of different
heuristics and statistical techniques.

Proposed in [14,15], the classifier chains method (CC) is one of the simplest
and most prominent of such methods. The CC method involves the training of
q single-label binary classifiers y1, y2, ..., yq where each one will be responsible
for predicting a specific label in {l1, l2, ..., lq}. These q classifiers are linked in
a randomly-ordered chain {y1 → y2 → ... → yq}, such that, at classification
time, each binary classifier yj incorporates the labels predicted by the previous
y1, ..., yj−1 classifiers as additional information. This is accomplished using a
simple trick: in the training phase, the feature vector associated to each classifier
yj is extended with the binary values of the labels l1, ..., lj−1. Although it employs
a simple approach to deal with label dependencies, CC has proved to be one of the
best methods for multi-label learning in terms of both efficiency and predictive
performance, having become a recommended benchmark algorithm [12,28].

However, there is a drawback in the CC approach even noted by its authors
in [14,15]: the fact that the label ordering is decided at random. It is intuitive
that an inadequate label ordering can potentially decrease accuracy, as the first
binary classifiers could frequently output wrong predictions at classification time,
thus resulting in significant error propagation along the chain. However, finding
an optimized label sequence is a difficult problem because of the enormous search
space of q! different existing label permutations. In order to cope with this issue,
the authors of CC suggest combining random orders via an ensemble of classifier
chains (ECC) with the expectation that the effect of poorly ordered chains in pre-
dictive accuracy could be mitigated. Recently, other variations of the CC basic
approach have been proposed in the literature [6,10,13,25], which are not based
on ensembles. These novel techniques rely on the use of either statistical tests of
correlation or heuristic search techniques (such as genetic algorithms and beam
search) with the goal of finding a single sequence that leads to an improvement on
the predictive accuracy of the CC model (i.e., an optimized label sequence). After
being determined, this unique optimized chain should be used in the training and
classification steps of the multi-label classifier chain model.
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Nevertheless, none of the proposed CC variations have yet explored the idea
of using a distinct label sequence for each new instance to be classified. In this
concept, the aim is to construct a model which uses a specific label sequence
tailored to each new instance at classification time. The main contribution of this
paper is to demonstrate that this approach leads to a significant improvement
in the predictive accuracy of the CC model. We propose a novel method called
OOCC (One-to-One Classifier Chains) that addresses this problem by assigning
a label sequence to a new instance in the test set based on the label sequences
that perform well in training instances similar to the new instance, where such
similar training instances are found using a conventional nearest neighbor (lazy
learning) method. As a secondary contribution, this paper also aims at improving
the fundamental understanding of the CC model. In this regard, we report the
results of an experiment that, for the first time, investigated in depth the effect
of different label sequences on the effectiveness of the CC method.

The remainder of this paper is organized as follows. Section 2 presents a brief
overview on multi-label classification and discusses the original CC conceptual
model, highlighting its main advantages and disadvantages. Section 3 presents an
experiment that investigated the influence of the label sequence in the predictive
accuracy of CC models. Section 4 is the main section of this work, where the
OOCC algorithm is formalized and explained. Section 5 revises the related work.
In Section 6, experimental results of OOCC and other MLC algorithms are
presented. Conclusions and research directions are given in Section 7.

2 Multi-label Classification

2.1 Evaluation Measures

Several evaluation metrics have been proposed to evaluate multi-label classifiers
[12,18,28]. This subsection presents the ones used in this paper. In the definitions
throughout the text we adopted the following notation: n is number of test
instances; q is the number of labels; Yi and Zi represents, respectively, the actual
and the predicted labelset of the ith test instance.

The Exact Match (EM) measure, defined in Equation 1, assesses the propor-
tion of instances that were fully correctly predicted in the test set. In Equation
1, I(true) = 1 and I(false) = 0.

EM =
1

n

n∑
i=1

I(Yi = Zi) (1)

The Accuracy (ACC) and F-Measure (FM) measures, respectively defined in
Equations 2 and 3, are less strict than EM, providing the user with information
about the proportion of correct predictions, meanwhile taking into consideration
results that are partially correct.

ACC =
1

n

n∑
i=1

|Zi ∩ Yi|
|Zi ∪ Yi|

(2)
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FM =
1

n

n∑
i=1

2× |Zi ∩ Yi|
|Zi|+ |Yi|

(3)

The Hamming Loss (HL) measure, defined in Equation 4, gives the average
percentage of wrong label predictions to the total number of labels. The expres-
sion Yi �Zi represents the symmetric difference between Yi and Zi. Since HL is
a loss function, its optimal value is zero.

HL =
1

n

n∑
i=1

|Zi � Yi|
q

(4)

2.2 Basic Approaches for Multi-label Learning

Existing methods for MLC can be divided into two main categories: algorithm de-
pendent or independent [18,28]. Algorithm dependent methods extend or adapt
an existing single-label algorithm for the task of MLC. E.g., in [22] the authors
developed a special topology and a new inference procedure for Bayesian net-
works so as to allow their use in multi-label problems.

By contrast, algorithm independent methods transform the multi-label prob-
lem into one or more single-label classification (SLC) problems. Then, any ex-
isting SLC algorithm can be directly applied by simply mapping its single label
predictions into multi-label predictions. This enables abstraction from the under-
lying base algorithm, which is an important advantage since different classifiers
achieve better performance in different application domains. There are a few dis-
tinct strategies to perform the transformation, being the binary relevance (BR)
[11,15] approach the most commonly adopted. This method works by decompos-
ing the multi-label problem into q independent single-label binary problems. In
the training phase, one binary classifier is independently learned for each label.
The labels of new instances are predicted by combining the outputs produced
by each classifier.

The BR strategy presents some advantages: (i) it is simple and algorithm inde-
pendent; (ii) it scales linearly with q; (iii) it can be easily parallelized. However, a
serious disadvantage lies in that it is based on the assumption that all labels are
independent. Each classifier works independently, disregarding the possible oc-
currence of relationships among labels. As a consequence, potentially important
predictive information may be ignored.

2.3 Classifier Chains

The classifier chains model [14,15], briefly introduced in Section 1, represents a
direct extension to the BR approach which is able to exploit label correlations.
As with BR, the CC method involves the training of q single-label binary clas-
sifiers y1, y2, ..., yq where each one will be solely and respectively responsible for
predicting a specific label in {l1, l2, ..., lq}. The difference is that, in CC, these q
classifiers are linked in a chain {y1 → y2 → ... → yq}. The first binary classifier
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in the chain, y1, is trained using solely the attributes that compose the feature
set X as its input attributes to predict the first label l1. The second binary clas-
sifier, y2, is trained using X augmented with l1, which corresponds to the label
associated to the classifier y1. Each subsequent classifier yj is trained using X
augmented with the information of j− 1 labels (the labels associated to the pre-
vious j − 1 classifiers in the chain). Once the model is trained, the classification
step should also be performed in a chained way. To predict the labelset of a new
object, q binary classifications are needed, with the process beginning at y1 and
going along the chain. In this procedure, the classifier yj predicts the relevance
of label lj, given the feature space augmented by the predictions carried out by
the previous j − 1 classifiers.

The CC conceptual model has many appealing properties. First, it is theo-
retically simple. While most MLC methods invest in complex probabilistic ap-
proaches to model label dependencies, CC adopts a quite straightforward strat-
egy: it just passes label information between classifiers. It is also relatively effi-
cient, since it scales linearly with q. Finally and more importantly, the method
has proved to be highly effective. A comprehensive recent empirical study [12]
comparing several state-of-the-art methods for MLC reported that CC is among
the top best performing algorithms in terms of predictive performance. However,
there is an important drawback in the basic CC approach: the label ordering is
decided at random instead of being selected in a data-driven fashion. This issue
is carefully investigated in the next section.

3 The Label Sequence Issue

In the basic CC model, the label sequence is decided at random. This has often
been considered a major drawback, even noted by the authors of CC themselves,
which deemed that if the first members of the chain have low accuracy (i.e., if
they output many wrong predictions), error propagation will occur along the
chain causing a significant decrease in predictive accuracy [14,15]. In a similar
vein, [10,13] argued that different label orderings can lead to different results in
terms of predictive accuracy mainly due to noisy data and finite sample effects.
For example, if a label lj is rare, then its binary model may be misestimated
depending on the position of lj in the chain. Nonetheless, the authors of [19] have
a completely different belief. They consider that the effect of the chain order will
often be very small when the number of features in the dataset is much higher
than the number of labels (which corresponds to the most typical situation).

Nevertheless, [2] realized that “the effect of different orders on the prediction
performance of the (CC) algorithm has not yet been studied in depth”. Motivated
by this consideration and by the conflicting views of [19] and [10,13,14,15], we
decided to carry out an experiment to investigate the following questions:

1. Does finding a single optimized label sequence for the entire dataset indeed
significantly improve the effectiveness of CC?

2. Does finding different optimized label sequences for distinct instances im-
prove even more the effectiveness of CC?
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The experiment consisted in assessing the predictive accuracy of CC consid-
ering all q! label permutations of three benchmark datasets using the following
single-label base algorithms: k-NN, C4.5, Näıve Bayes, and SMO [23]. The main
goal is to observe the differences in predictive accuracy between the best (most
accurate) chain and the worst chain for each of those base classifiers. If most of
the differences are large, then there is evidence that the label sequence is actu-
ally important. In the experiment the predictive performance is determined in
terms of the Accuracy measure (a brief note on results for other measures will
be mentioned later).

The experiment was implemented in Java, within the MULAN tool [21], an
open source platform for the evaluation of multi-label algorithms that works on
the top of the WEKA API [7]. The datasets “emotions” (q = 6), “scene”(q = 6)
and “flags” (q = 7), obtained from the MULAN repository were used in this
experiment. Since they have a small number of labels, it became feasible to
build and test CC models for all possible label permutations. These models were
evaluated by applying the holdout method with the use of the training and test
parts supplied with the datasets.

Tables 1, 2 and 3, respectively present the results for the datasets “emotions”,
“scene” and “flags” in terms of Accuracy. These tables are divided into four main
columns. The first indicates the name of the base algorithm (the acronym “x-NN”
is used to refer to the k-NN algorithm configured with k = x). The second main
column indicates the obtained Accuracy values when a unique chain is selected
for the training and testing of all instances. It is divided into sub-columns {1},{2}
and {3}, which respectively present the performance of the best label sequence,
the performance of the worst label sequence and the difference in the Accuracy
value between the best and the worst sequences. The third main column indicates
the obtained Accuracy values when different label sequences are used for different
instances. It is also divided into three sub-columns, labeled as {4}, {5} and {6}.
Sub-column {4} presents the Accuracy value that is obtained when the best label
sequence associated with each instance is selected. Sub-column {5} presents
the computed Accuracy value when the worst sequence associated with each
instance is selected. Sub-column {6} simply shows the difference between the
values in {4} and {5}. Finally, the fourth main column presents the improvement
in performance obtained when the best chain for each instance is selected in
relation to the use of a unique best chain for the entire dataset (the best chain
on average). In Sub-columns {3}, {6}, and {7}, the numbers between brackets
in each cell denote the rank of the corresponding difference values.

The results revealed that: (i) using a single optimized label sequence indeed
has a strong effect on predictive accuracy; and (ii) finding different optimized
label sequences for distinct instances is even more effective. For example, consider
the performance of the C4.5 algorithm in Table 3. Note that the difference in
Accuracy between the model built with the best single chain (i.e., the best chain
on average considering the entire dataset) and the model built with the worst
single chain reached 12.65% (Sub-column {3}). However, the difference in the
predictive performance between selecting the best chain for each instance and
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Table 1. Results of the exhaustive experiment in terms of Accuracy values for the
emotions dataset

Classifier
One chain for the dataset One chain for each instance Improvement

Best {1}Worst {2} Diff {3} Best {4} Worst {5} Diff {6} {7}={4}−{1}
1-NN 0.4926 0.4926 0.0000 (7) 0.4926 0.4926 0.0000 (7) 0.0000 (7)
3-NN 0.5837 0.4983 0.0854 (5) 0.6885 0.3879 0.3006 (3) 0.1048 (5)
5-NN 0.5957 0.5314 0.0643 (3) 0.7227 0.3982 0.3245 (5) 0.1270 (4)
7-NN 0.6021 0.5307 0.0714 (4) 0.7244 0.3916 0.3328 (4) 0.1223 (3)
C4.5 0.5380 0.4059 0.1321 (1) 0.9059 0.0724 0.8335 (1) 0.3679 (1)
NB 0.5436 0.5184 0.0252 (6) 0.5840 0.4656 0.1184 (6) 0.0404 (6)
SMO 0.6167 0.4864 0.1303 (2) 0.7805 0.3426 0.4380 (2) 0.1638 (2)

Table 2. Results of the exhaustive experiment in terms of Accuracy values for the
scene dataset

Classifier
One chain for the dataset One chain for each instance Improvement

Best {1}Worst {2} Diff {3} Best {4} Worst {5} Diff {6} {7}={4}−{1}
1-NN 0.6368 0.6368 0.0000 (7) 0.6368 0.6368 0.0000 (7) 0.0000 (7)
3-NN 0.6785 0.6575 0.0210 (5) 0.7103 0.6315 0.0787 (5) 0.0318 (5)
5-NN 0.6898 0.6522 0.0376 (3) 0.7429 0.6196 0.1233 (3) 0.0531 (3)
7-NN 0.6819 0.6487 0.0332 (4) 0.7277 0.6116 0.1161 (4) 0.0458 (4)
C4.5 0.5993 0.5376 0.0617 (2) 0.8822 0.1564 0.7259 (1) 0.2829 (1)
NB 0.4415 0.4358 0.0057 (6) 0.4473 0.4309 0.0164 (6) 0.0058 (6)
SMO 0.6915 0.6069 0.0846 (1) 0.9034 0.3537 0.5497 (2) 0.2119 (2)

Table 3. Results of the exhaustive experiment in terms of Accuracy values for the
flags dataset

Classifier
One chain for the dataset One chain for each instance Improvement

Best {1}Worst {2} Diff {3} Best {4} Worst {5} Diff {6} {7}={4}−{1}
1-NN 0.5305 0.5305 0.0000 (7) 0.5305 0.5305 0.0000 (7) 0.0000 (7)
3-NN 0.6223 0.5159 0.1064 (5) 0.6964 0.4154 0.2810 (2) 0.0741 (5)
5-NN 0.6277 0.5343 0.0934 (4) 0.7487 0.4225 0.3262 (4) 0.1210 (4)
7-NN 0.6143 0.5102 0.1041 (3) 0.7394 0.4104 0.3290 (3) 0.1251 (3)
C4.5 0.6222 0.4957 0.1265 (1) 0.8089 0.2665 0.5424 (1) 0.1867 (1)
NB 0.5759 0.4873 0.0886 (6) 0.6291 0.4179 0.2112 (5) 0.0532 (6)
SMO 0.6068 0.5220 0.0848 (2) 0.7712 0.3751 0.3962 (6) 0.1644 (2)

selecting the worst chain for each instance is 54.24% (Sub-column {6}). More
interestingly, note that the choice of the most accurate chain for each instance
lead to an Accuracy value 18.67% higher than that achieved by the one obtained
by the model built with the best single chain for the entire dataset (Sub-column
{7}). The same characteristic can be also observed for the two other datasets
(Tables 1 and 2) and nearly all base algorithms evaluated in the experiments,
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with the exception of 1-NN (for which there is no improvement in Sub-column
{7} across Tables 1, 2 and 3).

Additionally, it is also evident that the different base (single-label) algorithms,
due to their own characteristics, are affected to different degrees by the label
ordering. The effect tends to be very large when the base algorithms are C.45
and SMO, but it can be rather small for Näıve Bayes. The k-NN presented large
differences for some configurations of k and small differences for others.

We also ran the same experiment using the measures of Exact Match and
Hamming Loss and the results were similar: they evidenced that building a model
which uses a specific and more effective label sequence for each new instance
at classification time can largely improve the predictive performance of CC.
Motivated by this empirical finding, in the next section we propose a novel
method that addresses this problem by assigning a label sequence to a new
instance based on the label sequences that perform well in the training instances
that are most similar to the new instance being classified.

4 One-to-One Classifier Chains (OOCC)

In this section we present a novel method called One-To-One Classifier Chains
(OOCC), which assigns a label sequence to each new instance t in the test set
based on the label sequences that perform well in training instances similar to
t. The basic ideas of our OOCC method are as follows. First, we find the one or
more label sequences that perform well for each training instance (see Subsection
4.1). Then we use a k-NN (k-nearest neighbors) algorithm to retrieve the k
training instances that are most similar to the instance t being classified, and
assign, to t, the label sequence that was found to perform best for the training
instances. Due to the similarity between testing instance t and its nearest training
instances, it is expected that an effective label sequence for instance t’s nearest
neighbors will also be an effective label sequence for instance t.

In order to measure the predictive accuracy associated with each candidate
label sequence for a given training instance, we compute the quality function in
Equation 5. This function (originally proposed in [6]) determines the quality of
prediction performed by a CC model with regard to the instance t, by taking
into account the measures of Exact Match, Accuracy and Hamming Loss.

Quality(t, CC) =
(1 −HL) +ACC + EM

3
(5)

The OOCC method modifies both the training and the classification steps of
the original CC method. These changes are explained in the next subsections.

4.1 OOCC’s Training Procedure

Algorithm 1 describes the algorithm used in the OOCC’s training step. This
algorithm produces as output an array named bestChains, which is responsible
for storing the best label sequence(s) associated to each training instance at the
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Algorithm 1. OOCC’s training procedure

Input : D (training set), m (number of data partitions), r (number of label sequences)
Output: bestChains (an array containing the best chains for each training instance)

1: Divide the training set D into m folds {D1, D2, ..., Dm}
2: bestChains→ new Array(N)
3: for all folds Dv ∈ D do
4: CCModels← ∅
5: Dst ← {D −Dv}, where Dv = validation set, Dst = sub-training set
6: RS ← generateRandomSequences(r)
7: for all label sequences ls ∈ RS do
8: CC ← buildCC(Dst, ls)
9: CCModels← CCModels ∪ CC
10: end for
11: for all instances I ∈ Dv do
12: bestQuality ← −1
13: for all classifier chain models CC ∈ CCModels do
14: ls ← label sequence associated to the model CC
15: curQuality ← Quality(I,CC)
16: if curQuality > bestQuality then
17: bestQuality ← curQuality
18: bestChains(I)← {ls, curQuality}
19: else if curQuality = bestQuality then
20: bestChains(I)← bestChains(I)∪ {ls, curQuality}
21: end if
22: end for
23: end for
24: end for
25: return bestChains

end of processing. First, the training dataset is partitioned intom distinct subsets
(line 1), where m is a user-provided parameter. Each of the m subsets represents
a different validation set (denoted as Dv within the algorithm specification).
These validation sets are processed in turn in the FOR loop that encompasses
lines 3 to 24. This FOR loop is divided into two phases: building CC models
with random chains (lines 4 to 10) and selection of the best label sequences for
each instance (lines 11 to 23).

The first phase works as follows. During each iteration, the data partition Dv

is assigned r distinct random label sequences, where r is specified by the user.
Next (lines 7 to 10), r CC models are induced, one for each distinct sequence,
using a sub-training set Dst formed by the remainder m−1 data partitions (i.e.,
all data partitions except Dv). These models are stored in the array CCModels.

Once the models are built, it becomes possible to identify the best label se-
quences associated to each instance I of the data partitionDv. This is done in the
second phase of the OOCC’s training procedure. In this phase, all r trained mod-
els contained in CCModels are used to evaluate the Quality of each instance
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Algorithm 2. OOCC’s classification procedure

Input : D (training set), t (instance to be classified), k (number of neighbors)
Output: Z (the predicted labelset for instance t)

1: NN ← find the k closest neighbors to t in D.
2: S ← ∅
3: bestQuality ← −1
4: for all neighbors I ∈ NN do
5: chains← label sequences stored in bestChains(I)
6: curQuality ← Quality of the label sequences stored in bestChains(I)
7: if curQuality > bestQuality then
8: bestQuality ← curQuality
9: S ← chains
10: else if curQuality = bestQuality then
11: S ← S ∪ chains
12: end if
13: end for
14: if S.size = 1 then
15: ls ← the label sequence stored in S
16: else
17: ls ← randomly-choose a label sequence from S
18: end if
19: CC ← buildCC(D, ls)
20: Z ← classify(t,CC)
21: return Z

I from Dv with the use of the function defined in Equation 5 (lines 14-15).
The label sequence which achieves the highest value of Quality for an instance
I must be stored in the output array bestChains, along with their associated
Quality value (lines 16-21). Since for some instances, more than one label se-
quence may achieve the same best value of Quality, it is possible to store more
than one label sequence for I.

4.2 OOCC’s Classification Procedure

The OOCC method employs a lazy procedure to classify a new test instance t,
which is described in the algorithm shown in Algorithm 2. This procedure can
be divided into three phases which are explained below.

Phase 1 (line 1) consists in finding the k instances more similar to t in the
training set, where k is a user-specified parameter. In Phase 2 (lines 3 to 13),
the algorithm examines the best label sequences associated to each neighbor
instance (which were found in the OOCC’s training step and are stored in the
bestChains set). At the end of this phase, the highest-quality sequence(s) will be
stored in the S set. Phase 3 (lines 14 to 21) actually performs the classification
of t. First, an optimized label sequence ls is selected from S. A CC model is
induced using the training set D and ls. This model is then used to classify t.
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5 Related Work

The authors of the original CC method were the first to propose a method to ad-
dress the label ordering issue. They suggested the use of an ensemble of classifier
chains (ECC) [14,15] in order to cope with that issue. In this approach the indi-
vidual classifiers vote and the output labelset for a new instance is determined
based on the collection of votes.

The techniques proposed in [6,10,13,25] are based on the search for a sin-
gle optimized label sequence rather than using an ensemble approach. In [25],
the authors present the Bayesian Chain Classifier (BCC) algorithm. In this ap-
proach, the first step is to induce a maximum weighted spanning tree, according
to the mutual dependence measure between each pair of labels. Then, different
optimized sequences may be generated according to the selection of a distinct
node as the root node. The algorithm presented in [10] tackles the label sequence
optimization problem by performing a beam search over a tree in which every
distinct path represents a different label permutation. Since the construction of
a tree with q! paths is infeasible even for moderate sizes of q, the algorithm em-
ploys a user adjustable input parameter b (beam width) to reduce the number
of paths (at each level, only the top-b vertices in terms of predictive accuracy
are maintained in the tree). The M2CC algorithm, described in [13], employs
a double-Monte Carlo optimization technique to efficiently generate and eval-
uate a small population of distinct label sequences. The algorithm starts with
a randomly chosen sequence, s0. During the algorithm execution this sequence
is modified with the aim of finding, at least, a local maximum of some payoff
function (e.g.: Exact Match). Finally, the work of [6] proposes GACC – a genetic
algorithm to solve the label sequence optimization problem. In this strategy, each
chromosome represents a different label sequence and the fitness function is the
same defined in Equation 5. The crossover operation works by transferring sub-
chains of random length between pairs of individuals. The proposed GA follows
the wrapper approach [5], evaluating the quality of an individual (candidate la-
bel sequence) by using the target MLC algorithm (i.e. the CC algorithm). All
these proposals aim at finding a unique label sequence that is used to train a CC
model for all instances in the training dataset. Differently, the OOCC method
proposed in this work is capable of selecting a distinct and more effective chain
for each instance of the training dataset.

The PCC algorithm, introduced in [4], represents a technique to improve CC
through the use of inference optimization. The PCC’s training step is identical
to the CC’s one: a label sequence is randomly chosen and used to train a CC
model. However, its classification step works differently. According to the label
sequence used in the training step, the PCC classifier aims at maximizing the
posterior probability of the predicted labelset for each test instance. However,
differently of our approach, the PCC requires a probabilistic single-label base
classifier. Moreover, it has the disadvantage of employing an exhaustive search
in the space of 2q possible label combinations. Thus, its practical applications
are restricted to problems where q is small.
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6 Experiments

We implemented our OOCC method within the MULAN platform [21]. The
proposed method was evaluated on nine distinct benchmark datasets, which
were obtained from the Mulan repository. A holdout evaluation was performed
to assess the predictive performance of the multi-label methods, by using the
training and test parts that come with these datasets. We compared OOCC
to the algorithms BR, CC and ECC. The WEKA’s SMO implementation with
default parameters was used as the base single-label classification algorithm for
all evaluated methods, although other algorithms could have been used. The
parameter values used in OOCC were k = 5, m = 5 and r = 15. For ECC, the
number of members in the ensemble was set to 10.

The predictive performance of the algorithms was evaluated in terms of Ac-
curacy, F-Measure, Hamming Loss and Exact Match. To determine whether the
differences in performance for each measure are statistically significant, we ran
the Friedman test and the Nemenyi post-hoc test, following the approach de-
scribed in [8]. First, the Friedman test is executed with the null hypothesis that
the performances of all methods are equivalent. Whenever the null hypothesis
is rejected at the 95% confidence level, we ran the Nemenyi post-hoc multiple
comparison test, which assesses if there is a statistically significant difference in
the performances of each pair of methods.

The results for the measures of Accuracy, F-Measure, Hamming Loss and
Exact Match are respectively presented in Tables 4, 5, 6 and 7. In these tables,
N , d and q represent, respectively, the number of instances, attributes and labels
for each dataset. The best results for each dataset are highlighted in bold type.
The obtained rank for each method in each dataset is presented in parenthesis.
In the lines right below Tables 4, 5 and 6, the symbol # represents a significant
difference between one or more methods, such that {a} # {b, c} shows that the
method a is significantly better than b and c.

The results presented in Tables 4 and 5 show that the OOCC performance
is, in the majority of the datasets, superior to all other methods with respect

Table 4. Performance of BR, CC, ECC and OOCC in terms of Accuracy

Dataset (N , d, q)
Accuracy

BR CC ECC OOCC

flags (194, 19, 7) 0.5938 (1.0) 0.5560 (4.0) 0.5748 (2.5) 0.5748 (2.5)
cal500 (502, 68, 174) 0.2017 (2.0) 0.1765 (4.0) 0.2007 (3.0) 0.2113 (1.0)
emotions (593, 72, 6) 0.4835 (4.0) 0.5202 (3.0) 0.5653 (2.0) 0.5866 (1.0)
birds (645, 300, 19) 0.5669 (3.0) 0.5623 (4.0) 0.5682 (1.0) 0.5672 (2.0)
genbase (662, 1186, 27) 0.9908 (2.5) 0.9908 (2.5) 0.9908 (2.5) 0.9908 (2.5)
medical (978, 1449, 45) 0.6990 (4.0) 0.7134 (3.0) 0.7161 (2.0) 0.7220 (1.0)
enron (1702, 1001, 53) 0.4063 (3.0) 0.4053 (4.0) 0.4501 (1.0) 0.4129 (2.0)
scene (2407, 294, 6) 0.5711 (4.0) 0.6598 (3.0) 0.6654 (2.0) 0.6702 (1.0)
yeast (2417, 103, 14) 0.5018 (3.0) 0.4892 (4.0) 0.5333 (2.0) 0.5429 (1.0)

rank sums 26.5 31.5 18.0 14.0

{OOCC} � {BR,CC,ECC}, {ECC} � {BR,CC}, {BR} � {CC}
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Table 5. Performance of BR, CC, ECC and OOCC in terms of F-Measure

Dataset (N , d, q)
F-Measure

BR CC ECC OOCC

flags (194, 19, 7) 0.7139 (1.0) 0.6764 (4.0) 0.7020 (2.0) 0.6927 (3.0)
cal500 (502, 68, 174) 0.3297 (2.0) 0.2919 (4.0) 0.3251 (3.0) 0.3375 (1.0)
emotions (593, 72, 6) 0.5556 (4.0) 0.5979 (3.0) 0.6429 (2.0) 0.6627 (1.0)
birds (645, 300, 19) 0.6061 (1.0) 0.5976 (4.0) 0.6039 (2.5) 0.6039 (2.5)
genbase (662, 1186, 27) 0.9940 (2.5) 0.9940 (2.5) 0.9940 (2.5) 0.9940 (2.5)
medical (978, 1449, 45) 0.7273 (4.0) 0.7409 (3.0) 0.7436 (2.0) 0.7472 (1.0)
enron (1702, 1001, 53) 0.5152 (4.0) 0.5110 (3.0) 0.5575 (1.0) 0.5197 (2.0)
scene (2407, 294, 6) 0.5985 (4.0) 0.6761 (3.0) 0.6870 (2.0) 0.6883 (1.0)
yeast (2417, 103, 14) 0.6101 (3.0) 0.5904 (4.0) 0.6361 (2.0) 0.6436 (1.0)

rank sums 25.5 30.5 19.0 15.0

{OOCC} � {BR,CC,ECC}, {ECC} � {BR,CC}, {BR} � {CC}

to the Accuracy and F-Measure metrics. Note that the obtained rank sums are
always smaller (indicating a better result) for the OOCC method. Actually,
the Friedman test reported a significant difference between the methods. The
Nemenyi post-hoc test indicated that OOCC is significantly better than CC,
BR and ECC for both Accuracy and F-Measure, at the 95% confidence level.

The results in Table 6 indicate that ECC obtained the best results in terms
of Hamming Loss, being significantly superior to all other methods. For this
measure, the OOCC method performed fairly well, as it is significantly better
than CC and equivalent to BR. Finally, Table 7 presents the results regarding
the Exact Match measure. Although the Friedman and Nemenyi tests indicated
that no statistically significant differences exist between the Exact Match values
achieved by the four methods, it is possible to observe that the OOCC algorithm
has the smallest rank sum (i.e., the best overall result), having obtained the best
results for five of the nine evaluated datasets.

Our empirical results indicate that the proposed OOCC method exhibits a
very competitive performance, obtaining results significantly superior to the
other evaluated methods, according to two of the four evaluated measures of pre-

Table 6. Performance of BR, CC, ECC and OOCC in terms of Hamming Loss

Dataset (N , d, q)
Hamming Loss

BR CC ECC OOCC

flags (194, 19, 7) 0.2637 (1.0) 0.3011 (4.0) 0.2813 (2.0) 0.2835 (3.0)
cal500 (502, 68, 174) 0.1375 (1.0) 0.1527 (3.0) 0.1458 (2.0) 0.1635 (4.0)
emotions (593, 72, 6) 0.2145 (3.0) 0.2376 (4.0) 0.2137 (2.0) 0.2063 (1.0)
birds (645, 300, 19) 0.0658 (3.0) 0.0668 (4.0) 0.0595 (1.0) 0.0619 (2.0)
genbase (662, 1186, 27) 0.0007 (2.5) 0.0007 (2.5) 0.0007 (2.5) 0.0007 (2.5)
medical (978, 1449, 45) 0.0117 (4.0) 0.0115 (3.0) 0.0111 (1.5) 0.0111 (1.5)
enron (1702, 1001, 53) 0.0572 (2.0) 0.0585 (4.0) 0.0512 (1.0) 0.0573 (3.0)
scene (2407, 294, 6) 0.1144 (3.0) 0.1154 (4.0) 0.1026 (1.0) 0.1116 (2.0)
yeast (2417, 103, 14) 0.1997 (1.0) 0.2109 (4.0) 0.2024 (3.0) 0.2014 (2.0)

rank sums 20.5 32.5 16.0 21.0

{ECC} � {BR,CC,OOCC}, {OOCC} � {CC}, {BR} � {CC}
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dictive accuracy. It is also worth noting that the original CC method performed
rather poorly in terms of Accuracy, F-Measure and Hamming Loss, presenting
a performance significantly inferior to ECC, OOCC and even to the baseline
BR method (the CC method performed better than BR only in terms of Exact
Match, however without statistical significance). This confirms that the use of
a single randomly-generated label sequence seems to be an ineffective approach
for multi-label chain classifiers, reinforcing the importance of either using an
ensemble or searching for an optimized label sequence.

Table 7. Performance of BR, CC, ECC and OOCC in terms of Exact Match

Dataset (N , d, q)
Exact Match

BR CC ECC OOCC

flags (194, 19, 7) 0.1538 (1.5) 0.1231 (3.5) 0.1231 (3.5) 0.1538 (1.5)
cal500 (502, 68, 174) 0.0000 (2.5) 0.0000 (2.5) 0.0000 (2.5) 0.0000 (2.5)
emotions (593, 72, 6) 0.2525 (4.0) 0.2822 (3.0) 0.3267 (2.0) 0.3465 (1.0)
birds (645, 300, 19) 0.4630 (3.5) 0.4722 (1.5) 0.4722 (1.5) 0.4630 (3.5)
genbase (662, 1186, 27) 0.9799 (2.5) 0.9799 (2.5) 0.9799 (2.5) 0.9799 (2.5)
medical (978, 1449, 45) 0.6140 (4.0) 0.6326 (3.0) 0.6357 (2.0) 0.6465 (1.0)
enron (1702, 1001, 53) 0.1209 (4.0) 0.1313 (2.0) 0.1503 (1.0) 0.1295 (3.0)
scene (2407, 294, 6) 0.4908 (4.0) 0.6112 (2.0) 0.6012 (3.0) 0.6162 (1.0)
yeast (2417, 103, 14) 0.1603 (4.0) 0.1952 (3.0) 0.2148 (2.0) 0.2399 (1.0)

rank sums 30.0 23.0 20.0 17.0

No significance differences according to the Friedman test

7 Conclusions and Future Work

The classifier chains approach has become one of the most influential methods for
multi-label classification. It is distinguished from other methods by its simple and
effective approach to exploit label dependencies. However, the basic CC model
suffers from an important drawback: it decides the label sequence at random. The
main contribution of this paper was the proposal of a novel multi-label classifier
chain method called One-to-One Classifier Chains (OOCC), which is capable of
finding, at classification time, a specific and more accurate label sequence for each
new instance in the test set. The OOCC method was compared against the well-
established BR, CC and ECC methods. The obtained results show that OOCC
significantly outperformed all these three methods in terms of Accuracy and
F-Measure. In terms of Hamming Loss, OOCC significantly outperformed CC
and was significantly outperformed by ECC. There was no significant difference
among the four methods in terms of the Exact Match measure.

Additionally, we contributed to a better understanding of the underlying prin-
ciples of the CC method by reporting the results of a study that evidenced that:
(i) finding a single optimized label sequence has a strong effect on predictive
accuracy; (ii) finding different optimized label sequences for distinct instances is
even more effective; and (iii) the different base (single-label) algorithms, due to
their own characteristics, are affected to different degrees by the label ordering.
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For future research, we first intend to perform a detailed analysis on the
sensivity of the results to the parameters r, m and k. The main goal is to
determine the best set of parameters for the OOCC algorithm, using the training
set to optimize the parameters. We also intend to evaluate other approaches to
determine the label sequence of a new instance to be classified (which may not be
necessarily based on the Quality measure). Finally, we plan to compare OOCC
against some of the methods described in Section 5 and to develop an ensemble
version of the proposed OOCC method.
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Abstract. We present a unifying framework which reduces the con-
struction of probabilistic component analysis techniques to a mere selec-
tion of the latent neighbourhood, thus providing an elegant and princi-
pled framework for creating novel component analysis models as well as
constructing probabilistic equivalents of deterministic component anal-
ysis methods. Under our framework, we unify many very popular and
well-studied component analysis algorithms, such as Principal Compo-
nent Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Pre-
serving Projections (LPP) and Slow Feature Analysis (SFA), some of
which have no probabilistic equivalents in literature thus far. We firstly
define the Markov Random Fields (MRFs) which encapsulate the latent
connectivity of the aforementioned component analysis techniques; sub-
sequently, we show that the projection directions produced by all PCA,
LDA, LPP and SFA are also produced by the Maximum Likelihood (ML)
solution of a single joint probability density function, composed by se-
lecting one of the defined MRF priors while utilising a simple observation
model. Furthermore, we propose novel Expectation Maximization (EM)
algorithms, exploiting the proposed joint PDF, while we generalize the
proposed methodologies to arbitrary connectivities via parametrizable
MRF products. Theoretical analysis and experiments on both simulated
and real world data show the usefulness of the proposed framework, by
deriving methods which well outperform state-of-the-art equivalents.

Keywords: Unifying Framework, Probabilistic Methods, Component
Analysis, Dimensionality Reduction, Random Fields.

1 Introduction

Unification frameworks in machine learning provide valuable material towards
the deeper understanding of various methodologies, while also they form a flex-
ible basis upon which further extensions can be easily built. One of the first
attempts to unify methodologies was made in [17]. In this seminal work, models
such as Factor Analysis (FA), Principal Component Analysis (PCA), mixtures of
Gaussian clusters, Linear Dynamic Systems, Hidden Markov Models and Inde-
pendent Component Analysis were unified as variations of unsupervised learning
under a single basic generative model.
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Deterministic Component Analysis (CA) unification frameworks proposed in
previousworks, such as [1], [10], [4], [23] and [21], provide significant insights onhow
CA methods such as Principal Component Analysis, Linear Discriminant Analy-
sis, LaplacianEigenmaps andothers canbe jointly formulated as, e.g., least squares
problems under mild conditions or general trace optimisation problems. Neverthe-
less, while several probabilistic equivalents of, e.g. PCAhave been formulated (c.f.,
[22] [16]), to this date no unification framework has been proposed for probabilis-
tic component analysis. Motivated by the latter, in this paper we propose the first
unified framework for probabilistic component analysis. Based onMarkovRandom
Fields (MRFs), our framework unifies all component analysis techniques whose
corresponding deterministic problem is solved as a trace optimisation problem
withoutdomain constraints for theparameters, suchasPrincipalComponentAnal-
ysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections
(LPP) and Slow Feature Analysis (SFA). Our framework provides further insight
on component analysis methods from a probabilistic perspective. This entails pro-
viding probabilistic explanations for the data at hand with explicit variance mod-
elling, as well as reduced complexity compared to the deterministic equivalents.
These features are especially useful in case of methods for which no probabilistic
equivalent exists in literature so far, such as LPP. Furthermore, under our frame-
work one can generate novel component analysis techniques by merely combining
products of MRFs with arbitrary connectivity.

The rest of this paper is organised as follows. We initially introduce previ-
ous work on CA, highlighting the properties of the proposed framework (Sec. 2).
Subsequently, we formulate the joint complete-data Probability Density Function
(PDF) of observations and latent variables. We show that the Maximum Likeli-
hood (ML) solution of this joint PDF is co-directional to the solutions obtained
via deterministic PCA, LDA, LPP and SFA, by changing only the prior latent
distribution (Sec. 3), which, as we show, models the latent dependencies and
thus determines the resulting CA technique. E.g, when using a fully connected
MRF, we obtain PCA. When choosing the product of a fully connected MRF
and an MRF connected only to within-class data, we derive LDA. LPP is derived
by choosing a locally connected MRF, while finally, SFA is produced when the
joint prior is a linear Markov-chain. Based on the aforementioned PDF we sub-
sequently propose Expectation Maximization (EM) algorithms (Sec. 4). Finally
in Sec. 5, utilising both synthetic and real data, we demonstrate the usefulness
and advantages of this family of probabilistic component analysis methods.

2 Prior Art and Novelties

An important contribution of our paper lies in the proposed unification of proba-
bilistic component techniques, giving rise to the first framework that reduces the
construction of probabilistic component analysis models to the design of a ap-
propriate prior, thus defining only the latent neighbourhood. Nevertheless, other
novelties arise in methods generated via our framework. In this section, we review
the state-of-the-art in deterministic and probabilistic PCA, LDA, LPP and SFA.
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While doing so, we highlight novelties and advantages that our proposed frame-
work entails wrt. each alternative formulation. Throughout this paper we con-
sider, a zero mean set of F -dimensional observations of length T , represented by
the matrix X = [x1, . . . ,xT ]. All CA methods discover an N -dimensional latent
space Y = [y1, . . . ,yT ] which preserves certain properties of X.

2.1 Principal Component Analysis (PCA)

The deterministic model of PCA finds a set of projection bases W, with the
latent space Y being the projection of the training set X (i.e., Y = WTX)).
The optimization problem is as follows

Wo = argmax
W

tr
[
WTSW

]
, s.t. WTW = I (1)

where S = 1
T

∑T
i=1 xix

T
i is the total scatter matrix and I the identity matrix.

The optimal N projection basis Wo are recovered (the N eigenvectors of S that
correspond to the N largest eigenvalues). Probabilistic PCA (PPCA) approaches
were independently proposed in [16] and [22]. In [22] a probabilistic generative
model was adopted as:

xi = Wyi + εi, yi ∼ N (0, I), εi ∼ N (0, σ2I) (2)

where W ∈ RF×N is the matrix that relates the latent variable yi with the ob-
served samples xi and εi is the noise which is assumed to be an isotropic Gaus-
sian model. The motivation is that, when N < F , the latent variables will offer
a more parsimonious explanation of the dependencies arising in observations.

2.2 Linear Discriminant Analysis (LDA)

Let us now further assume that our data X is further separated into K dis-
joint classes C1, . . . , CK with T =

∑K
c=1 |Cc|. The Fisher’s Linear Discriminant

Analysis (LDA) finds a set of projection bases W s.t. [26]

Wo = argminW tr
[
WTSwW

]
, s.t. WTSW = I (3)

where Sw =
∑K

c=1

∑
xi∈Cc

(xi−μCi
)(xi−μCi

)T and μCi
the mean of class i. The

aim is to find the latent space Y = WTX such that the within-class variance is
minimized in a whitened space. The solution is given by the eigenvectors of Sw

corresponding to the N −K smallest eigenvalues of the whitened data. 1

Several probabilistic latent variable models which exploit class information
have been recently proposed (c.f., [14,29,8]). In [14,29] another two related at-
tempts were made to formulate a PLDA. Considering xi to be the i-th sample
of the c-th class, the generative model of [14] can be described as:

xi = Fhc +Gwic + εic, hc,wic ∼ N (0, I), εic ∼ N (0,Σ) (4)

1 We adopt this formulation of LDA instead of the equivalent of maximizing the trace
of the between-class scatter matrix [2], since this facilitates our following discussion
on Probabilistic LDA alternatives.
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where hc represents the class-specific weights and wic the weights of each indi-
vidual sample, with G and F denoting the corresponding loadings. Regarding
[29], the probabilistic model is as follows:

xi = Fchc + εic, hc,Fic ∼ N (0, I), εic ∼ N (0,Σ) (5)

We note that the two models become equivalent when choosing a common F
(Eq. 5) for all classes while also disregarding the matrix G. In this case, the
ML solution is given by obtaining the eigenvectors corresponding to the largest
eigenvalues of Sw. Hence, the solution is vastly different than the one obtained
by deterministic LDA (which keeps the smallest ones, Eq. 3), resembling more
to the solution of problems which retain the maximum variance. In fact, when
learning a different Fc per class, the model of [29] reduces to applying PPCA
per class. To the best of our knowledge the only probabilistic model where the
ML solution is closely related to that of deterministic LDA is [8]. The proba-
bilistic model is defined as follows: x ∈ Ci, x|y ∼ N (y,Φw), y ∼ N (m,Φb),
VTΦbV = Ψ and VTΦwV = I, A = V−T , Φw = AAT Φ = AΨAT , where
the observations are generated as:

xi = Au, u ∼ N (V, I), v ∼ N (0,Ψ). (6)

The drawback of [8] is the requirement for all classes to contain the same number
of samples. As we show, we overcome this limitation in our formulation.

2.3 Locality Preserving Projections (LPP)

Locality Preserving Projections (LPP) is the linear alternative to Laplacian
Eigenmaps [13]. The aim is to obtain a set of projections W and a latent space
Y = WTX which preserves the locality of the original samples. First, let us
define a set of weights that represent locality. Common choices for the weights

are the heat kernel uij = e−
||xi−xj ||2

γ or a set of constant weights (uij = 1 if the
i-th and the j-th vectors are adjacent and uij = 0 otherwise, while uij = uji).
LPP finds a set of projection basis matrix W by solving the following problem:

Wo = argminW

∑T
i,j=1

∑N
n=1 uij ||wT

nxi −wT
nxj ||2

= argminW tr
[
WTXLXTW

]
s.t. WTXDXTW = I

(7)

where U = [uij ], L = D − U and D = diag(U1) (where diag(a) is the diag-
onal matrix having as main diagonal vector a and 1 is a vector of ones). The
objective function with the chosen weights wij results in a heavy penalty if the
neighbouring points xi and xj are mapped far apart. Therefore, its minimization
ensures that if xi and xj are near, then the projected features yi = WTxi and
yj = WTxi are near, as well. To the best of our knowledge no probabilistic
models exist for LPPs. In the following (Sec. 3, 4), we show how a probabilistic
version of LPPs arises by choosing an appropriate prior over the latent space yi.
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2.4 Slow Feature Analysis

Now let us consider the case that the columns of xi are samples of a time series
of length T . The aim of Slow Feature Analysis (SFA) is, given T sequential
observation vectors X = [x1 . . .xT ], to find an output signal representation Y =
[y1 . . .yT ] for which the features change slowest over time [25], [9]. By assuming
again a linear mapping Y = WTX for the output representation, SFA minimizes
the slowness for these values, defined as the variance of the first derivative of Y.
Formally, W of SFA is computed as

Wo = argmin
W

tr
[
WT ẊẊW

]
, s.t. WTSW = I, (8)

where Ẋ is the first derivative matrix (usually computed as the first order dif-
ference i.e., ẋj = xj − xj−1). An ML solution of SFA was recently proposed in
[24], by incorporating a Gaussian linear dynamic system prior over the latent
space Y. The proposed generative model is

P (xt|W,yt, σx) = N (W−1yt, σ
2
xI)

P (yt|yt−1, λ1:N , σ1:N ) =
∏N

n=1 P (yn,t|yn,t−1, λn, σ
2
n)

(9)

with P (yn,t|yn,t−1, λn, σ
2
n) = N (λnyn,t−1, σ

2
n) and P (yn,1|σ2

n,1) = N
(
0, σ2

n,1

)
.

As we will show, SFA is indeed a special case of our general model.
Summarizing, in the following sections we formulate a unified, probabilistic

framework for component analysis which: (1) incorporates PCA as a special case,
(2) produces a Probabilistic LDA which (i) has an ML solution for the loading
matrix W with similar direction to the deterministic LDA (Eq. 3) and (ii) does
not make assumptions regarding the number of samples per class (as in [8]), (3)
provides the first, to the best of our knowledge, probabilistic model that explains
LPP, (4) naturally incorporates SFA as a special case, (5) provides variance esti-
mates not only for observations but also per latent dimension (differentiating our
approach from existing probabilistic CA (e.g., PPCA, PLDA), and (6) provides
a straightforward framework for producing novel component analysis techniques.

3 A Unified ML Framework for Component Analysis

In this section, we will present the proposed Maximum Likelihood (ML) frame-
work for probabilistic component analysis and show how PCA, LDA, LPP and
SFA can be generated within this framework, also proving equivalence with
known deterministic models. Firstly, to ease computation, we assume the gener-
ative model for the i-th observation, xi, is defined as

xi = W−1yi + εi, εi ∼ N(0, σ2
xI). (10)

In order to fully define the likelihood we need to define a prior distribution on
the latent variables y. We will prove that by choosing one of the priors defined
below and subsequently taking the ML solution wrt. parameters, we end up
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generating the aforementioned family of probabilistic component models. The
priors, parametrised by β = {σ1:N , λ1:N}, are as follows (see also Fig. 1).

• An MRF with full connectivity - each latent node yi is connected to all
other latent nodes yj , j 
= i.

P (Y|β) = 1
Z exp

{
− 1

2

∑N
n=1

∑T
i=1

1
T−1

∑T
j=1,j �=i

1
σ2
n
(yn,i − λnyn,j)

2
}

≈ 1
Z exp

{
− 1

2

∑N
n=1

∑T
i=1

1
T

∑T
j=1

1
σ2
n
(yn,i − λnyn,j)

2
}

= 1
Z exp

{
− 1

2

(
tr
[
Λ(1)YYT

]
+ tr

[
Λ(2)YMYT

])}
,

(11)

where M � − 1
T 11

T , Λ(1) �
[
δmn

λ2
n+1
σ2
n

]
,Λ(2) �

[
δmn

λn

σ2
n

]
.

• A product of two MRFs. In the first, each latent node yi is connected only
to other latent nodes in the same class (yj , j ∈ C̃i). In the second, each latent
node (yi) is connected to all other latent nodes (yj , j 
= i).

P (Y|β) = 1
Z exp

{
− 1

2

∑N
n=1

∑T
i=1

1
|C̃i|

∑
j∈C̃i

λn

σ2
n
(yn,i − yn,j)

2
}

exp
{
− 1

2

∑N
n=1

∑T
i=1

1
T−1

∑T
j=1

(1−λn)
2

σ2
n

(yn,i − yn,j)
2
}

= 1
Z exp

{
− 1

2

(
tr
[
Λ(1)YMcY

T
]
+ tr

[
Λ(2)YMtY

T
])}

,

(12)

where Mc � I − diag[C1, . . . ,CC ], Cc � 1
|Cc|1c1

T
c , Mt � I + M, Λ(1) �[

δmn(
λn

σ2
n
)
]
, Λ(2) �

[
δmn

(1−λn)2

σ2
n

]
, while C̃i = {j : ∃ Cl s.t. {xj ,xi} ∈ Cl, i 
= j}.

• A product of two MRFs. In the first, each latent node yi is connected to
all other latent nodes that belong in yi’s neighbourhood (symmetrically defined
as N s

i = N s
j = {i ∈ Nj ∪ j ∈ Ni}). In the second, we only have individual

potentials per node.

P (Y|β) = 1
Z exp

(
− 1

2

∑N
n=1

∑T
i=1

1
|N s

i |
∑

j∈N s
i

λn

σ2
n
(yn,i − yn,j)

2
)

exp
(
− 1

2

∑N
n=1

∑T
i=1

(1−λn)
2

σ2
n

y2n,i

)
= 1

Z exp
{
− 1

2

(
tr
[
Λ(1)YL̃YT

]
+ tr

[
Λ(2)YD̃YT

])} (13)

where L̃ = D−1L and D̃ = I (L and D are defined in Sec. 2.3 referring to LPPs).
Λ(1) and Λ(2) are defined as above.

• A linear dynamical system prior over the latent space.

P (Y|β) = 1
Z exp

{
−
∑N

n=1

(
1

2σ2
n,1

y2n,1 +
1

2σ2
n

∑T
t=2[yn,t − λnyn,t−1]

2
)}

≈ 1
Z exp

{
− 1

2

(
tr
[
Λ(1)YK1Y

T
]
+ tr

[
Λ(2)YYT

])} (14)

where K1 = P1P
T
1 and P1 is a T × (T − 1) matrix with elements pii = 1 and

p(i+1)i = −1 (the rest are zero). The approximation holds when T → ∞. Again,

Λ(1) and Λ(2) are defined as above.
In all cases the partition function Z is defined as Z =

∫
P (Y)dY. The mo-

tivation behind choosing the above latent priors was given by the influential
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analysis made in [7] where the connection between (deterministic) LPP, PCA
and LDA was explored. A further piece of the puzzle was added by the recent
work [24] where the linear dynamical system prior (Eq. 14) was used in order to
provide a derivation of SFA in a ML framework. By formulating the appropriate
priors for these models we unify these subspace methods in a single probabilistic
framework of a linear generative model along with a prior of the form

P (Y) ∝ exp
{
− 1

2

(
tr
[
Λ(1)YB(1)YT

]
+ tr

[
Λ(1)YB(2)YT

])}
. (15)

The differentiation amongst these models lies in the neighbourhood over which
the potentials are defined. In fact, the varying neighbouring system is translated
into the matrices B(1) and B(2) in the functional form of the potentials, essen-
tially encapsulating the latent covariance connectivity. E.g., for Eq. 11, B(1) = I
and B(2) = M, for Eq. 12, B(1) = Mc and B(2) = Mt, for Eq. 13, B(1) = L̃
and B(2) = D̃ and finally for Eq. 14, B(1) = K and B(2) = I. In the following
we will show that ML estimation using these potentials is equivalent to the de-
terministic formulations of PCA, LDA and LPP. SFA is a special case for which
it was already shown in [24] that a potential of the form of Eq. 14 with an ML
framework produces a projection with the same direction as Eq. 8.

Adopting the linear generative model in Eq. 10, the corresponding conditional
data (observation) probability is a Gaussian,

P (xt|yt,W, σ2
x) = N (W−1yt, σ

2
x). (16)

Having chosen a prior of the form described in Eq. 15 (e.g., as defined in Eq.
11,12,13,14) we can now derive the likelihood of our model as follows:

P (X|Ψ) =
∫ T∏

t=1

P (xt|yt,W, σ2)P (Y|σ2
1:N , λ1:N )dY, (17)

where the model parameters are defined as Ψ = {σ2
x,W, σ2

1:N , λ1:N}. In the
following we will show that by substituting the above priors in Eq. 17 and max-
imising the likelihood we obtain loadings W which are co-directional (up to a
scale ambiguity) to deterministic PCA, LDA and LPPs and SFA. Firstly, by
substituting the general prior (Eq. 15) in the likelihood (Eq. 17), we obtain

P (X|Ψ) =
∫ ∏T

t=1 P (xt|yt,W, σ2) 1
Z exp{

− 1
2

(
tr
[
Λ(1)YB(1)YT

]
+ tr

[
Λ(2)YB(2)YT

])}
dY.

(18)

In order to obtain a zero-variance limit ML solution, we map σx → 0

P (X|Ψ) =
∫ ∏T

t=1 δ(xt −W−1yt)
1
Z exp{

− 1
2

(
tr
[
Λ(1)YB(1)YT

]
+ tr

[
Λ(2)YB(2)Y T

])}
dY

(19)

By completing the integrals and taking the log, we obtain the conditional log-
likelihood:

L(Ψ) = logP (X|θ) = − logZ + T log |W| − 1
2

tr
[
Λ(1)WXB(1)XTWT +Λ(2)WXB(2)XTWT

] (20)
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where Z is a constant term independent of W. By maximising for W we obtain

TW−T −
(
Λ(1)WXB(1)XT +Λ(2)WXB(2)XT

)
= 0,

I = Λ(1)WXB(1)XTWT +Λ(2)WXB(2)XTWT .
(21)

It is easy to prove that since Λ(1),Λ(2) are diagonal matrices, the W which
satisfies Eq. 21 simultaneously diagonalises (up to a scale ambiguity) XB(1)XT

and XB(2)XT . By substituting the B matrices as defined above in Eq. 21, we
now consider all cases separately. For PCA, by utilising Eq. 11, Eq. 21 is re-

formulated as WXXTWT =
[
Λ(1)

]−1
hence W is given by the eigenvectors

of the total scatter matrix S. For LDA (Eq. 12), Eq. 21 is reformulated as
Λ(1)WXMXTWT +Λ(2)WXXTWT = I. Thus, W is given by the directions
that simultaneously diagonalise S and Sw. For LPP (Eq. 13 ), Eq. 21 yields
Λ(1)WXLXTWT +Λ(2)WXDTXTWT = I, therefore W is given by the direc-
tions that simultaneously diagonalise XL̃XT and XD̃XT . Finally, for SFA, by
utilising Eq. 14, Eq. 21 becomes Λ(1)WXKXTWT +Λ(2)WXXTWT = I, and
W is given by the directions that simultaneously diagonalise XKXT and XXT .

The above shows that the ML solution following our framework is equivalent
to the deterministic models of PCA, LDA, LPP and SFA. The direction of W
does not depend of σ2

n and λn, which can be estimated by optimizing Eq. 20
with regards to these parameters. In this work we will provide update rules
for σn and λn using an EM framework. As we observe, the ML loading W
does not depend on the exact setting of λn, so long as they are all different. If
0 < λn < 1, ∀ n, then larger values of λn correspond to more expressive (in case
of PCA), more discriminant (in LDA), more local (in LPP) and slower latents
(in case of SFA). This corresponds directly to the ordering of the solutions from
PCA, LDA, LPP and SFA. To recover exact equivalence to LDA, LPP, SFA
another limit is required that corrects the scales. There are several choices, but
a natural one is to let σ2

n = 1−λ2
n. This choice in case of LDA and SFA fixes the

prior covariance of the latent variables to be one (WTXXW = I) and it forces
WTXDXW = I in case of LPP. This choice of σn has been also discussed in
[24] for SFA. We note that in case of PCA, we should set σn to be analogous
to the corresponding eigenvalue of the covariance matrix, since otherwise the
method will result to a minor component analysis.

4 A Unified EM Framework for Component Analysis

In the following we propose a unified EM framework for component analysis.
This framework can treat all priors with undirected links (such as Eq. 11, Eq.
12 and Eq. 13). The EM of the prior in Eq. 14 contains only directed links with
no loops, and thus can be solved (without any approximations) similarly to the
EM of a linear dynamical system [3]. If we treat the SFA links as undirected, we
end up with an autoregressive component analysis (see Section 4.1).

In order to perform EM with an MRF prior we adopt the simple and elegant
mean field approximation theory [15,5,27], which essentially allows computa-
tionally favourable factorizations within an EM framework. Let us consider a
generalisation of the priors we defined in Sec. 3 to M MRFs:
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P (Y|β) =
∏
μ∈M

1

Zμ
exp {Qμ} (22)

Qμ = −
N∑

n=1

fμ(λn)

2σ2
n

1

c

∑
i∈ωi

1

cμj

∑
j∈ωμ

j

(yn,i − φμ(λn)yn,j)
2

where c and cj are normalisation constants, while fμ and φμ are functions of
λn. Without loss of generality and for clarity of notation, we assume that c = 1,
cμj = |ωμ

j | and ωμ
i = [1, . . . , T ]. Furthermore, we now assume the linear model

xi = Wyi + εi, εi ∼ N (0, σ2
x). (23)

For clarity, the set of parameters associated with the prior (i.e. energy function)
are denoted as β = {σ1:N , λ1:N}, the parameters related to the observation model
θ = {W, σx}, while the total parameter set is denoted as Ψ = {θ, β}. In agree-
ment with [5], we replace the marginal distribution P (Y|β) by the mean-field

P (Y|β) ≈
T∏
i=1

P (yi|mM
i , βM). (24)

Since different CA models have different latent connectivities (and thus differ-
ent MRF configurations), the mean-field influence on each latent point yi now
depends on the model-specific connectivity via mM

i , a function of E[yj ]. Af-
ter calculating the normalising integral for the priors Eq. 11-13 and given the
mean-field, it can be easily shown that Eq. 22 follows a Gaussian distribution,

P (yi|mM
i , β) = N (mM

i ,ΣM), (25)

mM
i =

∑
μ∈M

(
fμ(λn)φμ(λn)

FM (λn)
μωμ

j

)
=

∑
μ∈M

Λμμωμ
j
, (26)

ΣM =

[
δmn

σ2
n

FM (λn)

]
(27)

with μωμ
j
= 1

|ωμ
j |
∑

j∈ωμ
j
E[yn,j ] and FM (λn) =

∑
μ∈M fμ(λn).

Therefore, by simply replacing the parametrisation of the priors we defined
in Eq. 11 (PCA), 12 (LDA) and 13 (LPP) (see also Tab. 1) for the mean and

Table 1. MRF configuration for PCA, LDA and LPP

M = {α, β} FM =
∑

μ fμ fa φα ωα
j fβ φβ ωβ

j

PCA (11) 1 1 λn {1 . . . T} \ {i}
LDA (12) λn + (1− λn)

2 λn 1 C̃i (1− λn)
2 1 {1 . . . T} \ {i}

LPP (13) λn + (1− λn)
2 λn 1 N s

i (1− λn)
2 0 {1}
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variance (Eq. 26 and Eq. 27), we obtain the distribution for each CA method
we propose. The means mM

i for PCA, LDA and LPP are obtained as

m
(PCA)
i = Λμ−i,m

(LDA)
i = Λ(α)μ−i +Λ(β)μC̃i

,m
(LPP)
i = Λ(α)μN s

i
(28)

and the variances ΣM as

Σ(PCA) =
[
δmnσ

2
n

]
,Σ(LDA) = Σ(LPP) =

[
δmn

(
σ2
n

λn+(1−λn)2

)]
(29)

where μ−i =
1

T−1

∑T
j �=i E

M[yj ] is the mean, μC̃i
= 1

|C̃i|
∑

j∈C̃i
EM[yj ] the class

mean, and μN s
i
= 1

|N s
i |
∑T

j∈N s
i
EM[yj ] the neighbourhood mean. Furthermore,

Λ = [δmnλn], Λ
(α) =

[
δmn

(
λn

λn+(1−λn)2

)]
and Λ(β) =

[
δmn

(
(1−λn)

2

λn+(1−λn)2

)]
.

In order to complete the expectation step, we infer the first order moments
of the latent posterior, defined as

P (yi|xi,m
M
i , ΨM) =

P (xi|yi, θ
M)P (yi|mM

i , βM)∫
yi

P (xi|yi, θM)P (yi|mM
i , βM)dyi

. (30)

Since the posterior is a product of Gaussians2 , we have

P (yi|xi,m
M
i , ΨM) = N (yi|(WTxi +ΣM−1

mM
i )A, σM2

x A) (31)

with A = (WTW + (Σ̂M)−1)−1 and Σ̂
M

=
[
δmn(Σ

M
mn/σ

M2

x )
]
. Therefore

EM[yi] is equal to the mean, and EM[yiy
T
i ] = σM2

x A+ E[yi]E[yi]
T .

Having recovered the first order moments, we move on to the maximisation
step. In order to maximize the marginal log-likelihood, logP (X|ΨM), we adopt
the usual EM bound [17],

∫
Y
P (Y|X, ΨM) logP (X,Y)dY. By adopting the ap-

proximation proposed in [5], the complete-data likelihood is factorised as

P (Y,X|ΨM) ≈
T∏

i=1

P (xi|yi, θ
M)P (yi|mM

i , βM). (32)

and therefore, the maximisation term (EM bound) becomes∑T
i=1

∫
yi
P (yi|xi,m

M
i , ΨM) logP (xi,yi|ΨM)dyi. (33)

As can be seen the likelihood can be separated due to the logarithm for estimat-
ing θM = {WM, σM

x } and β = {σM
1:N , λM

1:N} as follows:

θM = argmax
{∑T

i=1

∫
yi

P (yi|xi,m
M
i , ΨM) logP (xi|yi, θ

M)dyi

}
. (34)

βM = argmax
{∑T

i=1

∫
yi

P (yi|xi,m
M
i , ΨM) logP (yi|mM

i , βM)dyi

}
. (35)

2 The result can be easily obtained by completing the square for yi.
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Subsequently, we maximise the log-likelihoods wrt. the parameters, recovering
the update equations. For θ, by maximising Eq. 34, we obtain

WM =

(
T∑

i=1

xiE
M[yi]

T

)(
T∑

i=1

EM[yiy
T
i ]

)−1

(36)

σM2

x = 1
FT

∑T
i=1{||xi||2 − 2EM[yi]

T (WM)Txi

+Tr[EM[yiy
T
i ](W

M)TWM]}. (37)

Similarly, by maximising Eq. 35 for β, we obtain:

σM2

n =
FM(λn)

T

T∑
i=1

(EM[y2n,i]− 2EM[yn,i]m
M
n,i +mM2

n,i ) (38)

where, as defined in Eq. 27, for PCA FM(λn) = 1, and for LDA and LPP
FM(λn) = λn+(1−λn)

2. For λn we choose the updates as described in Sec. 3.
In what follows, we discuss some further points wrt. the proposed EM framework.

4.1 Further Discussion

Comparison to other Probabilistic Variants of PCA. It is clear that re-
garding the proposed EM-PCA, the updates for θ = {W, σ2

x} as well as the
distribution of the latent variable yi are the same with previously proposed
probabilistic approaches [16],[22]. The only variation is the mean of yi, which in

our case is shifted by the mean field, Σ̂(PCA)−1

m
(PCA)
i , while in addition, our

method models per-dimension variance (σn). Note that in order to fully identify
with the PPCA proposed in [22], we can set λn = 0 and σn = 1.

EM for SFA. The SFA prior in Eq. 14 allows for two interpretations of
the SFA graphical model: both as an undirected MRF and a directed Dynamic
Bayesian Network (DBN). Based on the undirected MRF interpretation, SFA
trivially fits into the EM framework described in this section, leading to an auto-
regressive SFA model [19], able to learn bi-directional latent dependencies. When
considering the SFA prior as a directed Markov chain, one can resort to exact
inference techniques applied on DBNs. In fact, the EM for SFA can be straight-
forwardly reduced to solving a standard Linear Dynamical System (Chap. 13
[3]), while also enforcing diagonal transition matrices and setting σ2

n = 1− λ2
n.

Complexity. The proposed EM algorithm iteratively recovers the latent
space preserving the characteristics enforced by the selected latent neighbour-
hood. Similarly to PCCA [16,22], for N - T, F the complexity of each iteration
is bounded by O(TNF ), unlike deterministic models (O(T 3)). This is due to the
covariance appearing only in trace operations, and is of high value for our pro-
posed models, especially in case where no other probabilistic equivalent exists.

Probabilistic LDA Classification. We can exploit the probabilistic nature
of the proposed EM-LDA in order to probabilistically infer the most likely class
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Fig. 1. MRF connectivities used for PCA, LDA and LPP under our unifying frame-
work, with shaded nodes representing observations. (a) Fully connected MRF (PCA),
(b) within-class connected MRF (LDA), and (c) a locally connected MRF (LPP).

assignment for unseen data. Instead of using the inferred projection, we can
essentially utilise the log-likelihood of the model. In more detail, we can estimate
the marginal log-likelihood for each test point x∗ being assigned to each class c:

arg c max
{
logP (x∗|mMc , ΨM)

}
(39)

where by adopting the usual EM bound (as shown in Eq. 33) this boils down to

arg cmax
∫
y∗
i
P (y∗

i |x∗
i ,m

Mc , ΨM) logP (x∗
i ,y

∗
i |ΨM)dy∗

i (40)

where P (y∗
i |x∗

i ,m
M, ΨM) is estimated as in Eq. 31, by utilising the inferred

model parameters (ΨM) along with the class model. Note that since the poste-
rior mean given xi depends on all other observations excluding i (Eq. 28), we
only need to store the class mean estimated as a weighted average of all training
data and all training data in class c, as

mMc = Λ(α) 1

T

T∑
j=1

EM[yj ] +Λ(β) 1

|Cc|
∑
j∈Cc

EM[yj ] (41)

This is in contrast to traditional methods where all the (projected) training data
have to be kept. Furthermore, during evaluation, we only need to estimate the
likelihood of each test datum’s assignment to each class (O(|C|), rather than
compare each test datum to the entire training set (O(T )).

5 Experiments

As proof of concept, we provide experiments both on synthetic and real-world
data. We aim to (i) experimentally validate the equivalence of the proposed prob-
abilistic models to other models belonging in the same class, and (ii) experimen-
tally evaluate the performance of our models against others in the same class.
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Synthetic Data. We demonstrate the application of our proposed proba-
bilistic CA techniques on a set of synthetic data (see Fig. 2), generated utilising
the Dimensionality Reduction Toolbox. In more detail, we compare the corre-
sponding deterministic formulations of PCA, LDA and LLE to the proposed
probabilistic models. The aim is mainly to qualitatively illustrate the equiva-
lence of the proposed methods (by observing that the probabilistic projections
match the deterministic equivalents). Furthermore, the variance modelling per
latent dimension in our EM-LDA is clear in E[y] of LDA (Fig. 2, Col. 3). This
will prove beneficial prediction-wise, as we show in the following section.

OBSERVATIONS DETERMINISTIC PROJ PROBABILISTIC E[Y] PROBABILISTIC PROJ.

LP
P

LD
A

PC
A

Fig. 2. Synthetic experiments on deterministic LLE, LDA and PCA (2nd col.) com-
pared to the proposed probabilistic methods (E[y] in 3rd col., projections in 4th col.)

Real Data: Face Recognition via EM-LDA. One of the most common
applications of LDA is face recognition. Therefore, we utilise various databases
in order to verify the performance of our proposed EM-LDA. In more detail, we
utilise the popular Extended Yale B database [6], as well as the PIE [20] and AR
databases [12]. The experiments span a wide range of variability, such as various
facial expressions, illumination changes, as well as pose changes. In more detail
from the CMU PIE database [20] we used a total of 170 images near frontal im-
ages for each subject. For training, we randomly selected a subset consisting of
5 images per subject, while for testing the remaining images were used. For the
extended Yale B database [6], we utilised a subset of 64 near frontal images per
subject, where a random selection of 5 images per subject was used for training,
while the rest of the images where used for testing. Regarding AR [12], we focus
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on facial expressions. We firstly randomly select 100 subjects. Subsequently, use
the images which portray varying facial expressions from session 1, while using
the corresponding images from session 2 for testing. In related experiments, we
compared our EM-LDA against deterministic LDA, the Fukunaga-Koontz vari-
ant (FK-LDA) [28] and PLDA [14] (which has been shown to outperform other
probabilistic methods such as [8] in [11]) under the presence of Gaussian noise.
We used the gradients of each image pixel as features, since as we experimentally
verified, this improved the results for all compared methods. The errors of each
compared method for each database, accompanied by increasing Gaussian noise
in the input, is shown in Fig. 3. Although PLDA offers a substantial improve-
ment wrt. deterministic LDA and performs better than FK-LDA, it is clear that
the proposed EM-LDA outperforms other compared LDA variants. This can
be attributed to the explicit variance modelling (both for observations and per
dimension) in our models, which appears to enable more robust classification.
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Fig. 3. Recognition error on PIE, YALE and AR under increasing Gaussian noise,
comparing LDA, FK-LDA [28] the proposed EM-LDA and PLDA [14]

Real Data: Face Visualisation via EM-LPP. One of the typical appli-
cations of Neighbour Embedding methods is the visualisation of, usually high-
dimensional, data at hand. In particular, LPPs have often been used in visualising
faces, providing an intuitive understanding of the variance and structural proper-
ties of the data [16], [7]. In order to evaluate the proposed EM-LPP, which is to the
best of our knowledge the first probabilistic equivalent to LPP [13], we experiment
on the Frey Faces database [18], which contains 1965 images, captured as sequen-
tial frames of a video sequence. We apply a similar experiment to [7]. We firstly
perturbed the images with random Gaussian noise, while subsequently we apply
EM-LPP and LPP. The resulting space is illustrated in Fig. 4. It is clear that the
deterministic LPP was unable to cope with the added Gaussian noise, failing to
capture a meaningful data clustering. Note that the proposed EM-LPP was able
to well capture the structure of the input data,modelling both pose and expression
within the inferred latent space.
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Fig. 4. Latent projections obtained by applying the proposed EM-LPP and LPP [13]
to the Frey Faces database, with each image perturbed with random Gaussian noise

6 Conclusions

In this paper we introduced a novel, unifying probabilistic component analysis
framework, reducing the construction of probabilistic component analysis mod-
els to selecting the proper latent neighbourhood via the design of the latent
connectivity. Our framework can thus be used to introduce novel probabilistic
component analysis techniques by formulating new latent priors as products of
MRFs. We have shown specific priors which when used, generate probabilistic
models corresponding to PCA, LPP, LDA and SFA, and by doing so, we in-
troduced the first, favourable complexity-wise, probabilistic equivalent to LPP.
Finally, by means of theoretical analysis and experiments, we have demonstrated
various advantages that our proposed methods pose against existing probabilistic
and deterministic techniques.
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Abstract. In data mining and machine learning, the embedding methods have
commonly been used as a principled way to understand the high-dimensional
data. To solve the out-of-sample problem, local preserving projection (LPP) was
proposed and applied to many applications. However, LPP suffers two crucial
deficiencies: 1) the LPP has no shift-invariant property which is an important
property of embedding methods; 2) the rigid linear embedding is used as con-
straint, which often inhibits the optimal manifold structures finding. To overcome
these two important problems, we propose a novel flexible shift-invariant locality
and globality preserving projection method, which utilizes a newly defined graph
Laplacian and the relaxed embedding constraint. The proposed objective is very
challenging to solve, hence we derive a new optimization algorithm with rigor-
ously proved global convergence. More importantly, we prove our optimization
algorithm is a Newton method with fast quadratic convergence rate. Extensive
experiments have been performed on six benchmark data sets. In all empirical
results, our method shows promising results.

1 Introduction

In many data mining applications, it is highly desirable to map high-dimensional in-
put data to a lower dimensional space, with a constraint that the data from similar
classes will be projected to nearby locations in the new space. Thus, many data em-
bedding methods have been developed. Depending on whether the label information is
used, these methods can be classified into two categories, i.e., unsupervised and super-
vised. A representative of unsupervised embedding methods is PCA [11], which aims
at identifying a lower-dimensional space maximizing the variance among data. A rep-
resentative of supervised embedding methods is LDA [4], which aims at identifying
a lower dimensional space minimizing the inter-class similarity while maximizing the
intra-class similarity simultaneously.

To discover the intrinsic manifold structure of the data, multiple nonlinear embed-
ding algorithms have been recently proposed to use an eigen-decomposition for ob-
taining a lower-dimensional embedding of data lying on a non-linear manifold, such
as Isomap [22], LLE [19], Laplacian Eigenmap [2], Local Tangent Space Alignment
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(LTSA) [25] and Local Spline Embedding (LSE) [24]. However, many of them, such
as Isomap and Laplacian Eigenmap, suffer from the out-of-sample problem, i.e. how to
embed new points in relation to a previously specified configuration of fixed points.
To deal with this problem, He et al. [7] developed the Locality Preserving Projec-
tions (LPP) method, in which the linear embedding function is used for mapping new
data.Nie et al. [18] proposed a flexible linearization technique in which LPP and spec-
tral regression [3] are two extreme cases.

Although LPP solved the out-of-sample problem, two crucial deficiencies exist in
current LPP based methods. First, LPP has no shift-invariant property which is a basic
property of subspace learning methods. The learned subspace (or the projection matrix)
should be invariant when all training data points are shifted by the same constant vector.
Second, in LPP, the rigid linear embedding is used as constraint, which often limits the
search of optimal manifold structures.

To resolve these two important problems, we propose a novel flexible shift invariant
locality and globality preserving projection (FLGPP) method. We reformulate the LPP
objective using a correct Laplacian matrix which makes the new method shift invariant.
Meanwhile, we show that the graph embedding methods are indeed locality and glob-
ality preserving projection methods, which were only considered as keeping the local
geometrical structure. We relax the rigid linear embedding by allowing the error toler-
ance such that the data instances can be flexibly embedded. The proposed objective is
very difficult to solve. As one important contribution of this paper, we derive a new op-
timization algorithm with proved global convergence. More importantly, we rigorously
prove that our new optimization algorithm is a Newton method with fast quadratic con-
vergence rate. To evaluate our method, we compare the new method to the LDA and
LPP methods by performing them on six benchmark data sets. In all empirical results,
our new FLGPP method shows promising results.

2 Locality Preserving Projections Revisit

2.1 Review of Related Graph Based Methods

Given n training data points X = [x1, · · · , xn] ∈ Rd×n, where d is the data dimension-
ality and n is the number of data points, the graph based methods first construct a graph
based on the data to encode the pairwise data similarities. With the graph affinity matrix
A ∈ Rn×n, the Laplacian matrix is defined as L = D − A, where D is the diagonal
matrix with the i-th diagonal element Dii =

∑
i Aij . L is positive semi-definite, and

satisfies L1 = 0, where 1 is a vector having all elements as 1s, and 0 is a vector having
all elements as 0s.

Traditional spectral clustering (or graph cut) [21,15] and Laplacian embedding (or
graph embedding, manifold learning) [2] is to solve the following problem:

min
FTQF=I

Tr(FTLF ), (1)

where Q would be D or the n by n identity matrix I . The optimal solution F ∈
Rn×m(m < n) to Eq. (1) is the eigenvectors of Q−1L corresponding to the small-
est eigenvalues.
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The methods solving problem Eq. (1) only use the given training data, with no
straightforward extension for out-of-sample examples. To handle the out-of-sample
problem, a seminal work called Locality Preserving Projections (LPP) was proposed
[7], which is to solve the following problem:

min
FTQF=I

XTW=F

Tr(FTLF ), (2)

where W ∈ Rd×m(m < d) is the projection matrix. This linearization method imposes
a rigid constraint XTW = F on the problem Eq. (1), such that the data outside the
training data can also be handled using the projection W . In LPP, only Q = D is
considered, thus the problem Eq. (2) can be written as:

min
WTXDXTW=I

Tr(WTXLXTW ). (3)

The optimal solution W to LPP is the eigenvectors of (XDXT )−1XLXT correspond-
ing to the smallest eigenvalues. Many algorithms following this linearization method
are also proposed for subspace learning and classifications in recent years.

2.2 Shift-Invariant Property

For subspace learning algorithms, shift invariance is a basic and important property.
That is to say, the learned subspace (or the projection matrix W ) should be invariant
when every training data point xi is shifted by the same constant vector ci, i.e., X is
shifted to X + c1T . For example, PCA, LDA and regularized least squares regression
are all shift-invariant algorithms. We are going to demonstrate this observation.

PCA solves:
min

WTW=I
Tr(WTXLtX

TW ), (4)

where Lt = I− 1
n11

T is the centering matrix, which is a Laplacian matrix and satisfies
Lt1 = 0. As a result, we have (X + c1T )Lt(X + c1T )T = XLtX

T , and thus the op-
timal solution W will not be changed when the training data are shifted by an arbitrary
vector c.

LDA is to solve:

max
W

Tr((WTXLwX
TW )−1WTXLbX

TW ), (5)

whereLw and Lb are another two Laplacian matrices satisfying Lw1 = 0 and Lb1 = 0.
Obviously we have (X + c1T )Lw(X + c1T )T = XLwX

T and (X + c1T )Lb(X +
c1T )T = XLbX

T , and thus the optimal solution W is also invariant to an arbitrary
shift vector c.

Ridge regression solves:

min
W,b

∥∥XTW + 1bT − Y
∥∥2
F
+ γ ‖W‖2F , (6)

which has a closed form solution W = (XLtX
T + γI)−1XLtY . Thus, the optimal

solution W of the ridge regression is also invariant to arbitrary shift vector c.
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One can immediately observe that the original LPP algorithm does not satisfy the
shift-invariant property. When the data points are shifted by a same constant vector,
although the distribution of the data points is not changed, the learned subspace by LPP
will be changed. This problem should be avoided for a subspace learning algorithm.

3 Shift-Invariant Locality Preserving Projections

The original LPP was derived from Eq. (1), in which the optimal solution is the eigen-
vectors of Q−1L corresponding to the smallest eigenvalues. However, the smallest
eigenvalue of Q−1L is 0 and the corresponding eigenvector is 1, which is usually dis-
carded in practice. Thus the actual solutions are the eigenvectors of Q−1L correspond-
ing the eigenvalues starting from the second smallest one, which is the solution to the
following problem:

min
FTQF=I

FTQ1=0

Tr(FTLF ). (7)

Note that there is an additional constraint FTQ1 = 0 in the problem. In the lineariza-
tion method, when we use the linear constraint XTW = F , the additional constraint
FTQ1 = 0 can not be satisfied since WTXQ1 
= 0. To fix this problem, we use the
linear constraint with bias XTW + 1bT = F , where b ∈ Rm×1 is the bias vector.
With the additional constraint FTQ1 = 0, we have (WTX + b1T )Q1 = 0 ⇒ b =
− 1

1TQ1W
TXQ1. Thus the linear constraint with bias in the linearization method is:

(I − 1

1TQ1
11TQ)XTW = F. (8)

By imposing the linear constraint Eq.(8) to problem (1) or (7), the shift-invariant LPP
is to solve the following problem [16]:

min
FTQF=I

(I− 1

1T Q1
11TQ)XTW=F

Tr(FTLF ) . (9)

Define

Lq = Q− 1

1TQ1
Q11TQ , (10)

then the problem (14) can be re-written as

min
WT XLqXTW=I

Tr(WTXLXTW ). (11)

Note that L and Lq are Laplacian matrix satisfying L1 = 0 and Lq1 = 0, so we have
(X + c1T )L(X + c1T )T = XLXT and (X + c1T )Lq(X + c1T )T = XLqX

T .
Therefore, the optimal solution W of the problem (11) is invariant to arbitrary shift
vector c.

From the above analysis we know that, the constraint WTXQXTW = I (Q is a di-
agonal matrix such as D or I) will make the learned subspace does not satisfy the basic
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shift invariance property. The correct constraint should be WTXLqX
TW = I . There

are many works following LPP used the constraint WTXDXTW = I , so this issue
should be pointed out. Although this issue could be alleviated if we centralize the data
such that the mean of the training data is zero, the users who are not aware of this issue
may not always perform this preprocessing when they apply this kind of algorithms.
Therefore, it is worth to emphasizing that the correct constraint WTXLqX

TW = I
instead of the WTXQXTW = I should be used in subspace learning algorithm
design.

4 Flexible Locality and Globality Preserving Embedding

4.1 Local and Global Viewpoints of The Graph Based Methods

It was known that the graph based data mining methods capture the local geometrical
structure in training data. We will show that the graph based methods Laplacian em-
bedding (solving Eq. (7)) and shift-invariant LPP (solving Eq. (11)) can capture both of
local and global geometrical structure in training data.

Under the constraints in the problem (7), and according to Eq. (10), we know
Tr(FTLqF ) is a constant. So problem (7) is equivalent to the following problem:

min
FTQF=I

FTQ1=0

Tr(FTLF )

Tr(FTLqF )
. (12)

Note that the following two equations hold:

Tr(FTLF ) =

n∑
i=1

n∑
j=1

Aij ‖fi − fj‖2,

T r(FTLqF ) =
n∑

i=1

Qii

∥∥fi − f̄
∥∥2, (13)

where f̄ =
n∑

i=1

Qiifi/
n∑

i=1

Qii is the weighted mean of fi|n1 . When Q = I , Tr(FTLqF )

is the variance of the n embedded data points fi|n1 . When Q = D, Tr(FTLqF ) is the
weighed variance of the n embedded data points fi|n1 with the weight Dii for the i-th
embedded data point fi.

Thus, from Eq. (13), we can conclude that solving the problem (12) is to minimize
the Euclidean distances between local data pairs in the embedded space and also to
maximize the (weighted) variance of the total data points in the embedded space at
the same time, which provides us a new understanding on the Laplacian embedding
methods.

Similarly, problem (11) is equivalent to the following problem

min
WTXLqXTW=I

Tr(WTXLXTW )

Tr(WTXLqXTW )
. (14)
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Thus, solving the problem (11) is to minimize the Euclidean distances between local
data pairs in the projected subspace and also to maximize the (weighted) variance of the
total data points in the projected subspace at the same time. That is to say, although the
algorithm LPP is called “locality preserving”, it can preserve both of the locality and
globality structure in the training data.

If we use the orthogonal constraint instead of the constraint WTXLqX
TW = I ,

the problem (14) becomes the trace ratio LPP problem [16], which can be efficiently
solved by an iterative algorithm with quadratic convergence rate [23,10]:

min
WTW=I

Tr(WTXLXTW )

Tr(WTXLqXTW )
. (15)

4.2 Locality and Globality Preserving Projections with Flexible Constraint

Traditional linearization method imposes a constraint XTW = F to learn the projec-
tion matrix W . Because F in the original problems (e.g. Eq. (1)) usually is nonlinear,
imposing the constraint that F must be exactly equal to the linear model XTW is too
rigid in practice. In this paper, we propose to use a flexible constraint

∥∥XTW − F
∥∥2
F
≤

δ instead of the rigid constraint XTW = F in the linearization method. With this
flexible linearization constraint and motivations inspired by Eq. (12), we propose the
Flexible Locality and Globality Preserving Projections (FLGPP), which is to solve :

min
F,WTW=I

||XTW−F ||2F≤δ

Tr(FTLF )

Tr(FTLqF )
. (16)

The problem (16) is equivalent to

min
F,WTW=I

Tr(FTLF )

Tr(FTLqF )
+ λ

∥∥XTW − F
∥∥2
F
, (17)

where λ > 0 is the Lagrangian multiplier coefficient. We propose to solve a similar
problem to Eq. (17) for the FLGPP as follows:

min
F,WTW=I

Tr(FTLF ) + γ
∥∥XTW − F

∥∥2
F

Tr(FTLqF )
. (18)

This new objective is very difficult to optimize, because there are two variables W and
F to be solved. Moreover, the non-convex objective function is a ratio of two terms,
meanwhile there is a non-convex constraint in the problem, which makes the optimiza-
tion procedure more challenging. In next section, as one important contribution of this
paper, we will propose an effective algorithm to solve the proposed objective, and also
prove the algorithm converges to the global optimal solution with quadratic convergence
rate, even though the problem is not convex.
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5 New Optimization Algorithm

5.1 Proposed Algorithm

Denote N = (L− λLq + γI)−1 and define a function g(λ) as follows:

g(λ) = min
F,WTW=I

TrFT (L − λLq)F + γ
∥∥XTW − F

∥∥2
F

(19)

Eq. (19) can be written as:

g(λ) = min
F,WTW=I

Tr(FTN−1F )

+γT r(WTXXTW )− 2γT r(WTXF )
(20)

From Eq. (20) we know N should be positive definite to guarantee the objective func-
tion is convex w.r.t. F , otherwise the objective function in Eq. (19) is not bounded.
Suppose N is positive definite, by setting the derivative of Eq. (20) w.r.t. F to zero, we
have

F = γNXTW (21)

Substituting F into Eq. (20), we have

g(λ) = min
WTW=I

TrWTX(I − γN)XTW (22)

The optimal solutionW consists of the m eigenvectors ofX(I−γN)XT corresponding
to the smallest eigenvalues.

If we have an initial value λ0 satisfying the following two conditions: N0 = (L −
λ0Lq + γI)−1 is positive definite (i.e., the smallest eigenvalues of N0 is larger than 0)
and g(λ0) ≤ 0 (i.e., the sum of the m smallest eigenvalues of X(I − γN0)X

T is not
larger than 0), we will have the algorithm to solve the proposed objective. The detailed
algorithm to solve the problem (18) is described in Algorithm 1.

In the following subsections, we will prove our algorithm converges to the global op-
timal solution and provide the approach to find a λ0 to satisfy the above two conditions.

5.2 Convergence Analysis of Our Algorithm

Denote

J(F,W ) =
Tr(FTLF ) + γ

∥∥XTW − F
∥∥2
F

Tr(FTLqF )
(23)

Assume λ∗ = J(F ∗,W ∗) is the global optimal value of the objective function in
Eq. (18). Denote

h(F,W ;λ) = TrFT (L− λLq)F + γ
∥∥XTW − F

∥∥2
F

(24)

then g(λ) = min
F,WTW=I

h(F,W ;λ).

Similar to the standard trace ratio problem [17], we have the following results.
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Algorithm 1. Algorithm to solve the problem (18)
Input: X , Positive semi-definite matrices L and Lq , γ, m.
Initialize λ0 such that N0 = (L− λ0Lq + γI)−1 is positive definite and g(λ0) ≤ 0.
Let t = 1.
repeat

1. Calculate Nt−1 = (L− λt−1Lq + γI)−1.
2. Calculate Wt, in which the columns are the m eigenvectors of X(I − γNt−1)X

T corre-
sponding to the smallest eigenvalues.
3. Calculate Ft = γNt−1X

TWt.

4. Calculate λt =
Tr(WT

t X(I−γNt−1)X
T Wt)

γTr(WT
t XNt−1LqNt−1X

TWt)
+ λt−1.

5. Let t = t+ 1.
until Converge
Output: F , W .

Lemma 1. The below three equations hold:

g(λ) = 0 ⇒ λ = λ∗ (25)

g(λ) > 0 ⇒ λ < λ∗ (26)

g(λ) < 0 ⇒ λ > λ∗ (27)

Proof: Since λ∗ = J(F ∗,W ∗) is the global optimal value, ∀F,WTW = I , we have
J(F,W ) ≥ λ∗. So h(F ∗,W ∗;λ∗) = 0 and h(F,W ;λ∗) ≤ 0. Thus min

F,WTW=I

h(F,W ;λ∗) = 0, that is, g(λ∗) = 0. Similarly we can get Eq. (25).
If λ ≥ λ∗, then

g(λ) = min
F,WTW=I

h(F,W ;λ) ≤ h(F ∗,W ∗;λ)

= g(λ∗) + (λ∗ − λ)Tr(F ∗TLpF
∗)

= (λ∗ − λ)Tr(F ∗TLpF
∗)

≤ 0, (28)

which concludes Eq. (26).
If λ ≤ λ∗, then

g(λ) (29)

= min
F,WTW=I

h(F,W ;λ)

= min
F,WTW=I

h(F,W ;λ∗) + (λ∗ − λ)Tr(FTLpF )

≥ min
F,WTW=I

h(F,W ;λ∗) + min
F

(λ∗ − λ)Tr(FTLpF )

= g(λ∗) + (λ∗ − λ)min
F

Tr(FTLpF )

= 0,

which concludes Eq. (27). �
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Theorem 1. In each iteration of Algorithm 1, the value of the objective function in
Eq. (18) will not increase.

Proof: According to Step 3 in Algorithm 1, Ft = γNt−1X
TWt, and notice Nt−1 =

(L− λt−1Lq + γI)−1 according to Step 1, hence we have

J(Ft,Wt) =
Tr(FT

t LFt) + γ
∥∥XTWt − Ft

∥∥2
F

Tr(FT
t LqFt)

=
TrWT

t X(I − γNt−1)X
TWt

γT rWT
t XNt−1LqNt−1XTWt

+ λt−1

= λt . (30)

Thus, λt = J(Ft,Wt) ≥ J(F ∗,W ∗) = λ∗. According to Eq. (26) in Lemma 1,
g(λt) ≤ 0. On the other hand, according to the condition of λ0, we have g(λ0) ≤ 0.
Therefore, for t ≥ 0, g(λt) ≤ 0.

According to Steps 2 and 3, {Ft+1,Wt+1} are the optimal solutions to g(λt), so
g(λt) = h(Ft+1,Wt+1;λt). Therefore, for t ≥ 0, we have

g(λt) ≤ 0 (31)

⇒ h(Ft+1,Wt+1;λt) ≤ 0

⇒
Tr(FT

t+1LFt+1) + γ
∥∥XTWt+1 − Ft+1

∥∥2
F

Tr(FT
t+1LqFt+1)

≤ λ

⇒ J(Ft+1,Wt+1) ≤ J(Ft,Wt) ,

which completes the proof.
�

Note that J(Ft,Wt) has lower bound, thus the Algorithm 1 will converge.

Theorem 2. The Algorithm 1 converges to the global optimal solution.

Proof: According to Step 4 in Algorithm 1,

λt+1 =
TrWT

t+1X(I − γNt)X
TWt+1

γT rWT
t+1XNtLqNtXTWt+1

+ λt . (32)

Note that λt+1 = λt in the convergence. Therefore

λt+1 =
TrWT

t+1X(I − γNt)X
TWt+1

γT rWT
t+1XNtLqNtXTWt+1

+ λt+1 (33)

⇒
TrWT

t+1X(I − γNt)X
TWt+1

γT rWT
t+1XNtLqNtXTWt+1

= 0

⇒ TrWT
t+1X(I − γNt)X

TWt+1 = 0

⇒ g(λt) = 0.

According to Eq. (25) in Lemma 1, λt = λ∗. Therefore, the converged solution of
Algorithm 1 is the global optimal solution. �

To study the convergence rate of our algorithm, we prove the following theorem.
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Theorem 3. The Algorithm 1 is a Newton’s method to find the root of g(λ) = 0.

Proof: Denote the i-th smallest eigenvalue of X(I − γNt)X
T by βi(λt) and the corre-

sponding eigenvector by wi(λt). According to the definition of eigenvalues and eigen-
vectors, we have:

(X(I − γNt)X
T − βi(λt)I)wi(λt) = 0 (34)

⇒ ∂(X(I − γNt)X
T − βi(λt)I)wi(λt)

∂λt
= 0

⇒ (−γXNtLqNtX
T − β′

i(λt)I)wi(λt) +

(X(I − γNt)X
T − βi(λt)I)w

′
i(λt) = 0

⇒ wT
i (λt)(−γXNtLqNtX

T − β′
i(λt)I)wi(λt) +

wT
i (λt)(X(I − γNt)X

T − βi(λt)I)w
′
i(λt) = 0

⇒ wT
i (λt)(−γXNtLqNtX

T − β′
i(λt)I)wi(λt) = 0

⇒ β′
i(λt) = −γwT

i (λt)XNtLqNtX
Twi(λt)

From Eq. (22) we know, g(λ) = min
WT W=I

trWTX(I − γN)XTW , so g(λt) =

m∑
i=1

βi(λt). Then we have:

g′(λt) =
m∑
i=1

β′
i(λt)

=

m∑
i=1

−γwT
i (λt)XNtLqNtX

Twi(λt)

= −γT r(WT
t+1XNtLqNtX

TWt+1) . (35)

According to Step 4 in Algorithm 1, we have:

λt+1 =
Tr(WT

t+1X(I − γNt)X
TWt+1)

γT r(WT
t+1XNtLqNtXTWt+1)

+ λt

= λt −
g(λt)

g′(λt)
. (36)

Thus the iterative procedure of Algorithm 1 is essentially a Newton’s method to find the
root of g(λ) = 0.

�

It is well known the rate of convergence of Newton’s method is quadratic conver-
gence under mild conditions, which is very fast to converge in practice. In our experi-
ments, we find that the Algorithm 1 indeed converges very fast, and always converges
within 5-20 iterations.

5.3 Approach to Find An Initial λ0

Lemma 1 can be used to find a feasible λ0 that satisfies the following two conditions:
N0 = (L− λ0Lq + γI)−1 is positive definite and g(λ0) ≤ 0.
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Algorithm 2. Find a feasible value λ0

Initialize F and W such that W TW = I . Let:

λmin = 0 and λmax =
Tr(FTLF )+γ‖XTW−F‖2

F

Tr(FT LqF )
.

repeat
Let λ0 = λmin+λmax

2
, N0 = (L− λ0Lq + γI)−1.

if the smallest eigenvalue of N0 is not larger than 0 then
λmax ← λ0.

end if
if the sum of the m smallest eigenvalues of X(I − γN0)X

T is larger than 0 then
λmin ← λ0.

end if
until N0 is positive definite and the sum of the m smallest eigenvalues of X(I − γN0)X

T is
not larger than 0

We apply bisection method to find such a λ0. First, we evaluate the lower bound
λmin and upper bound λmax of such a λ0. According to Lemma 1, g(λ0) ≤ 0 indicates
λ0 ≥ λ∗. If L and Lq are positive semi-definite, λ∗ ≥ 0, so we can set the initial
lower bound λmin = 0. 1 Randomly initialize F and W such that WTW = I , we
have J(F,W ) ≥ λ∗, so we can set the initial upper bound λmax = J(F,W ). With the
initial lower and upper bounds λmin and λmax, we can use the bisection method to find
a feasible λ0 satisfying the two conditions. If N0 is not positive, then the current λ0

is too large, we update the upper bound λmax with the current λ0. If g(λ0) > 0, then
λ0 < λ∗, which indicates the current λ0 is too smaller, we update the lower bound λmin

with the current λ0. The detailed approach is described in Algorithm 2.
It is worth noting that similar method can also be used to find an initial λ0 for solving

a different problem in [9], such that the algorithm in [9] is applicable with any parameter
combination. We have updated the code for [9] in the author’s website.

5.4 Shift Invariance of The Algorithm

It can be easily verified that (I − γN)1 = 0, so we have (X + c1T )(I − γN)(X +
c1T )T = X(I − γN)XT . Thus, according to the Algorithm 1, the optimal solution W
to the problem (18) is invariant to arbitrary shift vector c.

6 Experiment

We evaluate the performance of the proposed flexible shift-invariant locality and glob-
ality preserving projection (FLGPP) on six benchmark data sets with the comparison to

1 If the symmetric matrix L is not positive and Lq is positive, we can set λmin to the smallest
eigenvalue σ of L−1

q L since it can be verified λ∗ ≥ σ. We can also evaluate the smallest
eigenvalue of L and the largest eigenvalue of Lq using the Gershgorin circle theorem to avoid
computing the eigenvalue.
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four related supervised embedding approaches, including multi-class Linear discrimi-
nant analysis (LDA), locality preserving projection (LPP), shift-invariant locality pre-
serving projection (SILPP) in §3 as well as trace ratio locality preserving projection
(TLPP) in §4.1.

Table 1. The summary of six benchmark datasets used in the experiments

data name # classes(k) image size # data point(n) # training per class
AT&T [20] 40 28× 23 400 4

UMIST [6] 20 112× 92 575 6

BINALPHA [1] 36 20× 16 1404 6

COIL20 [14] 20 32× 32 1440 12

YALEB [5] 31 24× 21 1984 8

AR [12] 120 32× 24 840 3

6.1 Data Descriptions

We use six image benchmark data sets in our experiments, because these data typically
have high dimensionality.
AT&T [8] data set has 40 distinct subjects and each subject has 10 images. We down-
sampled each image (standard procedure to reduce the misalignment effect) to the size
of 28× 23. The training number per class is 4.
UMIST faces are for multiview face recognition. This data set contains 20 persons and
totally there are 575 images. All these images of UMIST database are cropped and re-
sized into 112× 92 images. The training number per class is 6.
Binary Alpha data set contains binary digits of 0 through 9 and capital A through Z
with size 20 × 16. There are 39 examples of each class. We randomly select 6 images
per class as the training data.
Columbia University Image Library (COIL-20) data set [13] consists of color images
of 20 objects where the images of the objects were taken at pose intervals of 5 degree,
form the front view with 0 degree. Thus, there are 72 poses per objects. The images are
converted to gray-scale image and they are normalized to the size of 32 × 32 pixels in
our experiment. We randomly pick up 12 images for each object to do the training.
Yale database B data set [5] contains single light source images of 38 subjects (10 sub-
jects in original database and 28 subjects in extended one) under 576 viewing conditions
(9 poses × 64 illumination conditions). We fixed the pose. Thus, for each subject, we
obtained 64 images under different lighting conditions. The facial areas were cropped
into the final images for matching [5]. The size of each cropped image in our experi-
ments is 24× 21 pixels, with 256 gray levels per pixel. Because there is a set of images
which are corrupted during the image acquisition [5], we have 31 subjects. We ran-
domly select 64 illumination conditions for all 31 subjects to create the experimental
dataset with 1984 images and randomly pick up 8 images per subject to do the training.
AR face database contains 120 people with different facial expressions, lighting condi-
tions and occlusions. Each person has 26 different images, and the image resolution is
50× 40. We random select 7 images per person and downsample the each image to the
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size of 32× 24 to obtain the experimental dataset with 840 images. Then, we randomly
select 3 per class as the training dataset.

We summarize the six data sets that used in our experiments in Table 1, and some
image samples of the data sets are shown in Figure 1.

Fig. 1. Examples of the six data sets used in our experiments. From the first row to the sixth row:
AT&T, UMIST, BINALPHA, COIL20, YALEB, AR.

6.2 Experiment Setup

In the training step, we firstly build the graph using the strategy described in next para-
graph. Based on the same graph structure, five different embedding methods are con-
ducted for a pre-defined reduced dimension. After we get the projection matrices for
different methods, in the testing step, we use the simple k-NN (k=1) classifier (a simple
classifier can avoid introducing any bias) to classify the testing data in the embedded
space. In each experiment, we randomly select several data point per class for train-
ing and the rest are used as for testing. The average classification accuracy rates and
standard deviations are reported over 50 random splits.

Regarding the graph construction, since we are discussing supervised embedding
methods, we utilize the label information of the training data to build the graph. To be
specific, wi,j = 1, if i-th training data point and j-th training data point belong to the
same class; wi,j = −1, otherwise. We also remove the self-loop, i.e. let wi,j = 0, if
i = j. The regularization parameter in FLGPP is set to 0.1 in all the experiments. We
record the average classification accuracy rate V.S. the different reduced dimensions
for all the methods. For multi-class LDA, we only record its performance up to C − 1,
where C is the number of classes.
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(b) UMIST
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(c) BINALPHA
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(d) COIL20
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(e) YALEB
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Fig. 2. The average (50 trials with random data split) classification accuracy of k-NN method on
the embedded data by five different embedding approaches
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Table 2. The average classification accuracy rate± standard deviation on six benchmark datasets
among all the reduced dimension from 5 to C − 1

data name MLDA LPP SILPP TLPP FLGPP
AT&T 87.70 ± 2.06 87.24 ± 1.96 87.83 ± 2.49 93.48 ± 1.72 94.28± 1.91

UMIST 88.00 ± 2.63 86.24 ± 2.91 87.72 ± 2.70 94.07 ± 2.08 94.22± 2.07

BINALPHA 18.33 ± 1.52 17.63 ± 1.55 18.63 ± 1.44 30.89 ± 1.92 31.38± 3.24

COIL20 86.43 ± 1.53 85.16 ± 1.69 85.95 ± 1.49 91.03 ± 1.27 92.26± 1.07

YALEB 68.76 ± 5.25 66.74 ± 6.22 68.87 ± 5.67 73.75 ± 2.05 74.05± 2.56

AR 89.15 ± 1.18 88.68 ± 1.35 89.23 ± 1.31 92.28 ± 1.22 92.39± 1.14

6.3 Experiment Results

Fig. 2 shows the average classification accuracy rate evaluated by 1-NN v.s. the num-
ber of the reduced dimension on six datasets over 50 random data split. From Fig. 2
we clearly observe that the performance of our proposed FLGPP method consistently
outperforms that of the other embedding approaches, especially when the reduced di-
mension is low. When the reduced dimension becomes larger, the performance of
FLGPP and TLPP become similar. But they still beat the other three methods largely.
Table 2 demonstrates the mean ± standard deviation of the best classification accuracy
rate among all the reduced dimensions from 5 to C − 1 for different algorithms.

7 Conclusion

In this paper, we proposed a novel flexible shift-invariant locality and globality pre-
serving projection (FLGPP) method. A refined graph Laplacian was formulated and
used to preserve the shift-invariant property. Meanwhile, the relaxed linear embedding
was introduced to allow the error tolerance, such that the flexible embedding results
can reach the more optimal manifold structures. Because the proposed new objective is
very difficult to solve, we derived a new optimization algorithm with rigorously proved
global convergence. Moreover, we proved the new algorithm is a Newton method with
the quadratic convergence rate. We evaluated our FLGPP method on six benchmark
data sets. In all empirical results, our new method is consistently better than the related
methods.
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Abstract. Data understanding is an iterative process in which domain experts
combine their knowledge with the data at hand to explore and confirm hypotheses.
One important set of tools for exploring hypotheses about data are visualizations.
Often, however, traditional, unsupervised dimensionality reduction algorithms are
used for visualization. These tools allow for interaction, i.e., exploring different
visualizations, only by means of manipulating some technical parameters of the
algorithm. Therefore, instead of being able to intuitively interact with the visual-
ization, domain experts have to learn and argue about these technical parameters.
In this paper we propose a knowledge-based kernel PCA approach that allows for
intuitive interaction with data visualizations. Each embedding direction is given by
a non-convex quadratic optimization problem over an ellipsoid and has a globally
optimal solution in the kernel feature space. A solution can be found in polyno-
mial time using the algorithm presented in this paper. To facilitate direct feedback,
i.e., updating the whole embedding with a sufficiently high frame-rate during in-
teraction, we reduce the computational complexity further by incremental up- and
down-dating. Our empirical evaluation demonstrates the flexibility and utility of
this approach.

Keywords: Interactive visualization, kernel methods, dimensionality reduction.

1 Introduction

We investigate a variant of kernel principal component analysis (PCA) which allows do-
main experts to directly interact with data visualizations and to add domain-knowledge
and other constraints in an intuitive way. Data visualization is an important part of
knowledge discovery and at the core of data understanding and exploration tasks (see,
e.g., (author?) [22]). Its importance for data science has been recognized already by
(author?) [24]. While knowledge discovery is inherently interactive and iterative, most
data visualizations are inherently static (we survey several methods in Section 2). Switch-
ing methods and changing algorithmic parameters allow for some interaction with the
visualization but this interaction is rather indirect and only feasible for machine learning
experts rather than domain experts. As data science and its tools are, however, getting
more and more widespread, the need arises for tools that allow domain experts to di-
rectly interact with the data.

� Parts of this work have been presented in workshops [18, 19].
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Our interactive and knowledge-based variant of kernel PCA (described in detail in
Section 3) incorporates different forms of supervision either as soft- or hard constraints.
In particular, it allows for the placement of ‘control points’, the addition of must-link
and cannot-link constraints, as well as being able to incorporate known class labels.
Here, the motivation behind constraints is that the domain experts can choose one low
dimensional embedding from the many possible ones not by tuning parameters but by
dragging chosen data points in the embedding or grouping them by similarity and class
labels whereby all related data points automatically and smoothly adjust their location
accordingly. Similar to kernel PCA, each embedding direction/dimension corresponds
to a function in the underlying reproducing kernel Hilbert space. For each direction, we
propose to find a function which (i) maximizes the variance along this direction, (ii)
has unit norm, (iii) is as orthogonal to the other functions as possible, and (iv) adheres
to the knowledge-based constraints as much as possible.

The optimization problem (analyzed in detail in Section 4) derived from the above
formulation is to maximize a—typically non-convex—quadratic function over an ellip-
soid subject to linear equality constraints. Unconstrained quadratic optimization prob-
lems over spheres have been investigated by (author?) [11] who generally suggested
two approaches: transforming the problem to a quadratic and then linear eigenvalue
problem or reducing the problem to solving a one-dimensional secular equation. While
both approaches have cubic complexity and the first approach is more elegant, the sec-
ond one is numerically much more stable. To solve the quadratic function over ellipsoid
subject to linear constraints, we extend the approach of (author?) [11] to this setting.

In order to allow a direct interaction with the embedding, i.e., updating the whole
embedding with a sufficiently high frame-rate, the cubic complexity of the just men-
tioned approaches is, however, not sufficient. To overcome this, we observe that in an
interactive set up it is hardly ever the case that the optimization problem has to be solved
from scratch. Instead, consecutive optimization problems will be strongly related and
indeed we show (in Section 5) that consecutive solutions differ only in rank-one updates
which allows for much more fluent and natural interaction.

Our experiments focus on demonstrating the flexibility and usability of our approach
in an interactive knowledge discovery setting (in Section 6). We show first that small
perturbations of the location of control points only lead to small perturbations of the
embedding of all points. This directly implies that it is possible to smoothly change the
embedding without sudden and unexpected jumps (large changes) of the visualization.
We then show that by appropriate placement of control points, knowledge-based kernel
PCA can mimic other embeddings. In particular, we consider the sum of two different
kernels and observe that by placing a few control points, the 2D kernel PCA embedding
of either of the original kernels can be reasonably well recovered. In addition, we inves-
tigate the amount of information retained in low-dimensional embeddings. For that we
embed benchmark semi-supervised classification data sets in 2D space and compare the
predictive performance of learning algorithms in this embedding with other approaches.
Last but not least, we show it is possible to discover structures within the data that do
not necessarily exhibit high correlation with variance and, thus, remain hidden in the
plain kernel PCA embedding.
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2 Related Work

Interaction with traditional machine learning algorithms is hardly intuitive and forces
domain experts to reason about parameters of the algorithm instead of data. To over-
come this problem several tools for data visualization were designed with the ultimate
goal to facilitate the understanding of the underlying model and the interaction with
model parameters. One such tool facilitates the understanding of PCA by interpreting
the influence of the movement of a point in the projection space along the principal
directions on the coordinates of the corresponding instance in the input space [14]. The
interaction with the PCA is, however, limited to feature weighting which allows domain
experts to reason on the importance of particular features in the analyzed data set. In
contrast, a user study conducted by (author?) [1] shows domain experts prefer to inter-
act directly with a visualization by placing a few control points in accordance with the
current understanding of data. In general, user studies report benefits of the interactive
over the static approach in data visualization (see, e.g., (author?) [4, 14]).

In this paper we extend our previous work on interactive visualization in which we
proposed a variant of supervised PCA [19] and provided a tool for interactive data vi-
sualization InVis [18]. In contrast to supervised PCA [19] which allowed interaction
with a visualization only through the explicit placement of control points, the proposed
knowledge-based kernel PCA allows interaction through a variety of soft and/or hard
knowledge-based constraints (see Section 3.1, 3.2 or 3.3). Moreover, we relate the suc-
cessive optimization problems arising during the interaction with rank-one updates and
reduce the interaction complexity from cubic to quadratic in the number of data in-
stances. The InVis tool, on the other hand, enables interaction with a visualization us-
ing the least square projections (LSP). As argued in our workshop paper [19], the LSP
algorithm is in general not a good choice for data visualization and the same can be said
about any purely supervised learning algorithm (e.g. linear discriminant analysis [13]).
For instance, consider training a linear regression on a sparse high dimensional dataset.
If it is trained using very few instances, the weight vector will only be non-zero over the
union of their non-zero attributes and all instances having different non-zero attributes
will be mapped to the origin—a pretty cluttered visualization.

From the interactive visualization perspective, the most related to our work are tech-
niques developed by (author?) [8] and (author?) [16]. The proposed techniques al-
low placement of control points in a projection space, but the placement induces a
different form of interaction. Namely, movement of points is interpreted as a similarity
feedback (similar to must and cannot link constraints) and as such incorporated into
the model parameters. Our approach, on the other hand, focuses on the explicit place-
ment of control points enabling structural exploration of the data by observing how the
embedding reacts to a placement of a selected control point. Both approaches [8, 16]
perform interaction by incorporating expert feedback into the probabilistic PCA, multi-
dimensional scaling and generative topographic mapping. The means to incorporate
the similarity feedback into the named unsupervised algorithms are, however, limited
to feature weighting and heuristic covariance estimates. Moreover, probabilistic PCA
and multi-dimensional scaling approaches are highly sensitive to outliers and produce
visualizations with huge number of overlapping points for such data sets.
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From the methodological perspective, our method is a spectral method for semi-
supervised learning and closely related to the semi-supervised kernel PCA [25]. This
method can be described as a relaxation of T-SVM and/or a generalization of kernel
PCA. Three such generalizations are proposed by (author?) [25] and the closest to our
approach is the least square kernel PCA which can be viewed as choosing a projection
with the best L2-fit over the labelled data among the projections having a constant
variance.

Methods for dimensionality reduction are also related to data visualization, and in
many cases used primarily for visualization purposes. There are several well known
methods for dimensionality reduction, but the majority of them is unsupervised and un-
able to incorporate the gained knowledge into a lower dimensional data representation.
Some of the well known spectral methods for dimensionality reduction are principal
component analysis [15], metric multidimensional scaling [6], isomap [23], maximum
variance unfolding [26] and locally linear embedding [20]. Here we note that these
methods can be also viewed as instances of kernel PCA with a suitably defined kernel
matrix [12].

3 Knowledge-Based Kernel PCA

In this section we present a variant of semi-supervised kernel PCA which incorporates
various domain-knowledge constraints while still maximizing the variance of the data
‘along’ the set of unit norm functions defining the embedding. Our formulation can
take into account a variety of hard and/or soft constraints, allowing flexible placement
of control points in an embedding space, the addition of must-link and cannot-link con-
straints, as well as known class labels. The goal of the proposed algorithm is to allow do-
main experts to interact with a low-dimensional embedding and choose from the many
possible ones not by tuning parameters but by dragging or grouping the chosen data
points in the embedding whereby all related data points automatically and smoothly ad-
just their location accordingly. To make the visualization more flexible with respect to
orthogonality of maximum-variance directions we replace the usual hard orthogonality
constraint with a soft-orthogonality term in the objective function.

Let X = {x1, ...,xn} be a sample from an instance space X , H a reproducing kernel
Hilbert space with kernel k(·, ·) : X × X → R and HX = span{k(xi, ·)|xi ∈ X}.
We iteratively find the constant HX -norm maximum variance directions f1, ..., fd by
solving the following optimization problem

fs = argmax
f∈H

1

n

n∑
i=1

(f(xi)− 〈f, μ〉)2 + ρΩ(f, s)− ν
s−1∑
s′=1

〈fs′ , f〉
2

subject to ‖f‖HX = r,

Υ (f,ys) = 0,

(1)

where Ω is a soft and Υ is a hard constraint term, r ∈ R+, μ = 1
n

∑n
i=1 k(xi, ·) and

ys ∈ Rm (m < n) is chosen interactively. Here we note that Υ is a linear operator over
a direction f evaluated at x ∈ X . Additionally, the term can be used to express a hard
orthogonality over the computed directions.
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First, let us see that the weak representer theorem [7, 21] holds. As an optimizer
fs ∈ H we can write fs = us + vs with us ⊥ vs and us ∈ HX . For the computation
of the first extreme variance direction, f1, there is no soft orthogonality term in the
optimization objective. Plugging the substitution into Eq. (1) we conclude, provided
the theorem holds for the Ω term, that the optimization objective is independent of
vs, and the weak representer theorem holds in this case. For the computation of the s-
th variance direction fs (s > 1), we additionally have orthogonality terms 〈fs, fs′〉 =
〈us+vs, fs′〉 = 〈us, fs′〉 (s′ < s) which are also independent of vs. The hard constraint
term Υ is also independent of vs as it holds that fs(x) = us(x) for all x ∈ X . Therefore,
the weak representer theorem holds for problem (1) and we can express an optimizer as
fs =

∑
i αsik(xi, ·) with αsi ∈ R.

Now, using the representer theorem we can rewrite terms from problem (1) as:

〈f, μ〉 = 1

n

n∑
i=1

n∑
j=1

αik(xi,xj) =
1

n
eTKα,

s−1∑
s′=1

〈f, fs′〉2 = αTK

(
s−1∑
s′=1

αs′α
T
s′

)
Kα,

with e denoting the vector of ones. If we ignore the hard constraint term (in Section 4.2
we show we can incorporate it into the objective) we can write problem (1) as:

αs = argmax
α∈Rn

αTKWKα+ ρΩ(α, s)

subject to αTKα = r2,
(2)

with Hn = In − 1
nee

T and W = 1
nHn − ν

∑s−1
s′=1 αs′α

T
s′ .

In the following sections we introduce several, quadratic and linear, knowledge-
based constraints satisfying the weak representer theorem and enabling different forms
of interaction with a low-dimensional embedding.

3.1 The Placement of Control Points
The most natural form of interaction with a low-dimensional embedding is the move-
ment of control points across the projection space [1]. It is an exploratory form of
interaction enabling domain experts to explore the structure of the data by observing
how the embedding reacts to a movement of a selected control point. The placement of
control points can be incorporated into the kernel PCA as a ‘soft’ constraint with

Ω(f, s) = − 1

m

m∑
i=1

‖f(xi)− ysi‖2,

where ysi denotes the coordinate ‘along’ the projection axis fs of an example xi. That
the weak representer theorem holds for problem (1), including this Ω term, follows
along the same lines as above and we are able to express Ω as

Ω(α, s) = − 1

m

(
αTK[:n,:m]K[:m,:n]α− 2yT

s K[:m,:n]α
)
, (3)

with K[:m,:n] denoting rows in the kernel matrix K corresponding to control points.
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The alternative way is to treat the placements as hard constraints [19] and incorporate
them into Υ term which can be written as

Υ (f,ys) = K[:m,:n]α− ys = 0. (4)

Note that the soft constraint Ω is allowing some displacement which can lead to
better visualizations if noise is to be expected in the positions of the control points.

3.2 Must-Link and Cannot-Link Constraints

Domain knowledge can also be expressed in terms of similarity between points and the
knowledge-based term Ω can, for instance, be defined by pairing points which should
or should not be placed close to each other. Squared distances between projections of
paired points are then minimized for must-link pairs and maximized for cannot-link
pairs, i.e.

Ω(f, s) = − 1

|C |
∑

(i,l)∈C

yil(f(xi)− f(xl))
2,

where yil = +1 for a must-link and yil = −1 for a cannot-link constraint, and C
denotes the set of constraints. Analogously to the previous case, the weak representer
theorem holds and the constraint can be written as

Ω(α, s) = − 1

|C |α
TKLKα. (5)

Here Δil = ei − el and L =
∑

(i,l)∈C yilΔilΔ
T
il is a Laplacian matrix of the graph

weighted with yil.

3.3 Classification Constraints

In this case domain-knowledge is incorporated by providing positive and negative class
labels for a small number of instances and the ‘soft’ knowledge-based term Ω can be
written as

Ω(f, s) = 〈f, μ±〉 , with μ± =
1

m

m∑
i=1

yik(xi, ·).

Similar to previous cases, it can be checked that the weak representer theorem holds
and the Ω term can be written as

Ω(α, s) =
1

m
yTK[:m,:n]α. (6)

4 Optimization Problem

As stated in Section 3, it is possible to combine different knowledge-based constraints
and for any such combination we are interested in the resulting optimization problem.
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Each of the ‘soft’ knowledge-based constraints is either quadratic or linear and con-
tributes with a quadratic or linear term to the optimization objective. Therefore, to com-
pute our embedding, for any combination of ‘soft’ knowledge-based constraints, we
have to solve the following optimization problem:

argmax
x∈Rn

xTWx− 2bTx s. t. xTKx = r2. (7)

where W ∈ Rn×n is a symmetric and K ∈ Rn×n is a kernel matrix. Problem (7) is
non-convex as it is a quadratic defined over an ellipsoid. If we also want to force the
hard orthogonality or/and hard placement of control points we need to add an additional
linear constraint

Lx = y, (8)

where L ∈ Rm×n is a rectangular constraint matrix and y is a coordinate placement
along one of the projection axis or the zero vector (in hard orthogonality case).

In Section 4.1 we describe how to find the global optimizer for the non-convex prob-
lem (7) in a closed form.

4.1 Quadratic over a Hypersphere

We first transform problem (7) to optimize over a hypersphere instead of hyperellip-
soid. To achieve this we decompose the positive definite matrix K and introduce a
substitution v = K

1
2x. In the new optimization problem the symmetric matrix W is

replaced with the symmetric matrix C = K− 1
2WK− 1

2 and the vector b with the vector
d = K− 1

2 b. Hence, after the transformation we are optimizing a quadratic over the
hypersphere,

argmax
v∈Rn

vTCv − 2dTv s. t. vTv = r2. (9)

To solve the problem we form the Lagrange function

L (v, λ) = vTCv − 2dTv − λ(vTv − r2), (10)

and set its derivatives to zero, i.e.

Cv = d+ λv, vTv = r2. (11)

As this is a non-convex problem a solution of the system in Eq. (11) is only a local
optimum for problem (9). The following lemma, however, gives a criterion for distin-
guishing the global optimum of problem (9) from the solution set of the system in Eq.
(11). Alternative and slightly more complex proofs for the same claim are given by (au-
thor?) [10] and (author?) [9]. Let us now denote the optimization objective of Eq. (9)
with χ(v).

Lemma 1. The maximum of the function χ(v) is attained at the tuple (v, λ) satisfying
the stationary constraints (11) with the largest value of λ.
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Proof. Let (v1, λ1) and (v2, λ2) be two tuples satisfying the stationary constraints (11)
with λ1 ≥ λ2. Plugging the tuples into the first stationary constraint we obtain

Cv1 = λ1v1 + d, (12)

Cv2 = λ2v2 + d. (13)

Substracting (13) from (12) we have

Cv1 − Cv2 = λ1v1 − λ2v2. (14)

Multiplying (14) first with vT
1 and then with vT

2 and adding the resulting two equations
(having in mind that the matrix C is symmetric) we deduce

vT
1 Cv1 − vT

2 Cv2 = (λ1 − λ2)(r
2 + vT

1 v2). (15)

On the other hand, using the Cauchy-Schwarz inequality and (11) we deduce

vT
1 v2 ≤ ‖v1‖‖v2‖ = r2. (16)

Now, combining the results obtained in (15) and (16) with the initial assumption λ1 ≥
λ2 we deduce

vT
1 Cv1 − vT

2 Cv2 ≤ 2r2(λ1 − λ2). (17)

Finally, subtracting the optimization objectives for the two tuples and using (12) and
(13) multiplied by vT

1 and vT
2 , respectively, we prove

χ(v1)− χ(v2) = 2r2(λ1 − λ2)− (vT
1 Cv1 − vT

2 Cv2) ≥ 0,

where the last inequality follows from (17). ��

Hence, instead of the original optimization problem (9) we can solve the system with
two stationary equations (11) with maximal λ. (author?) [11] propose two methods
for solving such problems. In the first approach, the problem is reduced to a quadratic
eigenvalue problem and afterwards transformed into a linear eigenvalue problem. In the
second approach the problem is reduced to solving a one-dimensional secular equation.
The first approach is more elegant, as it allows us to compute the solution in a closed
form. Namely, the solution to the problem (9) is given by [11]

v∗ = (C − λmaxI)
−1d,

where λmax is the largest real eigenvalue of[
C −I

− 1
r2dd

T C

] [
γ
η

]
= λ

[
γ
η

]
.

Despite its elegance, the approach requires us to decompose a non-symmetric block
matrix of dimension 2n and this is not a numerically stable task for every such matrix.
Furthermore, the computed solution v∗ highly depends on the precision up to which
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the optimal λ is computed and for an imprecise value the solution might not be on the
hypersphere at all (for a detailed study refer to (author?) [11]).

For this reason, we rely on the secular approach in the computation of the optimal
solution. In Section 5 we deal with an efficient algorithm for the computation of the
parameter to a machine precision and here we describe how to derive the secular equa-
tion required to compute the optimal λ. In the first step the stationary constraint (11) is
simplified by decomposing the symmetric matrix C = PΔPT , i.e. PΔPTv = d+λv.
Then, the resulting equation is multiplied with the orthogonal matrix PT from the left
and transformed into Δt = d̂ + λt, with d̂ = PTd and t = PTv. From the last
equation we compute

ti(λ) = d̂i/(Δii − λ) (i = 1, 2, ..., n),

and substitute the computed t-vector into the second stationary constraint to form the
secular equation

g(λ) =
∑
i

t2i (λ) − r2 = 0. (18)

The optimal value of parameter λ is the largest root of the non-linear secular equation
and the optimal solution to problem (9) is given by v∗ = P · t(λmax). Moreover, the
interval at which the root lies is known [11]. Namely, it must hold λmax ≥ Δ11, where
Δ11 is the largest eigenvalue of the symmetric matrix C.

The complexity of both approaches (secular and eigenvalue) for a d-dimensional
embedding is O(dn3), where n is the number of data instances. The cubic term arises
from the eigendecompositions required to compute the solutions to problem (9) for each
of the d variance direction.

In Section 4.2 we show how to transform the optimization problem (1) with addi-
tional hard constraints to optimize only problem (9).

4.2 Eliminating a Linear Constraint
For the optimization problems involving hard orthogonality or hard placement of con-
trol points we have an additional linear term (8) in the optimization problem (7). If the
linear term is of rank m < n, we can eliminate it and transform the problem to optimize
a quadratic over an (n−m)-dimensional hypersphere. The linear constraint term is first
transformed from a constraint over a hyperellipsoid to a constraint over a hypersphere
by replacing the matrix L (the linear constraint in Eq. (8)) with the matrix LK−1

2 . In
the remainder of the section, we will denote the transformed constraint matrix with L.

In order to eliminate the linear constraint we do a QR factorization of the matrix

LT = QR, where Q ∈ Rn×n is an orthogonal and R =

[
R
0

]
∈ Rn×m is an upper-

diagonal matrix. Substituting

QTv =

[
z1

z2

]
, with z1 ∈ Rm and z2 ∈ Rn−m,

linear and sphere constraints are transformed into
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y = Lv = RT (QTv) = R
T
z1 =⇒ z1 = (R

T
)−1y,

r2 = vTv = zT
1 z1 + zT

2 z2 =⇒ zT
2 z2 = r2 − zT

1 z1 = r̂2.

As z1 is a constant vector we can rewrite the objective in Eq. (9) as a quadratic over an
(n−m)-dimensional sphere. Namely, the quadratic term can be rewritten as

vTCv = vTQQTCQQTv = zT
1 Fz1 + 2zT

2 Gz1 + zT
2 Hz2, where

QTCQ =

[
F GT

G H

]
with F ∈ Rm×m, G ∈ R(n−m)×m and H ∈ R(n−m)×(n−m).

On the other hand, the linear term is transformed into

dTv = dTQQTv = fT
1 z1 + fT

2 z2,

where f1 ∈ Rm and f2 ∈ Rn−m are blocks in the vector QTd. Denoting with d̂ =
f2 −Gz1 and ẑ = z2 we obtain

argmax
ẑ∈Rn−m

ẑTH ẑ − 2d̂
T
ẑ s. t. ẑT ẑ = r̂2,

for which a closed form solution was given in Section 4.1.

5 Numerically Efficient Interaction

To shape an embedding interactively with the help of knowledge-based constraints it
is required to solve the optimization problem (1) at each interaction step. In Section
4 we have described how to solve the arising optimization problem with complexity
O(dn3), where n is the number of instances and d is the number of variance directions.
In this section, we show how the proposed algorithm can be improved to enable a user
interaction in O(d2n2) time. To achieve this, we express the interaction in the form of
rank-one updates of the original problem and review a linear time algorithm for solving
secular equations arising in the process.

5.1 Efficient Formulation of the Interaction

Let us assume, without loss of generality, the algorithm is working with the classifica-
tion constraints and the soft orthogonality. The optimization problem for this setting can
be expressed in the form (9). Furthermore, assume a user, interested in a d-dimensional
embedding, has provided labels yk at an interaction step k. To compute embeddings
interactively the algorithm needs to solve problem (9) for different interaction steps and
for all d directions. We denote with C the symmetric matrix defining the quadratic term
in the problem arising in a step k for a direction s. The variance term, independent of
the provided labels and denoted with C, can be decomposed prior to any interaction.
The decomposition has complexity O(n3), but it is a one time cost paid prior to inter-
action steps. The linear term for a direction s at the step k is a function of a block of the
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kernel matrix and the label vector yk and we denote it with ak. Now, the first stationary
constraint of the problem (9) for a direction s+ 1 at the step k can be written as

C′x = λx+ ak,

where the symmetric matrixC′ is a rank-one update of the previous direction’s quadratic
term C for which the eigendecomposition is already computed. Reusing the decompo-
sition, C = UΔUT , we can rewrite the last equation as

C′ = C − μαsα
T
s = U

(
Δ− μzzT

)
UT ,

where αs denotes the s-th direction vector and z = UTαs. Let us denote the rank-one
update to the diagonal matrix as

Θ = Δ− μzzT (19)

The complexity of a full eigendecomposition (see, e.g., (author?) [2, 3]) of the ma-
trix Θ is O(n2) and it is computed by solving n secular equations (see Section 5.2),
one for each of the eigenvalues of the matrix Θ. Rewriting the last equation using the
substitution we get

UΘUTx = λx+ ak =⇒ Θx = λx+ a, with x = UTx and a = UTak.

Now, using the decomposition Θ = V Δ′V T we transform the last problem into

Δ′t = λt+ f , with t = V Tx and f = V Ta. (20)

The second stationary constraint combined with Eq. (20) yields secular equation (18).
Thus, the (s+ 1)-th direction vector xs+1 is computed as

xs+1 = U

(
s∏

i=1

Vi

)
· t(λmax), with ti(λ) =

(
U
∏s

i=1 Vi

)T
ak

δ
(s+1)
i − λ

(i = 1, n).

Note that U is the eigenvector matrix for the variance termC and δ
(s+1)
i is an eigenvalue

of the quadratic term matrix for the direction s+ 1 (see problems (1) and (9)).
Hence, to compute the directions at the interaction step k we need to perform O(d2)

matrix vector multiplications, each incurring a quadratic cost, together with d quadratic
time decompositions of Θ matrices. What remains to compute the data projection is a
multiplication of direction vectors with the kernel matrix which is again of quadratic
complexity. Therefore, the overall complexity of an interaction step is O(d2n2). In a
similar fashion, it is possible to show the quadratic complexity of an interaction for
other knowledge-based constraints.

5.2 Efficient and Stable Secular Solver
In this section, we review the state of the art in computation of the root of a secular
equation in a given interval (δi, δi+1), with δ1 ≤ δ2 ≤ ...δn−1 ≤ δn. In particular, we
are interested in finding a root of Eq. (18) and the equation [3]

g(λ) = 1 + μ

n∑
i=1

z2i
δi − λ

,
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whose roots are the eigenvalues of the perturbed matrix (19). In the discussion to follow
we focus on finding the roots of g(λ) and digress to the secular function (18) only when
the arguments are not eligible for it.

It is possible to compute a root of a secular equation with a linear number of flops
[17]. An obvious choice for the root finder is a Newton method and, yet, it is not well
suited for the problem. The tangent at certain points in the interval of interest crosses
the x-axis outside this interval leading to incorrect solution or division by zero as the so-
lution can converge to one of the poles δi. An efficient root finder, then, must overcome
this issue and converge very quickly. The main idea behind the efficient root finder is to
approximate a secular equation with a quadratic surrogate and find a zero of this surro-
gate. We go step-by-step through the procedure. First let us assume μ = 1 and split the
non-constant g terms into two functions

ψ1(λ) =

i∑
k=1

z2k
δk − λ

and ψ2(λ) =

n∑
k=i+1

z2k
δk − λ

.

Then, each function ψk is approximated by a surrogate

hk(x) = ak + bk/(δk−1+i − x),

with constants computed such that at all candidate solutions xj it holds [17]:

hk(xj) = ψk(xj) and h′
k(xj) = ψ′

k(xj).

Now, combining the surrogates for the particular terms we obtain the surrogate for
the secular function g,

h(x) = c3 + c1/(δi − x) + c2/(δi+1 − x), (21)

whose root is the next secular solution candidate. (author?) [3] proved the surrogate
root finder converges to the desired root.

In contrast to the secular function g(λ), the secular equation (18) has only one sur-
rogate [11]:

h(x) = p/(q − x)2, h(xj) = g(xj) and h′(xj) = g′(xj).

After computing the coefficients p and q we get the iteration step η = xj+1 − xj as

η = 2
g(xj) + r2

g′(xj)

(
1−

√
g(xj) + r2

r

)
.

For the initial solution δ1 < x0 < λ∗ the convergence is monotonic [3], i.e. λ∗ >
xj+1 > xj , where λ∗ is the desired root of the secular equation.

Finally, we note that different roots of secular Eq. (18) belong to distinct closed
intervals and can be, therefore, computed in parallel. This enables an efficient GPU
implementation of the secular solver resulting in a significant speed-up to the presented
rank-one update algorithm. Consequently, with a GPU implementation of the secular
solver it is possible to increase the interaction frame rate and improve scalability.
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6 Experiments

The best, and ultimately only true, way to evaluate an algorithm for interactive data
visualization and exploration is via a study with real domain experts that are using a tool
implementing that algorithm. In the absence of the study we performed a number of in
silico experiments which aim at illustrating the utility and sensibility of our approach.
In particular, we show: (i) a rendered embedding is robust under small changes in the
placement of control points; (ii) the approach is flexible in choosing a low-dimensional
embedding from the many possible ones; (iii) ‘sufficient’ amount of information is
retained in a visualization; (iv) it is possible to detect structures that do not necessarily
exhibit high correlation with variance and which are, therefore, obscured in a regular
kernel PCA embedding. We study the properties (i) − (iii) on benchmark data sets
for semi-supervised learning [5] and generate an artificial data set to show the property
(iv). In the experiments we use different kernels: Gaussian with a bandwidth equal
to the median of pairwise distances between the instances, inverse Laplacian defined
by the ε-neighbourhood graph, linear and polynomial kernel of degree three. All the
reported results are averaged over ten runs.

Fig. 1. Distortion of an embedding over the perturbation of a control point

How stable is our approach? In exploratory data visualization it should be possible
to smoothly change the embedding by moving control point throughout the projec-
tion space. In other words, small perturbations of a control point should result in small
perturbations of the overall embedding. We empirically verify the stability of the pro-
posed method by moving a control point randomly throughout the projection space.
We express the displacement of a control point as a fraction of the median of pairwise
distances within the embedding. The distortion or the difference between the two em-
beddings is measured by the average displacement of a point between them and this
value is scaled by the median pairwise distance between the points in the kernel PCA
embedding. In Figure 1 we show the distortion as the perturbation increases across five
benchmark data sets [5]. Results clearly indicate that the proposed method provides
stable visual exploration of data.

How flexible is our approach? It is possible to generate different embeddings of
the same dataset with kernel PCA using different kernels. To show the flexibility of the
proposed method we set up an experiment with a sum of different kernels and show
that the proposed method can choose the PCA embedding corresponding to a kernel by
re-arranging control points accordingly. In particular, we combine a Gaussian and the
inverse Laplacian kernel that produce geometrically very different PCA embeddings of
the considered datasets. We again measure the distortion between the two embeddings.
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Fig. 2. Distortion between the target and the current embedding over the number of re-arranged
control points. Results show, we can recover a target embedding with a small number of re-
arranged control points.

The empirical results indicate that it is possible to recover the embeddings correspond-
ing to PCA projection of each used kernel. Figure 2 shows the distortion between the
current and the target embedding as the number of selected control points increases.

How informative is our approach? A satisfactory embedding should be able to
retain a fair amount of information from the input space. To measure the amount of
information the proposed method retains we simulate a classification task. We use the
semi-supervised learning benchmark data set in which the small amount of labels is
given to us. In building a classifier we use the classification constraints with a hard
orthogonality and on top of it we apply the 1-NN classifier. We compare our method
using only 1, 2 and 3 dimensional projections against the state-of-the-art unsupervised
dimensionality reduction techniques with many more dimensions. In particular, dimen-
sionality reduction algorithms use 38 dimensions for g241c, 4 dimensions for Digit1,
9 dimensions for USPS, 8 dimensions for BCI and 3 dimensions for COIL dataset [5].
The results indicate our algorithm is able to retain a satisfactory amount of information
over the first 3 principal directions. We used Gaussian and inverse Laplacian kernel to
compute the embeddings (see Figure 3).

Can we discover structures hidden by the plain PCA? We have created a 3D
artificial data set to demonstrate the proposed approach is able to discover structures in
data that do not exhibit high correlation with variance. Such structures remain hidden
in the PCA projection and the proposed method is capable of detecting them by the
appropriate placement of control points. In particular, we sample 3 plates of points
from a 2D Gaussian distribution and embed these plates into the 3D space such that the
z-axis coordinate for each plate is obtained by sampling from the normal distributions

Fig. 3. A classification error comparison between the proposed method and unsupervised dimen-
sionality algorithms with many more dimensions [5]. Supervision was done with either 10 (greyed
out) or 100 labels. We point out that the experiment was conducted to show the amount of infor-
mation retained by the visualization and not to compete these methods.
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Fig. 4. Discovering cluster structures which are hidden in the kernel PCA embedding

with means at 1, 0 and −1. We choose the variance for the z-axis sampling such that the
cluster-plates barely touch each other. For the sample generated in this way the within-
clusters variance is higher than the between-cluster variance and the cluster structure
remains hidden in the kernel PCA projection (see the first picture in Figure 4). Moving
the two most distant points of each cluster apart (a total of 6 displacements) we discover
the cluster structure obscured by the plain kernel PCA (the last picture in Figure 4).

Scalability. As stated in Section 5, it is possible to implement the interaction using
rank-one updates with O(n2) complexity. Our experiments indicate that it is possible
to interact with a visualization with multiple frames per second for datasets with ≈
1000 instances. The frame rate and scalability can be significantly improved with an
efficient GPU implementation of the secular solver (see Section 5.2). Moreover, it is
possible to use a kernel expansion over a subset of instances while searching for a
suitable placement of a control point and upon such placement the embedding can be
computed with a full kernel expansion.

7 Conclusion

We proposed a novel, knowledge-based variant of kernel PCA with the aim of making vi-
sual data exploration a more interactive endeavour, in which users can intuitively modify
the embedding by placing ‘control points’, adding must-link and cannot-link constraints,
and supplying known class labels. We showed that maximizing the variance of unit norm
functions that are as orthogonal as possible and that adhere as much as possible to the user
supplied knowledge can be formulated as a non-convex quadratic optimization problem
over an ellipsoid with linear constraints. We gave an algorithm for computing the result-
ing embedding in cubic time and argued that the more typical situation in interactive data
analysis corresponds, however, to a low-rank update of the previous solution. We then
derived an algorithm for computing these low-rank updates in quadratic time.

Acknowledgement. Part of this work was supported by the German Science Founda-
tion (DFG) under the reference number ‘GA 1615/1-2’.
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Abstract. Dyadic prediction methods operate on pairs of objects
(dyads), aiming to infer labels for out-of-sample dyads. We consider the
full and almost full cold start problem in dyadic prediction, a setting
that occurs when both objects in an out-of-sample dyad have not been
observed during training, or if one of them has been observed, but very
few times. A popular approach for addressing this problem is to train a
model that makes predictions based on a pairwise feature representation
of the dyads, or, in case of kernel methods, based on a tensor product
pairwise kernel. As an alternative to such a kernel approach, we introduce
a novel two-step learning algorithm that borrows ideas from the fields
of pairwise learning and spectral filtering. We show theoretically that
the two-step method is very closely related to the tensor product kernel
approach, and experimentally that it yields a slightly better predictive
performance. Moreover, unlike existing tensor product kernel methods,
the two-step method allows closed-form solutions for training and param-
eter selection via cross-validation estimates both in the full and almost
full cold start settings, making the approach much more efficient and
straightforward to implement.

Keywords: Dyadic prediction, pairwise learning, transfer learning, ker-
nel ridge regression, kernel methods.

1 A Subdivision of Dyadic Prediction Methods

Many real-world machine learning problems can be naturally represented as pair-
wise learning or dyadic prediction problems, for which feature representations of
two different types of objects (aka a dyad) are jointly used to predict a relation-
ship between those objects. Amongst others, applications of that kind emerge
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in biology (e.g. predicting mRNA-miRNA interactions), medicine (e.g. design
of personalized drugs), chemistry (e.g. prediction of binding between two types
of molecules), social network analysis (e.g. link prediction) and recommender
systems (e.g. personalized product recommendation).

For many dyadic prediction problems it is extremely important to implement
appropriate training and evaluation procedures. [29] make in a recent Nature-
review on dyadic prediction an important distinction between four main settings.
Given t and d as the feature representations of the two types of objects, those
four settings can be summarized as follows:

– Setting A: Both t and d are observed during training, as parts of separate
dyads, but the label of the dyad (t,d) must be predicted.

– Setting B: Only t is known during training, while d is not observed in any
dyad, and the label of the dyad (t,d) must be predicted.

– Setting C: Only d is known during training, while t is not observed in any
dyad, and the label of the dyad (t,d) must be predicted.

– Setting D: Neither t nor d occur in any training dyad, but the label of the
dyad (t,d) must be predicted (referred to as the full cold start problem).

Setting A is of all four settings by far the most studied setting in the machine
learning literature. Motivated by applications in collaborative filtering and link
prediction, matrix factorization and related techniques are often applied to com-
plete partially observed matrices, where missing values represent (t,d) combi-
nations that are not observed during training - see e.g. [15] for a review.

Settings B and C are very similar, and a variety of machine learning meth-
ods can be applied for these settings. From a recommender systems viewpoint,
those settings resemble the cold start problem (new user or new item), for
which hybrid and content-based filtering techniques are often applied – see e.g.
[1, 10, 20, 35, 39] for a not at all exhaustive list. From a bioinformatics view-
point, Settings B and C are often analyzed using graph-based methods that take
the structure of a biological network into account – see e.g. [33] for a recent
review. When the features of t are negligible or unavailable, while those of d are
informative, Setting B can be interpreted as a multi-label classification prob-
lem (binary labels), a multivariate regression problems (continuous labels) or a
specific multi-task learning problem. Here as well, a large number of applicable
methods exists in the literature.

1.1 The Problem Setting Considered in this Article

Matrix factorization and hybrid filtering strategies are not applicable to Set-
ting D. We will refer to this setting as the full cold start problem, which finds
important applications in domains such as bioinformatics and chemistry – see
experiments. Compared to the other three settings, Setting D has received less
attention in the literature (with some exceptions, see e.g. [20, 23, 25, 28]), and it
will be our main focus in this article. Furthermore, we will also investigate the
transition phase between Settings C and D, when t occurs very few times in the
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training dataset, while d of the dyad (d, t) is only observed in the prediction
phase. We refer to this setting as the almost full cold start problem.

Full and almost full cold start problems can only be solved by considering fea-
ture representations of dyads (aka side information in the recommender systems
literature). Similar to several existing papers dealing with Setting D, we consider
tensor product feature representations and their kernel duals. Such feature repre-
sentations have been successfully applied in order to solve problems such as prod-
uct recommendation [5, 28], prediction of protein-protein interactions [7, 14], drug
design [13], prediction of game outcomes [26] and document retrieval [23]. For
classification and regression problems a standard recipe exists of plugging pair-
wise kernels in support vector machines, kernel ridge regression (KRR), or any
other kernel method. Efficient optimization approaches based on gradient descent
[14, 23, 28] and closed form solutions [23] have been proposed. We compare KRR
with a tensor product pairwise kernel (tensor KRR) both theoretically and exper-
imentally to the two-step approach introduced in this paper.

1.2 Formulation as a Transfer Learning Problem

As discussed above, dyadic prediction is closely related to several subfields of
machine learning. Further on in this article we decide to adopt a multi-task
learning or transfer learning terminology, using d and t to denote the feature
representations of instances and tasks, respectively. From this viewpoint, Setting
C corresponds to a specific instantiation of a traditional transfer learning sce-
nario, in which the aim is to transfer knowledge obtained from already learned
auxiliary tasks to the target task of interest [27]. Stretching the concept of trans-
fer learning even further, in the case of so-called zero-data learning, one arrives
at Setting D, which is characterized by no available labeled training data for
the target task [16]. If the target task is unknown during the training time, the
learning method must be able to generalize to it “on the fly” at prediction time.
The only available data here is coming from auxiliary training tasks.

We present a simple but elegant two-step approach to tackle these settings.
First, a KRR model trained on auxiliary tasks is used to predict labels for
the related target task. Next, a second model is constructed, using KRR on
the target data, augmented by the predictions of the first phase. We show via
spectral filtering that this approach is closely related to learning a pairwise model
using a tensor product pairwise kernel. However, the two-step approach is much
simpler to implement and it allows more heterogeneous transfer learning settings
than the ordinary pairwise kernel ridge regression, as well as a more flexible
model selection. Furthermore, it allows for a more efficient generalization to new
tasks not known during training time, since the model built on auxiliary tasks
does not need to be re-trained in such settings. In the experiments we consider
three distinct dyadic prediction problems, concerning drug-target, newsgroup
document similarity and protein functional similarity predictions. Our results
show that the two-step transfer learning approach can be highly beneficial when
there is no labeled data at all, or only a small amount of labeled data available
for the target task, while in settings where there is a significant amount of labeled
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data available for the target task a single-task model suffices. In related work,
[34] have recently proposed a similar two-step approach based on tree-based
ensemble methods for biological network inference.

2 Solving Full and Almost Full Cold Start Problems via
Transfer Learning

Adopting a multi-task learning methodology, the training set is assumed to con-
sist of a set {xh}nh=1 of object-task pairs and a vector y ∈ Rn of their real-valued
labels. We assume that each training input can be represented as x = (d, t),
where d ∈ D and t ∈ T are the objects and tasks, respectively, and D and T are
the corresponding spaces of objects and tasks. Moreover, let D = {di}mi=1 and
T = {tj}qj=1 denote, respectively, the sets of distinct objects and tasks encoun-
tered in the training set with m = |D| and q = |T |. We say that the training
set is complete if it contains every object-task pair with object in D and task in
T exactly once. For complete training sets, we introduce a further notation for
the matrix of labels Y ∈ Rm×q, so that its rows are indexed by the objects in D
and the columns by the tasks in T . In full and almost full cold start prediction
problems, this matrix will not contain any target task information.

2.1 Kernel Ridge Regression with Tensor Product Kernels

Several authors (see [2, 4] and references therein) have extended KRR to in-
volve task correlations via matrix-valued kernels. However, most of the literature
concerns kernels for which the tasks are fixed at training time. An alternative
approach, allowing the generalization to new tasks more straightforwardly, is to
use the tensor product pairwise kernel [5, 7, 8, 12, 21, 23, 28], in which kernels
are defined on object-task pairs

Γ (x,x) = Γ
(
(d, t) ,

(
d, t

))
= k

(
d,d

)
g
(
t, t

)
(1)

as a product of the data kernel k and the task kernel g. Let

K ∈ Rm×m and G ∈ Rq×q (2)

be the kernel matrices for the data points and tasks, respectively. Then, the
kernel matrix for the object-task pairs is, for a complete training set, the tensor
product Γ = K ⊗G, which is usually infeasible to use directly due to its large
size. Tensor KRR seeks for a prediction function of type

f(x) =

n∑
i=1

αiΓ (x,xi) ,

where αi are parameters that minimize the following objective function:

J(α) = (Γα− y)T(Γα− y) + λαTΓα, (3)
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Algorithm 1. Two-step kernel ridge regression

1: C← argminC∈Rm×q

{
‖CG−Y‖2F + λttr(CGCT)

}
2: z←

(
zTL, (CUg)T

)T
3: a← argmina∈Rm

{
(Ka− z)T(Ka− z) + λda

TKa
}

4: return ft(·) =
∑m

i=1 aik(di, ·)

whose minimizer can be found by solving the following system of linear equations:

(Γ+ λI)α = y. (4)

Several authors have pointed out that, while the size of the above system is
considerably large, its solution can be found efficiently via tensor algebraic op-
timization [2, 14, 19, 25, 30, 37]. Namely, the complexity scales roughly of order
O(|D|3 + |T |3) which is required by computing the singular value decomposition
(SVD) of both the object and task kernel matrices, but the complexities can be
scaled down even further by using sparse kernel matrix approximations.

However, the above computational short-cut only concerns the case in which
the training set is complete. If some of the pairs are missing or if there are
several occurrences of certain pairs, one has to resort, for example, to gradient
descent based training approaches. While these approaches can also be acceler-
ated via tensor algebraic optimization, they still remain considerably slower than
the SVD-based approach. A serious short-coming of the approach is that when
generalizing to new tasks, the whole training procedure needs to be re-done with
the new training set that contains the union of the auxiliary data and the target
data. If the amount of auxiliary data is large, as one would hope in order to
expect any positive transfer to happen, this makes generalization to new tasks
on-the-fly computationally impractical.

2.2 Two-Step Kernel Ridge Regression

Next, we present a two-step procedure for performing transfer learning. In the
following, we assume that we are provided a training set in which every auxiliary
task has the same labeled training objects. This assumption is fairly realistic in
many practical settings, since one can carry out, for example, a preliminary
completion step by using the extensive toolkit of missing value imputation or
matrix completion algorithms. A newly given target task, in contrast, is assumed
to have only a subset of the training objects labeled. That is, the training set
consisting of both the auxiliary and the target tasks is incomplete, because of
the missing object labels of the target task, ruling out the direct application
of the SVD-based training. To cope with this incompleteness, we consider an
approach of performing the learning in two steps, of which the first step is used
for completing the training set for the target tasks part and the second step for
building a model for the target task. A further benefit is that the first phase
where a model is trained on auxiliary data needs to be performed only once, and
the resulting model may be subsequently re-used when new target tasks appear.
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Algorithm 2. Two-step with LOOCV-based automatic model selection

Require: Y ∈ Rm×q ,Φ ∈ Rm×d,Ψ ∈ Rq×r,g ∈ Rq, zL ∈ R|L| with d ≤ m and r ≤ q.
1: U,

√
Σ,V ← SVD(Φ), with U ∈ Rm×d, V ∈ Rd×d � O(qr2)

2: P,
√
S,Q← SVD(Ψ), with P ∈ Rq×r,Q ∈ Rr×r � O(md2)

3: e←∞
4: for λt ∈ {Grid of parameter values} do
5: for j = 1, . . . , q do G̃j,j ← Pj(diag((S+ λtI)

−1)�PT
j ) � O(qr)

6: C← YP(S+ λtI)
−1PT � O(mqr)

7: for i = 1, . . . , m and j = 1, . . . , q do Ri,j ← Yi,j −
(
G̃j,j

)−1

Ci,j � O(mq)

8: e← E(R,Y) � Error between labels and LOO predictions
9: if e < e then λt, e,R,C← λt, e,R,C

10: e←∞
11: for λd ∈ {Grid of parameter values} do
12: for i = 1, . . . , m do K̃i,i ← Ui(diag((Σ+ λdI)

−1)�UT
i ) � O(md)

13: A← U(Σ+ λdI)
−1UTR � O(mqd)

14: for i = 1, . . . , m and j = 1, . . . , q do T i,j ← Yi,j −
(
K̃i,i

)−1

Ai,j � O(mq)

15: e← E(T,Y) � Error between labels and LOO predictions
16: if e < e then λd, e,T,A← λd, e,T,A

17: z←
(
zTL, (CUg)T

)T
18: a← U(Σ+ λdI)

−1UTz � O(md)
19: return ft(·) =

∑m
i=1 aik(di, ·)

Let L ⊆ D and U ⊆ D be the set of objects that are, respectively, labeled
and unlabeled for the target task. Moreover, let Y now denote the matrix of
labels for the auxiliary tasks and zL ∈ R|L| the vector of known labels for the
target task. Furthermore, in addition to the kernel matrices K and G for the
training data points and auxiliary tasks defined in (2), let g ∈ Rq denote the
vector of task kernel evaluations between the target task and the auxiliary tasks,
e.g. g = (g(t, t1), . . . , g(t, tq))

T
, where t is the target task and ti the auxiliary

tasks. Finally, let λt and λd be the regularization parameters for the first and
the second learning steps, respectively. The two-step approach is summarized in
Algorithm 1. The first training step is carried out by training a multi-output
KRR model (line 1), in which a matrix C of parameters is estimated, and this
model is used for predicting the labels indexed by U for the target task (line
2). The second step trains a single-output KRR for the targer task (line 3), in
which a vector a of parameters is fitted to the data.

2.3 Computational Considerations and Model Selection

Let d and r denote the feature space dimensionalities of the object and task ker-
nels, respectively. These dimensions can be reduced, for example, by the Nyström
method in order to lower both the time and space complexities of kernel methods
[32], and hence in the following we assume that d ≤ m and r ≤ q. Let Φ ∈ Rm×d
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andΨ ∈ Rq×r be the matrices containing the feature representations of the train-
ing objects and tasks inD and T , respectively, so thatΦΦT = K andΨΨT = G.
Let Φ = U

√
ΣVT and Ψ = P

√
SQT be the SVDs of Φ and Ψ, respectively.

Since the ranks of the feature matrices are at most the dimensions of the feature
spaces, we can save both space and time by only computing the singular vectors
that correspond to the nonzero singular values. That is, we compute the matrices
U ∈ Rm×d, V ∈ Rd×d, P ∈ Rq×r, and Q ∈ Rr×r via the economy sized SVD,
requiring O(md2 + qr2) time. The outcomes of the first and second steps of the
two-step KRR (e.g. the first and third lines of Algorithm 1) can be, respectively,

written as C = YG̃ and a = K̃z, where G̃ = (G+ λtI)
−1 = U(Σ+ λdI)

−1UT

and K̃ = (K+λdI)
−1 = U(Σ+λdI)

−1UT. Given that the above described SVD
components are available, the computational complexity is dominated by the
multiplication of the eigenvectors with the label matrix, which requires O(mqr)
time if the matrix multiplications are performed in the optimal order.

We next present an automatic model selection and training approach for the
two-step KRR that uses leave-one-out cross-validation (LOOCV) for selecting
the values of both λt and λd. This is illustrated in Algorithm 2. It is well known
that, for KRR, the LOOCV performance can be efficiently computed without
training the model from scratch during each CV round (we refer to [24, 31] for
details). Adapting this to the first step of the two-step KRR, the “leave-column-
out” performance for the ith datum on the jth task (e.g. a CV in which each of
the columns of Y are held out at a time to measure the generalization ability

to new columns) can be obtained in constant time from Yi,j −
(
G̃j,j

)−1

Ci,j ,

given that the diagonal entries of G̃ and the dual variables Ci,j are computed

and stored in memory. Using the SVD components, both G̃j,j and Ci,j can be
computed in O(r) time, which enables the efficient selection of the regularization
parameter value with LOOCV. If the value is selected from a set of t candidates
and LOOCV is computed for all data points and tasks, the overall complexity
is O(mqrt). This is depicted in lines 4-9 of Algorithm 2, where the overline
symbols denote temporary variables used in the search of the optimal candidate
value and E denotes a prediction performance (such as the mean squared error,
classification accuracy, or area under curve, for example).

By the definition of the two-step KRR, the second step consists of training a
model using the predictions made during the first step as training labels, while
the aim is to make good predictions of the true labels. Therefore, we select the
regularization parameter value for the second step using LOOCV on a multi-
output KRR model trained using the LOO prediction matrix R obtained from
the first step as a label matrix. The second regularization parameter value is thus
selected so that the error E(T,Y) between the LOO predictions made during
the second step and the original labels Y is as small as possible. In contrast to
the first step, the aim of the second step is to generalize to new data points, and
hence the CV is done in the leave-row-out sense, which can again be efficiently

computed as Yi,j −
(
K̃i,i

)−1

Ai,j , where Ai,j are the model parameters of the

multi-output KRR trained row-wise. This is done in lines 11-16 of Algorithm 2.
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The overall computational complexity of the two-step KRR with automatic
model selection is O(md2+qr2+mqrt+mqdt), where the first two terms denote
the time required by SVD computations and the two latter the time spent for
CV and grid search for the regularization parameter. The two-step KRR, in
addition to enabling non-zero training sets for the target task, provides a very
flexible machinery for CV and model selection. This is in contrast to the tensor
KRR for which such short-cuts are not available to our knowledge, and there is no
efficient closed form solution available for the almost full cold start settings. Note
also that, while the above described method separately selects the regularization
parameter values for the tasks and the data, the method is easy to modify so
that it would select a separate regularization parameter value for each task and
for each datum (e.g. altogether m + q parameters), thus allowing considerably
more degrees of freedom. However, the consideration of this variation is omitted
due to the lack of space.

3 Theoretical Considerations

Here, we analyze the two-step learning approach by studying its connections to
learning with pairwise tensor product kernels as in (1). These two approaches
coincide in an interesting way for the full cold start problems (e.g. the special
case in which there is no labeled data available for the target task). This, in
turn, allows us to show the consistency of the two-step KRR via its universal
approximation and spectral regularization properties.

The connection between the two-step and tensor KRR is characterized by the
following result.

Proposition 1. Let us consider a full cold start setting with a complete training
set. Let ft(·) be a model trained with two-step KRR for the target task t and f(·, ·)
be a model trained with an ordinary kernel least-squares regression (OKLS) on
the object-task pairs with the following pairwise kernel function on D × T :

Υ
((
d, t), (d, t

))
=
(
k
(
d,d

)
+ λdδ

(
d,d

)) (
g
(
t, t) + λtδ

(
t, t

)))
(5)

where δ is the delta kernel whose value is 1 if the arguments are equal and 0
otherwise. Then, ft(d) = f(t,d) for any d ∈ D.

Proof. Writing the steps of the algorithm together and denoting G̃ = (G+ λI)−1

and K̃ = (K+ λI)
−1

, we observe that the model parameters a of the target task
can also be obtained from the following closed form:

a = K̃YG̃g . (6)

The prediction for a datum d is ft(d) = kTa, where k ∈ Rm is the vector
containing all kernel evaluations between d and the training data points.

The kernel matrix of Υ for the full cold start setting can be expressed as:
Υ = (G+ λtI)⊗ (K+ λdI) . The OKLS problem with kernel Υ being

α = argmin
α∈Rmq

{
(vec(Y) −Υα)

T
(vec(Y)−Υα)

}
,

its minimizer can be expressed as
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α = Υ−1vec(Y) =
(
(G+ λtI)

−1 ⊗ (K+ λdI)
−1
)
vec(Y)

= vec
(
(K+ λdI)

−1
Y (G+ λtI)

−1
)
= vec

(
K̃YG̃

)
. (7)

The prediction for the datum d is (g ⊗ k)Tvec
(
K̃YG̃

)
= kTK̃YG̃g, where

we make use of the rule vec(MXN) = (NT ⊗ N)vec(X) that holds for any
conformable matrices M, X, and N. ��

The kernel point of view allows us to consider the universal approximation
properties of the learned knowledge transfer models. Recall the concept of uni-
versal kernel functions:

Definition 1. [36] A continuous kernel k on a compact metric space X (i.e.
X is closed and bounded) is called universal if the reproducing kernel Hilbert
space (RKHS) induced by k is dense in C(X ), where C(X ) is the space of all
continuous functions f : X → R.

The universality property indicates that the hypothesis space induced by an uni-
versal kernel can approximate any continuous function to be learned arbitrarily
well, given that the available set of training data is large and representative
enough, and the learning algorithm can efficiently find the approximation [36].

Proposition 2. The kernel Υ on D×T defined in (5) is universal if the kernels
k on D and g on T are both universal.

Proof. We provide here a high-level sketch of the proof. The details are omitted
due to lack of space but they can be easily verified from the existing literature.
The RKHS of sums of reproducing kernels was characterized by [3] as follows:
Let H(k1) and H(k2) be RKHSs over X with reproducing kernels k1 and k2,
respectively. If k = k1 + k2 and H(k) denotes the corresponding RKHS, then
H(k) = {f1 + f2 : fi ∈ H(ki), i = 1, 2}. Thus, if the object kernel is universal, the
sum of the object and delta kernels is also universal and the same concerns the
task kernel. The product of two universal kernels is also universal, as considered
in our previous work [38]. ��

The full cold start setting with complete auxiliary training set allows us to
consider the two-step approach from the spectral filtering regularization point of
view [18], an approach that has recently gained some attention due to its ability
to study various types of regularization approaches under the same framework.
Continuing from (4), we observe that

α = ϕλ(Γ)vec(Y) = Wϕλ(Λ)WTvec(Y),

where Γ = WΛWT is the eigen decomposition of the kernel matrix Γ and ϕλ

is a filter function, parameterized by λ, such that if v is an eigenvector of Γ and
σ is its corresponding eigenvalue, then Γv = ϕλ(σ)v. The filter function corre-
sponding to the Tikhonov regularization being ϕλ(σ) =

1
σ+λ , and the ordinary

least-squares approach corresponding to the λ = 0 case, several other learning
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approaches, such as spectral cut-off and gradient descent, can also be expressed
as filter functions, but which cannot be expressed as a penalized empirical error
minimization problem analogous to (3).

The eigenvalues of the kernel matrix obtained with the tensor product kernel
on a complete training set can be expressed as the tensor product Λ = Σ ⊗ S
of the eigenvalues Σ and S of the object and task kernel matrices. Now, instead
of considering the two-step learning approach from the kernel point of view, one
can also cast it into the spectral filtering regularization framework, resulting to
the following filter function:

ϕλ(σ) =
1

(σ1 + λt)(σ2 + λd)
=

1

σ1σ2 + λdσ1 + λtσ2 + λtλd
, (8)

where σ1, σ2 are the factors of σ, namely eigenvalues of K and G. This differs
from the Tikhonov regularization only by the two middle terms in the denom-
inator if one sets λ = λtλd. In the experiments, we observe that this difference
is rather small also in practical cases, making the two-step learning approach a
viable alternative for tensor KRR.

We assume Γ being bounded with κ > 0 such that supx∈X
√
Γ (x,x) ≤ κ,

indicating that the eigenvalues of kernel matrices are in [0, κ2]. To further an-
alyze the above filter functions, we follow [4, 6, 18] and say that a function
ϕλ : [0, κ2] → R, 0 < λ ≤ κ2, parameterized by 0 < λ ≤ κ2, is an admissible
regularizer if there exists constants D,B, γ ∈ R and ν̄, γν > 0 such that

sup
0<σ≤κ2

|σϕλ(σ)| ≤ D, sup
0<σ≤κ2

|ϕλ(σ)| ≤
B

λ
, sup

0<σ≤κ2

|1− σϕλ(σ)| ≤ γ ,

and sup
0<σ≤κ2

|1− σϕλ(σ)|σν ≤ γνλ
ν , ∀ν ∈ (0, ν̄].

The admissibility, in turn, ensures that

R(f̂λ)− inff∈HR(f) = O
(
n− ν̄

2ν̄+1

)
(9)

holds with high probability, where R denotes the expected prediction error with
respect to some unknown probability measure ρ(x, y) on the joint space X ×R of
inputs and labels that is, R(f) =

∫
X×R

(f(x)−y)2dρ(x, y) . We refer to [4, 6, 18]
for a detailed consideration and further results. It is straightforward to see that,
analogously to the Tikhonov regularization, the admissibility of the function
(8) is confirmed by D,B, γ, γν , ν̄ = 1 for arbitrary factorizations of λ = λtλd

and σ = σ1σ2 such that λt, λd > 0 and σ1, σ2 ≥ 0. Thus, function (8) can be
considered under the spectral filtering regularization framework with separate
regularization parameter values for objects and tasks. The universality of the
kernel ensures that inff∈HR(f) in (9) is the error of the underlying regression
function to be learned, and the admissibility of the regularizer ensures that
R(f̂λ) converges to it when the size of the training set approaches infinity. This,
in turn, guarantees the consistency of the two-step KRR method.
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4 Experiments

We compare different types of transfer learning settings in solving three dyadic
prediction problems: drug-target, document similarity and protein similarity pre-
diction. We simulate the full and almost full cold start problem as follows. In
each experiment, one drug, document or protein is considered to be the tar-
get task in question, where the task is to predict the interactions of drugs or
similarities of documents or proteins with respect to the target. Further, other
tasks formed in the same way are provided as auxiliary information, leading
to a full cold start or almost full cold start setting. The experiments are per-
formed 100 times with different training/test set splits. The performances are
averages over all repetitions and over all target tasks, and are measured us-
ing the concordance index [11] (C-index), also known as the pairwise ranking
accuracy 1

|{(i,j)|yi>yj}|
∑

yi>yj
H(ŷi − ŷj), where yi denote the true and ŷi the

predicted labels, andH is the Heaviside step function. The regularization param-
eter selection is performed using LOOCV on the training data. For the two-step
approach, we select the first regularization parameter via LOOCV on the auxil-
iary tasks, and the second one via LOOCV on the target task data augmented
with predictions from the first step. The algorithms used in the experiments are
implemented in the RLScore open source machine learning library1.

The drug-target interaction prediction data2 [9, 22] consists of 68 drug com-
pounds and 442 protein targets. The kernel between the drugs is based on the
3D Tanimoto coefficient similarity, and the sequence similarity between the pro-
tein targets was computed using the normalized version of the Smith-Waterman
score. Further, for each drug-protein pair we have a real-valued label, negative
logarithm of the kinase disassociation constant Kd, that characterizes the inter-
action affinity between the drug and target in question. In each experiment, the
task of interest corresponds to one of the drugs in the data set. The goal is to
learn to predict for the given drug the Kd values for proteins unseen during the
training phase. The performances are always computed over a testing set of 192
protein targets for a given task, i.e. we assess whether for a given target we can
discriminate between proteins with more or less affinity for this drug.

For each task, we vary the number of available training proteins, from 5 to
250. In addition, we have available the training data for the 250 training proteins
for the 67 auxiliary tasks. As summarized in Figure 1, we evaluate a number of
different approaches:

– Single-task: KRR trained with data from the target task only
– Multi-task: both the target and auxiliary tasks have the same amount of

training data available (multi-output learning leveraging task correlations,
tackled with tensor KRR)

– Full cold start: tensor KRR with no data for the target task
– Almost full cold start: use a varying amount of data from the target task,

and all the available data from auxiliary tasks (tackled with two-step KRR)

1 Available at https://github.com/aatapa/RLScore
2 http://users.utu.fi/aatapa/data/DrugTarget

https://github.com/aatapa/RLScore
http://users.utu.fi/aatapa/data/DrugTarget
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Almost full
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Single-task

Multi-task Full cold start

t
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t
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d

d

d

d

Fig. 1. Overview of the approaches investigated in this article. Green = training data
of which the size is constant in the experiments. Blue = training data of which the
number of objects varies over different experiments. Red = test data.
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Fig. 2. Learning curves for the drug-target data. Left: target data increased, Middle:
target and auxiliary data increased, Right: auxiliary data increased.

We do not consider tensor KRR in the almost full cold start experiment due
to computational considerations. Unlike for the two-step KRR no closed-form
solution exists for the method in this setting, and the iterative conjugate gradient
based method has rather poor scalability.

In Figure 2, we present the results for the drug-target experiments. In Fig-
ure 2 (a) we present an experiment, where all the 67 auxiliary tasks have available
the data for all 250 training proteins, and the amount of data available for the
target task is varied. It can be seen that learning is possible even in the full cold
start setting, where both two-step KRR and tensor KRR perform much better
than randomly. The single-task approach begins to outperform the full cold start
setting after the point when one has access to a bit more than 50 training pro-
teins. Combining these two sources of information leads to the best performance
up until 150 training proteins. However, once there is enough data available for
the target task, there is no longer any positive transfer from the auxiliary tasks.
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In Figure 2 (b) we consider the setting, where there is the same amount of
data available for both the auxiliary tasks and the target tasks. This setting
corresponds closely to the traditional multi-output regression problem, the ex-
ception being that only the label for the target task is of interest during testing.
Here we can see that the multi-task method that uses the task correlation in-
formation fails to outperform the simple single-task approach, suggesting that
on this type of data one requires significantly more data in the auxiliary tasks
compared to the target tasks in order for it to be helpful for learning.

In Figure 2 (c) we consider the full cold start learning setting, while increasing
the amount of data available for the auxiliary tasks. Here we observe that the
simple two-step approach slightly outperforms tensor KRR, possibly due to the
property that it allows regularizing the drugs and the targets separately. Both
approaches generalize to the unknown target task, though the results are still
much worse than when having significant amount of data for the target task.

Further, we experiment on the 20 Newsgroups data3. Here, given any target
document, the goal is to predict the similarity of other documents with respect
to it. This constitutes a three-level ordinal regression task, where documents
from the same newsgroup as the target receive the highest rating, documents
from similar newsgroups the second highest, and the rest the lowest rating.
These similarities are assigned according to the taxonomy available at the data
set web site. We use the bag-of-words feature representation. The number of
target domain data ranges from 50 to 1500 documents (transfer learning, single-
task, multi-task methods), and the number of auxiliary tasks and data available
for each either ranges from 50 to 1500 documents (multi-task, full cold start
learning), or stays fixed at 2000 documents (transfer learning).

The results are presented in Figure 3. For the transfer learning approaches,
already 50 target domain documents suffices to reach the performance of the
single-task method with 1500 documents. The multi-task learning setting does
not outperform the single-task setting, and while learning is possible in the full
cold start setting, some target task data is still required to reach a high predictive
performance. Two-step learning slightly outperforms tensor KRR.
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Fig. 3. Learning curves for 20 Newsgroups (left) and Uniprot (right)

3 http://qwone.com/~jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/
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The UniProt data was generated from all the protein amino acid sequences
with all the gene ontology (GO) annotations of the Universal Protein Resource
(UniProt) database. For the amino acid sequences we used the normalized spec-
trum kernel [17]. This kernel is a popular tool for comparing biological sequences
without alignments. The normalized spectrum kernel is based on the number of
k -mers two sequences have in common. In our experiments, k was set to three.
Two proteins were labeled as ’similar in function’ when they had at least one
GO term in common, resulting in a binary classification problem. The experi-
mental setup is the same as for the Newsgroup data, and the results, presented
in Figure 3, are very similar, though at 1500 proteins the performance of the
two-step method actually falls below that of the single-task approach.

In all experiments two-step KRR shows itself to be competitive compared to
tensor KRR. Previously, [33] have in their overview article on dyadic prediction in
the biological domain made the observation that in terms of predictive accuracy
there does not seem to be a clear winner between the single-task and multi-task
type of learning approaches. Based on our experimental results, a deciding factor
on whether one may expect positive transfer from related tasks seems to be the
amount of data available for the target task. The two-step method performs well
in the almost full cold start settings with availability of a significant amount of
auxiliary data and only very little data for the target task. But when there is
enough data available for the target task, auxiliary data is no longer helpful.

Acknowledgments. We would like to thank the anonymous reviewers for their
insightful comments.
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Abstract. We introduce a deterministic sampling based feature selec-
tion technique for regularized least squares classification. The method is
unsupervised and gives worst-case guarantees of the generalization power
of the classification function after feature selection with respect to the
classification function obtained using all features. We perform experi-
ments on synthetic and real-world datasets, namely a subset of TechTC-
300 datasets, to support our theory. Experimental results indicate that
the proposed method performs better than the existing feature selection
methods.

Keywords: Feature Selection, Sampling, Regularized Least Squares
Classification.

1 Introduction

Regularized Least Squares Classifier (RLSC) is a simple classifier based on least
squares and has a long history in machine learning [17,12,13,10,15,18,1]. RLSC
has been known to perform comparably to the popular Support Vector Machines
(SVM) [13,10,15,18]. RLSC can be solved by simple vector space operations and
do not require quadratic optimization techniques like SVM. The main focus of
this paper is on a deterministic feature selection technique for RLSC with prov-
able guarantees. There exist numerous feature selection techniques, which work
well empirically. There also exist randomized feature selection methods [6] with
provable guarantees which work well empirically. But the randomized methods
have a failure probability and have to be re-run multiple times to get accurate
results. Also, a randomized algorithm may not select the same features in dif-
ferent runs. A deterministic algorithm will select the same features irrespective
of how many times it is run. This becomes important in many applications. Un-
supervised feature selection involves selecting features oblivious to the class or
labels. In this work, we present a new provably accurate unsupervised feature
selection technique for RLSC. We study a deterministic sampling based feature
selection strategy for RLSC with provable non-trivial worst-case performance
bounds. The number of features selected is proportional to the rank of the train-
ing set. The deterministic sampling-based feature selection algorithm performs
better in practice when compared to existing methods of feature selection.
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2 Our Contributions

We introduce single-set spectral sparsification as a provably accurate determinis-
tic feature selection technique for RLSC in an unsupervised setting. The number
of features selected by the algorithm is independent of the number of features,
but depends on the number of data-points. The algorithm selects a small number
of features and solves the classification problem using those features. Recently,
Dasgupta et al. [6] used a leverage-score based randomized feature selection tech-
nique for RLSC and provided worst case guarantees of the approximate classifier
function to that using all features. We use a deterministic algorithm to provide
worst-case generalization error guarantees. The deterministic algorithm does not
come with a failure probability and the number of features required by the deter-
ministic algorithm is lesser than that required by the randomized algorithm. The

leverage-score based algorithm has a sampling complexity of O
(

n
ε2 log

(
n

ε2
√
δ

))
,

whereas single-set spectral sparsification requires O
(
n/ε2

)
to be picked, where n

is the number of training points, δ ∈ (0, 1) is a failure probability and ε ∈ (0, 1/2]
is an accuracy parameter. Like in [6], we also provide additive-error approxima-
tion guarantees for any test-point and relative-error approximation guarantees
for test-points that satisfy some conditions with respect to the training set.
From an empirical perspective, we evaluate single-set spectral sparsification
on synthetic data and 48 document-term matrices, which are a subset of the
TechTC-300 [7] dataset. We compare the single-set spectral sparsification algo-
rithm with leverage-score sampling, information gain, rank-revealing QR factor-
ization (RRQR) and random feature selection. We do not report running time
because feature selection is an offline task. The experimental results indicate
that single-set spectral sparsification out-performs all the methods in terms of
out-of-sample error for all 48 TechTC-300 datasets. We observe that a much
smaller number of features is required by the deterministic algorithm to achieve
good performance when compared to leverage-score sampling.

3 Background and Related Work

Notation. A,B, . . . denote matrices and α,b, . . . denote column vectors; ei (for
all i = 1 . . . n) is the standard basis, whose dimensionality will be clear from con-
text; and In is the n×n identity matrix. The Singular Value Decomposition (SVD)
of a matrix A ∈ Rn×d is equal to A = UΣVT , where U ∈ Rn×d is an orthog-
onal matrix containing the left singular vectors, Σ ∈ Rd×d is a diagonal matrix
containing the singular values σ1 ≥ σ2 ≥ . . . σd > 0, and V ∈ Rd×d is a matrix
containing the right singular vectors. The spectral norm ofA is ‖A‖2 = σ1. σmax

and σmin are the largest and smallest singular values of A. κA = σmax/σmin is
the condition number ofA.U⊥ denotes any n× (n− d) orthogonal matrix whose
columns span the subspace orthogonal toU. A vector q ∈ Rn can be expressed as:
q = Aα+U⊥β, for some vectorsα ∈ Rd and β ∈ Rn−d, i.e. q has one component
along A and another component orthogonal to A.
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Matrix Sampling Formalism. We now present the tools of feature selection.
Let A ∈ Rd×n be the data matrix consisting of n points and d dimensions,
S ∈ Rr×d be a matrix such that SA ∈ Rr×n contains r rows of A. Let D ∈ Rr×r

be the diagonal matrix such that DSA ∈ Rr×n rescales the rows of A that are
in SA. The matrices S and D are called the sampling and re-scaling matrices
respectively. We will replace the sampling and re-scaling matrices by a single
matrix R ∈ Rr×d, where R = DS denotes the matrix specifying which of the r
rows of A are to be sampled and how they are to be rescaled.

RLSC Basics. Consider a training data of n points in d dimensions with re-
spective labels yi ∈ {−1,+1} for i = 1, .., n. The solution of binary classification
problems via Tikhonov regularization in a Reproducing Kernel Hilbert Space
(RKHS) using the squared loss function results in Regularized Least Squares
Classification (RLSC) problem [13], which can be stated as:

min
x∈Rn

‖Kx− y‖22 + λxTKx (1)

where K is the n × n kernel matrix defined over the training dataset, λ is a
regularization parameter and y is the n dimensional {±1} class label vector.
In matrix notation, the training data-set X is a d × n matrix, consisting of n
data-points and d features (d  n). Throughout this study, we assume that X
is a full-rank matrix. We shall consider the linear kernel, which can be written
as K = XTX. Using the SVD of X, the optimal solution of Eqn. 1 in the
full-dimensional space is

xopt = V
(
Σ2 + λI

)−1
VTy (2)

The vector xopt can be used as a classification function that generalizes to test
data. If q ∈ Rd is the new test point, then the binary classification function is:

f(q) = xT
optX

Tq. (3)

Then, sign(f(q)) gives the predicted label (−1 or +1) to be assigned to the new
test point q.

Our goal is to study how RLSC performs when the deterministic sampling
based feature selection algorithm is used to select features in an unsupervised
setting. Let R ∈ Rr×d be the matrix that samples and re-scales r rows of X
thus reducing the dimensionality of the training set from d to r - d and r is
proportional to the rank of the input matrix. The transformed dataset into r
dimensions is given by X̃ = RX and the RLSC problem becomes

min
x∈Rn

∥∥∥K̃x− y
∥∥∥2
2
+ λxT K̃x, (4)

thus giving an optimal vector x̃opt. The new test point q is first dimensionally
reduced to q̃ = Rq, where q̃ ∈ Rr and then classified by the function,

f̃ = f(q̃) = x̃T
optX̃

T
q̃. (5)

In subsequent sections, we will assume that the test-point q is of the form
q = Xα+U⊥β. The first part of the expression shows the portion of the test-
point that is similar to the training-set and the second part shows how much the
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test-point is novel compared to the training set, i.e. ‖β‖2 measures how much
of q lies outside the subspace spanned by the training set.

Related Work. The work most closely related to ours is that of Dasgupta et al.
[6] who used a leverage-score based randomized feature selection technique for
RLSC and provided worst case bounds of the approximate classifier with that of
the classifier for all features. The proof of their main quality-of-approximation
results provided an intuition of the circumstances when their feature selection
method will work well. The running time of leverage-score based sampling is
dominated by the time to compute SVD of the training set i.e. O

(
n2d

)
, whereas,

for single-set spectral sparsification, it is O
(
rdn2

)
. Single-set spectral sparsifica-

tion is a slower and more accurate method than leverage-score sampling. Another
work on dimensionality reduction of RLSC is that of Avron et al. [2] who used
efficient randomized-algorithms for solving RLSC, in settings where the design
matrix has a Vandermonde structure. However, this technique is different from
ours, since their work is focused on dimensionality reduction using linear com-
binations of features, but not on actual feature selection.

4 Our Main Tool: Single-Set Spectral Sparsification

We describe the Single-Set Spectral Sparsification algorithm (BSS1 for short)
of [3] as Algorithm 1. Algorithm 1 is a greedy technique that selects columns
one at a time. Consider the input matrix as a set of d column vectors UT =
[u1,u2, ....,ud], with ui ∈ R� (i = 1, .., d) . Given � and r > �, we iterate over τ =

0, 1, 2, ..r − 1. Define the parameters Lτ = τ −
√
r�, δL = 1, Uτ = δU

(
τ +

√
�r
)

and δU =
(
1 +

√
�/r

)
/
(
1−

√
�/r

)
. For U,L ∈ R and A ∈ R�×� a symmetric

positive definite matrix with eigenvalues λ1, λ2, ..., λ�, define

Φ (L,A) =

�∑
i=1

1

λi − L
; Φ̂ (U,A) =

�∑
i=1

1

U − λi

as the lower and upper potentials respectively. These potential functions measure
how far the eigenvalues of A are from the upper and lower barriers U and L
respectively. We define L (u, δL,A, L) and U (u, δU ,A, U) as follows:

L (u, δL,A, L) =
uT (A− (L+ δL) I�)

−2
u

Φ (L+ δL,A)− Φ (L,A)
− uT (A− (L+ δL) I�)

−1
u

U (u, δU ,A, U) =
uT ((U + δU ) I� −A)

−2
u

Φ̂ (U,A)− Φ̂ (U + δU ,A)
+ uT ((U + δU ) I� −A)−1 u.

At every iteration, there exists an index iτ and a weight tτ > 0 such that,
tτ

−1 ≤ L (uiτ , δL,A, L) and tτ
−1 ≥ U (uiτ , δU ,A, U) . Thus, there will be at

1 The name BSS comes from the authors Batson, Spielman and Srivastava.
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Input: U = [u1,u2, ...ud]
T ∈ Rd×	 with ui ∈ R	 and r > �.

Output: Matrices S ∈ Rr×d,D ∈ Rr×r.

1. Initialize A0 = 0	×	, S = 0r×d,D = 0r×r.

2. Set constants δL = 1 and δU =
(
1 +

√
�/r

)
/
(
1−

√
�/r

)
.

3. for τ = 0 to r − 1 do

– Let Lτ = τ −
√
r�;Uτ = δU

(
τ +
√
�r
)
.

– Pick index iτ ∈ {1, 2, ..d} and number tτ > 0 (See Section 4 for
definitions of U ,L)

U (uiτ , δU ,Aτ , Uτ ) ≤ L (uiτ , δL,Aτ , Lτ ) .

– Let t−1
τ = 1

2
(U (uiτ , δU ,Aτ , Uτ ) + L (uiτ , δL,Aτ , Lτ ))

– Update Aτ+1 = Aτ + tτuiτu
T
iτ ; set Sτ+1,iτ = 1 and

Dτ+1,τ+1 = 1/
√
tτ .

4. end for

5. Multiply all the weights in D by

√
r−1

(
1−

√
(�/r)

)
.

6. Return S and D.

Algorithm 1. Single-set Spectral Sparsification

most r columns selected after τ iterations. The running time of the algorithm is
dominated by the search for an index iτ satisfying

U (uiτ , δU ,Aτ , Uτ ) ≤ L (uiτ , δL,Aτ , Lτ )

and computing the weight tτ . One needs to compute the upper and lower poten-
tials Φ̂ (U,A) and Φ (L,A) and hence the eigenvalues of A. Cost per iteration is
O
(
�3
)
and the total cost is O

(
r�3

)
. For i = 1, .., d, we need to compute L and

U for every ui which can be done in O
(
d�2

)
for every iteration, for a total of

O
(
rd�2

)
. Thus total running time of the algorithm is O

(
rd�2

)
. We present the

following lemma for the single-set spectral sparsification algorithm.

Lemma 1. BSS [3]: Given U ∈ Rd×� satisfying UTU = I� and r > �, we
can deterministically construct sampling and rescaling matrices S ∈ Rr×d and
D ∈ Rr×r with R = DS, such that, for all y ∈ R� :(

1−
√
�/r

)2

‖Uy‖22 ≤ ‖RUy‖22 ≤
(
1 +

√
�/r

)2

‖Uy‖22 .

We now present a slightly modified version of Lemma 1 for our theorems.

Lemma 2. Given U ∈ Rd×� satisfying UTU = I� and r > �, we can determin-
istically construct sampling and rescaling matrices S ∈ Rr×d and D ∈ Rr×r such

that for R = DS,
∥∥∥UTU−UTRTRU

∥∥∥
2
≤ 3

√
�/r
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Proof. FromLemma1, it follows,σ�

(
UTRTRU

)
≥
(
1−

√
�/r

)2

,σ1

(
UTRTRU

)
≤

(
1 +

√
�/r

)2

. Thus, λmax

(
UTU−UTRTRU

)
≤

(
1−

(
1−

√
�/r

)2
)

≤

2
√
�/r. Similarly, λmin

(
UTU−UTRTRU

)
≥
(
1−

(
1 +

√
�/r

)2
)

≥ 3
√
�/r.

Combining these, we have
∥∥∥UTU−UTRTRU

∥∥∥
2
≤ 3

√
�/r.

Note: Let ε = 3
√
�/r. It is possible to set an upper bound on ε by setting the

value of r. In the next section, we assume ε ∈ (0, 1/2].

5 Our Main Theorems

The following theorem shows the additive error guarantees of the generalization
bounds of the approximate classifer with that of the classifier with no feature
selection. The classification error bound of BSS on RLSC depends on the con-
dition number of the training set and on how much of the test-set lies in the
subspace of the training set.

Theorem 1. Let ε ∈ (0, 1/2] be an accuracy parameter, r = O
(
n/ε2

)
be the

number of features selected by BSS. Let R ∈ Rr×d be the matrix, as defined in
Lemma 2. Let X ∈ Rd×n with d >> n, be the training set, X̃ = RX is the reduced
dimensional matrix and q ∈ Rd be the test point of the form q = Xα +U⊥β.
Then, the following hold:

– If λ = 0, then
∣∣∣q̃T X̃x̃opt − qTXxopt

∣∣∣ ≤ εκX

σmax
‖β‖2 ‖y‖2

– If λ > 0, then
∣∣∣q̃T X̃x̃opt − qTXxopt

∣∣∣ ≤ 2εκX ‖α‖2 ‖y‖2 + 2εκX

σmax
‖β‖2 ‖y‖2

Proof. We assume that X is a full-rank matrix. Let E = UTU−UTRTRU and

‖E‖2 =
∥∥∥I−UTRTRU

∥∥∥
2
= ε ≤ 1/2. Using the SVD of X, we define

Δ = ΣUTRTRUΣ = Σ (I+E)Σ. (6)

The optimal solution in the sampled space is given by,

x̃opt = V (Δ+ λI)
−1

VTy (7)

It can be proven easily that Δ and Δ+ λI are invertible matrices. We focus on
the term qTXxopt. Using the SVD of X, we get

qTXxopt = αTXTXxopt + βU⊥T
(
UΣVT

)
xopt

= αTVΣ2
(
Σ2 + λI

)−1
VTy (8)

= αTV
(
I+ λΣ−2

)−1
VTy. (9)

Eqn(8) follows because of the fact U⊥TU = 0 and by substituting xopt from
Eqn.(2). Eqn.(9) follows from the fact that the matrices Σ2 and Σ2 + λI are
invertible. Now,
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∣∣∣ = ∣∣∣qTXxopt − qTRTRXx̃opt

∣∣∣
≤
∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣ (10)

+
∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ (11)

We bound (10) and (11) separately. Substituting the values of x̃opt and Δ,

αTXTRTRXx̃opt = αTVΔVT x̃opt

= αTVΔ (Δ+ λI)−1 VTy

= αTV
(
I+ λΔ−1

)−1
VTy

= αTV
(
I+ λΣ−1 (I+E)

−1
Σ−1

)−1

VTy

= αTV
(
I+ λΣ−2 + λΣ−1ΦΣ−1

)−1
VTy (12)

The last line follows from Lemma 3 in Appendix, which states that (I+E)
−1

=

I+Φ, where Φ =
∞∑
i=1

(−E)i. The spectral norm of Φ is bounded by,

‖Φ‖2 =

∥∥∥∥∥
∞∑
i=1

(−E)i

∥∥∥∥∥
2

≤
∞∑
i=1

‖E‖i2 ≤
∞∑
i=1

εi = ε/(1− ε). (13)

We now bound (10). Substituting (9) and (12) in (10),∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣
=
∣∣∣αTV{

(
I+ λΣ−2 + λΣ−1ΦΣ−1

)−1 −
(
I+ λΣ−2

)−1}VTy
∣∣∣

≤
∥∥αTV

(
I+ λΣ−2

)∥∥
2

∥∥∥VTy
∥∥∥
2
‖Ψ‖2

The last line follows because of Lemma 4 and the fact that all matrices involved
are invertible. Here,

Ψ = λΣ−1ΦΣ−1
(
I+ λΣ−2 + λΣ−1ΦΣ−1

)−1

= λΣ−1ΦΣ−1
(
Σ−1

(
Σ2 + λI+ λΦ

)
Σ−1

)−1

= λΣ−1Φ
(
Σ2 + λI+ λΦ

)−1
Σ

Since the spectral norms of Σ,Σ−1 and Φ are bounded, we only need to bound

the spectral norm of
(
Σ2 + λI+ λΦ

)−1
to bound the spectral norm of Ψ. The

spectral norm of the matrix
(
Σ2 + λI + λΦ

)−1
is the inverse of the smallest

singular value of
(
Σ2 + λI+ λΦ

)
. From perturbation theory of matrices [14]

and (13), we get∣∣σi

(
Σ2 + λI+ λΦ

)
− σi

(
Σ2 + λI

)∣∣ ≤ ‖λΦ‖2 ≤ ελ.

Here,σi(Q) represents the ith singular value of thematrixQ.Also,σi
2
(
Σ2 + λI

)
=

σi
2 + λ, where σi are the singular values ofX.
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σi
2 + (1− ε)λ ≤ σi

(
Σ2 + λI+ λΦ

)
≤ σi

2 + (1 + ε)λ.

Thus,
∥∥∥(Σ2 + λI + λΦ

)−1
∥∥∥
2
=1/σmin

(
Σ2+λI+ λΦ

)
≤ 1/

(
σ2

min + (1−ε)λ)
)

Here, σmax and σmin denote the largest and smallest singular value of X. Since
‖Σ‖2

∥∥Σ−1
∥∥
2
= σmax/σmin ≤ κX, (condition number ofX) we bound (10):∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣ ≤ ελκX

σ2
min + (1− ε)λ

∥∥∥αTV
(
I+ λΣ−2

)−1
∥∥∥
2

∥∥∥VTy
∥∥∥
2

(14)

For λ > 0, the term σ2
min +(1− ε)λ in Eqn.(14) is always larger than (1− ε)λ,

so it can be upper bounded by 2εκX (assuming ε ≤ 1/2). Also,∥∥∥αTV
(
I+ λΣ−2

)−1
∥∥∥
2
≤

∥∥αTV
∥∥
2

∥∥∥(I+ λΣ−2
)−1

∥∥∥
2
≤ ‖α‖2 .

This follows from the fact, that
∥∥αTV

∥∥
2
= ‖α‖2 and ‖Vy‖2 = ‖y‖2 as V is a

full-rank orthonormal matrix and the singular values of I + λΣ−2 are equal to
1 + λ/σi

2; making the spectral norm of its inverse at most one. Thus we get,∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣ ≤ 2εκX ‖α‖2 ‖y‖2 . (15)

We now bound (11). Expanding (11) using SVD and x̃opt,∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ = ∣∣∣βTU⊥TRTRUΣ (Δ+ λI)VTy
∣∣∣

≤
∥∥∥qTU⊥U⊥TRTRU

∥∥∥
2

∥∥∥Σ (Δ+ λI)−1
∥∥∥
2

∥∥∥VTy
∥∥∥
2

≤ ε
∥∥∥U⊥U⊥Tq

∥∥∥
2

∥∥∥VTy
∥∥∥
2

∥∥∥Σ (Δ+ λI)
−1
∥∥∥
2

≤ ε ‖β‖2 ‖y‖2
∥∥∥Σ (Δ+ λI)

−1
∥∥∥
2

The first inequality follows from β = U⊥Tq; and the second inequality follows
from Lemma 6 given in appendix. To conclude the proof, we bound the spectral
norm ofΣ (Δ+ λI)−1. Note that from Eqn.(6), Σ−1ΔΣ−1 = I+E andΣΣ−1 =
I,

Σ (Δ+ λI)−1 =
(
Σ−1ΔΣ−1 + λΣ−2

)−1
Σ−1 =

(
I+ λΣ−2 +E

)−1
Σ−1.

One can get a lower bound for the smallest singular value of
(
I+ λΣ−2 +E

)−1
us-

ingmatrix perturbation theory and by comparing the singular values of thismatrix
to the singular values of I+ λΣ−2.We get, (1− ε) + λ

σi
2 ≤ σi

(
I+E+ λΣ−2

)
≤ (1 + ε) + λ

σi
2∥∥∥(I+ λΣ−2 +E

)−1
Σ−1

∥∥∥
2
≤ σ2

max

((1− ε)σ2
max + λ)σmin

=
κXσmax

(1− ε)σ2
max + λ

≤ 2κX

σmax
(16)
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We assumed that ε ≤ 1/2, which implies (1− ε) + λ/σ2
max ≥ 1/2. Combining

these, we get, ∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ ≤ 2εκX

σmax
‖β‖2 ‖y‖2 . (17)

Combining Eqns (15) and (17) we complete the proof for the case λ > 0. For
λ = 0, Eqn.(14) becomes zero and the result follows.

Our next theorem provides relative-error guarantees to the bound on the classi-
fication error when the test-point has no-new components, i.e. β = 0.

Theorem 2. Let ε ∈ (0, 1/2] be an accuracy parameter, r = O
(
n/ε2

)
be the

number of features selected by BSS and λ > 0. Let q ∈ Rd be the test point of
the form q = Xα, i.e. it lies entirely in the subspace spanned by the training set,

and the two vectors VTy and
(
I+ λΣ−2

)−1
VTα satisfy the property,∥∥∥(I+ λΣ−2

)−1
VTα

∥∥∥
2

∥∥∥VTy
∥∥∥
2
≤ ω

∥∥∥∥((I+ λΣ−2
)−1

VTα
)T

VTy

∥∥∥∥
2

= ω
∣∣qTXxopt

∣∣
for some constant ω. If we run RLSC after BSS, then

∣∣∣q̃T X̃x̃opt − qTXxopt

∣∣∣ ≤
2εωκX

∣∣qTXxopt

∣∣
The proof follows directly from the proof of Theorem 1 if we consider β = 0.

6 Experiments

All experiments were performed in MATLAB R2013b on an Intel i-7 processor
with 16GB RAM.

6.1 BSS Implementation Issues

The authors of [3] do not provide any implementation details of the BSS algo-
rithm. Here we discuss several issues arising during the implementation.
Choice of Column Selection: At every iteration, there are multiple columns
which satisfy the condition U (ui, δU ,Aτ , Uτ ) ≤ L (ui, δL,Aτ , Lτ ) . The authors
of [3] suggest picking any column which satisfies this constraint. Instead of
breaking ties arbitrarily, we choose the column ui which has not been selected
in previous iterations and whose Euclidean-norm is highest among the candidate
set. Columns with zero Euclidean norm never get selected by the algorithm. In
the inner loop of Algorithm 1, U and L has to be computed for all the d columns
in order to pick a good column. This step can be done efficiently using a single
line of Matlab code, by making use of matrix and vector operations.
Ill-conditioning: The second issue related to the implementation is ill condi-
tioning. It is possible for Aτ to be almost singular. At every iteration τ , we
check the condition number of Aτ . If it is high, then we regularize Aτ as follows
: Aτ = Aτ +γI. We set γ = 0.01 in our experiments. Smaller values of γ resulted
in large eigenvalues of Aτ

−1, which in turn, resulted in large values of tτ causing
bad-scaling of the columns of the input matrix.



542 S. Paul and P. Drineas

6.2 Other Feature Selection Methods

In this section, we describe other feature-selection methods with which we com-
pare BSS.
Rank-Revealing QR Factorization (RRQR): Within the numerical linear
algebra community, subset selection algorithms use the so-called Rank Reveal-
ing QR (RRQR) factorization. Here we slightly abuse notation and state A as a
short and fat matrix as opposed to the tall and thin matrix. Let A be a n×dma-
trix with (n < d) and an integer k (k < d) and assume partial QR factorizations
of the form

AP = Q

(
R11 R12

0 R22

)
,

where Q ∈ Rn×n is an orthogonal matrix, P ∈ Rd×d is a permutation ma-
trix, R11 ∈ Rk×k,R12 ∈ Rk×(d−k),R22 ∈ R(d−k)×(d−k) The above factorization
is called a RRQR factorization if σmin (R11) ≥ σk (A) /p(k, d), σmax (R22) ≤
σmin(A)p(k, d), where p(k, d) is a function bounded by a low-degree polyno-

mial in k and d. The important columns are given by A1 = Q

(
R11

0

)
and

σi (A1) = σi (R11) with 1 ≤ i ≤ k. We perform feature selection using RRQR
by picking the important columns which preserve the rank of the matrix.
Random Feature Selection: We select features uniformly at random without
replacement which serves as a baseline method. To get around the randomness,
we repeat the sampling process five times.
Leverage Score Sampling: We describe the leverage-score sampling of [6].
Let U be the top-k left singular vectors of the training set X. We create a care-

fully chosen probability distribution of the form pi =
‖Ui‖2

2

n . for i = 1, 2, ..., d,
i.e. proportional to the squared Euclidean norms of the rows of the left-singular
vectors and select r rows of U in i.i.d trials and re-scale the rows with 1/

√
pi.

We repeat the sampling process five times to get around the randomness. In our
experiments, k was set to the rank of X.
Information Gain (IG): The Information Gain feature selection method [16]
measures the amount of information obtained for binary class prediction by
knowing the presence or absence of a feature in a dataset. The method is a
supervised strategy, whereas the other methods used here are unsupervised.

Table 1. Most frequently selected features using the synthetic dataset

r = 80 k = 90 k = 100

BSS 89, 88, 87, 86, 85 100, 99, 98, 97, 95

RRQR 90, 80, 79, 78, 77 100, 80, 79, 78, 77

Lvg-Score 73, 85, 84, 81, 87 93, 87, 95, 97, 96

IG 80, 79, 78, 77, 76 80, 79, 78, 77, 76

r = 90 k = 90 k = 100

BSS 88, 87, 86, 85, 84 100, 99, 98, 97, 95

RRQR 90, 89, 88, 87, 86 100, 90, 89, 88, 87

Lvg-Score 67, 88, 83, 87, 85 100, 97, 92, 48, 58

IG 90, 89, 88, 87, 86 90, 89, 88, 87, 86
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6.3 Synthetic Data

We run our experiments on synthetic data where we control the number of
relevant features in the dataset and demonstrate the working of Algorithm 1
on RLSC. We generate synthetic data in the same manner as given in [4]. The
dataset has n data-points and d features. The class label yi of each data-point
was randomly chosen to be 1 or -1 with equal probability. The first k features of
each data-point xi are drawn from yiN (−j, 1) distribution, where N

(
μ, σ2

)
is

a random normal distribution with mean μ and variance σ2 and j varies from 1
to k. The remaining d− k features are chosen from a N (0, 1) distribution. Thus
the dataset has k relevant features and (d − k) noisy features. By construction,
among the first k features, the kth feature has the most discriminatory power,
followed by (k − 1)th feature and so on. We set n to 30 and d to 1000. We set k
to 90 and 100 and ran two sets of experiments.

Table 2. Out-of-sample error of TechTC-300 datasets averaged over ten ten-fold cross-
validation and over 48 datasets for three values of r. The first and second entry of each
cell represents the mean and standard deviation. Items in bold indicate the best results.

r = 300 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 31.76 ± 0.68 31.46 ± 0.67 31.24 ± 0.65 31.03 ± 0.66

Lvg-Score 38.22 ± 1.26 37.63 ± 1.25 37.23 ± 1.24 36.94 ± 1.24

RRQR 37.84 ± 1.20 37.07 ± 1.19 36.57 ± 1.18 36.10 ± 1.18

Randomfs 50.01 ± 1.2 49.43 ± 1.2 49.18 ± 1.19 49.04 ± 1.19

IG 38.35 ± 1.21 36.64 ± 1.18 35.81 ± 1.18 35.15 ± 1.17

r = 400 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 30.59 ± 0.66 30.33 ± 0.65 30.11 ± 0.65 29.96 ± 0.65

Lvg-Score 35.06 ± 1.21 34.63 ± 1.20 34.32 ± 1.2 34.11 ± 1.19

RRQR 36.61 ± 1.19 36.04 ± 1.19 35.46 ± 1.18 35.05 ± 1.17

Randomfs 47.82 ± 1.2 47.02 ± 1.21 46.59 ± 1.21 46.27 ± 1.2

IG 37.37 ± 1.21 35.73 ± 1.19 34.88 ± 1.18 34.19 ± 1.18

r = 500 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 29.80 ± 0.77 29.53 ± 0.77 29.34 ± 0.76 29.18 ± 0.75

Lvg-Score 33.33 ± 1.19 32.98 ± 1.18 32.73 ± 1.18 32.52 ± 1.17

RRQR 35.77 ± 1.18 35.18 ± 1.16 34.67 ± 1.16 34.25 ± 1.14

Randomfs 46.26 ± 1.21 45.39 ± 1.19 44.96 ± 1.19 44.65 ± 1.18

IG 36.24 ± 1.20 34.80 ± 1.19 33.94 ± 1.18 33.39 ± 1.17

We set the value of r, i.e. the number of features selected by BSS to 80 and 90
for all experiments. We performed ten-fold cross-validation and repeated it ten
times. The value of λ was set to 0, 0.1, 0.3, 0.5, 0.7, and 0.9. We compared BSS
with RRQR, IG and leverage-score sampling. The mean out-of-sample error
was 0 for all methods for both k = 90 and k = 100. Table 1 shows the set
of five most frequently selected features by the different methods for one such
synthetic dataset across 100 training sets. The top features picked up by the
different methods are the relevant features by construction and also have good
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discriminatory power. This shows that supervised BSS is as good as any other
method in terms of feature selection and often picks more discriminatory features
than the other methods. We repeated our experiments on ten different synthetic
datasets and each time, the five most frequently selected features were from the
set of relevant features. Thus, by selecting only 8%-9% of all features, we show
that we are able to obtain the most discriminatory features along with good
out-of-sample error using BSS.
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Fig. 1. Out-of-sample error of 48 TechTC-300 documents averaged over ten ten-fold
cross validation experiments for different values of regularization parameter λ and
number of features r = 300. Vertical bars represent standard deviation.

6.4 TechTC-300

We use the TechTC-300 data [7], consisting of a family of 295 document-term
data matrices. The TechTC-300 dataset comes from the Open Directory Project
(ODP), which is a large, comprehensive directory of the web, maintained by
volunteer editors. Each matrix in the TechTC-300 dataset contains a pair of
categories from the ODP. Each category corresponds to a label, and thus the
resulting classification task is binary. The documents that are collected from the
union of all the subcategories within each category are represented in the bag-
of-words model, with the words constituting the features of the data [7]. Each
data matrix consists of 150-280 documents, and each document is described with
respect to 10,000-50,000 words. Thus, TechTC-300 provides a diverse collection
of data sets for a systematic study of the performance of the RLSC using BSS.
We removed all words of length at most four from the datasets. Next we grouped
the datasets based on the categories and selected those datasets whose categories
appeared at least thrice. There were 147 datasets, and we performed ten-fold
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Table 3. A subset of the TechTC matrices of our study

id1 id2 id1 id2

1092 789236 Arts:Music:Styles:Opera US Navy:Decommisioned Submarines

17899 278949 US:Michigan:Travel & Tourism Recreation:Sailing Clubs:UK

17899 48446 US:Michigan:Travel & Tourism Chemistry:Analytical:Products

14630 814096 US:Colorado:Localities:Boulder Europe:Ireland:Dublin:Localities

10539 300332 US:Indiana:Localities:S Canada:Ontario:Localities:E

10567 11346 US:Indiana:Evansville US:Florida:Metro Areas:Miami

10539 194915 US:Indiana:Localities:S US:Texas:Localities:D

cross validation and repeated it ten times on 48 such datasets. We set the values
of the regularization parameter of RLSC to 0.1, 0.3, 0.5 and 0.7. We do not report
running times because feature selection is an offline task. We set r to 300, 400
and 500. We report the out-of-sample error for all 48 datasets. BSS consistently
outperforms Leverage-Score sampling, IG, RRQR and random feature selection
on all 48 datasets for all values of the regularization parameter. Table 2 and Fig 1
shows the results. The out-of-sample error decreases with increase in number
of features for all methods. In terms of out-of-sample error, BSS is the best,
followed by Leverage-score sampling, IG, RRQR and random feature selection.
BSS is at least 3%-7% better than the other methods when averaged over 48
document matrices. From Fig 1 and 2, it is evident that BSS is comparable to
the other methods and often better on all 48 datasets. Leverage-score sampling
requires greater number of samples to achieve the same out-of-sample error as
BSS (See Table 2, r = 500 for Lvg-Score and r = 300 for BSS). Therefore, for
the same number of samples, BSS outperforms leverage-score sampling in terms
of out-of-sample error. The out-of-sample error of supervised IG is worse than
that of unsupervised BSS, which could be due to the worse generalization of the
supervised IG metric. We also observe that the out-of-sample error decreases
with increase in λ for the different feature selection methods.

Due to space constraints, we list the most frequently occurring words selected
by BSS for the r = 300 case for seven TechTC-300 datasets over 100 train-
ing sets used in the cross-validation experiments. Table 3 shows the names of
the seven TechTC-300 document-term matrices. The words shown in Table 4

Table 4. Frequently occurring terms of the TechTC-300 datasets of Table 3 selected
by BSS

1092 789236 naval,shipyard,submarine,triton,music,opera,libretto,theatre

17899 278949 sailing,cruising,boat,yacht,racing,michigan,leelanau,casino

17899 48446 vacation,lodging,michigan,asbestos,chemical,analytical,laboratory

14630 814096 ireland,dublin,boulder,colorado,lucan,swords,school,dalkey

10539 300332 ontario,fishing,county,elliot,schererville,shelbyville,indiana,bullet

10567 11346 florida,miami,beach,indiana,evansville,music,business,south

10539 194915 texas,dallas,plano,denton,indiana,schererville,gallery,north
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r = 500

Fig. 2. Out-of-sample error of 48 TechTC-300 documents averaged over ten ten-fold
cross validation experiments for different values of regularization parameter λ and
number of features r = 400 and r = 500. Vertical bars represent standard deviation.

were selected in all cross-validation experiments for these seven datasets. The
words are closely related to the categories to which the documents belong, which
shows that BSS selects important features from the training set. For example,
for the document-pair (1092 789236), where 1092 belongs to the category of
“Arts:Music:Styles:Opera” and 789236 belongs to the category of “US:Navy:
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Decommisioned Submarines”, the BSS algorithm selects submarine, shipyard,
triton, opera, libretto, theatre which are closely related to the two classes.
Another example is the document-pair 10539 300332, where 10539 belongs to
“US:Indiana:Localities:S” and 300332 belongs to the category of “Canada: On-
tario: Localities:E”. The top words selected for this document-pair are ontario,
elliot, shelbyville, indiana, schererville which are closely related to the class val-
ues. Thus, we see that using only 2%-4% of all features we are able to select
relevant features and obtain good out-of-sample error.

7 Conclusion

We present a provably accurate feature selection method for RLSC which works
well empirically and also gives better generalization peformance than prior exist-
ing methods. The number of features required by BSS is of the order O

(
n/ε2

)
,

which makes the result tighter than that obtained by leverage-score sampling.
BSS has been recently used as a feature selection technique for k-means clus-
tering [5], linear SVMs [11] and our work on RLSC helps to expand research in
this direction. An interesting future work in this direction would be to include
feature selection for non-linear kernels with provable guarantees.
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8 Appendix

Lemma 3. For any matrix E, such that I+E is invertible, (I+E)
−1

= I+
∞∑
i=1

(−E)i.

Lemma 4. Let A and Ã = A +E be invertible matrices. Then Ã
−1 −A−1 =

−A−1EÃ
−1

.

Lemma 5. Let D and X be matrices such that the product DXD is a sym-
metric positive definite matrix with matrix Xii = 1. Let the product DED be
a perturbation such that, ‖E‖2 = η < λmin(X). Here λmin corresponds to the

smallest eigenvalue of X. Let λi be the i-th eigenvalue of DXD and let λ̃i be the

i-th eigenvalue of D (X+E)D. Then,
∣∣∣λi−λ̃i

λi

∣∣∣ ≤ η
λmin(X) .

The lemmas presented above are from matrix perturbation theory [14,8] and are
used in the proof of our main theorem.

Lemma 6. Let ε ∈ (0, 1/2]. Then
∥∥∥qTU⊥U⊥TRTRU

∥∥∥
2
≤ ε

∥∥∥U⊥U⊥Tq
∥∥∥
2

The proof of this lemma is similar to Lemma 4.3 of [9].
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Abstract. This paper addresses the problem of batch Reinforcement
Learning with Expert Demonstrations (RLED). In RLED, the goal is
to find an optimal policy of a Markov Decision Process (MDP), using a
data set of fixed sampled transitions of the MDP as well as a data set of
fixed expert demonstrations. This is slightly different from the batch Re-
inforcement Learning (RL) framework where only fixed sampled transi-
tions of the MDP are available. Thus, the aim of this article is to propose
algorithms that leverage those expert data. The idea proposed here dif-
fers from the Approximate Dynamic Programming methods in the sense
that we minimize the Optimal Bellman Residual (OBR), where the min-
imization is guided by constraints defined by the expert demonstrations.
This choice is motivated by the the fact that controlling the OBR im-
plies controlling the distance between the estimated and optimal quality
functions. However, this method presents some difficulties as the criterion
to minimize is non-convex, non-differentiable and biased. Those difficul-
ties are overcome via the embedding of distributions in a Reproducing
Kernel Hilbert Space (RKHS) and a boosting technique which allows ob-
taining non-parametric algorithms. Finally, our algorithms are compared
to the only state of the art algorithm, Approximate Policy Iteration with
Demonstrations (APID) algorithm, in different experimental settings.

1 Introduction

This paper addresses the problem of batch Reinforcement Learning with Expert
Demonstrations (RLED) where the aim is to find an optimal policy of a Markov
Decision Process (MDP) only known through fixed sampled transitions, when
expert demonstrations are also provided. Thus, RLED can be seen as a com-
bination of two classical frameworks, Learning from Demonstrations (LfD) and
batch Reinforcement Learning (RL). The LfD framework is a practical paradigm
for learning from expert trajectories. A classical approach to LfD is to generalize
the mapping between states and actions observed in the expert data. This can
be done by a Supervised Learning method such as a multi-class classification
algorithm [19]. However, those methods do not generalize well to regions of the
state space that are not observed in the expert data, because they do not take

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 549–564, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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into account the underlying dynamics of the MDP. To alleviate this, some recent
methods [11,21] focus on querying the expert in some appropriate regions of the
state space to improve the learning. However, this implies that the expert stays
with the learning agent throughout the training process, which can reduce sig-
nificantly the applicability of the technique. Therefore, the idea presented in [12]
to overcome the limitation of conventional LfD methods is to use techniques
from the batch Reinforcement Learning (RL) paradigm and combine them with
LfD techniques. In batch Reinforcement Learning (RL), the goal is the same as
in RLED, but without expert data. Usual techniques of batch RL have some
difficulties to achieve good results from relatively little data. However, if some
expert demonstrations are added to the set of sampled transitions, it is possible
to improve significantly the results of the method [12]. Thus, a combination of
expert data and non expert data offers the possibility to address the problem of
learning optimal policies under realistic assumptions.

At our knowledge, there is only one algorithm taking into account expert data
in order to find an optimal policy. This approach is Approximate Policy Itera-
tion with Demonstrations (APID) [12], which consists in using expert demon-
strations to define linear constraints that guide the optimization performed by
Approximate Policy Iteration (API), a classical framework in RL. The practical
algorithm APID is inspired by Least Squares Temporal Differences (LSTD) [6],
where the choice of features is a key problem as it is a parametric method. Even if
the optimization could be done in a Reproducing Kernel Hilbert Space (RKHS),
which provides the flexibility of working with a non-parametric representation
as claimed by [12], the choice of the kernel can be as difficult as the choice of
the features. Therefore, we propose a method with no features choice in order
to solve the RLED problem. Our method consists in the minimization of the
norm of the Optimal Bellman Residual (OBR), guided by constraints defined
by the expert demonstrations (see Sec 2.1). This minimization is motivated by
the fact that if one is able to find a function with a small OBR, then this func-
tion is close to the optimal quality function. However, as far as we know, this
technique is not used in RL for three reasons. First, the empirical norm of the
OBR is biased. Second, it is not convex, so the minimization could lead to local
minima. Third, it is not differentiable. Our contribution is to show how we can
construct an empirical norm of the OBR which is not biased via the embedding
of distributions in an RKHS (see Sec. 4.1) and how it is possible to minimize
this non-convex and non-differentiable criterion via a boosting technique (see
Sec. 4.2). In addition, boosting techniques are non-parametric methods which
avoid choosing features.

In the proposed experiments (see Sec. 5), we compare our algorithms to the
only state of the art algorithm APID, to an RL algorithm Least Square Policy
Iteration (LSPI) [14], and to an LfD algorithm [19]. The first experiment is
conducted on a generic task (randomly generated MDP called Garnet [3]) where
expert demonstrations and non-expert transitions are provided and the aim is
to find an optimal policy. The second experiment is realized on a classical LfD
benchmark, the Highway problem.
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2 Background and Notations

Let (R, |.|) be the real space with its canonical norm and X a finite set, RX is
the set of functions from X to R. The set of probability distributions over X is
noted ΔX . Let Y be a finite set, ΔY

X is the set of functions from Y to ΔX . Let
α ∈ RX , p ∈ R∗

+ and ν ∈ ΔX , we define the Lp,ν-norm of α, noted ‖α‖p,ν , by:
‖α‖p,ν = (

∑
x∈X ν(x)|α(x)|p)

1
p . In addition, the infinite norm is noted ‖α‖∞ and

defined as ‖α‖∞ = maxx∈X |α(x)|. Let x ∈ X , x ∼ ν means that x is sampled
according to ν and Eν [α] =

∑
x∈X ν(x)α(x) is the expectation of α under ν.

Finally, δx ∈ RX is the function such that ∀y ∈ X, if y 
= x then δx(y) =
0, else δx(y) = 1.

2.1 MDP, RL and RLED

In this section, we provide a very brief summary of some of the concepts and
definitions from the theory of MDP and RL. For further information about
MDP, the reader can be referred to [18]. Here, the agent is supposed to act
in a finite MDP 1. An MDP models the interactions of an agent evolving in a
dynamic environment and is represented by a tuple M = {S,A,R, P, γ} where
S = {si}1≤i≤NS is the state space, A = {ai}1≤i≤NA is the action space, R ∈
RS×A is the reward function, γ ∈]0, 1[ is a discount factor and P ∈ ΔS×A

S

is the Markovian dynamics which gives the probability, P (s′|s, a), to reach s′

by choosing the action a in the state s. A policy π is an element of AS and
defines the behavior of an agent. In order to quantify the quality of a policy π
relatively to the reward R, we define the quality function. For a given MDP M
and a given policy π, the quality function Qπ ∈ RS×A is defined as Qπ(s, a) =
Eπ
s,a[

∑+∞
t=0 γ

tR(st, at)], where Eπ
s,a is the expectation over the distribution of the

admissible trajectories (s0, a0, s1, π(s1), . . . ) obtained by executing the policy π
starting from s0 = s and a0 = a. Moreover, the function Q∗ ∈ RS×A defined
as: Q∗ = maxπ∈AS Qπ is called the optimal quality function. A policy π which
has the following property: ∀s ∈ S, π(s) ∈ argmaxa∈A Q∗(s, a) is said optimal
with respect to R. Thus, it is quite easy to construct an optimal policy via
the knowledge of the optimal quality function. For ease of writing, for each Q
and each π, we define f∗

Q ∈ RS such that ∀s ∈ S, f∗
Q(s) = maxa∈A Q(s, a) and

fπ
Q ∈ RS such that ∀s ∈ S, fπ

Q(s) = Q(s, π(s)). Qπ and Q∗ are fixed points of
the two following contracting operators T π and T ∗ for the infinite norm:

∀Q ∈ RS×A, ∀(s, a) ∈ S ×A, T πQ(s, a) = R(s, a) + γEP (.|s,a)[f
π
Q],

∀Q ∈ RS×A, ∀(s, a) ∈ S ×A, T ∗Q(s, a) = R(s, a) + γEP (.|s,a)[f
∗
Q].

The aim of Dynamic Programming (DP) is, given an MDP M , to find Q∗ which
is equivalent to minimizing a certain norm of the OBR defined as T ∗Q−Q:

JDP (Q) = ‖T ∗Q−Q‖,
1 This work could be easily extended to measurable state spaces as in [9,12]; we choose

the finite case for the ease and clarity of exposition.
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where ‖.‖ is a norm which can be equal to ‖.‖∞ or ‖.‖ν,p, ν ∈ ΔS×A is such that
∀(s, a) ∈ S × A, ν(s, a) > 0 and p ∈ R∗

+. Usual techniques of DP, such as Value
Iteration (VI) or Policy Iteration (PI), do not directly minimize the criterion
JDP (Q) but uses particular properties of the operators T π and T ∗ to obtain Q∗.
However, the motivation to minimize the norm of the OBR is clear as:

‖Q∗ −Q‖ ≤ C

1− γ
‖T ∗Q−Q‖,

where C ∈ R∗ is a constant depending notably on the MDP (for details see the
work of [16]). This means that if we are able to control the norm of the OBR,
then we have found a function Q close to Q∗, which is the goal of DP.

Batch RL aims at estimating Q∗ or finding an optimal policy when the model
(the dynamics P and the reward function R) of the MDP M is known only
through the RL data set noted DRL which contains NRL sampled transitions of
the type (si, ai, ri, s

′
i) where si ∈ S, ai ∈ A, ri = R(si, ai) and s′i ∼ P (.|si, ai):

DRL = (si, ai, ri, s
′
i)1≤i≤NRL . For the moment no assumption is made on the

distribution νRL ∈ ΔS×A from which the data are drawn, (si, ai) ∼ νRL. In batch
RLED, we suppose that we also have the expert data set DE which contains NE

expert state-action couples of the the type (sj , πE(sj)) where sj ∈ S and πE is an
expert policy which can be considered optimal or near-optimal: DE = (sj , aj =
πE(sj))1≤j≤NE . The distribution from which the expert data are drawn is noted
νE ∈ ΔS , sj ∼ νE .

3 A New Algorithm for the RLED Problem

Our problem consists in approximating Q∗. We saw in Sec. 2.1 that minimizing
a certain norm of the OBR can lead us to a good approximation of the optimal
quality function and of the optimal policy. However, the only available knowledge
of the MDP lies in the sets of data DRL and DE . Thus for the set DRL, we want
to find a function Q ∈ RS×A that minimizes the empirical OBR:

JRL(Q) =
1

NRL

NRL∑
i=1

|T ∗Q(si, ai)−Q(si, ai)|p =
def

‖T ∗Q −Q‖pDRL,p,

where p ≥ 1. For the expert set DE , we would like to express that the action aj
is optimal, which means that Q(sj , aj) is greater than Q(sj , a) where a ∈ A\aj .
This can be expressed by the following large margin constraints:

∀1 ≤ j ≤ NE , max
a∈A

[Q(sj , a) + l(sj, aj , a)]−Q(sj, aj) ≤ 0,

where l ∈ RS×A×A
+ is a margin function such that ∀1 ≤ j ≤ NE , ∀a ∈ A\aj ,

l(sj, aj , a) > l(sj , aj, aj). A canonical choice of margin function is ∀1 ≤ j ≤ NE ,
∀a ∈ A\aj , l(sj, aj , aj) = 0, l(sj, aj, a) = 1. This imposes that the function
Q we are looking for is greater by a given amount determined by the margin
function for the expert actions. If available, one prior knowledge can be used
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to structure the margin. Those constraints guide the minimization of JRL as
they impose a particular structure for the quality function we are looking for.
Here, it is important to note that the constraints that guide the minimization
of JRL are compatible with this minimization as they are satisfied by the expert
policy which is near optimal. Thus, we can think that those constraints help to
accelerate and improve the minimization of JRL.

However, notice that it is not the case if we use T π in lieu of T ∗, because the
policy π can be completely different from the expert policy. This is a problem
encountered in the APID algorithm, as they choose a Policy Iteration framework
where there are several steps of the minimization of the norm of the Bellman
Residual ‖T πQ−Q‖ guided by constraints on expert data (see Sec. 3.1).

As the expert policy might be suboptimal, the constraints can be violated by
an optimal policy, that is why we smooth those constraints with slack variables:

∀1 ≤ j ≤ NE , max
a∈A

[Q(sj , a) + l(sj, aj , a)]−Q(sj, aj) ≤ ξj ,

where ξj is a positive slack variable that must be the smallest possible. So the
idea is to minimize:

JRL(Q) +
λ

NE

NE∑
j=1

ξj ,

subject to max
a∈A

[Q(sj, a) + l(sj , aj, a)]−Q(sj , aj) ≤ ξj , ∀1 ≤ j ≤ NE.

where λ determines the importance between the RL data and the expert data.
Following [20], as the slack variables are tight and positive, this problem is

equivalent to minimizing:

JRLE(Q) = JRL(Q) + λJE(Q),

where: JE(Q) = 1
NE

∑NE

j=1 maxa∈A[Q(sj , a) + l(sj , aj , a)]−Q(sj , aj). The mini-
mization of the criterion JE(Q) is known in the literature and used in the LfD
paradigm [19,13,17]. The minimization of JE(Q) can be seen as a score-based
multi-class classification algorithm where the states sj play the role of inputs
and the actions aj play the role of labels.

3.1 Comparaison to the APID Method

The APID method is couched in the API framework [5], which starts with an
initial policy π0. At the k+1-th iteration, given a policy πk, the quality function
Qπk is approximately evaluated by Q̂k. This step is called the approximate policy
evaluation step. Then, a new policy πk+1 is computed, which is greedy with
respect to Q̂k. In the APID algorithm, the policy evaluation step is realized by
the following unconstrained minimization problem:

Q̂k = argmin
Q∈RS×A

Jπ
RL(Q) + λJE(Q), (1)
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where: Jπ
RL(Q) = 1

NRL

∑NRL

i=1 |T πQ(si, ai)−Q(si, ai)|p =
def

‖T πQ−Q‖pDRL,p
. The

difference between JRL(Q) and Jπ
RL(Q) is the use of the operator T ∗ in lieu of

T π. In the APID method, the policy evaluation step is slightly different from
a classical API method which consists in the minimization of Jπ

RL(Q). This
introduces an error in the evaluation step for the first iterations of the APID
method, which can potentially slow down the learning process. Moreover, as
the APID is an iterative method, the unconstrained problem Eq. (1) has to
be resolved several times which can be time expensive. However, this problem is
convex and easier to resolve than the minimization of JRLE . In practice, in order
to resolve the problem in Eq. (1), an LSTD-like algorithm [12] is used (this is
the algorithm implemented in our experiments in order to represent the APID
method). This method is by nature parametric and needs the choice of features
or the choice of a kernel. Thus, the APID has as advantage the simplicity of
minimizing Jπ

RL(Q) +λJE(Q), which is convex, but has also some drawbacks as
it is an iterative and parametric method.

Our algorithm, which consists in the minimization of JRLE(Q) = JRL(Q) +
λJE(Q), avoids the APID drawbacks as it can be in practice a non parametric
and non iterative method (see Sec. 4) but it is a non-convex criterion. Indeed, let
us take a closer look at JRL(Q) = ‖T ∗Q−Q‖pDRL,p. This criterion is an empirical
norm of the OBR, and the minimization of this criterion for solving the batch
RL problem is an unused technique at our knowledge. There are several reasons
to understand why the OBR minimization (OBRM) is usually not used. The
first one is that this criterion is not convex in Q, so a direct minimization could
lead us to local minima. The second reason is that this criterion is not differen-
tiable because of the max operator, so we need to use sub-gradient techniques
or generalized gradient techniques to minimize it. The third reason is that this
technique is not directly inspired by a dynamic programming approach such as
PI or VI.

In the next section, we exhibit the bias problem involved by JRL. However,
it is possible to construct two criterions ĴRL, which is a biased criterion but
can be used in some specific conditions, and JRL which converges in probability
to ‖T ∗Q − Q‖2ν,2 when NRL tends to infinity and ν is the distribution from
which the data are drawn. JRL is obtained thanks to the use of a distribution
embedding in an RKHS. Finally, we show how we overcome the non-convex and
non-differentiability difficulties via a boosting technique which allows obtaining
non-parametric algorithms.

4 Practical Minimization of JRLE

In this section, we present how the criterion JRLE is minimized in order to
obtain a practical and non-parametric algorithm. Here, we choose p = 2 and we
suppose that the data (si, ai) are drawn identically and independently (i.i.d) from
a distribution ν ∈ ΔS×A such that ∀(s, a), ν(s, a) > 0. The i.i.d assumption is
only done here to simplify the analysis. Indeed, this assumption could be relaxed
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using techniques that handle dependent data [25]. The i.i.d assumption for the
data set DRL in a batch RL setting is common in the literature [14,15,12].

First, let us take a closer look to the term JRL(Q) = ‖T ∗Q − Q‖2DRL,2.
If we only have the knowledge of the data set DRL, we cannot compute
T ∗Q(si, ai), but we can compute an unbiased estimate T̂ ∗Q(si, ai) = R(si, ai)+
γmaxa∈AQ(s′i, a). Then, our criterion becomes:

ĴRL(Q) =
1

NRL

NRL∑
i=1

|T̂ ∗Q(si, ai)−Q(si, ai)|2 =
def

‖T̂ ∗Q −Q‖2DRL,2.

Unfortunately, this is a biased criterion. However, we have the following result:

Theorem 1.

ĴRL(Q) →
NRL→∞

‖T ∗Q−Q‖2ν,2 + γ2
∑

(s,a)∈S×A

ν(s, a)EP (.|s,a)[(f
∗
Q)2−EP (.|s,a)[|f∗

Q|]2].

Proof. The proof follows the same line as the one of [2], where T ∗ replaces T π.

So, when the number of samples tends to infinity, the criterion ĴRL(Q) tends
to ‖T ∗Q − Q‖2ν,2, which is what we want to minimize plus a term of variance
γ2

∑
(s,a)∈S×A ν(s, a)EP (.|s,a)[(f

∗
Q)

2 −EP (.|s,a)[|f∗
Q|]2]. This term will favor func-

tions which are smooth, but it is not controlled by a factor that we can choose
such as in regularization theory. As pointed by [2], we have the same prob-
lem in the minimization of the Bellman residual in the PI framework. It is
not satisfactory to present a criterion which has a bias even if it can work in
some specific conditions such as when the MDP is deterministic (in that case
ĴRL(Q) →

NRL→∞
‖T ∗Q − Q‖2ν,2) or when the optimal action value function we

are looking for is really smooth.
Thus, we also propose a criterion which does not have this bias. Several tech-

niques have been used to get rid off the bias in the minimization of the Bellman
Residual (see [2]), but here we are going to use the work developed by [15] where
a conditional distribution is embbeded in a Reproducing Kernel Hilbert Space
(RKHS), more appropriate for the considered batch setting.

4.1 RKHS Embbedings for MDP

Let us start with some notations relative to RKHS [4]. Let K be a positive
definite kernel on a finite set X . The unique Hilbert space H with reproducing
kernel K is denoted by HK . Correspondingly the norm will be denoted by ‖.‖K
and the inner product will be denoted by 〈., .〉K .

Now, we can use the notion of distribution embeddings [23,15]. Given any
probability distribution P ∈ ΔX and a positive definite kernel K on X , a distri-
bution embbeding of P in HK is an element ν ∈ HK such that:

∀h ∈ HK , 〈ν, h〉K = EP [h].
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In our application, we want to find a distribution embbeding for the condi-
tional distribution P (.|s, a). Following the work done by [15], given the data set
DRL, a positive definite kernel K on S×A, a positive definite kernel L on S, there
is a way to estimate the element νs,a ∈ HL such that 〈νs,a, f〉K = EP (.|s,a)[f ],
for all f ∈ HL. The estimation of νs,a is noted νs,a and is such that:

νs,a =

NRL∑
i=1

βi(s, a)L(s
′
i, .) ∈ HL,

where βi(s, a) =
∑NRL

j=1 WijK((sj , aj), (s, a)), and where W = (Wij)1≤i,j≤NRL =

(K+λKNRLI)
−1 with K = (K((si, ai), (sj , aj)))1≤i,j≤NRL , I the identity matrix

of size NRL and λK ∈ R+. In the case where S is finite, we can choose L to be the
canonical dot product and in that case, we have HL = RS and ∀Q ∈ S× A, f∗

Q ∈
HL. However if S is a measurable state space, the choice of L is not canonical.

Thus, if f∗
Q ∈ HL (which is the case when S is finite and L is the euclidian dot

product) and if we define T
∗
Q(si, ai) = R(si, ai) + γ

∑NRL

j=1 βj(si, ai)maxa∈A Q

(s′j , a), we have that: T
∗
Q(si, ai) = R(si, ai) + 〈νsi,ai , f

∗
Q〉. So, if we define the

following criterion:

JRL(Q) =
1

NRL

NRL∑
i=1

|T ∗
Q(si, ai)−Q(si, ai)|2 =

def
‖T ∗

Q −Q‖2DRL,2,

we have the following Theorem:

Theorem 2. Under some smoothness conditions of the MDP described in [15],
the strict positivity of the Kernel L and by choosing λK →

NRL→∞
0 and

λKN3
RL →

NRL→∞
∞, we have if ‖f∗

Q‖L < ∞ :

JRL(Q)
ν→

NRL→∞
‖T ∗Q−Q‖2ν,2.

Here, the convergence is in ν-Probability.

Proof. This comes directly from the Cauchy-Schwartz inequality and the Lemma
2.1 in [15].

sup
(s,a)∈S×A

‖νs,a − νs,a‖L ν→
NRL→∞

0.

It is important to remark that we only need the coefficients of the form (βj(si, ai))

1≤i,j≤NRL in order to construct JRL(Q). Thus we only need to compute the ma-
trix product B = (Bij)1≤i,j≤NRL = WK because Bij =

∑NRL

k=1 WikK((sk, ak),
(sj , aj)) = βi(sj , aj). Finally, we can easily construct two criterions from the data
set DRL. One criterion, ĴRL(Q), is naturally biased and the other one, JRL(Q),
converges in probability towards ‖T ∗Q−Q‖2ν,2, with certain conditions of smooth-
ness of the MDP. Those two criterions can take the same form if we rewrite
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T̂ ∗Q(si, ai) = R(si, ai)+ γ
∑NRL

j=1 β̂j(si, ai)maxa∈A Q(s′j , a) with β̂(si, ai)j = 1 if
j = i and β̂j(si, ai) = 0 otherwise. Thus the practical algorithms will consists in
minimizing the two following criterions:

ĴRLE(Q) = ĴRL + λJE(Q),

JRLE(Q) = JRL + λJE(Q).

In order to realize it, we use a boosting technique.

4.2 Boosting

A boosting method is an interesting optimization technique: it minimizes di-
rectly the criterion without the step of choosing features, which is one of the
major drawback of several RL methods. As presented by [10], a boosting algo-
rithm is a projected sub-gradient descent [22] of a convex functional in a specific
functions space (here RS×A) which has to be a Hilbert space. The principle is to
minimize a convex functional F ∈ RH where H is a Hilbert space: minh∈H F (h).
This technique can be extended to non-smooth and non-convex functionals, yet
the functional has to be Lipschitz in order to guarantee that the gradient of the
functional exists almost everywhere [8]. For a Lipschitz and non smooth func-
tional, the gradient can be calculated almost everywhere and if not the notion
of generalized gradient is used (see [8] for details). To realize this minimization,
we need to calculate the gradient ∂hF ∈ H and define K ⊂ H , a set of allow-
able directions (also called the restriction set) where the gradient is projected.
Boosting algorithms use a projection step when optimizing over function space
because the functions representing the gradient are often computationally dif-
ficult to manipulate and do not generalize well to new inputs [10]. In boosting
literature, the restriction set corresponds directly to the set of hypotheses gen-
erated by a weak learner. The nearest direction k∗, which is the projection of
the gradient ∂hF , is defined by:

k∗ = argmax
k∈K

〈k, ∂hF 〉
‖k‖ ,

where 〈., .〉 is the inner product associated to the Hilbert space H and ‖.‖ is
the associated canonical norm. Then, the naive algorithm to realize the mini-
mization of F is given by Algo. 1. More sophisticated boosting algorithms and
their convergence proofs are presented by [10]. However, the naive approach is
sufficient to obtain good results. For our specific problem, H = RS×A, and 〈., .〉
is the canonical dot product. The criterions which have to be minimized are
JRLE and ĴRLE . As those criterions have the same form (the only difference
is the value of the coefficients β̂j and βj), we present the boosting technique
only for JRLE . Moreover, in our experiments, we choose the restriction set K
to be weighted classification trees [7] from RS×A to {−1, 1} where each k has
the same norm (as it takes its values in {−1, 1}). Thus, our algorithm is given
by Algo. 2. The output QT = −

∑T
i=1 ξik

∗
i is a weighted sum of T classification



558 B. Piot, M. Geist, and O. Pietquin

Algorithm 1. Naive boosting algorithm
Require: h0 ∈ RH , i = 0, T ∈ N∗ (number of iterations) and (ξj){j∈N} a family of

learning rates.
1: While i < T do
2: Calculate ∂hiF .
3: Calculate k∗

i associated to ∂hiF (projection step).
4: hi+1 = hi − ξik

∗
i

5: i = i+ 1
6: end While, output hT

Algorithm 2. Minimization of JRLE with boosting
Require: Q0 ≡ 0, i = 0, T ∈ N∗ and (ξj){j∈N} a family of learning rates.
1: While i < T do
2: Calculate k∗

i associated to ∂QiJRLE . (projection step)
3: Qi+1 = Qi − ξik

∗
i , i = i+ 1

4: end While, output QT

trees: {k∗i }1≤i≤T . Those T trees can be seen as the features of the problem which
are automatically found by the boosting algorithm. The only step that we have
to clarify is the calculation of k∗. For this particular choice of weak learners, we
have the following Theorem that shows us how to compute it:

Theorem 3. Calculating k∗ = argmaxk∈K〈k, ∂QJRLE〉, where Q ∈ RS×A, cor-
responds to training a weighted classification tree with the following training data
set:

DC =
(
((sj , aj), wj ,−1) ∪ ((sj , a

∗
j ), wj , 1)

)
{1≤j≤NE}

∪ ((si, ai), wi, oi){1≤i≤NRL} ∪ ((s′p, a
′
p), wp,−op){1≤p≤NRL},

We recall that an element of a training data set of a weighted classification tree
as the following form: (x,w, o) where x is the input, w the weight and o is the
output. With (sj , aj) ∈ DE, (si, ai) corresponds to the first two elements in a
sampled transition (si, ai, ri, s

′
i) ∈ DRL, s′p corresponds to the fourth element in

a sampled transition (sp, ap, rp, s
′
p) ∈ DRL and:

a∗
j = argmax

a∈A
[Q(sj , aj) + l(sj , πE(sj), a)], a′

p = argmax
a∈A

Q(s′p, a),

oi = sgn(Q(si, ai)− T
∗
Q(si, ai)), op = sgn(

NRL∑
i=1

(
Q(si, ai)− T

∗
Q(si, ai)

)
βp(si, ai)),

wi =
2

NP
|Q(si, ai)− T

∗
Q(si, ai)|, wj =

λ

NE
,

wp =
2γ

NP
|
NRL∑
i=1

(
Q(si, ai)− T

∗
Q(si, ai)

)
βp(si, ai)|.
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Proof. Calculating ∂QJRLE for a given Q ∈ RS×A is done as follows:

∂Q max
a∈A

{Q(sj , a) + l(sj , πE(sj), a)} = δ(sj ,a∗
j
), ∂QQ(sj , πE(sj)) = δ(sj,πE(sj))

,

∂Q(T
∗
Q(si, ai) − Q(si, ai))

2 = 2(Q(si, ai) − T
∗
Q(si, ai))(δ(si,ai)

− γ

NRL∑

p=1

βp(si, ai)δ(s′p,a′
p)),

∂QJRLE =

∑
1≤j≤NRL

∂Q(T
∗
Q(si, ai) − Q(si, ai))

2

NRL

+
λ
∑

1≤j≤NE
δ(sj ,a∗

j
) − δ(sj ,πE(sj ))

NE

.

where a∗j = argmaxa∈A[Q(sj , aj)+l(sj , πE(sj), a)] and a′p = argmaxa∈AQ(s′p, a).
Obtaining k∗ associated to ∂QJRLE when K is the set of classification trees from
RS×A to {−1, 1} is done as follows. First, we calculate 〈k, ∂QJRLE〉:

〈k, ∂QJRLE〉 =
2

NP

NRL∑
i=1

(Q(si, ai)− T
∗
Q(si, ai))(k(si, ai)− γ

NRL∑
p=1

βp(si, ai)k(s
′
p, a

′
p))

+
λ

NE

NE∑
j=1

k(sj , a
∗
j )− k(sj , πE(sj)).

To maximize 〈k, ∂QJRLE〉, we have to find a classifier k such that k(sj , a
∗
j ) =

1, k(si, ai) = oi = sgn(Q(si, ai) − T
∗
Q(si, ai)), k(sj , πE(sj)) = −1 and

k(sp, a
′
p) = −op = sgn(

∑NRL

i=1

(
Q(si, ai)− T

∗
Q(si, ai)

)
βp(si, ai)) for a maxi-

mum of inputs while taking into consideration the weight factors for each in-
put. The weight factors are the following wi = 2

NP
|Q(si, ai) − T

∗
Q(si, ai)|,

wp = 2γ
NP

|
∑NRL

i=1

(
Q(si, ai)− T

∗
Q(si, ai)

)
βp(si, ai)|, and wj = λ

NE
Thus, in

order to obtain k∗, we train a classification tree with the following training set:

DC =
(
((sj , πE(sj)), wj ,−1) ∪ ((sj , a

∗
j ), wj , 1)

)
{1≤j≤NE}

∪ ((si, ai), wi, oi){1≤i≤NRL} ∪ ((s′p, a
′
p), wp,−op){1≤p≤NRL}.

5 Experiments

In this section, we compare our algorithms (boosted minimization of ĴRLE noted
Residual1 and boosted minimization of JRLE noted Residual2) to APID, LSPI
and a classification algorithm noted Classif which is the boosted minimization
of JE as done by [19]. The comparison is performed on two different tasks. The
first task is a generic task, called the Garnet experiment, where the algorithms
are tested on several randomly constructed finite MDPs where there is a specific
topology that simulates the ones encountered on real continuous MDP. The
second experiment is realized on an LfD benchmark called the Highway problem.
As the MDP are finite in our experiment, we choose a tabular representation for
the parametric algorithms (LSPI, APID). For the boosted algorithms (Residual1,
Residual2 and Classif), the features are automatically chosen by the algorithm
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so there is no features choice but we fix the number of weak learners, which
are classification trees, to T = 30. The regularization parameter λ is fixed at
1 (the expert data and the non expert data are supposed to be of an equal
importance), the learning rates are ξi = 1

i+1 , i ∈ N and the discount factor is
γ = 0.99 in all of our experiments. Finally, the margin function is ∀1 ≤ j ≤
NE , ∀a ∈ A\aj , l(sj, aj , aj) = 0, l(sj, aj , a) = 1, the Kernels K ans L are the
canonical dot products in RS×A and in RS and λK = 10−5.

5.1 The Garnet Experiment

This experiment focuses on stationary Garnet problems, which are a class of ran-
domly constructed finite MDPs representative of the kind of finite MDPs that
might be encountered in practice [3]. A stationary Garnet problem is character-
ized by 3 parameters: Garnet(NS , NA, NB). The parameters NS and NA are the
number of states and actions respectively, and NB is a branching factor specify-
ing the number of next states for each state-action pair. In this experiment, we
choose a particular type of Garnets which presents a topological structure rela-
tive to real dynamical systems. Those systems are generally multi-dimensional
state spaces MDPs where an action leads to different next states close to each
other. The fact that an action leads to close next states can model the noise in a
real system for instance. Thus, problems such as the highway simulator [13], the
mountain car or the inverted pendulum (possibly discretized) are particular cases
of this type of Garnets. For those particular Garnets, the state space is composed
of d dimensions (d = 3 in this particular experiment) and each dimension i has a
finite number of elements xi (xi = 5). So, a state s = [s1, s2, .., si, .., sd] is a tuple
where each composent si can take a finite value between 1 and xi. In addition,
the distance between two states s, s′ is ‖s− s′‖2 =

∑i=d
i=1(s

i− s′i)2. Thus, we ob-
tain MDPs with a possible state space size of

∏d
i=1 xi. The number of actions is

NA = 5. For each state action couple (s, a), we choose randomly NB next states
(NB = 5) via a Gaussian distribution of d dimensions centered in s where the
covariance matrix is the identity matrix of size d, Id, multiply by a term σ (here
σ = 1). σ allows handling the smoothness of the MDP: if σ is small the next
states s′ are close to s and if σ is large, the next states s′ can be very far form
each other and also from s. The probability of going to each next state s′ is gen-
erated by partitioning the unit interval at NB − 1 cut points selected randomly.
We construct a sparse reward R by choosing NS

10 states (uniform random choice
without replacement) where R(s, a) = 1, elsewhere R(s, a) = 0. For each Garnet
problem, it is possible to compute an expert policy πE = π∗ which is optimal
and the expert value function V πE = f∗

Q∗ via the policy iteration algorithm (as
it is a finite MDP where the reward and the dynamics are perfectly known). In
addition, we recall that the value function for a policy π is V π

R = fπ
Qπ .

In this experiment, we construct 100 Garnets {Gp}1≤p≤100 as explained be-
fore. For each Garnet Gp, we build 10 data sets {Dp,q

E }1≤q≤10 composed of
LE trajectories of HE expert demonstrations (si, πE(si)) and 10 data sets
{Dp,q

RL}1≤q≤10 of LR trajectories of HR sampled transitions of the random pol-
icy (for each state, the action is uniformly chosen over the set of actions)
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(si, ai, s
′
i, ri). Each trajectory begins from a state chosen uniformly over the

state space, this uniform distribution is noted ρ. Then the RLED algorithms
(APID, Residual1 and Residual2) are fed with the data sets Dp,q

E and Dp,q
RL,

LSPI is fed with Dp,q
RL and the Classif algorithm is fed with Dp,q

E . Each algo-
rithm outputs a function Qp,q

A ∈ RS×A and the policy associated to Qp,q
A is

πp,q
A (s) = argmaxa∈A Qp,q

A (s, a). In order to quantify the performance of a given

algorithm, we calculate the criterion T p,q
A

Eρ[V
πE−V π

p,q
A ]

Eρ[V πE ] , where V πp,q
A is calcu-

lated via the policy evaluation algorithm. The mean performance criterion TA is
1

1000

∑100
p=1

∑10
q=1 T

p,q
A . We also calculate, for each algorithm, the variance crite-

rion stdpA =
(

1
10

∑10
q=1(T

p,q
A − 1

10

∑10
q=1 T

p,q
A )2

) 1
2

and the resulting mean variance

criterion is stdA = 1
100

∑100
1 stdpA. In Fig. 1(a), we plot the performance versus

the length of the expert trajectories when LR = 300, HR = 5, LE = 5 in or-
der to see how the RLED algorithm manage to leverage the expert data. In
Fig. 1(a), we see that the three RLED algorithms have quite the same perfor-
mance. However, contrary to APID where the features are given by the user
(the tabular representation has a size of 725 features), Residual1 and Residual2
manages to learn automatically 30 trees (which can be seen as features) in order
to obtain the same performance as APID. The RLED algorithms outperforms
the LSPI and Classif algorithm which was expected. We observe the same results
in the experiments leaded by [12]. When the number of expert data grows, the
RLED algorithms performance is getting better which shows that they are able
to leverage those expert data. Besides, we observe that Residual1 and Residual2
have the same performance which shows that using an RKHS embedding is not
critical in that case. In Fig. 1(b), we plot the performance versus the number of
random trajectories when HR = 5, HE = 50, LE = 5 in order to see the effects
of adding non expert data on the RLED algorithms performance. In Fig. 1(b),
we can observe that there is a gap between RLED algorithms and the Classif
algorithm, and that LSPI does not manage to obtain the same results even when
the number of data gets bigger. The gap between RLED and the Classif algo-
rithm gets bigger as the number of RL data is growing which shows that RLED
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Fig. 1. Garnet Experiment
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Fig. 2. Garnet Experiment

methods are able to use those data to improve their performance independently
of the optimization technique and the parametrization used. In Fig. 2(a) and
Fig. 2(b), we plot the mean variance.

5.2 RLED for the Highway

The Highway problem is used as benchmark in the LfD literature [1,24,13]. In
this problem, the goal is to drive a car on a busy three-lane highway with ran-
domly generated traffic. The car can move left and right, accelerate, decelerate
and keep a constant speed (5 actions). The expert optimizes a handcrafted re-
ward R which favorises speed, punishes off-road, punishes even more collisions
and is neutral otherwise. This reward is quite sparse. We have 729 states cor-
responding to: 9 horizontal positions for the car, 3 horizontal and 9 vertical
positions for the closest traffic car and 3 possible speeds. We compute πE via
the policy iteration algorithm as the dynamics P and the reward R of the car
driving simulator are known (but unknown for the algorithm user). Here, we
build 100 data sets {Dq

E}1≤q≤100 composed of LE trajectories of HE expert
demonstrations (si, πE(si)) and 100 data sets {Dq

RL}1≤q≤100 of LR trajectories
of HR sampled transitions of the random policy. Each trajectory begins from
a state chosen uniformly over the state space and we use the same criterion of
performance as in the Garnet experiment. We plot the performance versus the
length of expert trajectories with LE = 5, HR = 5 and LR = 50. In Fig. 3(a),
we observe that Residual1 and Residual2 have clearly better performances than
APID in that particular experiment. This can be explained by the fact that the
tabular representation for the Highway problem is much bigger than in the in
the Garnets experiments (3645 features) and only few features are important. As
our algorithms are non-parametric, they are able to select the necessary features
in order to find a good policy. Here, the number of data is too small compared
to the size of the tabular representation and this can explained why parametric
algorithms such as LSPI and APID can not obtain satisfying results. Thus, this
observation makes us believe that our algorithms are suited to scale up.
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Fig. 3. Highway Experiment

6 Conclusion

In this paper, we present two new algorithms that minimize the empirical norm
of the OBR guided by constraints define by expert demonstrations. These algo-
rithms tackle the problem of RLED. Our algorithms are original in the sense that
are not derived form the classical Approximate Dynamic Programming frame-
work and manage to alleviate the difficulties inherent to the minimization of the
OBR which are the non-convexity, the non-differentiability and the bias. Those
drawbacks are overcome by the use of a distribution embbeding in an RKHS
and a boosting technique which allows us to obtain non-parametric algorithms,
avoiding the choice of features. We show also, in our experiments, that our algo-
rithms perform well compared to the only state of the art algorithm APID, which
is parametric. Finally, interesting perspective are to improve our algorithms by
using better boosting algorithms, test our algorithms on large scale problems
and to have a better understanding of our algorithm by a theoretical analysis.
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funding from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement nř270780.
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Abstract. Inmanymachine learningproblems,high-dimensionaldatasets
often lie on or near manifolds of locally low-rank. This knowledge can be
exploited to avoid the “curse of dimensionality” when learning a classifier.
Explicit manifold learning formulations such as lle are rarely used for this
purpose, and instead classifiers may make use of methods such as local co-
ordinate coding or auto-encoders to implicitly characterise the manifold.

We propose novel manifold-based kernels for semi-supervised and su-
pervised learning. We show how smooth classifiers can be learnt from
existing descriptions of manifolds that characterise the manifold as a set
of piecewise affine charts, or an atlas. We experimentally validate the
importance of this smoothness vs. the more natural piecewise smooth
classifiers, and we show a significant improvement over competing meth-
ods on standard datasets. In the semi-supervised learning setting our
experiments show how using unlabelled data to learn the detailed shape
of the underlying manifold substantially improves the accuracy of a clas-
sifier trained on limited labelled data.

1 Introduction

A fundamental challenge of machine learning lies in finding embeddings in high
dimensional spaces that capture meaningful measures of distance. Bellman [3]
coined the term curse of dimensionality to describe the problems that arise as the
volume of the space grows exponentially with the number of dimensions and this
in turn necessitates an exponentially larger number of observations to cover the
space. However, in most applications, data is not uniformly distributed over the
whole space, but instead lies on a locally low-dimensional topological structure.
This key geometric intuition drives the use of manifolds in machine learning.
By finding a compact representation which preserves the relevant topological
structure of the data, manifold learning techniques avoid many of the statistical
and computational difficulties that arise from high-dimensionality and provide
meaningful low-dimensional representations.

In this work, we primarily target semi-supervised learning. We show how
unsupervised knowledge of the data manifold can be exploited to learn Support
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Fig. 1. Desirable properties of a learning algorithm, with respect to a manifold. (A)
Knowledge of the underlying manifold structure of data can improve classification
accuracy. Here unlabelled data can be used to discover the underlying shape of the
manifold improving classification accuracy. (B) Given a manifold (black) an ideal
classifier should generalise strongly in directions tangent to the manifold (blue) and
generalise poorly with respect to directions orthogonal to the manifold (pink, top).

Vector Machine (svm) kernels [24] that work in a set of low-dimensional charts
associated with the manifold, avoiding the curse of dimensionality and exhibiting
good generalisation to unseen data. Our formulation of manifold kernels is based
on the mathematical definition of a manifold as an atlas [14]. Although our
implementation makes use of the recent manifold learning technique of [18], it
does not rely on the particular atlas using this method. In principle, given a
soft-cost function for associating points with charts, it can be applied to any
atlas either known a priori or discovered using a manifold learning technique
that characterises the manifold as a set of parameterised charts that can be used
to back-project points, such as [19].

Although manifold learning has shown much promise in finding embeddings
that capture the intrinsic local low dimensionality of data, in practice the major-
ity of such approaches have difficulty with the presence of noise and are unable
to characterise closed manifolds such as the surface of a ball. [18] showed how
any manifold, either closed or otherwise, could be approximated by an atlas of
piecewise affine charts, and experimentally demonstrated their method’s robust-
ness to noise. Unfortunately, a good approximation of a smooth manifold as a
piecewise affine manifold may require the use of a large number of charts (cf.
figure 2). In addition, as a path on the manifold discontinuously jumps from
the co-ordinate system of one chart to another, the use of many charts limits
the generality of classifiers that can be learned from raw chart co-ordinates and
encourages over-fitting.

In response to these difficulties, we present a new class of chart-based Mercer
kernels suitable for use with svms that smoothly vary in the transition from one
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Fig. 2. Approximations of a closed manifold of varying coarseness found using [18]
with different minimum description length priors. The underlying manifold is shown
in red, and local affine charts approximating the manifold are in green. The coloured
dots shown are points sampled with Gaussian noise from the manifold, and their colour
indicates which chart they belong to. As the approximation is refined the local affine
approximations come closer to tangent planes of the manifold. However, more charts
are required for these tighter approximations, and as such, classifiers trained directly
on the raw charts that approximate the manifold well (e.g. rightmost) will have poor
generalisation. To avoid this trade-off between generalisation, and a good local char-
acterisation of the manifold, section 4 proposes kernels which smoothly vary along a
path transitioning from one chart to another.

chart to another1. We experimentally verify our formulation and show that it
outperforms a variety of existing methods including standard svms using: Linear
and rbf kernels; standard manifold unwrapping followed by nearest neighbour
(nn) and svm classification using techniques such as [9, 18, 21, 30]; various
forms of local co-ordinate coding (lcc) [13, 25, 32]; multi-class kernel-based
classifiers [4, 8, 23]; and rbf kernels on the raw chart co-ordinates. We also
present asymptotic speed-ups for our kernel computation, and show how a sparse
approximation of it can be typically calculated in O(n

√
n) rather than the more

usual O(n2) associated with Mercer kernels.
In using manifold learning as a preprocessing step before classification, we are

conforming to the three tenets of manifold learning set out in [19]. Namely:

1. The semi-supervised learning hypothesis: The distribution of unla-
belled data is informative and should be used to guide supervised classifiers.

2. The unsupervised manifold learning hypothesis: High-dimensional
datasets often lie near locally low-rank manifolds.

3. The manifold learning hypothesis for classification: Data from dif-
ferent classes typically lies in different regions of the manifold and are often
separated from one another by regions containing few samples.

Taken together these tenets give us an intuitive picture of supervised learning
shown in figure 1. Note that the strong generalisation of a classifier in a particular
direction, simply means that we expect the classifier response to vary slowly as
we move in that direction, while weak generalisation refers to the fact that the
classifier response may fluctuate quickly in that direction. As an svm trained
classifier is simply a weighted sum of kernel responses, such generalisation in
a classifier can be encouraged by making the kernel responses behave in this
manner.
1 See [16] for an extensive discussion of the relationship between smoothness and the
generalisation of classifiers.
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As a complete method ours is a two-step approach:

1. Unsupervised learning of the underlying manifold: We approximate
themanifold of data on the original space by fitting an atlas of low-dimensional
overlapping affine charts.

2. Supervised training of an svm: We propose a new family of Mercer
Kernels for svm-based supervised learning that make use of a soft assignment
of datapoints to the underlying low-dimensional affine charts to generating
the kernels.

Our contribution. As with earlier approaches that fuse manifold learning with
supervised classification [2, 22], our two-stage approach has a natural appli-
cation in semi-supervised learning. Unlabelled data can be used to generate a
more detailed description of the manifold, which can then improve the trained
classifier (see figure 1). In the experimental section, we provide an extensive eval-
uation that shows how these unsupervised manifolds can be used to substantially
improve the generalisation of classifiers trained from limited data, where we out-
perform three other competing approaches: Eigenfunction [10], PVM [28], and
AnchorGraphReg [15].

A further contribution of our work lies in the transition from learning on a
single chart, found with a standard method like lle, to learning on multiple
charts. Most manifolds, such as the surface of a ball, cannot be expressed as
a single chart without either folding or tearing the manifold. Learning kernels
on manifolds that cannot be expressed as a single chart is currently a topic of
interest. For instance [11] extended kernel-based algorithms to the Riemannian
manifold of Symmetric Positive Definite (SPD) matrices. However, while they
restricted both the type of manifold (SPD matrices), and the types of kernel
considered, our work shows how any kernel defined over a local Euclidean space
can be transformed into a kernel over any atlas.

2 Prior Work

While preprocessing a dataset with explicit manifold learning techniques such
as [21, 29, 30], that explicitly find a single global mapping of the data lying in a
high dimensional RD to a lower dimensional Rd, is an obvious way of avoiding
the curse of dimensionality, with the exception of [30], such approaches have
seen little use in practice. As argued by [18], this may well be because finding
a single global mapping by aligning patches that capture local information, is
an unnecessarily hard problem that should be avoided wherever possible. Such
mappings are unable to capture the intrinsic structure of closed manifolds such
as the surface of a ball, and as such methods typically try to preserve vari-
ous metric properties of the local neighbourhood, they are vulnerable to noise,
and a misestimation of the local neighbourhood can propagate throughout the
manifold leading to degenerate solutions.

As an alternative to unwrapping a manifold, there has been much interest in
local co-ordinate systems to characterise low dimensional subspaces. [19] made
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use of a variant of auto-encoders to characterise a manifold as a set of charts
that were then fine tuned to improve classification accuracy. Local co-ordinate
coding [27] and the quadratic variant local tangent based coding [26] approximate
non-linear functions by interpolating between anchor points assumed to lie on a
low-dimensional manifold.

The works [13] and [32] learnt a linear svm over a set of full rank linear
co-ordinates that smoothly vary from one cluster centre to another. While in-
spired by local coordinate coding, neither [13] nor [32] make the same manifold
assumptions. Instead, they explicitly make use of a weighted concatenation of
coordinate systems each of which spans the entire space, rather than focusing
on local low-dimensional subspaces as in manifold learning.

Our work differs from previous approaches that fuse manifold learning with
svms [2, 17, 22] both in the types of manifold that can be expressed –the pre-
vious approaches are based on Laplacian eigenmaps [1] that have difficulty with
closed manifolds– and in the form taken. These previous methods alter their reg-
ularisation to penalise changes in classification response on the manifold, while
we reshape kernels to generalise more in the direction of the manifold. As such
our different approaches can be seen as complimentary descriptions of manifold
constraints.

3 Learning a Manifold as an Atlas

The recent work of [18] formulated manifold learning as a problem of finding an
atlas A, defined as a set of overlapping charts A = {c1, c2, . . . cn}, over points
X , such that each chart corresponds to an affine subspace of the original space
RD that accurately describe the local structure. This parametrization of the
local transforms as affine spaces allows the efficient use of PCA to find local
embeddings, without restricting the overall expressiveness of the atlas. Manifold
learning is then formulated as a hybrid continuous/discrete optimisation that
simultaneously estimates the affine mappings of charts and solving for a discrete
labelling problem, that governs the assignment of points to charts. This objective
takes the form of the minimisation of the cost:

C(z) =
∑
x∈X

(∑
i∈zx

Ei(x)

)
+ λMDL(z), (1)

Where zx is the set of charts associated with point x, and Ei is defined as in (4).
Both subproblems, assigning points to charts and choosing the affine mappings,
minimise the same cost –the reconstruction error associated with mapping points
from their location in a chart back into the embedding space– subject to the
spatial constraint that every point must belong to the interior of one chart –
that is that each point and all its neighbours in a k-nngraph should belong to the
same chart2. Sparse solutions are encouraged by adding a minimum description
length (MDL) prior[12] term to the energy that penalises the total number of

2 Note that some points belong to more than one chart.
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active charts used in an assignment. In practice, Atlas[18] is initialised by an
excess of chart proposals in the form of random affine subspaces and alternates
between assigning points to charts using the graph-cut [6] based optimisation
of [20] and refitting the chart subspaces with PCA. Figure 2 illustrates the
approximation of a closed manifold with an Atlas of locally affine subspaces
using different MDL priors.

This manifold learning technique offers a set of attractive properties that we
take advantage of in our chart-based approach to learning with svms. First, since
the set of charts that characterise the atlas overlap, points may belong to more
than one chart. Therefore, overlapping charts must explain some of the same
data in the areas of overlap that connect neighbouring subspaces which results in
implicit smoothness in the transition from one subspace to another. Furthermore,
this method allows us to learn closed manifolds since it finds charts corresponding
to affine subspaces on the original space RD and does not require unwrapping
into a lower dimensional space. In addition, this method is intrinsically adaptive
in that the size of the region assigned to each chart is selected automatically in
response to the amount of noise, the curvature of the manifold, and the sparsity
of the data.

3.1 Formulation

More formally, each chart ci contains a subset of points Xi ⊆ X . We use Z =
{z1, . . . , zX} to describe the labelling, where zx refers to the assignment of charts
to point x (the set of charts that point x belongs to).

We define the d-dimensional affine subspace associated with each chart ci in
terms of its mean μi, and an orthonormal matrix Ci which describes its principal
directions of variance. Using x to refer to a datapoint in a feature space RD, we
use P⊥

i (x) : RD → Rd to refer to a projection from the original feature space
into a low rank subspace defined by chart ci of the form:

P⊥
i (x) = Ci(x− μi), (2)

where μi is an offset corresponding to the mean of a subset of points used to define
chart ci, and Ci is the orthonormal matrix composed of the top d eigenvectors
of the covariance matrix of the points Xi that belong to the chart, that projects
from the embedding space into chart ci.

We refer to the back-projection of point x into a low rank subspace of the
original space as Pi(x) : R

d → RD

Pi(x) = CT
i P

⊥
i (x) + μi, (3)

and define the reconstruction error for point x belonging to chart ci as the
squared distance between a point and the back-projection of the closest vector
on the chart ci

Ei(x) = ||x− Pi(x)||22. (4)
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4 Chart-Based Kernels

4.1 Definition

We associate with each chart ci a unique Mercer kernel Ki defined over the
projected space Rd, and we define each element Kx,y of the square kernel matrix
K as:

Kx,y =
∑
ci∈A

exp

(
−Ei(x) + Ei(y)

γ2

)
Ki

x,y, (5)

where Ei(x) is defined as in (4). This kernel can be understood as a natural
softening of the obvious hard-assignment kernel H

Hx,y =
∑
ci∈A

Δ(x ∈ ci)Δ(y ∈ ci)K
i
x,y, (6)

where Δ(·) is the indicator function that takes value 1 if · is true and 0 otherwise.
This says that the inner product between two points is the same as a standard
kernel defined over chart ci if both points belong to ci, and 0 otherwise.

In practice we consider two forms of local kernels Ki. Local linear kernels of
the form

Ki
x,y = P⊥

i (x) · P⊥
i (y) (7)

and local Radial Basis Function (rbf) kernels of the form

Ki
x,y = exp

(
−||P⊥

i (x)− P⊥
i (y)||22

σ2

)
. (8)

In the experimental section we compare against the hard-assignment kernel
H and show the importance of our softening of the kernel response.

4.2 All such Kernels are Mercer

The proof follows directly by construction. We make use of two equivalent defini-
tions of Mercer kernels. Namely: a kernel matrix is Mercer if and only if (i) it can
be defined as a matrix of inner products over a Hilbert space; and equivalently
a kernel is Mercer if and only if (ii) it is a positive semi-definite matrix.

We initially consider one of the kernels Ki. It follows from (i) that there must
be some mapping φi(·) from Rd to a Hilbert space such that

Ki
x,y = 〈φi(x), φi(y)〉. (9)

We define

wi
x = exp

(
−||x− Pi(x)||22

γ2

)
(10)

and linearly rescale the elements of the Hilbert space φ(x), by their weights wi
x

to induce a new kernel matrix K̄i

K̄i
x,y = 〈wi

xφi(x), w
i
yφi(y)〉 = wi

xw
i
yK

i
x,y. (11)
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By (i) this kernel is Mercer. It follows that it is positive semi-definite, and
consequently, the sum of all weighted kernels

K =
∑
ci∈A

K̄i (12)

is also positive semi-definite and therefore Mercer.�
While the weights w were chosen by analogy with the definition of a radial

basis function, the proof holds for all choices of weight, and all choices of ker-
nel. In the experimental section, we evaluate manifold variants of linear, local
quadratic, and rbf kernels.

4.3 Efficient Approximation of the Kernel

In practice the majority of weights, wi
x are close to zero and both wi

y and Ki
x,y

are small3. As such, if wi
x is small then the entire row Ki

x, and column Ki
,x can

be safely set to 0, without altering the classification accuracy. To take advantage
of this, we only compute explicitly the inner products 〈φi(x), φi(y)〉 if ci is one
of the closest subspaces for both x and y. This is equivalent to setting wi

x = 0 if
ci is not one of the closest subspaces to x, and so the kernel remains Mercer.

We assume that the parameters of Atlas are chosen in such a way that for
n datapoints Atlas will find O(

√
n) charts, each containing less than O(

√
n)

points4. Then for each point, we must compute the distance to every subspace -
which takes time O(n

√
n), and then for each subspace compute the local inner-

products of all points assigned to it which again takes time O(
√
n(
√
n)2) =

O(n
√
n) in total. Should these assumptions be violated the algorithm degrades

naturally, with an overall run-time of O(nm +
∑

i n
2
i ), where m is the total

number of charts, and ni the number of points assigned to chart ci.
Even with these modifications the asymptotic complexity of training an svm

using a cutting plane algorithm is O(n3). However for the datasets we consider
the primary bottleneck lies in computation of the kernel matrix,and as such, a
reduction in the complexity of computing the kernel has significant impact on
run-time. See table 5 for a detailed breakdown of the run-time of the different
components of our method vs. global rbf kernel. In practice, for all reported
experiments we use the 10 closest subspaces in our approximation.

4.4 Integration with Efficient Primal Solvers

The restricted case in which Ki
x,y = P⊥

i (x) · P⊥
i (y) deserves special attention.

In this case, we can solve the problem efficiently in the primal by taking as a

3 wi
yK

i
x,y ≤ 1 in the case of an rbf kernel.

4 These are sensible assumptions, and not just chosen to make asymptotic improve-
ments possible. As the number of charts steadily increases Atlas will be able to
approximate better any underlying manifold, while the fact that the number of
charts grows sub-linearly means that Atlas should exhibit increasing robustness to
sampling error.
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feature vector for point x the concatenation of weighted projections wi
xP

⊥
i (x),

and this allows the use of efficient schemes such as averaging stochastic gradient
descent [5] that can exploit the sparsity of the training. As each feature vector is
sparse with O(

√
n) non-zero components, computation of the inner products and

sparse updates of the weight vector are O(
√
n) operations, making the overall

run-time associated with a fixed number of passes over the training set O(n
√
n).

As a point of effectiveness, the linear kernel performs significantly better if
we allow the svm to learn a bias for each chart separately. As such, we train a
standard linear svm over the sparse feature vector

fx =
⊕
ci∈A

wi
x[1, P

⊥
i (x)]. (13)

where
⊕

is the concatenation operator.
In the experimental section, we also explore the use of local quadratic kernels,

both those without cross terms, in which the sparse feature vector takes the form

fx =
⊕
ci∈A

wi
x[1, P

⊥
i (x), P⊥

i (x)2] (14)

with P⊥
i (x)2 being the elementwise square of P⊥

i (x), and those with cross-terms:

fx =
⊕
ci∈A

wi
x[1, P

⊥
i (x), l(P⊥

i (x) ⊗ P⊥
i (x))] (15)

where l(P⊥
i (x)⊗P⊥

i (x)) is the vectorization of the lower triangular (inclusive of
diagonals) component of the outer product matrix P⊥

i (x) ⊗ P⊥
i (x).

While in high-dimensional feature spaces, the use of quadratic features is
largely unnecessary and incurs a substantial additional computation cost5, in
the local low-dimensional spaces of the manifold, the use of quadratic features
incurs little overhead, and offers a noticeable improvement in discriminative
performance.

5 Experiments

Semi-Supervised Learning: To illustrate the effectiveness of our approach in a
semi-supervised situation, where the amount of labelled data is sparse relative
to the total amount of data, we evaluate on mnist by holding back the labels
of a proportion of the training data. We generate a single Atlas over all training
and test data, of local dimensionality 30, and calculate the classification error
averaged over 20 trials varying the amount of labelled training data used from
1

100

th
of the original training data (600 training samples) to 1

2 of the data (30,000
training samples). As can be seen in figure 1, with sparse training data, Atlasrbf

5 For example on mnist, the raw feature vectors lie in a 784 dimensional space, while
the quadratic features including cross terms lie in a 307,720 dimensional space.
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Table 1. Classification performance on MNIST varying the proportion of labelled data.
For all experiments, we use the same Atlas of local dimensionality 30, λ = 100, and
k = 2, containing 835 charts. Zoom electronically to see standard deviation.

Training set ratio 1/100 1/50 1/20 1/10 1/5 1/4 1/3 1/2 1/1

Linear svm 12.48 ± 0.33 10.65 ± 0.31 8.86 ± 0.13 7.85 ± 0.10 7.02 ± 0.12 6.83 ± 0.07 6.55 ± 0.10 6.20 ± 0.09 5.52

AtlasLin (eq. 13) 11.05 ± 0.60 7.15 ± 0.36 4.58 ± 0.16 3.41 ± 0.07 2.65 ± 0.08 2.44 ± 0.05 2.24 ± 0.06 1.94 ± 0.08 1.56

rbf svm 8.95 ± 0.33 6.75 ± 0.24 4.73 ± 0.11 3.59 ± 0.07 2.73 ± 0.06 2.47 ± 0.06 2.20 ± 0.06 1.86 ± 0.05 1.41

Atlasrbf (eq. 12) 4.13 ± 0.20 3.50 ± 0.13 2.87 ± 0.06 2.45 ± 0.06 2.12 ± 0.05 1.99 ± 0.05 1.87 ± 0.05 1.67 ± 0.04 1.31

drastically outperforms other methods –achieving significantly less than half the
error of an rbf kernel at maximum sparsity (4.13% vs. 8.95% error)– while the
performance of the efficient linear Atlas kernel approximately tracks that of the
standard rbf kernel. In the limit, with full training data effectively covering the
testing data, the performance of Atlasrbf and the rbf kernel almost converges,
with Atlasrbf retaining a small edge (see table 1).

Table 2. Comparison with semi-supervised approaches. With 100 labelled points, the
extreme sparsity of the training data required a simpler Atlas with fewer charts. For
this, we set λ = 1000, resulting in an Atlas with 207 charts. The parameters γ, σ are
the same as the experiments in tables 1 and 4.

Method 100 labelled points 1000 labelled points

rbf svm 22.70 ± 1.35 7.58± 0.29
EigenFunction 21.35 ± 2.08 11.91 ± 0.62

PVM(hinge loss) 18.55 ± 1.59 7.21± 0.19
AnchorGraphReg 9.40 ± 1.07 6.17± 0.15

Atlasrbf 8.10± 0.95 3.68 ± 0.12

The majority of semi-supervised approaches can not be used on datasets as
large as MNIST (see discussion in [15]). As such, we also follow the protocol
of [15] and compare our generalisation performance trained with 100 and 1000
training samples against three other scalable approaches: Eigenfunction [10],
PVM [28], and AnchorGraphReg [15], alongside rbf svms.

Supervised Learning. To validate our approach we tested our algorithm on stan-
dard classification datasets mnist, usps, semeion, and letter. In all cases we
compare the results from our Atlas-based kernel svms with Linear svms and rbf-
kernel svms on the original data. In addition, formnist,usps and letterwe show
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comparisons with state-of-the-art approaches that use different variants of local
co-ordinate coding [13, 25, 32], as well as large margin multi-class kernel-based
classifiers [4, 8, 23] (see Table 3). We use semeion to compare against the most
recent manifold learning approaches followed by nearest neighbour classifier.

Datasets. The mnist, usps, and semeion datasets consist of grayscale images of
handwritten digits ’0’ – ’9’. Both usps and semeion contain images of resolution
16× 16 encoded as 256 dimensional binary feature vectors. usps contains 7291
training and 2007 testing images while on semeion, following [30], we create 100
random splits of the data with 796 training and 797 testing images in each set
and report average error. The mnist dataset is substantially larger, with 60, 000
training and 10, 000 test Grey-scale images.

Our choice of datasets was driven by the desire to compare the performance of
our approach against as many alternative methods as possible. The 4 datasets we
selected are popular datasets, used by many authors and allow us to give scores
from a wide variety of related methods and show that our approach provides
improved performance.

Implementation. We first perform manifold learning using the Atlas algorithm
[18] to approximate of the underlying manifold as an atlas of piecewise affine
overlapping charts before running our efficient svm learning approach using lin-
ear, quadratic, and rbf chart-based kernels.

[18] takes three parameters as an input: the local dimensionality d common
for all charts, a weight λ ∈ {100, 101, . . . , 105} governing the strength of the
MDL prior, the number of nearest neighbours k ∈ {2, 4, . . . , 10} and d the local
dimensionality of the manifold. For letter a 16-dimensional dataset we take
d ∈ [5, 10], and for all other datasets, we search d ∈ {5, 10, 15, 20, 30}. lle and
ltsa also need the local dimensionality and the number of neighbours as an
input, and we search over the same range of values as Atlas. For smce we finely
tune its parameter λ so that its local dimensionality varies over the same range as
other methods. For all svm kernel methods σ−1, γ−1 ∈ {2−12−2, . . . , 2−7}, except
on MNIST where a finer search of σ−1 ∈ {0.03, 0.031, . . .0.04} was required to
replicate the performance of an rbf kernel reported in http://yann.lecun.

com/exdb/mnist/.
The parameter σr of a raw rbf kernel can be understood as a compromise

between the two parameters γ and σ used in Atlasrbf in that it should be
chosen to be somewhere close to γ preventing generalisation off the manifold,
but also close to σ to allow generalisation on the manifold. Empirically, for the
parameters selected, this is always the case: On Atlasrbf γ > σ, and the raw
rbf σr ∈ [γ, σ]. For example on usps γ = 23, σ = 27, while σr = 25.

In our experiments we used two svm solvers: The primal linear solver SvmAsgd
[5] combined with a one-versus-all merging of binary svms; Libsvm [7] allows the
use of a precomputed custom kernel such as our chart-based rbf kernel merged
using the built-in implementation of the one-versus-one merging svms

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Table 3. Supervised classification with efficient primal svm solvers or 1-nn. Our chart-
based linear and quadratic kernel svms outperform all single-chart manifold learning
methods followed by svms as well as Atlas followed by 1-nn on all datasets. Variants of
local coordinate coding with svms also perform worse than our method on letter and
mnist, while [32] has slightly lower error on usps. Scores for Linear svms and manifold
learning methods are from our experiments and scores for other methods are as reported
elsewhere. smce failed to converge on letter. All manifold learning methods except
Atlas required more than 30GB of ram on mnist and failed to complete.

Nearest Neighbour and Efficient Primal Formulations

usps letter semeion mnist

error (%) error (%) error (%) error (%)

Local coordinate based svms
ll-svm[13] 5.78 5.32 – 1.85
Linear svm + G-OCC [32] 4.14 6.85 – 1.72
Linear svm + C-OCC [32] 3.94 7.35 – 1.61
Linear svm + LLC (512 anchor points) [25] 5.78 9.02 – 3.69
Linear svm + LLC (4096 anchor points) [25] 4.38 4.12 – 2.28
Linear svm + Tangent LLC (4096 points) [26] – – – 1.64

Manifold Learning + Linear svms[5]
Linear svm on original space 8.42 35.75 7.40 5.55
smce[9] 6.88 – 9.04 –
lle[21] 12.61 74.50 12.47 –
ltsa[31] 9.37 69.10 46.06 –

Manifold Learning + 1-nn classifier
1-nn on original space 4.98 4.35 10.92 5.34
smce[9] 7.47 – 9.26 –
lle[21] 6.83 19.03 9.41 –
wLTSA [30] 8.77 40.65 10.12 –
Atlas [18] 5.38 17.28 8.27 5.13

Primal Atlas svms (SvmAsgd)
AtlasLinear - Hard Assignment (see eq. 6) 5.58 16.65 8.44 3.71
AtlasLinear (see eq. 13) 4.68 3.13 6.19 1.78
AtlasQuad (see eq. 14) 4.04 3.63 6.02 1.76
AtlasQuadCross (see eq. 15) 4.09 3.33 5.48 1.46

Comparison with standard Manifold learning. Looking at the results of tables
3 and 4, several themes can be seen. In general, the fusion of stock manifold
learning techniques [9, 21, 30] with either linear or kernel svms is of limited
value, and is perhaps more likely to hurt svm scores than to improve them. In
contrast, our Atlas kernels show substantial improvement over any baseline svm
approach (the only exception being the use of an rbf kernel on the already low
dimensional dataset letter). Every type of our Atlas based kernels out-performs
every use of stock manifold learning methods, both when used in conjuncture
with a linear or kernel svm, or as a nearest neighbour classifier.

Table 3 shows a comparison of the efficient methods on usps, letter, mnist,
and semeion. On three of the four datasets, our approach, and particularly At-
lasQuadCross, significantly outperforms all other methods. Note that, the local
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coordinate methods do not report scores on semeion. However, our efficient
primal approach obtains substantially better scores than a standard rbf kernel
(see table 4). In particular, on the letter dataset our approach to learning on
an atlas halves the classification error of [32] and substantially improves on the
classification error obtained with the coordinate coding approach of [13, 25].

Table 4. Classification performance on usps, letter, semeion, and mnist datasets.
Our chart-based rbf kernel outperforms all other multi-class kernel based svms as well
as all single-chart manifold learning methods followed by rbf svms. Libsvm with an
rbf kernel on the raw data achieved the best performance on letter, Atlasrbf is best
on all other datasets. The comparison between Atlasrbf with soft and hard assignment
shows the impact of our novel kernels. smce failed to converge on letter.

Kernel methods using cutting-plane type approaches

usps letter semeion mnist

Method error (%) error (%) error (%) error (%)

Global svms
mcvsvm[8] 4.24 2.42 – 1.44
svmstruct [23] 4.38 2.40 – 1.40
LaRank [4] 4.25 2.80 – 1.41
Libsvm on raw data[7] 4.53 2.05 6.41 1.41
Manifold Learning + rbf svms[7]
smce[9] 6.18 – 8.68 –
lle[21] 4.78 5.38 6.93 –
ltsa[31] 7.03 44.63 9.17 –

Atlas-Kernel svms (Libsvm)
Atlasrbf - Hard Assignment (see eq. 6) 4.63 4.95 7.15 3.13
Atlasrbf (see eq. 12) 3.68 2.33 5.14 1.31

Table 4 shows that in comparison with rbf svms and the multi-class kernel-
based svms of [4, 8, 23], we achieve substantial improvement in classification
performance on usps. Our Atlasrbf kernel outperforms all methods with the
exception of the global rbf kernel svm on the letter dataset. As letter is
16-dimensional, it does not allow for the advantages of the manifold learning
methods to be fully employed, it is perhaps unsurprising that manifold learning
is not only unnecessary, but also slightly detrimental, as we see higher errors for
the lcc-based methods. As [18] allows the learning of a manifold of arbitrary
dimension, we could learn the trivial 16-dimensional manifold, composed of a
single chart, and where the projection matrix P⊥(x) is the identity function. In
such cases our performance is identical to that of the rbf kernel. As such a result
is uninformative, we instead cap the local manifold dimensionality at 10, when
reporting our result. Our approach still achieves the second best performance
and outperforms all other multi-class kernel-based methods.

Tables 3 and 4 clearly show the importance of forcing the classifier to vary
smoothly, when generalising to the testing set. While the smooth Atlasrbf ker-
nel consistently outperforms related work, the hard assignment kernels (6) of
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section 4.1 show that training a single kernel in each chart without soft assign-
ment is noticeably worse than existing approaches. Table 5 shows the response
of our Atlas-based approaches vs. global linear and rbf kernels to increasing
levels of Gaussian noise. Our approach appears to behave better with respect to
noise with lower classification errors. The parameters used are the same as in
tables 3 and 4.

Chart Characterisation. Our results can also be used to validate the manifold
learning tenets of [19]. Particularly table 4, where the improved results come
from forcing an rbf kernel to conform to the manifold 6, clearly show unlabelled
data is important and that a learned manifold can improve the performance of
classifiers. Empirically, tenet 2 (that a manifold can be fitted to the data) also
holds and explains the success of our approach. Tenet 3 states that different
classes should lie on different areas of the manifold. This can be tested by seeing
if different classes belong to different charts of the Atlas.

Although [18] learns the set of overlapping affine charts in a totally unsu-
pervised manner, tenet 3 suggests that points which share similar statistical
properties and are more likely to lie on the same subspace or chart would also
share the same label information. In fact, on usps, most of the 18 charts learned
contain points from a single dominant class, where for the median chart 96% of
the points assigned to it come from the same class. However, some charts con-
tain two or three prevalent classes and around 10% of the data label differs from
that of its interior chart. On mnist 262 out of 835 charts contain data from the
same class and 180 contain more than 10% points whose label differs from the
dominant class. Similarly, for the median chart 98% come from the dominant
class. In total 6.9% of the data does not belong to the dominant class of the
interior of the chart it is assigned to. Along with providing empiric validation
of tenet 3, the fact that 5-10% of the data does not reflect the dominant label
of the chart provides some insight in the difference in performance between nn,
linear and rbf kernels, and implicitly bounds the maximal error of any classifier
trained on this Atlas.

Table 5. Extended analysis on usps

(a) Run-time of various components. The top
row shows the run-time of components, while
the bottom row shows the accumulated time.

Init. Atlas Kernel svm train svm test
AtlasLinear 44.44 +10.29 +0.78 +0.78 +0.16

44.44 54.73 55.51 56.29 56.45
Atlasrbf 44.44 +10.29 +28.99 +9.68 +2.53

44.44 54.73 83.72 93.40 95.93

Libsvm - - - 99.93 +95.47
- - - 99.93 195.40

(b) Classification on usps with in-
creasing Gaussian noise.

Noise 2% 5% 10% 15% 20% 30%
Linear svm 8.72 8.82 9.07 9.82 10.21 11.36
AtlasLinear 5.08 5.83 6.03 5.93 6.78 11.46
rbf svm 4.58 4.58 5.53 5.58 6.33 8.67
Atlasrbf 4.04 4.14 4.48 5.08 6.34 7.57

6 In contrast, table 3 shows that the charts found can be used to raise the data into
a high-dimensional space, where linear svms perform better.
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6 Conclusion

We have presented a novel approach to supervised and semi-supervised learning
via training a manifold on unlabelled data. We have shown superior performance
to both rbf kernels and local co-ordinate based methods on standard datasets,
and to manifold learning based nearest neighbour. As such it provides additional
empiric validation of the tenets of manifold learning first proposed in [19]. Our
method provides a principled way for Support Vector Machines to make use of
unlabelled data in learning a kernel, and we intend to further explore the benefits
of this.
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Abstract. Given a binary relation, listing the itemsets takes exponen-
tial time. The problem grows worse when searching for analog patterns
defined in n-ary relations. However, real-life relations are sparse and,
with a greater number n of dimensions, they tend to be even sparser.
Moreover, not all itemsets are searched. Only those satisfying some user-
defined constraints, such as minimal size constraints. This article pro-
poses to exploit together the sparsity of the relation and the presence
of constraints satisfying a common property, the monotonicity w.r.t. one
dimension. It details a pre-processing step to identify and erase n-tuples
whose removal does not change the collection of patterns to be discov-
ered. That reduction of the relation is achieved in a time and a space
that is linear in the number of n-tuples. Experiments on two real-life
datasets show that, whatever the algorithm used afterward to actually
list the patterns, the pre-process allows to lower the overall running time
by a factor typically ranging from 10 to 100.

1 Introduction

Given a binary relation, which generically represents objects having (or not)
some Boolean properties, an itemset is a subset of the properties. It can be asso-
ciated with the subset of all objects having all those properties. Those objects are
called the support of the itemset. Mining the itemsets with their supports allow
the discovery of correlations between arbitrary numbers of Boolean properties,
between arbitrary number of objects and between the objects and the properties.
For instance, mining a binary relation indicating whether a customer (an object)
bought a food item (a property) can unveil interesting buying behaviors. The
pattern ({Alice,Bob,Dave}, {bread,cheese,oil,salt}) indicates that the three
customers in the support are the only ones who bought together the four food
items in the itemset. The number of itemsets is exponential in the number of
properties and so is the time to compute them.

To keep under control the size of that output, two techniques are classically
used. First of all, the itemsets that are not closed can be removed from the
output without any loss of information. Every non-closed itemset is, by def-
inition, strictly included into another itemset with the exact same support.
For instance, {bread,cheese,oil,salt} is not closed if Alice, Bob and Dave
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all bought some butter. If there is no other food item that they all bought,
{bread,cheese,oil,salt,butter} is closed. With the support stored along with
the closed itemset, the support of any itemset can easily be retrieved from the
reduced collection of patterns: it is the support of the smallest superset that
is closed. However the number of closed itemsets remains exponential in the
number of objects or in the number of properties (whichever is smaller).

To further reduce the output, the sole relevant (closed) itemsets must be
shown. The relevance is usually defined by the analyst as a conjunction of con-
straints that every output itemset must satisfy. For instance, knowing the subset
W of customers who are women and the function p returning the price of the
food item in argument, our analyst may want to take a look at the patterns
(C, I) satisfying the following constraints:

C≥8 women(C, I) ≡ |C ∩W | ≥ 8 for at least eight women in every pattern;
C≤12 items(C, I) ≡ |I| ≤ 12 for at most twelve items in every pattern;
C50-min-area(C, I) ≡ |C × I| ≥ 50 for at least fifty tuples in the cover of every

pattern;
C8$-max-price(C, I) ≡ maxi∈I p(i) ≤ 8 for all items in every pattern having a

price below 8$;
C4$-min-range-price(C, I) ≡ max(i,i′)∈I2(p(i)− p(i′)) ≥ 4 for a price difference of

at least 4$ between the cheapest and the most expensive item in every pat-
tern;

C10$-min-total-price(C, I) ≡
∑

i∈I p(i) ≥ 10 for at least 10$ worth of items in ev-
ery pattern.

Depending on the algorithm at work, some constraints can guide the search
of the itemsets, i. e., regions of the pattern space are left unexplored because
they do not contain any relevant itemset. Doing so, the relevant patterns can be
discovered in a fraction of the time required to list every unconstrained pattern.

When dealing with “big data”, whose growth in quantity is steeper than that
of disk sizes, the first technique that is commonly applied is to simply identify
irrelevant data that need not be stored. Constraints on itemsets play this role on
the “big data output”. But what about using the constraints before the actual
extraction to reduce the input data? The binary relation is not “big”. Neverthe-
less, because listing the constrained itemsets generally remains NP-hard, that
simple idea can lead to a great reduction of the overall running time. This is es-
pecially true when a constraint allows, in a pre-processing step, to remove some
tuples but cannot be used by the chosen algorithm to prune the pattern space
(hence the need for a filter at the output). Notice that the removed tuples must
be guaranteely useless, i. e., with or without them, the closed itemsets satisfying
the constraints must be the same.

Such a pre-processing method has already been proposed for (not necessarily
closed) itemset mining [3]. In this article, the closedness is taken into consider-
ation. More challenging, the task is generalized toward n-ary relations. For ex-
ample, our proposal can take advantage of some of the constraints listed above
in the context of a ternary relations that encode whether customers buy items
along time (e. g., the third element of a 3-tuple can be jan-14 or feb-14 or etc.).
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That pre-process works at the level of tubes, i. e., one dimensional subspaces of
the n-ary relation such as ({Alice}, {bread},all months in which Alice bought
bread), ({Alice},all items Alice bought in jan-14, {jan-14}) and (all cus-
tomers buying bread in jan-14, {bread}, {jan-14}). The Cartesian product of
the n dimensions of a tube is called the cover of this tube. The less n-tuples in
the cover of a tube, the more likely they can be seamlessly removed altogether
from the relation thanks to a constraint that is monotone w.r.t one dimension, a
property that this article introduces and that many common constraints happen
to satisfy. Moreover, every n-tuple is in the cover of n tubes “oriented” in each
of the n dimensions of the relation. As a consequence, emptying a tube makes
it more likely that some of the orthogonal tubes can be emptied in a sequence.
Indeed, their covers have just lost one n-tuple.

The pre-process therefore is effective as long as the relation contains tubes
with small covers. It turns out that real-life n-ary relations often are sparse and
even sparser for a greater n. In our example, a customer who ever bought an
item usually did not buy it every month and the ternary relation is sparser than
the binary one. Furthermore, the distribution, over all tubes, of the number
of covered tuples often is skewed, i. e., most of the tubes cover few n-tuples.
All those n-tuples, covered by the long tail of the distribution, are prone to be
removed by the pre-process. Figure 1 shows such a distribution for one of the
real-life ternary relations we used in our experiments. Each curve relates to one
“orientation” for the tubes. In the log-scaled abscissa, those tubes were ordered
in decreasing order of the number of 3-tuples they cover.

After presenting the related work in Sect. 2, Sect. 3 provides some definitions
and formally defines the data-mining problem we consider. In Sect. 4, the pre-
process is detailed and its correctness proved. Sect. 5 shows, on two real-life
datasets that it frequently allows to solve the problem orders of magnitude faster.
Finally, Sect. 6 briefly concludes.

2 Related Work

Given a binary relation, which can be seen as a Boolean matrix, the famous
Apriori algorithm [1] mines itemsets under a minimal frequency constraint, i. e.,
a minimal number of rows in the support of the itemset. Apriori first considers
the individual columns of the matrix and removes those with a number of present
tuples that is below the frequency threshold. Indeed, such columns cannot be
involved in any frequent itemset. This property of the frequency constraint has
later been called anti-monotonicity by opposition to monotonicity [9].

[5] and [6] are among the early studies of the efficient extraction of pat-
terns under both monotone and anti-monotone constraints. A monotone con-
straint on the rows of a pattern is anti-monotone when applied, instead, on
its columns. This duality obviously vanishes when considering Boolean tensors,
i. e., relations of higher arities. In this article, the expression monotonicity w.r.t.
one dimension is coined. In the specific context of a binary relation, a con-
straint is monotone w.r.t. rows (respectively columns) if it only deals with rows
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Fig. 1. Distributions of the number of 3-tuples in the cover of the tubes w.r.t. each of
the three dimensions of the densest Retweet relation
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(respectively columns) and is anti-monotone (respectively monotone) in the clas-
sical meaning of the word.

When constrained patterns are to be extracted from a binary relation, the
individual rows (respectively columns) that do not satisfy the monotone (re-
spectively anti-monotone) constraints can be removed. ExAnte [3] iteratively
performs that reduction of a binary relation until a fixed point is reached, i. e.,
until no more row or column is removed. The algorithm presented in this article
can be seen as a generalization of ExAnte toward n-ary relations (n ≥ 2). To the
best of our knowledge, it is the first attempt to pre-process an n-ary relation to
speed up the subsequent search of constrained patterns.

Those “patterns” naturally generalize itemsets (along with their supports).
More precisely, a pattern in an n-ary relation consists of n subsets of each of the
n dimensions and only covers tuples present in the relation, i. e., the Cartesian
product of the n subsets must be included in the relation. [11], [10] and [14] detail
algorithms to mine such patterns in ternary relations. [7] and [13] directly tackle
the search of patterns in arbitrary n-ary relations. All those algorithms actually
enforce an additional maximality property, the closedness constraint, which is
known to losslessly reduce the collection of patterns to the most informative
ones [8]. Besides, they all are able to focus the search of the patterns on those
having user-specified minimal numbers of elements in each of the dimensions. In
fact, all of them but Data-Peeler [7] only consider minimal size constraints. In
contrast, Data-Peeler can prune the search of the patterns with any piecewise
(anti)-monotone constraint and, as a consequence, with any constraint that is
monotone w.r.t. one dimension (as defined in this article).

3 Definitions and Problem Statement

All along the article, × denotes the Cartesian product and
∏

is used for the
Cartesian product of an arbitrary number of sets. Given n ∈ N dimensions of
analysis (i. e., n finite sets) (Di)i=1..n, the dataset is a relation R ⊆

∏n
i=1 Di,

i. e., a set of n-tuples. Table 1 represents such a relation RE ⊆ {α, β, γ} ×
{1, 2, 3, 4} × {A,B,C}, hence a ternary relation. In this table, every ‘1’ (resp.
‘0’) at the intersection of three elements stands for the presence (resp. absence)
of the related 3-tuple in RE . E. g., (α, 1, A) ∈ RE and (α, 1, C) /∈ RE .

Table 1. RE ⊆ {α, β, γ} × {1, 2, 3, 4} × {A,B,C}

A B C A B C A B C

1 1 1 0 0 0 1 0 1 0
2 0 0 0 1 1 0 1 1 0
3 1 0 1 0 1 1 1 0 0
4 1 0 0 1 0 0 0 1 0

α β γ
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An n-set (X1, · · · , Xn) consists of n subsets of each of the n dimensions, i. e.,
(X1, · · · , Xn) ∈

∏n
i=1 P(Di). For example, given the dimensions of RE , ({α, γ},

{2, 4}, {B}) is an n-set, whereas ({β}, {4}, {A,α}) is not because α /∈ D3.
An i-tube (with i ∈ {1, · · · , n}) is a special n-set: all its dimensions but the

ith are singletons and its ith dimension contains all the elements in Di that form,
with the elements in the singletons, n-tuples present in the relation. Formally,
(T1, · · · , Tn) ∈

∏n
i=1 P(Di) is an i-tube in R ⊆

∏n
i=1 Di if and only if:{

∀j ∈ {1, · · · , i− 1, i+ 1, · · · , n}, ∃tj ∈ Dj | Tj = {tj}
Ti = {ti ∈ Di | (t1, · · · , ti−1, ti, ti+1, · · · , tn) ∈ R}

.

({α}, {1, 3, 4}, {A}) is an example of a 2-tube in RE . ({α}, {1, 3}, {A}) is not a
2-tube in RE because 4 is not in its second dimension although (α, 4, A) ∈ RE .
({α}, {1, 2, 3, 4}, {A}) is not a 2-tube either because (α, 2, A) /∈ RE .

A constraint over an n-set is a predicate, i. e., a function that associates every
n-set with a value of either true or false. The data mining task we consider is
the extraction, from an n-ary relation, of all patterns (“pattern” will be defined
in the next paragraph) satisfying a conjunction of constraints that are indepen-
dent from the relation. The introduction of this article provides six examples
of constraints. None of them depends on the relation, i. e., the sole n-set and,
possibly, some external data (such as W and p in the introduction) are sufficient
to evaluate the constraint.

A pattern in an n-ary relation is a natural generalization of a closed itemset
and its support in a binary relation. It is an n-set (1) whose cover (the Cartesian
product of its n dimensions) is included in the relation and (2) that is closed. The
closedness is a property of maximality. It means that no element can be added
to any of dimension of the pattern without breaking property (1). Formally,
(X1, · · · , Xn) ∈

∏n
i=1 P(Di) is a pattern in R ⊆

∏n
i=1 Di if and only if:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1)
∏n

i=1 Xi ⊆ R
(2) ∀(X ′

1, · · · , X ′
n) ∈

∏n
i=1 P(Di),{

∀i ∈ {1, · · · , n}, Xi ⊆ X ′
i∏n

i=1 X
′
i ⊆ R

⇒ ∀i ∈ {1, · · · , n}, Xi = X ′
i

.

For brevity, we sometimes write Cclosed(X1, · · · , Xn,R) to mean that the n-set
(X1, · · · , Xn) satisfies property (2).

({β, γ}, {2}, {A,B}) is an example of a pattern in RE because (1) the four
3-tuples in {β, γ}×{2}×{A,B} belong to RE and (2) no element can be added
to any of its dimensions without breaking property (1). ({β}, {2}, {A,B}) is not
a pattern in RE because it is not closed: it is “included” in ({β, γ}, {2}, {A,B}),
which only covers 3-tuples that are present in RE . ({α, γ}, {1}, {A}) is not a
pattern either because (γ, 1, A) can be formed by taking an element in each of
its dimensions and (γ, 1, A) /∈ RE .

The data mining task considered in this paper can now be formalized. Given a
relation R ⊆

∏n
i=1 Di and a set Call of constraints that are all independent from

the relation, the problem is the computation of the following set T h(R, Call):
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(X1, · · · , Xn) ∈

n∏
i=1

P(Di) |
{
(X1, · · · , Xn) is a pattern in R
∀C ∈ Call, C(X1, · · · , Xn)

}

However, this work is not about a new algorithm to solve the problem. It is about
computing a relation R′ ⊆ R that is as small as possible and yet guarantees that
T h(R′, Call) = T h(R, Call). In this way, the actual pattern miner potentially runs
faster on R′ and yet outputs the correct and complete collection of constrained
patterns.

To shrink R into R′, the algorithm proposed in this article exploits the con-
straints in Call that aremonotone w.r.t. one dimension. They are constraints that
do not depend on any dimension of the n-set but one and that are monotone
w.r.t. the inclusion order on this dimension, i. e., if an n-set satisfies a constraint
that is monotone w.r.t. dimension i, then any n-set with a larger ith dimension
(w.r.t. set inclusion) satisfies it as well. Formally, a constraint C is monotone
w.r.t. dimension i (with i ∈ {1, · · · , n}) if and only if:

∀(X1, · · · , Xn) ∈
∏n

i=1 P(Di), ∀Yi ⊆ Di,
C(X1, · · · , Xn) ⇒ C(X1, · · · , Xi−1, Xi ∪ Yi, Xi+1, · · · , Xn) .

Among the six constraints listed in the introduction, C≥8 women is monotone
w.r.t. the customerdimension;C8$-max-price,C4$-min-range-price andC10$-min-total-price

are monotone w.r.t. the food item dimension. C≤12 items is not monotone: given an
n-set that satisfies it, there exists another n-set with more than twelve items, in-
cluding all those involved in the first n-set. C50-min-area is not monotone w.r.t. one
dimension either because it depends on two dimensions of the n-set.

4 Dataset Reduction

The reduction of the n-ary relation R ⊆
∏n

i=1 Di, which is proposed in this
article, is based on the removal of the n-tuples covered by an i-tube that does
not verify a constraint that is monotone w.r.t. dimension i. This section first
proves that this operation does not change the set of constrained patterns that
is to be discovered. Then the actual algorithm is presented and its complexity
is analyzed.

4.1 Fundamental Theorem

Let us first show that the ith dimension of a pattern necessarily contains a subset
of the ith dimension of any i-tube that covers some of its tuples:

Lemma 1. Given a pattern (X1, · · · , Xn) in R and an i-tube (T1, · · · , Tn) in
R (with i ∈ {1, · · · , n}), we have:⎛⎝ n∏

j=1

Xj

⎞⎠ ∩

⎛⎝ n∏
j=1

Tj

⎞⎠ 
= ∅ ⇒ Xi ⊆ Ti .
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Proof. If
(∏n

j=1 Xj

)
∩
(∏n

j=1 Tj

)

= ∅, then ∀j ∈ {1, · · · , n}, Xj ∩ Tj 
= ∅. By

definition of the i-tube (T1, · · · , Tn), ∀j 
= i, |Tj| = 1. As a consequence, ∀j 
= i,
Tj ⊆ Xj (1). Assume, by contradiction, Xi 
⊆ Ti, i. e., ∃e ∈ Xi \ Ti. By (1)
and the first property defining the pattern (X1, · · · , Xn), T1 × · · ·Ti−1 × {e} ×
Ti+1 × · · · × Tn ⊆

∏n
j=1 Xj ⊆ R (2). By definition of the i-tube (T1, · · · , Tn),

Ti = {ti ∈ Di | (t1, · · · , ti−1, ti, ti+1, · · · , tn) ∈ R}. With (2), we therefore have
e ∈ Ti, which contradicts the assumption. ��

From now on, Ci (with i ∈ {1, · · · , n}) denotes the conjunction of all con-
straints in Call that are monotone w.r.t. dimension i. Clearly, Ci is monotone
w.r.t. dimension i. The following lemma states that whenever an i-tube violates
Ci, removing the n-tuples covered by this i-tube leads to a reduced relation that
does not embed any pattern absent from the original relation.

Lemma 2. Given R, Call and an i-tube (T1, · · · , Tn) in R (with i ∈ {1, · · · , n}),
we have:

¬Ci(T1, · · · , Tn) ⇒ T h

⎛⎝R \
n∏

j=1

Tj , Call

⎞⎠ ⊆ T h (R, Call) .

Proof. Let (X1, · · · , Xn) ∈ T h(R \
∏n

j=1 Tj, Call).
By the first property defining the pattern (X1, · · · , Xn) in R \

∏n
j=1 Tj ,∏n

j=1 Xj ⊆ R \
∏n

j=1 Tj. Because R \
∏n

j=1 Tj ⊆ R and by transitivity of ⊆,∏n
j=1 Xj ⊆ R (1).
Assume, by contradiction, ¬Cclosed(X1, · · · , Xn,R). By definition of Cclosed,

∃(X ′
1, · · · , X ′

n) ∈
∏n

i=1 P(Di) |

⎧⎪⎨⎪⎩
∏n

i=1 X
′
i ⊆ R(2)

∀i ∈ {1, · · · , n}, Xi ⊆ X ′
i(3)

∃i ∈ {1, · · · , n} | Xi � X ′
i(4)

. We necessar-

ily have
∏n

i=1 X
′
i 
⊆ (R \

∏n
i=1 Ti) otherwise, with (3) and (4), it would follow

that ¬Cclosed(X1, · · · , Xn,R \
∏n

j=1 Tj) what would contradict (X1, · · · , Xn) ∈
T h(R\

∏n
j=1 Tj, Call). By adding (2) to that, we have (

∏n
j=1 X

′
j)∩(

∏n
j=1 Tj) 
= ∅

and, by Lemma 1, X ′
i ⊆ Ti. Because (3) imposes Xi ⊆ X ′

i, we have, by transitiv-
ity of ⊆,Xi ⊆ Ti. Therefore, by contraposition of the definition of the monotonic-
ity w.r.t. dimension i that holds for Ci, ¬Ci(T1, · · · , Tn) ⇒ ¬Ci(X1, · · · , Xn). As
a consequence, (X1, · · · , Xn) /∈ T h(R\

∏n
j=1 Tj, Call), a contradiction. Therefore,

the assumption is wrong, i. e., Cclosed(X1, · · · , Xn,R) (5).
Finally, because all constraints in Call are independent from the relation, the

fact that (X1, · · · , Xn) satisfies them in R \
∏n

j=1 Tj implies that it satisfies
them as well in R. Together with (1) and (5), we therefore have (X1, · · · , Xn) ∈
T h(R, Call). ��

One final lemma to state the opposite of Lemma 2, i. e., whenever an i-tube
violates Ci, removing the n-tuples covered by this i-tube leads to a reduced
relation that embeds every pattern present in the original relation.
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Lemma 3. Given R, Call and an i-tube (T1, · · · , Tn) in R (with i ∈ {1, · · · , n}),
we have:

¬Ci(T1, · · · , Tn) ⇒ T h (R, Call) ⊆ T h

⎛⎝R \
n∏

j=1

Tj , Call

⎞⎠ .

Proof. Let (X1, · · · , Xn) ∈ T h(R, Call).
By the first property defining the pattern (X1, · · · , Xn) in R,

∏n
j=1 Xj ⊆ R

(1). Assume, by contradiction,
∏n

j=1 Xj 
⊆ R \
∏n

j=1 Tj . With (1), we have

(
∏n

j=1 Xj) ∩ (
∏n

j=1 Tj) 
= ∅, i. e., Lemma 1 applies and Xi ⊆ Ti. By con-
traposition of the definition of the monotonicity w.r.t. dimension i that holds
for Ci, ¬Ci(T1, · · · , Tn) ⇒ ¬Ci(X1, · · · , Xn). As a consequence, (X1, · · · , Xn) /∈
T h(R, Call), a contradiction. Therefore, the assumption is wrong, i. e.,

∏n
j=1 Xj ⊆

R \
∏n

j=1 Tj (2).

Cclosed(X1, · · · , Xn,R \
∏n

j=1 Tj) (3) directly follows from R \
∏n

j=1 Tj ⊆ R
and, in a sequence, from the closedness of (X1, · · · , Xn) in R: ∀(X ′

1, · · · , X ′
n) ∈∏n

j=1 P(Dj),

{
∀j ∈ {1, · · · , n}, Xj ⊆ X ′

j∏n
j=1 X

′
j ⊆ R \

∏n
j=1 Tj ⊆ R

⇒ ∀j ∈ {1, · · · , n}, Xj = X ′
j.

Finally, because all constraints in Call are independent from the relation, the
fact that (X1, · · · , Xn) satisfies them in R implies that it satisfies them as well
in R \

∏n
j=1 Tj. Together with (2) and (3), we therefore have (X1, · · · , Xn) ∈

T h(R \
∏n

j=1 Tj , Call). ��

Finally, here is the theorem at the foundation of the data reduction proposed
in this article.

Theorem 1. GivenR, Call and an i-tube (T1, · · · , Tn) inR (with i ∈ {1, · · · , n}),
we have:

¬Ci(T1, · · · , Tn) ⇒ T h (R, Call) = T h

⎛⎝R \
n∏

j=1

Tj , Call

⎞⎠ .

Proof. The equality follows from Lemmas 2 and 3.

4.2 Algorithm

The obvious pre-process, which directly follows from Th. 1, would consider, one
by one and for all i ∈ {1, · · · , n}, every i-tube in R. It would test whether the
related Ci is satisfied and, if not, it would “empty” the i-tube. However, the
removal of an n-tuple in an i-tube corresponds as well to the removal of this
same n-tuple in every orthogonal j-tube (with j 
= i). Such a j-tube may have
already been considered and was satisfying Cj . However, since Cj is monotone
w.r.t. dimension j, the j-tube may now violate Cj because it contains one element
less in its jth dimension. In this way, the constraints that are monotone w.r.t.
one dimension work in synergy with the constraints that are monotone w.r.t.
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any other dimension. When one is effective, (i. e., allows to identify a tube to
empty), it makes it more likely that the others become effective.

The following pseudo-code formalizes the pre-process. It enumerates, one by
one, the n-tuples in the relation and checks all n tubes that cover each of the n-
tuples. Whenever an i-tube is emptied because it violates Ci, the j-tubes (j 
= i)
that involve the removed n-tuples are rechecked. In this way, the pre-process only
terminates when all i-tubes, for all i ∈ {1, · · · , n}, are either empty or satisfy
the related constraint Ci.

Data: relation R ⊆
∏n

j=1 Dj , set Call of constraints that are all independent
from R

begin
forall the (t1, · · · , tn) ∈ R do

forall the i ∈ {1, · · · , n} do
CleanTube(R, i, (t1, · · · , ti−1, ti+1, · · · , tn));

Algorithm 1. CleanRelation

Data: relation R ⊆
∏n

j=1 Dj , orientation of the tube i ∈ {1, · · · , n}, elements in
the singletons of the tube (t1, · · · , ti−1, ti+1, · · · , tn)

begin
Ti ← {ti ∈ Di | (t1, · · · , ti−1, ti, ti+1, · · · , tn) ∈ R};
if ¬Ci({t1}, · · · , {ti−1}, Ti, {ti+1}, · · · {tn}) then

forall the ti ∈ Ti do
R ← R \ {(t1, · · · , tn)};
forall the j ∈ {1, · · · , i− 1, i+ 1, · · · , n} do

CleanTube(R, j, (t1, · · · , tj−1, tj+1, · · · , tn));

Procedure. CleanTube()

In the pseudo-code, there may be no removal of n-tuples in an i-tube between
two checks of this i-tube. To avoid that, the actual implementation does not
directly execute the recursive calls of CleanTube. Instead, the tubes in argu-
ments of those calls are stored in a hash set (hence no duplicate). As long as
the hash set is non-empty, a tube is retrieved from it and the related call of
CleanTube is made. Once the hash map is empty, the execution comes back
to CleanRelation.

Also, the tubes are not actually computed from the set of all n-tuples whenever
they are required. Instead, the n-ary relation is stored n times as the set all i-
tubes (i ∈ {1, · · · , n}).
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4.3 Complexity Analysis

In the worst case scenario, CleanRelation’s enumeration of the n-tuples does
not identify any tube to empty but the last one. Then, every single n-tuple is
removed one by one, hence |R| calls of the CleanTube function. In this scenario,
the pre-process consists of four steps whose time complexities follow:

Storage of R: O(n|R|) since every n-tuple in R is stored n times; it is the
space complexity of the overall pre-process too (assuming no external data
is required to verify or speed up the verification of some constraints);

Outer-most enumeration: O(|R|
∑n

i=1 check(Ci)) where check(Ci) denotes
the cost of verifying whether one i-tube verifies the constraints in Call that
are monotone w.r.t. dimension i;

Actual cleaning: O(|R|
∑n

i=1 check(Ci));
Output of the remaining n-tuples: O(|R|); the worst-case scenario for this

step corresponds to no actual cleaning.

Overall, the pre-process has a O(n|R|) space complexity and a time complex-
ity of O(|R|

∑n
i=1 check(Ci)). Notice that, for common constraints, check(Ci) is

cheap. For instance, it is O(1) for minimal size constraints (assuming every i-
tube is stored in a container with a constant time access to its size) or minimal
sum constraints over positive numbers (assuming the sums for each i-tube are
stored and updated whenever an n-tuple in it is erased). It is O(log |Di|) for a
maximal, a minimal or a min-range constraint (using respectively max-heaps,
min-heaps and both).

5 Experimental Study

CleanRelation is integrated to Data-Peeler, which is free software1. It is
implemented in C++ and compiled by GCC 4.7.2 with the O3 optimizations.
Because it is a pre-process, any pattern extractor can work on the reduced rela-
tion it outputs. We received, from their respective authors, the implementations
of CubeMiner [11], Trias [10], Data-Peeler [7], TriCons [14] and CnS-

Miner [13], i. e., all (exact) pattern extractor that handle ternary relations (or
more in the cases of Data-Peeler and CnS-Miner). Unfortunately, CnS-

Miner never produced any output and we therefore decided to focus the exper-
imental study on ternary relations where comparisons can be made. TriCons

did not work, either crashing or returning an incomplete output.
The remaining three algorithms are tested on a GNU/LinuxTM system run-

ning on top of 3.10GHz cores and 12GB of RAM. CubeMiner and Data-

Peeler, both implemented in C++, were compiled with GCC 4.7.2. Trias was
compiled and interpreted by Oracle’s JVM version 1.7.0 45. CubeMiner and
Trias can only prune the search space with minimal size constraints on some
or all dimensions of the pattern. In contrast, Data-Peeler’s traversal of the

1 It is available, under the terms of the GNU GPLv3, at
http://dcc.ufmg.br/~lcerf/en/prototypes.html#d-peeler.

http://dcc.ufmg.br/~lcerf/en/prototypes.html#d-peeler
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pattern space can be guided by any number of piecewise (anti)-monotone con-
straints. That includes any constraint that is monotone w.r.t. one dimension.
As a consequence, unless the sole minimal size constraints are desired, Data-

Peeler would be preferred. Fortunately, minimal size constraints are monotone
w.r.t. one dimension. The remainder of this section compares the times CubeM-

iner, Trias and Data-Peeler take to list minimally sized patterns in ternary
relations, with and without the pre-process

5.1 Retweet Dataset

The micro-blogging service Twitter is particularly popular in Brazil. Tweets
about the Brazilian soccer championship were collected from January, 9th 2014
to April, 11th 2014 (92 days) and classified w.r.t. to the mentioned team(s)
(supervised classification method, which is out of the scope of this paper). How
many times a user is retweeted (i. e., other users “repeat” her tweets) is known
to be a good measure of her influence [12]. 184,159 users were retweeted at least
once during the considered period. A 3-dimensional tensor gives how many times
each of them is retweeted (over all her messages) during a given day when writing
about a given soccer team (among 29). That tensor contains 731,685 non-null
values.

It is turned into a ternary relation by keeping the tuples relating to cells of
the tensors with a high enough number of retweets. In the experiments on this
dataset, the threshold is a variable. On the contrary, the minimal size constraints
on the patterns are kept constant: at least two days, two teams and two users.
Although those constraints are rather loose, the pre-process is efficient because
the relation is very sparse. In the most challenging context, when one retweet is
considered “influential enough”, CleanRelation only keeps 263,413 out of the
731,685 3-tuples, a 64% reduction.

5.2 Distrowatch Dataset

DistroWatch2 is a popular Web site that gathers comprehensive information
about GNU/LinuxTM, BSD, and Solaris operating systems. Every distribution
is described on a separate page. When a visitor loads a page, her country is
known from the IP address. The logs of the Web server are turned into a ternary
relation that gives for any time period (13 semesters from early 2004 to early
2010) and every page (describing 655 distributions), the countries that visited it
more than 25 times. From that relation, we consider the extraction of all patterns
involving at least four semesters, m distributions and m countries, where m is
an integer variable ranging from 5 to 48.

The relation contains 150,834 3-tuples, a number that is comparable to those
of the Retweet relations. However, it is considerably denser. Because of that, and
even with strong minimal size constraints, some of the algorithms cannot mine
the patterns in the relation that is not pre-processed. Those same algorithms

2 http://www.distrowatch.com

http://www.distrowatch.com
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benefit a lot from the pre-process, with overall running times that become several
orders of magnitude shorter. With m = 10, CleanRelation keeps 65,130 out
of the 150,834 3-tuples, a 57% reduction.

5.3 Pre-processing Time

Figure 2 depicts Data-Peeler’s running times on the Retweet relations with
and without the pre-processing step. The actual data reduction takes only a
fragment of the time required by the subsequent extraction. Despite the loose
constraints at work (“at least two elements in every dimension of the pattern”),
the pre-process is effective. With it, Data-Peeler lists all the constrained pat-
terns in about one percent of the time it takes to process the non-reduced relation
(for the exact same result).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10000  100000  1e+06

tim
e 

(s
)

tuples

pre-processing
pattern mining

total
total without pre-processing

Fig. 2. Running times of CleanRelation and Data-Peeler running with and with-
out the pre-processing step on the Retweet relations

5.4 Time Gains over the Whole Task

Figures 3 and 4 show the time gains CleanRelation brings to all the three
tested algorithms. 24 hours are not enough for CubeMiner to directly mine
the patterns in the DistroWatch dataset, even under the strongest considered
constraints. However, in this same context but with the pre-process, it returns
those patterns in 0.028s, i. e., at least three million times faster than without
CleanRelation. Data-Peeler, which is the fastest algorithm when no pre-
process is used, remains the fastest when it is used. However Data-Peeler



594 G. Poesia and L. Cerf

benefits less from CleanRelation than CubeMiner. The pre-process allows
to divide the overall running time by a factor ranging between 2 and 4. Trias is
5 to 100 times faster when it mines the reduced relation rather than the original
one. It is faster for Trias to compute from the reduced relation all patterns with
at least four semesters, 16 distributions and 16 countries than to compute from
the original relations the patterns with at least four semesters, 23 distributions
and 23 countries.
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Fig. 3. Running times of Data-Peeler, CubeMiner and Trias with and without the
pre-processing step on the Distrowatch relation

CubeMiner first computes an amount of memory to allocate for the pattern
space. With an unreduced Retweet dataset, that amount overflows the number
of bits in an integer and CubeMiner crashes. On the other hand, when mining
the reduced relation, CubeMiner is efficient. It even competes with Data-

Peeler for the sparsest versions of the dataset. Within a few hours, Trias

manages to extract the constrained patterns only if the relation is very sparse.
By preceding the call of Trias by the pre-process, the results dramatically
improve. The running times are divided by about 50,000. Data-Peeler is the
only algorithm that allows to extract, in a reasonable time, the patterns in the
densest versions of the dataset. The pre-processing step helps it a lot in those
more challenging contexts. In the dataset encoding whether a user was retweeted
at least once when writing about a team during a day, the ternary relation, which
used to contain 731,685 3-tuples, is reduced to only 170,388 tuples (≈ 23% of
the original size). In sequence, Data-Peeler runs about 100 times faster on the
reduced relation.
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Fig. 4. Running times of Data-Peeler, CubeMiner and Trias with and without the
pre-processing step on the Retweet relations

6 Conclusion

When searching for itemset-like patterns in an n-ary relation, constraints are,
in practice, required. They specify some relevance criteria every pattern must
satisfy, reduce the output to a manageable size and drastically lower the extrac-
tion times (if the algorithm can prune the search space with the constraints). In
this article, we have identified a common property among constraints, the mono-
tonicity w.r.t. one dimension, that allows to empty tubes (i. e., one-dimensional
subspaces) of the relation while guaranteeing the presence of the same con-
strained patterns in the reduced data. Because an n-tuple belongs to n different
tubes, constraints on the different dimensions of the pattern (e. g., minimal size
constraints) work in synergy: emptying a tube makes it easier to empty the or-
thogonal tubes that used to contain the erased n-tuples. Once the fixed point
reached, the actual pattern extraction, with any algorithm, takes place. Because
real-life n-ary relations usually are sparse, the effectiveness of our pre-process
can be impressive: in our experiments, the overall time to mine the patterns
with the fastest algorithm, Data-Peeler, is lowered by a factor typically rang-
ing from 10 to 100 and it can reach millions for less efficient algorithms. In the
same way that the idea behind ExAnte [3] was then applied along the search for
the itemsets [2,4], we currently investigate an analog integration of the present
proposal into Data-Peeler.
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Abstract. The widespread use of social networks enables the rapid diffusion
of information, e.g., news, among users in very large communities. It is a sub-
stantial challenge to be able to observe and understand such diffusion processes,
which may be modeled as networks that are both large and dynamic. A key tool
in this regard is data summarization. However, few existing studies aim to sum-
marize graphs/networks for dynamics. Dynamic networks raise new challenges
not found in static settings, including time sensitivity and the needs for online
interestingness evaluation and summary traceability, which render existing tech-
niques inapplicable. We study the topic of dynamic network summarization: how
to summarize dynamic networks with millions of nodes by only capturing the few
most interesting nodes or edges over time, and we address the problem by find-
ing interestingness-driven diffusion processes. Based on the concepts of diffusion
radius and scope, we define interestingness measures for dynamic networks, and
we propose OSNet, an online summarization framework for dynamic networks.
We report on extensive experiments with both synthetic and real-life data. The
study offers insight into the effectiveness and design properties of OSNet.

1 Introduction

The summarization of networks or graphs continues to be an important research prob-
lem due in part to the ever-increasing sizes of real-world networks. While most studies
consider the summarization of static networks according to criteria such as compression
ratio, network representation, minimum loss, and visualization friendliness [15,20], re-
cent developments in social network mining and analysis as well as in location-based
services [6, 13] and bioinformatics [20] give prominence to the study of a new kind of
dynamic network [9,10] that captures information diffusion processes in an underlying
network. These developments offer new challenges to network summarization.

An information diffusion process in a network can be represented by a stream of
timestamped pairs of nodes from the underlying network, where a timestamped pair
indicates that information was sent from one node to the other at the given time. This
stream can be modeled as a dynamic network. An example of an information diffusion

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 597–613, 2014.
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process is the spread of news items among Twitter users by means of the network’s
“reply/(re)tweet” functionality.

While the network that may be created from a completed diffusion process by assem-
bling the node pairs that represent the process is a static network, the summarization
task for a diffusion process distinguishes itself from that of a static network. The criti-
cal difference lies in that, for a dynamic diffusion process, it is most valuable to capture
each “interesting” development as the process evolves, in an online fashion. This prob-
lem is termed dynamic network summarization (DNS) and has many applications. We
highlight several as follows.

In information visualization, massive dynamic networks are hard to visualize due to
their size and evolution [14]. With DNS, it is possible to create online, time-labeled
summaries in the form of “trajectories” such that it is possible to view the change in a
diffusion process as it evolves. In social graph studies, DNS enables the identification
of interesting dynamics in the form of “backbones” that describe how information prop-
agates and that can help capture the evolving roles of different participants in diffusion
processes. This is useful for tasks such as change detection [18] and trend mining [4]. In
road traffic analysis, DNS can capture major traffic flows. Summaries for given periods
can be projected onto the road network to detect traffic thoroughfares, provide better
road planning services, or analyze how people move in a city [11].

One approach is to compute a summary from the evolving diffusion process period-
ically. Thus, the process is represented by a sequence of summaries of static networks.
Each network aggregates edges and nodes in a time interval of size �t [14]. However,
this approach is costly when networks are large. Further, parameter �t is fundamen-
tally hard to set: if it is too small, performance deteriorates, while if it is too large,
important diffusion dynamics may be missed. Even if given a �t, most of the previous
methods show difficulty in producing results that capture interesting dynamics, because
their specific criteria and goals do not target dynamics.

As suggested by the application examples, DNS faces unique challenges.

(1) Time Sensitivity. Diffusion processes often represent vast, viral, and unpredictable
processes, e.g., breaking news and bursty events [21]. As a result, the rate of diffusion
can vary drastically over a short period of time. It is a difficult challenge to respond
adaptively to the changing dynamics and to achieve timely summarizations.

(2) Online Interestingness Evaluation. A key challenge is to capture the most interest-
ing nodes and edges in summarizations. Compared with traditional network summariza-
tion, interestingness evaluation in DNS assumes an extra degree of difficulty because of
the partial view of the network at any time of the evaluation.

(3) Summary Traceability. An important goal is to enable a better understanding of
the evolution of the diffusion process throughout its life cycle. A good summary should
reveal the flow of the dynamics so that interesting developments can be traced.

To tackle the DNS problem, we propose OSNet, a framework for Online Sum-
marization of Dynamic Networks that aims to produce concise, interestingness-driven
summaries that capture the evolution of diffusion processes. Our contribution is five-
fold: 1) Unlike previous proposals that apply optimization criteria in offline settings, we
consider a setting where network summarization occurs online, as a diffusion process
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evolves. 2) Based on the concepts of propagation radius proRadius and propagation
scope proScope, we formalize the problem of characterizing the interesting dynam-
ics of an evolving diffusion process in a traceable manner. 3) We propose OSNet that
encompasses online and incremental dynamic network summarization algorithms on a
spreading tree model. In terms of entropy, OSNet archives the best summaries with
respect to informativeness. 4) A generalization of OSNet is presented. 5) Extensive
experiments are conducted with both synthetic and real-life datasets.

2 Problem Definition

The input to the problem is a stream of time ordered interactions (i.e., diffusion pro-
cesses) on a network G. We define a network as a labeled graph G = (V,E, lG), where
V is a set of nodes, E ⊂ V × V is a set of undirected edges, and lG is a labeling
function. Given a set Σ = {ς1, ς2, . . . , ςk} of labels, labeling function lG : V (G)  → Σ
maps nodes to labels.

A diffusion process on a network G, denoted by D(G), is a stream of time-ordered
interactions. An interaction x = (δ, u, v, t) ∈ D(G) indicates that a specific story is
diffused from node u to node v at time t ∈ T . A story is defined by a textual keyword
list used to describe an event, such as breaking news in Twitter. The diffusion from u
to v captures that node v receives the story from u. We also say that u is an infector
of v while v is an infectee of u. We call time t the infection time of node v. Note
that a diffusion process of a story can be initiated by different nodes that are regarded
as seeds or roots. For each interaction x, we further define δ to be a three-tuple as a
canonical identifier, i.e., δ = (storyID , vr, t

′), where storyID is the identity of the
diffusing story, vr represents the seed node starting the diffusion, and t′ is the infection
time of the infector u. The diffusion process from a seed over a time period forms a
time-stamped graph, known as a network cascade C [9,18] where each interaction is a
directed edge from the infector to the infectee.

Definition 1. [Cascade C] A cascade C is a directed graph C = (VC , EC , lVC , lEC ),
representing a diffusion process D(G) = {x = (δ, ui, vi, ti)} diffusing from a seed on
a story during a time period T . The node set is VC = ∪ui + ∪vi, and the edge set is
EC = ∪ui,vi∈x(ui, vi). A node pair (ui, vi) for each x is considered as a directed edge
from ui to vi. lVC : VC  → Σ is node labeling function, and lEC : EC  → T is an edge
labeling function.

A network G with diffusion processes is termed a diffusion network or a dynamic
network, which, for simplicity, we also denote by G. Given a diffusion network G, a
set I(G) ∈ V (G) is given that contains the seed nodes from which a diffusion starts.
The infection time of a seed vr is given as tvr . We use deg+(u) to denote the number
of infectees of a node u in a cascade C.

Before we present the definition of interestingness, two measures are introduced to
evaluate nodes in a dynamical process by i) how far the information can travel (Mea-
sure 1: depth) and ii) how many infectees a node can have (Measure 2: breadth). These
two measures can be used for capturing the interestingness of a diffusion process for
three reasons : 1) The two measures agree with intuition. 2) The two measures capture
the cascade, enabling reconstruction with little more information. 3) The two measures
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offer a foundation for computing different properties of a cascade. In addition, we ob-
serve that other studies also suggest that the two measures can characterize diffusion
processes [2, 22].

Measure 1. [Propagation Radius (proRadius)] The propagation radius of a node v
in a cascade C, denoted by y(v), is the length of the path l(v) from the root of C
to v, |l(v)|. The maximum propagation radius of a node in C is the diameter of C:
d(C) = max(y(v)). Note that the propagation radius of the root is 0.

Measure 2. [Propagation Scope (proScope)] The proScope, w(v) = deg+(v), of a
node v for a cascade C is the number of infectees of v in C.

Definition 2. [Interestingness] We represent a node v by a vector (y(v), w(v)) and use
Equation 1 to quantify the total interestingness of the node. As the degree distribution
of many networks follows a power-law, we use a log value of the proScope:

ξ(v) = α logw(v) + (1− α)y(v), (1)

where α ∈ [0, 1] balances the two measures. We set logw(v) = 0 if w(v) = 0. Note
that cascades evolve over time as interactions arrive in the stream. We thus use ξt(v) to
denote the interestingness of a node v at time t, which is calculated using the values of
proScope and proRadius of v at t.

Definition 3. [Interesting Summary S(C)] Given a cascade C and a threshold τ , an
interesting summary S(C) is a subgraph of C satisfying that for any node vi ∈ S(C),
ξt(vi) > τ holds; for two nodes u and v in V (S(C)), the edge e′ = (u, v) exists in
S(C) if and only if e = (u, v) exists in C. Labels of the edges and nodes in S(C) retain
the labels they have in C.

Definition 4. [Traceable Interesting Summary S(C)] Given an interesting summary
S(C) ⊂ C, a traceable interesting summary S(C) is a super-graph of S(C), denoted
S(C) ⊂ S(C). A node vi in C is in S(C) if: vi is the seed, or ξt(vi) > τ ∨ (∃vj ∈
C, (vi ∈ l(vj) ∧ ξt(vj) > τ)).

As some nodes are removed from an interesting summary (Definition 3), remaining
interesting nodes may become disconnected. Definition 4 includes the missed nodes on
the paths from the seed to the remaining interesting nodes. A traceable interesting sum-
mary thus is possible to reveal the flow of dynamics and interesting developments can
be traced throughout their life cycle. To explain the evolution in a traceable interesting
summary, we next introduce the concepts diffusion rise and diffusion decay, defined
by the notion of acceleration intensity. In the rest of the paper, we use a summary (sum-
maries) to indicate a traceable interestingness summary (summaries) for simplicity.

Definition 5. [Acceleration Intensity '] Given a node vi as an infector of a node vj
in a cascade C, the acceleration intensity is defined based on the diffusion path from vi
to vj (l(vi, vj)) in C as

'(l(vi, vj)) =
ξtj (vj)− ξti(vi)

|tj − ti|
, (2)

where ti and tj are the infection times of vi and vj , respectively.
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We can now define the rise and decay of a diffusion process: When ' > 0, the propaga-
tion process from vi to vj is a diffusion rise process; otherwise, it is a diffusion decay
process.

The goal of the DNS problem is to better understand network dynamics. A summary
thus needs to be informative with respect to the original data. There are several methods
to evaluate informativeness. Among these, we propose to use Entropy. A review of
Shannon Entropy and details are presented in Section 3.2. Here we denote the entropy
of a traceable interesting summary S(C) by H(S(C)). Recall that the entropy gains
when its value decreases. We thus aim to find a summary with minimal entropy to
achieve the best informativeness. The problem is stated as follows:

Problem Statement (Interestingness-driven Diffusion Process Compression). Given
a diffusion network G with seed sets ∪I(G), stories diffuse from each seed over time.
The dynamic process is represented by a stream of interactions, which forms a set of cas-
cades {. . . , Ci, . . .}. The output of the problem is a set of traceable interesting summaries
S(G) = {. . . , Si(Ci), . . . } (|Si(Ci)| > 0). The entropy (H(S(C))) of each summary
Si(Ci), which reveals diffusion rise and decay, is minimized subject to the balancing
parameter 0 ≤ α ≤ 1 of the aggregate score and the interestingness threshold τ ≥ 0.

To solve the problem, two sub-problems have to be solved: i) How to model the dy-
namics on the top of graphs? Is the cascade model suitable? The diffusion processes we
discuss are evolving over time. And all the cascades on a node are merged. This may
cause problems for the summarization because the interestingness of a node is associ-
ated with time stamps and stories as node instances. This requires to design a labeling
function to distinguish the node instances, which is ineffective. ii) How to set proper
values for α and τ for different diffusion processes? Given an α in the range [0, 1],
each connected subgraph of a cascade C over time can be a summary, which yields a
hard graph decomposition problem. On the other hand, the scale of a summary mostly
depends on the threshold τ . A proper value is necessary because we intend to find all in-
teresting developments. We proceed to develop the OSNet framework that encompasses
new and incremental techniques capable of continuously summarizing dynamics based
on a spreading tree model in step with the evolution of diffusion processes.

3 Our Method

3.1 Spreading Tree Model

Although network cascades can model diffusion processes. several issues of dynamics
challenge the effectiveness of network cascades. First, the interactions on a node are
merged in cascades [9]. However, in dynamic networks, a node may become interesting
only at a specific interaction, which would require extra efforts in designing labels to
distinguish different interactions and cascades. Furthermore, as cascades are directed
graphs, there exist backward and forward edges or even cycles. This makes a cascade
hard to interpret and navigate. Second, the cascade model is a graph model. Summary
search can then be regarded as subgraph search. However, graph search is usually time-
consuming since it involves isomorphism checking. Third, since cascades are merged
into one directed graph, the graph search space grows exponentially, which makes the
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problem even harder. We propose to instead use a Spreading Tree model. First, spread-
ing trees are constructed directly by interactions without any other efforts. The model
distinguishes interactions and cascades by itself. Next, tree search is relatively efficient.
Numerous proposals of efficient tree operations exist. Third, there are no backward and
forward edges in spreading trees. The tree structure is not as complex as a cascade. The
search space is proportional to the scale of the interactions.

Definition 6. [Spreading Tree T ] A spreading tree T = (vr, V
′, E′, lV ′ , lE′), is a

rooted and labeled n-ary tree, where vr ∈ V ′ is the root, V ′ is a set of nodes, E′ ⊆
V ′ × V ′ is a set of edges, lV ′ : V ′  → Σ is node labeling function, and lE′ : E′  → T is
an edge labeling function.

Intuitively, a node represents a specific user in a network, and the node’s label is the
name of the user; an edge in a spreading tree connects an infector node with an infectee
node, and the edge’s label is the infection time of the infectee node. A non-root node
has one infector. A non-leaf node has one or more infectees, and a leaf node has no
infectees.

Given a diffusion network G, each seed vr ∈ V (G) forms the root of a spreading
tree. When an interaction x = (δ, u, v, t) ∈ D(G) arrives, the spreading tree for δ is
updated by inserting a new node labeled v and an edge labeled t from an existing node
labeled u to v. Note that both u and v are labels of the nodes. To find the existing node
u, we search the tree in breadth-first order starting from the root until a node with label
u and infection time δ.t′ is found. Therefore, although multiple nodes have the same
label, the three-tuple δ can determine from which node to insert the edge to the new
infectee.

From the above, the spreading tree model achieves the following properties: 1) cas-
cades can be equally modeled as spreading trees, such that the summarization on cas-
cades equals the task on spreading trees; 2) the trees are separated by seeds; 3) a node
can be duplicated in a spreading tree, which shows the model distinguishes node in-
stances; 4) the size of trees is proportional to the scale of interactions; 5) infection
occurs top-down, and diffusion always occurs from a parent node to a child node.

3.2 Parameter Relief

Although using fixed values for parameters is simple for implementation, two main is-
sues demand better approaches. First, for a single diffusion process, prediction of the
network statistics (arrival rate, number of infectees, propagating range, etc.) is usually
difficult. Thus, it is hard to find parameter settings that can best capture the dynam-
ics. Second, different diffusion processes vary substantially in range and scope. Thus,
the same settings are not likely to work across different processes. Our study aims to
provide a self-tuning mechanism that adapts to differences in the summarization.

Alpha Estimation. Recall that the entropy H of a random variable E with possible
values {e1, . . . , en} is defined as

H(E) = −
n∑
i

p(ei)log2p(ei), (3)
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where p(ei) is the probability mass function of outcome ei. H(E) is close to 0 if the
distribution is highly skewed and informative.

We measure the entropy of a summary S(C) and aim to maximize the informative-
ness of S(C) to have the maximum possible information out of T . Given a set of con-
tinuous interactions D(G) by time t (denoted by D(G)t), the probability of diffusing
story i from a node vj is regarded as a conditional probability:

p(i,t)(vj) = p(i,t)(vi)×
∑D(G)t f(i,t)(vj , x)

|D(G)t|
,

where p(i,t)(vi) is the probability of the node that infects vj . Note that for a seed node,
the probability of its infector is 1 in order to guarantee that a root is infected. The
function f(i,t)(vj , x) is an indicator that is 1 if vj is an infectee in x when storyID = i
by time t, otherwise 0. Then we use the entropy Hp(i,t)(S(C)) as an informativeness
measure of a summary S(C) with respect to T :

Hp(i,t)(S(C)) = −
|S(C)|∑
j=1

p(i,t)(vj) log p(i,t)(vj). (4)

Thus, S(C) is the most informative by time t with respect to T if the value of its
entropy Hp(i,t) is minimized. Before we present the details of the estimation, Lemma 1
is introduced as a property of a summary’s entropy.

Lemma 1. If two summaries S(T ) and S ′(T ) satisfy d(S(T )) > d(S ′(T )), V ′(S ′(T )\
S(T )) = ∅, and |l(v)| > d(S ′(T )) where v ∈ S(T )\S ′(T ), then we haveHp(i,t)(S(T ))
≤ Hp(i,t)(S ′(T )) holds.
The proof is omitted due to the space limitation. It shows that the entropy is smaller for
those summaries with greater depth. By Equation 1, to achieve the smallest entropy, we
need to minimize α because a smaller α yields a higher weight for depth such that deep
summaries are preferred. In the remainder of the section, we present the bounds onα
followed by our estimation based on entropy.

Lemma 2. The depth of a summary S(T ) is bounded by the parameter α as d(T ) ≥
τ/(1− α).

Proof. By Measure 1, we have max(y(v)) = d(T ), v ∈ S(T ). Given such a node v,
we have (1− α)d(T ) ≥ τ when we set w(v) = 0.

Theorem 1. Let n as the maximal number of nodes in a summaryS(T ) with a threshold
τ . The parameter α is bounded as

τ/ d(T )

√
n

d(T ) + 1
≤ α ≤ 1− τ/d(T ). (5)

Proof. Lemma 2 confirms the right part of Equation 5. The left part is achieved as
follows. Similar to Lemma 2, the maximum fanout of S(T ) is τ/α as a positive integer
and larger than 1. Then we obtain ( τα )

d(T ) + . . . + τ
α + 1 =

∑d(T )+1
i ( τα )

i ≤ n.

Since
∑d(T )+1

i ( τα )
i ≤ (d(T ) + 1)( τα )

d(T ), the given S(T ) has at most n nodes, i.e.,
( τα )

d(T ) + . . .+ τ
α +1 ≤ n, if (d(T )+ 1)( τα )

d(T ) ≤ n. By transforming the inequality,
the left part follows.
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Several studies [9, 22] have shown that most diffusion processes are within 3 hops
in social networks. Without loss of generality, we assume that the lower bound of the
depth of S(T ) is 3. The bound yields the maximum lower-bounded α. As we know, the
minimum α turns out to produce the most informative summaries. Thus, by Equation 5
we have the estimation for α as:

α = τ
3

√
4

n
, (6)

to obtain the minimum entropy. The estimation is therefore able to facilitate summa-
rization regardless of varying dynamics.

Threshold Selection. The goal is to find the most interesting developments of dynam-
ics over time as summaries. This naturally requires OSNet to only focus on the small
set of the interesting nodes and edges in a spreading tree T . Our goal is to find a proper
threshold that can make the summarization converge fast and produce a small sized
summary over time. However, the changes and differences of dynamics challenge the
setting of such a threshold. Therefore, a selection mechanism adapting to the trends of
dynamics (i.e., rise and fall) is necessary.

The idea of the proposed solution is to maintain a variable τ ′ for each spreading
tree T , which is the maximum value (MAX) of ξt′(vi), vi ∈ T by time t′. During the
summarization, we compare a new interestingness score ξt(vj) with τ ′: if ξt(vj) > τ ′,
then τ ′ = ξt(vj), and vj is inserted into the corresponding S(T ). If we have a value
of τ ′ that is large enough, OSNet converges to a relatively steady state until there is a
more interesting node, e.g., far away from the seed and with many infectees, to exhibit
another rise of the diffusion. Thus, in a summary S(T ) based on MAX, the interesting
nodes (by the first condition in Definition 3) in deeper levels always show diffusion
rises from those in lower levels. From an interesting node to a node recovered for the
next interesting node, the flow is always a diffusion decay.

Other methods than MAX would be possible, e.g., average value (AVG) of ξt′(vi) as∑
vi∈V ξt′(vi)/|V |. We compare these alternatives experimentally in Section 4.

3.3 Algorithmic Framework and Details

Framework Overview. An overview of OSNet is shown in Figure 1. The input is a
diffusion process D(G) that is captured by a set of indexed spreading trees. There are
indexes on storyID and seeds, such that we can insert an interaction into a spreading
tree Ti efficiently. By Equation 1, the interestingness-based operator is to evaluate the
interestingness of nodes in spreading trees with two parameters, α and τ . We evaluate
the interestingness of a node v when it infects new nodes (i.e., w(v) increases). If v
has ξt(v) > τ , it is inserted into a summary S(Ti). The summaries are also indexed in
the same way as T . We thus insert v into S(Ti) by searching storyID and seed. Once
a node v is inserted into tree T , it is tagged with its branch such that a node cannot be
reinserted into the summary S(Ti). We only insert new nodes and edges into a tree over
time, and it is not necessary to rebuild any part of T or S(T ).

When a node v of Ti is to be inserted into S(Ti) at time t, there may be three cases:
1) S(Ti) does not exist and vi is not a seed (v 
∈ I(G)); 2) S(Ti) exists and the infector
of v in Ti is already in S(Ti); 3) S(Ti) exists and the infector of v in Ti is not in S(Ti).
Cases 1) and 2) are straightforward. We can create a new tree for case 1); and for case 2),
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Fig. 1. Overview of the OSNet framework

we insert v as a child of its infector in S(T ). In case 3), the insertion of v renders S(Ti)
disconnected, and the process thus cannot be traced from the seed to v. A solution is to
recover all the nodes in the path from the root to vi. We call this problem the Recovery
Problem.

Path Recovery. An efficient way in a tree-based data model to solve the Recovery
Problem is to construct S(T ) as a search tree. The basic idea is that all the siblings at
each level of S(T ) are ordered. The canonical ordering is based on timestamps of tree
branches (edges) and node labels. If a node vj gets infected from vi at time ti, vj is
inserted in the approach: the timestamps of edge labels of all the siblings on the left
are no later than ti, and the node labels on the left are not lexicographic larger than vj .
Lemma 3 presents the worst case search cost of the search tree.

Lemma 3. Let a tree T have n nodes and fanout d. The worst case search cost when
d(T ) is minimum is:

O(log
(n(d−1)+1)
d (log

(n(d−1)+1)
d −1) log2 d).

The proof is omitted due to the space limitation.

Algorithm Details. There exist two essential components of OSNet depicted by Al-
gorithm 1: 1) Constructing spreading trees (from lines 3 to 5); 2) Summarizing the
most interesting dynamics into S(T ) (from lines 8 to 10). Specifically, the following
explains details. We allow users to terminate the summarization process through vari-
able breakFlag in line 2. According to applications, one can also bound the size of
S(T ) to abort the algorithm. Note that we have no limitation on the size n. Once a new
interaction x(δ, vi, vj , t) arrives (line 3), we call mapT in line 4 to retrieve the T of
story δ. Next, branchOut in line 5 is an insertion, which inserts an infectee vj from vi
with an edge labeled by t into T . We implement each S(T ) as a search tree. From line 6,
we summarize the updated node according to Equation 1. If the node’s interestingness
exceeds the threshold, it shows a diffusion rise, and the node is inserted into S(T ).
Parameters are automatically adjusted in line 7 based on discussion in Section 3.2.

Before inserting a node into S(T ), we retrieve the path from the root in line 8 by
iteratively pushing an infector (function Push) into list path. We then insert the missed
nodes and edges into S(T ) in line 10. These nodes show diffusion decays from the last
interesting node, but rises to the next. Summaries are returned if necessary in line 11.
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Algorithm 1.. Algorithmic description of the OSNet
Input : Network G, seed set I(G).
Output: A set of summarized spreading trees, S(G).

1 begin
2 Threshold τ ← 0; weight parameter α← 0;

Boolean beakFlag← false;
List path← null;
Spreading tree set Set(T ) rooted by seeds in I(G);
if beakFlag == false then

3 if x(δ, vi, vj , t)← D(G)[tij ] exists then
4 T ← mapT(Set(T ), δ)

/* add x onto T. */
5 vi ← Search(T, vi) branchOut(vi, vj , t)
6 if ξ(vi) > τ then

7 τ ← ξ(vi), α← τ 3

√
4
n
/* retrieve path from T. */

8 while vi.getInfector(T ) �∈ I(G) do
9 path.Push(vi.getinfector(T ))

10 S(T )← getST(Set(T ), T ) insertPath(S(T ),path)

11 return Set(T )

4 Evaluation

4.1 Experimental Methodology and Settings
The study probes into three questions: 1) Sense-making Evaluation: Compared with
the state-of-the-art, do summaries generated by OSNet make sense and achieve the goal
of capturing interesting dynamics? 2) Parameter Study: Can we use fixed parameters?
What are the effects of the parameters? Does OSNet converge fast, using MAX or
AVG? 3) Real-life Data: How does OSNet work on real-life data?

The experiments on synthetic data are used to test whether our methods produce
expected results in a controlled environment. We first generate an underlying structure
G0 containing 10,000 nodes. With a random seed set I(G0), we then start the prop-
agation for each seed in a breadth-first manner. The number of infectees of a node v
obeys the following models to simulate different dynamics: I) Gaussian distribution
(G); II) Poisson distribution (P); III) Zipf distribution (Z), which is an approximate
power law probability distribution. We define the modeled number of nodes to be the
number of nodes we choose for a dataset, and we require that their numbers of infectees
obey one of the three distributions. To simulate continuous dynamics, we generate the
interactions as a data stream with an arrival rate of 1 per millisecond.

Experiments were conducted on a 3.2 GHz Intel Core i5 with 16GB 1600 MHZ DDR3
main memory and running OSX 10.8.5. Algorithms were implemented in JDK 1.6.

4.2 Sense-Making Evaluation
We compare OSNet with several existing algorithms using synthetic data. To enable
existing methods to support diffusion processes, we generate a graph sequence for each
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dataset, in which each graph aggregates all edges and nodes in a time interval Δt. Due
to the space limitation, we only report results for several time intervals. Similar findings
apply to other intervals. We compare our techniques against the following state-of-the-
art algorithms:

– DisSim-Alg: This is a graph compression algorithm that abstracts a large graph
into a smaller graph that contains approximately the same information. It is devel-
oped based on the notion of dissimilarity between the decompression graph and the
original graph. We use an existing implementation [20] and set the weight of an
edge to 1 if the adjacent nodes diffuse infection by time t: otherwise, edge weights
are set to 0.

– MDL-Alg: MDL is a successful and popular technique for graph compression. We
compare against a recent study by Navlakha et al. [15] where a graph is compressed
and represented as a graph summary and a set of corrections. We use the original
GREEDY algorithm that offers the best compression and lowest cost [15]. To en-
able cliques to be merged into a single supernode, we add self-edges to each node
before applying the algorithm.

(OSNet): Figures 2 to 4 show an example from t1 to t3 using data generated by
applying Zipf distribution. The infector as the central node of each group is labeled
with a canonical identifier for ease of explanation. The node with identifier 0 is the
seed of the propagation. In the figures, the red and darker nodes are the nodes that are
already infected; the grey and lighter nodes are other nodes in the synthetic networks.
To facilitate visualization, we remove the background nodes and edges in the underly-
ing networks that are not involved in the diffusion process. Figures 5 to 7 present the
summaries by OSNet from t1 to t3. The results show the incrementality of the sum-
maries. The intuitively interesting nodes are captured, and the summaries are traceable
and connected paths, such that we can spot the dynamics from the start to the nodes i)
that infect nodes in great quantity; and ii) that are far from the seed. We observe that the
summaries in Figures 5 and 6 are the same. Although in the original diffusion process
from t1 to t2, the diffusion reached nodes 86 and 87 at t2, the number of infectees is
quite few. Compared with the other nodes in S(T ), 86 and 87 are thus not interesting
enough to be summarized. This shows that from t1 to t2 the diffusion process is not ris-
ing according to Definition 5, and OSNet adapts to the changes in diffusion. In contrast
at time t3, both 108 and 109 have many infectees and they are far away from the seed
0. They again expedite the diffusion process such that we capture the two as interesting
nodes. If we only summarize the two without including nodes 86 and 87, we loose the
connections that allow us to interpret how information propagates. Thus, 86 and 87 are
recovered and included. The findings show that OSNet is capable of finding a small set
of connected interesting nodes that meaningfully capture the diffusion process.

(DisSim-Alg): We vary Δt to generate graph sequences and try various values for
the internal compression ratio parameter. We report three of representatives at t1 in Fig-
ure 8. The findings show that the summaries vary a lot w.r.t. compression ratio. Compar-
ing (a) and (c) where (c) is with a higher compression ratio, the graph size of (c) is much
smaller but it is with less information of the propagation because DisSim-Alg aims to
minimize the dissimilarity according to edge weights. To maintain a smaller dissimi-
larity, some edges or superedges are removed (e.g., (c)). Figure 8(b) shows a summary



608 Q. Qu et al.

0

1

2

20

19

86

108

87

109

Fig. 2. A diffusion pro-
cess D(G) at t1

0

1

2

20

19

86

108

87

109

Fig. 3. The snapshot of
D(G) at t2

0

1 2
20

19

86

108

87

109

Fig. 4. The snapshot of
D(G) at t3

0

1 2

19 20

t1 t1

t1 t1

Fig. 5. The summary
S(T ) of D(G) at t1

0

1 2

19 20

t1 t1

t1 t1

Fig. 6. The summary
S(T ) of D(G) at t2

0

1 2

1920

t1 t1

t1 t1

86 87

t2 t2

108 109
t3 t3

Fig. 7. S(T ) at t3 with
recovery of 86 and 87

caused by using a smaller Δt that is larger than that of (a). This occurs because when
the compression ratio is achieved, although new edges and nodes arrive, the algorithm
only considers the dissimilarity and does not attempt further compression. As a result,
the algorithm does not adapt to dynamics and capture traceable flows well.

(MDL-Alg): Figure 9 shows summaries obtained by MDL-Alg on the same diffusion
process. MDL-Alg does not require the users to supply parameters. It computes the best
cliques to merge in order to maintain a low cost. The findings show that MDL-Alg
generates separate cliques, which makes little sense for diffusion process.
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Fig. 9. Summaries by MDL-Alg

4.3 Parameter Study and Understanding

(Weight α on proScope): We increase α from 0 to 1 in steps of 0.1. For synthetic
data, the depth of the spreading trees is 100, and the modeled number of nodes is 1000.
For Gaussian (G) datasets, we set the mean to 100 and the standard deviation to 20.
The expect value for Poisson distribution (P) is 50. The maximum deg+(v) of the Zipf
distribution(Z) is 200. Consequently, we have three datasets with 89, 037 (G), 45, 306
(P), and 36, 892 (Z) interactions, respectively. All the interactions are simulated as data
streams with an arrival rate of 1 per millisecond. We set τ to 100, which means that the
score of a node with expect out-degree deg+(v) is 100; and we set α = 1. Figure 10
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shows the I/O efficiency with respect to α. We count the I/O cost as the size of sum-
maries, namely the number of interactions in S(T ). The I/O cost for the dataset P is 0
in the experiments, which means that no node in the propagation process gains a score
that reaches 100. The findings show that the same fixed threshold does not work well
across different datasets. For both G and Z in Figure 10, the I/O cost decreases as α
increases. As we know, α controls the weight of proScope. Thus, when α is small, the
proRadius becomes more important in Equation 1. As a result, nodes that are far away
from a seed are more likely to be captured, which yields a higher I/O cost.

(Threshold τ ): We compare our proposal that uses the current maximum score
(MAX) against using the average historical score AVG. We use the same datasets as
above. Figure 11 shows the findings on dataset G, which indicate that the I/O cost of
MAX is much lower than that of AVG. And with a given α, the summarization with
MAX converges faster to a relatively steady state than with AVG. MAX requires less
updates on the summarized spreading trees than does AVG. Compared with the find-
ings in Figure 10, the I/O cost increases as α increases when using AVG, because a
larger value of α yields a larger score. This allows more nodes of a D(G) to be sum-
marized, which increases the I/O cost. However for MAX, the cost remains almost the
same when α < 0.6 and it increases only slightly afterwards. We obtain similar results
on the other two datasets.

By Equation 6, α never decreases because τ is based on the MAX strategy. This
is beneficial for summarization for two reasons: i) With MAX, a larger α allows a bit
more nodes to be summarized if diffusion rises; ii) a larger α decreases the influence
of proRadius such that the summarization converges faster. This keeps OSNet from
capturing too many nodes even when many are far away from seeds.

(Maximum Possible Summary Size n): We evaluate the effect of n in Equation 6 by
varying n from 100 to 100,000. The findings in Figure 12 for all the three datasets show
that the I/O cost increases as n increases. A larger n yields a smaller α by Equation 6.
Figure 12 thus shows the same I/O cost trend as does Figure 10. However, the variation
in Figure 12 is slight. For simplicity, we suggest to set n to be the (average) number of
nodes of a T , which is also the maximum number of nodes that can be summarized in
an S(T ).

4.4 Evaluation on a Real-life Social Network
We use data from Sina Weibo, a Chinese Twitter-like micro-blogging service platform
(http://www.weibo.com) that has two important features that are not yet offered by
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Twitter: 1) A user can comment on any other user’s tweets, which yields more user
interactions; 2) The retweeting/forwarding chain is visible to the public, which is im-
portant for studying diffusion processes. Our dataset covers more than 1.8 million users,
and we reconstruct the diffusion processes from their replies. There are 41,561 cascades
(diffusion processes) with 2,211,221 interactions. We show that the probability density
distribution (PDF) of the cascade size (Log-Log) as a property of the original data in
Figure 13. The input is simulated as a stream with an arrival rate of 10 per millisecond,
and OSNet outputs 8,647 summaries in which a seed has at least one infectee. Among
the results, the summary with the most edges has 62 edges. The PDF of the summary
size (Log-Log) is shown in Figure 14, which shows that most of the summaries are
small. Figure 15 shows that the runtime of OSNet is proportional to the number of
interactions in the dataset. Figure 16 shows a sample of diffusion processes represented
by cascades. Figure 17 gives the corresponding OSNet summaries. Although the cas-
cades in Figure 16 may merge on some nodes, the summaries are separated from each
other w.r.t. stories. This is because OSNet models diffusion using spreading trees that
naturally separate cascades. The summaries in Figure 17 show a vocabulary of patterns,
which may be used for event classification or diffusion prediction based on diffusion
processes.

5 Related Work

Statistical methods [3] are widely used to characterize properties of large graphs. How-
ever, most of these methods do not produce topological summaries, and their results
are hard to interpret. Graph pattern mining [7] can be used for summarizing graphs,
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but usually yields overwhelmingly large numbers of patterns. Although constraint-
based graph mining approaches [23, 24] are introduced to reduce the number of pat-
terns, they only work for specific constraints. Further, summaries of diffusion processes
are not inherently frequent.

Next, graph OLAP has been introduced to summarize large graphs [16,19]. However,
most studies are designed for static network analyse and are limited to user-specified ag-
gregation operations. Graph compression or simplification mainly focus on generating
compact graph representations to simplify storage and manipulation. Much of the work
has focused on lossless web graph compression [1,17]. Most of these studies, however,
only focus on reducing the number of bits needed to encode a link, and few compute
topological summaries since the compressed representation is not a graph. Based on
the MDL principle, Navlakha et al. [15] propose an error bounded representation that
recreates the original graph within a bounded error. Toivonen et al. [20] merge nodes
of a graph that share similar properties. Compared with these studies, our approach is
developed to summarize diffusion processes.

As one of the attempts to consider time-evolving networks, Liu et al. [14] com-
press weighted time-evolving graphs, and they encode a dynamic graph by a three-
dimensional array. The goal is to minimize the overall encoding cost of the graph. This
is equivalent to compressing a sequence of static graphs according to time slices. Ferlež
et al. [5] propose TimeFall in a principled MDL way to monitor network evolution,
which clusters text in scientific networks and uses MDL to connect clusters. This class
of studies are inherently distinct from ours in four aspects: 1) we use general networks
and do not have assumptions on text processing; 2) OSNet takes as argument an in-
teraction stream rather than a timestamped offline network; 3) we do not assume to be
given a sequence of time-sliced graphs; 4) we aim to summarize diffusion processes.
There are also studies on multiple social networks [12] and their temporal dynamics [8],
including trend mining [4]. They focus on tasks different from ours.

6 Conclusion and Future Work

We studied the problem of dynamic network summarization and proposed an online,
incremental summarization framework, OSNet, capable of simultaneously capturing
the most intuitively interesting summaries that best represented network dynamics.

Several directions for future research are promising, including the development of
techniques capable of exploiting the networks underlying diffusion networks, parallel
processing of spreading trees, and summarization with structural network changes.
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2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

8. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In:
SIGKDD, pp. 611–617 (2006)

9. Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N.S., Hurst, M.: Patterns of cascading
behavior in large blog graphs. In: SDM, pp. 551–556 (2007)

10. Lin, Y.-R., Sundaram, H., Kelliher, A.: Summarization of social activity over time: people,
actions and concepts in dynamic networks. In: CIKM, pp. 1379–1380 (2008)

11. Liu, S., Liu, Y., Ni, L.M., Fan, J., Li, M.: Towards mobility-based clustering. In: SIGKDD,
pp. 919–928 (2010)

12. Liu, S., Wang, S., Zhu, F., Zhang, J., Krishnan, R.: HYDRA: Large-scale social identity
linkage via heterogeneous behavior modeling. In: SIGMOD Conference, pp. 51–62 (2014)

13. Liu, S., Yue, Y., Krishnan, R.: Adaptive collective routing using gaussian process dynamic
congestion models. In: SIGKDD, pp. 704–712 (2013)

14. Liu, W., Kan, A., Chan, J., Bailey, J., Leckie, C., Pei, J., Kotagiri, R.: On compressing
weighted time-evolving graphs. In: CIKM, pp. 2319–2322 (2012)

15. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In:
SIGMOD Conference, pp. 419–432 (2008)

16. Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H.: Efficient topological OLAP on information
networks. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587,
pp. 389–403. Springer, Heidelberg (2011)

17. Raghavan, S., Garcia-molina, H.: Representing web graphs. In: ICDE, pp. 405–416 (2003)
18. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: GraphScope: parameter-free mining of

large time-evolving graphs. In: SIGKDD, pp. 687–696 (2007)
19. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: SIG-

MOD Conference, pp. 567–580 (2008)
20. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted graphs. In:

SIGKDD, pp. 965–973 (2011)
21. Xie, R., Zhu, F., Ma, H., Xie, W., Lin, C.: CLEar: A real-time online observatory for bursty

and viral events. PVLDB 7(11) (2014)



Interestingness-Driven Diffusion Process Summarization in Dynamic Networks 613

22. Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion in Twitter.
In: ICWSM, pp. 355–358 (2010)

23. Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.S.: Mining top-k large structural patterns in a
massive network. PVLDB 4(11), 807–818 (2011)

24. Zhu, F., Zhang, Z., Qu, Q.: A direct mining approach to efficient constrained graph pattern
discovery. In: SIGMOD Conference, pp. 821–832 (2013)



Neural Gaussian Conditional Random Fields

Vladan Radosavljevic1,�, Slobodan Vucetic2, and Zoran Obradovic2

1 Yahoo Labs, Sunnyvale, CA, USA
vladan@yahoo-inc.com

2 Temple University, Philadelphia, PA, USA
{vucetic,zoran.obradovic}@temple.edu

Abstract. We propose a Conditional Random Field (CRF) model for
structured regression. By constraining the feature functions as quadratic
functions of outputs, the model can be conveniently represented in a
Gaussian canonical form. We improved the representational power of the
resulting Gaussian CRF (GCRF) model by (1) introducing an adaptive
feature function that can learn nonlinear relationships between inputs
and outputs and (2) allowing the weights of feature functions to be de-
pendent on inputs. Since both the adaptive feature functions and weights
can be constructed using feedforward neural networks, we call the result-
ing model Neural GCRF. The appeal of Neural GCRF is in conceptual
simplicity and computational efficiency of learning and inference through
use of sparse matrix computations. Experimental evaluation on the re-
mote sensing problem of aerosol estimation from satellite measurements
and on the problem of document retrieval showed that Neural GCRF is
more accurate than the benchmark predictors.

Keywords: Gaussian conditional random fields, neural networks, graph-
ical models.

1 Introduction

Learning from structured data is a frequently encountered problem in geoscience
[1,2], computer vision [3,4], bioinformatics [5,6], and other areas where examples
exhibit sequential [7,8], temporal [9,10], spatial [11], spatio-temporal [12,13], or
some other dependencies. In such cases, the traditional unstructured supervised
learning approaches could result in a weak model with low prediction accuracy
[14]. Structured learning methods try to solve this problem by learning to si-
multaneously predict all outputs given all inputs. The structured approaches
can exploit correlations among output variables, which often results in accuracy
improvements over unstructured approaches that predict independently for each
example. The benefits of structured learning grow with the strength of depen-
dency between the examples and the data size.

In structured learning there is usually some prior knowledge about relation-
ships among the outputs. Those relationships are application-specific and, very
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often, they can be modeled by graphical models. The advantage of the graph-
ical models is that one can make use of sparseness in the interactions between
outputs and develop efficient learning and inference algorithms. In learning from
structured data, the Markov Random Fields [2] and the Conditional Random
Fields (CRF) [7] are among the most popular models. Originally, CRFs were de-
signed for classification of sequential data [7] and have found many applications
in areas such as computer vision [3] and computational biology [6].

Using CRF for regression is a less explored topic. Continuous Conditional
Random Fields (CCRF) [8] is a ranking model that takes into account relation-
ships among ranks of objects in document retrieval. With minor modifications,
it can be used for structured regression problems. The Conditional State Space
Model (CSSM) [15], an extension of the CRF to a domain with continuous mul-
tivariate outputs, was proposed for regression of sequential data. CSSM is an
undirected model that makes no independence assumptions between outputs,
which results in a more flexible framework. In [4] a conditional distribution of
pixels given a noisy input image is modeled using the weighted quadratic factors
obtained by convolving the image with a set of filters. Feature functions in [4]
are specifically designed for image de-noising problems and are not readily appli-
cable in regression. The Gaussian CRF for structured regression problems with
feature functions constrained to quadratic form was introduced in [1]. The Sparse
GCRF [10] is a variant of the GCRF model that incorporates l1 regularization
in optimization function, thus enforcing sparsity in GCRF parameters. GCRF
has recently been successfully utilized in a variety of real world applications. In
the computational advertising field, GCRF significantly improved accuracy of
click through rate estimation by taking into account relationship among adver-
tisements [11]. An extension of GCRF to the non-Gaussian case using the copula
transform was used in forecasting wind power [16]. In combination with decision
trees, GCRF was successfully applied to short-term energy load forecasting [17],
while in combination with support vector machines it was applied on automatic
recognition of emotions from audio and visual features [18]. A tractable fully
connected GCRF, which captures both long-range and short-range dependen-
cies, was developed in [19] and was successfully applied on image de-noising and
geoscience problems.

To improve expressive power of GCRF, we propose a Neural GCRF (NGCRF)
regression model where CCRF and GCRF can be considered as special cases.
In addition to using the existing unstructured predictors, the proposed NGCRF
allows training of additional unstructured predictors simultaneously with other
NGCRF parameters. This idea is motivated by the Conditional Neural Fields
(CNF) [20,5] proposed for classification problems to facilitate modeling of com-
plex relationships between inputs and outputs. Moreover, weights of NGCRF
feature functions are themselves allowed to be nonlinear functions of inputs. In
this way, NGCRF is able to capture non-homogeneous relationships among out-
puts and account for differing uncertainties in the unstructured predictors. We
will show that learning and inference of NGCRF can be conducted efficiently
through sparse matrix computations.
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2 Gaussian Conditional Random Fields

Let us denote as x = (x1, . . . xM ) an M -dimensional vector of observations and
as y = (y1, . . . yN ) an N -dimensional vector of real-valued output variables. The
objective is to learn a non-linear mapping f : RM → RN that predicts the
vector of output variables y as accurately as possible given all inputs x. A CRF
models a conditional distribution P (y|x), according to the associated graphical
structure

P (y|x) = 1

Z(α,β,x)
eφ(α,β,y,x), (1)

with energy function

φ(α,β,y,x) =

N∑
i=1

A(α, yi,x) +
∑
j∼i

I(β, yi, yj ,x), (2)

A(α, yi,x) - association potential with parameters α,

I(β, yi, yj,x) - interaction potential with parameters β,

i ∼ j - yi and yj are connected by an edge in the graph structure,

and the normalization function Z(α,β,x) defined as

Z(α,β,x) =

∫
y

eφ(α,β,y,x)dy. (3)

The output yi is associated with vector of observations x = (x1, . . . xM ) by a
real-valued function called the association potential A(α, yi,x), where α is a
K-dimensional set of parameters. In general, A takes as input any appropri-
ate combination of attributes from vector of observations x. To model inter-
actions among outputs, a real valued function called the interaction potential
I(β, yi, yj ,x) is used, where β is an L dimensional set of parameters. Interac-
tion potential represents the relationship between two outputs and in general
can depend on inputs x. Different applications can impose different interaction
potentials. The larger the value of the interaction potential, the more related the
two outputs are.

In CRF applications, A and I could be conveniently defined as linear combi-
nations of a set of fixed features in terms of α and β, as in [7]

A(α, yi,x) =

K∑
k=1

αkfk(yi,x),

I(β, yi, yj,x) =
L∑

l=1

βlgl(yi, yj,x).

(4)

The use of feature functions is convenient because it allows us to model arbitrary
relationships between inputs and outputs. In this way, any potentially relevant
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feature function could be included to the model and the learning algorithm can
automatically determine their relevance.

Models with real valued outputs pose quite different challenges with respect
to feature function complexity than in the discrete-valued case. Discrete valued
models are always feasible, because Z is finite and defined as a sum over finitely
many possible values of y. On the contrary, to have a feasible model with real
valued outputs, Z must be integrable. Proving that Z is integrable in general
might be difficult due to the complexity of association and interaction potentials.

2.1 Feature Functions

Construction of appropriate feature functions in CRF is a manual process that
depends on prior beliefs of a practitioner about what features could be useful.
The choice of features is often constrained to simple constructs to reduce the
complexity of learning and inference from CRF.

If A and I are defined as quadratic functions of y, P (y|x) becomes a multivari-
ate Gaussian distribution such that learning and inference can be accomplished
in a computationally efficient manner.

In the following, we describe the feature functions that led to Gaussian CRF.
Let us assume we are given K unbiased unstructured predictors, Rk(x), k =
1, . . .K, that predict single output yi taking into account x (in a special case,
only corresponding xi can be used as x). To model the dependency between the
prediction and output, we use quadratic feature functions

fk(yi,x) = −(yi −Rk(x))
2, k = 1, . . .K. (5)

These feature functions follow the basic principle for association potentials in
that their values are large when predictions and outputs are similar. To model
the correlation among outputs, we use the quadratic feature function

gl(yi, yj,x) = −el(i, j,x)(yi − yj)
2,

el(i, j,x) =

{
wl(i, j,x), (i, j) ∈ Gl

0, (i, j) /∈ Gl,

(6)

which imposes that outputs yi and yj have similar values if they are connected
by an edge in the graph Gl. wl(i, j,x) represents the weight of an edge (i, j)
in graph Gl. It should be noted that using multiple graphs Gl can facilitate
modeling of different aspects of correlation between outputs (for example, spatial
and temporal).

2.2 Multivariate Gaussian Model

Conditional distribution P (y|x) for the CRF model in Eq. (1), which uses
quadratic feature functions defined in the previous section, can be represented
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as a multivariate Gaussian distribution. The resulting energy function of the
GCRF model can be written as

φ = −
N∑
i=1

K∑
k=1

αk(yi −Rk(x))
2 −

∑
i,j

L∑
l=1

βlel(i, j,x)(yi − yj)
2. (7)

The energy function is a quadratic function in terms of y. Therefore, P (y|x) can
be transformed to a Gaussian form by representing φ as

φ = −1

2
(y − μ)TΣ−1(y − μ). (8)

To transform P (y|x) to Gaussian form we determine Σ and μ by matching Eq.
(7) and (8)

Σ−1
i,j = 2

{∑K
k=1 αk +

∑N
n=1,n�=j

∑
l βlel(i, n,x), i = j

−
∑

l βlel(i, j,x), i 
= j,
(9)

μ = Σb, (10)

where b is a vector with elements

bi = 2

K∑
k=1

αkRk(x). (11)

If we calculate Z using the transformed exponent, we obtain

P (y|x) = 1

(2π)N/2|Σ|1/2 e
− 1

2 (y−μ)TΣ−1(y−μ). (12)

Therefore, the resulting conditional distribution is Gaussian with mean μ and
covariance Σ. We observe that Σ is a function of parameters α and β, and
interaction potential graphs Gl, while μ is also a function of inputs x. The
resulting CRF is the Gaussian CRF (GCRF). In order for the model to be
feasible, the conditional distribution has to be well defined. This means that we
have to ensure that the precision matrix Σ−1 is positive semi-definite [1], which
we will address in the following sections.

3 Neural Gaussian CRF

In this section we propose a new Neural Gaussian CRF model, which enhances
GCRF and increases its representational power.

3.1 Neural GCRF Model

First, motivated by the recently proposed Conditional Neural Fields [20,5], we
introduce the adaptive feature function defined as
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fa(yi,x) = −(yi −Ra(w,x))2, (13)

where Ra(w,x) is a function of weights w that can be trained simultaneously
with other GCRF parameters. In this way, Ra(w,x) can be trained directly
with the goal of maximizing the log-likelihood such that it complements the
existing predictors Rk. In this paper, we will assume that predictor Ra(w,x) is
a feedforward neural network.

Second, as defined in Eq. (4), Gaussian CRF assigns weights α and β to the
feature functions. Considering that feature functions for the association potential
are defined as squared errors of unstructured predictors, the role of weights α
and β is to measure their prediction uncertainty. Since it is likely that the quality
of different predictors changes with x, we enhance GCRF such that parameters
αk and βl are replaced with the uncertainty functions αk(θk,x) and βl(ψl,x),
where θk and ψl are the parameters. We allow using feedforward neural networks
for the uncertainty functions. By using the adaptive feature and uncertainty
functions, we have

A(θ, yi,x) = −
K∑

k=1

αk(θk,x)(yi −Rk(x))
2 − αa(θa,x)(yi −Ra(w,x))2,

I(ψ, yi, yj,x) = −
L∑

l=1

βl(ψl,x)(yi − yj)
2.

(14)

In this way, αk(θk,x) models the varying degree of importance of predictor
Rk over different conditions. Similarly, βl(ψl,x) models varying importance of
correlation between outputs. As a result, Σ from Eq. (9) becomes dependent
on inputs, thus allowing for error heteroscedasticity. Conditional distribution of
the enhanced GCRF is Gaussian as in Eq. (12). Since both adaptive feature and
uncertainty functions are assumed to be feedforward neural networks, we call
the resulting model the Neural GCRF (NGCRF).

Let us analyze the feasibility condition for the NGCRF model. In order for the
model to be feasible, the precision matrixΣ−1 has to be positive semi-definite. A
common approach used in practice [21] is to enforce sufficient condition given by
Gershgorin’s circle theorem [22], which says that a symmetric matrix is positive
definite if all diagonal elements are non-negative and if the matrix is diagonally
dominant.

Definition 1. A square matrix Σ−1 is diagonally dominant if the absolute value
of each diagonal element is greater than the sum of absolute values of the non-
diagonal elements in corresponding row |Σ−1

i,i | >
∑

j �=i |Σ
−1
i,j |, ∀i.

Theorem 1. If the values of functions α and β in Eq (14) are always greater
than 0, then the precision matrix Σ−1 that corresponds to NGCRF model defined
by association and interaction potentials in Eq. (14) is diagonally dominant and
hence positive definite.
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Proof. For each i, the absolute value of a diagonal element Σ−1
i,i of precision

matrix Σ−1 can be represented as

|Σ−1
i,i | =|

K∑
k=1

αk(θk,x) +
∑
j �=i

L∑
l=1

βl(ψl,x)|

=

K∑
k=1

αk(θk,x) +
∑
j �=i

L∑
l=1

βl(ψl,x),

(15)

where we use the fact that values of α and β are always greater than 0. Similarly,
the absolute value of each off-diagonal element Σ−1

i,j equals

|Σ−1
i,j | = |

L∑
l=1

βl(ψl,x)| =
L∑

l=1

βl(ψl,x). (16)

Then, for each i we have

|Σ−1
i,i | −

∑
j �=i

|Σ−1
i,j | =

K∑
k=1

αk(θk,x) > 0. (17)

which proves the theorem. ��

Therefore, one way to ensure that the NGCRF model is feasible is to impose
the constraints α > 0 and β > 0, which is analytically tractable [8,1], but is
known to be conservative [21]. To analyze the effect of constraining α > 0,
we will assume that the interaction potential is not used (output variables
are assumed to be conditionally independent). The prediction for each yi be-
comes a weighted average of the unstructured predictors, where weights are
positive values with their sum equal to 1. This constrains the range of outputs
to yi ∈ [min(Rk(x)),max(Rk(x))], which has negligible effect on NGCRF since
we assumed that unstructured predictors are unbiased. In [21] it was empirically
verified that constraint β > 0 reduces parameter search space more and more
with decreasing sparsity and increasing number of parameters in beta functions.
This leads to limited improvements when using NGCRF with constraint β > 0
on more dense graphs.

3.2 Learning and Inference of NGCRF

Learning. The learning task is to choose values of parameters θ, ψ and w
to maximize the conditional log-likelihood on the set of training examples D =
{(xt,yt), t = 1 . . . T }
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(θ̂, ψ̂, ŵ) = argmax
θ,ψ,w

(L(θ,ψ,w))

where L(θ,ψ,w) =

T∑
t=1

logP (yt|xt).
(18)

By setting α and β to be greater than 0, learning becomes a constrained opti-
mization problem. To convert it to unconstrained optimization, we adopt a tech-
nique used in [8,1] that applies the exponential transformation of the functions to
guarantee that their values are positive. We apply an exponential transformation
on α and β

αk =euk(θk,x), for k = 1, . . .K,

αa =eua(θa,x),

βl =evl(ψl,x), for l = 1, . . . L.

(19)

where uk and vl are differentiable functions with respect to parameters θk and
ψl.

All the parameters are learned by a gradient-based optimization. To apply
the gradient-based method for learning, we need to find the gradient of the
conditional log-likelihood. The derivatives of L with respect to θ, ψ, and w are

∂L
∂θk

=
∂L
∂αk

∂αk

∂uk

∂uk

∂θk
,

∂L
∂ψl

=
∂L
∂βl

∂βl

∂vl

∂vl
∂ψl

,

∂L
∂w

=
∂L
∂Ra

∂Ra

∂w
.

(20)

The gradient of L with respect to θ and ψ has three components. The first
components are ∂L/∂αk and ∂L/∂βl. The expression for ∂L/∂αk is

∂L
∂αk

=− 1

2
(y − μ)T

∂Σ−1

∂αk
(y − μ) + (

∂bT

∂αk
− μT ∂Σ−1

∂αk
)(y − μ)

+
1

2
Tr(Σ

∂Σ−1

∂αk
).

(21)

To calculate ∂L/∂βl, we use ∂b/∂βl = 0 and obtain

∂L
∂βl

=− 1

2
(y + μ)T

∂Σ−1

∂βl
(y − μ) +

1

2
Tr(Σ

∂Σ−1

∂βl
). (22)

From Eq. (19), the second components are ∂αk/∂uk = αk and ∂βl/∂vl = βl.
The third components depend on the chosen functions uk and vl. The gradient
of L with respect to w depends on the functional form of Ra. Since Σ−1 does
not depend on Ra, ∂L/∂Ra becomes

∂L
∂Ra

= 2αa
T (y − μ). (23)
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Algorithm 1.. Learning of NGCRF Parameters

Input: x, Rk(x), y.
1. Initialize θk, ψl.
2. Estimate θk, ψl by applying gradient based approach and Eq. (21) and (22),
without taking into account Ra.
3. Initialize θa.
4. Learn predictor Ra using Eq. (23).
repeat

Apply gradient based optimization to estimate all parameters.
until Convergence

We observe that an update for the adaptive model Ra is proportional to the
difference between true output and the mean of the NGCRF model. This means
thatRa will be updated only if NGCRF is not able to predict the output correctly
and Ra will be updated more aggressively when the error is larger. This justifies
our hypothesis that Ra will work as a complement of the existing non-structured
models.

To ensure convergence, the iterative procedure presented in Algorithm 1 [23,20]
is used for learningmodel parameters according to update formulas derived earlier
in this section. To avoid overfitting, which is a common problem for maximum
likelihood optimization, we added regularization terms for α, θ, β, ψ to the
log-likelihood. In this way, we penalize large outputs of α and β as well as large
weights θ and ψ.

Inference. The inference task is to find the outputs y for a given set of observa-
tions x and estimated parameters α̂ and β̂ such that the conditional probability
P (y|x) is maximized. The NGCRF model is Gaussian and, therefore, the max-
imum a posteriori estimate of y is obtained as the expected value μ of the
NGCRF distribution

ŷ = argmax
y

P (y|x) = μ = Σb, (24)

while Σ is a measure of uncertainty of the point estimate.

3.3 Complexity

If the size of the training set is N and the learning takes I iterations, the straight-
forward matrix computation results in O(IN3) time to train the model. The
main cost of computation is matrix inversion, since during the gradient-based
optimization we need to find Σ as an inverse of Σ−1. However, this is the
worst case performance. Since matrix Σ−1 is typically very sparse (it depends
on the imposed neighborhood structure), the training time can be decreased to
O(IN2) by using sparse matrix apparatus or even to O(IN) if we do not con-
sider interaction potential [21]. During inference, we need to compute μ, which
takes O(N) time. As we eventually need to calculate the trace of the matrix,
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only the elements that correspond to the main diagonal should be stored. There-
fore, memory requirements depend only on the imposed neighborhood structure.

4 Experiments

To demonstrate the strength of the NGCRF model, we applied it on two real-
world structured regression applications. The experimental results indicate that
NGCRF improves prediction accuracy by efficiently utilizing information from
structured data.

4.1 The NGCRF Model for Document Retrieval

In this application the objective is to retrieving the most relevant documents with
respect to the given query. In order to make a comparison to the GCRF method,
we replicated the experimental setup from [8]. We obtained query-document
data from OHSUMED dataset from LETOR [24], which is a standard data
source used in document retrieval research (the same dataset was used in [8]).
The OHSUMED dataset contains search queries, where each query is associated
with a number of relevant documents. There are 106 queries, 348,566 documents
and a total of 16,140 query-”relevant document” pairs. From the NGCRF per-
spective, each query-”set of relevant documents” represents an example (x,y).
Each component of y represents a relevance of the corresponding document to
a query, while x contains extracted features. Features x were used to construct
K = 25 unstructured predictors Rk(x) that predict document relevance for a
given query. The outputs of unstructured predictors are available in OHSUMED
(more details are in [24]). OHSUMED considers three levels of relevance - highly,
partially and not relevant (each component in y can take values 2, 1, or 0 respec-
tively). In addition, OHSUMED contains information about similarity between
documents i and j, w(i, j,x), which was determined based on similarity of their
contents. Having this setup, the goal is to estimate relevance of each document
in the database for a given query.

Benchmark Methods. As benchmark methods we use the following (all pa-
rameters were set using a small validation set)

Unstructured retrieval by neural network (NN) We trained NN with five hid-
den units to predict relevance of documents for a given query. The inputs to NN
were outputs of unstructured predictors.

Structured retrieval by baseline GCRF We trained GCRF to predict rele-
vance of documents. As unstructured predictors we used Rk, which are readily
available in OHSUMED. GCRF also utilized relationship among documents by
incorporating weights w(i, j,x) from OHSUMED into the interaction potential.

Structured retrieval by GCRF+NN We trained a GCRF model using unstruc-
tured predictors Rk from OHSUMED and pre-trained NN. We call this model
GCRF+NN.

RankSVM State-of-the-art retrieval method [25], which predictions are avail-
able as a part of OHSUMED.
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Fig. 1. Comparison of retrieval performance in terms of precision when top-n docu-
ments are retrieved

The NGCRF Model. We trained the NGCRF model where unstructured
predictors were Rk, α was a function of unstructured predictors, β a function
of similarity between documents, and adaptive NN was a function of Rk.

Evaluation. In our experiments, for each method we averaged results over 5 fold
cross validation data sets provided in OHSUMED. As an evaluation measure, we
used precision@n, which represents a percentage of relevant publications in top-
n publications retrieved (n = 1 . . . 5 in our experiments). To fetch top-n relevant
publications we retrieved those publications which corresponded to the n largest
predictions. In Figure 1 we see that NN and GCRF+NN outperform baseline
GCRF, which can be explained by the ability of NN to capture nonlinearity in
feature space. Furthermore, if we allow NN to be adaptive, we see that NGCRF
outperforms all other alternatives. We see that NGCRF is comparable to state-
of-the-art retrieval method RankSVM, which is specifically designed for ranking
problems (while NGCRF has general applicability) and which also used Rk and
w(i, j,x) as its inputs.

4.2 The NGCRF Model for AOD Prediction

We evaluated the proposed Neural GCRF model on a high impact regression
problem from remote sensing, namely, prediction of aerosol optical depth (AOD)
in the atmosphere from satellite measurements. AOD is a measure of aerosol
light extinction integrated vertically through the atmosphere. AOD prediction
is important because one of the main challenges of today’s climate research is to
characterize and quantify the effect of aerosols on Earth’s radiation budget [26].
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We considered data from MODIS, an instrument aboard NASA’s Terra satel-
lites [27]. We used ground-based data obtained from the AERONET [28], which
is a global remote sensing network of radiometers that measure AOD several
times per hour at specific geographic locations. The data can be obtained from
the official MODIS website of NASA [29].

We extracted satellite-based attributes that are used as inputs to domain-
based deterministic prediction algorithms [27]. In addition, we extracted infor-
mation about the location of each data point (longitude and latitude) and a
quality of observation (QA) assigned to each point provided by domain scien-
tist. Data quality index was provided at four levels from the lowest quality QA=0
to the highest quality QA=3. We collected 28,374 data points distributed over
the entire globe at 217 AERONET sites during the years 2005 and 2006.

Benchmark Methods. Here we list benchmark methods that we compared
NGCRF to.

Deterministic prediction algorithm C005 The primary benchmark for com-
parison with our CRF predictors was the most recent version of the MODIS
operational algorithm, called C005 [27]. This is a deterministic algorithm that
retrieves AOD from MODIS observations relying on the domain knowledge. It
is based on the inversion of physical forward models developed by the domain
scientists.

Statistical prediction by a neural network As a baseline statistical algorithm
we used a neural network model trained to predict AERONET AOD from all
MODIS attributes excluding location and quality flag. It has been shown previ-
ously that neural networks achieve comparable accuracy to C005 on the AOD
prediction problem [30]. The neural network has a hidden layer with 10 nodes
and an output layer with one node. In nested 5-cross-validation experiments we
trained 5 neural networks. When tested on 2006 data, we used a single network
trained on the entire training set.

Structured prediction by GCRF The aerosol data are characterized by strong
spatial and temporal dependencies that a CRF is able to exploit by defining in-
teractions among outputs using feature functions. Given a data set that consists
of satellite observations and ground-based AOD measurements, a statistical pre-
diction model (Ra) can be trained to use satellite observations as attributes and
predict the labels which are ground-based AODs. The deterministic AOD pre-
diction models (DP ) are based on solid physical principles and tuned by domain
scientists. To model the association potential, i.e the dependency between the
predictions and output AOD, we introduce the following two feature functions,

f1(yi,xi) =− (yi −DP (xi))
2,

fa(yi,xi) =− (yi −Ra(xi))
2.

(25)

To model the interaction potential we introduce feature function

g1(yi, yj,x) = −(yi − yj)
2. (26)
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Table 1. RMSE and FRAC of C005, NN, GCRF and NGCRF on data with four
quality flags

C005 NN GCRF+NN NGCRF

RMSE 0.123 0.112 ± 0.002 0.105 ± 0.0006 0.102 ± 0.0008

FRAC 0.65 0.68 ± 0.03 0.71 ± 0.005 0.74 ± 0.007

This interaction potential will reflect correlation between spatio-temporal data
examples i and j (closer examples are given larger weight). The learned param-
eter β represents the level of spatio-temporal correlation of neighboring outputs
(large β indicates that spatio-temporal correlation is large). We partitioned data
into four subsets corresponding to quality flags QA=0, 1, 2, and 3. We deter-
mined eight a parameters corresponding to C005 and NN predictions over these
subsets. To model interaction potential we defined spatial-temporal neighbors as
a pair of observations where temporal distance temporalDist(i, j) is less than 7
days and spatial distance spatialDist(i, j) is less than 50km. This choice is based
on previous studies of aerosol dynamics by geoscientists. We multiply feature g
with weights w(i, j,x), that are products of Gaussians

w(i, j,x) =

{
e
− spatialDist(i,j)2

2σ2
s

− temporalDist(i,j)2

2σ2
t , i ∼ j

0, otherwise
(27)

where σs = 50 and σt = 10 were determined using a small validation set.

The NGCRF Model. Here we use similar attributes as in the previous section
but in the spirit of the proposed NGCRF model. Instead of defining manual
partitions of the dataset, we use all observations as inputs to the α functions.
We define α as an exponential function of linear combinations of observations.
To incorporate potential bias, one observation is a vector with all ones.

αk(θ,x
(i)) = e

∑
θtx

(i)
t , (28)

where x
(i)
1 is a vector with all ones, x

(i)
2,3,4,5 are quality flags. As an adaptive

model Ra we used NN defined in previous sections. Its weight αa follows the
definition in Eq. (28).

To model spatio-temporal correlation, we use spatial and temporal distance
between i and j as two observations for the β function. Similar to Eq. (28) we
define β as

β(ψ,x(i,j)) = e
∑

ψlx
(i,j)
l , (29)

where x
(i,j)
1 is a vector with all ones, x

(i,j)
2 represents spatial distance between i

and j and x
(i,j)
3 represents their temporal proximity.

Evaluation. To evaluate proposed methods, we trained the models on 2005 data
and used 2006 data for testing. There are many possible measures that could be
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used to assess AOD prediction accuracy. Given vector t = (t1, t2, . . . tN )T of N
outcome values and vector y = (y1, y2, . . . yN)T of the corresponding predictions,
we measure the root mean squared error (RMSE). We also report accuracy on
the domain specific measure called the fraction of successful predictions (FRAC)
that penalizes errors on small AOD more than errors on large AOD [27]

FRAC =
I

N
× 100%, (30)

where I is the number of predictions that satisfy |yi − ti| ≤ 0.05 + 0.15ti.
RMSE error of the four models is presented in Table 1, where smaller num-

bers mean more accurate predictions. FRAC accuracy of these four models is
also shown in Table 1, where larger numbers correspond to better predictions.
We can see that in our experiments NN was more accurate than the operational
C005 algorithm. GCRF showed an improvement in accuracy over both NN and
C005 by taking advantage of a combination of models and spatio-temporal cor-
relation in data. NGCRF achieves even better accuracy by utilizing nonlinear
weights, an adaptive statistical model, and learning instead of assuming the level
of correlation between points. Although NGCRF is a non-convex approach, it
has only slightly larger variance in predictions than GCRF+NN.

The obtained results provide strong evidence that adaptive structured learning
approaches can be successfully applied to AOD prediction, where even a small
improvement of prediction accuracy results in huge uncertainty reduction in
many geophysical studies that rely on AOD predictions [26].

5 Conclusion

Structured learning, as a fairly new research area in machine learning, has great
success in classification, but its application on regression problems has not been
explored sufficiently. In this article we proposed a method to adaptively combine
the outputs of powerful non-structured regression models such as neural networks
and a variety of correlated knowledge sources into a single prediction model by
utilizing possible correlation among outcome variables. It is worth pointing to dif-
ferences between our NGCRF model and the GCRF model proposed in [4]. The
GCRF in [4] models a conditional distribution of pixels given a noisy input image
using the weighted quadratic factors obtained by convolving the image with a set
of filters. GCRF is designed for image de-noising problems, while NGCRF can be
applied to general regression problems. By taking a closer look at GCRF we find
that features in Eq. (5) and (6) are represented in GCRF, while GCRF does not
model the adaptive component of NGCRF in Eq. (13). The proposed NGCRF is
also readily applicable to other regression applications, where there is a need for
knowledge integration and exploration of structure in outputs.
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Abstract. In this paper, we present cutset networks, a new tractable
probabilistic model for representing multi-dimensional discrete distri-
butions. Cutset networks are rooted OR search trees, in which each
OR node represents conditioning of a variable in the model, with tree
Bayesian networks (Chow-Liu trees) at the leaves. From an inference
point of view, cutset networks model the mechanics of Pearl’s cutset
conditioning algorithm, a popular exact inference method for probabilis-
tic graphical models. We present efficient algorithms, which leverage and
adopt vast amount of research on decision tree induction for learning cut-
set networks from data. We also present an expectation-maximization
(EM) algorithm for learning mixtures of cutset networks. Our experi-
ments on a wide variety of benchmark datasets clearly demonstrate that
compared to approaches for learning other tractable models such as thin-
junction trees, latent tree models, arithmetic circuits and sum-product
networks, our approach is significantly more scalable, and provides sim-
ilar or better accuracy.

1 Introduction

Learning tractable probabilistic models from data has been the subject of much
recent research. These models offer a clear advantage over Bayesian networks
and Markov networks: exact inference over them can be performed in polyno-
mial time, obviating the need for unreliable, inaccurate approximate inference,
not only at learning time but also at query time. Interestingly, experimental
results in numerous recent studies [5,11,16,23] have shown that the performance
of approaches that learn tractable models from data is similar or better than
approaches that learn Bayesian and Markov networks from data. These results
suggest that controlling exact inference complexity is the key to superior end-to-
end performance.

In spite of these promising results, a key bottleneck remains: barring a few
exceptions, algorithms that learn tractable models from data are computation-
ally expensive, requiring several hours for even moderately sized problems (e.g.,
approaches presented in [11,16,23] need more than “10 hours” of CPU time for
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datasets having 200 variables and 104 examples). There are several reasons for
this, with the main reason being the high computational complexity of condi-
tional independence tests. For example, the LearnSPN algorithm of Gens and
Domingos [11] and the ID-SPN algorithm of Rooshenas and Lowd [23] for learn-
ing tractable sum-product networks, spend a substantial amount of their execu-
tion time on partitioning the given set of variables into conditionally independent
components. Other algorithms with strong theoretical guarantees, such as learn-
ing efficient Markov networks [13], and learning thin junction trees [1,4,19] also
suffer from the same problem.

In this paper, we present a tractable class of graphical models, called cutset
networks, which are rooted OR search trees with tree Bayesian networks (Chow-
Liu trees) at the leaves. Each OR node (or sum node) in the OR tree represents
conditioning over a variable in the model. Cutset networks derive their name
from Pearl’s cutset conditioning method [20]. The key idea in cutset condition-
ing is to condition on a subset of variables in the graphical model, called the
cutset, such that the remaining network is a tree. Since, exact probabilistic infer-
ence can be performed in time that is linear in the size of the tree (using Belief
propagation [20] for instance), the complexity of cutset conditioning is exponen-
tial in the cardinality (size) of the cutset. If the cutset is bounded, then cutset
conditioning is tractable. However, note that unlike classic cutset conditioning,
cutset networks can take advantage of determinism [3,12] and context-specific
independence [2] by allowing different variables to be conditioned on at the same
level in the OR search tree. As a result, they can yield a compact representation
even if the size of the cutset is arbitrarily large.

The key advantage of cutset networks is that only the leaf nodes, which repre-
sent tree Bayesian networks, take advantage of conditional independence, while
the OR search tree does not. As a result, to learn cutset networks from data,
we do not have to run expensive conditional independence tests at any internal
OR node. Moreover, the leaf distributions can be learned in polynomial time,
using the classic Chow-Liu algorithm [6]. As a result, if we assume that the size
of the cutset (or the height of the OR tree) is bounded by k, and given that the
time complexity of the Chow-Liu algorithm is O(n2d), where n is the number of
variables and d is the number of training examples, the optimal cutset network
can be learned in O(nk+2d) time.

Although, the algorithm described above is tractable, it is infeasible for any
reasonable k (e.g., 5) that we would like to use in practice. Therefore, to make
our algorithm practical, we use splitting heuristics and pruning techniques de-
veloped over the last few decades for inducing decision trees from data [21,18].
The splitting heuristics help us quickly learn a reasonably good cutset network,
without any backtracking, while the pruning techniques such as pre-pruning and
reduced-error (post) pruning help us avoid over-fitting. To improve the accuracy
further, we also consider mixtures of cutset networks, which generalize mixtures
of Chow-Liu trees [17] and develop an expectation-maximization algorithm for
learning them from data.
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We conducted a detailed experimental evaluation comparing our three learn-
ing algorithms: learning cutset networks without pruning (CNet), learning cutset
networks with pruning (CNetP), and learning mixtures of cutset networks (MC-
Net), with six existing algorithms for learning tractable models from data: sum-
product networks with direct and indirect interactions (ID-SPN) [23], learning
tractable Markov networks with Arithmetic Circuits (ACMN) [16], mixtures of
trees (MT) [17], stand alone Chow-Liu trees [6], learning sum-product networks
(LearnSPN) [11] and latent tree models (LTM) [5]. We found that MCNet is the
best performing algorithm in terms of test-set log likelihood score on 11 out of
the 20 benchmarks that we experimented with. ID-SPN has the best test-set log
likelihood score on 8 benchmarks while ACMN and CNetP are closely tied for
the third-best performing algorithm spot. We also measured the time taken to
learn the model for ID-SPN and our algorithms, and found that ID-SPN was
the slowest algorithm. CNet was the fastest algorithm, while CNetP and MCNet
were second and third fastest, respectively. Interestingly, if we look at learning
time and accuracy as a whole, CNetP is the best performing algorithm, provid-
ing reasonably accurate results in a fraction of the time as compared to MCNet,
ACMN and ID-SPN.

The rest of the paper is organized as follows. In section 2, we present back-
ground and notation. Section 3 provides the formal definition of cutset networks.
Section 4 describes algorithms for learning cutset networks. We present experi-
mental results in section 5 and conclude in section 6.

2 Notation and Background

We borrow notation from [17]. Let V be a set of n discrete random variables
where each variable v ∈ V ranges over a finite discrete domain Δv and let
xv ∈ Δv denote a value that can be assigned to v. Let A ⊆ V , then xA denotes
an assignment to all the variables in A. For simplicity, we often denote xA as x
and Δv as Δ. The set of domains is denoted by ΔV = {Δi|i ∈ V }.

A probabilistic graphical model G is denoted by a triple 〈V,ΔV , F 〉 where
V and ΔV are the sets of variables and their domains respectively, and F is
a set of real-valued functions. Each function f ∈ F is defined over a subset
V (f) ⊆ V of variables, called its scope. For Bayesian networks (cf. [20,7]) which
are typically depicted using a directed acyclic graph (DAG), F is the set of
conditional probability tables (CPTs), where each CPT is defined over a variable
given its parents in the DAG. For Markov networks (cf. [14]), F is the set of
potential functions. Markov networks are typically depicted using undirected
graphs (also called the primal graph) in which we have a node in the graph for
each variable in the model and edges connect two variables that appear together
in the scope of a function.

A probabilistic graphical model represents the following joint probability dis-
tribution over V :

P (x) =
1

Z

∏
f∈F

f(xV (f))
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where x is an assignment to all variables in V , xV (f) denotes the projection of x
on V (f) and Z is a normalization constant. For Bayesian networks, Z = 1, while
for Markov networks Z > 0. In Markov networks, Z is also called the partition
function.

The two main inference problems in probabilistic graphical models are (1)
posterior marginal inference: computing the marginal probability of a variable
given evidence, namely computing P (xv|xA) where xA is the evidence and v ∈
V \A; and (2) maximum-a-posteriori (MAP) inference: finding an assignment of
values to all variables that has the maximum probability given evidence, namely
computing argmaxxB∈B P (xB|xA) where xA is the evidence and B = V \ A.
Both problems are known to be NP-hard.

2.1 The Chow-Liu Algorithm for Learning Tree Distributions

A tree Bayesian network is a Bayesian network in which each variable has no
more than one parent while a tree Markov network is a Markov network whose
primal (or interaction) graph is a tree. It is known that both tree Bayesian and
Markov networks have the same representation power and therefore can be used
interchangeably.

The Chow-Liu algorithm [6] is a classic algorithm for learning tree networks
from data. If P (x) is a probability distribution over a set of variables V , then the
Chow-Liu algorithm approximates P (x) by a tree network T (x). If GT = (V,ET )
is an undirected Markov network that induces the distribution T (x), then

T (x) =

∏
(u,v)∈ET

T (xu, xv)∏
v∈V

T (xv)deg(v)−1

where deg(v) is the degree of vertex v or the number of incident edges to v. If
GT is a directed model such as a Bayesian network, then

T (x) =
∏
v∈V

T (xv|xpa(v))

where T (xv|xpa(v)) is an arbitrary conditional probability distribution such that
|pa(v)| ≤ 1. The Kullback-Leibler divergence KL(P, T ) between P (x) and T (x)
is defined as:

KL(P, T ) =
∑
x

P (x)log

(
P (x)

T (x)

)
In order to minimize KL(P, T ), Chow and Liu proved that each selected edge
(u, v) ∈ ET has to maximize the total mutual information,

∑
(u,v)∈ET

I(u, v).

Mutual information, denoted by I(u, v), is a measure of mutual dependence
between two random variables u and v and is given by:

I(u, v) =
∑

xu∈Δu

∑
xv∈Δv

P (xu, xv) log

(
P (xu, xv)

P (xu)P (xv)

)
(1)
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To maximize (1), the Chow-Liu procedure computes the mutual information
I(u, v) for all possible pairs of variables in V and then finds the maximum
weighted spanning treeGT = (V,ET ) such that each edge (u, v) ∈ ET is weighted
by I(u, v). The marginal distribution T (u, v) of a pair of variables (u, v) con-
nected by an edge is the same as P (u, v).

Tree networks are attractive because: (1) learning both the structure and
parameters of the distribution are tractable; (2) several probabilistic inference
tasks can be solved in linear time; and (3) they have intuitive interpretations.

The time complexity of learning the structure and parameters of a tree net-
work using the Chow-Liu algorithm is O(n2d + n2 log(n)) where n is the num-
ber of variables and d is the number of training examples. Since, in practice,
d > log(n), for the rest of the paper, assume that the time complexity of the
Chow-Liu algorithm is O(n2d).

2.2 OR Trees

OR trees are rooted trees which are used to represent the search space explored
during probabilistic inference by conditioning [20,9]. Each node in an OR tree is
labeled by a variable v in the model. Each edge emanating from a node represents
the conditioning of the variable v at that node by a value xv ∈ Δv and is labeled
by the marginal probability of the variable-value assignment given the path from
the root to the node. For simplicity, we will focus on binary valued variables.
For binary variables, assume that left edges represent the assignment of variable
v to 0 and right edges represent v = 1. A similar representation can be used for
multi-valued variables.

Any distribution can be represented using a OR Tree. In the worst-case, the
tree will require O(2n+1) parameters to specify the distribution. Figure 1 shows
a probability distribution and a possible OR tree.

The distribution represented by an OR tree O is given by:

P (x) =
∏

(vi,vj)∈pathO(x)

w(vi, vj) (2)

where pathO(x) is the path from the root to the unique leaf node l(x) corre-
sponding to the assignment x and w(vi, vj) is the probability value attached to
the edge between the OR nodes vi and vj .

3 Cutset Networks

Cutset Networks (CNets) are a hybrid of rooted OR trees and tree Bayesian
networks, with an OR tree at the top and a tree Bayesian network attached to
each leaf node of the OR tree. Formally a cutset network is a pair C = (O,T)
where O is a rooted OR tree and T = {T1, . . . , Tl} is a collection of tree networks.
The distribution represented by a cutset network is given by:

P (x) =

⎛⎝ ∏
(vi,vj)∈pathO(x)

w(vi, vj)

⎞⎠(
Tl(x)(xV (Tl(x)))

)
(3)
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a b c P(a,b,c)

0 0 0 0.030
0 0 1 0.144
0 1 0 0.030
0 1 1 0.096
1 0 0 0.224
1 0 1 0.336
1 1 0 0.042
1 1 1 0.098

(a)

A

C

B B

B

C C

0.3 0.7

0.2 0.8 0.8 0.2

0.5 0.5 0.6 0.4 0.4 0.6 0.3 0.7

(b)

Fig. 1. (a) A probability distribution, (b) An OR tree representing the distribution
given in (a). The left branch from a node represents conditioning by 0, whereas the
right branch represents conditioning by 1.

where pathO(x) is the path from the root to the unique leaf node l(x) corre-
sponding to the assignment x, w(vi, vj) is the probability value attached to the
edge between the OR nodes vi and vj and Tl(x) is the tree Bayesian network as-
sociated with l(x) and V (Tl(x)) is the set of variables over which Tl(x) is defined.
Fig. 2 shows an example cutset network.

A

E

F

B

C D

C

B D

C

D B

F

B

D

C E

F
C

D E F

0.45

0.35 0.65

0.55

0.80.2

0.3
0.7

Fig. 2. A cutset network

Note that unlike classic cutset conditioning, cutset networks can take advan-
tage of determinism [3] and context-specific independence [2] by branching on
different variables at the same level (or depth) [12,13]. As a result, they can yield
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Algorithm 1. LearnCNet

Input: Training dataset D = {x1, ..., xd}, Variables V .
Output: A cutset network C

if Termination condition is satisfied then
return ChowLiuTree(D)

end if
Heuristically select a variable v ∈ V for splitting
Create a new node Ov labeled by v.
/*
Each node has a left child Ov.left, a right child Ov .right, a left

probability Ov .lp and a right probability Ov.rp.
*/
Let Dv=0 = {xi ∈ D|xi

v = 0}
Let Dv=1 = {xi ∈ D|xi

v = 1}
Ov.lp← |Dv=0|

|D|
Ov.rp← |Dv=1|

|D|
Ov.left← LearnCNet(Dv=0, V \ v)
Ov.right← LearnCNet(Dv=1, V \ v)
return Ov

a compact representation, even if the size of the cutset1 is arbitrarily large. For
example, consider the cutset network given in Fig. 2. The left most leaf node
represents a tree Bayesian network over V \ {a, e, f} while the right most leaf
node represents a tree Bayesian network over V \ {a, b}. Technically, the size of
the cutset can be as large as the union of the variables mentioned at various
levels in the OR tree. Thus, for the cutset network given in Fig. 2, the size of
the cutset can be as large as {a, b, e, f}.

4 Learning Cutset Networks

As mentioned in the introduction, if the size of the cutset is bounded by k,
we can easily come up with a polynomial time algorithm for learning cutset
networks: systematically search over all subsets of size k. Unfortunately, this
naive algorithm is impractical because of its high polynomial complexity; the
time complexity is at least Ω(nk+2d) where n is the number of variables and d
is the number of training examples. Therefore, in this section we will present an
algorithm that uses techniques adopted from the decision tree literature to learn
cutset networks.

Simply put, given training data D = {x1, . . . , xd} defined over a set V of
variables, we can use the following recursive or divide-and-conquer approach to
learn a cutset network from D (see Algorithm 1). Select a variable using the

1 Given a graph G = (V,E), C ⊆ V is a cutset of G if the subgraph over V \ C is a
tree.
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given splitting heuristic, place it at the root and make one branch for each of its
possible values. Repeat the approach at each branch, using only those instances
that reach the branch. If at any time, some pre-defined termination condition is
satisfied, run the Chow-Liu algorithm on the remaining variables. It is easy to
see that the optimal probability value, assuming that we are using the maximum
likelihood estimation principle, attached to each branch in the OR tree is the
fraction of the instances at the parent that actually reach the branch.

The two main choices in the above algorithm are which variable to split on
and the termination condition. We discuss each of them in turn, next, followed
by the algorithm to learn mixtures of cutset networks from data.

4.1 Splitting Heuristics

Intuitively, we should split on a variable that reduces the expected entropy (or
the information content) of the two partitions of the data created by the split.
The hope is that when the expected entropy is small, we will be able to represent
it faithfully using a simple distribution such as a tree Bayesian network. Unfortu-
nately, unlike traditional classification problems, in which we are interested in (the
entropy of) a specific class variable, estimating the joint entropy of the data when
the class variable is not known is a challenging task (we just don’t have enough
data to reliably measure the joint entropy). Therefore, we propose to approximate
the joint entropy by the average entropy over individual variables. Formally, for
our purpose, the entropy of data D defined over a set V of variables is given by:

Ĥ(D) =
1

|V |
∑
v∈V

HD(v) (4)

where HD(v) is the entropy of variable v relative to D. It is given by:

HD(v) = −
∑

xv∈Δv

P (xv)log(P (xv))

Given a closed-form expression for the entropy of the data, we can calculate
the information gain or the expected reduction in the entropy after conditioning
on a variable v using the following expression:

GainD(v) = Ĥ(D) −
∑

xv∈Δv

|Dxv |
|D| Ĥ(Dxv )

where Dxv = {xi ∈ D|xi
v = xv}.

From the discussion above, the splitting heuristic is obvious: select a variable
that has the highest information gain.

4.2 Termination Condition and Post-Pruning

A simple termination condition that we can enforce is stopping when the num-
ber of examples at a node falls below a fixed threshold. Alternatively, we can
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also declare a node as a leaf node if the entropy falls below a threshold. Unfor-
tunately, both of these criteria are highly dependent on the threshold used. A
large threshold will yield shallow OR trees that are likely to underfit the data
(high bias) while a small threshold will yield deep trees that are likely to overfit
the data (high variance). To combat this, inspired by the decision tree litera-
ture [21,22], we propose to use reduced error pruning. In reduced error pruning,
we grow the tree fully and post-prune in a bottom-up fashion. (Alternatively, we
can also prune in a top-down fashion).

The benefits of pruning over using a fixed threshold are that it avoids the
horizon effect (the thresholding method suffers from lack of sufficient look ahead).
Pruning comes at a greater computational expense than threshold based stopped
splitting and therefore for problems with large training sets, the expense can be
prohibitive. For small problems, though, these computational costs are low and
pruning should be preferred over stopped splitting. Moreover, pruning is an
anytime method and as a result we can stop it at any time.

Formally, our proposed reduced error pruning for cutset networks operates
as follows. We divide the data into two sets: training data and validation data.
Then, we build a full OR tree over the training data, declaring a node as a leaf
node using a weak termination condition (e.g., the number of examples at a node
is less than or equal to 5). Then, we recursively visit the tree in a bottom up
fashion, and replace a node and the sub-tree below it by a leaf node (namely, a
Chow-Liu tree) if it increases the log-likelihood on the validation set.

We summarize the time and space complexity of learning (using Algorithm
1) and inference in cutset networks in the following theorem.

Theorem 1. The time complexity of learning cutset networks is O(n2ds) where
s is the number of nodes in the cutset network, d is the number of examples and
n is the number of variables. The space complexity of the algorithm is O(ns),
which also bounds the space required by the cutset networks. The time complexity
of performing marginal and maximum-a-posteriori inference in a cutset network
is O(ns).

Proof. The time complexity of computing the gain at each internal OR node
is O(n2d). Similarly, the time complexity of running the Chow-Liu algorithm
at each leaf node is O(n2d). Since there are s nodes in the cutset network, the
overall time complexity is O(n2ds). The space required to store an OR node is
O(1) while the space required to store a tree Bayesian network is O(n). Thus,
the overall space complexity is O(max(n, 1)s) = O(ns). The time complexity of
performing inference at each leaf Chow-Liu node is O(n) while inference at each
internal OR node can be done in constant time. Since the tree has s nodes, the
overall inference complexity is O(ns).

4.3 Mixtures of Cutset Networks

Similar to mixtures of trees [17], we define mixtures of cutset networks as dis-
tributions of the form:
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P (x) =

k∑
i=1

λiCi(x) (5)

with λi ≥ 0 for i = 1, . . . , k, and
∑k

i=1 λi = 1. Each mixture component Ci(x) is
a cutset network and λi is its mixture co-efficient. At a high level, one can think
of the mixture as containing a latent variable z which takes a value i ∈ {1, . . . , k}
with probability λi.

Next, we present a version of the expectaton-maximization algorithm (EM) [10]
for learning mixtures of cutset networks from data. The EM algorithm operates as
follows.We begin with randomparameters. At each iteration t, in the expectation-
step (E-step) of the algorithm, we find the probability of completing each training
example, using the current model. Namely, for each training example xj and each
component i, we compute

P t(z = i|xj) =
λt
iC

t
i (x

j)∑k
r=1 λ

t
rC

t
r(x

j)

Then, in the maximization-step (M-step), we learn each mixture component i,
using a weighted training set in which each example j has weight P t(z = i|xj).
This yields a new mixture component Ct+1

i . In the M-step, we also update the
mixture co-efficients using the following expression:

λt+1
i =

∑d
j=1 P

t(z = i|xj)

d

We can run EM until it converges or until a pre-defined bound on the number of
iterations is exceeded. The quality of the local maxima reached by EM is highly
dependent on the initialization used and therefore in practice, we typically run
EM using several different initializations and choose parameter settings having
the highest log-likelihood score. Notice that by varying the number of mixture
components, we can explore interesting bias versus variance tradeoffs. Large k
will yield high variance models and small k will yield high bias models.

We summarize the time and space complexity of learning and inference in
mixtures of cutset networks in the following theorem.

Theorem 2. The time complexity of learning mixtures of cutset networks is
O(n2dsktmax) where s is the number of nodes in the cutset network, d is the
number of examples, k is the number of mixture components, tmax is the maxi-
mum number of iterations for which EM is run and n is the number of variables.
The space complexity of the algorithm is O(nsk), which also bounds the space
required by the mixtures of cutset networks. The time complexity of performing
marginal and maximum-a-posteriori inference in a mixtures of cutset networks
is O(nks).

Proof. Follows from Theorem 1
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Table 2. Runtime Comparison(in seconds). Time-limit for each algorithm: 48 hours.
†indicates that the algorithm did not terminate in 48 hours.

Dataset Var# Train Valid Test CNet CNetP MCNet ID-SPN ACMN

NLTCS 16 16181 2157 3236 0.2 0.4 36.5 307.0 242.4

MSNBC 17 291326 38843 58265 13.0 29.2 2177.7 90354.0 579.9

KDDCup2000 64 180092 19907 34955 95.9 197.8 1988.0 38223.0 645.5

Plants 69 17412 2321 3482 6.5 10.5 135.0 10590.0 119.4

Audio 100 15000 2000 3000 17.2 19.6 187.0 14231.0 1663.9

Jester 100 9000 1000 4116 14.0 11.8 101.2 † 3665.8

Netflix 100 15000 2000 3000 25.2 22.6 224.4 † 1837.4

Accidents 111 12758 1700 2551 15.7 22.1 195.4 † 793.4

Retail 135 22041 2938 4408 18.9 27.6 104.7 2116.0 12.5

Pumsb-star 163 12262 1635 2452 30.1 41.8 233.8 18219.0 374.0

DNA 180 1600 400 1186 13.8 6.9 57.7 150850.0 39.9

Kosarek 190 33375 4450 6675 65.9 102.5 141.2 † 585.4

MSWeb 294 29441 32750 5000 208.6 365.8 642.8 † 286.3

Book 500 8700 1159 1739 129.1 204.2 154.4 125480.0 3035.0

EachMovie 500 4524 1002 591 90.7 133.4 204.8 78982.0 9881.1

WebKB 839 2803 558 838 169.7 228.7 160.4 † 7098.3

Reuters-52 889 6532 1028 1540 397.1 650.4 1177.2 † 2709.6

20Newsgroup 910 11293 3764 3764 695.2 935.8 1525.2 † 16255.3
BBC 1058 1670 225 330 206.7 223.9 70.2 4157.0 1862.2

Ad 1556 2461 327 491 365.8 594.3 155.4 285324.0 6496.4

5 Empirical Evaluation

The aim of our experimental evaluation is two fold: comparing the speed, mea-
sured in terms of CPU time, and accuracy, measured in terms of test-set log like-
lihood scores, of our methods with state-of-the-art methods for learning tractable
models.

5.1 Methodology and Setup

We evaluated our algorithms as well as the competition on 20 benchmark datasets
shown in Table 2. The number of variables in the datasets ranged from 16 to 1556,
and the number of training examples varied from 1.6K to 291K examples. All vari-
ables in our datasets are binary-valued for a fair comparison with other methods,
who operate primarily on binary-valued input. These datasets or a subset of them
have also been used by [8,16,15,11,24].

We implemented three variations of our algorithms: (1) learning CNets with-
out pruning (CNet), (2) learning CNets with pruning (CNetP) and (3) mixtures
of CNets (MCNets). We compared their performance with the following learn-
ing algorithms from literature: learning sum-product networks with direct and
indirect interactions (ID-SPN) [23], learning Markov networks using arithmetic
circuits (ACMN) [16], learning mixture of trees (MT) [17], Chow-Liu trees [6],
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Table 3. Head-to-head comparison of the number of wins (in terms of test-set log-
likelihood score) achieved by one algorithm (row) over another (column), for all pairs
of the 6 best performing algorithms used in our experimental study.

CNetP MCNet ID-SPN ACMN MT LearnSPN

CNetP - 1 1 2 2 6

MCNet 19 - 11 13 15 18

ID-SPN 19 8 - 16 16 20

ACMN 18 5 3 - 8 15

MT 18 5 3 12 - 16

LearnSPN 14 2 0 5 4 -

learning Sum-Product Networks (LearnSPN) [11] and learning latent tree mod-
els (LTM) [5]. Most of the results on the datasets (except the results on learning
Chow-Liu models) were made available to us by [23]. They are part of the Libra
toolkit available on Daniel Lowd’s web page.

We smoothed all parameters using 1-laplace smoothing. For learning CNets
without pruning, we stopped building the OR tree when the number of examples
at the leaf node were fewer than 10 or the total entropy was smaller than 0.01. To
learn MCNets, we varied the number of components from 5 to 40, in increments
of 5 and ran the EM algorithm for 100 iterations or convergence whichever was
earlier. For each iteration of EM, we could update both the structure and the
parameters of the cutset network associated with each component. However,
to speed up the learning algorithm, we chose to update just the parameters,
utilizing the structure learned at the first iteration.

5.2 Accuracy

Table 1 shows the test-set log likelihood scores for the various benchmark net-
works while Table 3 shows head-to-head comparison of the six best performing
algorithms namely CNetP, MCNet, ID-SPN, ACMN, MT and LearnSPN. Ex-
cluding the first two datasets where there are multiple winners, we can see that
MCNet has the best log-likelihood score on 9 out of the remaining 18 bench-
marks, while ID-SPN is the second best performing algorithm, with the best log-
likelihood score on 7 out of the 18 benchmarks. In the head-to-head comparison,
MCNet is better than CNetP on 19 benchmarks, ID-SPN on 11 benchmarks,
ACMN on 13 benchmarks, MT on 15 benchmarks and LearnSPN on 18 bench-
marks. CNetP is better than ID-SPN only on 1 benchmark, ACMN and MT
on 2 benchmarks while it is better than LearnSPN on 6 benchmarks. A careful
look at the datasets reveal that when the number of training examples is large,
MCNet and to some extent CNetP are typically better than the competition.
However, for small training set sizes, ID-SPN is the best performing algorithm.
As expected, Chow-Liu trees and CNet are the worst-performing algorithms, the
former underfits and the latter overfits.
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MCNet is consistently better than CNetP which suggests that whenever pos-
sible it is a good idea to use latent mixtures of simple models. This conclusion
can also be drawn from the performance of MT, which greatly improves the
accuracy of Chow-Liu trees.

5.3 Learning Time

Table 2 shows the time taken by CNet, CNetP, MCNet, ID-SPN and ACMN to
learn a model from data. We gave a time limit of 48 hours to all algorithms and
ran all our timing experiments on a quad-core Intel i7, 2.7 GHz machine with
8GB of RAM. The fastest cutset network learners, in order, are: CNet, CNetP,
and MCNet. On an average, ACMN is slower than MCNet. ID-SPN is the slowest
algorithm. In fact, ID-SPN did not finish on 8 out of the 20 datasets in 48 hours
(note that for the datasets on which ID-SPN did not finish in 48 hours, we report
the test set log-likelihood scores from [23]). The best performing cutset network
algorithm, MCNet, was faster than ID-SPN on all 20 datasets and ACMN on 14
datasets. If we look at the learning time and accuracy as a whole, CNetP is the
best performing algorithm, providing reasonably accurate results in quick time.

6 Summary and Future Work

In this paper we presented cutset networks - a novel, simple and tractable prob-
abilistic graphical model. At a high level, cutset networks are operational rep-
resentation of Pearl’s cutset conditioning method, with an OR tree modeling
conditioning (at the top) and a tree Bayesian network modeling inference over
trees at the leaves. We developed an efficient algorithm for learning cutset net-
works from data. Our new algorithm uses a decision-tree inspired learning algo-
rithm for inducing the structure and parameters of the OR tree and the classic
Chow-Liu algorithm for learning the tree distributions at the leaf nodes. We also
presented an EM-based algorithm for learning mixtures of cutset networks.

Our detailed experimental study on a variety on benchmark datasets clearly
demonstrated the power of cutset networks. In particular, our new algorithm that
learns mixtures of cutset networks from data, was the best performing algorithm
in terms of log-likelihood score on 55% of the benchmarks when compared with
5 other state-of-the-art algorithms from literature. Moreover, our new one-shot
algorithm, which builds a cutset network using the information gain heuristic and
employs reduced-error pruning is not only fast (as expected) but also reasonably
accurate on several benchmark datasets. This gives us a spectrum of algorithms
for future investigations: fast, accurate one-shot algorithms and slow, highly
accurate iterative algorithms based on EM.

Future work includes learning polytrees having at most w parents at the leaves
yielding w-cutset networks; using AND/OR trees or sum-product networks in-
stead of OR trees yielding AND/OR cutset networks [9]; introducing structured
latent variables in the mixture model; and merging identical sub-trees while
learning to yield a compact graph-based representation.
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Abstract. Mean shift is a nonparametric clustering technique that does
not require the number of clusters in input and can find clusters of ar-
bitrary shapes. While appealing, the performance of the mean shift al-
gorithm is sensitive to the selection of the bandwidth, and can fail to
capture the correct clustering structure when multiple modes exist in
one cluster. DBSCAN is an efficient density based clustering algorithm,
but it is also sensitive to its parameters and typically merges overlap-
ping clusters. In this paper we propose Boosted Mean Shift Clustering
(BMSC) to address these issues. BMSC partitions the data across a grid
and applies mean shift locally on the cells of the grid, each providing
a number of intermediate modes (iModes). A mode-boosting technique
is proposed to select points in denser regions iteratively, and DBSCAN
is utilized to partition the obtained iModes iteratively. Our proposed
BMSC can overcome the limitations of mean shift and DBSCAN, while
preserving their desirable properties. Complexity analysis shows its po-
tential to deal with large-scale data and extensive experimental results
on both synthetic and real benchmark data demonstrate its effectiveness
and robustness to parameter settings.

Keywords: Mean shift clustering, density-based clustering, boosting.

1 Introduction

Clustering aims to partition data into groups, so that points that are similar to
one another are placed in the same cluster, and points that are dissimilar from
each other are placed in different clusters. Clustering is a key step for many
exploratory tasks. In the past decades, many clustering algorithms have been
proposed, such as centroid-based clustering (e.g., k-means [21] and k-medoids
[18]), distribution-based clustering (e.g., Expectation-Maximization with Gaus-
sian mixture [8]), and density-based clustering (e.g., mean shift [4], DBSCAN
[10] and OPTICS [1]).

Most of the existing clustering methods need the number of clusters in input,
which is typically unknown in practice. The mean shift algorithm is an appealing
and nonparametric clustering technique that estimates the number of clusters

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 646–661, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Toy examples

directly from the data, and is able to find clusters with irregular shapes. It
performs kernel density estimation, and iteratively locates the local maxima
of the kernel mixture. Points that converge to the same mode are considered
members of the same cluster [4]. The key parameter of mean shift is the kernel
bandwidth. Its value can affect the performance of mean shift and is hard to set.
Furthermore, mean shift may fail to find the proper cluster structure in the data
when multiple modes exist in a cluster. As Fig. 1(b) shows, continuous dense
regions exist in each cluster, possibly resulting in multiple modes detected by
mean shift.

DBSCAN [10] is another popular density-based clustering method that does
not require the number of clusters as input parameter. DBSCAN has the draw-
back of being sensitive to the choice of the neighborhood’s radius (called Eps)
[10]. DBSCAN tends to merge two clusters when an unsuitable Eps value is
used, especially when the two clusters overlap, since the overlap may result in
a contiguous high-density region, as shown in Fig. 1(a) and (c). (Experimental
results on the three toy examples are presented in Section 5.)

Recently, a meta-algorithm known as Parallel Spatial Boosting Machine
Learner (PSBML) has been introduced as a boosting algorithm for classification
[17]. PSBML runs many classifiers in parallel on sampled data. The classifiers
are organized in a two dimensional grid with a neighborhood structure. Data
which are hard to classify are shared among the neighbor classifiers. PSBML
is a robust algorithm that outperforms the underlying classifier in terms of ac-
curacy and is less sensitive to parameter choice or noise [16]. The question we
investigate in this research is whether the PSBML algorithm can be adapted
to a clustering scenario to overcome the robustness issues related to parameter
sensitivity as discussed above. The idea is to have a spatial grid framework as
in PSBML, where a clustering algorithm such as mean shift runs at each node
of the grid using local sampled data. A boosting process is applied to the local
modes, which in turn are shared across the neighbors in the grid.

Specifically, we propose Boosted Mean Shift Clustering (BMSC) to address
the aforementioned limitations of mean shift and DBSCAN. BMSC is an iterative
and distributed version of mean shift clustering. Specifically, BMSC partitions
the data across a grid, and applies mean shift locally on the cells of the grid.
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Each cell outputs a set of intermediate modes (iModes in short), which represent
the denser regions in the data. A mode-boosting technique is used to assign larger
confidence values to those data points which are closer to the iModes. Points
are then sampled with a probability that is proportional to the corresponding
confidence. In successive iterations, BMSC progressively chooses data points in
denser areas. Furthermore, at each iteration, DBSCAN is applied to partition all
the iModes obtained so far. When DBSCAN results become stable in successive
iterations, the algorithm stops. The accumulated iModes provide the “skeleton”
of the data clusters and can be leveraged to group the entire data. The main
contributions of this paper are summarized as follows:

– We introduce Boosted Mean Shift Clustering (BMSC) to overcome the disad-
vantages of mean shift and DBSCAN, while preserving their nonparametric
nature. Our technique has the ability to identifying the essential structure
(skeleton) of the clusters through the boosting of points around the modes.

– We present a complexity analysis to show the potential of BMSC to solve
large-scale clustering tasks efficiently.

– Extensive experiments demonstrate the effectiveness and robustness of our
proposed approach.

The rest of this paper is organized as follows. We review related work in
Section 2 and introduce our methodology in Section 3. Section 4 presents the
empirical evaluation and Section 5 discusses the experimental results. A final
comment and conclusions are provided in Section 6 and 7, respectively.

2 Related Work

Mean shift [4,12] is a nonparametric feature space analysis technique that has
been widely used in many machine learning applications, such as clustering [3],
computer vision and image processing [4], and visual tracking [2]. It iteratively
estimates the density of each point and computes the mean shift vector, which
always points toward the direction of maximum increase in the density [4]. This
defines a path leading to a stationary point (mode). The set of original data
points that converge to the same mode defines a cluster. Mean shift uses a global
fixed bandwidth, while the adaptive mean shift [5] sets different bandwidths for
different data points. The convergence of mean shift procedure is guaranteed [4].

Density-based clustering methods [20] define a cluster as a set of points lo-
cated in a contiguous region of high density, while points located in low-density
areas are considered as noise or outliers. DBSCAN [10] is a popular clustering
algorithm that relies on a density-based notion of clusters. It has only one pa-
rameter Eps, provided that the minimum number of points (Minpts) required
to form a cluster is fixed. OPTICS [1] replaces the parameter Eps in DBSCAN
with a maximum search radius and can be considered as a generalization of
DBSCAN.

Adaboost [11] is the most popular boosting algorithm. It iteratively generates
a distribution over the data in such a way that misclassified points by previous
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classifiers are more likely to be selected to train the next weak classifier. Ad-
aboost is an ensemble algorithm that combines these weak classifiers to form
a strong classifier that has shown to be more robust than the single classifier.
Parallel spatial boosting machine learning (PSBML) [16] is a recent boosting al-
gorithm which combines concepts from spatially structured parallel algorithms
and machine learning boosting techniques. Both Adaboost and PSBML solve
classification problems. The technique we introduce in this work is inspired by
the PSBML framework. Unlike PSBML, though, our focus here is unsupervised
learning, and in particular density-based clustering.

3 Boosted Mean Shift Clustering

Let X = {x1,x2, . . . ,xn} denote the data set, where n is the number of points
and d is the dimensionality of each point xi = (xi1, xi2, . . . , xid)

T , i = 1, 2, . . . , n.
A hard clustering C = {C1, C2, ..., Ck∗} partitions X into k∗ disjoint clusters,
i.e., Ci ∩ Cj = ∅ (∀i 
= j, i, j = 1, 2, . . . , k∗), and ∪k∗

k=1Ck = X .

3.1 Preliminary

In this section, we first give a brief review of the mean shift technique [4,5].
When using one global bandwidth h, the multivariate kernel density estimator
with Kernel K(x)1 is given by

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
(1)

The profile of a kernel K is defined as a function κ : [0,+∞) → R such that
K(x) = c · κ(‖x‖2), where the positive constant c makes K(x) integrate to one.
Then, the sample point estimator (1) becomes

f̂(x) =
c

nhd

n∑
i=1

κ

(∥∥∥x− xi

h

∥∥∥2
)

(2)

By taking the gradient of f̂(x) we obtain

∇f̂(x) =
2c

nhd+2

[
n∑

i=1

g

(∥∥∥∥x− xi

h

∥∥∥∥2
)]

×
[∑n

i=1 xig(‖x−xi

h ‖2)∑n
i=1 g(‖x−xi

h ‖2)
− x

]
︸ ︷︷ ︸

mean shift vector

(3)

where g(x) = −κ′(x), provided that the derivative of κ exists. The first part of
Eq. (3) is a constant, and the factor in bracket is the mean shift vector, which

1 We use a Gaussian kernel in this paper.
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Fig. 2. Toy3: Clustering results of mean shift for different values of h
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Fig. 3. Toy3: Clustering results of DBSCAN for different values of Eps

always points towards the direction of the greatest increase in density. Using the
mean shift vector, a sequence of estimation points {yt}t=1,2,... is computed

yt+1 =

∑n
i=1 xig(‖yt−xi

h ‖2)∑n
i=1 g(‖

yt−xi

h ‖2)
(4)

The starting point y1 is one of the points xi. The point that {yt}t=1,2,... converges
to is considered as the mode of y1. The points that converge to the same mode
are considered members of the same cluster. Please refer to [4] for more details.

3.2 The Algorithm

The performance of mean shift is sensitive to the choice of the bandwidth h.
To demonstrate this fact, Fig. 2 shows the clustering results of mean shift for
different values of h on a two-dimensional dataset containing clusters of different
shapes (called Toy3 in our experiments). The dark circles in Fig. 2 correspond
to the (global) modes generated by mean shift. For any given mode, the points
that converge to it are marked with the same color, and they define a cluster.
As shown in Fig. 2 (a), when the value h = 0.2 is used, mean shift finds several
modes and therefore detects a large number of clusters. Larger values of h lead
to fewer modes, and to the merging of separate clusters.

DBSCAN is another popular density-based clustering algorithm (refer to [10]
for more details) which is also sensitive to its input parameters and is likely
to merge overlapping clusters. Fig. 3 gives the results of DBSCAN on Toy3 for
different values of the parameter Eps . Here Minpts is set to 4. Points of the
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same color belong to the same cluster. In Fig. 3(a) the points marked as “×”
are classified as noisy points by DBSCAN. More clusters and more noisy points
are found by DBSCAN when Eps= 0.1. The detected noisy points are actually
members of a cluster, and should not be considered as outliers. The larger Eps
becomes, the more clusters are merged by DBSCAN. Eventually, for Eps= 0.5,
DBSCAN detects only one cluster. The two rightmost clusters are also merged
in Fig. 3(a), when Eps= 0.1 is used.

To overcome these limitations of mean shift and DBSCAN, while retain-
ing their nonparametric nature, we propose the Boosted Mean Shift Clustering
(BMSC) algorithm. We seek to capture the underlying group structure of the
data by selecting the subset of data that provides the skeleton of the clusters.
To achieve this goal, we iteratively compute modes relative to sampled data in
a distributed fashion, and boost points proportionally to their distance from the
modes. To achieve this goal, BMSC partitions the original data across a grid,
and applies mean shift locally on the cells of the grid to search for the denser
regions iteratively. The details are described below.

(a) Linear 5 (b) Linear 9 (c) Compact 9 (d) Compact 13

Fig. 4. Various neighborhood structures

Mode-boosting. BMSC first partitions the data uniformly across the cells of
a two dimensional grid structure2, as depicted in Fig. 4 [16,17,22] (Line 1 of
Algorithm 1). The cells of the grid interact with the neighbors, where the neigh-
borhood structure is user defined, as shown in Fig. 43. Each cell applies a mean
shift clustering algorithm on its local data. The mean shift algorithm outputs
intermediate modes (iModes), which are located within dense regions (Line 6).
Each cell uses its own iModes to assign confidence values to points assigned to
the cell itself and to its neighbors. Specifically, given a set of iModes generated at

cellj, i.e., iModes(j) = {iMode
(j)
1 , . . . , iMode

(j)
L }, we assign each local point (in

cellj itself or in any neighboring cells) to the nearest iMode in iModes. For the

points assigned to the same iMode
(j)
l (l = 1, . . . , L), we compute the confidence

value of point i w.r.t. cellj as

conf
(j)
i = 1− disi −min dis

max dis−min dis
(5)

2 The dimensionality of the grid affects the size of the neighborhood, and therefore the
speed at which data is propagated through the grid. Note that the dimensionality d
of the data can be arbitrary.

3 In this paper, we use the ‘Linear 5’ structure.
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Algorithm 1. Boosted Mean Shift Clustering

Input: X , width, height, h, Eps.
Output: The final clustering result cl final.
1: InitializeGrid(X , width, height); //Distribute X over I = width× height cells.
2: iModes ← ∅; //Initialize the set of intermediate modes.
3: counter ← 1;
4: repeat
5: for j ← 1 to I do
6: newiModes ← MeanShift(cellDataj ,h);
7: iModes.append(newiModes);
8: end for
9: ConfidenceAssignment(); // Assign confidence values to points in each cell

via Eqs. (5) and (6).
10: for j ← 1 to I do
11: CollectedData ← CollectNeighborData(j) ∪ cellDataj ;
12: cellDataj ← WeightedSampling(CollectedData); // Update cellDataj .
13: end for
14: [cl iModes, numberOfClustersDetected] ← DBSCAN(iModes,Eps);

//cl iModes is the clustering result of iModes.
15: if (numberOfClustersDetected==lastnumberOfClustersDetected) then
16: counter++;
17: else
18: counter ← 1;
19: end if
20: until counter == 3
21: cl final ← DataAssignment(X , iModes,cl iModes); //Assign points in X .
22: return cl final.

where disi is the distance between point i and iMode
(j)
l , min dis and max dis

are the minimum and maximum distances between the corresponding points

and iMode
(j)
l , respectively. conf

(j)
i ∈ [0, 1]. Intuitively, points near iMode

(j)
l

obtain larger confidence values, while those far away from iMode
(j)
l are assigned

smaller confidence values. Since a point xi is a member of the neighborhood of
multiple cells, an ensemble of confidence’s assessments is obtained. We set the
final confidence to the maximum confidence value obtained from any cell:

confi = max
j∈Ni

conf
(j)
i (6)

where Ni is a set of indices of the neighbors of the cell to which point xi belongs
(Line 9).

The confidence values are used to select a sample of the data, locally at each cell,
via a weighted sampling mechanism. Specifically, for each cellj, all points in the
cell and in its neighbors are collected. The larger the confidence value credited to a
point xi is (i.e., the closer xi is to some iMode), the larger is the probability for xi

to be selected (Lines 11-12). As such, copies of points with larger confidence values
will have higher probability of being selected, while points with low confidence will
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have a smaller probability of being selected. The sample size at each cell is kept
constant at each epoch. Note that duplicate points may appear in a given cell, and
the same point may appear in different cells.

Stopping Criterion. At each epoch, BMSC applies mean shift locally at each
cell, thus generating a set of new iModes. We combine the new iModes with the
iModes generated during the previous iterations, and apply DBSCAN on such
updated set of iModes (Line 14). This process is repeated until the number of
detected clusters by DBSCAN does not change for three consecutive iterations.
At each iteration, the set of iModes produced so far gives a representation of the
original data. A stable partition (i.e., a consistent number of detected clusters
is obtained for three iterations) of iModes indicates a stable partition of the
original data. In practice we have observed that the number of distinct points at
each epoch quickly decreases, and BMSC always stops in less than 20 iterations
in our experiments. The convergence of BMSC is empirically shown.

When BMSC stops, DBSCAN gives a partition of all the iModes. We then
assign each original data point to the cluster to which its nearest iMode belongs.
This gives the final clustering of the original data (Line 21). The pseudo-code of
BMSC is given in Algorithm 1.

Computational Complexity. The computational complexity of estimating
the density and computing the mean shift vector for one data point is O(n),
where n is the total number of data. Let T1 be the maximum number of iterations
it takes to compute the mode of any point in X . Then the complexity of mean
shift on the whole data is O(T1n

2). The running time of BMSC is driven by
the complexity of mean shift running on the cells of the grid and of DBSCAN
running on the obtained iModes. BMSC applies mean shift locally on every cell,
each with complexity O(T1m

2), where m = n
I and I = width × height is the

number of cells in the spatial grid. The runtime complexity of DBSCAN on
X is O(n2) and it can be reduced to O(n log n) if one uses R*-tree to process
a range query [20]. Let s be the number of obtained iModes and T2 be the
number of iterations when BMSC stops, then the total computation complexity
of BMSC is O(T2(IT1m

2 + s log s)). T2 is empirically proved to be small, and
m - n, s - n when n is large. Thus, the computational complexity of BMSC is
lower than mean shift and DBSCAN when dealing with large scale data. BMSC
can be further speeded up with a parallel implementation. The complexity can
be reduced to O(T2 max{T1m

2, s log s}) with an I multi-thread process, which
makes BMSC available for large-scale clustering tasks.

4 Experimental Setup

Datasets. We conducted experiments on three toy examples and ten real-
world data sets to evaluate the performance of BMSC and comparing
methods. Table 1 provides the characteristics of all the datasets used in our
experiments. The toy examples are shown in Fig. 1. The two classes of toy
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Table 1. Datasets used in the experiments

Data #points #features #classes

Toy1 10000 2 2
Toy2 14977 2 2
Toy3 788 2 7
2D2K 1000 2 2
8D5K 1000 8 5
Letter 1555 16 2

Satimage 4220 36 4
Symbols 1020 398 6
KDD99 25192 38 22
Banknote 200 6 2
Chainlink 400 3 2
Image Seg 990 19 3

Wall 5456 2 4

example 1 (Toy1), which were generated according to multivariate Gaussian
distributions, consist of 8,000 and 2,000 points, respectively. The mean vec-
tor and the covariance matrix of the left class are (-10,0) and (10 0; 0 10),
while those of the right class are (2,0) and (1 0; 0 1), respectively. Toy example
2 (Toy2, two-moons data), Banknote, and ChainLink contain two classes and
are available at http://www.mathworks.com/matlabcentral/fileexchange/

34412-fast-and-efficient-spectral-clustering. 400 points (200 points
per class) of ChainLink were randomly chosen in the experiments. Toy3 (Ag-
gregation data) was downloaded from http://cs.joensuu.fi/sipu/datasets/

and was used in [13]. 2D2K and 8D5K were two datasets used in [23] and
were downloaded from http://strehl.com/. Symbols is a UCR time series
data [19]. NSL-KDD data set retains all the important statistical characteristics
of KDDCup-99. A subset which contains 25192 instances of 22 classes (1 nor-
mal class and 21 attack types) was downloaded from http://nsl.cs.unb.ca/

NSL-KDD/ and the 38 numerical features were used for the experiments. Letter,
Satimage, Image Seg (Image segmentation) and Wall (Wall-following robot nav-
igation data) are all available from the UCI repository (http://archive.ics.
uci.edu/ml/index.html). The letters ‘A’ and ‘B’ were selected from the Letter
database. The first 4 classes of Satimage and the first three classes of Image Seg
were used in our experiments. For each dataset, each feature was normalized to
have zero mean value and unit variance.

Evaluation Criteria. We chose Rand Index (RI) [14], Adjusted Rand Index
(ARI) [14], and Normalized Mutual Information (NMI) [23] as evaluation criteria
since the label information of data are known. The label information is only used
to measure the clustering results, and is not used during the clustering process.
Both RI and NMI range from 0 to 1, while ARI belongs to [-1,1]. A value 1 of
RI/ARI/NMI indicates a perfect clustering result.

http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering
http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering
http://cs.joensuu.fi/sipu/datasets/
http://strehl.com/
http://nsl.cs.unb.ca/NSL-KDD/
http://nsl.cs.unb.ca/NSL-KDD/
http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/index.html
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Experimental Settings. As shown in Algorithm 1, BMSC requires four pa-
rameters in input: width, height, the bandwidth h for mean shift, and Eps for
DBSCAN. We used a 5× 5 spatial grid for Toy1, Toy2, and KDD99, and a 3× 3
grid for all the other data sets. We set h to the average distance between each
point and its k-th nearest neighbor, where k = α

√
n Data. Here n Data is the

size of the sample assigned to a cell of a grid for BMSC, or the size of the whole
dataset when we run mean shift on the entire collection. The value of α also
affects the bandwidth; a larger α value corresponds to a larger global bandwidth
h. α is always set to 0.5 for both BMSC and mean shift in our experiments. We
set Eps = 0.5 for BMSC and DBSCAN on the three 2-dimensional toy datasets.
Sensitivity analysis of parameters α and Eps is discussed in Section 5.4. To set
the Eps parameter on real data, we consider the iModes generated after the first
epoch of BMSC, and compute the distance to the 4-th nearest iMode [10] for
each of the iModes. We then choose the median value of all such distances as the
value of Eps for DBSCAN in all the successive iterations. When DBSCAN is run
on the whole data, the 4-th nearest neighbor distances are computed with re-
spect to the entire collection of data, and Eps is again set to the median of those
values. The MinPts value of DBSCAN is always set to four in our experiments,
as done in [10].

Besides mean shift and DBSCAN [7,10], we also performed comparisons
against several other clustering algorithms: OPTICS [1,6], k-means [21], LAC
[9], Aver-l (average-linkage clustering) [15], and EM (with a Gaussian mixture)
[8]. OPTICS is a density based clustering algorithm which creates an augmented
ordering of the data representing its clustering structure, and then retrieves DB-
SCAN clusters as the final clustering result. When OPTICS uses DBSCAN to
extract clusters, the parameters were set as in DBSCAN itself. Both DBSCAN
and OPTICS may output noisy clusters. k-means, LAC, Aver-l, and EM require
the number of clusters in input, which we set equal to the number of classes
in the data. LAC requires an additional parameter (weight of the regulariza-
tion term; see [9] for details), which we set to 0.2 throughout our experiments.
Mean shift, DBSCAN, OPTICS, and Aver-l are deterministic for fixed param-
eter values. For the remaining methods, the reported values are the average of
20 independent runs. One-sample t-test and paired-samples t-test were used to
assess the statistical significance of the results at 95% significance level.

5 Results and Analysis

5.1 Results on Toy Examples

To illustrate the effectiveness of BMSC, we first conducted experiments on the
three toy datasets. Fig. 5 shows the data selected by BMSC at different epochs on
Toy1 in one independent run. For this run, BMSC stops at the fourth iteration.
‘(#5529)’ in Fig. 5(a) means that at this epoch 5529 points are selected. The
number of (distinct) points in each iteration greatly decreases, and points around
the densest regions are more likely to survive. At successive iterations, the data
becomes better separated, even though the original two classes overlap. Fig. 6
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Fig. 5. Data selected by BMSC on Toy1 at different epochs
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Fig. 6. BMSC clustering results on the three toy examples

gives the final clustering results of BMSC on the three toy examples for a given
run. The red circles represent the iModes accumulated in successive iterations
when BMSC stops. Points with the same color belong to the same cluster. The
iModes successfully capture the structure of the different clusters. As a result,
BMSC achieves a close to perfect performance on these datasets. When two
clusters overlap (like in Toy1), the corresponding iModes are still well separated,
and therefore easy to partition. When performing DBSCAN on the set of iModes,
some iModes may be classified as noise. For example, three such iModes occur in
Fig. 6(a). iModes detected as anomalous are discarded and not used to partition
the whole data.

Table 2. Results on toy examples

Data BMSC MS DBSCAN OPTICS k-means LAC Aver-l EM

RI 0.9955 0.3977 0.6792 0.6796 0.9294 0.9299 0.6798 0.9978
Toy1 ARI 0.9897 0.0755 -0.0009 -0.0004 0.8432 0.8443 -0.0001 0.9949

NMI 0.9709 0.3846 0.0027 0.0018 0.7614 0.7626 0.0010 0.9833

RI 0.9995 0.5380 0.5001 0.5001 0.8201 0.8185 0.8608 0.6584
Toy2 ARI 0.9990 0.0763 0.0000 0.0000 0.6401 0.6370 0.7216 0.3168

NMI 0.9970 0.4495 0.0000 0.0000 0.5311 0.5280 0.6832 0.3675

RI 0.9891 0.8697 0.2165 0.2165 0.9096 0.9006 0.9971 0.9063
Toy3 ARI 0.9686 0.5096 0.0000 0.0000 0.7061 0.6781 0.9913 0.7121

NMI 0.9711 0.7925 0.0000 0.0000 0.8316 0.8115 0.9869 0.8379
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Table 3. Results on real data (RI)

Data BMSC MS DBSCAN OPTICS k-means LAC Aver-l EM

2D2K 0.9560 0.9522 0.6962 0.4995 0.9531 0.9538 0.9250 0.9078
8D5K 1.0000 1.0000 0.9094 0.8164 0.9359 0.9448 1.0000 0.9488
Letter 0.8928 0.8909 0.6479 0.5133 0.8762 0.8767 0.8875 0.7054

Satimage 0.8216 0.8044 0.7305 0.5271 0.8030 0.8051 0.5370 0.7975
Symbols 0.9081 0.9007 0.8102 0.3922 0.8842 0.8773 0.6275 0.8193
KDD99 0.7699 0.7416 0.6843 0.6029 0.6777 0.6755 0.3966 0.7106
Banknote 0.9694 0.9510 0.8009 0.5934 0.9228 0.9261 0.4975 0.8892
Chainlink 0.7475 0.5626 0.5378 0.5264 0.5431 0.5410 0.5550 0.7350
Image Seg 0.9073 0.8695 0.6978 0.7036 0.8091 0.8112 0.3461 0.7446

Wall 0.7244 0.7131 0.6609 0.5905 0.7055 0.7092 0.3656 0.6530

Table 4. Results on real data (ARI)

Data BMSC MS DBSCAN OPTICS k-means LAC Aver-l EM

2D2K 0.9119 0.9043 0.3922 0.0000 0.9062 0.9075 0.8499 0.8156
8D5K 1.0000 1.0000 0.6977 0.4010 0.8269 0.8446 1.0000 0.8558

LetterAB 0.7856 0.7817 0.2957 0.0265 0.7524 0.7533 0.7749 0.4109
Satimage 0.5631 0.5452 0.3508 0.0831 0.5234 0.5293 0.2242 0.5201
Symbols 0.7042 0.6645 0.4818 0.0071 0.6339 0.6186 0.2369 0.4566
KDD99 0.4684 0.3933 0.2979 0.0164 0.2229 0.2160 -0.0003 0.3154
Banknote 0.9387 0.9020 0.6011 0.1850 0.8456 0.8521 0.0000 0.7788
Chainlink 0.4944 0.1233 0.0737 0.0542 0.0865 0.0822 0.1110 0.4701
Image Seg 0.7843 0.6775 0.2271 0.2078 0.6273 0.6218 0.0012 0.4812

Wall 0.2893 0.2437 0.1434 0.0532 0.3697 0.3761 0.0240 0.2656

Table 2 shows the results of the different algorithms on the toy examples using
the three evaluation measures. In each row, the significantly best and comparable
results are highlighted in boldface. On these datasets, BMSC improves upon
mean shift, DBSCAN, and OPTICS by a large margin. As expected, EM gives
the best performance on Toy1, which is a mixture of two Gaussians. Aver-l works
quite well on Toy3. But both EM and Aver-l require the number of clusters in
input, and their performance degrades on the other data. BMSC significantly
outperforms all the comparing methods on Toy2, and it’s the only approach
that works well on all three toy datasets. The poor performance of k-means and
LAC is mainly caused by the unbalanced data in Toy1, and the irregular shapes
of clusters in Toy2 and Toy3.

5.2 Results on Real Data

This section evaluates the performance of the comparing methods on several real
datasets. The RI and ARI values are shown in Tables 3 and 4, respectively. The
best and comparable results are shown in boldface. In general, a better result
on RI indicates a better result on ARI and NMI. But this is not always the
case. Lets consider the Wall data for example. BMSC gives the best RI value,
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while LAC gives the best ARI value. BMSC, mean shift, and Aver-l do a perfect
job in clustering 8D5K. For the remaining datasets, BMSC significantly out-
performs all the other comparing methods. It’s worth observing that, in terms
of the ARI measure, BMSC outperforms mean shift by a considerable margin
on Symbols, KDD99, Banknote, Chainlink, Imag Seg, and Wall. Similar results
were obtained on NMI and are not reported due to the limited space.

5.3 Performance Analysis of BMSC

The average number of iterations of BMSC and the average number of detected
clusters by BMSC are shown in Table 5. The table shows that BMSC stops
after a small number of iterations. Comparing the number of detected clusters
(#clusters) and the actual number of classes (#classes), we can see that a larger
number of clusters is detected by BMSC on KDD99, Chainlink, and Wall4. For
this reason, lower values of RI and ARI are obtained on these three datasets, as
shown in Tables 3 and 4. The number of clusters detected by BMSC is similar
to the number of classes on Toy3, Satimage, Symbols, and Image Seg. BMSC
always detects a number of clusters that matches the number of classes on Toy1,
Toy2, 2D2K, 8D5K, Letter, and Banknote datasets. This indicates that BMSC
is capable of automatically finding a reasonable number of clusters.

Table 5. Performance Analysis of BMSC

Data #iterations #clusters #classes

Toy1 3.30 2±0.00 2
Toy2 3.00 2±0.00 2
Toy3 4.45 6.80±0.42 7
2D2K 3.75 2±0.00 2
8D5K 3.15 5±0.00 5
Letter 3.35 2±0.00 2

Satimage 4.60 4.10±0.79 4
Symbols 5.50 6±1.49 6
KDD99 14.55 41.45±5.15 22
Banknote 3.05 2±0.00 2
Chainlink 4.15 4.65±1.23 2
Image Seg 4.45 3.75±0.55 3

Wall 6.65 12.20±1.61 4

5.4 Sensitivity Analysis of the Parameters α and Eps

We tested the sensitivity of BMSC w.r.t. the parameters α and Eps on three
datasets, namely Toy1, Toy2, and Satimage. We first tested the sensitivity of
α which controls the kernel bandwidth in BMSC and mean shift. Eps = 0.5
was set for BMSC. The test range of α is [0.05, 0.6] and Fig. 7 gives the results.

4 This is not surprising since in practice there may not be a one-to-one correspondence
between classes and clusters.
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Fig. 7. Sensitivity analysis of the α parameter (RI)
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Fig. 8. Sensitivity analysis of parameter Eps (RI)

Mean shift performs slightly better as α increases on Toy1 and Toy2, and a
general reduction in performance is observed with a larger α on Satimage. BMSC
is stable and achieves good performance throughout. A larger α value leads to
fewer modes found by mean shift, while a smaller α value results in more modes,
thus generating more clusters in general. BMSC is more robust to the different
values of α because α only affects the number of iModes generated by each cell,
and such iModes are then linked together by DBSCAN.

We further compared BMSC against DBSCAN and OPTICS for different
values of Eps. In these experiments, α = 0.5 for BMSC. Tested ranges of Eps
are [0.1, 0.7] for Toy1 and Toy2, and [0.1, 3.6] for Satimage. The results are given
in Fig. 8. The performance of BMSC increases as the value of Eps increases, and
it is stable for a wide range of Eps values. The main reason for this behavior
is that BMSC applies DBSCAN on the iModes, rather than on the whole data.
iModes of different clusters are well separated, even though the original clusters
may overlap. DBSCAN works well for Eps = 0.1, and OPTICS always performs
poorly on Toy1 and Toy2. On Satimage, the performance of both DBSCAN and
OPTICS increases for larger Eps values, and reaches its peak at Eps = 1.6 and
Eps = 3.2, respectively. After that, the performance drops. This shows that
DBSCAN and OPTICS are sensitive to the choice of values for Eps, while our
BMSC technique is robust to parameter settings. This provides insight to the
superior performance of BMSC against DBSCAN and OPTICS obtained in the
previous experiments.
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6 Discussion

To overcome some of the limitations of mean shift, one may run mean shift on the
whole data with a small bandwidth, thus generating a large number of modes.
The modes can then be merged to obtain the final clustering results. But this
approach has two major disadvantages: (1) Running mean shift on a large-scale
data is of high complexity; and (2) With a fixed bandwidth, only one mode (the
local maxima) will be found in dense areas. In contrast, our BMSC is able to
find contiguous intermediate modes in dense areas. It achieves this through the
partitioning of the data across a spatial grid and through the iterative process
of collecting the iModes.

7 Conclusion

In this work we have introduced Boosted Mean Shift Clustering (BMSC), a
nonparametric clustering method that overcomes the limitations of mean shift
and DBSCAN, namely the sensitivity to parameters’ values and the difficulty of
handling overlapping clusters. At the same time, BMSC preserves the ability of
automatically estimating the number of clusters from the data and of handling
clusters of irregular shapes. The effectiveness and stability of BMSC are demon-
strated through extensive experiments conducted on synthetic and real-world
datasets. We are interested in extending the framework introduced here to other
clustering methodologies, e.g. centroid-based, as well as to a semi-supervised
scenario. As mentioned earlier in our discussion on computational complexity,
BMSC can be easily parallelized via a multi-thread implementation (one thread
per cell). We will proceed with such implementation in our future work and test
the achieved speed-up for the big data clustering problems.

Acknowledgement. This paper is in part supported by the China Scholarship
Council (CSC).
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Hypernode Graphs for Spectral Learning

on Binary Relations over Sets�
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Abstract. We introduce hypernode graphs as weighted binary relations
between sets of nodes: a hypernode is a set of nodes, a hyperedge is a pair
of hypernodes, and each node in a hypernode of a hyperedge is given a
non negative weight that represents the node contribution to the relation.
Hypernode graphs model binary relations between sets of individuals
while allowing to reason at the level of individuals. We present a spectral
theory for hypernode graphs that allows us to introduce an unnormalized
Laplacian and a smoothness semi-norm. In this framework, we are able
to extend spectral graph learning algorithms to the case of hypernode
graphs. We show that hypernode graphs are a proper extension of graphs
from the expressive power point of view and from the spectral analysis
point of view. Therefore hypernode graphs allow to model higher order
relations whereas it is not true for hypergraphs as shown in [1]. In order
to prove the potential of the model, we represent multiple players games
with hypernode graphs and introduce a novel method to infer skill ratings
from game outcomes. We show that spectral learning algorithms over
hypernode graphs obtain competitive results with skill ratings specialized
algorithms such as Elo duelling and TrueSkill.

Keywords: Graphs, Hypergraphs, Semi Supervised Learning, Multiple
Players Games.

1 Introduction

Graphs are commonly used as a powerful abstract model to represent binary
relationships between individuals. Binary relationships between individuals are
modeled by edges between nodes. This is for instance the case for social net-
works with the friendship relation, or for computer networks with the connec-
tion relation. The hypergraph formalism [2] has been introduced for modeling
problems where relationships are no longer binary, that is when they involve
more than two individuals. Hypergraphs have been used for instance in bioinfor-
matics [11], computer vision [17] or natural language processing [3]. But, graphs
and hypergraphs are limited when one has to consider relationships between sets
of individual objects. A typical example is the case of multiple players games
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Fig. 1. A hypernode graph modeling 3 tennis games with 4 players. Each of the three
hyperedges has one color and models a game for which players connected to the same
long edge of a rectangle are in the same team.

where a game can be viewed as a relationship between two teams of multiple
players. Other examples include relationships between groups in social networks
or between clusters in computer networks. For these problems, considering both
the group level and the individual level is a requisite. For instance for multiple
players games, one is interested in predicting game outcomes for games between
teams as well as in predicting player skills. Graphs and hypergraphs fail to model
higher order relations considering both the individual level and the level of sets
of individuals. This paper is a proposition to overcome this limitation.

A first contribution of this paper is to introduce a new class of undirected
hypergraphs called hypernode graphs for modeling binary relationships between
sets of individual objects. A relationship between two sets of individual objects is
represented by a hyperedge which is defined to be a pair of disjoint hypernodes,
where a hypernode is a set of nodes. Nodes in a hypernode of a hyperedge are
given a non negative weight that represents the node contribution to the binary
relationship. An example of hypernode graph is presented in Figure 1. There are
four nodes that represent four tennis players and three hyperedges representing
three games between teams: {1} against {3}, {1, 2} against {3, 4}, and {1, 4}
against {2, 3}. For each hyperedge, each player has been given a weight which
can be seen as the player’s contribution. It can be noted that the hyperedge
between singleton sets {1} and {3} can be viewed as an edge between nodes
1 and 3 with edge weight 0.5. Undirected graphs are shown to be hypernode
graphs where hypernodes are singleton sets.

Given a hypernode graph modeling binary relationships between sets of indi-
viduals, an important task, as said above, is to evaluate individuals by means
of node labelling or node scoring functions. The second contribution of this
paper is to propose machine learning algorithms in the semi-supervised, batch
setting on hypernode graphs for predicting node labels or node scores. To this
aim, we develop a spectral learning theory for hypernode graphs. Similarly to
the case of graph spectral learning, our approach relies on the homophilic as-
sumption [4, Chapter 4] (also called assortative mixing assumption) which says
that two linked nodes should have the same label or similar scores. For graphs,
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this assumption is reflected in the choice of smooth node functions for which
linked nodes get values that are close enough. For hypernode graphs, we assume
an additive model, and we will say that a real-valued node function over a hy-
pernode graph is smooth if, for linked hypernodes, the weighted sum of function
values over the two node sets are close enough. As an example, let us consider
the blue hyperedge in Figure 1 between the two sets {1, 2} and {3, 4} and a real-
valued node function f , the function f is said to be smooth over the hyperedge
if f(1) + f(2) is close to f(3) + f(4).

For defining the smoothness, we introduce an unnormalized gradient for hy-
pernode graphs. Then, we define an unnormalized Laplacian Δ for hypernode
graphs by Δ = GTG where G is the gradient. We show that the class of Lapla-
cians of hypernode graphs is the class of symmetric positive semidefinite real-
valued matricesM such that 1 ∈ Null(M), where Null(M) denotes the null space
ofM and 1 is the vector full of 1’s. Note that there exist hypernode graphs whose
Laplacians do not match that of a graph (we can easily obtain extra-diagonal
values that are positive as shown in Figure 2) whereas it has been proved in [1]
that hypergraph Laplacians can be defined from graph Laplacians using ade-
quate graph construction. The smoothness of a real-valued node function f on
a hypernode graph can be characterized by the smoothness semi-norm defined
by Ω(f) = fTΔf . We define the kernel of a hypernode graph to be the Moore-
Penrose pseudoinverse [15] of its Laplacian. The spectral theory for hypernode
graphs and its properties allow us to use spectral graph learning algorithms [16],
[18], [20] for hypernode graphs.

We apply hypernode graph spectral learning to the rating of individual skills
of players and to the prediction of game outcomes in multiple players games. We
consider competitive games between two teams where each team is composed of
an arbitrary number of players. Each game is modeled by a hyperedge and a set
of games is represented by a hypernode graph. We define a skill rating function
of players as a real-valued node function over the hypernode graph. And we show
that finding the optimal skill rating function reduces to finding the real-valued
function s∗ minimizing Ω(s) = sTΔs, where Δ is the unnormalized Laplacian
of the hypernode graph. The optimal individual skill rating function allows to
compute the rating of teams and to predict game outcomes for new games. We
apply this learning method on real datasets of multiple players games to predict
game outcomes in a semi-supervised, batch setting. Experimental results show
that we obtain very competitive results compared to specialized algorithms such
as Elo duelling and TrueSkill.

Related Work. Hypernode graphs that we introduced can be viewed as an undi-
rected version of directed hypergraphs popularized by [6] where a directed hy-
peredge consists in an oriented relation between two sets of nodes. As far as we
know, this class of directed hypergraphs has not been studied from the machine
learning point of view and no attempt was made to define a spectral framework
for these objects. Hypernode graphs can also be viewed as an extension of hyper-
graphs. The question of learning with hypergraphs has been studied and, for an
overview, we refer the reader to [1]. In this paper, the authors show that various
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formulations of the semi-supervised and the unsupervised learning problem on
hypergraphs can be reduced to graph problems. For instance, the hypergraph
Laplacian of [19] can be defined as a graph Laplacian by an adequate graph con-
struction. To the best of our knowledge, no hypergraph Laplacian which cannot
be reduced to a graph Laplacian has been defined so far. A very recent tentative
to fully use the hypergraph structure was proposed by [8]. In this paper, the au-
thors propose to use the hypergraph cut, and they introduce the total variation
on a hypergraph as the Lovasz extension of the hypergraph cut. This allows to
define a regularization functional on hypergraphs for defining semi-supervised
learning algorithms.

2 Graphs and Hypernode Graphs

2.1 Undirected Graphs and Laplacians

In the following, we recall the commonly accepted definitions of undirected
graphs and graph Laplacians. An undirected graph g = (V,E) is a set of nodes
V with |V | = n together with a set of undirected edges E with |E| = p. Each
edge e ∈ E is an unordered pair {i, j} of nodes and has a non negative weight
wi,j . In order to define the smoothness of a real-valued node function f over a
graph g, we define the gradient function grad for f by, for every edge (i, j),

grad(f)(i, j) =
√
wi,j(f(j)− f(i)) .

We can note that | grad(f)(i, j)| is small whenever f(i) is close to f(j). Then,
the smoothness of a real-valued node function f over a graph g is defined by

Ω(f) =
∑

i,j∈V 2

| grad(f)(i, j)|2 = fTGTGf ,

where G is the matrix of the linear mapping grad from Rn into Rp. The symmet-
ric matrix Δ = GTG is called undirected graph Laplacian, which is also proved to
be defined by Δ = D−W where D is the degree matrix of g and W the weight
matrix of g. Ω(f) = fTΔf has been used in multiple works (see for example
[20], [16]) to ensure the smoothness of a node labeling functionf .

Additional information concerning the discrete analysis on graphs can be
found in [18], which develop a similar theory with a normalized version of the
gradient and Laplacian (G is replaced by GD−1/2).

2.2 Hypernode Graphs

The following definition is our contribution to the modeling of binary relation-
ships between sets of entities.

Definition 1. A hypernode graph h = (V,H) is a set of nodes V with |V | = n
and a set of hyperedges H with |H | = p. Each hyperedge h ∈ H is an unordered
pair {sh, th} of two non empty and disjoint hypernodes (a hypernode is a subset
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of V ). Each hyperedge h ∈ H has a weight function wh mapping every node i in
sh ∪ th to a positive real number wh(i) (for i /∈ sh ∪ th, we define wh(i) = 0).
Each weight function wh of h = {sh, th} must satisfy the Equilibrium Condition
defined by ∑

i∈th

√
wh(i) =

∑
i∈sh

√
wh(i) .

An example of hypernode graph is shown in Figure 1. The red hyperedge
links the sets {1, 4} and {2, 3}. The weights satisfy the Equilibrium condition
which ensures that constant node functions have a null gradient as we will see
in the next section. The green hyperedge is an unordered pair {{1}, {3}} of two
singleton sets with weights 0.5 for the nodes 1 and 3. It can be viewed as an edge
between nodes 1 and 3 with edge weight 0.5. Indeed, when a hyperedge h is an
unordered pair {{i}, {j}} involving only two nodes, the Equilibrium Condition
states that the weights wh(i) and wh(j) are equal. Thus, such a hyperedge can be
seen as an edge with edge weight wi,j = wh(i) = wh(j). Therefore, a hypernode
graph such that every hyperedge is an unordered pair of singleton nodes can be
viewed as an undirected graph, and conversely.

2.3 Hypernode Graph Laplacians

In this section, we define the smoothness of a real-valued node function f over
a hypernode graph with the gradient that we define now.

Definition 2. Let h = (V,H) be a hypernode graph and f be a real-valued
node function, the (hypernode graph) unnormalized gradient of h is a linear
application, denoted by grad, that maps every real-valued node function f into a
real-valued hyperedge function grad(f) defined, for every h = {sh, th} in H, by

grad(f)(h) =
∑
i∈th

f(i)
√
wh(i)−

∑
i∈sh

f(i)
√
wh(i) ,

where an arbitrary orientation of the hyperedges has been chosen.

As an immediate consequence of the gradient definition and because of the
Equilibrium Condition, the gradient of a constant node function is the zero-
valued hyperedge function. Also, it can be noted that, for a hyperedge h ∈ H ,
| grad(f)(h)|2 is small when the weighted sum of the values f(i) for nodes i in
sh is close to the weighted sum of the values f(j) for nodes j in th. Thus, if we
denote by G ∈ Rp×n the matrix of grad, the smoothness of a real-valued node
function f over a hypernode graph h is defined by Ω(f) = fTGTGf .

Let h be a hypernode graph with unnormalized gradient G, the square n× n
real valued matrix Δ = GTG is defined to be the unnormalized Laplacian of the
hypernode graph h. It should be noted that, as in the graph case, the LaplacianΔ
does not depend on the arbitrary orientation of the hyperedges used for defining
the gradient. When the hypernode graph is a graph, the unnormalized hypernode
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graph Laplacian matches the unnormalized graph Laplacian. Last, we define
the hypernode graph kernel of a hypernode graph h to be the Moore-Penrose
pseudoinverse Δ† [15] of the hypernode graph Laplacian Δ .

2.4 Hypernode Graph Laplacians and Learning

We can characterize hypernode graph Laplacians by

Proposition 1. The class of hypernode graph Laplacians is the class of symmet-
ric positive semidefinite real-valued matrices M such that 1 ∈ Null(M), where
Null(M) denotes the null space of M .

Proof. It is an immediate consequence of the definitions of the hypernode graph
gradient and the hypernode graph Laplacian that a hypernode graph Laplacian
is a symmetric positive semidefinite real-valued matrix, and that a constant
function has a null gradient. For the other direction, let us consider a symmetric
positive semidefinite real-valued matrix M such that 1 ∈ Null(M). Then, con-
sider a square root decomposition M = GTG of M . For each line of G, one can
define a hyperedge h = {sh, th} with sh the set of nodes with positive values
in the line of G, th the set of nodes with negative values in the line of G, and
weights equal to the square of values in the line of G. The Equilibrium condition
is satisfied because 1 ∈ Null(M) and it is easy to verify that the Laplacian of
the resulting hypernode graph h is M .

As a consequence of the construction in the previous proof, it should be noted
that there are several hypernode graphs with the same hypernode graph Lapla-
cian because the square root decomposition is not unique. One can also find
hypernode graphs whose Laplacian matches that of a graph. One can prove that
this is not however the general case. For this, it suffices to consider a hypernode
graph Laplacian with an extradiagonal term which is positive. For instance, con-
sider the hypernode graph and its Laplacian matrix Δ in Figure 2, the Laplacian
matrix has 1 as extradiagonal term, thus Δ is not a graph Laplacian.

As said in Proposition 1, hypernode graph Laplacians are positive semidef-
inite. This allows to leverage most of the spectral learning algorithms defined
in [16] , [18], [20] from graphs to hypernode graphs. Note, however, that spectral
hypernode graph learning can not be reduced to spectral graph learning since
hypernode graph Laplacians are strictly more general than graph Laplacians.

2.5 Hypernode Graph Laplacians and Signed Graphs

In this section we present additional properties of hypernode graph Laplacians
and kernels. As in the graph case, we have defined the kernel of a hypern-
ode graph to be the Moore-Penrose pseudoinverse of its Laplacian. Because the
pseudoinversion preserves semidefiniteness and symmetry, as a consequence of
Proposition 1, one can show that the class of hypernode graph kernels is closed
under the pseudoinverse operation. As a consequence, the class of hypernode
graph kernels is equal to the class of hypernode graph Laplacians. It is worth
noticing that the class of graph kernels is not closed by pseudoinversion.
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Fig. 2. From left to right : a hypernode graph, its Laplacian Δ, the pairwise weight
matrix W , and the corresponding signed graph

It can also be shown that the class of hypernode graph Laplacians is closed
by convex linear combination. This is an important property in the setting of
learning from different sources of data. As graph kernels are hypernode graph
kernels, it should be noted that the convex linear combination of graph kernels
is a hypernode graph kernel, while it is not a graph kernel in general because the
class of graph kernels is not closed by convex linear combination. This explains
why problems for hypernode graphs can not be solved using graph constructions.

We have shown above that there does not exist in general a graph whose
Laplacian is equal to the Laplacian of a given hypernode graph. Nevertheless,
given a hypernode graph h and its Laplacian Δ, using Proposition 1, one can
define a symmetric matrix W of possibly negative weights for pairs of nodes of
h such that Δ = D −W , where D is the degree matrix associated with W (the
construction is illustrated in Figure 2). This means that, for every hypernode
graph h, there is a unique signed graph with weight matrix W such that D−W
is the hypernode graph Laplacian of h. This result highlights the subclass of
signed graphs whose Laplacian computed with the formula D − W is positive
semidefinite. This result also shows that homophilic relations between sets of
nodes lead to non homophilic relations between nodes.

3 Hypernode Graph Model for Multiple Players Games

We consider competitive games between two teams where each team is composed
of an arbitrary number of players. A first objective is to compute the skill ratings
of individual players from game outcomes. A second objective is to predict a game
outcome from a batch of games with their outcomes. For that, we will model
games by hyperedges assuming that the performance of a team is the sum of the
performances of its members as done by the team model proposed in [9].

3.1 Multiplayer Games

Let us consider a set of individual players P = {1, . . . , n} and a set of games
Γ = {γ1, . . . , γp} between two teams of players. Let us also consider that a player
i contributes to a game γj with a non negative weight cj(i). We assume that each
player has a skill s(i) and that a game outcome can be predicted by comparing the
weighted sum of the skills of the players of each of the two teams. More formally,
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given two teams of players A = {a1, a2, . . . , a�} and B = {b1, b2, . . . , bk} playing
game γj , then A is predicted to be the winner if

�∑
i=1

cj(ai)s(ai) >

k∑
i=1

cj(bi)s(bi) . (1)

Equivalently, one can rewrite this inequality by introducing a non negative
real number oj on the right hand side such that

�∑
i=1

cj(ai)s(ai) = oj +

k∑
i=1

cj(bi)s(bi) . (2)

The real number oj quantifies the game outcome. In the case of a draw, the game
outcome oj is set to 0. Given a set of games, it may be impossible to assert that
all constraints (1) can be simultaneously satisfied. Our goal is to estimate a skill
rating function s ∈ Rn that respects the game outcomes in Γ as much as possible.
We define the cost of a game γj with outcome oj for a skill function s by

Cγj (s) = ‖
�∑

i=1

cj(ai)s(ai)−
k∑

i=1

cj(bi)s(bi)− oj‖2 .

Consequently, given a set of games Γ and the corresponding game outcomes, the
goal is to find a skill rating function s∗ that minimizes the sum of the different
costs, i.e. search for

s∗ = argmin
s

∑
γj∈Γ

Cγj (s) . (3)

3.2 Modeling Games with Hypernode Graphs

We introduce the general construction by considering an example. Let us consider
a game γ between two teams A = {1, 2} and B = {3, 4}. Let us also assume that
all the players contribute to the game with the same weight c(1) = c(2) = c(3) =
c(4) = 1. Note that using uniform weights implies that the roles of the players
inside a team are interchangeable and that equal skills for all players should lead
to a draw. Such a game can be modeled by a hyperedge between sets of nodes
{1, 2} and {3, 4} with weights equal to 1.

Now, let us suppose that A wins the game, then the skill rating function
s must satisfy Equation (2), that is s(1) + s(2) = o + s(3) + s(4) where o > 0
represents the outcome of the game γ. In order to model the game outcome in the
hyperedge, we introduce a virtual player H that plays along with team B with
a weight equal to 1 and we fix the skill rating function on H to be s(H) = o > 0.
The virtual player is modeled by a node H , called outcome node, added to the
set {3, 4}. Last, for the hyperedge to satisfy the equilibrium condition, we add
a node Z, called lazy node, to the set {1, 2}. In this example, the weight of Z is
set to 1. The skill s(Z) of the lazy node Z is fixed to be 0 such as the equation
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Fig. 3. Hyperedge h for a game γ between team A = {1, 2} and B = {3, 4}. A wins
and there is an additional outcome node H for the virtual player and an additional
lazy node for the lazy virtual player. The node contributions are set to 1.

between skills can be rewritten as s(1) + s(2) + s(Z) = s(3) + s(4) + s(H). And
this equation is the definition of the smoothness of a node real valued function
s over the hyperedge h with sh = {1, 2, Z} and th = {3, 4, H} as represented in
Figure 3 where s satisfies s(H) = o and s(Z) = 0.

In the general case, let us consider a set of individual players P = {1, . . . , n},
a set of games Γ = {γ1, . . . , γp}. Each game γj is between two teams (sets of
players) Aj and Bj , the winning team is known as well as the game outcome oj .
Let us also consider that a player i contributes to a game γj with a non negative
weight cj(i). We can define, for every game γj a hyperedge hj as follows

1. The players of Aj define one of the two hypernodes of hj . The weight of a
player node i is defined to be cj(i)

2,

2. do the same construction for the second team Bj ,

3. add a outcome node Hj to the set of player nodes corresponding to the losing
team. Its weight is set to 1,

4. add a lazy node Zj to the set of player nodes corresponding to the winning
team. Its weight is chosen in order to ensure the Equilibrium condition for
the hyperedge h.

We define the hypernode graph h = (V,H) as the set of all hyperedges hj

for the games γj in Γ as defined above. Now, skill rating functions of players
correspond to real-valued node functions over the hypernode graph. In order to
model the game outcomes in the computation of the player skills, we fix the skill
rating function values over the additional nodes for the virtual players. A skill
function s over h must thus satisfy, for every lazy node Zj, the function value
s(Zj) is 0, and, for every outcome node Hj of game γj , the function value s(Zj)
is the outcome oj .

Formally, we assume a numbering of V such that V = {1, . . . , N} where N
is the total number of nodes, the first n nodes are the player nodes followed by
the t lazy nodes, then followed by the outcome nodes, that is, V = {1, . . . , n} ∪
{n+ 1, . . . , n+ t} ∪ {n+ t+1, . . . , N}. Let Δ be the unnormalized Laplacian of
h, and let s be a real-valued node function on h, s can be seen as a real vector
in RN where the first n entries represent the skills of the n players. Then, it is
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easy to show that the skill rating problem (3) is equivalent to find the optimal
vector s solving the optimization problem

minimize
s∈RN

sTΔs

subject to ∀n+ 1 ≤ j ≤ n+ t, s(j) = 0 (for lazy nodes)

∀n+ t+ 1 ≤ j ≤ N, s(j) = oj (for outcome nodes)

(4)

3.3 Regularizing the Hypernode Graph

When the number of games is small, many players will participate to at most one
game. Thus, in this case, the number of connected components can be quite large.
The player skills in every connected component can be defined independently
while satisfying the constraints. Thus, it will be irrelevant to compare player skills
in different connected components. In order to solve this issue, we introduce in
Equation (4) a regularization term based on the standard deviation of the players
skills σ(sp) , where sp = (s(1), . . . , s(n)). This leads to the new formulation

minimize
s∈RN

sTΔs+ μσ(sp)
2

subject to ∀n+ 1 ≤ j ≤ n+ t, s(j) = 0 (for lazy nodes)

∀n+ t+ 1 ≤ j ≤ N, s(j) = oj (for outcome nodes),

(5)

where μ is a regularization parameter. Thus, we control the spread of sp, avoiding
to have extreme values for players participating in a small number of games.

In order to apply graph-based semi-supervised learning algorithms using hy-
pernode graph Laplacians, we now show that the regularized optimization prob-
lem can be rewritten as an optimization problem for some hypernode graph
Laplacian. For this, we will show that it suffices to add a regularizer node in the
hypernode graph h. First, let us recall that if s is the mean of the player skills
vector sp = (s(0), . . . , s(n)), then, for all q ∈ R, we have

σ(sp)
2 =

1

n

n∑
i=1

(s(i)− s)2 ≤ 1

n

n∑
i=1

(s(i)− q)2 .

Thus, in the problem 5, we can instead minimize sTΔs + μ
n

∑n
i=1(s(i) − q)2

over s and q. We now show that this can be written as the minimization of
rTΔμr for some vector r and well chosen hypernode graph Laplacian Δμ. For
this, let us consider the p × N gradient matrix G of the hypernode graph h
associated with the set of games Γ , and let us define the matrix Gμ by

Gμ =

0

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G

√
μ
n
B

,
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where B is the n × (N + 1) matrix defined by, for every 1 ≤ i ≤ n, Bi,i = −1,
Bi,N+1 = 1, and 0 otherwise. The matrix Gμ is the gradient of the hypernode
graph hμ obtained from the hypernode graph h by adding a regularizer node R,
an hyperedge between every player node and the regularizer node R with node
weights μ/n (such a hyperedge can be viewed as an edge with edge weight μ/n).
The construction is illustrated in Figure 4 with the hypernode graph reduced to
a single hyperedge of Figure 3.

Let us denote by r the vector (s(0), . . . , s(N), q), then since Δ = GTG, we
can write rTGT

μGμr = sTΔs+ μ
nrB

TBr. As rBTBr =
∑

i(si− q)2, if we denote

by Δμ = GT
μGμ the (N +1)× (N +1) unnormalized Laplacian of the hypernode

graph hμ, we can finally rewrite the regularized problem (5) as

minimize
r∈RN+1

rTΔμr

subject to ∀n+ 1 ≤ j ≤ n+ t, r(j) = 0 (for lazy nodes)

∀n+ t+ 1 ≤ j ≤ N, r(j) = oj (for outcome nodes)

(6)

3.4 Inferring Skill Ratings and Predicting Game Outcomes

We have shown that predicting skill ratings can be written as the optimization
problem (6). It should be noted that it can also be viewed as a semi-supervised
learning problem on the hypernode graph hμ because the question is to pre-
dict node scores (skill ratings) for player nodes when node scores for lazy nodes
and outcome nodes are given. Using Proposition 1, we get that Δμ is a posi-
tive semidefinite real-valued matrix because it is a hypernode graph Laplacian.
Therefore, we can use the semi-supervised learning algorithm presented in [20].
This algorithm was originally designed for graphs and solves exactly the prob-
lem (6) by putting hard constraints on the outcome nodes and on the lazy nodes.
We denote this method by H-ZGL.

In order to predict skill ratings, another approach is to infer player nodes
scores from lazy nodes scores and outcome nodes scores using a regression al-
gorithm. For this, we consider the hypernode graph kernel Δ†

μ (defined as the
Moore-Penrose pseudoinverse of the Laplacian Δμ) and train a regression sup-
port vector machine. We denote this method by H-SVR.
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Fig. 4. Adding a regularizer node R to the hypergraph of Figure 3
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Fig. 5. [left ] Distribution of the number of players against the number of played games;
[right ] Average percentage of players in Γu which are involved in some game in Γl

Using the two previous methods, we can infer skill ratings for players from a
given set of games together with their outcomes. The inferred skill ratings can
be used to predict game outcomes for new games. For this, we suppose that we
are given a training set of games Γl with known outcomes together with a set
of testing games Γu for which game outcomes are hidden. The goal is to predict
game outcomes for the testing set Γu. Note that other works have considered
similar questions in the online setting as in [9], [5] while we consider the batch
setting. For the prediction of game outcomes, first we apply a skill rating pre-
diction algorithm presented above given the training set Γl and output a skill
rating function s∗. Then, for each game in Γu, we evaluate the inequality (1)
with the skills defined by s∗ and decide the winner. For every player which do
not appear in the training set, the skill value is fixed a priori to the mean of
known player skills.

Algorithm 1. Predicting game outcomes

Input: Training set of games Γl, set of testing games Γu

1: Build the regularized hypernode graph hμ as described in Sections 3.2 and 3.3
2: Compute an optimal skill rating s∗ using H-ZGL or H-SVR.
3: Compute the mean skill s̃ among players in Γl

4: for each game in Γu do
5: Assign skill given by s∗ for players involved in Γl, and s̃ otherwise
6: Evaluate the inequality (1) and predict the winner
7: end for

4 Experiments

4.1 Tennis Doubles

We consider a dataset of tennis doubles collected between January 2009 and
September 2011 from ATP tournaments (World Tour, Challengers and Futures).
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Tennis doubles are played by two teams of two players. Each game has a winner
(no draw is allowed). A game is played in two or three winning sets. The final
score corresponds to the number of sets won by each team during the game. The
dataset consists in 10028 games with 1834 players.

In every experiment, we select randomly a training subset Γl of games and
all remaining games define a testing subset Γu. We will consider different sizes
for the training set Γl and will compute the outcome prediction error on the
corresponding set Γu. More precisely, for a given proportion ρ varying from 10%
to 90% , we build a training set Γl using ρ% of the games chosen randomly
among the full game set, the remaining games form the test set Γu. We present
in Figure 5 several statistics related to the Tennis dataset. It is worth noticing
that many players have played only once. Therefore, the skill rating problem and
the game outcome prediction problem become far more difficult to solve when
few games are used for learning. Moreover, it should be noted that when the
number of games in the training set is small, the number of players in the test
set which are involved in a game of the training set is small. In this case many
players will have a skill estimated to be the average skill.

Given a training set of games Γl and a test set Γu, we follow the experimental
process described in Algorithm 1. For the definition of the hypergraph, we fix all
player contributions in games to 1 because we do not have additional information
than final scores. Thus the player nodes weights in every hyperedge are set to
1. In the optimization problem 6, the game outcomes oj are defined to be the
difference between the number of sets won by the two teams. This allows to
take account of the score when computing player skills. In order to reduce the
number of nodes, all lazy nodes are merged in a single one that is shared by all
the hyperedges. We do the same for outcome nodes because score differences can
be 1, 2 or 3. The resulting hypernode graph has at most 1839 nodes: at most
1834 player nodes, 1 lazy node, 3 outcome nodes, and 1 regularizer node.

To complete the definition of the hypernode graph hμ constructed from the
game set Γl, it remains to fix the regularization node weights μ/n, i.e. fix the
value of the regularization parameter μ. For this, assuming a Gaussian distri-
bution for skill ratings and comparing expected values for the two terms sTΔs
and μσ(sp)

2, we can show that the value of μ/n should have the same order of
magnitude than the average number of games played by a player. We fix the
default value to be 16 for μ/n and use this default value in all experiments.

Given hμ, following Algorithm 1, we apply the skill rating prediction algo-
rithms H-ZGL and H-SVR. In order to compare our method, we also infer skill
ratings using Elo Duelling and Trueskill [9]1 Then, we predict game outcomes
from the inferred skill ratings. The results are given in Figure 6 (for each value
of ρ, we repeat the experiment 10 times). It can be noted that Elo duelling
performs poorly. Also, it can be noted that H-ZGL is significantly better than
Trueskill whatever is the chosen proportion.

1 TrueSkill and Elo implementations are from [7]. Results were double-checked using
[14] and [13]. Parameters of Elo and TrueSkill are the default parameters of [7]
(K = 32 for Elo, μ0 = 25, β = 12.5, σ = 8.33 and τ = 0.25 for TrueSkill).
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Fig. 6. Predictive error depending on the proportion of games used to build Γl

4.2 Xbox Title Halo2

The Halo2 dataset was generated by Bungie Studio during the beta testing of the
XBox title Halo2. It has been notably used in [9] to evaluate the performance of
the Trueskill algorithm. We consider the Small Teams dataset with 4992 players
and 27536 games opposing up to 12 players in two teams which can have a
different size. Each game can result in a draw or a win of one of the two teams.
The proportion of draws is 22.8%. As reported in [9], the prediction of draws
is challenging and it should be noted that Trueskill and our algorithm fail to
outperform a random guess for the prediction of draw.

We again consider the experimental process described in Algorithm 1. As
for the Tennis dataset, we fix all players contributions in games to 1. In the
optimization problem 6, the game outcomes oj are defined to be equal to 1 when
the game has a winner and 0 otherwise because game scores in vary depending
on the type of game. As above, we merge the lazy nodes into a single one and
do the same for outcome nodes. The value of μ/n is again set to 16.

As for the Tennis dataset, we compare the skill rating algorithms H-ZGL,
H-SVR, Elo Duelling and Trueskill. The number of prediction errors for game
outcomes is computed assuming that a draw can be regarded as half a win, half
a loss [12]. We present the experimental results in Figure 7. For a proportion
of 10% of games in the training set, H-ZGL, H-SVR and Trueskill give similar
results while with larger training sets, our hypernode graph learning algorithms
outperform Trueskill. Contrary to the previous experiment, H-SVR performs
better than H-ZGL. This result has however to be qualified given the fact that
H-SVR depends on the soft margin parameter C whereas H-ZGL is strictly non-
parametric, and we did not search for the better value of C.
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5 Conclusion

We have introduced hypernode graphs, defined a spectral theory for hypernode
graphs, and presented an application to the problem of skill rating and game
outcome prediction in multiple players games. This paper opens many research
questions both from a theoretical perspective and from an applicatory perspec-
tive. First, the class of directed hypernode graphs should be investigated from
a machine learning perspective. Second, following [8], it should be interesting
to study the notion of cut for hypernode graphs. Third, we should define online
learning algorithms for hypernode graphs following [10] which would be useful for
large datasets for massive online games. Last, we are confident in the capability
of our model to handle new applications in networked data.
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Abstract. Online social networks are often defined by considering in-
teractions over large time intervals, e.g., consider pairs of individuals
who have called each other at least once in a mobilie-operator network,
or users who have made a conversation in a social-media site. Although
such a definition can be valuable in many graph-mining tasks, it suffers
from a severe limitation: it neglects the precise time that the interaction
between network nodes occurs.

In this paper we study interaction networks, where one considers not
only the social-network topology, but also the exact time that nodes in-
teract. In an interaction network an edge is associated with a time stamp,
and multiple edges may occur for the same pair of nodes. Consequently,
interaction networks offer a more fine-grained representation that can be
used to reveal otherwise hidden dynamic phenomena in the network.

We consider the problem of discovering communities in interaction
networks, which are dense and whose edges occur in short time intervals.
Such communities represent groups of individuals who interact with each
other in some specific time instances, for example, a group of employees
who work on a project and whose interaction intensifies before certain
project milestones. We prove that the problem we define isNP-hard, and
we provide effective algorithms by adapting techniques used to find dense
subgraphs. We perform extensive evaluation of the proposed methods
on synthetic and real datasets, which demonstrates the validity of our
concepts and the good performance of our algorithms.

Keywords: Community detection, graph mining, social-network anal-
ysis, dynamic graphs, time-evolving networks, interaction networks.

1 Introduction

Searching for communities in social networks is one of the most well-studied
problems in social-network analysis. A number of different methods has been
proposed, employing a diverse set of algorithmic tools, such as, agglomerative
approaches, min-cut formulations, random walks, spectral methods, and more.
Somewhat in contrast to this line of work, it has been observed that large net-
works are characterized by the lack of clear and well-defined communities [13,21].
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The lack of well-defined communities can be contributed to the high degree
of interconnectivity, and the existence of overlapping communities. The phe-
nomenon of overlapping communities is aggravated by the fact that community-
detection methods typically ignore the time of interaction between network
nodes, for instance, the same type of link can be used to represent friends in
a hobby club and work colleagues.

On the other hand, as the amount of available data increases in volume and
richness, it becomes possible to analyze not only the underlying topology but
also the exact time of interactions. Analysis of such interaction events can reveal
much more information about the structure and dynamics of the communities
in the network. To be more concrete, consider the following examples.

Example 1: A group of researchers across many different European institutions
are working on a large project. The members of the group go along with their
everyday lives and other tasks, often unrelated to the project. However, once
every few weeks or months, before deadlines of deliverables or project meetings,
there is a lot of interaction among the group members.

Example 2: A group of twitter users is interested in technology products, in
particular smartphones, and they are very active in blogging reviews and com-
menting the posts of each other. Their interaction is sparse, but it sustains over
a long time, and it intensifies significantly after the release of a new product.

The main point of these two examples is that the communities are not isolated.
Their members interact with each other, but they also interact with others out-
side the community. If one ignores the interaction dynamics and considers only
the static social-network topology, the communities will be hidden and it will
be impossible to discover them. It is only when considering the interaction time
instances among the community members that it becomes possible to identify
them: in both of the above examples, many interactions occur among the com-
munity members, but in a number of relatively short time intervals.

In this paper we formalize the idea exemplified above. We consider interaction
networks for which we assume that all interaction events between the network
nodes are known. Examples of such interaction networks include call graphs of
telecommunications, email communication networks, mention and commenting
networks in social media, collaboration networks, and more. Thus, interaction-
network datasets are already abundant in many application domains.

In the context of interaction networks, we study the problem of discovering
communities that are dense and whose edges occur in short time intervals. We
prove that the problem we define is NP-hard, even though that the correspond-
ing problem on static graphs is polynomially-time solvable. For the problem we
define, we provide algorithms inspired by the literature of finding dense sub-
graphs. Our experiments demonstrate the effectiveness of the proposed algo-
rithms, as well as the validity of our hypothesis. Namely, that it is possible to
find communities that satisfy the requirements we set: dense interactions that
occur within a number of short time intervals.



680 P. Rozenshtein, N. Tatti, and A. Gionis

2 Preliminaries and Notation

An interaction network G = (V,E) consists of a set of n nodes V and a set of
m time-stamped interactions E between pairs of nodes

E = {(ui, vi, ti)} , with i = 1, . . . ,m, such that ui, vi ∈ V and ti ∈ R.

We consider that interactions are undirected. More than one interaction may
take place between a pair of nodes, with different time stamps. Conversely, more
than one interaction may take place at the same time, between different nodes.

For an interaction network G = (V,E) we associate the set of edges π(E) to
be the pairs of nodes for which there is at least one interaction (one may think
of π as “projecting” the edges of the interaction network along the time axis)

π(E) = {(u, v) ∈ V × V | (u, v, t) ∈ E for some t} .

Given an interaction network G = (V,E), the network π(G) = (V, π(E)) is
a standard graph with no time stamps on its edges. We refer to π(G) as the
topology network of G or as the underlying network of G.

Given an interaction network G = (V,E) and a subset of nodes W ⊆ V , we
define the induced interaction network G(W ) = (W,E(W )), such that E(W )
consists of the interactions whose both end-points are contained in W ,

E(W ) = {(u, v, t) ∈ E | u, v ∈ W} .

We also consider time intervals [s, f ], where s ∈ R is the start point and f ∈ R

is the end-point of the interval. We define the span of an interval to be its time
duration, i.e., span(T ) = f − s.

We define a time-interval set T to be a collection of non-overlapping time
intervals, T = (T1, . . . , Tk). The span of T is the sum of individual spans,

span(T ) =

k∑
i=1

span(Ti) .

Given an interaction network G = (V,E) and a time interval T = [s, f ] we
define the spliced interaction network G(T ) = (V,E(T )), where E(T ) are the
interactions that occur in T ,

E(T ) = {(u, v, t) ∈ E | s ≤ t ≤ f} .

The above notion can be extended in a straightforward manner, so as to define
the spliced interaction network with respect to a set of time intervals T =
(T1, . . . , Tk). This is achieved by collecting edges from individual time intervals,

that is, G(T ) = (V,E(T )), where E(T ) =
⋃k

i=1 E(Ti).

The concepts of induced interaction network and spliced interaction network
provide two different ways to select subsets of interaction networks; one is based
on subsets of nodes and the other is based on time intervals. The definition
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of dynamic communities, which is the central concept of our paper, relies on
these two subset-selection strategies. In particular, for an interaction network
G = (V,E), a subset of nodes W , and a set of time intervals T , we define a
dynamic community G(W, T ) as the subgraph that consists of the nodes in W
and the set of interactions among the nodes in W that occur within T . In more
formal terms, G(W, T ) is defined to be the spliced interaction network H(T ),
where H is the induced interaction network G(W ).

To measure the quality of a dynamic community we rely on the notion of
density. We recall the definition of density as defined for static graphs, e.g., for
the topology network π(G) = (V, π(E)) of an interaction network G = (V,E).
We also review the densest-subgraph problem for static graphs.

Given a static graph H = (V, F ), i.e., the edges F do not have time stamps,
the density of the graph d(H) is twice the ratio of edges and the vertices,

d(H) =
2 |F |
|V | .

Problem 1 (Densest subgraph). Given a static graph H = (V, F ), find a subset
of vertices W that maximizes the density d(H(W )).

Unlike the problem of finding the largest clique, which isNP-hard, finding the
densest subgraph is polynomially-time solvable. Furthermore, there is a linear-
time factor-2 approximation algorithm [2,8]. The algorithm deletes iteratively a
vertex with the lowest degree, obtaining a sequence of subgraphs. Among those
subgraphs the algorithm returns the one with the highest density.

3 Dense Communities in Interaction Networks

Given an interaction network G = (V,E) we aim to find a set of nodes W
and a set of time intervals T , such that the subgraph G(W ) is relatively dense
within T . To ensure that the time span of the subgraphG(W ) is short, we impose
two types of constraints on the time-interval set T : (i) constraints on the number
of intervals of T , and (ii) constraints on the total length of T . We discuss these
two constraints shortly. For the problem of finding dense dynamic communities,
which we provide below, we also assume a quality score q(W, T ;G) that measures
the density of the community G(W, T ) in the interaction network G.

Problem 2. Assume that we are given a quality score q(W, T ;G) that measures
the quality of the community defined by nodes W and time interval span T in
the interaction network G. Assume also we are given a budget K on the number
of time intervals, and a budget B on the total time span. Our goal is to find a
set of nodes W and a set of time intervals T that maximize

q(W, T ;G) , such that |T | ≤ K and span(T ) ≤ B.

The first constraint states that we can have at most K intervals while the sec-
ond constraint requires that the total duration is at most B. Both constraints
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s are required: assuming that the quality score increases with the time span, if
we drop the second constraint, then we can always choose the whole time span.
Such a solution, however, does not capture the intuition of dynamic communities
that we aim to discover. On the other hand, if we drop the first constraint, then
we can pick individual edges by setting a time interval of duration 0 around each
individual edge. Namely, the constraint on the number of intervals is necessary
to impose time-continuity on the solutions found.

Regarding the score function used to assess the quality of a community, our
proposed measure is the density of the topology network, after restricting to
node set W and time-interval set T

q(W, T ;G) = d(π(G(W, T ))) ,

that is, we count twice the number of interactions that occur between nodes of
W within time intervals T , and divide this number by |W |.

3.1 Complexity

We proceed to establish the complexity of the problem of finding a dense dynamic
community in interaction networks (Problem 2).

Proposition 1. The decision version of Problem 2 is NP-complete.

Proof. We are given an interaction network G, budgets K, B, and a threshold σ,
and we need to answer whether there is a node set W and a time-interval set T ,
which satisfy the two budget constraints, and for which q(W, T ;G) ≥ σ.

The problem is clearly in NP. To prove the hardness, we obtain a reduction
from VertexCover. An instance of VertexCover specifies a graph H and
budget 	, and asks whether there is a set V ′ ⊆ V , such that |V ′| ≤ 	 and each
edge of the graph is adjacent to at least one of the nodes of V ′.

Consider graph H = (U, F ) with n nodes and m edges, and budget 	. Let
us define an interaction network G = (V,E). The node set V consists of U and
n+1 additional auxiliary nodes, and the set of edges E is defined as follows: First
we consider n+ 1 distinct time points t0, . . . , tn. At t0 we consider interactions
between all the auxiliary nodes, and between auxiliary nodes and each v ∈ U .
We arbitrarily order the nodes in U and let vi be the i-th node. At time ti we
connect vi with all its neighbors in H .

Assume that there exists a solution W and T , for Problem 2, with budgets
K = 	+1 and B = 0. We claim that W will contain all nodes and T will contain
t0 and the time points corresponding to the vertex cover of H .

Let us first prove that W = V and (t0, t0) ∈ T . Assume otherwise. Then,
since the remaining time intervals have only edges between U , there must be at
most n(n− 1)/2 edges, yielding density at most n− 1. Let us replace one of the
selected time intervals with t0 and reset W to be auxiliary nodes. This solution
gives us a density of n, which is a contradiction.

Now we have established that t0 is a part of T . A straightforward calculation
shows that it is always beneficial to add auxiliary nodes to W , if they are not
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part of a solution. Once this is shown, we can show further that adding any
missing nodes from U also improves the density. Consequently, W = V .

Set σ = 2(n(n + 1)/2 + n(n + 1) + m)/(2n + 1). The first two terms in the
numerator correspond to the edges at t0. The remaining m edges must come
from the remaining time intervals. This is only possible if and only if the time
intervals contain all edges from H , that is, the corresponding nodes cover every
edge, which completes the reduction. ��

4 Algorithms for Discovering Communities

In this section we present the algorithm we propose for Problem 2. Since the
problem is NP-hard, we propose an iterative method, which improves the so-
lution by optimizing each one of the two components, the node set W and the
time-interval set T , in an alternating fashion, while keeping the other fixed.

Both of the objectives of our alternating optimization method give rise to
interesting computational problems. One problem reduces to finding the densest
subgraph, and the other is related to coverage, and it is even NP-hard. Next we
formalize the two problems of our alternating optimization method.

Problem 3. Consider an interactive network G = (V,E). Consider the problem
of finding a dense dynamic community, with budgets K and B, and quality
score q. Assume that a set of nodes W is provided as input. Find a time-interval
set T that maximizes

q(W, T ;G) , such that |T | ≤ K and span(T ) ≤ B.

Problem 4. Consider the problem of finding a dense dynamic community on an
interactive network G = (V,E) with quality score q. Assume that a time-interval
set T is given as input. Find a set of nodes W that maximizes q(W, T ;G).

The proposed algorithm starts from an initial time interval set T0, and obtains
a solution (W, T ) by iteratively solving the two problems defined above until
convergence. Pseudocode of the method is given in Algorithm 1. As one may
expect the iterative algorithm does not provide a guarantee for the quality of
the solution that it returns. However, as it is stated by the following proposition,
whose proof is straightforward, it has the desirable property that both of the
alternating optimization problems return the correct component of the solution
if they obtain as input the other component correctly.

Proposition 2. Let (W, T ) be a solution to Problem 2 for a given interaction
network G. Then (i) T is a solution to Problem 3 given G and W , and (ii) W
is a solution to Problem 4 given G and T .

In the next two sections, 4.1 and 4.2, we present in detail our solution for
the two subproblems of the iterative algorithm. In Section 4.3 we discuss the
initialization of the algorithm.
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Algorithm 1. Iterative algorithm for finding a dense dynamic community

1 T0 ← initial sets of time intervals;
2 i← 0;
3 while (convergence; i++) do
4 Wi+1 ← solution to Problem 4 given Ti;
5 Ti+1 ← solution to Problem 3 given Wi+1;

6 return (Wi, Ti);

4.1 Finding an Optimal Set of Nodes

We start with Problem 4 where the goal is to find an optimal set of nodes W
given a set of time intervals T . Assume that we are given a set of time intervals
T and let H = π(G(T )) be the topology network for the interactions that occur
within T (i.e., the topology network of the interaction network spliced by T ).
Note that

q(W, T ;G) = d(H(W )) .

Consequently, finding the optimal set of nodes is equivalent to the densest-
subgraph problem (Problem 1) on the (static) graph H . It follows that finding
the optimal set of nodes W , given time-interval set T , can be done in polynomial
time. In our implementation, we use the linear-time algorithm of Charikar [8],
which, as outlined in Section 2, offers a factor-2 approximation guarantee.

4.2 Finding an Optimal Set of Time Intervals

We now present our solutions for the second subproblem of the iterative algo-
rithm, namely, finding an optimal set of time intervals for a given set of nodes.
Unfortunately, even if this is a subproblem of the general community-discovery
problem, it remains NP-hard. The proof of this claim is a simplified version of
the proof of Proposition 1.

We view the problem of finding optimal time intervals as an instance of a
maximum-coverage with multiple budgets (mcmb) problem.

Problem 5 (mcmb). Given a ground set U = {u1, . . . , um} with weighted ele-
ments w(ui), a collection of subsets S = {S1, . . . , Sk}, p cost functions ci map-
ping each subset of S to a positive number, and n budget parameters Bi, find a
subset P ⊆ S maximizing∑

u∈X

w(u), such that X =
⋃
S∈P

S, and
∑
S∈P

ci(S) ≤ Bi, for all i = 1, . . . , p.

When p = 1, the problem is the standard budgeted maximum coverage. The
problem is still NP-hard but there exists an approximation algorithm by Khuller
et al. that achieves (1 − 1/e) approximation ratio [17]. However this algorithm
requires to enumerate all 3-subset collections, making it infeasible in practice.
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The optimization problem can be also viewed as an instance of maximizing
submodular function under multiple linear constraints. Kulik et al. presented a
polynomial algorithm that achieves (1 − ε)(1 − 1/e) approximation ratio [18].
Unfortunately, this algorithm is not practical even for modest ε.

To see how finding a set of time intervals is related to maximum coverage,
consider as ground set the set of edges π(E(T )) (interactions that occur in T
without the time stamps), and for each time interval T ∈ T create a subset
ST containing all edges whose corresponding interactions occur in T . There are
two cost functions c1(T ) = 1 and c2(T ) = span(T ). The first budget constraint
enforces the number of allowed time intervals to stay below K, while the second
budget enforces the time-span constraint.

Thus, we need to solve the mcmb problem, defined above, with two budget
constraints. We propose two solutions, both of which are inspired by the stan-
dard greedy approach for maximum coverage. The difference between the two
proposed approaches is on how they try to satisfy the budget constraints. The
first approach incorporates both budget constraints on the greedy step, while
the second approach sets a parameter that controls the amount of violation of
one constraint, and optimizes this parameter with binary search.

The standard greedy approach for maximum coverage is to select the set that
has the best ratio of newly covered elements with respect to its cost. Motivated
by this idea, we suggest the following greedy approach. Given a currently selected
set of time intervals, say T , we find the interval R that has the best ratio

q(W, T ∪R,G)− q(W, T , G)

max(x, y)
, where x =

1

K − |T | and y =
span(R)

B − span(T )
.

The numerator in the ratio is the number of new edges that can be covered with
the new interval R. The denumerator is the maximum of two quantities, x and
y, representing the two constraints on number of time intervals and time span,
respectively. Both x and y are normalized so that they are equal to 1 if adding
R will cap the corresponding constraint. By taking the maximum of the ratios
we consider the constraint that is closer to be capped and penalize the ratio
accordingly. The algorithm stops when one of the two constraints gets violated.
We will refer to this approach as Greedy.

Our second approach is based on the following observation. Assume that we
are given a number α and consider optimizing

q(W, T , G)− α · span(T ) , such that |T | ≤ K. (1)

Note that we do not enforce any budget on the time span. If we set α = 0,
then the solution will contain the whole time. On the other hand, if we set α to
be large, T will be just singular points. In fact, as it is shown in the following
proposition, the time span of the optimal solution decreases as α increases.

Proposition 3. Consider α1 and α2 with α1 < α2. Let T1 and T2 be the solu-
tions of Equation (1) for α1 and α2, respectively. Then span(T1) ≥ span(T2).
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Proof. Define βi = span(Ti) and di = q(W, Ti, G). Due to optimality, we have

d1 − α1β1 ≥ d2 − α1β2 and d2 − α2β2 ≥ d1 − α2β1.

By rearranging the terms we obtain α1β2 − α1β1 ≥ d2 − d1 ≥ α2β2 − α2β1.
Rearranging the left and the right side gives us (α1 − α2)(β2 − β1) ≥ 0. Since
α1 < α2, we must have β1 ≥ β2, which proves the proposition. ��

Ideally, if we can solve Equation (1) optimally, we can use binary search to
find the smallest α such that the time span of the solution does not exceed the
budget. As we do not have an exact solver for Equation (1), we apply a greedy
approach where in each step we find a single time interval that maximizes the
score function. We then apply a binary search to find α that produces a feasible
solution. We refer to this algorithm as Binary.

4.3 Initialization

The quality of the solution discovered by the iterative algorithm depends on the
set of time intervals T0 used as initial seed. Consider an optimal solution (W, T ),
with T = (T1, . . . , TK), which achieves density d∗. It follows that there is one
single time interval T ∈ T , for which the optimal set of nodes W has density at
least d∗/K on π(G(T )). This observation motivates us to limit ourselves to con-
sider only time interval sets of size 1. Assuming large computational power, one
could test every possible time interval as a seed, consequently run the iterative
algorithm, and return the best solution found out of all runs. There are O(m2)
such intervals, which is polynomial.

When running the algorithm O(m2) times is expensive, we can select J ran-
dom intervals, run the iterative algorithm for each of those random intervals, and
return the best solution found out of all runs. In our experiments we evaluate
the effect of the number of random seeds J to the quality of the solution found.

5 Experimental Evaluation

To evaluate the proposed methods we use several datasets: synthetic and real-
world social communication networks. We describe our datasets in detail below.

Synthetic Data. We simulate activity on a network with a planted community.
Different parameters for the planted community and the background noise are
used, and the objective is to measure how the algorithms behave with respect to
those parameters. The background network G is an Erdős-Rényi random graph,
with expected degree being one of the model parameters. We plant a dense
subgraph G′, whose expected degree is a second model parameter. The length
of whole time interval T is |T | = 1000 time units, while the interactions for the
edges of G′ can be covered by k = 3 arbitrary planted time intervals with total
length of |T ′| = 100 time units (10 times shorter than |T |). We randomly assign
edges of G to time instances in T and edges of G′ to time instances in T ′.
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Table 1. Characteristics of the two families of synthetic datasets. Planted community
in Synthetic1 is a 5-clique. Planted community in Synthetic2 is an 8-node subgraph.

Name |V | Exp[|E|] community avg degree background avg degree

Synthetic1 100 200 4 1 – 6
Synthetic2 100 200 2 – 7 4

Table 2. Basic characteristics of real-world datasets. |V |: number of nodes; |π(E)|:
number of edges of the topology network; |E|: number of interactions; d(π(G)): density
of the whole topology network; d∗(π(G)): density of densest subgraph of the topology
network.

Name |V | |π(E)| |E| d(π(G)) d∗(π(G))

Tumblr 1980 2454 7645 2.479 7.0
Students 883 2246 9865 5.087 11.292
Enron 1143 2019 6245 3.533 14.387

We test the ability of our algorithms to discover the planted communities in
two settings. In the first setting (dataset family Synthetic1) we fix the planted
subgraph and we vary the average degree of the background network. The ob-
jective is to test the robustness against background noise. In the second setting
(dataset family Synthetic2) we fix the average degree of the background network
and we vary the density of the planted subgraph. The characteristics of the
synthetic datasets are given in Table 1.

Real-world Data. We use three datasets. The characteristics of these datasets
are summarized in Table 2.

Tumblr: This is a subset of that Memetracker dataset,1 which contains only
quoting between Tumblr users. The subset covers three months: 02.2009–04.2009.

Students:2 This dataset logs the activity in a student online community at Uni-
versity of California, Irvine. Nodes represent students and edges represent mes-
sages with ignored directions. We used a subset of the dataset that covers four
months of communication from 2004-06-28 to 2004-10-26.

Enron:3 This is the well-known dataset that contains the email communication
of the senior management in a large company. It spans over 20 years from 1980.

Discovering Hidden Structure.We test the ability of our algorithms to detect
the planted communities for different levels of background and in-community av-
erage degrees. We quantify the quality of our algorithms by measuring precision
and recall, with respect to the ground-truth communities. We also report the

1 http://snap.stanford.edu/data/memetracker9.html
2 http://toreopsahl.com/datasets/#online_social_network
3 http://www.cs.cmu.edu/~./enron/

http://snap.stanford.edu/data/memetracker9.html
http://toreopsahl.com/datasets/#online_social_network
http://www.cs.cmu.edu/~./enron/
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Fig. 1. Precision, recall and F -measure on Synthetic1, as a function of the background-
network density. The planted community is a 5-clique.
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Fig. 2. Precision, recall and F -measure on Synthetic2, as a function of the density of
a planted community of 8 nodes. The background-network density is set to 4.

F -measure, the harmonic mean of precision and recall. Results reported below
are averages over J = 1000 independent runs.

Precision, recall and F -measure results for the two families of synthetic datasets
are shown in Figures 1 and 2, respectively. Recall that datasets Synthetic1, contain
a community based on a 5-clique. Both algorithms are able to discover this com-
munity correctly when the average degree of the underlying graph is smaller then
the average degree of the planted community. Even when the community density
is equal to the background-network density (around 4), the algorithms tend to
keep high precision and recall. Precision and recall regrade at the same rate, indi-
cating that with increase of background-network density the algorithms retrieve
less nodes of planted community and more noisy nodes. Nevertheless, the mea-
sures do not drop very low, implying that the 5-clique spread over k = 3 short
time intervals is distinguishable even within a dense background network.

The results on the second family of datasets (Synthetic2), shown in Figure 2,
are similar. Both algorithms perform well when the background-network density
is smaller than the planted-community density.

Effect of Random Seeds. Both of our algorithms are instances of Algorithm 1.
In the experiments shown above we initialize the interval seed T0 with the whole
time interval T spanned by the dataset. Starting from T0 = {T } ensures that the
subgraph we discover belongs to some dense structure in the topology network.
However, if such a dense structure occurs in a scattered manner, the initialization
T0 = {T } may mislead. To overcome this problem and avoid dense structures
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(a) Students, B = 7 days, K = 3
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(b) Students, B = 7 days, K = 7
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(c) Tumblr, B = 7 days, K = 3
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(d) Tumblr, B = 7 days, K = 7

Fig. 3. Effect of random initializations on real-world datasets

that cannot be covered in the given time budget, we initialize Algorithm 1 with
many random time intervals, and return the best solution found.

The improvement of performing random initializations is shown in Figure 3.
The experiments are shown for Tumblr and Students. The figures show the best
density discovered by our algorithms, when J independent random runs are per-
formed. As expected, random initializations improve the performance of the al-
gorithms. The most significant improvement is obtained for the Student dataset.
We also experiment with a baseline that finds the densest subgraph over all pos-
sible intervals that satisfy the time budget B (no iterative process is followed).
We see that our algorithms perform significantly better than this baseline.

Discovered Communities. Table 3 reports the densities of the communities
discovered by our algorithms in the real-world datasets. We use J = 200 random
initializations. We compare our algorithms with the same baseline as before: the
densest subgraph over all intervals that satisfy the time budget B.

Overall, we observe that Greedy and Binary perform equally well, while in
some settings Binary yields denser communities than Greedy.
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Table 3. Densities of discovered subgraphs. The second column contains the number
of allowed sets K and the column “budget” contains the time span budget B. For
Tumblr and Students, B1, B2 and B3 are equal to 1, 3 and 7 days, respectively. For
Enron, B1, B2 and B3 are 10, 30 and 120 days, respectively.

budget = B1 budget = B2 budget = B3

Name K Binary Greedy Base Binary Greedy Base Binary Greedy Base

Tumblr 1 3.818 3.818 3.866 4.0 4.0 4.0 4.5 4.5 4.5
2 4.0 4.0 3.866 4.571 4.571 4.0 5.111 5.111 4.5
3 4.6 4.285 3.866 5.2 5.2 4.0 5.5 5.4 4.5
4 4.909 4.8 3.866 5.384 5.25 4.0 5.857 5.666 4.5
5 5.166 5.111 3.866 5.666 5.5 4.0 6.0 5.866 4.5
7 5.5 5.333 3.866 6.0 5.714 4.0 6.333 6.333 4.5

10 6.181 5.818 3.866 6.428 6.181 4.0 6.8 6.666 4.5

Students 1 2.947 3.384 3.428 3.76 3.764 3.84 4.545 4.647 4.755
2 3.5 3.3 3.428 4.32 4.133 3.84 5.225 5.125 4.755
3 4.2 3.846 3.428 4.384 4.444 3.84 5.304 5.312 4.755
4 4.0 4.0 3.428 4.545 4.615 3.84 5.642 5.368 4.755
5 4.363 4.363 3.428 4.933 4.941 3.84 5.939 5.642 4.755
7 4.625 4.545 3.428 5.210 5.185 3.84 6.108 6.0 4.755

10 4.956 4.888 3.428 5.666 5.485 3.84 6.5 6.307 4.755

Enron 1 6.7272 6.7272 6.727 8.8 8.8 8.8 11.909 11.909 11.9
2 8.875 8.4705 6.727 9.2222 9.625 8.8 13.047 11.913 11.9
3 10.470 10.0 6.727 10.555 11.176 8.8 13.307 12.8 11.9
4 11.058 10.736 6.727 11.904 12.2 8.8 13.642 13.047 11.9
5 11.473 11.4 6.727 12.25 12.16 8.8 13.714 13.238 11.90
7 12.370 12.16 6.727 12.666 13.0 8.8 13.931 13.857 11.9

10 13.285 13.185 6.727 13.357 13.571 8.8 14.074 14.0 11.9

For fixed value of the time budget B, the density of the discovered community
increases with K. For small values of K (1 to 3), the density of the communities
discovered by our algorithm is equal, or in some cases slightly smaller, than the
density of the communities discovered by the baseline. This behavior is expected,
as the brute-force baseline tests all possible intervals, while our algorithms use
only some random intervals for initialization. However, as the value of K in-
creases, the algorithms take advantage of the provided flexibility to use many
intervals effectively; for K > 3 both algorithms always outperform the baseline.

Furthermore, as we can see by contrasting Tables 2 and 3, the discovered
communities are almost as dense as the densest subgraphs on the whole topology
network, even though the time budget is significantly smaller than the time span
of the dataset. For example, the densest subgraph of the over 20-year-large Enron
dataset has average degree 14.387, while we were able to discover a subgraph
with average degree 13.285 in a budget of 10 days, spanning 10 time intervals.
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6 Related work

Community detection is one of the most studied problems in social-network
analysis. A lot of research has been devoted to the case of static graphs, and the
typical setting is to partitioning a graph into disjoint communities [9,12,26,30];
a thorough survey on such methods has been compiled by Fortunato [10].

Typically the term “dynamic graphs” refers to the model where edges are
added or deleted. In this setting, once an edge is inserted in the graph it stays
“alive” until the current time or until it is deleted. For example, this setting is
used to model the process in which individuals establish friendship connections
in a social network. On the contrary, our model intends to capture the continuous
interaction between individuals. In the dynamic-graph setting, researchers have
studied how networks evolve with respect to the arrival of new nodes and edges
[19,20,31], the process of how groups and communities are formed [4], as well as
methods for mining rules for graph evolution [5].

With respect to community detection in time-evolving graphs, the promi-
nent line of work is to consider different graph snapshots, find communities in
each snapshot separately (or by incorporating information from previous snap-
shots), and then establish correspondences among the communities in consecu-
tive snapshots, so that it is possible to study how communities appear, disap-
pear, split, merge, or evolve. A number of research papers follows this frame-
work [3,14,22,24,29]. Similar recent works apply concepts of Laplacian dynam-
ics [23] and frequent pattern mining [6] to ensure coherence and sufficiency of
communities found in sequence of graph snapshots.

Many dynamic-graph studies are dedicated to the event-detection problem.
The comprehensive tutorial by Akoglu and Faloutsos covers recent research on
this topic.4 The majority of the works focuses on how to compare different graph
snapshots, and it aims to detect those snapshots that the graph structure changes
significantly. The research tools developed in this area include novel metrics for
graph similarity [25] and graph distance—see the survey of Gao et al. [11] and
recent paper [28]—as well as extending scan-statistics methods for graphs [27],
while a number of papers relies on matrix-decomposition methods [1, 16].

To our knowledge, the approach that is best aligned with our problem setting,
is presented by Bogdanov et al., for the problem of mining heavy subgraphs in
time-evolving networks [7]. Yet, the two approaches are conceptually very dis-
tinct. First, the approach of Bogdanov et al. is still based on network snapshots,
and thus sensitive to boundary quantization effects. Second, their concept of
heavy subgraphs is based on edge weights, and their discovery problem maps to
prize collecting Steiner tree, as opposed to a density-based objective.

Hu et al. propose a framework for mining frequent coherent dense subgraphs
across a sequence of biological networks [15]. Their core concept is to construct
a second-order graph, which represents co-activity of edges in the initial graph.
As with the previous papers, Hu et al. work with network snapshots, which is
quite a different model than the one we consider in this paper.

4 http://www.cs.stonybrook.edu/~leman/icdm12/

http://www.cs.stonybrook.edu/~leman/icdm12/
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In summary, in contrast to the existing work, in this paper we introduce a
new point of view in the area of dynamic graphs, namely, we incorporate in our
analysis point-wise interactions between the network nodes.

7 Concluding remarks

In this paper we considered the problem of finding dense dynamic communities
in interaction networks, which are networks that contain time-stamped informa-
tion regarding all the interactions among the network nodes. We formulated the
community-discovery problem by asking to find a dense subgraph whose edges
occur in short time intervals. We proved that the problem is NP-hard, and we
provided effective algorithms inspired by methods for finding dense subgraphs.

Our paper is a step towards a more refined analysis of social networks, in
which interaction information is taken into account and it is used to provide a
more accurate description of communities and their dynamics in the network.

Our work opens many possibilities for future research. First we would like to
extend the problem definition in order to discover many dense dynamic com-
munities. This can be potentially achieved by asking to cover all (or a large
fraction of) the interactions of the network with dense dynamic communities.

Second, we would like to incorporate additional information in our approach.
As an example, think that the “smartphone community” discussed in the in-
troduction, may use certain specialized vocabulary, brand names, or hashtags,
which can provide additional clues for discovering the community. Our frame-
work uses only time stamps of interactions; complementing our methods with
additional information can potentially improve the quality of the results greatly.
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Abstract. Social discrimination discovery from data is an important
task to identify illegal and unethical discriminatory patterns towards
protected-by-law groups, e.g., ethnic minorities. We deploy privacy
attack strategies as tools for discrimination discovery under hard as-
sumptions which have rarely tackled in the literature: indirect discrim-
ination discovery, privacy-aware discrimination discovery, and discrimi-
nation data recovery. The intuition comes from the intriguing parallel
between the role of the anti-discrimination authority in the three sce-
narios above and the role of an attacker in private data publishing. We
design strategies and algorithms inspired/based on Frèchet bounds at-
tacks, attribute inference attacks, and minimality attacks to the pur-
pose of unveiling hidden discriminatory practices. Experimental results
show that they can be effective tools in the hands of anti-discrimination
authorities.

1 Introduction

Discrimination refers to an unjustified distinction of individuals based on their
membership, or perceived membership, in a certain group or category. Human
rights laws prohibit discrimination on several grounds, such as sex, age, mari-
tal status, sexual orientation, race, religion or belief, membership of a national
minority, disability or illness. Anti-discrimination authorities (equality enforce-
ment bodies, regulation boards, consumer advisory councils) monitor, provide
advice, and report on discrimination compliances based on investigations and in-
quiries. Data under investigation are studied by them with the main objective of
discrimination discovery, which consists of unveiling contexts of discriminatory
practices in a dataset of historical decision records. Discrimination discovery is
a fundamental task in understanding past and current trends of discrimination,
in judicial dispute resolution in legal trials, in the validation of micro-data or
of aggregated data before they are publicly released. As an example of the last
case, consider an employer noticing from public census data that the race or
sex of workers act as proxy of the workers’ productivity in his specific indus-
try segment and geographical region. The employer may then use those visible
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traits of individuals, rather than their unobservable productivity, for driving (dis-
criminatory) decisions in job interviews. Such a behavior, known as statistical
discrimination [12], should be foreseen before data are publicly released.

Existing approaches for discrimination discovery [12,13] are designed with two
assumptions: (1) the dataset under studying explicitly contains an attribute de-
noting the protected-by-law social group under investigation, and (2) the dataset
has not been pre-processed prior to discrimination discovery. A first major source
of complexity is to tackle the case that (1) does not hold – a problem known
as indirect discrimination discovery, where indirect discrimination refers to ap-
parently neutral practices that take into account personal attributes correlated
with indicators of race, gender, and other protected grounds and that result
in discriminatory effects on such protected groups. For example, even without
race records of credit applicants, racial discrimination may occur in the practice
of redlining: applicants living in a certain neighborhood are frequently denied,
as most of people living in that neighborhood belong to the same ethnic mi-
nority. A second source of complexity, ignored in the literature so far, occurs
when data contain attributes denoting protected groups but such data have been
pre-processed to control the (privacy) risks of revealing confidential information,
i.e., assumption (2) does not hold. If the anti-discrimination authority cannot be
trusted, the original data cannot be accessed, and then discrimination discovery
must be performed on the processed data. We name such a case privacy-aware
discrimination discovery. A further case in which (2) may not hold occurs when
data is pre-processed to hide discriminatory decisions to the anti-discrimination
authority. Since the authority has to recover the original decisions as part of its
investigation, we name such a case discrimination data recovery.

We follow the intriguing parallel between the role of the anti-discrimination
authority in discrimination data analysis and the role of an attacker in privacy-
preserving data publishing [1,4,5] – an unauthorized (possibly malicious) entity.
Several attack strategies have been proposed in the literature, which model the
reasonings of an attacker and its background knowledge. Conceptually, the role
of an anti-discrimination authority is similar to the one of an attacker. In the
case of indirect discrimination discovery, the authority has to infer personal data
of individuals in the dataset under investigation, namely whether she belongs
to a protected group or not (this step is necessary in order to measure the
degree of discrimination in decisions). We substantiate this view by showing how
combinatorial attacks based on Frèchet bounds inference [3] can be deployed to
this purpose. In the case of privacy-aware discrimination discovery, the parallel is
even more explicit: the anti-discrimination authority has to reason as an attacker
to find out as much information as possible on the membership of individuals in
the protected group. We will investigate a form of attribute inference attacks for
discrimination discovery from a bucketized dataset [11]. Finally, in the case of
discrimination data recovery the anti-discrimination authority has the objective
of re-constructing original decisions from a perturbed dataset, which, again, is
a typical task of privacy attackers. By exploiting an analogy with optimality
attacks [14], we will devise an approach to reconstruct a dataset that has been
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decision
group - +

protected a b n1

unprotected c d n2

m1 m2 n

p1 = a/n1

p2 = c/n2

p = m1/n
RD = p1 − p2

Fig. 1. Discrimination table

sanitized by means of the approach in [9]. The parallels highlighted open a new
research direction consisting of applying the vast amount of methodologies and
algorithms of privacy protection for discrimination data analysis.

This paper is organized as follows. Section 2 formalizes the three scenarios
mentioned above. Section 3 recalls basic notions of discrimination analysis. The
adaptation of privacy attack approaches and algorithms to each scenario is pre-
sented in Sections 4-6. Section 7 reports experimental results. Finally, conclusions
report on related work and summarize our contributions.

2 Problem Scenarios

We assume two actors: a data owner and an anti-discrimination authority. The
data owner releases to the anti-discrimination authority some data either in the
form of micro-data, e.g., one or more relational or multidimensional tables, or
in the form of aggregate data, e.g., one or more contingency tables. The anti-
discrimination authority has access to additional information, called the back-
ground knowledge, that is exploited to unveil contexts of possible discrimination
from the released data. The case when attributes to identify protected groups are
part of the released data and data are without modification is known as direct
discrimination. This is well-studied [12,13], and in this paper our main emphasis
will be on the alternative case, consisting of one of the following scenarios.

Scenario I: Indirect discrimination discovery. The released data do not include
attributes that explicitly identify protected-by-law groups. The task of the anti-
discrimination authority is to unveil contexts of discrimination from the released
data by exploiting background knowledge (e.g., correlations between attributes)
to link the unknown attributes to attributes present in the data.

Scenario II: Privacy-aware discrimination discovery. The released data in-
clude attributes that explicitly identify protected-by-law groups, but the data
were pre-processed by the data owner by applying a privacy-preserving inference
control method to perturb such attributes. The anti-discrimination authority
has the task of unveiling contexts of discrimination by exploiting background
knowledge (e.g., aggregate counts on members of the protected group) and the
awareness of the inference control algorithm used to pre-process the data.

Scenario III: Discriminatory data recovery. The released data were pre-
processed by the data owner by applying a discrimination prevention inference
control method that perturbed the data to hide discriminatory decisions. The
task of the anti-discrimination authority is to reconstruct the original data by
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exploiting, again, background knowledge (e.g., amount of hidden discrimination)
and the awareness of the inference control algorithm. Starting from the recon-
structed dataset, standard direct discrimination discovery techniques can then
be adopted to unveil contexts of discrimination.

3 Measures of Group Discrimination

A critical problem in the analysis of discrimination is precisely to quantify the de-
gree of discrimination suffered by a given group (say, an ethnic group) in a given
context (say, a geographic area and/or an income range) with respect to a deci-
sion (say, credit denial). To this purpose, several discrimination measures have
been defined over a 4-fold contingency table, as shown in Fig. 1, where: the pro-
tected group is a social group which is suspected of being discriminated against;
the decision is a binary attribute recording whether a benefit was granted (value
“+”) or not (value “-”) to an individual; the total population denotes a context
of possible discrimination, such as individuals from a specific city, job sector,
income, or combination thereof.

We call the 4-fold contingency table of Fig. 1 a discrimination table. Different
outcomes between groups are measured in terms of the proportion of people in
each group with a specific outcome. Fig. 1 considers the proportions of ben-
efits denied for the protected group (p1), the unprotected group (p2) and the
overall population (p). Differences and rates of these proportions can model the
legal principle of group under-representation of the protected group in positive
outcomes or, equivalently, of over-representation in negative outcomes [12]. For
space reasons, we restrict to consider only risk difference (RD = p1− p2), which
quantifies the marginal chance of the protected group of being given a negative
decision. Once provided with a threshold α between “legal” and “illegal” degree
of discrimination, we can isolate contexts of possible discrimination [13].

Definition 1 (α-protection). A discrimination table is α-protective (w.r.t. the
RD measure) if RD ≤ α. Otherwise, it is α-discriminatory.

Direct discrimination discovery consists of finding α-discriminatory tables
from a subset of past decision records. The original approach [13] performs a
search in the space of discrimination tables of frequent (closed) itemsets. Fix a
relational table whose attributes include group, with values protected and
unprotected, and dec, with values + and -. An itemset is a set of items
of the form A = v, where A is an attribute and v ∈ dom(A), the domain
of A. As usual in the literature, we write A1 = v1, . . . , Ak = vk instead of
{A1 = v1, . . . , Ak = vk}. Let B be an itemset without items over group and
dec. The discrimination table associated to B regards the tuples in the cover of
B as the total population. Therefore, n in Fig. 1 is the number of tuples satisfy-
ing B (i.e., its absolute support), and the cell values a, b, c and d are the counts
of those also satisfying the cell coordinates. For instance, a is the support of the
itemset “B, group=protected, dec=−”.
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decision
group - +

protected a b n1

unprotected c d n2

m1 m2 n

rel. decision
group - +

g1 â b̂ n̂1

g2 ĉ d̂ n̂2

m1 m2 n

rel. group
group g1 g2

protected e f n1

unprotected g h n2

n̂1 n̂2 n

Fig. 2. Indirect discrimination. Left: unknown contingency table. Center: known con-
tingency table. Right: background knowledge contingency table.

4 Scenario I: Indirect Discrimination Discovery

The release of some aggregate data over a statistical database may lead to in-
ferences on unpublished aggregates. In particular, the inference of bounds on
entries in a 4-fold contingency table, given their marginals, trace back to the
1940’s – and they are known as Frèchet bounds. They have been generalized to
multidimensional contingency tables in the early 2000’s [3]. We adopt an item-
set based notation for contingency table cell entries. Let us denote by nX the
support of an itemset X in the dataset R under analysis: nX = |{t ∈ R|X ⊆ t}|.
Consider now an itemset X of the form A1 = v1, A2 = v2, and Y of the form
A2 = v2, A3 = v3. The itemset X Y is A1 = v1, A2 = v2, A3 = v3 and the
itemset X ∩ Y is A2 = v2. The Frèchet bounds for the support of X Y are the
following [3, Theorem 4]:

min{nX , nY } ≥ nX Y ≥ max{nX + nY − nX∩Y , 0} (1)

Let us exploit Frèchet bounds to model indirect discrimination discovery by
means of background knowledge on attributes (cor-)related to membership to
the protected group. Consider Fig. 2. Our problem is as follows: we want to
derive bounds on a discrimination measure for an unknown contingency table
(left) given a known/released contingency table (center) and some additional in-
formation contained in a background knowledge contingency table (right). The
known contingency table shows data on an attribute that is related to the mem-
bership to the protected group through the background knowledge contingency
table. The higher the correlation the closer the (known) discrimination mea-
sures for such an attribute are to the (unknown) discrimination measures for
the protected group. The unknown value a can be decomposed into the num-
ber a1 of individuals of the group g1 plus the number a2 of individuals the
group g2. Thus, a1 = nX Y , where X is rel. group=g1, dec=- and Y is
group=protected, rel. group=g1. The Frèchet bounds for a1 yield:

min{â, e} ≥ a1 ≥ max{â+ e − n̂1, 0} = max{e− b̂, 0}

and, with similar reasonings, those for a2 yield: min{ĉ, f} ≥ a2 ≥ max{ĉ+ f −
n̂2, 0} = max{f − d̂, 0}. Therefore, for a = a1 + a2, we have the bounds:

min{â, e}+min{ĉ, f} ≥ a ≥ max{e− b̂, 0}+max{f − d̂, 0} (2)
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rel. decision
group - +
g1 2 0 2
g2 6 18 24

8 18 26

rel. group
group g1 g2
pro. 1 0 1
unp. 1 24 25

2 24 26

Fig. 3. Sample known and background contingency tables

These bounds have an intuitive reading. Of the n1 individuals in the protected
group, e belong to group g1 and f belong to group g2. Consider the lower
bounds. At most min{b̂, e} of those e (resp., min{d̂, f} of f) have a positive

decision. Therefore, the number a is at least max{e − b̂, 0} + max{f − d̂, 0}.
Consider now the upper bounds. At most e (resp, f) individuals of the protected
group are in the g1 group (resp., g2 group), which, in turn, has at most â
(resp., ĉ) negative decisions. Summarizing, the background knowledge necessary
to derive the bounds for a consists of the distribution of the protected group
into individuals of groups g1 and g2, namely values e and f in the background
knowledge of Fig. 2. With similar means, one derives bounds for c:

min{â, g}+min{ĉ, h} ≥ c ≥ max{g − b̂, 0}+max{h− d̂, 0}

Since n1 and n2 are in the background knowledge and m1 is in the known
contingency table, bounds for the proportions p1 = a/n1, p2 = c/n2, and p =
m1/n can be readily computed. Finally, we derive a lower bound for RD :

RD ≥ RDlb =
max{e− b̂, 0}+max{f − d̂, 0}

n1
− min{â, g}+min{ĉ, h}

n2

Example 1. Consider the known and background knowledge tables in Fig. 3. The
Frèchet bounds on a (number of protected individuals with negative decisions)
and c (number of unprotected individuals with negative decisions) are:

1 = min{2, 1}+min{6, 0} ≥ a ≥ max{1− 0, 0}+max{0− 18, 0} = 1

7 = min{2, 1}+min{6, 24} ≥ c ≥ max{1− 0, 0}+max{24− 18, 0} = 7

We have p1 = 1/1, p2 = 7/25 = 0.28, and then RD = p1 − p2 = 0.72.

Notice that since Frèchet bounds are sharp [3], the bounds on discrimination
measures are sharp as well. Although we described the case of a single attribute
related to the protected attribute, the approach can be repeated for two or more
related attributes, and the best bounds can be retained at each step. The overall
approach is formalized in Algorithm 1, named FrèchetDD for Frèchet bounds-
based Discrimination Discovery. The algorithm takes as input a relational table
R, background knowledge contingency tables BK and a threshold α for indirect
discrimination discovery of α-discriminatory contingency tables. For each closed
itemset B, the algorithm infers bounds ctu for its unknown contingency table.
At the beginning (line 3), such bounds are the widest possible – from 0 to the
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Algorithm 1. FrèchetDD(R,BK, α)

1: C ← { frequent closed itemsets of R w/o group and dec items }
2: for B ∈ C do
3: ctu = ([0, nB], [0, nB], [0, nB], [0, nB])
4: I = {A = v | no A-item is in B}
5: for A = v ∈ I do
6: if ctbg = ct(B, (group=pro., group=unpro.), (A = v,A �= v)) ∈ BK then
7: ctk = ct(B, (A = v,A �= v), (dec=-, dec=+))
8: ctu′ ← Frèchet bounds from ctk and ctbg
9: ctu ← min(ctu, ctu′)
10: end if
11: end for
12: RDlb ← RD lower bound from ctu
13: if RDlb ≥ α then
14: output B
15: end if
16: end for

support nB ofB. For every item A = v, where A is not already inB and such that
a contingency table ctbg relating the protected group to A = v in the contextB is
available in the background knowledge (line 6), the Frèchet bounds are calculated
starting from such background contingency table and from a contingency table
ctk that is computable from R (line 7), as described earlier in this section. The
bounds are used to update ctu (line 9). After all items are considered, the final
bounds ctu can be adopted for computing a lower bound on the discrimination
measure at hand, RD in our case, to be checked against the threshold α (line 13).
The computational complexity of Algorithm 1 is O(|C| · |BK|), i.e., the product
of the size of closed itemsets by the size of the background knowledge.

A remarkable instance of indirect discrimination discovery is redlining, a prac-
tice banned in the U.S. consisting of denying credit on the basis of residence.

Example 2. Consider a released contingency table in Fig. 4 (right) regarding ben-
efits granted and denied in a neighborhood specified by a ZIP code. In highly seg-
regated cities, it may be very likely that specific neighborhoods, such as zip=100,
are mostly populated by a specific race, say, a black minority. In such a case,
the ZIP code acts as a proxy of the race of the population. Fig. 4 (left) shows
the contingency table for the possibly discriminated group of black people living
in the specific neighborhood zip=100. Entries of such a table may be unknown,
due to the fact that the race of individuals is not recorded in the dataset. Fix the
itemset X to zip=100,dec=−, and Y to black,zip=100. From the released
contingency in Fig. 4 (right), we know that nX = â and nX∩Y = n̂1. Assume
now to have, as a background knowledge, the number nY of black people living
in the neighborhood zip=100. Notice that, nY = n1. Moreover, nX Y = a. The
Frèchet bounds (1) are:

min{â, n1} ≥ nX Y = a ≥ max{â+ n1 − n̂1, 0} = max{n1 − b̂, 0}
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decision
group - +

black,zip=100 a b n1

others c d n2

m1 m2 n

decision
group - +

zip=100 â b̂ n̂1

others ĉ d̂ n̂2

m1 m2 n

Fig. 4. Unknown (left) and known (right) contingency tables

Dividing by n1, we get min{â/n1, 1} ≥ p1 ≥ max{1− b̂/n1, 0}. Since c = m1−a
and n2 = n−n1, bounds for p2 = c/n2 can be derived. The exact value p = n1/n
is also known. Summarizing, ranges can be derived on all proportions in Fig. 1,
and, a fortiori, on any discrimination measure based on them.

5 Scenario II: Privacy-aware Discrimination Discovery

In this scenario, the released dataset includes an attribute that explicitly iden-
tifies the protected group. However, since such an attribute is considered sen-
sitive1, data were pre-processed by the data owner using a privacy-preserving
inference control method to diminish the correlation between such an attribute
and other non-sensitive attributes. There could be different purposes for data
sanitization: (1) to protect individuals’ sensitive information; (2) to use data
privacy as an excuse for hiding discriminatory practices. In both cases, the anti-
discrimination authority has to unveil discrimination from the sanitized data.

There is a vast amount of privacy-preserving inference control methods. We
investigate the scenario for one of the most popular ones, the bucketization
method [15]. Bucketization disassociates the sensitive attributes from the non-
sensitive attributes. The output of bucketization consists of two tables: a non-
sensitive table (e.g., Fig. 5 left) and a sensitive table (e.g., Fig. 5 center). The
non-sensitive table contains the entire non-sensitive attributes information, in
addition to a group id GID (when tuples are partitioned into groups, a unique
GID is assigned to each group). The sensitive table contains the sensitive values
that appear in a specific group. Bucketization is a lossy join decomposition us-
ing the group id. For instance, tuple r1 in group GID=1 has probability 25% of
referring to a Muslim, Christian, Jewish, or Other individual, but it is impos-
sible to determine which case actually holds. Thus, for the bucketized version
R′ of a dataset R, the correlation between sensitive attribute and non-sensitive
attributes is diminished. Note that in each group of our example table, every
sensitive value is distinct and so the group size is equal to the parameter l in
the l-diversity privacy model [11]. We assume that l is the cardinality of the at-
tribute denoting protected and unprotected groups, e.g., the number of religions
in our example.

1 Protected group membership and private/sensitive information highly overlap [2], as
e.g., for religion, health status, genetic information and political opinions attributes.



702 S. Ruggieri et al.

ID Education Job Dec GID

r1 Bachelors Engineer - 1
r2 Bachelors Engineer + 1
r3 Doctorate Engineer + 1
r4 Bachelors Writer + 1

r5 Master Engineer + 2
r6 Doctorate Writer + 2
r7 Bachelors Dancer - 2
r8 Master Dancer - 2

r9 Master Dancer - 3
r10 Master Lawyer + 3
r11 Bachelors Engineer - 3
r12 Bachelors Dancer - 3

GID Religion

1 Muslim
1 Christian
1 Jewish
1 Other

2 Muslim
2 Christian
2 Jewish
2 Other

3 Muslim
3 Christian
3 Jewish
3 Other

decision
education=bachelors - +
religion=muslim a b 3
religion �=muslim c d 3

4 2 6

Fig. 5. Non-sensitive (left) and sensitive (center) tables. Right: sample unknown c.t.

In this context, privacy-aware discrimination discovery can be formalized as
the problem of deriving bounds on a discrimination measure for an unknown
contingency table (see Fig. 2 left) given the bucketized dataset R′. Consider a
subset of n tuples from R′ for which a contingency table has to be derived. The
value m1 is known (and also m2 = n − m1) because it consists of the number
of tuples with negative decision. We assume that, as background knowledge, the
number n1 of tuples regarding protected group individuals is also known (and,
a fortiori, n2 = n − n1). Starting from those aggregate values, bounds on cell
values of the contingency table can be obtained by Frèchet bounds. Here, we
propose to refine such bounds by exploiting the fact that in every bucket there
is one and only one individual of the protected group. This yields the following
bounds on a:

Σimin{1, ni
−} ≥ a ≥ n1 −Σimin{1, ni

+} (3)

where i ranges over group id’s, ni
− (resp., ni

+) is the number of individuals with
negative (resp., positive) decision with GID=i – this is available from the non-
sensitive table. The bounds for c are easily derivable from those from a by noting
that c = m1−a, sincem1 (the number of tuples with negative decision) is known.
Similarly for b = n1 − a, and for d = n2 − c. Starting from them, bounds for p1,
p2, p and discrimination measures defined over them can be computed.

Example 3. Consider the set of tuples from Fig. 5 (left) such that education=b-
achelors. There are 6 such tuples: 4 with negative decision (r1, r7, r11, r12)
and 2 with positive decision (r2, r4). Moreover, assume to know by background
knowledge that n1 = 3 out of the 6 tuples regard Muslims. This gives rise to the
unknown contingency table in Fig. 5 (right). It turns out that n1

− = 1, n2
− = 1

and n3
− = 2; and that n1

+ = 2, n2
+ = 0 and n3

+ = 0. Therefore, we have:

min{1, 1}+min{1, 1}+min{1, 2} = 3 ≥ a ≥
2 = 3− (min{1, 2}+min{1, 0}+min{1, 0})

Frèchet bounds for Fig. 5 (right) would yield the strictly larger intervalmin{4, 3}
= 3 ≥ a ≥ 1 = max{4 + 3 − 6, 0}. Since a + c = 4, we derive 2 ≥ c ≥ 1. Thus,
p1 = a/n1 ∈ [2/3, 3/3], p2 = c/n2 ∈ [1/3, 2/3] and then RD = p1 − p2 ∈ [0, 2/3].
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Algorithm 2. PADD(R′,BK, α)

1: C ← { frequent closed itemsets of R′ w/o group and dec items }
2: for B ∈ C do
3: n← nB

4: n1 ← nB,group=protected // found in BK
5: m1 ← nB,dec=- // compute from R′

6: a ∈ [al, au], with au = min{n1,m1, Σimin{1, ni
−}},

7: al = max{n1 +m1 − n, 0, n1 −Σimin{1, ni
+}, lb(a)} // lb(a) found in BK

8: c ∈ [cl, cu] with cu = m1 − al, cl = m1 − au

9: RDlb ← al/n1 − cu/(n− n1)
10: if RDlb ≥ α then
11: output B
12: end if
13: end for

Given a bucketized dataset R′ and background knowledge BK, Algorithm 2,
whose name is PADD for Privacy-Aware Discrimination Discovery, formalizes
the search of itemsets B with a lower bound for RD greater or equal than α. We
assume that BK may also include a further lower bound lb(a) for a, obtained
e.g., from answers to a survey or from allegations of discrimination against the
data owner. The complexity of PADD is linear in the number of closed itemsets.

6 Scenario III: Discriminatory Data Recovery

To hide discrimination practices, data owners may apply discrimination preven-
tion methods on datasets before publishing. For example, discrimination may
be suppressed in the released data with minimal distortion of the decision at-
tribute, i.e., by relabeling of some tuples to make the released dataset unbiased
w.r.t. a protected group. Such discrimination prevention strategies are analogous
to mechanisms of anonymization for data publication, where data anonymiza-
tion is framed as a constrained optimization problem: produce the table with the
smallest distortion that also satisfies a given set of privacy requirements. Such
an attempt at minimizing information loss provides a loophole for attackers. The
minimality attack [14] is one of the strategies to recover the private data from
optimally anonymized data, given the non-sensitive information of individuals in
the released dataset, the privacy policy, and the algorithm used for anonymiza-
tion. The target of an anti-discrimination authority is precisely to reconstruct
the original data from the released data, and then apply direct discrimination
discovery techniques on the reconstructed data to unveil discrimination. In this
sense, strategies such as minimality attacks can be readily re-proposed as a
means in support of discrimination discovery.

We assume that the released dataset R′ is changed minimally w.r.t. the orig-
inal dataset R to suppress historical discriminatory practices. For instance, the
massaging approach [9] changes a minimal number of tuples by promoting (from
− to +) or demoting (from + to −) decision values. By “minimal” here it is
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Algorithm 3. DataRecovery(R′, DiscInt)

1: M ← 0.01 · |protected group| · |unprotected group| / |R′|
2: for 1 To (DiscInt · 100) do
3: (pr , dem)← Rank(R′)
4: Change the decision of top M tuples of pr with dec=- to dec=+

5: Change the decision of top M tuples of dem with dec=+ to dec=-

6: R′ ← R′ with new decision values of pr , dem
7: end for
8: return R′

Algorithm 4. Rank(R′)

1: Learn a ranker L of dec=+ using R′ as training data
2: pr ← unprotected group tuples in R′ with dec=-

ordered descending w.r.t. the scores by L
3: dem ← protected group tuples in R′

dec=+

ordered ascending w.r.t. the scores by L
4: return (pr , dem)

meant that a number of changes is performed such that the RD measure for the
released dataset is 0. We assume that the anti-discrimination authority knows,
as background knowledge, the original value of RD, which we call discrimina-
tion intensity (DiscInt). More realistically, such a value can be estimated on the
basis of declarations made by individuals who claim to have been discriminated
against. We exploit the observation proposed in [10] that discrimination affects
the tuples close to the decision boundary of a classifier. To determine the decision
boundary, we rank tuples of the protected and unprotected groups separately
w.r.t. their positive decision probabilities accordingly to a classifier trained from
R′. We change the decision values of the tuples in the decision boundaries of
the protected and unprotected groups to recover the original decision labels of
R. Algorithms 3 and 4 provide the pseudocode of this discriminatory data re-
covery process. Procedure DataRecovery takes as inputs the released data R′

and the discrimination intensity DiscInt. The recovery is iteratively performed
to recover one percent of released data in each step2, rather than performing the
entire data recovery in a single step. The reason is that the released data with
altered attributes could lead to inaccurate calculation of probability scores. The
gradual data recovery process improves the quality of data continuously, and
thus provides more and more accurate probability scores.

Example 4. Let us assume that an employment bureau released its historical
recruitment data as shown in Fig. 6. We, as an anti-discrimination authority,

2 The number of modifications M at each step is determined as follow. Let n1

(resp., n2) be the size of the protected (resp., unprotected) group in R′. A total
of M · DiscInt ·100 tuples are demoted (resp., promoted) to move from RD = 0
to RD = (M · DiscInt ·100)/n1 + (M · DiscInt ·100)/n2 = DiscInt. By solving the
equation, we get M = 0.01 · n1 · n2/(n1 + n2) where n1 + n2 = |R′|.
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Sex Ethnicity Degree Job Type Dec Prob

m native h.s. board + 98%
m native h.s. board + 98%
m native univ. board + 89%
m non-nat. h.s. health - 47%
m non-nat. univ. health - 30%

Sex Ethnicity Degree Job Type Dec Prob

f native h.s. board + 93%
f native none health + 76%
f native h.s. edu. + 51%
f non-nat. univ. edu. - 2%
f non-nat. univ. edu. - 2%

Fig. 6. Sample job-application relation with positive decision probability scores

suspect of hidden discriminatory patterns in the released data due to complains
about the biasness of this company w.r.t. sex of applicants. However, the bureau
has changed minimally the original data to suppress historical discriminatory
practices of the company. We have then to recover the discriminatory data.
Assume the background knowledge that DiscInt = 40%. We first calculate the
positive decision probabilities for all tuples by adopting a probabilistic classifier
(e.g., Naive Bayes), and then order the tuples of males and females w.r.t. these
probability scores separately, as shown in Fig. 6. DiscInt = 40% in these 10 tuples
implies that two tuples were relabeled for suppressing the sex discrimination,
i.e., one male (resp. female) tuples was relabeled to negative (resp. positive)
decision. The procedure DataRecovery (steps 4, 5) selects tuples close to the
decision boundaries as candidates for correction. In our example, those with
Prob around 50% (shown in red in Fig. 6) will have decision values changed: the
male (resp., female) tuple is promoted from − to + (resp., demoted from + to −).

7 Experiments

In this section, we report experiments on three classical datasets available from
the UCI Machine Learning repository (http://archive.ics.uci.edu/ml): German
credit, which consists of 1000 tuples with attributes on bank account holders
applying for credit; Adult, which contains 48848 tuples with census attributes
on individuals; and Communities and Crimes, which contains 1994 tuples and
describes the criminal behavior of different communities in the U.S.

Scenario I: Indirect Discrimination Discovery. We experimented the
Frèchet bounds approach of Algorithm 1 on theGerman credit andAdult datasets.
For the former dataset, the personal status attribute, denoting the protected
group of non-single females, was removed before applying the algorithm. For the
latter dataset, the same approach was taken for the protected group of non-
Whites. Closed itemsets are computed by setting a minimum support threshold
of 20, i.e., 2%, for German credit and of 48, i.e., 0.1%, for Adult. We simulate the
availability of background knowledge contingency tables (ctbg in Algorithm 1)
by computing them from the original dataset. In order to evaluate the impact
of the size of the available background knowledge, only a random number ni of
the items in the set I (see line 4 of Algorithm 1) are actually looked up. We
experiment with ni = 1, i.e., the anti-discrimination authority has knowledge of
only one related item, with ni = 5, and with an optimistic ni = 30. Fig. 7 (top)

http://archive.ics.uci.edu/ml
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Fig. 7. Scenario I: precision (top), recall (middle), elapsed time (bottom) of FrèchetDD

shows the top 10K contingency tables w.r.t. the lower bound on the RD measure
computed by Algorithm 1 for the German credit and the Adult datasets. The
plots report the distributions of the contingency tables for which the lower bound
is greater or equal than a given threshold α. It is shown the total number of such
contingency tables (labels total) and the number of them for which the lower
bound coincides with the upper bound (labels exact), namely, those for which
Frèchet bounds are exact. Two facts can be concluded. First, if the inferred lower
bound is higher than 0.3, then it is exact with high probability (95% or higher).
Second, the higher is ni the higher are the inferred lower bounds. Fig. 7 (middle)
shows the recall of the approach, namely the proportion of contingency tables
with a given RD value of v that have been actually inferred a lower bound of v.
The plots provide an estimate of the effectiveness of the indirect discrimination
discovery approach for a given amount of background knowledge (ni). Finally,
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Fig. 8. Scenario II: precision of PADD

Fig. 7 (bottom) shows the elapsed times for the various experiments, including
the time (denote by FIM) required for extracting closed itemsets. The time
required by Algorithm 1 mainly depends on the number of closed itemsets, while
the size of the background knowledge (the ni parameter) has a residual impact.

Scenario II: Privacy-aware discrimination discovery. We experimented
with a subset of 200 tuples (resp., 14160) from the German credit (resp., Adult)
dataset, randomly selected with a balanced distribution of the personal status
(resp., race) attribute. Such a distribution is required to apply l-diversity data
sanitization, where l = 4 (resp., l = 2) is the number of values of the personal
status (resp., race) attribute, including the protected group of non-single females
(resp., non-Whites). Tuples have been partitioned into groups of l elements with
distinct personal status (resp., race). Fig. 8 shows the distributions of the RD
lower bound for the top 10K contingency tables processed by Algorithm 2. The
lower bound lb(a) at line 7 is randomly generated in the interval from 0 to the
actual value of a. Contrasting the plots with Fig. 7, we observe that the number
and the exactness of the bounds inferred for RD is much lower than in the case
of scenario I – notice that the plots in Fig. 8 are logscale in the y-axis. This is
expected since the assumptions on the background knowledge exploitable in this
scenario are much weaker than in scenario I. The anti-discrimination authority is
assumed to know only the number of protected group individuals in the context
under analysis as well as a lower bound on those with negative decision. In
scenario I, correlation with groups whose decision value is precisely known is
instead assumed. Nevertheless, scenario I and II are not mutually exclusive, and
a hybrid approach could be applied to improve the inferred bounds.

Scenario III: Discriminatory data recovery. We conducted experiments
on the Adult dataset, with protected group females, and on the Crimes and
Communities dataset, with protected group blacks. As background knowledge,
we assume to know that discrimination intensity is DiscInt=43% in Crimes and
Communities, and DiscInt=19.45% in Adult. These numbers can be calculated
from the original datasets. We proceeded with suppressing these differences by
the method of massaging [9] before releasing the datasets. We then adopted the
reverse engineering approach of Algorithm 3 to reconstruct the original data.
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Fig. 9. Scenario III: performances of DataRecovery

The original dataset R can be used as ground truth for performance com-
parison. We measure the performances of Algorithm 3 by means of Recall and
Precision. The Recall calculates how much massaged tuples were corrected, while
the Precision measures how much corrected tuples were among those actually
massaged. Algorithm 3 recovers data by iterations. In order to evaluate the per-
formance at each iteration step, we compute recall and precision at the t-th step
by Recall = (

∑t
i=1 Ci)/(DiscInt · |R|) and Precision = (

∑t
i=1 Ci)/(2 · t ·M),

respectively, where Ci is the number of tuples whose decision values are success-
fully corrected at the i-th step, and M is as in Algorithm 3. These sequential
performance measures are shown in Fig. 9. The figure shows that our proposed
method gives very promising results by reconstructing the Adult and the Crimes
and Communities datasets (massaged to suppress 19.45% and 43% DisctInt
resp.) with high precision and recall. We can observe that the method recov-
ers the Communities and Crimes dataset with 59% precision and can assist the
authorities to identify the suppressed discriminatory patterns. The recovery pro-
cess is relatively less accurate over the Adult dataset due to a higher imbalance
between protected and unprotected groups. Fig. 9 also shows the advantage of
stepwise data recovery and refined probability score calculation. Our recovery
algorithm continues to be more precise in the identification of perturbed tuples
on the later recovery steps. This gradual and significant improvement in the
performance can be attributed to the calculation of probability scores over the
intermediary recovered and relatively corrected data.

8 Conclusions

Related Work. Discrimination analysis is a multi-disciplinary problem, in-
volving sociological causes, legal argumentations, economic models, statistical
techniques [12]. More recently, the issue of anti-discrimination has been con-
sidered from a data mining perspective. Some proposals are oriented to using
data mining to measure and discover discrimination [13]; other proposals [6, 9]
deal with preventing data mining from becoming itself a source of discrimina-
tion. Summaries of contributions in discrimination-aware data mining are col-
lected in [2,12]. The term privacy-preserving data mining (PPDM) was coined in
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2000, although related work on inference control and statistical disclosure con-
trol (SDC) started in the 1970s. A detailed description of different PPDM and
SDC methods can be found in [1, 5, 8]. Data are sanitized prior to publication
and analysis (according to some privacy criterion). In some cases, however, an
attacker can still re-identify sensitive information from the sanitized data us-
ing varying amounts of skill, background knowledge, and effort. Summaries of
contributions and taxonomies of different privacy attacks strategies are collected
in [1,4]. Moreover, the problem of achieving simultaneous discrimination preven-
tion and privacy protection in data publishing and mining was recently addressed
in [7]. However, to the best of our knowledge, this is the first work that exploits
tools from the privacy literature to the purpose of discovering discriminatory
practices under hard conditions such as those of three scenarios considered.

Conclusion. The actual discovery of discriminatory situations and practices,
hidden in a dataset of historical decision records, is an extremely difficult task.
The reasons are as follows: First, there are a huge number of possible contexts
may, or may not, be the theater for discrimination. Second, the features that may
be the object of discrimination are not directly recorded in the data (scenario
I). Third, the original data has previously been pre-processed due to privacy
constraints (scenario II) or for hiding discrimination (scenario III). In this pa-
per, we proposed new discrimination discovery methods inspired by the privacy
attack strategies for the three scenarios above. The results of this paper can be
considered a promising step towards the systematic application of techniques
from the well explored area of privacy-preserving data mining to the emerging
and challenging area of discrimination discovery.
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Munos, Rémi II-66

Nakagawa, Hiroshi II-1
Nam, Jinseok II-437
Naryanaswamy, Balakrishnan II-225
Nassif, Houssam II-50
Neumann, Gerhard I-482
Nicolaou, Mihalis A. II-469
Nie, Feiping II-485, III-306
Niemann, Uli III-460
Nijssen, Siegfried II-98
Nitti, Davide III-504

Oates, Tim III-468
Obradovic, Zoran II-614
O’Callaghan, Derek I-498
Oglic, Dino II-501
Oiwa, Hidekazu II-1
Ortale, Riccardo I-258
Ougiaroglou, Stefanos III-464
Ozair, Sherjil III-322
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Vavpetič, Anže III-456
Vayatis, Nicolas II-161
Venugopal, Deepak III-258
Vert, Jean-Philippe III-274
Vervier, Kevin III-274
Veyrieras, Jean-Baptiste III-274
Vinh, Nguyen Xuan II-145
Vlahavas, Ioannis III-225
Völzke, Henry III-460
Vrekou, Aikaterini III-225
Vucetic, Slobodan II-614

Waegeman, Willem II-517
Wallace, B.C. III-452
Wang, Chi III-290
Wang, De III-306
Wang, Wenquan I-211
Wang, Xing III-468
Wehenkel, Louis I-607
Wei, Enxun III-369
Weidlich, Matthias III-520

Weinberger, Kilian I-579
Weston, Jason I-165
Whitaker, Ross T. I-82
Wicker, Jörg III-481
Wu, Kun-Lung I-17

Xu, Nuo III-499
Xu, Zhixiang (Eddie) I-579

Yang, Gen I-323
Yang, Renjie II-34
Yao, Li III-322
Yin, Jiangtao III-337
You, Hongyuan I-290
Yu, Wenchao III-417
Yu, Yen-Yun I-82
Yuan, Ting II-177

Zafeiriou, Stefanos II-469
Zhang, Guoji II-646
Zhang, Guoqiang III-353
Zhang, Nevin L. II-256
Zhang, Xiangliang II-694
Zhang, Xinhua II-273
Zhang, Ya I-211
Zhang, Zhongfei (Mark) III-337
Zhao, Kaiqi III-369
Zhao, Tingting II-354
Zhao, Zheng III-385
Zheng, Shuai III-401
Zhou, Siyuan I-211
Zhu, Feida II-597
Zhu, Kenny Q. III-369
Zhuang, Fuzhen III-417


	Preface
	Organization
	Invited Talks Abstracts
	Scalable Collective Reasoning UsingProbabilistic Soft Logic
	Network Analysis in the Big Data Age: MiningGraph and Social Streams
	Big Data for Personalized Medicine: A CaseStudy of Biomarker Discovery
	Machine Learning for Search Rankingand Ad Auction
	Beyond Stochastic Gradient Descent forLarge-Scale Machine Learning

	Industrial Invited Talks Abstracts
	Making Smart Metering Smarterby Applying Data Analytics
	Ads That Matter
	Machine Learning and Data Miningin Call of Duty
	Algorithms, Evolution and Network-BasedApproaches in Molecular Discovery

	Table of Contents – Part II
	Main Track Contributions
	Robust Distributed Training of Linear Classifiers Based on Divergence Minimization Principle
	1 Introduction
	2 Related Work
	2.1 Distributed Training of Linear Models
	2.2 Robust Training Against Flawed Data

	3 Problem Setup
	3.1 IPM Combined with Online Algorithms

	4 Divergence Minimization Principle
	4.1 Statistical Assumption And Divergence Minimization Principle
	4.2 KL and Beta Divergences
	4.3 KL-IPM and Beta-IPM
	4.4 Example of KL-IPM and Beta-IPM

	5 Mistake / Loss Bound in IPM
	5.1 Mistake bound of IPM-perceptron
	5.2 Loss Bound of IPM-PA
	5.3 Superiority of Beta-IPM from a Theoretical Perspective

	6 Empirical Evaluation
	6.1 Setup
	6.2 Results

	7 Conclusion
	References
	A Appendix

	Reliability Maps: A Tool to Enhance Probability Estimates and Improve Classification Accuracy
	1 Introduction
	2 Calibration and Reliability
	3 Learning Calibration and Reliability Maps
	3.1 Regression and Clustering Methods for Learning the Maps

	4 LS-ECOC-R: Multi-class Probability Estimation with Reliabilities
	5 Experimental Evaluation
	5.1 Experiments on Synthetic Data
	5.2 Experiments on Real Data

	6 Related Work
	7 Concluding Remarks
	References

	Causal Clustering for 2-Factor Measurement Models
	1 Introduction
	1.1 Structural Equation Models (SEMs)
	1.2 Pure 2-Factor Measurement Models

	2 Trek Separation
	3 Algorithm
	4 Correctness of Algorithm
	5 Tests
	5.1 Simulations
	5.2 Real Data
	5.3 The Linear Acyclic Case

	6 Future Research
	References

	Support Vector Machines for Differential Prediction
	1 Introduction
	2 Medical Applications
	3 Uplift Modeling
	3.1 Uplift
	3.2 Simulated Customer Experiments
	3.3 Applying Uplift Modeling to Medical Tasks

	4 Uplift-Agnostic Models
	4.1 Standard SVM
	4.2 Subgroup-Only SVM
	4.3 Flipped-Label SVM
	4.4 Two-Cost SVM

	5 Multivariate Performance Measures
	6 Maximizing Uplift
	7 Experiments
	8 Evaluation
	9 Conclusions and Future Work
	References

	Fast LSTD Using Stochastic Approximation: Finite Time Analysis and Application to Traffic Control
	1 Introduction
	2 Literature Review
	3 Fast LSTD Using Stochastic Approximation
	3.1 Background for LSTD
	3.2 Update Rule for Flstd-SA

	4 MainResults
	4.1 Error Bounds
	4.2 Performance Bound

	5 Variants
	5.1 Regularization
	5.2 Iterate Averaging

	6 Outline of Analysis
	6.1 Outline of Theorem 1 Proof
	6.2 Derivation of Rates
	(iii)

	7 Extension to Least Squares Regression
	8 Traffic Control Application
	9 Conclusions
	References

	Mining Top-K Largest Tiles in a Data Stream
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Algorithms
	4.1 Candidate-Based Algorithm
	4.2 Approximation Algorithm

	5 Theoretical Analysis
	5.1 False Negative Bound
	5.2 False Positive Bound
	5.3 Long Lasting Tiles

	6 Experiments
	6.1 Accuracy
	6.2 Efficiency
	6.3 Application to Topics Monitoring in the AOL Query Stream
	6.4 Application to Tracking in Videos

	7 Conclusions and Future Works
	References

	Ranked Tiling
	1 Introduction
	2 Ranked Tiling
	3 Ranked Tiling Using Constraint Programming
	3.1 Constraint-Based Model
	3.2 Problem Formalisation Using CP
	3.3 Mining Maximal Ranked Tiles Using CP
	3.4 Ranked Tiling

	4 Experiments on Synthetic Datasets
	4.1 Data Generation
	4.2 Evaluation

	5 Real-world Case Studies
	5.1 European Song Contests
	5.2 Biomarker Discovery for Breast Cancer Subtypes

	6 Related Work
	7 Conclusions
	References
	Proof Theorem 1.


	Fast Estimation of the Pattern FrequencySpectrum
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Estimating the Number of Patterns
	4.1 Frequent Patterns and the FastEst Algorithm
	4.2 A Non-monotonic Constraint: Closed Patterns

	5 The Pattern Frequency Spectrum
	5.1 The Spectra Algorithm
	5.2 Frequency Curves in Random Data

	6 Experiments
	6.1 Estimating the Number of Frequent Itemsets
	6.2 Estimating the Pattern Frequency Spectrum

	7 Discussion
	8 Conclusions
	References

	Recurrent Greedy Parsing with Neural Networks
	1 Introduction
	2 A Greedy Discriminative Parser
	2.1 Smoothed Context Rule Learning
	2.2 Greedy Recurrent Algorithm

	3 Architecture
	3.1 Words Embeddings
	3.2 Sliding Window BIOES Tagger
	3.3 Aggregating BIOES Predictions
	3.4 Training Likelihood

	4 Experiments
	4.1 Corpus
	4.2 Features
	4.3 Results
	4.4 Rule Prediction Analysis

	5 Conclusion
	References

	FILTA: Better View Discovery from Collectionsof Clusterings via Filtering
	1 Introduction
	2 Related Work
	3 FILTA: An Algorithm for Filtering Base Clusterings
	3.1 Clustering Quality and Diversity Measures
	3.2 Filtering Criterion and Incremental Selection Strategy

	4 Discovering the Clustering Views
	5 Experimental Results
	5.1 Evaluation of the Resulting Views
	5.2 Synthetic Dataset
	5.3 CMUFace Dataset
	5.4 Isolet Dataset
	5.5 Impact of the Number of Selected Base Clusterings
	5.6 Impact of the Regularization Parameter

	6 Conclusions
	References

	Nonparametric Markovian Learningof Triggering Kernels for Mutually Excitingand Mutually Inhibiting Multivariate HawkesProcesses
	1 Introduction
	2 Setup and Notations
	2.1 Model Description and Notation
	2.2 Log-Likelihood of Multivariate Hawkes Processes

	3 Approximations of Multivariate Hawkes Processes on a Basis of Exponential Triggering Kernels
	3.1 A K-approximation of the Multivariate Hawkes Process
	3.2 A New Decomposition of the Log-Likelihood

	4 Markovian Algorithms for the Estimation of Triggering Kernels
	4.1 Exact Maximization of the Approximated Log-Likelihood
	4.2 Relaxed Version of the Log-Likelihood
	4.3 MEMIP: a Learning Algorithm for Fast Log-Likelihood Estimation
	4.4 Self-concordance Property and Numerical Convergence of MEMIP

	5 Experimental Results
	5.1 Synthetic Data Sets: Experiment Setup and Results
	5.2 Experiment on the MemeTracker Data Set

	6 Conclusions
	References

	Learning Binary Codes with Bagging PCA
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Hashing with Bagging PCA
	3.2 Theoretical Analysis
	3.3 Connection with LSH
	3.4 Computation Complexity Analysis

	4 Experiments
	4.1 Experimental Setting
	4.2 Experimental Results and Analysis

	5 Conclusion and Future Work
	References

	Conic Multi-task Classification
	1 Introduction
	2 Generalization Bound
	3 A New MTL Model
	3.1 Incorporating Lp-Norm MKL

	4 Experiments
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusions
	References

	Bi-directional Representation Learningfor Multi-label Classification
	1 Introduction
	2 Related Work
	3 A Bi-directional Model for Multi-label Classification
	3.1 Framework: Encoding, Prediction and Decoding
	3.2 Optimization Formulation
	3.3 Optimization Algorithm

	4 Experimental Results
	4.1 Multi-label Classification Results
	4.2 Study of the Bi-directional Model

	5 Conclusion
	References

	Optimal Thresholding of Classifiersto Maximize F1 Measure
	1 Introduction
	2 Definitions of Performance Measures
	3 Prior Work
	4 Optimal Decision Rule for F1 Maximization
	5 Consequences of the Optimal Decision Rule
	6 Multilabel Setting
	7 Case Study
	8 A Winner’s Curse
	9 Discussion
	References

	Randomized Operating Point Selectionin Adversarial Classification
	1 Introduction
	2 Related Work
	3 Background
	4 GameModel
	5 Game Model Properties
	5.1 Concavity of ROC Curves

	6 Experimental Evaluation
	6.1 Computing the Equilibria and Scalability
	6.2 Multiple Thresholds
	6.3 Two Thresholds
	6.4 Varying Penalty

	7 Conclusions
	References

	Hierarchical Latent Tree Analysis for Topic Detection
	1 Introduction
	2 Basics of Latent Tree Models
	3 Topic Detection with Hierarchical Latent Tree Models
	3.1 Discovering Co-occurrence of Words
	3.2 Discovering Co-occurrence of Patterns
	3.3 Topic Extraction

	4 Empirical Results
	4.1 Results on the NIPS Data
	4.2 Likelihood Comparison

	5 Related Work
	6 Conclusions and Future Directions
	References

	Bayesian Models for Structured Sparse Estimation via Set Cover Prior
	1 Introduction
	2 Preliminaries on Sparse Priors
	2.1 Disjoint Groups

	3 Structured Prior with Overlapped Groups
	3.1 Set Cover Prior (SCP)
	3.2 Extension to Generalized Beta Mixture

	4 Analysis of Structured Sparse Prior
	4.1 Conditional Dependency (Explain-Away Effect)
	4.2 Joint Shrinkage
	4.3 Robust Marginal Shrinkage

	5 Experimental Results
	5.1 Sparse Signal Recovery
	5.2 Sequential Experimental Design
	5.3 Network Sparsity
	5.4 Background Subtraction
	5.5 Image Denoising with Tree-StructuredWavelets

	6 Conclusion and Discussion
	References

	Preventing Over-Fitting of Cross-Validationwith Kernel Stability
	1 Introduction
	2 Related Work
	3 Preliminaries and Notations
	4 Variance Bounds of Cross-Validation
	4.1 Kernel Stability
	4.2 Upper Bounds via Kernel Stability

	5 Kernel Selection Criterion
	5.1 Time Complexity Analysis

	6 Experiments
	6.1 Accuracy
	6.2 Effect of the Parameter

	7 Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Theorem3

	References

	Experimental Design in Dynamical SystemIdentification: A Bandit-Based Active LearningApproach
	1 Introduction
	2 Problem Setup
	3 Game-Based Active Learning for DOE
	3.1 Complete Algorithm
	3.2 Initialization
	3.3 Design of Experiment Using Upper Confidence Tree
	3.4 Performing Experiments and Re-estimation of Parameters and Hidden Variables
	3.5 Evaluation of the Quality of Estimates in the Real Game

	4 Application to Reverse-Modeling of Gene Regulatory Networks
	4.1 Model Setting
	4.2 Numerical Results

	5 Conclusion
	References

	On the Null Distribution of the Precisionand Recall Curve
	1 Introduction
	2 Interpolation of the Discrete Pr-curve
	3 The Expected Null Pr-curve
	3.1 Expected Maximum Precision for a Given Recall
	3.2 Expected Minimum Precision for a Given Recall
	3.3 Expected Average Precision for a Given Recall
	3.4 Difference between Expected Maximum Precision and Expected Minimum Precision

	4 The Null Distribution of the AUPRC
	4.1 Expected Value of the AUPRC of a Random Selection
	4.2 Variance of the AUPRC of a Random Selection
	4.3 Distribution of the AUPRC

	5 Empirical Assessment
	6 Conclusion
	References

	Linear State-Space Modelwith Time-Varying Dynamics
	1 Introduction
	2 Model
	2.1 Prior Probability Distributions

	3 Variational Bayesian Inference
	3.1 Update Equations
	3.2 Practical Issues
	3.3 Rotations for Faster Convergence

	4 Experiments
	4.1 Signal with Changing Frequency
	4.2 Stochastic Advection-Diffusion Process
	4.3 Daily Mean Temperature

	5 Conclusions
	References

	An Online Policy Gradient Algorithmfor Markov Decision Processeswith Continuous States and Actions
	1 Introduction
	2 Online Markov Decision Process
	3 Online Policy Gradient (OPG) Algorithm
	4 Regret Analysis under Concavity
	4.1 Assumptions
	4.2 Regret Bound
	4.3 Proof of Lemma 1
	4.4 Proof of Lemma 2
	4.5 Proof of Lemma 3
	4.6 Proof of Proposition 3
	4.7 Proof of Proposition 8

	5 Regret Analysis under Strong Concavity
	6 Experiments
	6.1 Target Tracking
	6.2 Linear-Quadratic Regulator

	7 Conclusion
	References

	GMRF Estimation under Topologicaland Spectral Constraints
	1 Introduction
	2 IPS-Based GMRF Selection
	2.1 Optimal 1-Link Perturbation
	2.2 Block Updates
	2.3 Stopping Criterion

	3 Introducing Constraints for GaBP Compatibility
	3.1 Spectral Constraints
	3.2 Topological Constraints

	4 Algorithm Description and Complexity
	5 Experimental Results
	6 Conclusion
	References

	Rate-Constrained Ranking and theRate-Weighted AUC
	1 Introduction and Motivation
	2 Notation and Basic Definitions
	3 The Rate-Weighted AUC
	3.1 Comparing the Weights of NDCG and rAUC

	4 Algorithm to Calculate the rAUC of an Empirical ROC Curve
	5 Experimental Evaluation
	5.1 Application to Screening for Rapid Reviews

	6 Related Work
	7 Conclusions
	References

	Rate-Oriented Point-Wise Confidence Boundsfor ROC Curves
	1 Introduction
	2 Notation and Basic Definitions
	3 Generating Confidence Bounds
	3.1 Baseline Method
	3.2 Generating Sample ROC Curves
	3.3 Overview of Our Approaches
	3.4 Parametric Approach
	3.5 Bootstrap Approach

	4 Experiments
	5 Related Work
	6 Conclusions
	References

	A Fast Method of Statistical Assessmentfor Combinatorial HypothesesBased on Frequent Itemset Enumeration
	1 Introduction
	2 Preliminary
	2.1 Frequent Itemset Mining Algorithm

	3 Statistical Assessment for Combinatorial Hypotheses
	3.1 P-value Correction in Multiple Tests
	3.2 Idea of LAMP
	3.3 Current Implementation of LAMP

	4 Proposed Algorithms
	4.1 A Threshold Function for the LAMP Condition
	4.2 Support Increase Algorithm

	5 Fast Implementation
	5.1 Calculating Family Size of the LAMP
	5.2 Generalization to Other Patterns

	6 Computational Experiments
	7 Conclusion
	References

	Large-Scale Multi-label Text Classification— Revisiting Neural Networks
	1 Introduction
	2 Multi-label Classification
	2.1 State-of-the-art Multi-label Classifiers and Limitations

	3 Neural Networks for Multi-label Classification
	3.1 Rank Loss
	3.2 Pairwise Ranking Loss Minimization in Neural Networks
	3.3 Thresholding
	3.4 Ranking Loss vs. Cross Entropy
	3.5 Recent Advances in Deep Learning

	4 Experimental Setup
	5 Results
	6 Conclusion
	References

	Distinct Chains for Different Instances:An Effective Strategyfor Multi-label Classifier Chains
	1 Introduction
	2 Multi-label Classification
	2.1 Evaluation Measures
	2.2 Basic Approaches for Multi-label Learning
	2.3 Classifier Chains

	3 The Label Sequence Issue
	4 One-to-One Classifier Chains (OOCC)
	4.1 OOCC’s Training Procedure
	4.2 OOCC’s Classification Procedure

	5 Related Work
	6 Experiments
	7 Conclusions and Future Work
	References

	A Unified Framework for ProbabilisticComponent Analysis
	1 Introduction
	2 Prior Art and Novelties
	2.1 Principal Component Analysis (PCA)
	2.2 Linear Discriminant Analysis (LDA)
	2.3 Locality Preserving Projections (LPP)
	2.4 Slow Feature Analysis

	3 A Unified ML Framework for Component Analysis
	4 A Unified EM Framework for Component Analysis
	4.1 Further Discussion

	5 Experiments
	6 Conclusions
	References

	Flexible Shift-Invariant Locality and Globality Preserving Projections
	1 Introduction
	2 Locality Preserving Projections Revisit
	2.1 Review of Related Graph Based Methods
	2.2 Shift-Invariant Property

	3 Shift-Invariant Locality Preserving Projections
	4 Flexible Locality and Globality Preserving Embedding
	4.1 Local and Global Viewpoints of The Graph Based Methods
	4.2 Locality and Globality Preserving Projections with Flexible Constraint

	5 New Optimization Algorithm
	5.1 Proposed Algorithm
	5.2 Convergence Analysis of Our Algorithm
	5.3 Approach to Find An Initial λ0
	5.4 Shift Invariance of The Algorithm

	6 Experiment
	6.1 Data Descriptions
	6.2 Experiment Setup
	6.3 Experiment Results

	7 Conclusion
	References

	Interactive Knowledge-Based Kernel PCA
	1 Introduction
	2 Related Work
	3 Knowledge-Based Kernel PCA
	3.1 The Placement of Control Points
	3.2 Must-Link and Cannot-Link Constraints
	3.3 Classification Constraints

	4 Optimization Problem
	4.1 Quadratic over a Hypersphere
	4.2 Eliminating a Linear Constraint

	5 Numerically Efficient Interaction
	5.1 Efficient Formulation of the Interaction
	5.2 Efficient and Stable Secular Solver

	6 Experiments
	7 Conclusion
	References

	A Two-Step Learning Approach for Solving Fulland Almost Full Cold Start Problemsin Dyadic Prediction
	1 A Subdivision of Dyadic Prediction Methods
	1.1 The Problem Setting Considered in this Article
	1.2 Formulation as a Transfer Learning Problem

	2 Solving Full and Almost Full Cold Start Problems via Transfer Learning
	2.1 Kernel Ridge Regression with Tensor Product Kernels
	2.2 Two-Step Kernel Ridge Regression
	2.3 Computational Considerations and Model Selection

	3 Theoretical Considerations
	4 Experiments
	References

	Deterministic Feature Selection for RegularizedLeast Squares Classification
	1 Introduction
	2 Our Contributions
	3 Background and Related Work
	4 Our Main Tool: Single-Set Spectral Sparsification
	5 OurMainTheorems
	6 Experiments
	6.1 BSS Implementation Issues
	6.2 Other Feature Selection Methods
	6.3 Synthetic Data
	6.4 TechTC-300

	7 Conclusion
	References
	8 Appendix

	Boosted Bellman Residual Minimization Handling Expert Demonstrations
	1 Introduction
	2 Background and Notations
	2.1 MDP, RL and RLED

	3 A New Algorithm for the RLED Problem
	3.1 Comparaison to the APID Method

	4 Practical Minimization of JRLE
	4.1 RKHS Embbedings for MDP
	4.2 Boosting

	5 Experiments
	5.1 The Garnet Experiment
	5.2 RLED for the Highway

	6 Conclusion
	References

	Semi-supervised LearningUsing an Unsupervised Atlas
	1 Introduction
	2 Prior Work
	3 Learning a Manifold as an Atlas
	3.1 Formulation

	4 Chart-Based Kernels
	4.1 Definition
	4.2 All such Kernels are Mercer
	4.3 Efficient Approximation of the Kernel
	4.4 Integration with Efficient Primal Solvers

	5 Experiments
	6 Conclusion
	References

	A Lossless Data Reduction for MiningConstrained Patterns in n-ary Relations
	1 Introduction
	2 Related Work
	3 Definitions and Problem Statement
	4 Dataset Reduction
	4.1 Fundamental Theorem
	4.2 Algorithm
	4.3 Complexity Analysis

	5 Experimental Study
	5.1 Retweet Dataset
	5.2 Distrowatch Dataset
	5.3 Pre-processing Time
	5.4 Time Gains over the Whole Task

	6 Conclusion
	References

	Interestingness-Driven Diffusion Process Summarization in Dynamic Networks
	1 Introduction
	2 Problem Definition
	3 OurMethod
	3.1 Spreading Tree Model
	3.2 Parameter Relief
	3.3 Algorithmic Framework and Details

	4 Evaluation
	4.1 Experimental Methodology and Settings
	4.2 Sense-Making Evaluation
	4.3 Parameter Study and Understanding
	4.4 Evaluation on a Real-life Social Network

	5 Related Work
	6 Conclusion and Future Work
	References

	Neural Gaussian Conditional Random Fields
	1 Introduction
	2 Gaussian Conditional Random Fields
	2.1 Feature Functions
	2.2 Multivariate Gaussian Model

	3 Neural Gaussian CRF
	3.1 Neural GCRF Model
	3.2 Learning and Inference of NGCRF
	3.3 Complexity

	4 Experiments
	4.1 The NGCRF Model for Document Retrieval
	4.2 The NGCRF Model for AOD Prediction

	5 Conclusion
	References

	Cutset Networks: A Simple, Tractable,and Scalable Approach for Improvingthe Accuracy of Chow-Liu Trees
	1 Introduction
	2 Notation and Background
	2.1 The Chow-Liu Algorithm for Learning Tree Distributions
	2.2 OR Trees

	3 CutsetNetworks
	4 Learning Cutset Networks
	4.1 Splitting Heuristics
	4.2 Termination Condition and Post-Pruning
	4.3 Mixtures of Cutset Networks

	5 Empirical Evaluation
	5.1 Methodology and Setup
	5.2 Accuracy
	5.3 Learning Time

	6 Summary and Future Work
	References

	Boosted Mean Shift Clustering
	1 Introduction
	2 Related Work
	3 Boosted Mean Shift Clustering
	3.1 Preliminary
	3.2 The Algorithm

	4 Experimental Setup
	5 Results and Analysis
	5.1 Results on Toy Examples
	5.2 Results on Real Data
	5.3 Performance Analysis of BMSC
	5.4 Sensitivity Analysis of the Parameters α and Eps

	6 Discussion
	7 Conclusion
	References

	Hypernode Graphs for Spectral Learningon Binary Relations over Sets
	1 Introduction
	2 Graphs and Hypernode Graphs
	2.1 Undirected Graphs and Laplacians
	2.2 Hypernode Graphs
	2.3 Hypernode Graph Laplacians
	2.4 Hypernode Graph Laplacians and Learning
	2.5 Hypernode Graph Laplacians and Signed Graphs

	3 Hypernode Graph Model for Multiple Players Games
	3.1 Multiplayer Games
	3.2 Modeling Games with Hypernode Graphs
	3.3 Regularizing the Hypernode Graph
	3.4 Inferring Skill Ratings and Predicting Game Outcomes

	4 Experiments
	4.1 Tennis Doubles
	4.2 Xbox Title Halo2

	5 Conclusion
	References

	Discovering Dynamic Communitiesin Interaction Networks
	1 Introduction
	2 Preliminaries and Notation
	3 Dense Communities in Interaction Networks
	3.1 Complexity

	4 Algorithms for Discovering Communities
	4.1 Finding an Optimal Set of Nodes
	4.2 Finding an Optimal Set of Time Intervals
	4.3 Initialization

	5 Experimental Evaluation
	6 Related work
	7 Concluding remarks
	References

	Anti-discrimination AnalysisUsing Privacy Attack Strategies
	1 Introduction
	2 Problem Scenarios
	3 Measures of Group Discrimination
	4 Scenario I: Indirect Discrimination Discovery
	5 Scenario II: Privacy-aware Discrimination Discovery
	6 Scenario III: Discriminatory Data Recovery
	7 Experiments
	8 Conclusions
	References

	Author Index



