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Abstract. Currently, machine learning plays an important role in the
lives and individual activities of numerous people. Accordingly, it has
become necessary to design machine learning algorithms to ensure that
discrimination, biased views, or unfair treatment do not result from de-
cision making or predictions made via machine learning. In this work,
we introduce a novel empirical risk minimization (ERM) framework for
supervised learning, neutralized ERM (NERM) that ensures that any
classifiers obtained can be guaranteed to be neutral with respect to a
viewpoint hypothesis. More specifically, given a viewpoint hypothesis,
NERM works to find a target hypothesis that minimizes the empirical
risk while simultaneously identifying a target hypothesis that is neutral
to the viewpoint hypothesis. Within the NERM framework, we derive a
theoretical bound on empirical and generalization neutrality risks. Fur-
thermore, as a realization of NERM with linear classification, we derive a
max-margin algorithm, neutral support vector machine (SVM). Experi-
mental results show that our neutral SVM shows improved classification
performance in real datasets without sacrificing the neutrality guarantee.

Keywords: neutrality, discrimination, fairness, classification, empirical
risk minimization, support vector machine.

1 Introduction

Within the framework of empirical risk minimization (ERM), a supervised learn-
ing algorithm seeks to identify a hypothesis f that minimizes empirical risk with
respect to given pairs of input z and target y. Given an input x without the
target value, hypothesis f provides a prediction for the target of x as y = f(z).
In this study, we add a new element, viewpoint hypothesis g, to the ERM frame-
work. Similar to hypothesis f, which is given an input x without the viewpoint
value, viewpoint hypothesis g provides a prediction for the viewpoint of the x
as v = g(z). In order to distinguish between the two different hypotheses, f
and g, f will be referred to as the target hypothesis. Examples of the viewpoint
hypothesis are given with the following specific applications.

With this setup in mind, we introduce our novel framework for supervised
learning, neutralized ERM (NERM). Intuitively, we say that a target hypothesis
is neutral to a given viewpoint hypothesis if there is low correlation between
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the target f(x) and viewpoint g(z). The objective of NERM is to find a tar-
get hypothesis f that minimizes empirical risks while simultaneously remaining
neutral to the viewpoint hypothesis g. The following two application scenarios
motivate NERM.

Application 1 (Filter bubble). Suppose an article recommendation ser-
vice provides personalized article distribution. In this situation, by taking a
user’s access logs and profile as input z, the service then predicts that user’s
preference with respect to articles using supervised learning as y = f(x) (target
hypothesis). Now, suppose a user strongly supports a policy that polarizes public
opinion (such as nuclear power generation or public medical insurance). Further-
more, suppose the user’s opinion either for or against the particular policy can
be precisely predicted by v = g(z) (viewpoint hypothesis). Such a viewpoint
hypothesis can be readily learned by means of supervised learning, given users’
access logs and profiles labeled with the parties that the users support. In such
situations, if predictions by the target hypothesis f and viewpoint hypothesis g
are closely correlated, recommended articles are mostly dominated by articles
supportive of the policy, which may motivate the user to adopt a biased view of
the policy [12]. This problem is referred to as the filter bubble [10]. Bias of this
nature can be avoided by training the target hypothesis so that the predicted
target is independent of the predicted viewpoint.

Application 2 (Anti-discrimination). Now, suppose a company wants to
make hiring decisions using information collected from job applicants, such as
age, place of residence, and work experience. While taking such information as
input x toward the hiring decision, the company also wishes to predict the po-
tential work performance of job applicants via supervised learning, as y = f(z)
(target hypothesis). Now, although the company does not collect applicant in-
formation on sensitive attributes such as race, ethnicity, or gender, suppose such
sensitive attributes can be sufficiently precisely predicted from an analysis of the
non-sensitive applicant attributes, such as place of residence or work experience,
as v = g(x) (viewpoint hypothesis). Again, such a viewpoint hypothesis can be
readily learned by means of supervised learning by collecting moderate number
of labeled examples. In such situations, if hiring decisions are made by the tar-
get hypothesis f and if there is a high correlation with the sensitive attribute
predictions v = g(x), those decisions might be deemed discriminatory [11]. In
order to avoid this, the target hypothesis should be trained so that the decisions
made by f are not highly dependent on the sensitive attributes predicted by g.
Thus, this problem can also be interpreted as an instance of NERM.

The neutrality of a target hypothesis should not only be guaranteed for given
samples, but also for unseen samples. In the article recommendation example,
the recommendation system is trained using the user’s past article preferences,
whereas recommendation neutralization is needed for unread articles. In the hir-
ing decision example, the target hypothesis is trained with information collected
from the past histories of job applicants, but the removal of discrimination from
hiring decisions is the desired objective.
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Given a viewpoint hypothesis, we evaluate the degree of neutrality of a target
hypothesis with respect to given and unseen samples as empirical neutrality risk
and generalization neutrality risk, respectively. The goal of NERM is to show
that the generalization risk is theoretically bounded in the same manner as
the standard ERM [2,1,6], and, simultaneously, to show that the generalization
neutrality risk is also bounded with respect to given viewpoint hypothesis.

Our Contribution. The contribution of this study is three-fold. First, we
introduce our novel NERM framework in which, assuming the target hypothe-
sis and viewpoint hypothesis output binary predictions, it is possible to learn a
target hypothesis that minimizes empirical and empirically neutral risks. Given
samples and a viewpoint hypothesis, NERM is formulated as a convex optimiza-
tion problem where the objective function is the linear combination of two terms,
the empirical risk term penalizing the target hypothesis prediction error and the
neutralization term penalizing correlation between the target and the viewpoint.
The predictive performance and neutralization can be balanced by adjusting a
parameter, referred to as the neutralization parameter. Because of its convexity,
the optimality of the resultant target hypothesis is guaranteed (in Section 4).

Second, we derive a bound on empirical and generalization neutrality risks for
NERM. We also show that the bound on the generalization neutrality risk can
be controlled by the neutralization parameter (in Section 5). As discussed in Sec-
tion 2, a number of diverse algorithms targeting the neutralization of supervised
classifications have been presented. However, none of these have given theoret-
ical guarantees on generalization neutrality risk. To the best of our knowledge,
this is the first study that gives a bound on generalization neutrality risk.

Third, we present a specific NERM learning algorithm for neutralized linear
classification. The derived learning algorithm is interpreted as a support vector
machine (SVM) [14] variant with a neutralization guarantee. The kernelized
version of the neutralization SVM is also derived from the dual problem (in
Section 6).

2 Related Works

Within the context of removing discrimination from classifiers, the need for a
neutralization guarantee has already been extensively studied. Calders & Ver-
wer [4] pointed out that elimination of sensitive attributes from training samples
does not help to remove discrimination from the resultant classifiers. In the hir-
ing decision example, even if we assume that a target hypothesis is trained with
samples that have no race or ethnicity attributes, hiring decisions may indirectly
correlate with race or ethnicity through addresses if there is a high correlation
between an individual’s address and his or her race or ethnicity. This indirect
effect is referred to as a red-lining effect [3].

Calders & Verwer [4] proposed the Calders—Verwer 2 Naive Bayes method
(CV2NB) to remove the red-lining effect from the Naive Bayes classifier. The
CV2NB method is used to evaluate the Calders—Verwer (CV) score, which is
a measure that evaluates discrimination of naive Bayes classifiers. The CV2NB
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method learns the naive Bayes classifier in a way that ensures the CV score is
made as small as possible. Based on this idea, various situations where discrimi-
nation can occur have been discussed in other studies [16,7]. Since a CV score is
empirically measured with the given samples, naive Bayes classifiers with low CV
scores result in less discrimination for those samples. However, less discrimina-
tion is not necessarily guaranteed for unseen samples. Furthermore, the CV2NB
method is designed specifically for the naive Bayes model and does not provide
a general framework for anti-discrimination learning.

Zemel et al. [15] introduced the learning fair representations (LFR) model for
preserving classification fairness. LFR is designed to provide a map, from inputs
to prototypes, that guarantees the classifiers that are learned with the proto-
types will be fair from the standpoint of statistical parity. Kamishima et al. [§]
presented a prejudice remover regularizer (PR) for fairness-aware classification
that is formulated as an optimization problem in which the objective function
contains the loss term and the regularization term that penalizes mutual infor-
mation between the classification output and the given sensitive attributes. The
classifiers learned with LFR or PR are empirically neutral (i.e., fair or less dis-
criminatory) in the sense of statistical parity or mutual information, respectively.
However, no theoretical guarantees related to neutrality for unseen samples have
been established for these methods.

Fukuchi et al. [5] introduced n-neutrality, a framework for neutralization of
probability models with respect to a given viewpoint random variable. Their
framework is based on maximum likelihood estimation and neutralization is
achieved by maximizing likelihood estimation while setting constraints to enforce
n-neutrality. Since n-neutrality is measured using the probability model of the
viewpoint random variable, the classifier satisfying n-neutrality is expected to
preserve neutrality for unseen samples. However, this method also fails to provide
a theoretical guarantee for generalization neutrality.

LFR, PR, and 5-neutrality incorporate a hypothesis neutrality measure into
the objective function in the form of a regularization term or constraint; however,
these are all non-convex. One of the reasons why generalization neutrality is not
theoretically guaranteed for these methods is the non-convexity of the objective
functions. In this study, we introduce a convex surrogate for a neutrality measure
in order to provide a theoretical analysis of generalization neutrality.

3 Empirical Risk Minimization

Let X and Y be an input space and a target space, respectively. We assume
Dy, ={(zi,yi)}1-1 € Z" (Z = X xY) to be a set of i.i.d. samples drawn from
an unknown probability measure p over (Z, Z). We restrict our attention to
binary classification, Y = {—1,1}, but our method can be expanded to handle
multi-valued classification via a straightforward modification. Given the i.i.d.
samples, the supervised learning objective is to construct a target hypothesis
f : X — R where the hypothesis is chosen from a class of measurable functions
f € F. We assume that classification results are given by sgn o f(z), that is,
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y = 1if f(x) > 0; otherwise y = —1. Given a loss function £: Y x R — R, the
generalization risk is defined by

R(f) = / Uy, f(z))dp.

Our goal is to find f* € F that minimizes the generalization risk R(f). In
general, p is unknown and the generalization risk cannot be directly evaluated.
Instead, we minimize the empirical loss with respect to sample set D,

n

Ralf) = 13" s, 1)

i=1

This is referred to as empirical risk minimization (ERM).

In order to avoid overfitting, a regularization term (2 : F — R7 is added to the
empirical loss by penalizing complex hypotheses. Minimization of the empirical
loss with a regularization term is referred to as regularized ERM (RERM).

3.1 Generalization Risk Bound

Rademacher Complexity measures the complexity of a hypothesis class with re-
spect to a probability measure that generates samples. The Rademacher Com-
plexity of class F is defined as

Rn(F)=Ep, o [SUp ! Zaz‘f(xi)]

FeF 4

where o = (01, ...,0,)7 are independent random variables such that Pr(c; =
1) = Pr(o; = —1) = 1/2. Bartlett & Mendelson [2] derived a generalization loss
bound using the Rademacher complexity as follows:

Theorem 1 (Bartlett & Mendelson [2]). Let p be a probability measure on
(Z,Z) and let F be a set of real-value functions defined on X, with sup{|f(z)] :
f € F} finite for all x € X. Suppose that ¢ : R — [0, ] satisfies and is Lipschitz
continuous with constant Lg. Then, with probability at least 1 -6, every function
in F satisfies

R(f) < Ru(f) +2LoR(F) + ¢ n(2/s),

4 Generalization Neutrality Risk and Empirical
Neutrality Risk

In this section, we introduce the viewpoint hypothesis into the ERM framework
and define a new principle of supervised learning, neutralized ERM (NERM),
with the notion of generalization neutrality risk. Convex relaxation of the neu-
tralization measure is also discussed in this section.
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4.1 +1/—1 Generalization Neutrality Risk

Suppose a measurable function g : X — R is given. The prediction of g is re-
ferred to as the viewpoint and g is referred to as the viewpoint hypothesis. We
say the target hypothesis f is neutral to the viewpoint hypothesis g if the target
predicted by the learned target hypothesis f and the viewpoint predicted by the
viewpoint hypothesis g are not mutually correlating. In our setting, we assume
the target hypothesis f and viewpoint hypothesis g to give binary predictions
by sgn o f and sgn o g, respectively. Given a probability measure p and a view-
point hypothesis g, the neutrality of the target hypothesis f is defined by the
correlation between sgn o f and sgn o g over p. If f(x)g(x) > 0 holds for mul-
tiple samples, then the classification sgn o f closely correlates to the viewpoint
sgn o g. On the other hand, if f(x)g(z) < 0 holds for multiple samples, then the
classification sgno f and the viewpoint sgno g are inversely correlating. Since we
want to suppress both correlations, our neutrality measure is defined as follows:

Definition 1 (4+1/-1 Generalization Neutrality Risk). Let f € F and
g € G be a target hypothesis and viewpoint hypothesis, respectively. Let p be a
probability measure over (Z,Z). Then, the +1/-1 generalization neutrality risk
of target hypothesis f with respect to viewpoint hypothesis g over p is defined by

sgn fa ’/Sgn )dp

When the probability measure p cannot be obtained, a +1/—1 generalization
neutrality risk Cegn(f, g) can be empirically evaluated with respect to the given
samples D,,.

Definition 2 (+1/—1 Empirical Neutrality Risk). Suppose that D, =
{(xi,y:)}0-, € Z™ is a given sample set. Let f € F and g € G be the target
hypothesis and the viewpoint hypothesis, respectively. Then, the +1/—1 empiri-
cal neutrality risk of target hypothesis f with respect to viewpoint hypothesis g
18 defined by

Cn sgn fa

))|- (1)

4.2 Neutralized Empirical Risk Minimization (NERM)

With the definition of neutrality risk, a novel framework, the Neutralized Em-
pirical Risk Minimization (NERM) is introduced. NERM is formulated as min-
imization of the empirical risk and empirical +1/—1 neutrality risk:

?élg Rn(f) + Q(f) + TICn,sgn(fvg)' (2)

where 77 > 0 is the neutralization parameter which determines the trade-off ratio
between the empirical risk and the empirical neutrality risk.
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4.3 Convex Relaxation of +1/—1 Neutrality Risk

Unfortunately, the optimization problem defined by Eq (2) cannot be efficiently
solved due to the nonconvexity of Eq (1). Therefore, we must first relax the
absolute value function of Csgn (f, ¢) into the max function. Then, we introduce
a convex surrogate of the sign function, yielding a convex relaxation of the +1/—1
neutrality risk.

By letting I be the indicator function, the +1/—1 generalization neutrality
risk can be decomposed into two terms:

Cun(1-9) = / san(a(a) = s ) ~ [ H6senlo@) £ sen(f(a s

-

prob. that f agrees with g prob. that f dlsagreeb with g

‘ sgn( )7 sgn(fag)‘ (3)

The upper bound of the +1/—1 generalization neutrality risk Csgn(f, g) is tight
it C& ., (f,9) and C,,,(f,g) are close. Thus, the following property is derived.

sgn sgn

Proposition 1. Let C&,(f,g) and CL,(f,g) be functions defined in Eq (3).
For any n € [0.5,1], if

Coan*(f,9) = max(Chy, (f,9), Cogn(f, 9)) <,
then

ngn(f, ) ‘ sgn( )7ngn(fag)‘§2n71

Proposition 1 shows that C’b‘gf{x( f,g) can be used as the generalization neutrality

risk instead of Cggn(f,g). Next, we relax the indicator function contained in

sgn(f7 )

Definition 3 (Relaxed Convex Generalization Neutrality Risk). Let f €
F and g € G be a classification hypothesis and viewpoint hypothesis, respectively.
Let p be a probability measure over (Z, Z). Let ¢ : R — RT be a convex function
and

Cy(f.9) /¢ig x))dp.

Then, the relaxed convex generalization neutrality risk of f with respect to g is
defined by

Cy(f,9) = max(C{(f.9).Cy (1. 9)).

The empirical evaluation of relaxed convex generalization neutrality risk is de-
fined in a straightforward manner.

Definition 4 (Convex Relaxed Empirical Neutrality Risk). Suppose D,, =
{(zi,y:)}7=1 € Z™ to be a given sample set. Let f € F and g € G be the tar-
get hypothesis and the viewpoint hypothesis, respectively. Let 1) : R — RT be a
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convez function and

n

CE(fo0) = |3 (gl f().

i=1
Then, relaxed convex empirical neutrality risk of f with respect to g is defined
by

Cnﬂﬁ(fvg) = maX(Cr—;w(fa g)’ C’r:,w(f? g))

wa(f, g) is convex because it is a summation of the convex function . Noting
that max(fi(x), f2(z)) is convex if fi and f; are convex, C, 4 (f, g) is convex as
well.

4.4 NERM with Relaxed Convex Empirical Neutrality Risk

Finally, we derive the convex formulation of NERM with the relaxed convex
empirical neutrality risk as follows:

%1;1 Rn(f) + 2(f) +nChp(f, 9)- (4)

If the regularized empirical risk is convex, then this is a convex optimization
problem.

The neutralization term resembles the regularizer term in the formulation
sense. Indeed, the neutralization term is different from the regularizer in that it
is dependent on samples. We can interpret the regularizer as a prior structural
information of the model parameters, but we cannot interpret the neutraliza-
tion term in the same way due to its dependency on samples. PR and LFR
have similar neutralization terms in the sense of adding the neutrality risk to
objective function, and neither can be interpreted as a prior structural informa-
tion. Instead, the neutralization term can be interpreted as a prior information
of data. The notion of a prior data information is relevant to transfer learn-
ing [9], which aims to achieve learning dataset information from other datasets.
However, further research on the relationships between the neutralization and
transfer learning will be left as an area of future work.

5 Generalization Neutrality Risk Bound

In this section, we show theoretical analyses of NERM generalization neutrality
risk and generalization risk. First, we derive a probabilistic uniform bound of
the generalization neutrality risk for any f € F with respect to the empirical
neutrality risk C,, (f, g) and the Rademacher complexity of F. Then, we derive
a bound on the generalization neutrality risk of the optimal hypothesis.

For convenience, we introduce the following notation. For a hypothesis class
F and constant ¢ € R, we denote —F ={—f: f € F} and ¢cF ={cf : f € F}.
For any function ¢ : R — R, let ¢ o F = {¢po f : f € F}. Similarly, for any
function g : X - R, let gF = {h: f € F,h(z) = g(x)f(z) Vo € X}.
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5.1 Uniform Bound of Generalization Neutrality Risk

A probabilistic uniform bound on Cy(f, g) for any hypothesis f € F is derived
as follows.

Theorem 2. Let Cy(f,g) and Cy 4 (f,g) be the relaxed convexr generalization
neutrality risk and the relazed convex empirical neutrality risk of f € F w.r.t.
g € G. Suppose that ¥ : R — [0,c] satisfies and is Lipschitz continuous with
constant Ly. Then, with probability at least 1 — 9§, every function in F satisfies

Ci(£,9) < Cop(f9) + 2Ly Ra(9F) + C\/ ln(;{ 2

As proved by Theorem 2, Cy(f,g) — Cn ([, g), the approximation error of the
generalization neutrality risk is uniformly upper-bounded by the Rademacher
complexity of hypothesis classes gF and O(y/In(1/8)/n), where § is the confi-
dence probability and n is the sample size.

5.2 Generalization Neutrality Risk Bound for NERM Optimal
Hypothesis

Let f € F be the optimal hypothesis of NERM. We derive the bounds on the
empirical and generalization neutrality risks achieved by f under the following
conditions:

1. Hypothesis class F includes a hypothesis fj s.t. fo(z) = 0 for Vz, and (A)
2. the regularization term of fj is £2(fo) = 0.

The conditions are relatively moderate. For example, consider the linear hy-
pothesis f(z) = wlz and 2(f) = Hw||§ (/2 norm) and let W C RP be a class of
the linear hypothesis. If 0 € W, the two conditions above are satisfied. Assuming
that F satisfies these conditions, the following theorem provides the bound on
the generalization neutrality risk.

Theorem 3. Let f be the optimal target hypothesis of NERM, where the view-
point hypothesis is g € G and the neutralization parameter is 1. Suppose that
¥ : R — [0,c] satisfies and is Lipschitz continuous with constant L. If condi-
tions (A) are satisfied, then with probability at least 1 — 4,

P 1 In(2/6
Colf.0) 000 +90)} +21,Ru(67) + o) "2
For the proof of Theorem 3, we first derive the upper bound of the empirical
neutrality risk of f.
Corollary 1. If the conditions (A) are satisfied, then the empirical relaxed con-

vex neutrality risk of [ is bounded by

R 1
Cn,w(fvg) < ¢(0) + ¢(0)?7
Theorem 3 is immediately obtained from Theorem 2 and Corollary 1.
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5.3 Generalization Risk Bound for NERM

In this section, we compare the generalization risk bound of NERM with that of
a regular ERM. Theorem 1 denotes a uniform bound of the generalization risk.
This theorem holds with the hypotheses which are optimal in terms of NERM
and ERM. However, the hypotheses which are optimal in terms of NERM and
ERM have different empirical risk values. The empirical risk of NERM is greater
than that of ERM since NERM has a term that penalizes less neutrality. More
precisely, if we let f be the optimal hypothesis in term of ERM, we have

Rn(f) - Rn(f) > 0. (5)
The reason for this is that empirical risk of any other hypothesis is greater than
one of f since f minimizes empirical risk. Furthermore, due to f is a minimizer

of Rn(f) + Tlch,¢(f, g), we have

Ru(f) +1Cns(f,9) = Ru(F) = nCrs(f.g) <0
Ru(f) = Bu(f) < 0(Crs(F,9) — Cns(F, 9))- (6)

Since the left term of this inequality is greater than zero due to Eq (5), the
empirical risk becomes greater if the empirical neutrality risk becomes lower.

6 Neutral SVM

6.1 Primal Problem

SVMs [14] are a margin-based supervised learning method for binary classifica-
tion. The algorithm of SVMs can be interpreted as minimization of the empirical
risk with regularization term, which follows the RERM principle. In this section,
we introduce a SVM variant that follows the NERM principle.

The soft-margin SVM employs the linear classifier f(z) = w’z + b as the
target hypothesis. In the objective function, the hinge loss is used for the loss
function, as ¢(yf(z)) = max(0,1 — yf(z)), and the ¢ norm is used for the
regularization term, 2(f) = )\\|f\|§/2n, where A > 0 denotes the regularization
parameter. In our SVM in NERM, referred to as the neutral SVM, the loss
function and regularization term are the same as in the soft-margin SVM. For
a surrogate function of the neutralization term, the hinge loss ¥ (+g(x)f(z)) =
max(0, 1Fg(x) f(x)) was employed. Any hypothesis can be used for the viewpoint
hypothesis. Accordingly, following the NERM principle defined in Eq (4), the
neutral SVM is formulated by

- A
min Z max(0,1 — y;(w? ; + b)) + Hw||§ + nCh.4(w, b, g), (7)
w,b — 2

where
Crp(w, b, g) = maX(C’:’w(w, b, 9), C;,w(wa b.9)),

C’iw(w, b,g) = ZmaX(O, 17 g(a;)(whx; +b)).

i=1
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Since the risk, regularization, and neutralization terms are all convex, the objec-
tive function of the neutral SVM is convex. The primal form can be solved by
applying the subgradient method [13] to Eq (7).

6.2 Dual Problem and Kernelization

Next, we derive the dual problems of the problem of Eq (7), from which the neu-
tral SVM kernelization is naturally derived. First, we introduce slack variables
€,¢5, and ¢ into Eq (7) to represent the primal problem:

n
) A 2
min §§z+2\|wllz+77€ (8)
gete T

subto D &7 <D & <G 1l—yi(wie +b) <&,
=1 =1
1—vi(wl@; +b) <& 1T+ vi(wa +0) <&,
£ >0,6 >0, >0,¢>0

where slack variables &;, &7, and & denote measures of the degree of misclas-

sification, correlation, and inverse correlation, respectively. The slack variable
¢, derived from max function in C, y(w,b, g), measures the imbalance of the
degree of correlation and inverse correlation. From the Lagrange relaxation of
the primal problem Eq (8), the dual problem is derived as

n n n

1
;ngi( A 2 b; — 5 XZ: zj:aiaik(xi,xj) 9)
n

subto Y a;=0,0<a; <1,0< 87,57 + 87 <1

K2

where b; = «; + 5;" +B;,a; = a;y; + B; v; — B; vi. As seen in the dual problem,
the neutral SVM is naturally kernelized with kernel function ! z; = k(x;, x;).
The derivation of the dual problem and kernelization thereof is described in the
supplemental document in detail. The optimization of Eq (9) is an instance of
quadratic programming (QP) that can be solved by general QP solvers, although
it does not scale well with large samples due to its large memory consumption.
In the supplemental documentation, we also show the applicability of the well-

known sequential minimal optimization technique to our neutral SVM.

7 Experiments

In this section, we present experimental evaluation of our neutral SVM for syn-
thetic and real datasets. In the experiments with synthetic data, we experimen-
tally evaluate the change of generalization risk and generalization neutrality risk
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according to the number of samples, in which their relations are described in
Theorem 2. In the experiments for real datasets, we compare our method with
CV2NB [4], PR [8] and n-neutral logistic regression (nLR for short) [5] in terms
of risk and neutrality risk. The CV2NB method learns a naive Bayes model, and
then modifies the model parameters so that the resultant CV score approaches
zero. The PR and nLR are based on maximum likelihood estimation of a logistic
regression (LR) model. These methods have two parameters, the regularizer pa-
rameter A, and the neutralization parameter 7. The PR penalizes the objective
function of the LR model with mutual information. The nLR performs maximum
likelihood estimation of the LR model while enforcing n-neutrality as constraints.
The neutralization parameter of neutral SVM and PR balances risk minimization
and neutrality maximization. Thus, it can be tuned in the same manner used
to determine the regularizer parameter. The neutralization parameter of nLR
determines the region of the hypothesis in which the hypotheses are regarded
as neutral. The tuning strategy of the regularizer parameter and neutralization
parameter are different in all these methods. We determined the neutralization
parameter tuning range of these methods via preliminary experiments.

7.1 Synthetic Dataset

In order to investigate the change of generalization neutrality risk with sample
size n, we performed our neutral SVM experiments for a synthetic dataset. First,
we constructed the input x; € R? with the vector being sampled from the uni-
form distribution over [—1,1]'°. The target y; corresponding to the input x; is
generated as y; = sgn(wgwi) where w, € R0 is a random vector drawn from
the uniform distribution over [—1,1]!°. Noises are added to labels by inverting
the label with probability 1/(1 4 exp(—100|w, @;])). The inverting label proba-
bility is small if the input «; is distant from a plane wga: = 0. The viewpoint
v; corresponding to the input x; is generated as v; = sgn(wlx;), where the first
element of w, is set as w,,1 = wy,1 and the rest of elements are drawn from the
uniform distribution over [—1,1]%. Noises are added in the same manner as the
target. The equality of the first element of w, and w, leads to correlation be-
tween y; and v;. Set the regularizer parameter as A = 0.05n. The neutralization
parameter was varied as € {0.1,1.0,10.0}. In this situation, we evaluate the
approximation error of the generalization risk and the generalization neutrality
risk by varying sample size n. The approximation error of generalization risk is
the difference of the empirical risk between training and test samples, while that
of the generalization neutrality risk is the difference of the empirical neutral-
ity risk between training and test samples. Five fold cross-validation was used
for evaluation of the approximation error of the empirical risk and empirical
neutrality; the average of ten different folds are shown as the results.

Results. Fig 1 shows the change of the approximation error of generaliza-
tion risk (the difference of the empirical risks w.r.t. test samples and training
samples), and the approximation error of generalization neutrality risk (the dif-
ference of the empirical neutrality risks w.r.t. test samples and training samples)



430 K. Fukuchi and J. Sakuma

z

n=01 — E| 1
% n=10 A
s 01 N=100 --»-- s

£ Reoap SO g
g 001 - g

E] by 5 o1
4 - 2
8 0001 |

3 £ 0001
- 2
00001 z

10? 10° 10* 10° 2 10° 10° 10* 10°
number of data number of data
(a) risk (b) neutrality risk

Fig. 1. Change of approximation error of generalization risk (left) and approximation
error of generalization neutrality risk (right) by neutral SVM (our proposal) according
to varying the number of samples n. The horizontal axis shows the number of samples
n, and the error bar shows the standard deviation across the change of five-fold division.
The line “sqrt(c/n)” denotes the convergence rate of the approximation error of the
generalization risk (in Theorem 1) or the generalization neutrality risk (in Theorem 2).
Each line indicates the results with the neutralization parameter n € {0.1,1.0, 10.0}.
The regularizer parameter was set as A = 0.05n.

Table 1. Specification of Datasets

dataset #Inst. #Attr. Viewpoint Target
Adult 16281 13 gender income
Dutch 60420 10 gender income

Bank 45211 17 loan term deposit
German 1000 20 foreign worker credit risk

with changing sample size n. The plots in Fig 1 left and right show the approxi-
mation error of generalization risk and the approximation error of generalization
neutrality risk, respectively.

Recall that the discussions in Section 5.3 showed that the approximation
error of generalization risk decreases with O(1/In(1/6)/n) rate. As indicated by
the Theorem 1, Fig 1 (left) clearly shows that the approximation error of the
generalization risk decreases as sample size n increases. Similarly, discussions in
Section 5.1 revealed that the approximation error of generalization neutrality risk
also decreases with O(1/In(1/8)/n) rate, which can be experimentally confirmed
in Fig 1 (right). The plot clearly shows that the approximation error of the
generalization neutrality risk decreases as the sample size n increases.

7.2 Real Datasets

We compare the classification performance and neutralization performance of
neutral SVM with CV2NB, PR, and LR for a number of real datasets specified
in Table 1. In Table 1, #Inst. and #Attr. denote the sample size and the num-
ber of attributes, respectively; “Viewpoint” and “Target” denote the attributes
used as the target and the viewpoint, respectively. All dataset attributes were
discretized by the same procedure described in [4] and coded by 1-of-K represen-
tation for PR, nLR, and neutral SVM. We used the primal problem of neutral
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Table 2. Range of neutralization parameter

method range of neutralization parameter
PR 0, 0.01, 0.05, 0.1, ..., 100
nLR 0,5x107°, 1x1074, 5% 1074, ..., 0.5

neutral SVM 0, 0.01, 0.05, 0.1, ..., 100
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Fig. 2. Performance of CV2NB, PR, nLR, and neutral SVM (our proposal). The ver-
tical axis shows the AUC, and horizontal axis shows Ch sgn(f,g). The points in these
plots are omitted if they are dominated by others. The bottommost line shows lim-
itations of neutralization performance, and the rightmost line shows limitations of
classification performance, which are shown only as guidelines.

SVM (non-kernelized version) to compare our method with the other methods
in the same representation. For PR, nLR, and neutral SVM, the regularizer pa-
rameter was tuned in advance for each dataset in the non-neutralized setting
by means of five-fold cross validation, and the tuned parameter was used for
the neutralization setting. CV2NB has no regularization parameter to be tuned.
Table 2 shows the range of the neutralization parameter used for each method.

The classification performance and neutralization performance was evaluated
with Area Under the receiver operating characteristic Curve (AUC) and +1/—1
empirical neutrality risk Cp, sgn(f, g), respectively. Both measures were evaluated
with five-fold cross-validation and the average of ten different folds are shown in
the plots.

Results. Fig 2 shows the classification performance (AUC) and neutralization
performance (Cy, sgn(f, g)) at different setting of neutralization parameter 7. In
the graph, the best result is shown at the right bottom. Since the classification
performance and neutralization performance are in a trade-off relationship, as
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indicated by Theorem Eq (6), the results dominated by the other parameter
settings are omitted in the plot for each method.

CV2NB achieves the best neutrality in Dutch Census, but is less neutral
compared to the other methods in the rest of the datasets. In general, the clas-
sification performance of CV2NB is lower than those of the other methods due
to the poor classification performance of naive Bayes. PR and nLR achieve com-
petitive performance to neutral SVM in Adult and Dutch Census in term of
the neutrality risk, but the results are dominated in term of AUC. Furthermore,
the results of PR and nLR in Bank and German are dominated. The results of
neutral SVM are dominant compared to the other methods in Bank and Ger-
man dataset, and it is noteworthy that the neutral SVM achieves the best AUC
in almost all datasets. This presumably reflects the superiority of SVM in the
classification performance, compared to the naive Bayes and logistic regression.

8 Conclusion

We proposed a novel framework, NERM. NERM provides a framework that
learns a target hypothesis that minimizes the empirical risk and that is empiri-
cally neutral in terms of risk to a given viewpoint hypothesis. Our contributions
are as follows: (1) We define NERM as a framework for guaranteeing the neutral-
ity of classification problems. In contrast to existing methods, the NERM can be
formulated as a convex optimization problem by using convex relaxation. (2) We
provide theoretical analysis of the generalization neutrality risk of NERM. The
theoretical results show the approximation error of the generalization neutral-
ity risk of NERM is uniformly upper-bounded by the Rademacher complexity
of hypothesis class gF and O(/In(1/8)/n). Moreover, we derive a bound on
the generalization neutrality risk for the optimal hypothesis corresponding to
the neutralization parameter 7. (3) We present a specific learning algorithms for
NERM, neutral SVM. We also extend the neutral SVM to the kernelized version.

Suppose the viewpoint is set to some private information. Then, noting that
neutralization reduces correlation between the target and viewpoint values, out-
puts obtained from the neutralized target hypothesis do not help to predict the
viewpoint values. Thus, neutralization realizes a certain type of privacy preser-
vation. In addition, as already mentioned, NERM can be interpreted as a variant
of transfer learning by regarding the neutralization term as data-dependent prior
knowledge. Clarifying connection to privacy-preservation and transfer learning
is remained as an area of future work.
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