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Abstract. We consider a version of the classical stochastic Multi-Armed
bandit problem in which the number of arms is large compared to the
time horizon, with the goal of minimizing the cumulative regret. Here,
the mean-reward (or value) of newly chosen arms is assumed to be i.i.d.
We further make the simplifying assumption that the value of an arm
is revealed once this arm is chosen. We present a general lower bound
on the regret, and learning algorithms that achieve this bound up to a
logarithmic factor. Contrary to previous work, we do not assume that
the functional form of the tail of the value distribution is known. Fur-
thermore, we also consider a variant of our model where sampled arms
are non-retainable, namely are lost if not used continuously, with similar
near-optimality results.

1 Introduction

We consider a statistical learning problem where a learning agent is facing a large
pool of possible choices, or arms, each associated with a distinct numeric value
which equals the one-stage reward that is obtained by choosing that arm. The
goal is to minimize the cumulative n-step regret (relative to the best available
arm). The agent has no prior knowledge on the value of unobserved arms, and
assumes that the value of each newly observed arm is sampled independently
from a common probability distribution. Once an arm is chosen its value is
revealed, and the agent may continue to pick a new arm, or return to a previously
chosen one. Clearly, this choice represents the essence of the exploration vs.
exploitation dilemma for this model.

It is assumed that the pool of arms is large enough compared to the time
horizon n, so that the agent cannot (or does not find it efficient) to sample them
all, hence this pool can be effectively viewed as infinite. A similar model has
been considered in [4,5,7,14,15]. In these papers, the observed reward of a given
arm is assumed to be stochastic. In contrast, we consider here the simpler case
where the reward of each arm is deterministic, so that a single observation is
enough to evaluate it precisely1. This focuses the problem strictly on the issue of

1 More generally, we may assume that the obtained reward is stochastic, but its mean
is revealed once an arm is chosen. This does not affect our results as we consider the
expected regret.
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obtaining new samples, rather than learning the expected value of ones already
sampled. On the other hand, the present paper generalizes the models studied
in these papers in the following two respects.

– Prior knowledge: No prior knowledge is assumed regarding the functional
form of the value distribution. Thus, the required sample size need to be
estimated from the observed samples.

– Non-retainable arms: In addition to the basic model that allows retain-
ing previously observed arms for further use, we consider the case where
previously sampled arms are lost if not used again immediately. Discarded
arms cannot be used again, but their observed values are useful for learning
purposes.

Relaxing the prior knowledge assumption is natural when facing an unknown
population for the first time. The non-retainable arms model is motivated by
applications where arms are associated with volatile resources such as job of-
fers and positions, apartment rental, business contracts, established routs in an
ad-hoc network, and so on. To elaborate on a particular example, consider the
problem of video streaming of a movie file to a media client over a wireless
channel. After the transmission of each segment of the movie, the provider ob-
tains feedback on the quality of the used channel, and decides whether to use
this channel again or try a new one. If a channel is dropped it may be used
by another user and hence lost. This scenario may be captured in our model
by associating channels with arms, and the perceived channel quality with the
obtained rewards.

As mentioned, the infinitely-many arms model has been considered before
in [4], [5], [7] [14] and [15]. In [4], the rewards of each arm are assumed to be
Bernoulli distributed, while the mean rewards (or values) of the different arms
are taken to be uniformly distributed. This paper presents algorithms for a fixed
horizon n which achieve a cumulative regret of an order of

√
n for a fixed horizon

n, and establishes a lower bound of the same order. Later, in [14] and [5], anytime
algorithms were presented for similar reward and value distributions, where [5]
also provides a fixed horizon time algorithm which achieves the optimal regret.
A more general model was considered in [15], where arm value distribution (or at
least its upper tail) is assumed known and to belong to a certain one parameter
family. This paper provides a lower bound on the regret, that depends on this
parameter, and proposes fixed horizon and anytime algorithms that approaches
this bound up to logarithmic factors in n. Motivated by e-commerce applica-
tions, a deterministic reward model, similar to ours, is considered in [7]. That
paper presents an algorithm which attains the optimal regret bound, under the
assumption of known value distribution.

In a broader context, our model may be compared to the continuous multi-
armed bandit problem discussed in [11], [2] and [6]. In this model the arm is
chosen from a continuous set, and continuity conditions are assumed on the arm
values. In contrast, in the model of the present paper no regularity or dependence
assumptions are made on the arms; for further discussion and comparison of the
two models see [15]. Another similar model is the contextual Multi-armed Bandit
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with an infinite number of arms or context sets, which is discussed in [12], [13],
[10] and [1]. Again, in this model a continuity or another similarity condition is
assumed on the arm values.

The non-retainable arm assumption (along with the deterministic reward
property) are reminiscent of the celebrated Secretary problem of optimal stop-
ping theory. In its basic form, a known number of candidates arrive sequentially
for an interview, which reveals their relative merit. The interviewer should de-
cide after each interview whether to stop and hire the last interviewed candidate,
with the goal of maximizing the probability of hiring the best one. This prob-
lem has been extensively studied and extended, for example see [9] and [3]. An
essential difference in our problem is the use of the regret as the performance
criterion.

In this paper we present several classes of adaptive sampling algorithms for
the infinitely many armed bandit problem. The algorithms are developed gradu-
ally, starting with the simpler case of a known tail distribution and generalizing
to the unknown distribution case. The presentation proceeds as follows. After
presenting the model in Sect. 2, we formulating in Sect. 3 a lower bound that
applies to all the cases considered. All our proposed algorithms will be shown to
achieve this lower bound up to a logarithmic factor. In Sect. 4 we consider the
model with known tail distribution, and in Sect. 5 we address the problem with
unknown distribution. Both the retainable arms and non-retainable arms cases
are treated in these sections. Section 6 concludes the paper with some directions
for further study.

2 Model Formulation

We consider an unlimited pool of possible objects or arms. The reward obtained
by choosing a particular arm is deterministic, and considered as the value of that
arm. The value of a newly chosen arm is determined as an independent sample
from a fixed probability distribution, with a cumulative distribution function
F (μ), μ ∈ R, that represents the empirical value distribution in the population.
The obtained value is observed by the learning agent, and remains the same in
future choices of that arm.

Let IF denote the support of the probability measure that corresponds to F .
We denote μ∗ as the supremal reward, i.e., the maximal value in the support
IF . Our performance measure will be the cumulative regret, which is defined as
follows.

Definition 1. The n-step regret is defined as:

regret(n) = E

[
n∑

t=1

(μ∗ − r(t))

]
, (1)

where r(t) is the reward obtained at time t, namely, the value of the arm chosen
at time t.
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We assume that all arms values are in the interval [0, 1]. We further use the
following notations.

– µ stands for a generic random variable with distribution F .
– µi is the i-th sampled value from F , i.e., the revealed value of the i-th newly

sampled arm.
– For 0 ≤ ε ≤ 1, let μ∗

ε = sup {x ∈ R : P (µ ≥ x) ≥ ε}. Note that μ∗ = μ∗
0.

Furthermore, let
D(ε) = μ∗ − μ∗

ε ,

Note that P (µ ≥ μ∗ −D(ε)) ≥ ε, with equality if μ∗
D(ε) is a continuity point

of F . We refer to D(ε) as the tail function of F .
– Let ε∗(n) be defined as2

ε∗(n) = sup

{
ε ∈ [0, 1] : nD(ε) ≤ 1

ε

}
. (2)

Note that nD(ε1) ≤ 1
ε∗(n) for ε1 < ε∗(n), and nD(ε2) ≥ 1

ε∗(n) for ε2 > ε∗(n).

The following property of the distribution F will be needed in Sect. 5.

Assumption 1
D (2ε) ≥ (C + 1)D (ε) (3)

for some constant C > 0 and every 0 ≤ ε ≤ 1
2 .

Remark 1. We observed that property (3) is satisfied in the following cases,
among others:
(a) Suppose that the probability density function (p.d.f.) of µ is strictly positive
and bounded, i.e., 0 < c1 ≤ fµ(x) ≤ c2 for some positive constants c1 and c2
and for every x ∈ IF . Then (3) is satisfied for C = c1

c2
.

(b) If P (µ ≥ μ∗ − ε) = cεβ for β > 0 and for every 0 ≤ ε ≤ 1, then D (ε) =

c−
1
β ε

1
β , so that (3) is satisfied for C = 2

1
β and every 0 ≤ ε ≤ 1

2 .
(c) Suppose that the p.d.f. of µ is non decreasing. Then (3) is satisfied for C = 1.

3 Lower Bound and Some Examples

We next present a lower bound on the regret that holds for all our model varia-
tions (and, in particular, for the “easiest” case of known distribution, retainable
arms, and given time horizon).

Theorem 1. The n-step regret is lower bounded by

regret(n) ≥ (1− δn)
μ∗ − E[μ]

16

1

ε∗(n)
, (4)

2 If the support of µ is a single interval, thenD(ε) is continuous. In that case, definition
(2) reduced to the equation nD(ε) = 1

ε
which, by monotonicity, has a unique solution

for n large enough. See Sect. 3 for examples.
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where ε∗(n) satisfies (2), and

δn = 1− 2 exp

(
− (μ∗ − E[μ])

2

8ε∗(n)

)
.

Note that when ε∗(n) → 0 as n → ∞, δn → 0 as n → ∞, so that its effect
becomes negligible.

Proof. Let {μ1, ...μn} denote the values of the first n arms to be drawn from
the pool, and assume that these values are revealed beforehand to the learning
agent (even if it does not actually draw n new arms in n steps).

For any such sequence {μ1, ...μn}, the smallest possible regret that can be
obtained (by any algorithm) is

R∗
n = min

k∈{1,...,n}
{Γ (n, k)} ,

where

Γ (n, k) = nμ∗ −
[

k∑
i=1

μi + (n− k)μk

]
.

This is due to the easily varified fact that the optimal policy for given (μi) is to
continue sampling new arms up to some index k∗ and continue pulling the k∗-th
arm thereafter.

Define the events

A(m, δ1) =

{
1

m

m∑
i=1

µi < μ∗ − δ1

}

and

B(m, δ2) =

{
max

i∈{1,...,m}
µi < μ∗ − δ2

}

for m ∈ {1, ..., n}, 0 ≤ δ1 ≤ μ∗ and 0 ≤ δ2 ≤ μ∗. If these two events are satisfied
for some m, δ1, and δ2, we obtain that R∗

n > mδ1, for m ≤ k∗, and R∗
n > nδ2,

for m ≥ k∗, where
arg min

k∈{1,...,n}
{Γ (n, k)} � k∗ .

Therefore,
R∗

n > min (mδ1, nδ2) .

Also,

P (A(m, δ1) ∩B(m, δ2)) ≥ 1− P (A(m, δ1)
c)− P (B(m, δ2)

c) ,

whereAc denotes the complement ofA. So, for δ1 = 1
2 (μ

∗ − E[μ]), by Hoeffding’s
inequality,

P (A(m, δ1)
c) ≤ exp

(
−m

2
(μ∗ − E[μ])

2
)
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and for δ2 = 1
2D(2ε∗(n)),

P (B(m, δ2)
c) = 1−

m∏
i

P (µi < μ∗ − δ2) ≤ 1− (1− 2ε∗(n))m ≤ 2ε∗(n)m.

Therefore, for m = 1
4ε∗(n) , and δ1, δ2 as above

regret(n) ≥ (1− P (A(m, δ1)
c)− P (B(m, δ2)

c))min (mδ1, nδ2)

≥
(
1− exp

(
− (μ∗ − E[μ])

2

8ε∗(n)

)
− 1

2

)
min

(
μ∗ − E[μ]

8ε∗(n)
,
n

2
D(2ε∗(n))

)

=

(
1

2
− exp

(
− (μ∗ − E[μ])2

8ε∗(n)

))
μ∗ − E[μ]

8ε∗(n)
,

where the last equality follows by (2), since n
2D(2ε∗(n)) ≥ 1

2ε∗(n) ≥ μ∗−E[μ]
8ε∗(n) . 	


The main consequence of this bound is that the order of the regret is at
least 1

ε∗(n) . As illustrate in the following examples, the order of 1
ε∗(n) is typically

polynomial in n. We will show below that all the algorithms presented in this
paper attain the lower bound up to a logarithmic factors.

The papers [4] and [15] provide similar lower bounds for specific cases. In
[4], a lower bound of

√
2n is provided for the case where the arms values are

uniformly distributed in [0, 1] and with Bernoulli rewards. In [15], a lower bound

of order Ω
(
n

β
β+1

)
is provided for the case where D(ε) = O(εβ) with β ≥ 0.

Noting Example 1, our bound below is of the same order. Our proof approach
is different than that of [15] and applies to more general distribution. Also, we
provide a specific coefficient rather than just an order of magnitude.

The following examples serve to illustrate the dependence of ε∗(n) on n. Ex-
ample 1 is the standard form studied in [15], while the others examples illustrate
general cases that are covered by our model.

1. Suppose that for ε > 0 (small enough), we have P (µ ≥ μ∗ − ε) = Θ
(
εβ
)
,

where β > 0. Then D(ε) = Θ
(
ε

1
β

)
, so that ε∗(n) = Θ

(
n− β

β+1

)
.

This is the case considered in [15]. Note that β = 1 corresponds to a uniform
probability distribution.

2. Suppose µ has the CDF

F (μ) =

{
(1− a) μ

μ∗ 0 ≤ μ < μ∗

1 μ = μ∗ ,

where 0 ≤ a < 1. This describes a uniform distribution with an added atom
of probability a at μ∗. Then D(ε) = 0 for ε ≤ a, and D(ε) = μ∗(ε−a)

1−a for

ε > a. Therefore, it follows that 2ε∗(n) = a+
(
a2 + 4c(1−a)

n

) 1
2

.

Note that in this case ε∗(n) > a for all n. Hence, contrary to Example 1,
ε∗(n) does not converge to 0 as n → ∞. So, the regret is finite.
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3. Suppose we have P (µ ≥ μ∗ − ε) = − c
ln(ε) . We obtain that D(ε) = e−

c
ε .

Therefore, it follows that c
ln(n) ≤ ε∗(n) ≤ c+1

ln(n) .

Note that in this case, ε∗(n) decays slower than any polynomial function of
n, and the regret grows as O(ln(n)).

4 Known Tail Function

This section discusses the model in which the tail function D(ε) is known (al-
though, of course, the upper value μ∗ is unknown). This model specializes the
stochastic-arm model presented by Wang et al. [15] to deterministic arms. On
the other hand, our model is more general in the sense that it is not restricted
to tail functions of the form D (ε) = εβ . Furthermore, we consider here both
the retainable arms and the non-retainable arms problems, as described in the
Introduction.

4.1 Retainable Arms

We propose the following algorithm.

Algorithm 1 (KT&RA – Known Tail and Retainable Arms).

1. Parameters: Time horizon n > 1 and a constant A > 0.
2. Compute ε∗(n) as defined in (2).
3. Pull N = �A ln(n) 1

ε∗(n)�+ 1 arms and keep the best one so far.

4. Continue by pulling the saved best arm up to the last stage n.

The right tradeoff between exploring new arms and pulling the best one so far
is obtained by (2). The parameter A allows a further tuning of the algorithm
performance. Our regret bound for this algorithm is presented in the following
Theorem.

Theorem 2. For each n > 1, the regret of the KT&RA Algorithm with a con-
stant A is upper bounded by

regret(n) ≤ (1 +A ln(n))
1

ε∗(n)
+ n1−A + 1 , (5)

where ε∗(n) is defined in (2).

By properly choosing A, for example A = 1, we obtain an O
(

ln(n)
ε∗(n)

)
bound on

the regret. This bound is of the same order as the lower bound in (4), up to a
logarithmic factor. We note that a slightly better choice of A may be obtained
by balancing the two terms in the bound (5).

Proof. For N ≥ 1, let VN (1) denote the value of the best arm found by sampling
N different arms. Clearly,

regret(n) ≤ N + (n−N)Δ(N) ,
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where Δ(N) = E[μ∗ − VN (1)]. But for any 0 ≤ ε ≤ 1

P (μ∗ − VN (1) > D(ε)) ≤ (1− ε)N (6)

(note that equality holds if the distribution function of µ is continuous) so that,
since μ∗ − VN (1) ≤ 1,

Δ(N) ≤ (1− ε)N +D(ε) . (7)

Since in step 3 of the algorithm we chose N = A ln(n) 1
ε(n) , where ε(n) < ε∗(n),

and noting that (1− ε)
1
ε ≤ e−1 for ε ∈ (0, 1], we obtain that

(1− ε(n))N ≤ n−A . (8)

Since, ε(n) < ε∗(n), it follows that nD (ε(n)) ≤ 1
ε∗(n) . Therefore,

regret(n) ≤ �A ln(n)
1

ε∗(n)
�+1+n1−A+nD(ε(n)) ≤ A ln(n)

1

ε∗(n)
+1+n1−A+

1

ε∗(n)
.

Hence (5) is obtained. 	


4.2 Non-retainable Arms

Here we are not allowed to keep any previously chosen arm except the last one.
Therefore, the previous algorithm that keeps the best arm so far while trying
out new arms cannot be applied in this case. However, the observed values of
discarded arms provide usefull information for the learning agent. We introduce
the notation VN (m) for the m-th largest value obtained after observing N arms.

Algorithm 2 (KT&NA – Known Tail and Non-retainable Arms).

1. Parameters: Time horizon n > 1 and a constant A ≥ 2.
2. Compute ε∗(n) as defined in (2).
3. Pull N = �5A ln(n) 1

ε∗(n)�+ 1 arms and store their values.

4. a. Continue pulling new arms until observing a value not smaller than VN (m),
where m = 
2A ln(n)�.
b. Once such a value is observed, continue pulling this arm up to the last
stage n.

After observing N arms, a threshold which is large on one hand, and on the
other hand it is likely enough to find a new arm with a larger value than it is
obtained. Then, the algorithm searches for an arm with a larger value than this
threshold and keeps pulling this arm. Our regret bound for this algorithm is
presented in the following Theorem.

Theorem 3. For each n > 1, the regret of the KT&NA Algorithm with a con-
stant A is upper bounded by

regret(n) ≤ (5A ln(n) + 8)
1

ε∗(n)
+ cA(n) , (9)
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where ε∗(n) is defined in (2) and for n ≥ 10 it is obtained that

cA(n) ≤ 4 (10)

The exact expression of cA(n) for n ≥ 10 is found in (15).

The algorithm starts with a learning period of length N , which allows to assess
the values distribution near μ∗. A threshold VN (m) is then set, and sampling
new arms continues until an arm with that value is observed. The threshold
VN (m) is chosen as the m-th largest value in the obtained samples, where m is
chosen so that the chances of quickly drawing a new arm with that value or over
are high.

By a proper choice of A, for example A = 2 we obtain an O
(

ln(n)
ε∗(n)

)
bound

on the regret. This bound is of the same order as the lower bound in (4), up to
a logarithmic factor. We note that by considering the exact expression of cA(n),
a slightly better choice of A may be obtained.

The proof of Theorem 3 relies on the following Lemma.

Lemma 1. Let m and N be positive integers such that m < N .

(a) If m
N > ε, then

P (VN (m) > μ∗
ε ) ≤ f0(m,N, ε) .

(b) If m
N < ε, then

P (VN (m) < μ∗
ε ) ≤ f0(m,N, ε) ,

where f0(m,N, ε) = exp
(
− |m−Nε|2

2(Nε+|m−Nε|/3)
)
.

For space considerations, the proof of that Lemma is presented in the technical
report [8].

Proof of Theorem 3. The regret is bounded by

regret(n) ≤ N + E[Y (VN (m))] + nE[μ∗ − VN (m)] , (11)

where N is the number of arms which are sampled in step 3 of the algorithm.
The random variable Y (V ) is the number of arms which are sampled until an
arm with a greater value than V is sampled (or until the end of the time horizon,
if such a value is never sampled again). We can find that for any ε1 > 0, the
second term of (11) is bounded by

E[Y (VN (m))] ≤ P
(
VN (m) ≤ μ∗

ε1

)
E
[
Y (VN (m))|VN (m) ≤ μ∗

ε1

]
+ P

(
VN (m) > μ∗

ε1

)
E
[
Y (VN (m))|VN (m) > μ∗

ε1

]
≤ 1

ε1
+ nP

(
VN (m) > μ∗

ε1

)
� E1(ε1) .

(12)

By using the fact that Y (V ) ≤ n, the non decreasing of Y (V ) in V , and the
expected value of a geometric variable. Also, for any ε2 > 0, the third term of
(11) is bounded by
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nE[μ∗ − VN (m)] ≤ nP
(
VN (m) ≥ μ∗

ε2

)
E
[
μ∗ − VN (m)|VN (m) ≥ μ∗

ε2

]
+ nP

(
VN (m) < μ∗

ε2

)
E
[
μ∗ − VN (m)|VN (m) < μ∗

ε2

]
≤ nD(ε2) + nP

(
VN (m) < μ∗

ε2

)
� E2(ε2) .

(13)

Since it is known that μ∗ − VN (m) ≤ 1.

Therefore, by (11), (12), (13) and Lemma 1, for ε1 = ε(n)
7 and ε2 = ε(n),

where N = 5A ln(n) 1
ε(n) for some 5A ln(n)ε∗(n)

5A ln(n)+ε∗(n) ≤ ε(n) < ε∗(n), it is obtained

that

regret(n) ≤ �5A ln(n)

ε∗(n)
�+1+E1(ε1)+E2(ε2) ≤ 5A ln(n)

ε∗(n)
+

8

ε∗(n)
+cA(n) , (14)

where ε∗(n) is defined in (2), and

cA(n) ≤ 2n1−0.6A + 2 (15)

for n ≥ 10. Note that (14) holds since nD(ε(n)) ≤ 1
ε∗(n) and 1

ε(n) ≤ 1
ε∗(n) +

1
5A ln(n) . Hence, (9) is obtained. 	


5 Unknown Tail Function

We now proceed to the harder problem where the tail function D(ε) is unknown.
Here, it is impossible to calculate beforehand the optimal number of arms to
sample, as done in the algorithms of Sect. 4. To overcome this issue, the algo-
rithms proposed in this section gradually increase the number of sampled arms
until a certain condition is satisfied.

The analysis in this section will be carried out under Assumption 1. Note that,
the values of the constant C in the assumption is not used in the algorithm, but
only in its analysis. Again, we consider here both the retainable arms and the
non-retainable arms problems.

5.1 Retainable Arms

Recall that VN (m) stands for the m-th largest value obtained after observing N
arms.

Algorithm 3 (UT&RA – Unknown Tail and Retainable Arms).

1. Parameters: Time horizon n > 1, constants N ≥ 2, A ≥ 2.
Set N0 = 
NAn�, where An = A ln(n).

2. Pull K = N0 arms.
3. If Ψ(K,n) < K

nAn
, where Ψ(K,n) = VK(1)− VK(
5An�):

a. Pull another K arms.
b. Continue pulling the best arm so far up to time n.
Else, if Ψ(K,n) ≥ K

nAn
:

a. Pull one more arm, and set K = K + 1.
b. Return to 3.
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In this algorithm, the number of sampled arms K is increased until the condition
in stage 3 is satisfied. Thereafter, the number of sampled arms is doubled, and
then the best arm found is pulled up to time n.

The rational of this algorithm is as follows. Our goal is to ensure that, essen-
tially, the number of samples K is large enough, namely comparable to ε∗(n)−1

from (2). This translates to K > nD( 1
K ). The condition in stage 3 indicates that

the gap VK(1)−VK(5An), which is the difference between the largest value and
the 5An-th largest value in the first K samples, is small in comparison toK. This
gap is related, with high probability, to the difference D( 2

K )−D( 1
K ), which, un-

der Assumption 1, upper bounds the size of D( 1
K ). A second sample of K arms

is required due to the dependencies between the above stopping condition and
values of the the first K samples.

Our regret bound for this algorithm is presented in the following Theorem.

Theorem 4. Let Assumption 1 hold for some C > 0, For each n > 1, the regret
of the UT&RA Algorithm with a constant A is upper bounded by

regret(n) ≤
(
20A ln(n) +

1

min(1, C)

)
1

ε∗(n)
+ cA(n) , (16)

where ε∗(n) solves (2) and
cA(n) ≤ 2N0 + 9 (17)

for n ≥ 10. The exact expression of cA(n) for n ≥ 10 is given in (30).

Again, by a proper choice of A, for example A = 2 we obtain an O
(

ln(n)
ε∗(n)

)
bound

on the regret.

Proof. The regret is bounded by

regret(n) ≤ E[2N̂ ] + nE[μ∗ − V2N̂ (1)] , (18)

where N̂ is the number of arms sampled by the algorithm until the condition in
stage 3 is satisfied.

The first term of (18) is bounded by

E[2N̂ ] ≤ 2
(
N1 + nP (N̂ > N1)

)
(19)

for every N1 ≥ 
NAn�. To bound the probability P (N̂ > N1), we note that{
N̂ > N1

}
⊆

{
Ψ(N1, n) ≥ N1

nAn

}
⊆

{
Ψ(N1, n) >

N1

γnAn

}

⊆
{
Ψ(N1, n) > D

(
γAn

N1

)}⋃
E4(γ,N1)

⊆ E3(γ,N1)
⋃

E4(γ,N1) ,

where γ > 1,

E3(γ,N1) �
{
VN1(
5An�) < μ∗

γAn
N1

}
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and

E4(γ,N1) �
{
D

(
γAn

N1

)
>

N1

γnAn

}
.

Note that D(ε) < 1
nε for ε < ε∗(n). So, it follows that E4(γ,N1) is false, when

γAn

N1
< ε∗(n), or N1 > γAn

ε∗(n) . So, for N1 = max
(

 γAn

ε∗(n) + 1�, N0

)
, it is obtained

that
{N̂ > N1} ⊆ E3(γ,N1)

and by Lemma 1, it follows that

P
(
N̂ > N1

)
≤ n−0.9A (20)

for γ = 10 and n ≥ 10. Therefore, by (19),

E[2N̂ ] ≤ 2

(

10An

ε∗(n)
+ 1�+N0 + n1−0.9A

)
. (21)

For bounding the second term of (18) we note that, for any N2 ≥ 1,

nE[μ∗ − V2N̂ (1)] ≤ nE[μ∗ − VN̂ (1)]

≤ n
(
E
[
μ∗ − VN̂ (1)|N̂ ≤ N2

]
P (N̂ ≤ N2)

+ E
[
μ∗ − VN̂ (1)|N̂ > N2

]
P (N̂ > N2)

)
≤ n

(
P (N̂ ≤ N2) + E [μ∗ − VN2+1(1)]

)
,

(22)

where, starting from the first inequality, we consider only the N̂ arms that were
sampled after the condition in stage 3 of the algorithm has been satisfied, so
that, N̂ and the obtained values are independent. In the third inequality we use
the fact that E [Vm(1)] is non decreasing in m.

For bounding P (N̂ ≤ N2), we note that for every i ≥ N0,{
N̂ ≤ N2

}
= ∪N0≤i≤N2 {A(i)} , (23)

where

A(i) �
{
Ψ (i, n) <

i

nAn

}

⊆
{
Ψ (i, n) < D

(
2An

i

)
−D

(
An

i

)}⋃{
D

(
2An

i

)
−D

(
An

i

)
<

i

nAn

}
.

Since
Ψ (i, n) = Vi(1)− Vi(
5An�)

and

D

(
2An

i

)
−D

(
An

i

)
= μ∗

An
i

− μ∗
2An

i

,
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it follows that
A(i) ⊆ B(i)

⋃
C(i) , (24)

where
B(i) �

{
Vi(
5An�) > μ∗

2An
i

}
∪
{
Vi(1) < μ∗

An
i

}

C(i) �
{
min(1, C)D

(
An

i

)
<

i

nAn

}

and the constant C satisfies that CD(ε) ≤ D(2ε) − D(ε) for every 0 ≤ ε ≤ 1
2 .

So, by (23) and (24), and since

∪N0≤i≤N2 {C(i)} ⊆ C(N2) ,

it is obtained that for any N2 ≥ N0 such that C(N2) is false,{
N̂ ≤ N2

}
= ∪N0≤i≤N2 {A(i)} ⊆ ∪N0≤i≤N2 {B(i)} .

Therefore, by Lemma 1, and similarly to (6) and (8) with ε = An

i and N = i, it
follows that

P
(
N̂ ≤ N2

)
≤ n(n−1.4A + n−A) (25)

for n ≥ 10. Note that for N2 < N0 it is obtained that P
(
N̂ ≤ N2

)
= 0.

The remaining issue is to bound the term E [μ∗ − VN2+1(1)] from (22) under
the same condition that C(N2) is false. Since Δ � μ∗ − VN2+1(1) ≤ 1

E [Δ] ≤ D(
An

N2 + 1
) + P

(
Δ > D(

An

N2 + 1
)

)

≤ D(
An

N2 + 1
) + n−A .

(26)

The last inequality follows similarly to (6) and (8) with ε = An

N2+1 andN = N2+1.
Let ε(n) be defined as

ε(n) = sup

{
ε ∈ [0, 1] : nmin(1, C)D(ε) ≤ 1

ε

}
.

If it is satisfied that

E(C) �
{
min(1, C)D(ε(n)) ≥ 1

nε(n)

}

then, let us choose N2 as the largest integer for which N2

An
≤ 1

ε(n) . Then, C(N2)

is false, and furthermore An

N2+1 < ε(n). So,

D(
An

N2 + 1
) ≤ 1

nmin(1, C)ε(n)
.
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On the other hand, if E(C) is not satisfied, then, let us choose N2 as the largest
integer for which N2

An
< 1

ε(n) . Then, again, C(N2) is false, and furthermore
An

N2+1 ≤ ε(n). So,

D(
An

N2 + 1
) ≤ D(ε(n)) <

1

nmin(1, C)ε(n)
.

Therefore, since min(1, C) ≤ 1, it is obtained that 1
ε(n) ≤ 1

ε∗(n) . So,

D(
An

N2 + 1
) ≤ 1

nmin(1, C)ε∗(n)
. (27)

Therefore, by (22), (25), (26) and (27), it follows that

nE[μ∗ − V2N̂ (1)] ≤ n

(
n
(
n−1.4A + n−A

)
+

1

nmin(1, C)ε∗(n)
+ n−A

)
. (28)

Finally, by (18), (21) and (28), it is obtained that

regret(n) ≤
(
20An +

1

min(1, C)

)
1

ε∗(n)
+ cA(n) , (29)

where
cA(n) = 2n1−0.9A + n2−1.4A + n2−A + n1−A + 2NAn + 4 (30)

for n ≥ 10. Hence, since A ≥ 2, it follows that cA(n) ≤ 2N0 + 9 for n ≥ 10, so
Theorem 4 is obtained. 	


5.2 Non-retainable Arms

Here, as in Sect. 4.2, it is impossible to pull a group of arms and keep the best
one of them. So, we combine the UT&RA algorithm from the previous section
with the KT&NA algorithm from Sect. 4.2. Recall that (3) is satisfied for a
positive constant C and ε ≤ ε0, where ε0 is known for the learning agent.

Algorithm 4 (UT&NA – Unknown Tail and Non-retainable Arms).

1. Parameters: Time horizon n > 1, constants N ≥ 10, A ≥ 4.
Set N0 = 
NAn�, where An = A ln(n).

2. Pull K = N0 arms.
3. If Ψ(K,n) < K

nAn
, where Ψ(K,n) = VK(1)− VK(
5An�):

a. Pull another K arms.
b. Continue pulling new arms until observing a value equal or larger than
VK(m), where m = 
 3An

10 �.
c. Continue pulling this arm up to time n.
Else, if Ψ(K,n) ≥ K

nAn
:

a. Pull one more arm, and set K = K + 1.
b. Return to 3.
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This algorithm begins, similarly to the UT&RA Algorithm 3, to find a large
enough sample size K. Then, since observed arms cannot be retained, it pro-
ceeds similarly to KT&NA Algorithm 2, to compute a desired value threshold
and sample new arms until such an arm is obtained. Our regret bound for this
algorithm is as follows.

Theorem 5. Let Assumption 1 hold for some C > 0. For each n > 1, the regret
of the UT&NA Algorithm with a constant A is upper bounded by

regret(n) ≤
(
20A ln(n) + 140 +

1

min(1, C)

)
1

ε∗(n)
+ cA(n) , (31)

where ε∗(n) solves (2) and

cA(n) ≤ 2N0 + 14N + 13 (32)

for A ≥ 7 and n ≥ 100. The full expression of cA(n) can be found in [8].

Similarly to the UT-LB and the KT-LB Algorithms, by a proper choice of A,

for example A = 7, we obtain an O
(

ln(n)
ε∗(n)

)
bound on the regret.

For space considerations, the proof of Theorem 5 is presented in the technical
report [8].

6 Conclusion

For the problem of infinitely many armed-bandits with unknown value distri-
bution, we have proposed algorithms that obtain the optimal regret up to a
logarithmic factors. Our treatment was focused on the case of deterministic re-
wards. Further work should naturally consider the extension of our results to the
stochastic rewards model, which requires repeated trials of sampled arms (pos-
sibly using a UCB-like bandit algorithm similarly to [15]). Another extension of
our results, which were presented here for a given time horizon, is to the case of
anytime algorithms. This can of course be accomplished using a simple doubling
trick, however the development of specific and more effective algorithms for this
case should be of interest. Note that in the stochastic rewards problem, it should
be of interest to consider the intermediate case, where only a limited number
of arms (rather than all or none) can be retained. As mentioned, in the present
deterministic rewards model, it is enough to retain only the one arm with the
best value so far.
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